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Abstract. Machine learning methods are integrated into the pipelined first level (L1) track
trigger of the upgraded flavor physics experiment Belle II at KEK in Tsukuba, Japan. The novel
triggering techniques cope with the severe background from events outside the small collision
region provided by the new SuperKEKB asymmetric-energy electron-positron collider. Using
the precise drift-time information of the central drift chamber which provides axial and stereo
wire layers, a neural network L1 trigger estimates the 3D track parameters of tracks, based on
input from the axial wire planes provided by a 2D track finder. An extension of this 2D Hough
track finder to a 3D finder is proposed, where the single hit representations in the Hough plane
are trained using Monte Carlo. This 3D finder improves the track finding efficiency by including
the stereo sense wires as input. The estimated polar track angle allows a specialization of the
subsequent neural networks to sectors in the polar angle.

1. Introduction
Belle II is the new flavor physics detector at the high luminosity B factory SuperKEKB in
Tsukuba, Japan [1]. In the presently running Phase 3 of SuperKEKB (spring 2019), the
first physics collisions are recorded with the full detector geometry installed. The asymmetric
e+e− collider is operated at the Υ(4S) resonance, with beam energies of E(e+) = 4GeV and
E(e−) = 7GeV. Belle II allows to perform precision tests of the Standard Model (SM) of
particle physics, as well as searches for physics beyond the SM (BSM). Besides the typical BB̄
events with an average momentum of 500MeV per track and an average track multiplicity of 11
tracks per event, there are also many low multiplicity channels that are important in searches for
BSM physics, like searches for dark matter or lepton flavor violation processes. In addition, low
multiplicity hadronic events at low center-of-mass energies, resulting from initial state radiation,
may offer a handle to improve the hadronic loop corrections in the g − 2 analysis.

The luminosity upgrade that is inherently connected with an increase of the background rate
poses a challenge for the trigger system. As determined from background simulations and the
observed background in the early Belle II data, a large fraction of background tracks are seen
along the longitudinal axis z outside of the interaction region. The expected background z
distribution at Belle II and the observed distribution from the early Phase 3 data of Belle II are
shown in Figure 1 [2]. A large proportion of these background tracks are backscattered particles
produced from interactions of the primary particles with the detector material [2]. The addition
of a z vertex trigger enables a significant reduction of the background track rate and allows to
relax other trigger conditions, which could give access to low multiplicity events. Following a



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012102

IOP Publishing

doi:10.1088/1742-6596/1525/1/012102

2

150 100 50 0 50 100 150
z [cm]

0

50

100

150

200

250

300

tra
ck

 ra
te

 [H
z]

(a)

“Belle II Data”

150 100 50 0 50 100 150
z [cm]

0

5

10

15

20

25

ev
en

t r
at

e 
[k

Hz
]

(b)

“Belle II Simulation”

Touschek
Coulomb
Brems
Bhabha-M
Bhabha-L
Bhabha-S
TwoPhoton

Figure 1. (a) Observed z distribution of reconstructed tracks from an early run of Belle II (exp
7, run 4048). (b) Simulated distribution of the z vertex positions of background tracks found by
the 2D track finder for different background types (luminosity and machine) [2]. The luminosity
in (a) is ≈ 500× lower than the design luminosity of Belle II (L = 8×1035 cm−2 s−1), which was
used in the idealized Belle II background-only simulation (b).

track finder based on a 2D Hough transformation [3], the single track z vertex reconstruction at
the first level (L1) trigger is realized by two methods: a neural network [4, 5, 6, 7] and in parallel
by a least square fitter [8]. Here, a possible 3D upgrade for the track finder is introduced. Such an
upgrade would improve the track finding efficiency, and provide additional a priori information
for a better accuracy of the 3D track reconstruction methods.

2. CDC L1 Trigger
The Belle II L1 trigger is a pipelined hardware trigger mainly composed of subtriggers derived
from the drift chamber and the electromagnetic calorimeter, and a global decision logic, where
the subtrigger results are combined to issue the trigger signal. The requirements for the
Belle II L1 trigger are a maximum trigger rate of 30 kHz within a maximum latency of 5 µs
and with a pipeline clocked every 32 ns [1, 9]. To fulfill these requirements, all subtriggers
are implemented in hardware, based on FPGA technology, which provides a high degree of
parallel and deterministic computation to achieve the required timing performance. Additionally,
this technology offers a sufficient number of High-Speed Input/Output resources to fulfill the
bandwidth and connectivity requirements.

The central drift chamber (CDC) is the only tracking detector at the L1 trigger. It contains
14336 sense wires arranged in 56 cylindrical layers around the z axis, which are combined into
9 superlayers (SLs) with the same orientation: wires in the axial SLs are aligned parallel to the
z axis, while the inclined stereo SLs have different stereo angles with respect to the z axis that
allow for a 3D track reconstruction. The tracking accuracy is determined by the measurement
of the drift-times at the sense wires.

In a first noise suppression and data reduction step, the wire hits are combined into track
segments (TSs) in the 9 SLs by searching for a hourglass shaped pattern of wires in close
proximity [1, 9]. Each of the 2336 TSs provides the position of a single priority wire within the
TS pattern, the drift-time measured at this priority wire and a left/right information based on
the wire hit pattern within the TS. The TSs are the input to the 2D track finder, the event
time finder, the 3D fitter and the neural network trigger. The present 2D track finder uses only
the axial hit positions (without drift-time) as input to find 2D track candidates (pT , φ) with a
circular 2D Hough transformation. For each found track, a neural network and the fitter use the
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Table 1. Binning of the track and hit parameters in the array A; pT is the transverse momentum,
φ is the azimuthal and θ the polar angle of the track; id is the unique identification number of
a TS hit in the CDC trigger; prio is the position of a single selected reference wire within the
TS - the priority wire. In the predefined shape of a TS, three wires are possible candidates for
this priority wire.

pT φ θ id prio

bins 40 384 9 2336 3

full TS information (including the drift-times) to provide precise 3D track estimates. In order
to improve the accuracy in the cases where stereo TSs are missing, the neural network trigger
has a set of 5 expert networks pretrained to missing stereo TSs.

3. 3D Track Finder
The 2D track finder uses only the axial TSs as input, as they appear as points in the transverse
plane. If stereo TSs were included in a 3D track finder, the track finding efficiency could be
improved. However, the model must be extended to a 3D Hough plane, since stereo wires appear
as short line segments in the 2D transverse plane. By extending the Hough space to 3D, an
additional 3D track parameter can be estimated. This is particularly beneficial for the neural
network trigger, where a priori knowledge of the track can be used to sectorize the input in order
to train expert networks for these sectors.

Due to the magnetic field of 1.5T, tracks can be described by circles in the transverse plane.
In the circular 2D Hough transformation, the hit points in real space are transformed to sine
curves in parameter space. The track parameters are then found at the intersections of the
hit curves [6]. In hardware, a binned Hough space is used: after summing up the single hit
contributions, the tracks are identified by a peak finding algorithm.

3.1. Model
The model for a 3D track finder is motivated by the Bayes estimation of conditional probabilities
for the random variables T (set of tracks) and H (set of hits):

P (T |H) =
P (H|T )P (T )

P (H)
(1)

where P (T |H) is the probability for a set of tracks T given a set of hits H [5]. In a binned track
parameter space, an array can be identified of probabilities P (t|H) for each possible track t to
be built out of the set of observed hits h ∈ H. With a peak finding algorithm, tracks can be
identified as local maxima in the probability distribution. This is a very general approach that
allows an easy change of the track and hit parametrization. By choosing the same track and hit
parametrization as in the 2D track finder, equivalent results are obtained.

In the 3D finder, the hit contributions to the probabilities in the track parameter space are
represented by a 5D array A[t, h] ∝ P (t|h). The tracks are parametrized by p−1

T , φ and θ, while
the hits by their id and prio (priority position). For tracks associated to a vertex at the IP,
p−1
T is the inverse transverse momentum which is proportional to the curvature of the track; φ

and θ are the azimuthal and polar angles of the track momentum at the IP. While stereo hits
appear as line segments in a transverse 2D plane, the binning in the track parameter θ allows
to represent the stereo hits as points in each θ bin. The used binning is shown in Table 1.
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Table 2. Track parameter ranges of the simulated single µ± tracks used for the tests: (a)
tracks in the full acceptance region of the CDC; (b) flatter polar angle θ and lower transverse
momentum pT where not all layers of the CDC might get a hit.

pT [GeV] φ [◦] z [cm] θ [◦]

(a) [0.35, 7] 360 [−1, 1] [35, 123]
(b) [0.2, 7] 360 [−1, 1] [19, 140]

The quantity A is trained on 2.5 · 105 Monte Carlo simulated single µ± tracks associated to
vertices at the IP and the track parameters within the ranges listed in Table 2. For each track in
the training run, the related hits are selected, a binning is applied to the track parameters and
the array A[t, h] is incremented for all (track, hit) pairs. After the array is filled, it is normalized
to make all tracks equally probable.

A[t, h] =
A[t, h]∑

all h

A[t, h]
(2)

Note that this sum is taken over the set of all possible hits for each track. In the end, a bit
width of 3 bits is applied to the weights in A, with the effect that a single hit can contribute to
a track with a maximum weight of 23.

After A is trained, it can be used for track finding. The Hough space B[t] is constructed by
summing up all single hit contributions h of the set of observed hits (h ∈ H) in the event:

B[t] =
∑
h∈H

A[t, h] (3)

With this summation, B[t] cannot be interpreted as a probability, but as a weight with which
the hits contribute to each possible track. The local maxima are preserved such that peaks in
B[t] identify the most probable tracks in the event.

A variation of the density-based clustering algorithm DBSCAN [10] is used to find connected
regions of cells with minweight = 24 in B[t]. Once the cluster candidates are found, cells with a
weight less than 85% of the peak weight within the clusters are removed. A confusion matrix of
the hit to cluster relations is used to assign the hits to the clusters where they contribute with
the largest weight. Cluster candidates with less than minhits = 4 assigned hits are removed
and the hits are reassigned to bigger clusters. From the found clusters, the track parameters are
calculated as the weighted mean of the cluster cells.

3.2. Results
The accuracy of the found track parameters and the efficiency for the track finding are analyzed
with Monte Carlo events in two different track parameter ranges (see Table 2). The results of
the 3D finder are compared to the existing 2D finder.

Figure 2 shows the accuracies in a test run with the track parameter range (a) (see Table 2),
where tracks from the IP can produce hits in all SLs. In both 2D track parameters (pT , φ), the
3D finder has an improved accuracy. In addition, it provides a θ estimate with ∆θ ≈ 3◦, which
is better than the θ bin width in A. This is possible since the track parameters are calculated
as the weighted mean of the contributing cluster cells. There is no significant difference in the
recognized charges of the tracks.
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Figure 2. Accuracy of the found track parameters with the 3D track finder in comparison to
the 2D track finder. The track parameter ranges (a) of Table 2 are used.
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Figure 3. (a) Track finding efficiency for tracks within the full detector acceptance region,
where tracks pass through all SLs of the CDC. (b) Track finding efficiency for tracks with a
flatter polar angle θ, where not all SLs of the CDC might get a hit.
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Figure 3 shows the pT dependent track finding efficiency for both track parameter ranges. In
Figure 3 (a) the track parameter range (a) of Table 2 is used. Both finders achieve an efficiency
of ≈ 100% in the high pT region. Only in the low pT region the 3D finder has an improved track
finding efficiency. Figure 3 (b) shows the efficiency for the track parameter range (b) of Table 2.
It contains tracks with lower transverse momentum pT and flatter θ angles. For the finders, it
is more difficult to reconstruct such tracks, as not all SLs might get a hit. The 3D finder shows
a significantly improved track finding efficiency in all pT regions.

4. Conclusion and Outlook
An improvement of the estimated track parameter accuracy and the track finding efficiency with
a 3D finder has been measured in a test setup with simulated single tracks. While the 2D finder
already reaches almost 100% efficiency for tracks within the full CDC acceptance regions where
tracks have hits in all SLs, a significant improvement can be achieved for tracks with lower pT
and flatter θ where not all tracks have hits in all SLs. The estimated θ, with an accuracy of
∆θ ≈ 3◦, could be used as an additional input to the 3D track reconstruction, e.g., by a training
a pool of expert neural networks for the θ sectors. The 3D finder will be a useful replacement
of the 2D finder: for tracks in the full CDC acceptance region, both methods achieve equivalent
efficiencies while a significant efficiency improvement can be achieved for tracks at the boundaries
of the acceptance region. The presented method is carried out in a simulation framework and
follow-up studies on the realization in hardware are necessary. The generality of this 3D finder
makes it interesting also in offline tracking applications where two consecutive 2D track finding
steps can be combined into a single 3D step. At Belle II, this method might also be useful in
the track finding with the double-sided silicon strip vertex detector, where presently a 2D track
finder in the transverse plane is followed by a 2D track finder in the longitudinal plane: using
the 3D track parameter θ in a single 3D finder could reduce the large number of fake tracks
from combinatorial effects in the second longitudinal 2D finder step.

References
[1] Abe T et al. 2010 ArXiv e-prints (Preprint 1011.0352) http://arxiv.org/abs/1011.0352
[2] Skambraks S, Neuhaus S and Kiesling C 2018 Journal of Physics: Conference Series 1085 042026

http://stacks.iop.org/1742-6596/1085/i=4/a=042026

[3] Hough P V C 1959 HEACC, Proc. 2nd Int. Conf. on High-Energy Accelerators and Instrumentation vol
C590914 pp 554–558 http://inspirehep.net/record/919922/files/HEACC59 598-602.pdf

[4] Neuhaus S, Skambraks S, Abudinen F, Chen Y, Feindt M, Frhwirth R, Heck M, Kiesling C, Knoll A, Paul
S and Schieck J 2015 Journal of Physics: Conference Series 608 012052 http://stacks.iop.org/1742-

6596/608/i=1/a=012052

[5] Skambraks S, Neuhaus S and Kiesling C 2016 EPJ Web of Conferences vol 127 (EDP Sciences) p 00016
[6] Neuhaus S, Skambraks S and Kiesling C 2017 EPJ Web of Conferences vol 150 (EDP Sciences) p 00009
[7] Baehr S, Skambraks S, Neuhaus S, Kiesling C and Becker J 2017 Journal of Instrumentation 12 C03065

http://stacks.iop.org/1748-0221/12/i=03/a=C03065

[8] Won E, Kim J and Ko B 2018 Journal of the Korean Physical Society 72 33–37
[9] Iwasaki Y, Cheon B, Won E, Gao X, Macchiarulo L, Nishimura K and Varner G 2011 Nuclear Science, IEEE

Transactions on 58 1807–1815 ISSN 0018-9499
[10] Ester M, Kriegel H P, Sander J, Xu X et al. 1996 Kdd vol 96 pp 226–231


