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Abstract
An increasing amount of computer systems are connected on a global scale and become
remotely accessible, increasing their requirements for security. One recent technology
that is increasingly used as a computing accelerator, both for embedded systems and
in the cloud, are Field-Programmable Gate Arrays (FPGAs). They are very flexible
devices that can be configured and programmed by software, to implement arbitrary
digital circuits. Like other integrated circuits, FPGAs are based on modern semicon-
ductor technologies that are affected by variations in the manufacturing process and
runtime conditions. It is already known that these variations impact the reliability of
a system, but their impact on security has not been widely explored.

This PhD thesis looks into a cross section of these topics: Remotely-accessible and
multi-user FPGAs, and the security threats dependent on physical variation in modern
semiconductor technologies. The first contribution in this thesis identifies transient
voltage fluctuations as one of the highest impacts on FPGA performance, and exper-
imentally analyzes their dependency on the workload the FPGA is executing. In the
remaining thesis, the security implications of these transient voltage fluctuations are
explored. Various attacks are proven possible that were previously thought to require
physical access to the chip, and the use of dedicated and expensive test and mea-
surement equipment. It shows that isolation countermeasures can be circumvented by
a malicious user with partial access to the FPGA, affecting other users in the same
FPGA, or complete system.

Using circuits to affect the FPGA on-chip voltage, active attacks are shown that can
cause faults in other parts of the system. By that, Denial-of-Service is possible, and
can also be escalated to extract secret key information from the system. Furthermore,
passive attacks are shown that indirectly measure the on-chip voltage fluctuations,
and show that these measurements are sufficient to extract secret key information
through power analysis side-channel attacks, which can also be escalated to other chips
connected to the same power supply as the FPGA. To prove comparable attacks are
not exclusive to FPGAs, small IoT devices are also shown vulnerable to attacks that
leverage on partial access to their power distribution network.

Overall, this thesis shows that fundamental physical variations in integrated circuits
can undermine the security of an entire system, even if the attacker is absent from
the device. For FPGAs in their current form, these problems need to be solved before
they can be securely used in multi-user systems, or with 3rd party access to them. In
publications that are not part of this thesis, some first countermeasures were already
explored.
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Zusammenfassung
Immer mehr Computersysteme sind weltweit miteinander verbunden und über das In-
ternet zugänglich, was auch die Sicherheitsanforderungen an diese erhöht. Eine neuere
Technologie, die zunehmend als Rechenbeschleuniger sowohl für eingebettete Systeme
als auch in der Cloud verwendet wird, sind Field-Programmable Gate Arrays (FPGAs).
Sie sind sehr flexible Mikrochips, die per Software konfiguriert und programmiert wer-
den können, um beliebige digitale Schaltungen zu implementieren. Wie auch andere
integrierte Schaltkreise basieren FPGAs auf modernen Halbleitertechnologien, die von
Fertigungstoleranzen und verschiedenen Laufzeitschwankungen betroffen sind. Es ist
bereits bekannt, dass diese Variationen die Zuverlässigkeit eines Systems beeinflussen,
aber ihre Auswirkungen auf die Sicherheit wurden nicht umfassend untersucht.

Diese Doktorarbeit befasst sich mit einem Querschnitt dieser Themen: Sicher-
heitsprobleme die dadurch entstehen wenn FPGAs von mehreren Benutzern benutzt
werden, oder über das Internet zugänglich sind, in Kombination mit physikalischen
Schwankungen in modernen Halbleitertechnologien. Der erste Beitrag in dieser Arbeit
identifiziert transiente Spannungsschwankungen als eine der stärksten Auswirkungen
auf die FPGA-Leistung und analysiert experimentell wie sich verschiedene Arbeitslas-
ten des FPGAs darauf auswirken. In der restlichen Arbeit werden dann die Auswirkun-
gen dieser Spannungsschwankungen auf die Sicherheit untersucht. Die Arbeit zeigt,
dass verschiedene Angriffe möglich sind, von denen früher angenommen wurde, dass
sie physischen Zugriff auf den Chip und die Verwendung spezieller und teurer Test-
und Messgeräte erfordern. Dies zeigt, dass bekannte Isolationsmaßnahmen innerhalb
FPGAs von böswilligen Benutzern umgangen werden können, um andere Benutzer im
selben FPGA oder sogar das gesamte System anzugreifen.

Unter Verwendung von Schaltkreisen zur Beeinflussung der Spannung innerhalb
eines FPGAs zeigt diese Arbeit aktive Angriffe, die Fehler (Faults) in anderen Teilen des
Systems verursachen können. Auf diese Weise sind Denial-of-Service Angriffe möglich,
als auch Fault-Angriffe um geheime Schlüsselinformationen aus dem System zu ex-
trahieren. Darüber hinaus werden passive Angriffe gezeigt, die indirekt die Spannungss-
chwankungen auf dem Chip messen. Diese Messungen reichen aus, um geheime Schlüs-
selinformationen durch Power Analysis Seitenkanalangriffe zu extrahieren. In einer
weiteren Eskalationsstufe können sich diese Angriffe auch auf andere Chips auswirken
die an dasselbe Netzteil angeschlossen sind wie der FPGA. Um zu beweisen, dass vergle-
ichbare Angriffe nicht nur innerhalb FPGAs möglich sind, wird gezeigt, dass auch kleine
IoT-Geräte anfällig für Angriffe sind welche die gemeinsame Spannungsversorgung in-
nerhalb eines Chips ausnutzen.

Insgesamt zeigt diese Arbeit, dass grundlegende physikalische Variationen in in-
tegrierten Schaltkreisen die Sicherheit eines gesamten Systems untergraben können,
selbst wenn der Angreifer keinen direkten Zugriff auf das Gerät hat. Für FPGAs in
ihrer aktuellen Form müssen diese Probleme zuerst gelöst werden, bevor man sie mit
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Kurzfassung

mehreren Benutzern oder mit Zugriff von Drittanbietern sicher verwenden kann. In
Veröffentlichungen die nicht Teil dieser Arbeit sind wurden bereits einige erste Gegen-
maßnahmen untersucht.
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1. Introduction
Integrated circuits (ICs) based on semiconductors are one of the driving technologies
of the 21st century. Next to computing accelerators based on Graphics Processing
Units (GPUs), performance and energy efficiency can be further increased when cus-
tom computing accelerators in the form of Field Programmable Gate Array (FPGA)
are added. Through reconfiguration, FPGAs are very flexible devices that can be
configured and programmed by software to implement arbitrary digital circuits, and
thus also accelerate most algorithms. FPGAs are becoming widespread in various em-
bedded systems, personal computers, and high-end servers [1–5]. Microsoft is already
using FPGAs in their datacenters since 2014 [6], and companies such as Amazon [7],
Alibaba [8], and Huawei [9] are renting FPGAs as computing accelerators to arbitrary
customers. Furthermore, we are heading towards a future where any device gets con-
nected to the Internet of Things, either as small embedded devices or in datacenters
for Cloud Computing, also putting them at higher security risk [10]. Both, the trend of
cloud computing, as well as Internet of Things devices, are applied more and more in
critical application domains. For instance, these consist of applications in healthcare,
transportation, or public infrastructure, just to name a few.

Typically, most systems have been attacked by flaws in the software implementation.
However, we also see an increase in attacks that leverage on properties or flaws in
the hardware, undermining any security that software can provide. These problems
are gaining more widespread attention, especially since the microarchitectural attacks
named Spectre and Meltdown were revealed in January 2018 [11, 12]. Thus, hardware
technologies, such as FPGAs, need to be more thoroughly analyzed in their security
aspects, before they get widely adopted as computing accelerators. A single FPGA can
be virtualized and shared among multiple users and tasks, opening new questions how
isolated these users are from each other. Potential security risks on the hardware level
of virtualized FPGAs have been mostly disregarded prior to this thesis.

In this PhD thesis, we thus focus on new types of security threats when FPGAs
are used as computing accelerators, or parts of any bigger system. Modern semicon-
ductor technologies suffer from higher physical variations in the manufacturing process
and changing runtime conditions. Such variations are typically handled with increased
safety margins, sufficient for typical operating conditions [13, 14]. One of the highest
and fastest variations are changes in the power supply voltage level within the chip,
which can change as rapidly as single clock cycles of the operating clock of the sys-
tem [15–17]. It is already well-known that these transient voltage fluctuations impact
the reliability of a system, but their effect on security has not been widely explored
prior to this thesis. Thus, we experimentally analyze on-chip voltage fluctuations and
then show that they can indeed lead to new security threats for FPGA-based systems.
To the best of our knowledge, these new threats are also the first to show that physical
attacks do not necessarily need local access to the device. Through various indirect
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1. Introduction

ways, voltage fluctuations can be caused or measured, making it feasible for power
analysis or fault attacks to be performed remotely. While the main focus is on FPGAs,
the thesis also proves voltage fluctuations to be an issue in mixed-signal integrated
circuits, or inside a printed circuit board.

1.1. Contributions
The main contribution of this PhD thesis is showing that voltage-based side channel
and fault attacks are feasible only through software access to a system. By that, it also
becomes feasible remotely.

During the PhD thesis, methods were successfully developed to remotely extract
side-channel leakage or cause faults on the electrical level of various FPGA chips, and
some mixed-signal devices used in low-cost IoT applications. Attacks that previously
required dedicated test and measurement equipment can now be performed in software,
potentially remotely. By that, to the best of our knowledge, the thesis proves for the
first time that power analysis side-channel attacks or fault attacks can also be performed
remotely, and need to be considered in threat models that previously ignored them.

More specifically, this thesis shows power analysis attacks to be a potential security
risk in multi-user systems with FPGAs and highly-integrated mixed-signal IoT systems.
For instance, such systems are FPGAs virtualized as multi-tenant systems, or IoT
applications that do not limit access to analog sensors in the system.

The following subsections explains the individual contributions and clarifies what
has been done in respect to the co-authors of the respective works that have been
published already.

1.1.1. On-Chip Characterization of Voltage Fluctuations
The thesis experimentally confirms that voltage fluctuations have one of the highest
impacts on circuit delay, being a potential risk for both system stability as well as
side-channel leakage. These nanosecond-scale changes can not be simulated easily on
chip level, and thus, the flexibility of FPGAs is used to perform indirect measurements.
Subsequently, further details on temporal and spatial changes in on-chip voltage was
analyzed, and how it is impacted from various workload activities on the FPGA, similar
to real-time workloads. This led to the discovery of previously unreported workload-
dependent influences, which can now be used for FPGA design optimization. Some
of these insights were only found because the full system and all of its characteristics
were analyzed at once, instead of just individual components of the system. Based on
these methods, the security implications of voltage fluctuations were analyzed in the
following.

This contribution was published in [18], and has been extended in [19]. The most
part of the respective Chapter 3 is identical with [19]. All experiments have been
performed by the author of this thesis and have been planned with advise from co-
authors of that publication: Fabian Oboril, Saman Kiamehr, and Mehdi Tahoori.
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1.1. Contributions

1.1.2. Adversary Model for Multi-Tenant FPGAs
The thesis first introduced that power analysis side-channel attacks or fault attacks
can be a threat for remotely accessible FPGAs, i.e. introduced only by software-
defined FPGA configuration. The first general idea of this threat or adversary model
was published in [20] (Section 4.1). It has been gradually adjusted in the subsequent
publications, which are part of this thesis [21–24] (Chapter 4, Chapter 5). Previously,
such attacks were carried out through physical access and with dedicated fault injection
and measurement equipment. In multi-tenant FPGA operation, multiple users share
the same FPGA, geometrically separated into individual regions. In that scenario, the
named attacks are serious security threats that need to be solved before widespread
multi-tenant FPGA operation is feasible.

The detailed threat or adversary models are explained in the respective sections of
Chapter 4 and Chapter 5.

1.1.3. PDN-based Voltage Drop-based Fault Attacks
In a followup contribution, a malicious user in one part of an FPGA is shown to
either perform a Denial-of-Service (DoS) attack on the full system, or cause precise
faults in the design of another isolated user on the same FPGA. All of that is shown
possible through software-defined configuration, by crafting logic blocks that consume
high current, and then toggle them in respective patterns. Next to DoS, the fault
precision is enough to affect individual rounds of an Advanced Encryption Standard
(AES) module, allowing Differential Fault Analysis (DFA) to extract secret keys.

These contributions have been published in [20], [21], and [25], on which Sec-
tion 4.1, Section 4.2, and Section 4.3 are based on, respectively. The experiments
for [21] (Section 4.2) have been jointly devised and performed with Jonas Krautter,
while the experiments for Section 4.3 have partially been devised and performed to-
gether with Falk Schellenberg of the Ruhr-Universität Bochum.

1.1.4. PDN-based Power Side-Channel Analysis Attacks
In a collaboration with researchers Falk Schellenberg and Amir Moradi of the Ruhr-
Universität Bochum this thesis shows that the sensors based on FPGA fabric can
sufficiently measure on-chip voltage fluctuations to perform power analysis side-channel
attacks inside the chip. When multiple voltage traces are recorded during the operation
of an AES module, the secret key can be extracted using Correlation Power Analysis
(CPA). That means, in a similar scenario as for fault attacks, an attacker residing in one
part of the FPGA can extract the secrets from a victim in another part of the FPGA.
Furthermore, the thesis shows how such attacks can be escalated beyond FPGAs, to
other chips on the same Printed Circuit Board (PCB). It shows how secret keys from
the AES and Rivest-Shamir-Adleman (RSA) cipher of that other chip can be extracted.
This is again achieved with the software-defined on-chip sensors and does not require
logical connections to the victim, proving an additional threat from insufficient supply
chain security or insecure firmware updates. I.e. firmware updates alone can introduce
a power side-channel attacker who previously had to connect dedicated measurement
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equipment to the device under attack. These contributions have been published in [22]
and [23], which have been integrated into this thesis as Section 5.1 and Section 5.2.
The experiments for these works have been jointly performed with Falk Schellenberg
of the Ruhr-Universität Bochum.

To prove the generality of on-chip voltage fluctuations as a security vulnerability,
other computing devices were also analyzed. Low cost devices used in Internet-of-
Things applications often integrate analog and digital components on a single chip. It
is shown that data recorded with the analog subsystem of the chip can contain secret
information from the digital subsystem in form of correlated noise, which is proven
with a Correlation Power Analysis (CPA) attack on AES. That contribution has been
published in [24], on which Section 5.3 is based on. The experiments for this work have
been jointly devised and performed with Jonas Krautter.

1.1.5. Main High-Level Contribution
The main contribution of this thesis is generating an awareness in the research com-
munity that physical attacks do not necessarily need local access to the device under
attack. This has been shown with fault and power analysis side-channel attacks within
FPGAs, but also another chip, showing that this can be a general problem for all
modern semiconductor devices, and motivates further research in this direction.

1.2. Outline
The remaining thesis is organized in the following chapters:

• Chapter 2 summarizes basic background knowledge on the implementation of
power supply networks for semiconductor chips, on-chip voltage fluctuations,
common application scenarios, power analysis side-channel attacks, and fault
attacks.

• Chapter 3 analyzes temporal and spatial on-chip voltage fluctuations in FPGAs.

• Chapter 4 shows how faults can be maliciously introduced through software-only
configuration into FPGAs, to perform DoS and DFA.

• Chapter 5 shows how power analysis side-channel attacks can be performed
through software access inside an FPGA chip, in other chips with a shared power
supply, and even across the full board-level.

• Chapter 6 discusses related work with a relation to this thesis.

• Chapter 7 concludes the thesis and gives a perspective on further research direc-
tions.
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2. Background
The sections in this chapter were partially overtaken from previously published works
included in this thesis, which were co-authored with (in no particular order): Falk
Schellenberg, Jonas Krautter, Fabian Oboril, Saman Kiamehr, Amir Moradi and
Mehdi B. Tahoori.

This chapter explains and presents relevant background knowledge that is required
to understand the remaining chapters of the thesis, mainly in three areas:

• The underlying electrical implementation of semiconductor chips

• Applications and related threat models in which FPGAs and Microcontrollers are
used

• Analysis of side-channel data that can be gathered from these lower implemen-
tation layers

The contents of this chapter have been taken from the respective publications in-
cluded inside this thesis [19–23, 25], with minor adjustments to fit in this format.

2.1. Power Distribution Networks
Each modern electronic system requires at least one power supply, integrated on the
PCB. In total, a Power Distribution Network (PDN) starts at a voltage regulator as
the main board-level power supply at a higher voltage, e.g. 12V. The power is hier-
archically distributed across the board and can go through multiple stages of lower
voltage regulators. These regulators are often switched-mode Voltage Regulator Mod-
ules (VRMs) and supply a range of chips on the board. Finally, a complete system-level
PDN also consists of several passive resistive, capacitive and inductive (RCL) compo-
nents. Based on these RCL-networks, several works discuss two main types of supply
voltage drop. One of them is mainly due to a static current bias by parasitic resistance
(IR drop), the other depends on the change of current over time, biased by primarily
inductive components (Ldi/dt drop) [16, 17, 26–28]. Resistance causes IR drop and
can therefore both be observed with a steady load on average, or transiently.

Ldi/dt drop is transient in nature and thus requires a high enough sample rate to
be perfectly observable, and can be as fast as the circuit operating frequency, or as
low as the operating frequency of the switched-mode VRM. With advanced technology
nodes, Ldi/dt-dependent transient voltage fluctuations are becoming one of the major
concerns to chip manufacturers [16, 17, 27, 29]. A resonance between on-chip decou-
pling capacitors and resistive and inductive components can lead to even less voltage
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stability [15, 16]. Compared with other variations that can affect semiconductor circuit
performance, such as manufacturing process or temperature variations, voltage fluctu-
ations have one of the highest influences on the required timing margin, and change
faster than other fluctuations (up to circuit speed).

The differences in the electrical current i required to cause a voltage drop is influ-
enced by both spatial and temporal circuit switching activity, which in turn is depen-
dent on workload characteristics and system behavior [15, 16, 30]. Subsequently, a
maliciously crafted circuit and respective switching activity could lead to corner cases
with insufficient voltage stability and jeopardize security. Rising system complexity can
lead to more corner cases, which are left from time-consuming and complex electrical-
level design validation, and elevate these risks.

If an overall path is affected by a voltage drop for a long enough time (min. threshold
time Tt) and high enough amplitude (Vdrop), timing faults occur. Such a voltage drop
is also known as a voltage emergency [31, 32]. In addition to timing faults, SRAM bit
cells can lose data when their static noise margin voltage is violated [33].

2.2. Switched-Mode Voltage Regulator Modules
(VRM)

In the past, small electronic devices were predominately supplied from linear regulators.
These regulators use a transistor to operate as a variable resistor, and thus are able to
quickly adapt to load changes, but also dissipate the power difference as heat. Because
of this inefficiency, modern digital circuits use a switched-mode VRM [34], which uses
the transistor that conducts the power only in the ON or OFF state.

The disadvantage of switched-mode VRMs is that they operate in a discrete time
domain, with operating frequencies usually below 2 MHz, limited by non-ideal compo-
nents on the board, as well as parasitic components introduced through board layout
considerations. Many digital circuits run in a MHz–GHz range, beyond the Nyquist-
frequency of the switched-mode VRM. Thus, stabilizing beyond these frequencies can
only be achieved by assuming a maximum expected change in load current. The speed
limitations of switched-mode VRMs is addressed by integrating them into chip pack-
ages, which is still an ongoing engineering challenge. Intel’s fully-integrated voltage
regulator [35], is one of a few commercial devices that already apply them. However,
they have not been integrated in FPGAs yet.

In the following Fig. 2.1, a basic step-down (buck) configuration of a switched-mode
VRM from [34] is shown. The transistor Q1 is operated as the switching transistor
that is completely closed or open, where only minimum energy is burned through its
RDS,on resistance [34, 36]. In each discrete sampling step, the output voltage VO is
sampled and compared against the demanded voltage, deciding the next duty cycle,
how long Q1 is enabled. When Q1 is enabled, the inductor current IL is charged.
When the switch of Q1 is open, the inductor current goes through diode D1, while the
voltage VO is maintained through the current stored in inductor L. As described in
[34], the respective duty cycle of the on-time of the transistor TON over the period of
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one sampling period TS = (TON +TOF F ) leads to an average DC output voltage VO(DC)
of:

VO(DC) = AV G[VSW ] = TON

TS
· VIN

Figure 2.1.: Basic operating mode of a step-down (buck) switched-mode VRM, taken from
[34].

To stabilize VO between samples, inductor L and capacitor CO are added at the
output of the voltage regulator, which are sized for the amount of expected discharge
between samples ∆Q. That translates to a relationship with the specific maximum
peak current Ipk = max(IL). Depending on the capacitor size CO, this results in a
current-related peak-to-peak voltage ripple VP −P , as described in [36]:

VP −P = ∆Q

CO
=

1/2
(
TON

Ipk

4 + TOF F
Ipk

4

)

CO
=

Ipk
TON

TOF F

8 · CO

Please note that with higher CO leakage increases through capacitor equivalent series
resistance (ESR). Thus CO is typically chosen to fit an expected maximum Ipk load.
Another drawback is that if CO is not sufficient, the consequence of going beyond its
limits is higher, since the supplied current through IL is also limited, and first has to
charge CO before the circuit is supplied.

2.3. Mixed-Signal Integrated Circuits
Many integrated circuits nowadays are not pure digital or pure analog, but typically
contain subsystems of both types of circuits. The more applications a single chip has
to support, the more likely that analog and digital blocks are integrated together.
One of the biggest challenges in mixed-signal design is the noise susceptibility of the
analog subsystem, which gets affected by the higher-frequency and higher-power digital
subsystem.

If the digital logic consumes a high current as mentioned in Section 2.1, a voltage
drop in the power supply becomes visible through slightly reduced supply voltage,
which is also biasing analog components [37]. For very high frequency current changes,
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this voltage drop might just be observable inside the chip, with voltage fluctuations
traveling through the chip-internal power supply mesh [16], or the common substrate
of the whole die [38].

An additional effect to voltage fluctuations is chip-internal cross-talk from electro-
magnetic (EM) coupling. Depending on the frequency of a signal pulsed on a wire, the
wire acts as a strong or weak radio transmitter, which also affects nearby wires, biasing
wire delays through inductive or capacitive coupling effects [39]. Digital circuits are
designed with a specific noise margin to prevent bit flips during normal operation, but
analog circuits can be biased through EM [40].

In summary, it is usually hard to guarantee that digital circuits have zero effect on
an adjacent analog circuit. Instead, a mixed-signal chip is designed such that the noise
margin is considered sufficient for the application requirements. We will show that
security requirements may impose much higher restrictions on the allowed noise levels,
at least regarding the noise caused by digital components.

2.4. Analog-to-Digital Converters (ADCs)
Various types of an Analog-to-Digital Converter (ADC) are implemented in integrated
circuits [41]. One of the most common and cheaper general-purpose designs is a Suc-
cessive Approximation Register (SAR) ADC, which is also the type of ADC utilized
in the systems evaluated later in this work, in Section 5.3. We discuss here to which
extent ADCs can be influenced by digital noise in mixed-signal chips.

Classical ADC noise characterization analyzes the effective number of bits (ENOB)
of an ADC over its actual number of bits [41]. This effective dynamic range depends
on a number of distortion parameters, such as the signal-to-noise ratio (SNR) and
spurious-free dynamic range (SFDR). These parameters are typically characterized
and tested for the ADC circuit itself, and do not specifically involve noise from the
digital subsystem of a mixed-signal circuit [42, 43].

SAR ADCs use multiple discrete timesteps over which the conversion is performed,
where each timestep resembles one of the output bits of the ADC, i.e. a 12-bit ADC re-
quires at least 12 ADC-internal clock cycles. In each of the timesteps, the current ADC
input value is evaluated against a specific voltage level connected to a shared analog
comparator. If we assume chip-internal noise affects a fixed voltage in a measurement
result, the Least Significant Bits (LSBs) get affected more than the Most Significant
Bits (MSBs). Thus, typically only during the conversion of the lower bits, a SAR ADC
is susceptible to chip-internal noise.

Another ADC type that is often integrated in Systems on Chip (SoCs) or micro-
controllers is a Sigma-Delta-ADC (Σ∆-ADC), which also operates over multiple clock
cycles. They perform a sort of approximation over multiple clock cycles. In each clock
cycle, the difference of a previously measured value is compared with the input value
and is integrated over multiple cycles. This integrated value can be affected by chip-
internal noise on any of the integration clock cycles, and affect the LSBs. Through
the nature of differential sampling, some of the noise can be rejected. However, noise
affects a larger time window of the ADC result than for SAR ADCs, i.e. not just
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during measurement of the LSBs. So overall, we assume chip-internal noise can affect
Σ∆-ADCs about the same as SAR ADCs.

2.5. Sensing and Protecting against On-Chip Voltage
Fluctuations

Multiple works have addressed detecting process, voltage, and temperature (PVT) fluc-
tuations which come from operating conditions, manufacturing variance or deliberate
attacks. All of these fluctuations will affect path delays, where voltage variation can
change as fast as within nanoseconds [44]. Some works concentrated on sensing er-
rors caused by timing violations such as the ‘Razor’ architecture [45], also adapted to
FPGAs [46–48]. After an error is detected, a rollback or similar strategy can recover
the situation to guarantee further valid operation.

Other approaches monitor delays of surrogate structures that correlate with critical
path delay. Such sensors can facilitate the analysis of all internal changes that cannot
be seen externally, and include all potential side effects of a full system. Combinational
delays can be self-measured in FPGAs [49], and steady-state process, voltage and tem-
perature (PVT) variations have been characterized with Ring Oscillators (ROs) [50].
The measurement through ROs requires a counting mechanism. Because of that, even
with multiple ROs, a sampling rate of only 8MHz was achieved in a technology op-
erating at up to 600MHz circuit frequency, making them too slow to sense variations
at circuit speed [51]. Yet, Time-to-Digital Converter (TDC) [52] sensors for accurate
time-event measurement were already designed for FPGAs [53–55]. On ASIC systems,
TDCs were adapted for path delay sensing from PVT variations [56–58]. Based on
TDCs, Zick et al. [44] implemented a FPGA-based sensor to detect voltage under-
shoots, with the purpose of detecting voltage-based fault attack threats on security
systems.

As we show in Figure 2.2, these sensors work by checking how far a signal (here:
clock signal) can propagate through a path by adding latches between the logic elements
of that path. The most simple path is a chain of buffers. As the delays of these buffers
are sensitive to any joint PVT variations, they will become measurable by reading the
latches. To do that, a signal is connected to both the input of the first buffer and the
latch enable-signals. That means, the signal on the wire will be faster than the same
signal delayed through the buffer elements. A readily available and precisely timed
signal is the clock signal itself. At half of the clock period, the latches will become
disabled and keep the state how far the clock propagated through the buffer chain,
which can then be processed further. In the depicted case, the Initial Delay needs to
be adjusted for less than a half of the clock period (time when latches are enabled).
Then, latches are connected between the last buffer elements, marked as the Observable
Delay Line, that falls within the expected delay variation that we want to observe with
the sensor. This limited operating range is chosen, based on acceptable area overhead
and expected operating range values. More detailed descriptions can be found in the
aforementioned references.

Although different works consider voltage-induced delay fluctuation, they are either
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too slow to sense any fast transients [50], or were not yet further characterized to sense
actual delay [44]. Additionally, post-processing is needed, in case e.g. binary values
are required for further in-circuit processing.

For FPGAs, other primitives are used to resemble the buffers. In Xilinx 6 and 7-
series FPGAs we use a ‘CARRY4’ primitive for each 4 buffers of the Observable Delay
Line [44]. Thus, in an estimation of this sensor, for a Virtex-6 FPGA, one buffer
equals 19.5ps in delay. To improve linearity of the output, we use a two-bit bubble
proof priority encoder [59]. Due to this, the sensor used here can take on values in the
range of 0 − 62.

2.6. Traditional FPGA and Hardware Security Threats
The triad of information security goals consist of Confidentiality, Integrity and Avail-
ability. In the following, a short overview of traditional hardware security threats is
given that affect these goals with the focus on FPGAs. The non-traditional threats
which have been introduced by this thesis are later discussed in Chapter 6.

Confidentiality demands to protect access to secret information. In an FPGA, secret
data can be deduced by monitoring and analyzing power, voltage, temperature or other
emanations that can leak cryptographic keys, found through cryptanalysis [60–62]. For
ASICs, hardware trojans can be inserted by a contracted manufacturer [63], where on
FPGAs they can additionally be injected into existing bitstreams later [64]. Integrity
describes maintaining data such that it can only be modified in an authorized way. It
can be compromised among other techniques with electromagnetic radiation or power
supply manipulation to cause bit flips from timing faults or soft errors [65, 66]. Avail-
ability is the goal to keep systems at service when required, and is threatened by DoS
attacks that crash or destroy FPGAs. A way to overload an FPGA can be by exces-
sive heat, generated by synthesizing ROs in great numbers. Overheating could destroy
early-generation FPGAs [67]. In modern FPGAs, overheat protection is commonly
available, where after a forced cooldown, the usage of the chip can be resumed.

Most of these attacks require physical access to the system. An exception is over-
heating which is on electrical level but triggered through bitstream access or partial
reconfiguration. To investigate these threats, FPGA bitstream encryption and cracking

Figure 2.2.: Principle of a delay-chain based Time-to-Digital Converter (TDC), measuring
the propagation of the clock signal.
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are explored widely [68–71]. Unfortunately, guarding bitstreams is only a solution for
a trusted software and hardware development approach, where bitstreams need to be
signed or encrypted before the system accepts them. As reconfigurable systems and
user-defined custom accelerators are becoming more widely adopted in FPGA systems,
this fully trusted development approach becomes infeasible.

2.7. Leakage Assessment
In order to systematically evaluate exploitable leakage in any system, leakage assess-
ment methodologies based on non-specific fixed-vs-random t-testing [72, 73] can be
employed. Utilizing Welch’s t-test for evaluating side-channel security of hardware im-
plementations has been introduced in the seminal work by Goodwin et al. in 2011 [72].
The basic principle of all variants of this leakage assessment methodology is to test if
statistical differences can be found in recorded side-channel data of the same crypto-
graphic operation with different input values. Typically, two different sets of input data
are chosen. For each set, side-channel traces are recorded, followed by an evaluation
regarding their distinguishability.

Although a t-test evaluation does not allow an attacker to recover secret keys and
break cryptographic implementations, this method is more generic, as it does not re-
quire to establish a hypothetical leakage model such as CPA [74]. It avoids the fixation
on a specific intermediate value, such as a specific AES round. We briefly explain non-
specific test-vector leakage assessment (TVLA), which can be used to evaluate basic
side-channel attack vulnerability.

For a secret key encryption Enc(k, m) with secret key k and plaintext m, we choose
a key k for all experiments and generate a set MR = {mr1, mr2, ..., mrn} of random
plaintexts mri as well as a single fixed plaintext mfixed. Then, the tested platform
alternatingly computes Enc(k, mfixed) and Enc(k, mri)∀mri ∈ MR, while measurements
of the same platform are performed. On the two sets of traces, the average, variance
and higher order moments for every sample time step are computed [73]. The obtained
values can be used to compute arbitrary order t-values for every sample time step as
shown in Equation 2.1:

t = µr − µfixed√
s2

r
nr

+ s2
fixed

nfixed

(2.1)

In Equation 2.1, µr and µfixed are the raw averages of the two sets of traces during
encryption of mr and mfixed, respectively, at a specific sample time step for a first order
t-test or the higher order central moments for a higher order t-test. Likewise, s2

r and
s2

fixed correspond to the respective variances for a first order t-test and the higher order
standardized moments for a higher order t-test. The amounts of random and fixed
traces are nr and nfixed.

To prove a design secure against side-channel attacks using leakage assessment, it
is usually recommended to select multiple different fixed plaintexts and perform a
leakage assessment for each of them, and record a significant amount of traces (i.e. ≥
10 Million). As in this work we do not want to prove security but rather want to show
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information leakage, we typically evaluate a single fixed plaintext mfixed, and record
less than 10 Million traces.

Exploitable leakage is assumed for |t| > 4.5, a generally accepted threshold [72, 73].
A value of |t| > 4.5 relates to a confidence of > 0.99999 that the traces collected
from random encryptions and those from fixed encryptions are samples drawn from
different populations. When leakage assessment is performed in this work, sampling
is synchronized with the beginning of the encryption algorithm and we restrict the
leakage assessment to the middle third, as recommended in [72].

2.8. Correlation Power Analysis on AES
To recover secret keys of AES through power analysis, CPA with a leakage model is
a well-known standard attack [74]. In order to recover a secret AES key, an attacker
collects a certain amount of power traces to eventually find a distinct correlation be-
tween the collected traces and a power consumption model of the correct key candidate.
These power traces are collected during AES encryptions, where either plaintexts or ci-
phertexts are known to the attacker. Attacks are usually performed on single key bytes
of the first or last round key, where the attacker is able to compute power consumption
models for all 28 possible key byte values in negligible time. The classical correlation
model from [74] is based on the assumption that power consumption of computations
depends on the Hamming distance between intermediate values, for instance after the
SubBytes operation of AES:

Phyp = HW(SBoxj(Khyp ⊕ Si)) (2.2)

In Equation 2.2, HW(x) is the Hamming weight of x, SBoxj(x) is the (inverted)
SubBytes function of the AES algorithm and Khyp is the key hypothesis byte. Depend-
ing on whether the first or the last round of the AES encryption is attacked, Si is one
byte from either the input plaintext or the output ciphertext, where i ∈ 0, 1, ..., 15.
Moreover, SBoxj is the normal (j = 1) AES substitution function when the first round
is attacked, and the inverted (j = −1) substitution when the last round is targeted.

Another possible Hamming weight model is based on the result of a T-table lookup.
The AES algorithm can be optimized by implementing the MixColumn and SubBytes
operations into a single table lookup, where each input byte yields a 32 bit output
word. For CPA, the Hamming weight is then based on the output word of the T-table
lookup function.

The CPA result for a single byte is based on computing the Pearson’s correlation
coefficient ρj between a hypothetical power model Phyp and the actual measured value
Ptracej for every sampling step j, using all collected traces n:

ρj = n · ∑
Phyp · Ptracej − ∑

Phyp · ∑
Ptracej√

n · ∑
Ptracej

2 − (∑
Ptracej )2 ·

√
n · ∑

Phyp
2 − (∑

Phyp)2
(2.3)

With a sufficient amount of traces, the correlation for the correct key byte value
will eventually differ significantly at a specific sampling step from the correlations with
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the incorrect key byte values, allowing the attacker to determine the correct secret key
byte.

A successful CPA depends on traces that are collected synchronous to the encryption
algorithm. For that, an alignment to reduce synchronization inaccuracies can be per-
formed. In Section 5.3 of this thesis, we use the following approach: We compute the
total average trace over all collected traces and use a normalized cross-correlation based
alignment algorithm. Each trace is shifted within a defined range and the normalized
cross-correlation with the total average trace is computed as follows in Equation 2.4:

ρcc(s) = 1
σ · σt

∑

i

(µi − µ) · (ti+s − µt) (2.4)

In the above equation, σ is the total standard deviation over all values, σt is the
standard deviation over the current trace, µi is the total average at sampling point i,
µ is the total average over all values, ti+s is the current trace value at sampling point
i + s and µt is the total average of the current trace. The maximum cross-correlation
value defines a new trace shifted by s, which is aligned with the total average.

2.9. Differential Fault Analysis on the AES
To be able to prove a successfully conducted on-chip fault attack on a cryptographic
implementation, we look into a DFA method on an FPGA implementation of the block
cipher AES. In this work, we attack an implementation with 128 bit key length. The
encryption and decryption scheme is based on the circular application of four different
operations SubBytes, ShiftRows, MixColumns, and AddRoundKey on the data block,
which is stored in a four by four byte matrix called the state. This circular application
is repeated for 10 rounds as defined by the key length of 128 bits.

DFA is based on causing the same plaintext to be encrypted twice – the first time
to gain the correct ciphertext and the second time to acquire a faulty ciphertext as the
result of fault injection at a specific point of the algorithm. The ciphertext pairs, each
consisting of a correct and a faulty ciphertext of the same plaintext, are then evaluated
to extract information about the secret key of the cipher.

In 2003, a generic fault attack on Substitution-Permutation Network (SPN) ciphers
was introduced, which only requires two ciphertext pairs to recover the original secret
key [75]. We apply this attack with multiple adaptions for practical feasibility to use it
on an AES module implemented on an FPGA, and therefore elaborate on this method
in detail.

The fault model of the attack is a random byte fault on a single byte occurring
before the 8th round of the AES algorithm. Before elaborating the eventual attack,
which requires only two faulty ciphertext pairs to be successful, we consider a random
byte fault before the 9th round. As depicted in the example in Figure 2.3, a single byte
fault on the first byte of the state matrix before the 9th round (as well as on bytes
5, 10 or 15) is propagated and results in four faulty bytes at specific positions in the
output ciphertext: 0, 7, 10 and 13. With a single byte fault on one of those bytes, we
can therefore compute candidates for four bytes of the last round key. After recovering
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Figure 2.3.: Propagation of a faulty byte in the input of the 9th round of the AES algorithm

the entire 10th round key, it is possible to compute the original AES secret key, since
the key schedule is invertible. Similar relations exist for the other bytes of the state
matrix.

Exemplary, we consider single byte faults on the bytes 0, 5, 10 or 15 in the state
matrix before round 9, which can be used to recover bytes 0, 7, 10 and 13 of the last
round key. We initialize a set S containing all possible candidates for those bytes
of the last round key. This set of possible candidates is continuously reduced with
the evaluation of each pair of correct and faulty ciphertext (C, C ′) by inverting the
10th AES round for the two ciphertexts with a candidate k ∈ S . The candidate is
discarded, if the difference between the two state matrices resulting from the inversion
of the ciphertexts is not within the set of possible differences resulting from a single
byte fault on bytes 0, 5, 10 or 15 before round 9.

In [75], the number of candidates remaining after two ciphertext pairs was only one
(the correct) candidate in 98% of all cases. In the other 2% of cases, only two or a
maximum of four key candidates were left. Therefore, to recover the entire round key
of round 10 with faults injected before round 9, a minimum of eight ciphertext pairs are
required: For each of the four key bytes, two pairs are needed. This can be improved by
injecting single byte faults before round 8, which affect four bytes before round 9 and
therefore all bytes of the output at once. Then only two ciphertext pairs are required
to recover the full AES key.
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3. An Experimental Evaluation and
Analysis of Transient Voltage
Fluctuations in FPGAs

The work described in this chapter was published in [19] and is joint work with
co-authors Fabian Oboril, Saman Kiamehr and Mehdi B. Tahoori. More details on
contributions is found in Section 1.1.

A major threat to meet timing constraints in advanced technology nodes is the
impact of process and runtime variabilities, which require the use of increasing timing
margins [13, 14]. Among these variabilities, transient voltage fluctuation appears to
have one of the most critical timing impacts [16, 17]. Additionally, they are elevated
by more complex circuit designs that generate even more fluctuations originating from
switching behavior, clock- or power-gating [15, 16]. As a result, conservative timing
margins are too pessimistic and too costly, where countermeasures can be enabled by
better analysis [15, 76].

Supply voltage fluctuations are caused by current drawn from the Power Distribution
Network (PDN) due to switching activity and leakage power [16, 29]. This noise in the
supply voltage level affects the timing of individual gates and is dependent on resistive
(IR drop) and inductive (di/dt noise) components of the PDN [26, 28, 77]. From the
temporal behavior on the circuit delay, it can be categorized as steady-state (mostly
IR) and transient (IR+di/dt) voltage drop, with the second being more critical in
advanced technology nodes.

Figure 3.1 shows our results of the relative timing impact (i.e. change in path
delay) from different variations, which will be more detailed in Section 3.1.2. Process
variation, temperature difference of 30°C, and steady-state voltage drop show averages
over time with error bars from multiple locations on chip. For transient voltage drop,
voltage undershoots are measured in time with 10ns resolution. Voltage drop is caused
by toggling 8% of the flip-flops in the FPGA. Due to its high influence on path delay,
these results highlight transient voltage drop as the most important problem.1

To improve margining, or perform design optimizations to handle such runtime vari-
ations, a deeper understanding of the impact of different on-chip activities, including
both temporal and spatial behavior, is required. FPGAs as well as ASICs suffer from
severe process and runtime variations in recent technology nodes. Moreover, typically
only timing margins for a fixed frequency are applied in standard industrial FPGA
mapping tools, and voltage or frequency scaling needs additional hardware and devel-

1Process variation can be handled by static margins, and we do not consider aging here, as this was
already experimentally analyzed in [78].
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Figure 3.1.: Difference in delay from variation in manufacturing process, temperature and
steady-state or transient Vdrop (measured by different switching activity) of 8%
of the flip-flops available in a Xilinx Virtex 6 XC6VLX240T FPGA, recorded
across eight sensors. Percentage based on the idle sensor path delay at baseline
temperature disregarding process variation.

opment effort. Besides that, FPGAs are very flexible to implement our experiments to
analyze and understand runtime variations.

Traditionally, voltage stability has been analyzed on the level of PDNs for differ-
ent ASICs and FPGAs [17, 29, 79–81], but did not contain insight on the influence
from mapped circuits or workloads and the timing margins they would require. Fur-
thermore, voltage regulators are typically excluded from these analyses. One post-
fabrication analysis of high-performance processors looked into workloads at certain
stimulus frequencies and whether they can be aligned in a beneficial way [82], but did
not consider different workload runtimes. However, different transient behavior can
have undesirable side effects, as seen in chip-testing [83–86], microprocessor-based sys-
tems [15, 16, 58, 87], and FPGAs, as shown in Figure 3.1. For FPGAs, process, voltage
and temperature variations have been analyzed [50, 88], but without considering the
transient effects of voltage fluctuations. Notably, one work shows the implementation
of a TDC based on configurable logic that can sense fast timing transients [44], but is
neither calibrated to absolute delay, nor used to analyze the influence from different
switching activity.

In summary, more analysis considering the on-chip transient voltage drop in FPGAs
is required. In this chapter, calibrated and redesigned TDC sensors to measure fast
timing transients are presented. We design test structures and map them with multiple
sensors into the FPGA, to study and investigate the impact of running workloads and
mapped design on the transient voltage drop induced delay. This is analyzed under
various workload durations (i.e. duty-cycles) and scheduling periods.2 The results and
findings are valuable to system designers by providing a chance to schedule and map
workload for lowering the voltage drop, increasing reliability or performance.

The contributions of this chapter can be summarized as follows:

• Calibrating and analyzing a sensor for voltage drop induced path delay and preparing
it for in-circuit use.

2These terms are defined and explained in Figure 3.5 in Section 3.2.

20



3.1. Sensing Transient Delay Variation

• Comparing the path delay impact of transient voltage drop with other process and
runtime variations.

• Analyzing the impact of voltage drop on required timing margins caused by different
switching activity, temporally and from various spatial activity patterns.

• Temporal and spatial quantification of voltage drop by analyzing the degree of at-
tenuation or amplification from spatially and temporally distinct activities.

• The generality of the observed trends are verified on another FPGA chip manufac-
tured on a more advanced technology node.

The remaining sections explain an adjusted TDC sensor including an initial analysis
of process, voltage and temperature variation in Section 3.1. After that, Section 3.2
explains the experimental setup with detailed results. Section 3.3 concludes this chapter
on voltage fluctuations.

3.1. Sensing Transient Delay Variation
For our evaluations, we need to sense both any subtle level of detail inside the PDN,
as well as the spatial spread of voltage drop across the FPGA die. To measure these,
the lowest cost approach is to implement sensors in the FPGA logic itself. This can
be achieved by a TDC design and implementation based on the idea and related work
discussed in Section 2.5. Additionally, the sensors are calibrated to sense absolute
changes in delay.

3.1.1. Time-to-Digital Converter Implementation
As briefly mentioned in Section 2.5, to implement TDC on FPGA systems, we need
to use the configurable fabric as a replacement for the buffers. We take advantage of
previous experiments with TDCs [44, 52–54, 56, 59, 89] and use the same carry-chain
primitives ‘CARRY4’ that are available throughout Xilinx FPGAs. The optimization
of these primitives for a carry-chain allows for the smallest granularity between the bins
of a TDC on a Xilinx Virtex 6 FPGA or comparable devices (i.e. also 7 series devices).
Each CARRY4 consists of 4 configurable carry logic stages, where intermediate bins
can be read. We use 16 of these elements, resulting in 64 quantization levels.

We utilized VHDL ‘generate’ statements to set Xilinx’ relative location constraints
(RLOC) that are later evaluated in the mapping phase. That way we do not need to
manually place and route the whole sensor. Using this strategy, sensor delay ranges can
be explored faster to match the variations we want to observe. With directed routing
constraints from FPGA Editor we can then verify the routing to be equal across the
sensors, and if required adjust it. A floorplan of the final sensor’s delay line is shown
on the right side of Figure 3.2.

Besides using VHDL, we extended previous work [44] with finer adjustments in
the offset for the 64-value range, for which we partially use CARRY4 elements for
the Initial Delay, which only consisted of ‘LD’ (Latch) and ‘LUT5’ (Lookup Table)
primitives before. That is shown in Figure 2.2, in Section 2.5.
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Figure 3.2.: Floorplan of the Virtex-6 FPGA with 8 horizontal regions. A delay line including
registers is shown magnified and annotated on the right side.

Additionally, we added a priority encoder to our sensor implementation that trans-
forms the output of the delay line into a binary number, to make it usable for any
live in-system evaluation using Xilinx Chipscope or mapped logic. This encoder was
optimized for speed as described in [18].

When the sensor is sampled, the highest bit propagated through the buffer chain
might not be followed by another ‘1’. Due to hold time noise of the latches, it can be
followed by a ‘0’. In that case we discard the ‘1’ as the highest, and check for the next
‘1’ that was saved to the latches. In addition, some residual idle noise exists, which
can be attributed to a non-ideal power supply, as analyzed in [18]. The total logic used
for the sensor plus the encoder is shown in Table 3.1.

Table 3.1.: Resource use for one sensor, encoder, and registers between

Resource Utilization
(Xilinx Virtex 6) Sensor Encoder Register
FLOP_LATCH 72 78 64
LUT 8 139 —
CARRY4 19 — —
MUXFX (Multiplexer) — 5 —
INV (Inverter) — 1 —
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3.1. Sensing Transient Delay Variation

Figure 3.3.: Floorplan of the Virtex-6 FPGA
with 9 sensors and regions.

Figure 3.4.: Floorplan of the
Kintex-7 to verify
our results.

3.1.2. Sensor Calibration
The sensor delay line is sensitive to all variations that can affect the primitives used for
it, i.e. process, voltage and temperature variation. Therefore to calibrate the sensors,
we first need to analyze the impacts of these variability sources on the sensor readings,
and separate them accordingly.

To differentiate among these variations, already shown in Figure 3.1, we have to
evaluate the sensor under controlled conditions. Therefore, we place eight sensors
horizontally across our FPGA, and read their output. For spatial Process Variation,
we compare the idle delay of the sensors against each other, showing their minimum,
maximum, and average difference, while the temperature was kept constantly at 33oC
for this observation. To show the delay variation from ∆30oC, we first keep the system
idle at 33oC and then heat it up to 63oC by switching activity (i.e., a self-heating
mechanism), that we disable again for the measurement. To know the temperature,
we check the built-in calibrated temperature sensor, for which we use only four of
the delay sensors that are closer to this sensor in the center region. We show their
minimum and maximum differences in that temperature range. For the Steady-State
Vdrop, we configure 8% of the FPGA’s flip-flops and keep them toggling at 100MHz,
each connected to an inverter in a loop. We then compare the average sensor values
with their idle averages. For Transient Vdrop, we record multiple worst-case delay
increases from voltage undershoots that occur from suddenly starting to toggle all the
configured flip-flops at 100MHz. The flip-flops are connected to a synchronous clock,
but since the area over which they are distributed spans over multiple clock regions in
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Table 3.2.: Calibration data for each sensor in layout with eight horizontal sensors: Time to
bit 0 (i.e. initial delay) and average required delay per bit (linear estimate).

Time
Sensor

0 1 2 3 4 5 6 7
Time to Bit 0 [ns] 4.86 4.76 4.72 4.72 4.70 4.61 4.61 4.68
Average Delay/Bit [ps] 11.3 12.0 11.3 11.5 11.9 12.0 12.3 11.7

the FPGA, we expect that a significant clock skew is involved.

The results in Figure 3.1 show that transient voltage drops lead to the highest
increase in delay, while process variations follow close. As our analysis is based on
a Virtex 6 FPGA, fabricated using 40 nm process technology, we expect even higher
variation for newer technology nodes [27].

For the rest of this work, we focus on the delay influence from transient voltage drop.
We consequently introduce a temperature-controlled fan to reduce thermal variation to
a minimum. For process variation, we calibrate the sensors at a defined temperature,
achieved through this fan control. We perform a two-point calibration, where we have
a Gain in Delay/Bit and Offset as the Time to Bit 0. This calibration is done by
using different frequency around our nominal sensor sampling frequency of 100MHz
(i.e. sampled every 10ns), while the system is idle except that chipscope is active. For
the first calibration point, the sensor is connected to 100MHz. The FPGA integrated
clock control (Xilinx Multi-Mode Clock Manager) allows to set 92.308MHz as the next
lowest and 109.091MHz as the next highest frequency. These were used to acquire
calibration values for all sensors. The clock signal reaches both the first buffer element
and the latches connected to the observable delay (also see Figure 2.2) at the same
time with an uncertainty of 43ps across the FPGA, so we expect much less within
one sensor. Essentially, the sensor bits encode the time until the latches get disabled.
This time is half the clock period, being 5.00ns, 5.42ns and 4.58ns for 100.00MHz,
92.31MHz and 109.09MHz respectively.

This calibration leads to 11.7ps per bit average delay and 4.7ns average time to bit 0
(i.e. initial delay) on one ML605 board, with similar results on another ML605 board,
confirming the results of process variation shown in [50]. The Xilinx ISE software
estimates 78ps for one ‘CARRY4’ element, and by that 19.5ps/bit. This difference
shows that still about 40% timing safety margins are left, when the system is idle at
38oC used for this calibration, and underlines how conservative these margins are. We
repeated similar calibration steps on a Kintex-7 KC705 board. For that platform, an
average delay per bin of 11.5ps was found, which is very similar, despite the technology
difference. On that platform, the tool estimate is only 13.25ps/bit, showing the use of
less safety margins of only about 15%. In all timing estimates, the slow ‘-2’ model was
used, matching the FPGAs. For one of our setups, the detailed per-sensor calibration
values are shown in Table 3.2, including the time to bit 0 and the average delay per bit.
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3.2. Experimental Setup and Results

Figure 3.5.: Scheme of activating and deactivating workload through Workload Duty Cycle
and Workload Period, activated from the Test Control structure, embedded in
the test setup as shown in Figure 3.6. Flip-flops are reset to the same state after
system startup.

Figure 3.6.: Overview of experimental setup, showing connections of FPGA-internal and ex-
ternal blocks. Explanation of Test Control shown in Figure 3.5

3.2. Experimental Setup and Results
To evaluate the impact of different workload switching activities on transient voltage
drop, we use various workload schemes, explained with the help of Figure 3.5. By using
an Activity Signal, controlled from our Test Control Structure, we set various lengths
of active or inactive times for a region of multiple flip-flops. During the active times A,
the clock is toggling and the flip-flops are operating at a frequency of 100MHz. During
inactive times, a clock-gating signal deactivates the flip-flops. Using this concept, we
can stimulate the system with a range of synthetic workloads.

We define and use a set of notations in this chapter, summarized in Table 3.3.
Workload Period (T ) is defined as the period in which active and inactive phases are
alternating. Any switching region #N is enabled for the active time A and disabled in
the remaining time T − A. From that, we define the ratio between the active time A
over the total Workload Period time T as Workload Duty Cycle D = A/T . Additionally
to that, multiple workloads can run at the same time, at which a Workload Phase Shift
ϕ resembles their respective phase alignment, given in percentage % (i.e. 50% ≡ 180°).
Thus, each workload w is defined through a set of three parameters w = (T, D, ϕ).
Figure 3.7 shows example activities to explain each parameter.

25



3. An Experimental Evaluation and Analysis of Transient Voltage Fluctuations in FPGAs

Table 3.3.: Notations describing workloads w and activity patterns W .
Notation Description
T Workload Period
D Workload Duty Cycle, fraction of active time during T
ϕ Workload Phase Shift, shift of start-time of workload in

percentage of T
w = (T, D, ϕ) Definition of a single workload w
W = [w1w2..wN ] Workload activity pattern with one workload for each 1..N

regions
0 = (0, 0, 0) Workload that is completely inactive

Table 3.4.: Overview of workloads w used in W in this chapter.
w T D ϕ

g 12.8 µs 50% 0%
h 12.8 µs 50% 50%
i 102.4 µs 20% 0%
j 102.4 µs 50% 0%
k 102.4 µs 50% 10%
l 102.4 µs 50% 50%

w T D ϕ

m 51.2 µs 50% 0%
n 51.2 µs 20% 0%
o 51.2 µs 80% 20%
p 51.2 µs 80% 30%
q 51.2 µs 50% 50%
0 N/A 0% N/A

As a notation to show the activity of a full FPGA, we define Workload Activity
Patterns (W ), which resemble workloads at different regions of the FPGA. For eight
horizontal regions this can be a string W = w1w2...w8 for workloads 1 to 8. For regions
in two dimensions in a 3-by-3 layout, it is a matrix containing workloads in x and y
dimensions wxy, that can also be shown in a table format:

W =




w02 w12 w22
w01 w11 w21
w00 w10 w20



 =
w02 w12 w22

w01 w11 w21

w00 w10 w20

y
x

The workload ‘0’ is defined as a placeholder that shows that no workload is active
at that specific region. In Table 3.4 we list all the workloads used in any W in this
chapter.

We design four experiments to analyze various characteristics of spatio-temporal
voltage drop. Workloads are placed at different locations across the FPGA, operating
at various parameters for T, D, ϕ. These are the following experiments:

Exp. 1: Analyze voltage drop depending on the impact of workload period and work-
load duty cycle.

Exp. 2: Evaluate the spatial spread of voltage drop across the FPGA from a single
workload.

Exp. 3: Measure the voltage drop from temporal and spatial interference between
multiple workloads on the FPGA.
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Figure 3.7.: Example for workload period T , workload duty cycle D, and phase shift ϕ

Exp. 4: Extend upon Exp. 3 by analyzing spatial interference in two dimensions across
the FPGA fabric.

The overview of the system used for these experiments is shown in Figure 3.6, which
shows a configuration with 8 sensors. For all experiments, we place multiple sensors
across a Virtex 6 FPGA on a ML605 REV E Evaluation Board. Some experiments are
cross-checked on a Kintex-7 KC705 board.

Both boards are supplied by a 12V AC/DC power supply on board-level, and use
multiple DC/DC switched-mode VRMs for different voltage levels [90]. The ML605
FPGA-internal VCCINT voltage is generated with a Texas Instruments UCD9240PFC
Digital PWM System Controller and PTD08A020W power conversion module [91],
where we could measure 500 kHz as the PWM frequency. The KC705 power supply is
based on the Texas Instruments UCD9248PFC.

For the first three experiments, we exclusively use 8 sensors placed horizontally from
the left to the right side of the FPGA, later we use 9 sensors in a 3x3 layout. Each
sensor is embedded in a region consisting of the same number of flip-flops connected
to inverters, as shown in Figure 3.5. The floorplans of our test setups are shown in
Figure 3.2 and Figure 3.3. The test structure, when 8 horizontally aligned regions
are used, can be seen in Figure 3.2, including a magnification of one delay line with
registers. In that setup, 14% of the available flip-flops on the FPGA are configured.
A similar setup is available with only 8% flip-flops. Figure 3.3 shows a setup with 9
regions in which again 14% of available flip flops are configured (1.6% per region). In the
following experiments, parts or all of these flip-flops toggle simultaneously, according
to the scheme in Figure 3.5. In most experiments, less than 8% of the flip-flops are
toggling in total.

This value is chosen, as it still reflects a realistic possible amount of toggling flip-
flops of a circuit (as we have commonly seen in simulations of benchmark circuits such
as a Leon3 processor), and leads to fluctuations that still fit inside the observable delay
range of the sensors, as we found empirically. To make a trade-off between development
effort and the time needed to acquire results, we designed a semi-automatic approach
with a simple state machine and on-board control, with PC-based data acquisition.
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3.2.1. System and Measurement Control
To transfer the sensor data to a PC, we use Xilinx Chipscope for data acquisition.
Chipscope is an on-chip logic analyzer that takes advantage of the configurable logic.
Typically, any signal in the FPGA can be connected and sampled at circuit speed
and saved in on-chip block RAM as sample-memory, which can then be transferred
by JTAG to the PC. To minimize the influence on the results, we limited the sample
buffer to 32768 time samples of each 10ns. For each sample we show the value for all
sensors and informational signals that show the workload activity. As the Block RAM
(BRAM) is distributed across the FPGA, and to minimize influence on the switching
areas, we only used the resources available in the lower regions. We use area groups
to constrain the major part of the used control logic to areas farther away from the
sensors, reducing their influence on the measurements.

The experiments can be set to different modes by Chipscope Virtual Input/Out-
put (VIO) to control workload periods, duty cycles and active regions. Additional to
Chipscope, we added a simple fan regulator to concentrate the experiments on tran-
sient voltage sensing with a calibration for process variation as shown in Section 3.1.2
before. We verified that the fan controller has negligible impact on the results.

To reduce measurement variance, we record the maximum delay increases from at
least 10 workload periods. Therefore, for longer periods, we save multiple full traces of
32768 samples (327.68µs). The principle setup of the connections among the blocks is
shown in Figure 3.6. Test Control sets region-wise clock-gating at different duty cycles
and frequencies. Xilinx’ on-chip System Monitor is used to provide a temperature
reading to the fan control and connects the Chipscope ILA core to the PC for data
acquisition and VIO to define parameters for our Test Control block. The floorplan of
the chip, together with the floorplan of a single sensor, is shown in Figure 3.2.

3.2.2. Experiment 1: Duty Cycle and Frequencies
The purpose of the first experiment is to study the effect of workload switching activity
behaviors on transient voltage drop, and in particular the increase in delay from a
voltage undershoot. For the first experiment, we use one large switching region, where
in total 8.2% of the FPGA flip-flops are configured and connected to inverters, equally
distributed across the center and switching at 100MHz when being enabled. However,
the trends of the following results were also verified with 50MHz, and we also cross-
check them with 200MHz on a Kintex-7 KC705 board.

Three different time series of the delay read out from our sensors are shown in
Figure 3.8. Each of them shows a case that continuously operates according to a
scheme as generated by Test Control (Figure 3.5). In Figure 3.8 A (90%), we show
the delay for a workload period of 102.4µs and 90% workload duty cycle. A small
increase in delay is visible over the average (∆Delay = 0ps) during the active time,
while for 10% of the time (when the workload is inactive), the delay is lower than at idle
(negative ∆Delay values). The worst case delay over idle is 107ps. On the other hand,
Figure 3.8 B shows when only 10% of the time the flip-flops are active, resulting in a
more critical outcome: Their worst case delay can reach almost twice of the previous
case (195ps vs. 107ps) during a shorter time of activity. The third case, Figure 3.8 C
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Figure 3.8.: Plot of all eight sensors each, while 8% of the FPGA’s flip-flops toggle at 100MHz
when being active, or are clock-gated/inactive. A 90% / B 10%: 102.4µs
workload period, with 90% / 10% duty cycle, C: Starting switching activity after
several seconds of inactivity. Y-Axis: Delay difference to idle, X-Axis: Time
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Figure 3.9.: Average of multiple worst-case delay increases from switching activity-dependent
voltage drop, averaged across all sensors. X-Axis: Workload period length
during the activity. Y-Axis: Delay difference to idle.

shows a corner case when the flip-flops start switching after several seconds of inactivity,
resembling a step response to a sudden increase in current. The delay reaches up to a
worst point of 225ps, even worse than the 195ps of case B (Figure 3.8 B).

We repeat these experiments for several combinations of workload duty cycles (10-
90%) and logarithmic increasing workload periods (200ns–409.6µs), and summarize the
average of multiple worst case delay increases of multiple sensors in Figure 3.9. Please
note, each workload duty cycle (10..90%) relates to a total overall switching activity at
that percentage of time, with only shorter or longer workload periods i.e. alternating
between active or inactive (as previously described using Figure 3.5 in Section 3.2).
These results show the same trend of worst-case delay dependency on duty cycle as
seen in the time series diagrams in Figure 3.8. For the observed workload period range
in our system, we can conclude the following observations:

• Higher workload duty cycles typically lead to lower delay increase due to transient
voltage drop.

• Higher workload periods lead to higher delay increase due to transient voltage
drop.

Intuitively, the di/dt component when the flip-flops start toggling should be the
same for any duty cycle. The IR drop component would be higher, due to overall more
switching activity. This explanation makes our observations counter-intuitive, as we
see higher delay increases from shorter duty cycles. Moreover, as shown in Figure 3.8
C, some time passes until the worst increase in delay is reached.

To explain these counter-intuitive results, we show the impact of duty cycle and
workload period on the average delay (i.e. steady-state) instead of maximum delay.
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Figure 3.10.: Overall average delay at different switching activity, showing all relevant work-
load duty cycles (the values of the remaining duty cycles are within the bound-
aries of the shown duty cycles) X-Axis: Workload period length during the
activity. Y-Axis: Delay difference to idle.

These results are depicted in Figure 3.10. In that diagram, only minor differences
among different workload duty cycles can be seen. These additional results can be
explained as follows: The on-board switched-mode VRM (cf. Section 2.2) is regulating
for a defined target voltage, but as its regulation loop is typically working at a much
lower frequency than the circuit behavior (depending on the workload frequency = 1/T ,
and the circuit frequency = 100MHz), any smaller changes are seen as a contribution to
the average consumed energy, depleted from its output capacitor CO (cf. Figure 2.1),
for which the regulator stabilizes. Thus, the regulator will supply less current after
intervals with less energy consumption (low workload duty cycle), than after high
energy consumption (high workload duty cycle). Less current means shorter TON times
of the regulator output, leading to higher voltage ripple VP −P (cf. Section 2.2). As
a result, the shorter the time a certain activity contributes to the average, the less
weighted it will be, leading to higher transient voltage drop and delay increase.

To validate the generality of the observations made, we repeated some of the ex-
periments on a Kintex-7 KC705 evaluation board (28nm FPGA), and show them in
Figure 3.11. We add one more lower duty cycle of 0.1µs, and also use flip-flops switch-
ing at 200MHz instead of 100MHz. Despite the changes, a trend of lower duty cycles
leading to higher voltage drop is still visible in a major part of the analyzed workload
periods.
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Figure 3.11.: Cross-check on the Kintex-7 KC705 (cf. Floorplan in Figure 3.4),
with Flip-Flops switching at 200MHz instead of 100MHz: Average of
multiple worst-case delay increases from switching activity-dependent voltage
drop, averaged across all sensors. X-Axis: Workload period length during the
activity. Y-Axis: Delay difference to idle.

3.2.3. Experiment 2: Spatial Spread of Voltage Drop

In ASIC designs, floorplanning decisions can involve a PDN optimization, tailored
to the typical workload switching conditions of the circuit [17]. In FPGAs, circuits
and workloads can be mapped in any way, which is unknown at fabrication time.
This freedom leads to over-conservatively fabricated PDNs and timing margins applied
during the mapping of a design. Hence, it gives an opportunity to exploit these margins
by doing mapping and workload scheduling based on expected voltage variations. To
this end, in addition to the analysis results, we obtained in the first experiment, we
also need to analyze the spatial impact of transient voltage drops across the FPGA,
i.e. the extent of delay increase in other regions as a function of the distance from the
sources of transients (highly active regions) on the chip.

We configure in total 14% of the FPGAs flip-flops, which are distributed in eight
regions with an equal amount of flip-flops. Each region is located around one sen-
sor, and can be clock-gated separately. Two of these regions are enabled at the left,
center, or right of the FPGA simultaneously, which is 3.5% of the total available flip-
flops in each case. We test a variation of workload duty cycles and periods. However,
the resulting spatial gradient showed the same trends and a similar difference in over-
all magnitude like in Experiment 1. This can be seen from the results for workload
i = (102.4µs, 20%, 0%) and g = (12.8µs, 50%, 0%), in Figure 3.12. The important
observations are:
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(a) Spatial Differences with T = 102.4µs, D =
20%
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(b) Spatial Differences with T = 12.8µs, D =
50%

Figure 3.12.: Average of multiple worst-case delay increases from voltage drop per sensor,
depending on activity in two regions (3.5% of total flip-flops), with two different
D and T , i = (102.4µs, 20%, 0%) and g = (12.8µs, 50%, 0%). X-Axis: Sensors
across the FPGA from Left(0) to Right(7). Y-Axis: Delay difference to idle

• An obvious difference in delay increase from inactive to active regions of up to 2.5×
is visible.

• When the left or right regions are active, the gradient shape from either edge to the
other edge shows an almost symmetric profile, potentially making a fitted function
applicable to the whole FPGA.

• Although the shape of the curves is similar, the activity of the same number of
flip-flops on the right chip side leads to an overall lower drop. Mis-calibration can
account for a part of that, but at least the center two sensors would show the same
offset at the same power. As they are different, we assume the right side of the chip
is operating at lower power, which is reasonable according to [50].

• Activating the two regions in the Center shows the worst effect on the delay overall,
as even the right and left side are affected more by activity in the center than their
own region. The Xilinx’ System Monitor logic in the center needs power as well and
could possibly influence this. In addition, the center region has a higher distance to
power/ground I/O pins.

3.2.4. Experiment 3: Spatial and Temporal Interference among
Workloads in Horizontal Regions

Usually, during realistic mapping and runtime decisions, more than one type of work-
load has to be active. Thus, in addition to the previous experiments, we analyze the
interference among various simultaneously mapped workloads on the FPGA to observe
whether they attenuate or aggravate the resulting voltage drops.

In this subsection, we show different workload activity patterns W = w1w2..w8 based
on the previous setup of 8 horizontal regions of which each uses 1.75% of the total
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(a) T = 102.4µs, no phase shifts
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(b) T = 102.4µs, with ϕ = 10% in workload k
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(c) T = 102.4µs, with ϕ = 50% in workload l
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(d) T = 12.8µs, with ϕ = 50% in workload h

Figure 3.13.: Average of multiple worst-case delay increases from voltage drop per sensor,
depending on activity with different phase shifts at different regions. Workloads
summarized in Table 3.4. X-Axis: Sensors across the FPGA from Left(0) to
Right(7). Y-Axis: Delay difference to idle

available flip-flops in the FPGA. Different effects will be explained based on selected
subsets of our results.

One general observation is that among different workloads, a high phase shift and a
high spatial distance reduces the voltage drop. We provide evidence for this observation
with the results in Figure 3.13. Three diagrams (a-c) show the effect of workload
activity patterns that use workloads with either no (j), only ϕ = 10% (k) or the
maximum ϕ = 50% (l) phase shift.

Without any phase shift, shown in 3.13a, the highest voltage drop (i.e., maximum
amplification) occurs when the active regions (with workload j) are close together on
one side as W = jjjj0000. In contrast, the voltage drop is reduced more (i.e., more
attenuation) when the active regions are more apart (W = jj0000jj). When we apply
a minor phase shift of ϕ = 10% to half of the active workloads (workloads k instead
of j), shown in Figure 3.13b, there is no major change to that. However, the voltage
drop reduces significantly when half of the workloads use ϕ = 50% for workload l, as
visualized in Figure 3.13c. The maximum attenuation of voltage drop occurs when
both high spatial distance and high phase shift are applied (W = jj0000ll). We also
verify this trend for a different workload period T = 12.8µs in Figure 3.13d.

In Figure 3.12 we provided evidence that the same activity can lead to stronger or
weaker voltage drop, depending on its location in the system. An active workload in
the center leads to a system-wide higher voltage drop than the same activity at an
edge. This nonuniform spatial influence has to be considered by any approach that
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(a) T = 102.4µs, no phase shifts
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(b) T = 102.4µs, with ϕ = 50% in workload l

Figure 3.14.: Average of multiple worst-case delay increases from voltage drop per sensor.
These workload activity patterns show the benefits of high phase shift and
spatial distance among workloads. Workloads are summarized in Table 3.4.
X-Axis: Sensors across the FPGA from Left(0) to Right(7). Y-Axis: Delay
difference to idle

optimizes the placement of workloads for reduced voltage drop.
In Figure 3.14 we show two diagrams with different W patterns to compare the

possible voltage drop reduction through phase shifting with that of spatial spread.
The left diagram, Figure 3.14a shows that workloads in the center lead to the highest
delay increase with the pattern W = 00jjjj00. A pattern which only has workloads on
the two center regions (W = 000jj000) causes a higher voltage drop impact than even
four of these workloads spread more evenly across the FPGA (W = j0j0j0j0). As one
of the center regions is still active in this W , moving the four workloads completely to
the edges (W = jj0000jj) will further reduce the voltage drop.

Figure 3.14b shows that phase shifting reduces voltage drop more than spatial
spread. If applied to the center four regions as W = 00jljl00, phase-shifting is still
more beneficial than just a spatial spread to the corners (W = jj0000jj), despite the
center-region usually leading to higher voltage drop. Both spatial spread and phase
shift combined (W = jl0000jl) result in the least delay increase, i.e., maximum voltage
drop attenuation.

The results so far suggest that shifting an active time period with ϕ up to 50%
always helps in reducing the voltage drop, by distributing the overall system workload
more evenly in time. Yet, depending on other parameters, that is not always the
case. In Figure 3.15a, we show a case in which a small increase in phase shift can
lead to a high increase in voltage drop, instead of a decrease. A time diagram in
Figure 3.15b explains that, by showing the active periods of workloads n, o and p and
their potential overlapping times of activity. The least overlap exists with n and o,
because of the combination of their duty cycles (20% and 80%) and phase shifts (0%
and 20%) that make them non-overlapping. However, when the second phase shift of
20% is increased to 30% by replacing workload o with p, the resulting overlap leads
to less distribution in time and an increased voltage drop. Similar interactions can
be expected when workload periods or duty cycles are chosen in such a way to have
overlapping times of activity.
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(a) Variations of n = (51.2µs, 20%, 0) with
o = (51.2µs, 80%, 20%) or p =
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Figure 3.15.: Average of multiple worst-case delay increases from voltage drop per sensor.
These workload activity patterns show the high impact a small phase shift can
have. Workloads are summarized in Table 3.4. X-Axis: Sensors across the
FPGA from Left(0) to Right(7). Y-Axis: Delay difference to idle

The important additional observations from this subsection, with respect to inter-
dependence, are:

• The trend of spatial spread is not significantly influenced from changing only workload
period or duty cycle.

• Changing duty cycle or workload is interdependent with phase shift in case of overlaps
in time (cf. Figure 3.15).

• Distributing workloads more uniformly in time reduces voltage drop (i.e. through
appropriate phase shifts).

• Distributing workloads spatially reduces voltage drop, however, nonuniform spatial
influence should be taken into account (i.e. some regions lead to more voltage drop
than others).

3.2.5. Experiment 4: Spatial and Temporal Interference among
Workloads on 3x3 Regions

The previous experiments show detailed results horizontally across the system, pre-
sented through 2D diagrams, sufficient to catch and explain most interdependence in
the system. In order to confirm these results and analyze additional effects both ver-
tically and horizontally across the chip, the 1D setup is now extended to a 2D setup.
For this, we show plots of a layout with 3x3 regions, where the floorplan was shown in
Figure 3.3. In each of these regions 1.6% of the total FPGA flip-flops are configured
and can be set to specific workloads.

From one corner to the other corner of the FPGA, phase shift will still attenuate
voltage drop. Figure 3.16 shows two diagrams in which either of two corners is active
with one of two workloads. Workload m is in phase with ϕ = 0, while workload q
is shifted by ϕ = 50%. As Figure 3.16a and Figure 3.16b show, for both pairs of
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(a) Two corners being active without phase shift
( ) and with 50% phase shift ( )
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(b) Two other corners being active without phase
shift ( ) and with 50% phase shift ( )

Figure 3.16.: Average of multiple worst-case delay increases from voltage drop per sensor.
These workload activity patterns show the effect of an activity in either of the
two corners, with one activity 50% phase shifted ( ) or without phase shift
( ). Workloads are summarized in Table 3.4. X/Y-Axis: Sensors across the
FPGA. Z-Axis: Delay difference to idle

corners the worst-case voltage drop is reduced when one of the two workloads is phase-
shifted. In Figure 3.16a ( ) we can also see an increase in path delay from inactive
to active regions of up to 4.1×, from 24.5ps in corner x = 0, y = 0 to 99.4ps in corner
x = 0, y = 2, much higher than the 2.5× seen in the horizontal layout.

Additional effects that can be seen in the 3x3 layout is a difference in correlation on
the vertical versus the horizontal axis. Figure 3.17 shows the results from two active
regions on the edges of either the center row ( , y = 1) or center column ( ,
x = 1). The overall voltage drop is more prominent on the vertical axis, especially
when no phase shift is applied. In that situation, a strong voltage drop amplification in
the center region is visible, despite that region itself is not active. This gives valuable
information for floorplanning and runtime scheduling.

In Figure 3.18, we show two patterns of a fully active system (14% of all flip-flops).
The patterns compare the difference between no phase shifting in one workload pattern
( ) with phase-shifting the workload on every second region ( ) by ϕ = 50%. This
phase-shifting can overall reduce the worst-case increase in path delay from about 5%
to 2%. From these results it is also notable that in a fully active system, the center
column (Regions with x = 1) is under the highest voltage drop condition. To conclude
the results, we show two different patterns in Figure 3.19. The orange pattern ( )
has less activity without phase shifts, but still shows a higher voltage drop than the
more active purple pattern with phase shifts involved ( ). Because the purple pattern
adds a component of interference between some of the regions, these regions have less
voltage drop over the others.

In this subsection we can thus confirm and extend some previous observations:

• Results in the previous sections showed that for our FPGA sample, activity in the
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(b) Two center row ( ) or column edge ( )
regions being active, with one of them being
phase-shifted by ϕ = 50%.

Figure 3.17.: Average of multiple worst-case delay increases from voltage drop per sensor.
These workload activity patterns show the effect of an activity in the edges
of either the center column or center row, with one activity either 50% phase
shifted or not. Workloads are summarized in Table 3.4. X/Y-Axis: Sensors
across the FPGA. Z-Axis: Delay difference to idle

center region lead to higher voltage drop. We can confirm this result and extend it
to a tendency of affecting the whole center column (x=1).

• Due to more distance across the FPGA, a difference in delay increase from inactive
to active regions of up to 4.1× is shown, extending the previously seen 2.5×.

3.2.6. Discussion
The observations from our experiments allow us to formulate the following design rules
or recommendations:

• During floorplanning, increasing distance among active regions as far as possible will
decrease worst-case voltage drop.

• The activity in some regions has higher voltage drop impact compared to other
regions. For instance in our tested Virtex-6 FPGA, an activity on center regions has
higher impact on voltage drop, and should be avoided if possible.

• Distributing activity over time as uniform as possible will also decrease voltage drop.

• If multiple activities exist, spreading them both over time and space without overlap
can be considered good practice.

These results provide useful insight to the design, how different workload behavior,
as well as floorplanning, impact transient voltage drop and in turn circuit delay and
the corresponding timing margin for correct operation. The results and analysis are a
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Figure 3.19.: Average of multiple worst-case
delay increases from voltage
drop per sensor. These work-
load activity patterns show the
benefits of phase shifting with
ϕ = 50% to reduce volt-
age drop, even if being ap-
plied asymmetrically ( ) over
less activity without phase shift
( ). Workloads are summa-
rized in Table 3.4. X/Y-Axis:
Sensors across the FPGA. Z-
Axis: Delay difference to idle

first step to guide design optimization in terms of both performance and reliability. In
future work, we will focus on models to be used by designers to accurately guardband
against such effects, and also be able to optimize their design to be resilient against
them.

Our experimental results show a high dependency of voltage drop related to how
activities are distributed in time and space, such that even overall lower activity through
lower duty cycles or lower spatial distribution can induce more delay. This can be
explained by:

• Less distribution in time means having more sudden increases in power and thus will
lead to a higher di/dt voltage drop component, which dominates constant IR drops.

• Lower spatial distribution means higher power density and thus more load on the
same number of decoupling capacitors.

• A switched-mode VRM typically operates at lower frequencies than the circuit, and
therefore has an averaging nature. The shorter a certain timeframe of high power
(i.e. switching activity) is, the higher voltage drop can be expected.

Having full control over the placement of active regions and type of running work-
loads enabled these observations. Real workloads would give a more convoluted view
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that is less clearly observable. In this way, we could see up to 3× difference in delay
increase from two cases with the same overall activity (duty cycle), showing a high
potential to mitigate this by scheduling. For example real-time systems typically work
with fixed scheduling/workload periods, and their task execution times can resemble
the used workload duty cycles.

The experiments involving spatial observations and interdependence reveal a spread
of voltage drop across the FPGA. Furthermore, amplification and attenuation effects
from positive and negative interference among distinct activities (i.e. workloads) were
made visible. While voltage drop gradients have been analyzed in [50] for steady-state,
we made the first analysis that includes transient voltage drops and the interdependence
of a range of workloads. In combination with the first results, sufficient qualitative
and quantitative evidence was collected to be useful for floorplanning and runtime
scheduling decisions of on-chip activities.

Using the results and methodology from the first experiment, a system architect can
find and work around the worst-case situation voltage drop hotspots (e.g. scheduling
periods around 204.8µs in our case). On the other hand using the results from Exper-
iment 2, a system designer can properly place and separate the active blocks, based
on their expected switching activity, and therefore voltage gradient. These results can
then be combined with Experiments 3-4, and lead to a joint strategy of scheduling
block-level activity at design time and runtime. For a new system, our approach can
be used to acquire similar results and use them for scheduling and partitioning deci-
sions, or directly evaluate existing circuit designs for critical operating conditions. We
believe that in a larger system, there is still sufficient freedom left for floor-planning
on the coarse granularity of IP blocks to apply these strategies, while still satisfying
all other constraints. The global interconnections between IP blocks are typically less
than the connections within a block.

As the overhead of these sensors is fairly small, they can also be used during the
system evaluation phase for monitoring the system behavior while running a mapped
design with realistic workloads. This can greatly help if the FPGA is used in critical
application domains with high reliability requirements.

On a final note, most of the overall observations and analysis are transferable to
more recent technology nodes, ASICs, and processor designs, since they are based on
similar underlying fabrication technologies, and share similar concepts in PDN design.
PDNs do not scale or improve as fast as feature sizes do [17].

3.3. Chapter Conclusion
In recent technology nodes and complex designs, transient voltage fluctuations are a
major threat to reliable circuit operation. Conservative safety margins and ad-hoc
control mechanisms are too costly to handle this problem. A method to analyze the
underlying effects inside the chip is required to gather more understanding of voltage
transients.

This work showed such a method. By using sensors based on FPGA fabric, spatial
and temporal voltage transients can be evaluated in-circuit. Our results show that an
overall higher switching activity can lead to less critical voltage drop than a lower one,
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depending on the transient behavior in a full system that includes VRM. Considering
the same activity, up to 3× difference in induced delay could be observed from transient
voltage variance, while the spatial spread across our chip showed up to 4.1× delay
variation from active to inactive region. Using our characterization approach, the
acquired system-specific knowledge can be used as a guidance during circuit mapping as
well as workload scheduling, leading to more reliable systems at increased performance.
Future work will include the investigation of design implications of observed trends and
how to optimize a design accordingly at physical design and runtime scheduling phases.
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4. PDN-based Voltage Drop-based
Fault Attacks

The work described in this chapter was published in [20], [21], and [25] and is joint
work with co-authors (in no particular order) Fabian Oboril, Jonas Krautter, Falk
Schellenberg, Amir Moradi and Mehdi B. Tahoori. More details on contributions is
found in Section 1.1.

Fault attacks can break cryptographic implementations without the need of an algo-
rithmic weakness, by injecting errors in the computation and gaining knowledge based
on the faulty output. These attacks have been spread to various devices and types
of algorithms [92–94]. A traditional requirement for these attacks has been unlimited
physical access to the device. Before this thesis, the famous rowhammer attack has
proven that software can also be used to cause faults. For that, the rowhammer attack
uses specific memory access patterns, also affecting neighboring memory cells [95, 96].

In this chapter we will show that similar problems are more widespread and can also
be applied inside FPGAs. The previous Chapter 3 has shown that specific switching
activity can lead to higher or smaller voltage drops. Here we will show that such voltage
drops can be escalated to cause actual faults in the system, both for injecting errors or
bringing down the whole system. While in Chapter 3 we discussed only the reliability
implications, we more specifically discuss it as a potential threat to security.

4.1. Voltage Drop-based Fault Attacks on FPGAs using
Valid Bitstreams

In this section, we show a DoS threat that only requires partial access to the configu-
ration of the FPGA, which can even be gained remotely. A vulnerability exists due to
the possibility of generating excessive voltage fluctuations using valid bitstreams, and
can cause a crash of the device within a short time. In the worst-case, the device will
not reset itself, being a permanent DoS, until the FPGA or SoC is manually power
cycled (power turned off and on). This can cause severe consequences, if the FPGA is
used in servers.

So far, attacks on the electrical level have been carried out locally with access to the
chip itself, for instance by manipulating its power supply or clock [66, 97]. Initial ex-
periments showed that voltage drops can be generated from inside the system [44], but
it has not been further evaluated. Older generations of FPGAs could be destroyed by
overheating [67]. For modern FPGAs, overheat protection exists. The security vulnera-
bility we expose in this section is more effective and malicious than simple overheating.
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Our proposed attack uses a relatively small number of ROs to crash the FPGA (about
12% of total available Look-Up Tables (LUTs) used). Moreover, it just requires a few
microseconds to crash the system, and thereby can escape various monitoring schemes.
Additionally, it is not detectable by a thermal sensor, and finally, it keeps the FPGA
inaccessible until it is fully power-cycled. This has been shown successfully in two
different generations of FPGAs and could crash a full SoC, containing two processor
cores with FPGA fabric, only using the vulnerability of this fabric.

The revealed vulnerability can be exploited for attacks with the goal to cause a DoS,
affecting other users and applications. The focus of this section is to fully analyze this
vulnerability and its overall impact. We analyze the exact conditions under which the
system crashes, and how systematically it can be reproduced. Furthermore, we provide
a first analysis and guideline for possible mitigation of this vulnerability.

4.1.1. Threat Model
The threat model we follow in this section considers an adversary with complete or
partial access to reconfigurable fabric used in two different systems and usage scenarios.
The adversary goals are to cause a denial of service in the system. One of the systems is
a cloud-based environment, in which FPGA accelerators can be used by the adversary,
another is a SoC with an embedded FPGA in which the programmable logic can be
used (e.g. third party applications).

In a cloud-based environment, a DoS can make the FPGA unusable until manually
power cycled, which is unlikely automated. In the case of a SoC with integrated FPGA,
it has a similar effect, however if the system is battery-powered, the battery might need
to be disconnected from the circuit. If it can not, the system stays in a permanent
DoS.

The remaining part of this section is structured as follows: Section 4.1.2 explains the
design of the required circuits for sensing and causing voltage drop and their experimen-
tal setup. Section 4.1.3 discusses the results and how these attacks could potentially
be mitigated. Finally, we conclude the section in Section 4.1.4.

4.1.2. Circuit Design and Experimental Setup
In this subsection we explain the experimental setup of our components used in the
analysis and the circuit we designed to expose the vulnerability. The implementa-
tion of voltage fluctuation sensors in our FPGA follow the concept introduced in Sec-
tion 2.5. Here, we will explain how voltage drops can be generated through ROs in Sec-
tion 4.1.2.1. Finally, we detail the rationale of the attack based on voltage emergencies
and its experimental setup in Section 4.1.2.2.

In this work, we clock the sensors at 100MHz (i.e. one sample every 10ns). The
sensor values are transferred from our FPGA board to the PC using the Xilinx Chip-
scope Integrated Logic Analyzer. It saves the sampling data within FPGA BRAM and
then transfers it to the PC.

We show the measurements from a sensor on the Virtex-6 FPGA, during a high
voltage drop event in Figure 4.1. This figure shows a trace of sensor values (y-Axis)
over time (x-Axis). Such a sensor value will show the propagation depth into the chain
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Figure 4.1.: Change in propagation depth into a chain of ‘CARRY4’ elements of a Xilinx

Virtex 6 FPGA due to sudden current increase, caused by enabling 18720 ROs
and keeping them enabled. Temperature 38–40 °C.

Figure 4.2.: Left to Right: Virtex 6 Floorplan with ROs and Sensors; Kintex 7 Floorplan
with ROs; Zynq-7020 Floorplan with ROs.

of buffers, whose delay is affected by voltage fluctuations. Thus, higher values relate to
faster buffers operating at a higher voltage, and as buffer delays increase from voltage
drop, their propagation depth will decrease, shown as lower values on the y-Axis.
Before the voltage drop within time 0 − 10µs, the sensor is saturated at 62. At about
10µs the voltage starts to drop and the sensor shows that less bits can be propagated
due to increased delay td of the transistors in the buffers. This voltage drop reaches
its lowest point at 30µs and recovers back until 100µs. It demonstrates how on-chip
activity can lead to a strong increase in path delay. The delay is affected by the whole
sensor range of the Observable Delay Line, corresponding to a change of about 12.5% of
the total path (including the Initial Delay) according to timing analysis. In [44], 14%
delay change was reported with a different method and FPGA. When sensors values
are shown in the remaining work, they are based on two sensors, placed on the left or
right side of the System Monitor, near the center of the FPGA, as shown in Figure 4.2.
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Figure 4.3.: Single ring oscillator made out of one LUT5 primitive

4.1.2.1. Generating Voltage Drops

We achieve the crash by causing timing faults or SRAM state retention loss through
voltage emergencies. As explained in Chapter 2, Section 2.1, voltage drops are mainly
dependent on changes in current and can therefore be caused deliberately when a
spontaneous high current is required. In the setup explained here, high switching
activity with proper timing is used to cause this excessive current and the resulting
load on the PDN. LUTs are configured as inverters, and their input is connected to
their output in a loop, forming ROs that can toggle very fast (i.e. as fast as physical
transistor delays allow). By also configuring an AND in the LUT, an additional input
‘I1’ is used as an ‘enable’ signal to enable or disable the RO oscillation as shown
in Figure 4.3. Standard FPGA tools can be used to implement these ROs.

By suddenly enabling all ROs through the LUTs ‘I1’-inputs, they cause a strong
influence on the voltage stability in the whole system, resulting in delay increases,
especially in near-by paths. We showed this effect of voltage fluctuations on path delay
in Figure 4.1, where within a few nanoseconds a steep drop can already be observed in a
nearby sensor. Potential thermal influence is negligible in this observation, as with the
low amount of ROs used in our experiments, temperature increases much slower and
requires several seconds to minutes for a significant increase in heat. This means that
such voltage drops cannot be detected by on-chip thermal sensors or slower integrated
voltage monitoring circuitry.

4.1.2.2. Voltage Drop-based Fault Attack

Voltage drops depend on various other design and runtime parameters, such as process
variation, local temperature and generic voltage noise. To cause a voltage emergency,
an isolated voltage drop might be insufficient to create the required load on the PDN.
Therefore we have to consider spatial spread and plan a series of various voltage drops
carefully timed with respect to each other.

Consequently, we enable and disable the ROs to create voltage drop pulses in rapid
succession, meaning they oscillate for a certain time and are deactivated in another,
which we call the frequency of RO-toggling fRO−t. This principle is depicted in Fig-
ure 4.4. Please note that this frequency of activation fRO−t is different from the inherent
switching frequencies of the ROs themselves. By varying fRO−t, a reproducible crash of
the FPGA can be caused. Please note too, besides this pulse frequencies, also the place-
ment and amount of activated ROs has an influence on the attack quality. However,
we observed that this influence is much lower than the pulse frequency, if a sufficient
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Figure 4.4.: Principle of connecting ROs to a clock fRO−t that toggles their allowed activity
(inside which they toggle themselves as fast as physically possible).

amount of ROs is available (when about >7% of the LUTs are used, tested on the
ML605 board). Hence, in the following, we limited the description of our analysis to a
fixed number of ROs, for the sake of brevity.

When testing different frequencies for fRO−t, one needs to take into account that the
worst critical situation takes some time to build up. When simply enabling the ROs,
on the ML605 board, it takes about 10−20µs from the start of the path delay increase
until it reaches the lowest point and starts to recover again, as shown in Figure 4.1.
That means, we should keep the ROs oscillating until they cause a high enough voltage
drop, and start over again, before voltage starts to recover. Due to that, reducing fRO−t

will crash the FPGA more effectively, until the range of recovery (< 25 − 50 kHz). To
reduce the thermal influence on our experiments, we keep the FPGA within 38-40 °C
using the on-board fan.

We also checked if timing failures could be caused when ROs are added to a legit-
imate design. Our investigation showed that it either operated correctly, or crashed
entirely. Follow-up work is required to do a more detailed analysis.

4.1.3. Results and Discussion
The devices tested in this section are a 40nm Xilinx Virtex 6 on ML605 board (37,680
slices×4 LUTs), a 28nm Kintex 7 on KC705 board (50,950 slices×4 LUTs), and a 28nm
Zynq 7020 on Zedboard (Dual ARM Cortex-A9 + 53,200 LUTs).

In the following subsections we will expose the previous mentioned vulnerability that
can be exploited for DoS in these devices. We will first analyze the conditions required
for crashing in Section 4.1.3.1, then we try to explain the root cause in Section 4.1.3.2.
In Section 4.1.3.3 we then show if detecting a voltage drop with the delay line-based
sensors is fast enough to prevent it, and discuss different possibilities to stop the activity
that leads to the crash.

4.1.3.1. Crash Conditions
All three boards do not reliably crash when using a single voltage drop. But we can
crash all three boards with an automated sweep through different fRO−t, confirmed by
a drop in measured power consumption on the board, and the stop of blinking LEDs
controlled by the FPGA.

Of the three boards, the ML605 and KC705 always stop being accessible after the
crash, and consume less power, which is due to a locked-up voltage regulator for at
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Figure 4.5.: Range of frequencies to toggle ROs on/off that cause the ML605 to crash after a
certain number of attempts. Temperature regulated within 38-40 °C.

least the ML605. Thus, restarting the PC while keeping the board running does not
resolve the situation. A manual power-cycle of the FPGA board is required before any
access (i.e. JTAG) is possible again. On the KC705 we also tried to by-pass the on-
board USB JTAG with a stand-alone JTAG dongle, which showed to be not sufficient
to reactivate and access the FPGA board again.

The Zedboard has one of three conditions occur randomly. In one of them it stops
being accessible to JTAG, like the other boards. In another case, it resets, which also
deconfigures the FPGA part and resets the ARM cores. In the last case, it looks like
a reset as well. However, when trying to reprogram the Zynq in Vivado, it locks up
in the middle of reprogramming the bitstream. The software has then to be forcefully
terminated. After that, the SoC stays inaccessible like in the first condition.

If the ML605 is connected to Chipscope during the crash, we get the following
message:
WARNING: System Monitor Die Temperature has invalid data. [..] See Answer Record
24144.

Where a lookup of this Answer Record does not lead to relevant information. For
the KC705 board, if connected to Vivado Hardware Manager, the software quits this
program, and shows in a popup:
[Labtoolstcl 44-153] HW Target shutdown. Closing Target: localhost:[..]

For the Zedboard, when connected to the Vivado Hardware Manager and crashes in
any way (inaccessible or not), the crash is not immediately recognized and will only be
seen when trying to reprogram the board as:
ERROR: [Labtools 27-3165] End of startup status: LOW
ERROR: [Common 17-39] ’program_hw_devices’ failed due to earlier errors.

If it is connected for debugging during the crash, it will immediately show by:
ERROR: [Xicom 50-38] xicom: Core access failed. [..]
ERROR: [Labtools 27-3176] hw_server failed [..]
Resolution: Check that the hw_server is [..]

If the ARM cores are on a debug connection in the Xilinx SDK, this connection is
terminated.

In the following, we give more detailed results on the specific frequencies required
for the crash on the ML605 board:
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Table 4.1.: Different conditions for the tested boards. Power consumption measured with wall
plug, default power supplies.

Board
% LUTs
used for

ROs

Standalone Power Consumption Crash Recovery (Inaccessible)

After
Reset

After
Flash-
ing/
Pro-

gram-
ming

All
ROs

Active

After
Crash
(Inac-
cessi-
ble)

PCIe
Con-

nected
Stand-
alone

ML605 12.4% 14.3W 16.4W 36.5W 11.1W
Off/On
Board

Off/On
Board

KC705 11.8% 21.8W 13.5W 29.4W 7.0W
PC

Power
Off/On

Off/On
Board

Zedboard 12.8% 3.3W 3.3W 6.2W 3.3W
not

avail-
able

Off/On
Board

We activate 18720 ROs (about 12% of the LUTs in this specific Virtex 6) in a range of
fRO−t of 20 kHz−2 MHz. For each attempt to crash the FPGA, we program it and start
an activity at a single fRO−t. We then check how many attempts we require in order
to crash the system. Since the recovery from a crash is time-consuming and not easily
automated, we ran more experiments for the corner cases. The results in Figure 4.5
show how many attempts are required to cause a crash, depending on the chosen fRO−t.
Above 1 MHz, the voltage does not drop enough, and no crash happens with at least
99% probability (based on 100 attempts). Within 80 kHz−1 MHz is a ‘greyzone’ in
which the crash occurs in a non-deterministic way. For the fRO−t tested below 80 kHz,
the crash happens always at first try.

To check the maximum time the crash requires, we set the Xilinx Chipscope Inte-
grated Logic Analyzer (ILA) to trigger on the start of our malicious activity. After the
trigger condition, we set it to collect only 16 samples before sending them to the PC.
The expected time required in total from the trigger condition until received by the
PC is less than 150µs, based on the JTAG frequency, data size and internal sampling
rate. Thus, the crash happens in less than 150µs.

We additionally experimented with the two FPGA boards being connected inside a
workstation to PCIe, in which the crash also happened. By using on-board switches to
power either of the two boards off and on, the ML605 can be accessed again. However,
the KC705 requires a cold reboot of the workstation (i.e. even the workstation’s power
supply), which can be a permanent DoS in a server environment that requires manual
power cycling.

Interesting for these two boards is their power consumption after the crash, which
is less than in any other condition by at least 20%, because one voltage regulator
stopped operating. However, for the Zedboard there is no power difference. Table 4.1
summarizes the conditions.
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(a) Suddenly activate all ROs.
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(b) ROs on/off at 83.333kHz.
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(c) ROs on/off at 500kHz.
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(d) ROs on/off at 2MHz.

Figure 4.6.: Influence on the increase in path delay when applying different activation fre-
quencies fRO−t to the ring oscillators. Case (b) almost always leads to a crash,
because at 80µs it is not yet recovered as (a) and the voltage drops last longer
than (c) or (d). For (d) it never crashes, probably because the value never goes
below 10.

4.1.3.2. Attack Analysis

The vulnerability exposed in this work is caused through voltage emergencies. In the
background section, we reviewed various failure causes due to timing faults, SRAM
state retention loss, or resonance in the PDN that supplies the FPGA. For the FPGAs
tested here, both internal BRAM and the configuration memory are based on SRAM.
The required time Tt and amplitude Vdrop for a voltage emergency are different for a
timing fault or SRAM state retention loss, where power distribution networks can have
weaknesses when stressed at the right frequency.

On the ML605 board, 0V can be measured for the FPGA core supply voltage VC-
CINT after the crash. This situation shows that the respective on-board voltage regu-
lator was shut off and is causing the permanent nature of the crash until power cycling
of the board. The other voltage regulators on the board still operate normally and
keep some LEDs lighted up and the fan spinning.

The sensors mapped to the FPGA can show some more details and evidence why
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this situation occurs, which we show with some example traces in Figure 4.6. These
were collected when the system did not crash (therefore we can only show a minimum
frequency of 83.333 kHz).

A larger Vdrop can be seen when the ROs are activated suddenly and stay activated,
as in Figure 4.6a, which recover after around 80µs. When we cause repetitive events
however, we can see a certain amplitude of Vdrop to repeat itself for a longer stress
period, shown for fRO−t = 83.333 kHz in Figure 4.6b. When the frequency of fRO−t is
varied in Figure 4.6b-4.6d the worst-case Vdrop of each frequency monitored with the
sensors is very similar. However, the 500 kHz shown in Figure 4.6c does only rarely
cause a crash, potentially because the sensors reach below a value of 10 only for very
short times. With 2 MHz shown in Figure 4.6d we have never got a crash, and in that
case, none of the sensors reach below 10.

Thus, a possible conclusion is that the board crashes directly due to extreme stress
from a frequency-dependent resonance in the on-chip PDN or on-board voltage regu-
lator. However, other components, like the System Monitor or configuration memory,
might first become faulty, and subsequently lead to the voltage regulator getting dis-
abled. The requirements to cause voltage emergencies in these components might differ
from each other, and with that also the sensitivity to different fRO−t frequencies. For
instance, high frequency but short-timed Vdrop ‘spikes’ can be absorbed in longer Tt

times. Since in the experimented boards the memory and logic subsystems of the
FPGA use the same supply voltage (and likely same PDN), the excessive voltage drop
in the logic part (ROs) can cause voltage emergencies in the memory subsystem as
well.

To collect evidence for a retention failure of SRAM, we can check either BRAM or
configuration memory. We use BRAM, as it is easier accessible in the fabric, and Chip-
scope actually uses it for its sample memory. Thus we can see its failure by receiving
corrupted data in Chipscope. We received such corrupted data, when experimenting
with fRO−t within the non-deterministic greyzone. In that range, we can sometimes still
receive partial traces, short before a crash, showing evidence of an anomalous BRAM
behavior.

In Figure 4.7 we show part of such a corrupted trace. In this trace until 131.66µs, we
receive typical fluctuation data. After this time, all data bits received from Chipscope
are ‘0’ for exactly 150 ns, then they are ‘1’ until the crash. In all the partial traces we
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Figure 4.7.: Detail of path propagation depth when a crash happens, but some data was still
transmitted. After the undershoot to all zero at 131.66µs, all data received by
chipscope is ‘1’ – potentially the reset state of BRAM output latches.
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Figure 4.8.: Detail of path propagation depth when disabling the ring oscillators after detect-
ing a drop in sensor value with previously idle activity.

recorded, the behavior is similar, and the intermittent ‘0’s always appear for 150 ns on
a systematic basis.

Please note, in the case of receiving all-‘1’, it is not the sensor being saturated again,
as the sensor saturation value is 62 and not 63, but the reserved part in BRAM is 6
bit. We assume itself, or its output latches, got reset to ‘111111’= 63.

In conclusion, the permanent nature of the crash depends on the voltage regulator
crashing or shutting down for safety reasons. This situation is in turn either caused
directly by resonance in the PDN, or by causing other problems in the logic and con-
figuration memory of the FPGA. More details will be analyzed in future work.

4.1.3.3. Discussion

In the previous sections, we showed the nature of deliberately caused voltage emergen-
cies that lead to a DoS. Specifically, the attack leads to a DoS situation much quicker
than by overheating, and with the addition of keeping the FPGA inaccessible, even to
JTAG, until its power supply is reset.

Allowing user-configurable accelerators in such systems create security vulnerabili-
ties that can compromise the availability of FPGA resources. A complete server might
require reboot, including full power cycling. In the worst-case, a system based on SoCs
with included FPGA can get into a permanent DoS, for instance when they are pow-
ered by a non-removable battery. Threats like these could be reduced, given a scheme
to detect and disable the excessive switching activity, before it escalates to voltage
emergencies for the complete chip.

In an additional experiment, we show how fast voltage recovers when all ROs are
disabled after a sensor value below ‘30’ is detected. This way, we estimate the latency
of the sensor and how fast the voltage drop wears off. Figure 4.8 shows the sensor
readings for this experiment. The sensor values show recovery after two samples (20ns).
However, as the sensors are saturated at 62, the system might still require more time
to fully recover.

Applying this option to a real design would require to reserve area for the sensors
and one input on each LUT. The sensor thresholds would need to be chosen such that
legitimate activity is not affected. Additionally, all LUTs would effectively have one
input less available to the design, and no option for a disable switch might exist for
other FPGA primitives, making it rather infeasible and requiring other options These
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options could be based on power gating or a way to quickly disable the interconnects
in affected areas.

To even prevent malicious bitstreams from loading, they can be sanity checked in
software, with the challenge of keeping legitimate bitstreams working, but not leaving
loopholes for malicious ones. One option that recent FPGA tools already use as default
constraints is checking for combinational loops during bitstream generation, which can
be deactivated by the user. Thus, the check would need to be done at a privileged
system software level, inaccessible to the user or application developer.

For all of these possibilities, new experiments are required. To be able to deactivate
arbitrary malicious circuits fast enough, new FPGAs might need to be manufactured.

4.1.4. Section Conclusion
FPGAs become more widely adopted as user-defined accelerators, such as in the cloud,
or integrated in SoCs. In these new usage scenarios, classic ways to enforce security,
like bitstream encryption, become infeasible, making them vulnerable to new secu-
rity threats. In this section, we revealed such a security vulnerability, by showing a
systematic approach to crash two generations of FPGAs, and an SoC containing an
FPGA, which can lead to a denial of service threat in these systems. This denial of
service is caused by a specific configuration when bitstream-level access is given, and
only requires about 12% of the available LUT-resources in the tested FPGAs. Such a
vulnerability can allow attacks on FPGAs used in data centers, SoCs, and other appli-
cation domains, where the entire system needs to reboot or even be fully disconnected
from power in order to power cycle the crashed FPGAs. Additionally, we discuss how
proper mitigation could be implemented to prevent denial of service.

4.2. FPGAhammer: remote voltage fault attacks on
shared FPGAs, suitable for DFA on AES

In this section, we present FPGAhammer. In analogy to rowhammer, we cause faults
through repetitive activation patterns. Similarly to Section 4.1 we affect the supply
voltage of an FPGA. In Section 4.1 it was shown to cause voltage drops to crash an
FPGA-system to perform DoS, while this section shows how precise timing faults can
be injected. FPGAhammer is precise enough to inject timing faults in FPGA logic,
suitable to target specific encryption rounds of the AES and perform DFA. We carry
out and elaborate this attack on various FPGA boards, containing Intel Cyclone V
SoCs with different configurable logic sizes. We conclude that it is indeed possible
to induce timing faults in a cryptographic core through remote configuration, with a
partial bitstream that can be easily generated with official FPGA vendor tools.

In summary, this section makes the following contributions:

• We introduce a new category of software-initiated fault attacks in FPGA systems,
possible with remote access to the target only, based on supply voltage drops
generated by means of malicious yet legitimate switching activity.
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• We establish a generic threat model for an attacker and a victim using a shared
FPGA resource in an active fault attack scenario.

• We show that a spatially and logically separated attacker in one region of the
FPGA fabric can attack a victim in another region.

• We test and prove the general vulnerability to on-chip voltage drop fault injection
on a range of FPGA platforms, and elaborate an automated way to inject faults
more precisely.

• We empirically prove that fault injections achieve a precision high enough for
a successful DFA and key recovery on the AES, regardless of FPGA model or
process variation within the tested devices.

The remaining section is structured as follows: Section 4.2.1 explains the proposed
threat model, the related work, and background on how voltage fluctuations occur
inside chips. Moreover, we briefly outline the DFA method we apply in our attacks. In
Section 4.2.2, we present an initial attacker design and describe the behaviour of FPGA
boards from different manufacturers under the influence of malicious switching activity.
In Section 4.2.3, we elaborate on how a fault attack and subsequent DFA can be carried
out with the proposed method on an FPGA AES implementation. An overview of the
hardware used in the experiments and implementation details are provided. We also
present results of analyzing injection rates and key recovery success. We discuss some
ideas for future research based on our findings in Section 4.2.4 and conclude our work
in Section 4.2.5.

4.2.1. Preliminaries
Before elaborating a full attack on the AES, we put our work in the context of other
publications, which are relevant to our findings or assume a similar threat model.
Moreover, we briefly explain the theoretical background of our experiments and the
basics of causing a voltage drop, leading to faults in FPGAs.

4.2.1.1. Threat Model
Here, we further describe the attacker-victim scenario assumed throughout this section.
A brief overview on this scenario is given in Figure 4.9. We assume the victim and
the adversary to have access to a fraction of an FPGA, in which they can load their
own arbitrary design, like a cryptographic accelerator. Both attacker and victim have
their respective processes in an operating system, and their designs on the FPGA are
logically and spatially separated, and follow other common best practices as explained
in [98]. It is also assumed that the respective FPGA fabric is powered by a single
common power supply. This scenario includes both data-center applications, in which
FPGAs are utilized as standalone accelerators, as well as SoC platforms, in which
multiple processes on the CPU can utilize a fraction of the FPGA logic.

We assume the victim to utilize their part of the programmable logic for a security
related algorithm, such as a block cipher. A secret key used in this algorithm is either
hard-coded onto the FPGA or transferred at runtime.
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Figure 4.9.: Overview of the threat model considered in this work: Attacker and victim share
an FPGA resource with a common power supply network, but isolated, logically
disconnected partitions on the fabric

If we consider a symmetric encryption module, such as an AES implementation
on the FPGA, used by the victim, we assume the following Adaptive-Chosen-
Plaintext-Scenario:

• The adversary can issue arbitrary plaintexts to a public interface of the victim
process either locally or remotely through a network.

• The victim outputs the ciphertext of the provided plaintext, encrypted with the
secret key, only known to the victim.

• The amount of requests is limited only by the attackers computational restric-
tions, which we assume to be polynomial.

We remark that we assume an attacker that can encrypt arbitrary plaintexts in the
generic threat model. However, the actual content of the plaintext is irrelevant for
a successful DFA and may even be unknown. The attacker only needs to be able to
enforce encryption of the same plaintext twice, where one case is a fault-free encryption
and in the other case faults are injected. Therefore, a DFA based attack on AES like the
one presented in this section, can be applied to situations where replaying encryption
requests to the target module is possible. Please keep in mind that attacks with faulty
ciphertext only are also possible [99], but are subject to future studies to reveal whether
they are feasible by internal voltage-drop based fault generation in FPGAs.
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4.2.1.2. Fault Injection using FPGA logic

A functional block in a synchronous FPGA design includes a common clock signal,
which is used to synchronize all memory components within the block. This means
that combinational paths between registers (D-flipflops) are constrained in their delay
by the clock signal. If a signal takes longer than a clock cycle to traverse a combinational
block, timing violations may cause the output of the target register to be different from
the desired results – a timing fault occurs.

The constraints can be formulated with five parameters [66]: The clock cycle time
tclk, the internal register delay dclk2q, the setup time tsetup, which is the amount of time
an input signal has to be stable at a register input, the maximum data propagation
time through the combinational logic dpMax, and the clock skew tskew, which is the
phase difference of the clock signal between two different registers.

The timing constraints can then be expressed by Equation 4.1.

tclk > dclk2q + dpMax + tsetup − tskew (4.1)

A higher data propagation time can be achieved by lowering the power supply voltage
VDD [28]. The increased delay raises the right hand side of the above equation, leading
to a timing violation and a potential fault injection.

To understand how the supply voltage of an FPGA can be decreased with on-chip
logic elements, it is necessary to understand how the PDN of an FPGA behaves under
the influence of different designs on the fabric. The PDN includes a network from the
voltage regulation module on the board down to the internal power rails and every
transistor on the FPGA. Generally, the PDN can be modelled as a mesh of resistive,
inductive and capacitive elements. Therefore, the power supply voltage depends on
two parameters: The average static current drawn by the implemented design (IR-
drop) and the voltage drop caused by switching activity and inductance (di/dt-drop).
The relation is summarized in the Law of Inductance: Vdrop = IR + Ldi/dt. With
technology scaling, the effect of static voltage drops has become less relevant compared
to the voltage fluctuations caused by switching activity and inductive components [28].

To evoke malicious switching activity on an FPGA and cause an excessive di/dt-drop,
we can deploy a massive amount of ROs to generate high frequency current oscillations.
In Section 4.1, ROs were already used to induce voltage drops high enough to crash
FPGA-based systems. It was shown, how a singular activation of a large amount of
ROs causes the voltage to drop rapidly by a certain amount and then more slowly
return to the original value within about 50 µs for the tested devices. Moreover, it
was described, how a drop can be increased significantly, by driving the entire grid
of oscillators with a different, slower frequency, constantly enabling and disabling the
ROs. A dependency on the duty-cycle of this RO toggle signal was demonstrated as
well in Chapter 3.

ROs are implemented by connecting any odd number of inverters circularly. An
additional enable signal allows enabling and disabling the oscillation, to connect each
RO to a common toggle signal. Figure 4.10a shows the schematic of an RO with an
enable signal and a single two-input NAND gate. The frequency of the oscillation
depends on the gate delay and the loopback routing from the output of the gate to
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(a) A single RO, imple-
mented with a NAND
gate

(b) The implemented oscillator grid, used to cause volt-
age drops

Figure 4.10.: Schematics of the RO implementations

the input. Since the gate is usually implemented as a single LUT in the FPGA, the
oscillation frequency depends mostly on the loopback routing.

4.2.2. Provoking Faults in FPGA Designs
Before developing a full DFA attack on the AES, we reproduce results from Section 4.1
about provoking crashes on Intel FPGAs, which has only been shown on Xilinx devices
so far. Moreover, we evaluate fault injection vulnerability of a broad range of FPGA
devices and boards from different manufacturers.

4.2.2.1. Initial Design for Causing Voltage Drops
For stressing the PDN and inducing a voltage drop, we deploy an RO grid onto the
FPGA fabric, which can be enabled and disabled with a variable toggle signal. A
schematic overview on the design with multiple ROs is presented in Figure 4.10b. The
characteristics of the voltage fluctuation caused by the oscillators depend on the toggle
signal frequency and duty-cycle.

Figure 4.11 shows a trace of the externally-measured supply voltage of an Intel
Cyclone V SoC device, when performing a sweep over different toggle frequencies for
the RO activation signal, until the device crashes. We toggle the RO grid with a
decreasing frequency, and for each frequency, increase the duty-cycle up to 75% until
the voltage fluctuation significantly exceeds the supply voltage limits of the device.
After this point it crashes, leading to a hard reset of the included ARM Hard Processor
System and a loss of the configuration of the FPGA device.

When developing in Hardware Description Languages (HDLs), the synthesis software
from most FPGA manufacturers deems the RO design entirely useless. Thus, it is
necessary to prevent the synthesis tools from optimizing the RO grid away. Initially, we
conducted experiments with different oscillator designs and found significant differences
regarding their effectiveness in causing the supply voltage to drop. We studied the
following design options on Intel FPGAs:

a) Implementation using an output pin: The first approach is to connect all
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Figure 4.11.: Trace of FPGA supply voltage VCCINT, measured externally with an oscillo-
scope during a frequency sweep leading to a crash of the device

ROs through a reduction function to an arbitrary output pin of the FPGA.
This approach was discarded immediately, since the routing congestions limit
the amount of ROs significantly.

b) Implementation using virtual pins: Secondly, we can declare all outputs of
the ROs as virtual pins, which are implemented as a single LUT each on the
FPGA.

c) Implementation without additional elements (Bare ROs): Another pos-
sibility is to define output connections of each RO to the top-level entity, but
not to an output pin. The synthesis software then accepts the fanout-free LUTs
without additional elements.

In Figure 4.12, we present results of comparing the two RO variants with (b) and
without (c) virtual output pins, where each implementation has the same amount of
logic utilization. We stressed a simple test design, which is detailed in the next section.
We collect the number of faults in a series of 10 trials for 5 seconds each. The amount
of recorded errors in the test design proves the higher effectiveness of the virtual pin

Figure 4.12.: Amount of errors detected in a simple adder test design during 5 seconds of
RO toggle activation with respect to the RO implementation option. Tested on
DE1-SoC.
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Figure 4.13.: Simple adder design to evaluate fault attack vulnerability

option. Despite less ring oscillators are used in variant b, the additional interconnect
resources connected to each single oscillator cause more faults.

Voltage drops can be further increased by enforcing high interconnect utilization
when separating ROs from their respective virtual output pins. However, we have
observed that the design which works the best, strongly depends on the used device,
especially if devices from different manufacturers are considered.

4.2.2.2. Voltage Drop-based Timing Faults in a Simple Test Design

Before applying fault attack analysis to a cryptographic implementation on an FPGA,
we analyze the behaviour of various FPGA boards, while stressing them with a massive
amount of ROs. We find that all evaluated boards from different manufacturers are
susceptible to the oscillator grids in terms of showing unusual behaviour upon activation
of the oscillation.

An overview of a simple adder design for the evaluation of fault attack vulnerability
is depicted in Figure 4.13. Three register carry-chains of different lengths are driven in
a way that keeps them switching between their maximum and minimum values. When
the maximum value is incremented, the resulting overflow requires a carry bit to be
propagated from the LSB to the MSB through the entire carry-chain. Likewise, decre-
menting the minimum value causes propagation of a carry bit through the registers.

In the given design, we can now compare n of the uppermost bits of each adder
with the correct and expected result. When a voltage drop increases the propagation
delay of circuit elements, this comparison shows whether a timing fault occurred in the
respective adder.

We then investigate the behaviour of the adder design with different lengths and
under various frequencies. In these configurations, it is possible to find a setting,
where the timing analysis of the FPGA mapping tools shows a violation of the timing
constraints, yet the design works in a normal situation. ROs can then cause timing
faults at runtime.

In production-stage cryptographic implementations, users are likely keen to avoid
timing-violations reported by the analysis tools during design synthesis, which makes
the vulnerability of devices in this situations less relevant to an adversary. We found
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Vendor Board Device

Fault attack
possible

(constraints
unmet)

Fault attack
possible

(constraints
met)

Intel Terasic DE4 Stratix IV Yes Yes
Xilinx XUP PYNQ-Z1 Zynq-7000 Yes No
Lattice iCE40HX8K-B-EVN iCE40HX8K Yes Yes
Intel Terasic DE1-SoC Cyclone V SoC Yes Yes
Intel Terasic DE0-Nano-SoC Cyclone V SoC Yes Yes

Table 4.2.: First results about general vulnerability of different platforms

that on most of the tested platforms it is also possible to inject faults into designs that
meet the timing constraints of worst-case estimation models.

In Table 4.2, we summarize our results across several platforms, which we evalu-
ated regarding the feasibility of fault attacks in designs that do not meet the timing
constraints (unmet) and designs that meet the constraints. Although some platforms
seem to be not vulnerable, it is more likely that we simply failed to find the appropriate
parameters to activate the oscillators in a way to trigger the necessary voltage drops
yet. These initial results promise a possible success regarding the application of fault
injection and DFA to cryptographic modules on FPGAs.

4.2.3. Fault Attack Evaluation on AES
In this subsection, we illustrate the details of performing a full key recovery attack on
AES using the RO design for fault injection and the DFA explained in Section 2.9 for
key recovery. We prove the concept of on-chip fault attacks by evaluating fault injection
and key recovery on the Intel Cyclone V SoC chip family. The following subsections
describe the general setup and detailed parameters for each experiment and present
the acquired results.

We initially detail how we achieve the required fault injection precision with an au-
tomated calibration approach. Subsequently, we investigate the general fault injection
rate with respect to the amount of ROs in the attacker design and inter-die process
variations of three DE1-SoC boards. We continue by evaluating the success rate of a
full AES key recovery for 5000 keys. Additionally, we study the dependence of injection
rates on the operational frequency of the AES module on the smaller Cyclone V SoC
device on the DE0-Nano-SoC board.

4.2.3.1. Calibrating the Fault Injection Precision

The DFA attack from [75], which was described in Section 2.9, allows to recover a secret
AES key with only two pairs of correct and faulty ciphertexts, if the fault is injected
according to the fault model of a single byte fault before the 8th round of the AES
encryption. In practice, we need to adapt parameters such as frequency, duty-cycle,
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Figure 4.14.: Flowchart of the calibration algorithm to find the appropriate parameters for
injecting faults at the desired moment

and activation time of the RO grid to provoke faults at the proper moment of the
encryption.

Any fault before the 8th round of the AES leads to all bytes of the faulty output
ciphertext to be different from the correct one, whereas any fault after the 9th round
leads to less than four bytes to be different. Faults that are injected into the input
state matrix of the 9th round are revealed in exactly four bytes of the faulty output
ciphertext being different from the correct one. This allows us to verify a successful
fault injection using the output ciphertext. Therefore, we decide to aim for injecting
faults not before the 8th round of the AES but before the 9th round only.

To make use of the possibility for injection success verification, we develop an auto-
mated calibration algorithm, to be executed before evaluating injection rates or attack
success for a given design and device. The algorithm allows to use the attacker design in
different setups, without the need for finding appropriate parameters in time-consuming
trial-and-error experiments manually.

In Figure 4.14, we present an overview of the full calibration algorithm we use before
evaluating injection rates or key recovery success. We adapt the signal for activating the
ROs in three parameters: The toggle frequency, the duty-cycle and the delay between
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Figure 4.15.: Trace of FPGA supply voltage VCCINT, measured externally with an oscillo-
scope during a single fault injection attempt

starting the encryption and activating the RO grid. On the left side of the flowchart, we
depict the process flow on the software side, whereas the right side enlists the actions
carried out on the FPGA by both attacker and victim design. The algorithm performs
as follows:

a) The attacker activates the calibration process on the FPGA. A random input
plaintext is drawn and encrypted without RO activity. The result is stored as
the correct ciphertext.

b) Afterwards the fault injection process on the FPGA is activated, to toggle RO
activity for the following encryptions.

c) Encryption of the same random plaintext is requested. The attacker design on
the FPGA activates the RO grid with an initial frequency and duty-cycle and
no activation delay. If no fault is detected, the frequency/duty-cycle are de-
creased/increased. Duty-cycle is increased for each frequency up to 75%. If a
fault is detected, which affects an undesired subset of bytes, the injection oc-
curred too early or too late, and the activation delay is increased/decreased. In
any case, the attacker design reports the injection success to the attacker process,
which either requests another encryption or continues the process.

d) If the injection was successful or a predefined maximum of injection attempts
injmax were unsuccessful, the attacker software deactivates the RO grid and either
finishes the successful scan or chooses another random plaintext for fault injection.

During experiments, we determined injmax = 60 as an appropriate upper limit re-
garding the number of encryptions needed until a fault is injected, since not all random
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plaintexts result in a faulty output even with the ROs active. After a successful cali-
bration process, the three parameters are fixed and used for subsequent fault injections.

In Figure 4.15, we show an externally acquired trace of the FPGA supply voltage
VCCINT during a single fault injection by the attacker design on the FPGA. The AES
reset signal (aes_rst_n), which resets the AES encryption module when low, indicates
the start of an encryption. To provoke a fault, the attacker design pulses the RO grid
(ro_ena signal) with the previously determined frequency, duty-cycle and activation
delay. The voltage fluctuations (VCC) cause a critical delay at the desired moment with
a higher probability and therefore, a fault is injected.

In conclusion, our approach requires eight instead of only two ciphertexts compared
to [75] to recover the secret key, but makes the attack feasible in practice, where a
lot more encryption requests are required to have the attacker design affect the AES
module at the desired moment. In all subsequent experiments, we apply this variant
of the attack, aiming to inject faults before the 9th encryption round. The calibration
is executed only once, at the beginning of any evaluation. However, we continue to
filter faults that have been injected at an earlier or later encryption round during the
collection of ciphertext pairs. This method maximizes key recovery success, although
the injection precision achieved by our calibration is very high, as we show in the
results.

Furthermore, we remark that the acquired calibration parameters can even be reused
on different devices of the same type. Therefore, there is no need to perform specific
calibrations on the board on which the fault attack is to be performed. In our exper-
iments on the Terasic DE1-SoC for example, we find that a toggle frequency of 1.16
MHz with a 56% duty-cycle is selected most frequently in a run of 1000 calibrations.
Fixing those parameters and reusing the design on a different DE1-SoC board leads
to similar or even better fault injection rates, depending on the general vulnerability
(process variation) of the board.

Note that this method filters out all faults that are caused at the wrong AES en-
cryption round but does not necessarily discard ciphertexts, which result from fault
injections that affect multiple bytes before the 9th round. Some multi-byte faults can
also lead to four faulty bytes at the desired positions in the output ciphertext. There-
fore, we still have some amount of keys, which can not be recovered during evaluation,
because multi-byte faults are not covered by the theoretical fault model of the DFA.
Further details regarding unsuccessful key recoveries can be found in the results in Sec-
tion 4.2.3.4.

4.2.3.2. Hardware and Software Environment

In this subsection, we specify the devices, which have been used in the further experi-
ments, and provide details on the implemented hardware designs and software tools.

The AES implementation we use as a proof-of-concept in this work is a simple, small
module for 128 bit key length encryption. It utilizes around 300 − 400 registers and
about 750 − 850 LUTs in the tested Cyclone V FPGAs and takes 50 clock cycles to
encrypt a given plaintext. The module is not protected against side-channel or fault
attacks.

We perform our experiments on systems based on the Intel Cyclone V SoC family,
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Silicon speed (Process variation) Operation temperature

Fast 0° C
85° C

Slow 0° C
85° C

Table 4.3.: STA corner timing-models available in the Quartus STA from fastest to slowest
model for a given device speed grade at 1100 mV supply voltage

which incorporate an Intel FPGA and a 925 MHz Dual-Core ARM Cortex-A9 processor
inside a single die. The 5CSEMA5F31C6 chip is embedded on the Terasic DE1-SoC
board. We studied injection rates and attacks on three Terasic DE1-SoC boards of
different age and usage history to account for process and aging variation. A smaller
variant of the Cyclone V SoC, the 5CSEMA4U23C6N, with only half the amount of
logic elements is present in the Terasic DE0-Nano-SoC board, which we investigated
as well. The devices are used with their standard, unmodified power supplies.

Both boards have an SD card slot, which we use to boot a Linux system and run
user applications, that interact with the FPGA fabric, on the ARM processor. We
encapsulate the AES cryptomodule as an Intel Avalon Memory-Mapped slave device,
which allows access from programs running within the Linux system on the CPU.

The Intel Quartus Prime software offers tools for Static Timing Analysis (STA),
which analyzes the design in terms of timing violations under four different models
(corners) for a given device with a specific speed grade [100]. We enlist the available
timing-models in Table 4.3. The fast/slow classification of silicon for the given device
speed grade refers to propagation delay variations caused by intra-die process variation.

If the timing analysis reports timing violations at the time of implementation, the
design is not guaranteed to work reliable under all operation corner cases in terms
of temperature and voltage levels, according to official chip specifications as found in
the FPGA datasheet. We focus on attacking designs that do not violate any timing
constraints, even at the worst-case 85° C corner, but investigate the influence of worst
case path slack in designs that violate the constraints as well. For each experiment, we
explicitly report whether timing constraints are violated in the respective subsection
later.

We implement the attacker design as a grid of ROs as described in Subsection 4.2.1.2.
A single RO is composed only of the combinational part of a single ALM on the Cyclone
V. The output is directly routed through local interconnect back to the input. This way,
we achieve the fastest possible switching frequency for the oscillators. In Figure 4.16a,
an example of how the Intel Quartus Prime software synthesizes and fits a single RO
into the bottom part of one ALM can be examined. The used output on the right
and input on the top left of the ALM are the same and the additional enable signal is
connected to the bottom left input of the ALM.

The Intel Quartus Prime software reports the worst case delay through the LUT
to be about 0.08 ns and the loopback routing delay through local interconnect around
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(a) An RO as implemented during compilation in
the LUTs of an Adaptive Logic Module (ALM)
of the Intel Cyclone V SoC

(b) ROs in a Logic Array Block (LAB) of the Cy-
clone V SoC on the left with the interconnect to
their respective virtual output pins on the ad-
jacent LAB on the right (continuous lines) and
other LABs (dashed lines) as well as loopback
routing (dotted lines)

(c) Design for evaluation of fault injec-
tion after fitting as displayed in the
Quartus Chip Planner on the Tera-
sic DE1-SoC board with the AES
module in the bottom area and the
ROs grid in the top left region

Figure 4.16.: Implementation details of the RO attack design on the Intel Cyclone V SoC as
displayed in the Quartus Chip Planner

0.21 ns. Therefore, assuming a maximum delay of 0.3 ns through gate and loopback,
the RO can achieve frequencies of 3 GHz and more.

As explained in Subsection 4.2.2.1, an RO-based design with a virtual pin (variant b)
is most efficient to provoke critical voltage drops, which is why we choose this design
variant for our attack on AES as well. In Figure 4.16b, we show how several ROs
defined as an oscillating LUT and a virtual output pin are mapped into a LAB of the
Cyclone V SoC as presented in the Quartus Chip Planner. The schematic shows the
loopback routing (dotted lines) of each RO and the routing to their respective virtual
output pins, two of which are placed in an adjacent LAB on the right (continuous lines)
and some in different regions of the FPGA fabric (dashed lines). The relevant Verilog
code parts for implementing an RO grid on Intel FPGA devices can be found in the
Appendices Section A.1, Section A.2 and Section A.3.

Moreover, it is necessary to drive the oscillator grid with a very specific frequency
and duty-cycle. We therefore add an enable signal to trigger each of the implemented
ROs, which is routed through a global clock buffer on the Cyclone V SoC. The use of
this type of signal, originally intended for distribution of clock signals on the FPGA,
allows to save on routing resources from the toggle frequency control design block to
all of the ROs and accelerates the compilation of the entire design significantly.
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Since our attack scenario, elaborated in Section 4.2.1.1, assumes a shared multi-
user FPGA use-case, we constrain each design using the LogicLock feature of the Intel
Quartus Prime software to keep victim and attacker design blocks within designated
areas of the FPGA fabric. To avoid any variation from other components on the chip,
we additionally activate the region reservation parameter of the LogicLock region, that
contains the AES module, which prevents the fitter from placing any other logic than
the AES module and its Avalon MM encapsulation into this area. Figure 4.16c shows
the ROs mapped into the top left area and the AES module in the bottom region
as displayed in the Quartus Chip Planner for the design on the larger Cyclone V
SoC on the Terasic DE1-SoC. On the software side, we implement tools for controlling
encryption and fault injection to be executed within the Linux system on the ARM core
of the Cyclone V SoC. The evaluation of the collected ciphertext pairs and respective
DFA is performed on a standard host computer with an Intel i7-7700HQ Quad-Core
processor.

4.2.3.3. General Fault Injection Efficiency on the DE1-SoC

In order to evaluate the general fault injection efficiency, we first generate bitstreams
for different percentages of logic utilization of the attacker logic in the range of 30% to
50% for the DE1-SoC board. The victim module runs at a frequency of 111 MHz, which
does not violate any timing constraints as explained in the previous subsection, even
in the worst-case corner of the static timing analysis. Then we measure the number of
faults occurring for one million encryption requests from a previously generated set of
random plaintexts, which are reused for all experiments. We evaluate the experiment
on three different Terasic DE1-SoC boards of different age and usage history. The
encryption key remains the same for one test series, which is repeated for a second
random key for each of the DE1-SoC boards. Before every evaluation, the calibration
algorithm as described in Section 4.2.3.1 is executed, to find optimal parameters for
provoking the desired kind of faults, which can be used in the subsequent DFA.

Figure 4.17 shows the total number of faults out of 1M trials Ftot, as well as the
number of faults usable for DFA with our described fault model FDFA. Both results
are shown dependent on the number of activated ROs in % of available LUTs in the
FPGA. We see that both Ftot and FDFA initially increase at the same rate, starting from
a different minimum amount of required ROs for each board respectively. This proves
the effectiveness of the calibration algorithm before each evaluation. On all boards we
see, how the calibration algorithm is able to adapt to a variety of different setups with
a very high precision. However, if the amount of activated ROs exceeds a certain level,
the effect is too strong to allow precise injections. Ftot still increases with more ROs,
but can affect more than one round or byte per round. Hence, the resulting ciphertext
will have more than four byte faults, which can not be used anymore to recover the
secret AES key in the used fault model.

4.2.3.4. Total Key Recovery Success Rates on the DE1-SoC

Subsequently, we evaluate the success of the full DFA attack including recovery of the
secret AES key. This evaluation reflects on the success of our entire algorithmic flow
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Figure 4.17.: Total measured fault injection rates Ftot and measured injection rate of faults
usable in DFA FDFA with respect to the amount of logic utilization (percentage
of total LUTs) by the attacker design for three different Terasic DE1-SoC boards
and two different random encryption keys

of injecting faults before the 9th AES encryption round, the calibration algorithm and
filtering of undesired faulty ciphertexts. For each of the three boards, which we already
used to investigate fault injection rates, we use the amount of ROs that lead to the
highest injection rate FDFA of faults usable for DFA. Again, the AES module has an
operating frequency of 111 MHz, where no timing violations are reported by the STA.
We generate a set of 5000 random AES keys and collect a minimum of two ciphertext
pairs, which exhibit faults at the desired positions, for each four bytes of the last AES
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Figure 4.18.: Amount of key candidates remaining for each DFA key recovery attempt on
5000 randomly drawn AES keys on three different DE1-SoC boards

round key. The ciphertexts along with each key are stored on the SD card of the board
and later transferred to a host computer. After collecting the minimum amount of
faults required, we apply the DFA from [75] with the slight adaption of assuming single
byte faults before the 9th round instead of the 8th round. In that case, we require a
minimum theoretical limit of 8 ciphertext pairs per key.

Figure 4.18 summarizes the results of the key recovery attempts on our three DE1-
SoC boards. On all three boards, we are able to deploy the attack completely successful
for at least 87.9% of the 5000 random keys. All recovered keys are correctly recovered,
so no false positives are encountered. On all boards, we have a small amount of around
2 − 3% of all keys which can not be recovered, but less than four candidates for the
last round key remain. This ratio confirms the results in [75], showing that in about
2% of the cases more than two ciphertext pairs are necessary to recover the AES key.
If a sufficiently small amount of key candidates remains, the correct key can be easily
recovered with an exhaustive search. We encounter, however, some keys, where more
than 232 or even 264 candidates remain. Across all our experiments, an average of
22 usable faults were required to gather the required two ciphertext pairs per four
bytes of the round key. To collect these pairs, the attacker design needs to issue 17979
encryption requests on average to the AES module, which took on average 2344 ms.
The average time for the evaluation of one attack until key recovery on the described
host machine is about 107 ms.

Ultimately, the attack can therefore recover a secret AES key in about 90% of
cases. In the remaining cases, fault injection itself fails. Our calibration algorithm and
subsequent filtering of faults, which can not be used in DFA, prevents the gathering of
faults that have been injected at any other stage of the AES encryption than before
the 9th encryption round. However, as mentioned in Section 4.2.3.1, the method is
unable to distinguish some multi-byte from single-byte fault injections. The adapted
fault model from [75] assumes single byte faults before the 9th encryption round, which
is why key recovery attempts are unsuccessful, if the faulty ciphertext is the result of
a multi-byte fault.

68



4.2. FPGAhammer: remote voltage fault attacks on shared FPGAs

Figure 4.19.: Total measured fault injection rates Ftot and measured injection rate of faults
usable in DFA FDFA as well as setup slacks reported by Quartus STA for differ-
ent AES operating clock frequencies fop with preserved design placement but
remaining routing randomization on the DE0-Nano-SoC

4.2.3.5. Slack-dependent Fault Injection Vulnerability of the DE0-Nano-SoC

The DE0-Nano-SoC provides about half the amount of logic elements than the DE1-
SoC. Since the power supply is, as the experiments suggest, equal or at least similar
to the one of the DE1-SoC, we need to utilize a huge percentage of LUTs to attack a
design, which does not violate any timing constraints in the four timing models during
the Quartus STA. Therefore, we additionally study the fault injection rates using an
attacker design which always occupies only exactly 50% of logic resources with respect
to different operational frequencies fop for the victim AES module, assuming an FPGA
split exactly between two users. The STA reports violation of the two worst-case
timing corners (slow silicon speed, 0°/85° operating temperature), whereas the timing
constraints are fulfilled within the fast silicon speed models.

We implement the evaluation design as described first with an initial clock frequency
of finitial = 160 MHz for the AES module and its ARM interconnect. We direct the
fitter to use maximum effort to fulfill the given timing constraints for the AES module,
therefore optimizing placement of logic elements w.r.t. timing constraints. Then we
prevent the fitter algorithm from changing the placement of logical components within
the partitions for each recompilation of the design. The randomization during the
placement algorithm can make a design running on a higher frequency cause less timing
violations, than a design running on a lower frequency. However, since the routing can
not be fixed completely, the routing algorithm still causes some derivation from the
desired outcome.

The operating clock frequency fop for the mapped and placed design with remaining
routing variations is decreased in steps of 1 MHz to a frequency of fop = 142 MHz and
for each design the fault injection rates for one million total encryption requests are
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recorded. Furthermore, we note the setup slack values for each design as provided by
the STA in the worst-case corner (slowest silicon, 85° C) and in the best-case corner
(fastest silicon, 0° C). For reference, we also show the worst-case path slack value for
the design running at 111 MHz on the DE1-SoC.

In Figure 4.19, we show the fault injection results together with the respective slack
values at different operating frequencies. The results show that the reported worst-case
and best-case slacks for the design do not directly correspond to the respective operating
frequency fop linearly, due to the remaining heuristic algorithm in the routing stage.
However, the trend is that slack values increase for lower frequencies and decrease for
higher frequencies. Both Ftot and FDFA increase together with operating frequency
fop. However, the increase is more steep within the threshold range 145 MHz ≤ fop ≤
151 MHz. A divergence between FDFA and Ftot with increasing frequency is not as
significant as in the experiments with respect to logic utilization. Single experiments
with fop = 170 MHz imply, however, that the injection becomes less precise with
increasing fop as well. We were unable to inject faults into the design running at
fop = 142 MHz.

4.2.4. Discussion and Future Work
These results show the effectiveness of provoking voltage drops with ROs and launching
a DFA attack. The most effective RO design makes use of virtual pins and benefits
from added load through toggling activity on interconnect wires. However, in this sec-
tion we just elaborated three variants of RO designs to cause high load. As the results
suggest, future work should look into toggling more interconnect wires. Alternatively,
we may consider other on-chip methods for provoking a decrease in supply voltage. For
example in [101], short circuits are caused by maliciously crafted bitstreams. Those
illegal bitstreams can, however, be detected by software tools easily. Furthermore, the
calibration algorithm can be replaced by more advanced methods, possibly including
machine learning approaches, to make injection as precise as possible. On the other
hand, a more generic fault model, that covers all possible occurring faults before the
9th AES encryption round, may also raise the key recovery success rate to 100% [102].
Using self-heating elements for example from [103], we may also increase the temper-
ature of the FPGA remotely, improving the fault injection rates as shown for AVR
microcontrollers in [104].

Just like in [105], where a passive side-channel attack on the integrated ARM pro-
cessor of a Xilinx Zynq SoC was carried out through voltage monitors on the FPGA, we
also need to consider extensions of our given threat model to hardware that is tightly
coupled with the FPGA, and shares a significant part of the power supply network.
In Section 4.1, crashes of a full SoC could also be provoked from the FPGA part of the
system. From that, we can conclude that these systems are basically vulnerable to RO
based attacks. In the future, it will have to be proven if fault attacks are also possible
in this configuration, or if there are reasons that the integrated CPU will crash before
showing any timing violations.

Because these attacks are a risk to any multi-user FPGA applications, proper coun-
termeasures will have to be investigated in the future. Fortunately, a remote attacker
that has only access to the FPGA fabric is more limited than an attacker with full
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physical access. Thus, significantly increasing timing margins might be a sufficient
countermeasure to this attack, with the possibly high cost of reducing the speed of the
circuit. However, adding arbitrary timing margins just reduces the risk, but does not
ensure no timing violations. To give more guarantees, delay elements can be added
to an FPGA design, that will invalidate an output result when the design is close to
timing faults [106, 107]. In these cases, the cost of reducing the circuit speed might
also be less, with only small area overhead.

Internal sensors allow the user to detect critical path timing failures in their designs,
which has been used for dynamic voltage scaling features and detecting transistor ag-
ing [45, 108]. Similarly, sensing timing failures can enable detection of voltage drops and
delay line sensors have been already shown to detect possible fault injection attempts
for local fault attacks [44].

On the FPGA hardware design level, in the generic threat model of remote attacks
on FPGAs, vendors might consider to only allow shared FPGAs when the regions of
each user are residing in their own respective voltage island. However, this might defeat
the purpose of an efficient way to utilize FPGA resources.

Another idea, that previous works already mentioned briefly, would require to check
each bitstream that is loaded to an FPGA, as briefly discussed in Section 4.1 and [105].
By essentially restricting the available basic logic circuits and, for example, prohibit
or limit the implementation of combinational loops and ROs, the attack presented
in our work could be mitigated. In a more complex attacker design, however, an
algorithm to verify the bitstream for potentially malicious implementations would not
be limited to polynomial complexity, since attacker logic can also be hidden within
legitimate logic, as existing research on hardware trojans suggests [63]. Furthermore,
the reduced flexibility of FPGA implementations may be too big of a disadvantage for
this restriction to be considered as a countermeasure.

Some of the mentioned ideas might already be sufficient for mitigation, but finally,
we also believe that our work is just the beginning, and more effective attacks are yet
to come.

4.2.5. Section Conclusion
FPGAs are getting increasingly adopted in larger computing systems, as accelerators
in the cloud or SoCs. In such scenarios, multiple isolated users will share a single
FPGA fabric and PDN. Previous works have already shown power analysis side-channel
attacks in this scenario, without requiring dedicated sensors. In this section, we ad-
ditionally prove fault attacks on shared FPGAs possible by applying a DFA attack
on the AES in a similar scenario, also implemented with standard FPGA tools. We
demonstrated that FPGAs will not just crash if voltage drops are injected with ROs,
but in fact timing faults can be injected with sufficient precision for DFA. First, we
showed an effective way to inject timing faults in simple test designs with the focus on
reducing required FPGA resource use. Based on this method and given precision of
the injections, we adapted an existing fault model for AES, and performed a successful
DFA with a fully automated calibration of the injections. We evaluated the general
injection rate and precision with respect to the percentage of logic utilization by the
attacker design and the operating frequency of the target AES module. Evaluating the
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injection rates showed how an attacker can provoke sufficient faults for a key recovery,
with logic utilization in the range of only 35% to 45% of the LUTs on a Terasic DE1-
SoC board based on an Intel Cyclone V SoC. Since our calibration algorithm allows
precise injections, independent of target parameters, we were able to recover at least
90% of secret AES keys from a set of 5000 randomly drawn keys on three different
boards. The results in this work highlight the importance of further research, before
FPGAs can be adopted widely in multi-user scenarios.

4.3. Further Fault Attack Investigations
In an extended analysis carried out for [25], other devices were tested and characterized
to find out which conditions for DoS or fault injection are necessary.

4.3.1. Fault Attacks on Xilinx Ultrascale VCU108
For most tested Xilinx FPGA Boards, DoS is possible using ROs by causing a very
strong voltage drop, with 8 %–14 % of the FPGA LUTs configured as ROs in the Virtex-
6 ML605, Kintex-7 KC705 and Zedboard Zynq-ZC7020 platforms. This DoS attack
does not just reset the circuit programmed into the FPGA, but completely clears its
configuration memory such that reconfiguration is necessary to restore its function.
Using a specific coding style, ROs can be implemented without any intervention from
the Xilinx Vivado software [109].

For the VCU108 Virtex Ultrascale board we perform more detailed experiments to
characterize the precise probabilities per frequency to cause a crash or induce timing
faults in another part of the FPGA. The timing faults are evaluated by implementing
a long 288-bit adder on the FPGA, which has a remaining slack of 0.037 ns. During
operation it alternates between a large number addition and subtraction that cause
overflow or underflow to stimulate the critical path. With as low as 25 % of FPGA
LUTs used for implementing ROs, timing faults can be reliably caused with fRO−t =
9.6 .. 13.7 kHz. At 20 % LUT usage we only get a reasonable number of faults with
fRO−t = 25 MHz with 87 % probability. 15 % LUT usage could not cause faults on our
tested board.

When increasing the LUT usage to 30%, both crashes and timing faults can be
caused, depending on the ROs-toggling frequency fRO−t as introduced in Section 4.1,
Figure 4.4.We show more detailed results in Figure 4.20, that shows the respective
probabilities for a timing fault or a crash. For each frequency, we launch a burst of 512
clock periods of fRO−t. To find the fault probability, we check the result of our 288-bit
adder for correctness and take a normalized average. For the crash probability, we
launch 512 of these bursts and plot the percentage how many of them caused a crash.
Here, the FPGA is reliably crashed with an fRO−t at 200 Hz or lower frequencies, while
about 200 Hz to 10 kHz reliably induce timing faults. We also show the results when
the ROs are increased from 30% to 35% LUT usage in Figure 4.20, in which a more
clear boundary between fault and crashes can be seen. Anyhow, one can observe a wide
frequency band for which it is safe to perform timing faults without the risk of crashes
that would require reprogramming the bitstream. Thus, fault attacks to compromise
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(a) 30% of LUT usage for implementation of ROs.

(b) 35% of LUT usage for implementation of ROs.

Figure 4.20.: Range of frequencies to toggle ROs on/off that cause timing faults or crashes in
the Xilinx VCU108 Virtex Ultrascale Board.

system integrity become feasible without accidentally causing a crash that would be
more obvious to the victim.

4.3.2. Fault Attacks on Intel Terasic DE1-SoC
In addition to the VCU108, we conducted experiments on an Terasic DE1-SoC Evalu-
ation Board with Intel Cyclone V.

We employ 23 % of FPGA LUTs for ROs to cause voltage drops in the same way as on
Xilinx FPGAs. The ROs are enabled at frequencies fRO−t = 1...4000 kHz. Depending
on these frequencies, the DE1-SoC either crashes or timing faults are observed in an
AES core implemented on the device. We launch multiple frequency sweeps with bursts
of 512 clock periods of fRO−t per frequency. Above 80 kHz, the FPGA is operating
stable, while below 80 kHz, the FPGA crashes with high probability. Below 30 kHz we
observed crashes in all our experiments. In a separate experiment, fRO−t = 1..3 MHz
causes timing faults in an AES module.
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Analysis Attacks

The work described in this chapter was published in [22], [23], [24] and [25] and is joint
work with co-authors (in no particular order): Falk Schellenberg, Jonas Krautter, Amir
Moradi and Mehdi B. Tahoori. The works in [22], and [23] have also been included in
the PhD Thesis of Falk Schellenberg, in [110]. More details on contributions is found
in Section 1.1.

In this chapter we present three main works looking into the PDN as an attack
vector that can be exploited remotely through software access. By that, the security
of a full system can be undermined. We show this problem in three main stages:

• Section 5.1 shows that power analysis side-channel attacks are feasible within an
FPGA chip.

• Section 5.2 shows that these attacks can even be escalated to a full board-level
system, such that one FPGA can attack another Integrated Circuit (IC) on the
board that shares the same power supply.

• Section 5.3 shows a software-based power analysis attack within a mixed-signal
chip, and by that generalizes shared power supplies as a new type of attack vector
within an IC.

5.1. An Inside Job: Remote Power Analysis Attacks on
FPGAs

Cryptographic devices often deal with secret information as well as privacy of the
users. So-called Side-Channel Analysis (SCA) attacks target the implementation of
cryptographic schemes and are independent of their mathematical security. For exam-
ple, [111] exploits the response time of an RSA implementation to retrieve the used
secret key. Introduction of Differential Power Analysis (DPA) attacks [112] resulted
in extensive research in refining attacks and developing countermeasures. Although
timing attacks might even work over the Internet, power analysis attacks are thought
to require physical access to the device, i.e., to connect an oscilloscope to measure the
power consumption or the electromagnetic emanation in the near proximity. Yet, in the
following, we prove this assumption to be wrong. This falls well within the line what
has been seen for fault attacks. Before Rowhammer [95], fault attacks were thought to
require some sort of physical access to induce a fault into the target. Instead, the at-
tack can lead to pure-software based privilege escalation from an underprivileged user.
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Furthermore, it can be introduced remotely as well, even at a very high abstraction
level [96].

For side-channel attacks, the dynamic power consumption originating from the
switching of transistors is usually targeted. Our methodology is based on the work
presented in [18], in which a mechanism to capture the fluctuation of the internal sup-
ply voltage of FPGAs is shown. It is in fact shown that the supply voltage at different
locations of a PDN is not constant and depends on the activity of the logic. We fol-
lowed the same principle and built internal sensors to locally monitor the dynamic
change in the supply voltage. As a proof of concept, we conducted our experiments on
a Spartan-6 FPGA, where an AES encryption module as the targeted cryptographic
core is implemented. Indeed, the results show that such sensors enable side-channel
attacks retrieving the secret key and is nearly as powerful as when using an external
measurement.

We highlight two important properties of the proposed attack enabled by these
sensors: a) it does not require a signal connection to the targeted core and b) it can
be implemented using general-purpose logic available on any FPGA. These properties
lead to a large threat when using 3rd party IP cores, considering both ASIC and
FPGA implementations. Furthermore, it enables power attacks in emerging use-cases
for FPGAs, such as fabric being shared among multiple users in the cloud [4] or the
FPGA being part of a complex SoC. In such scenarios, an attacker might be able to
deploy a voltage sensor unnoticed, essentially acting as a hardware Trojan to spy on
the power consumption of the unaware victim. This seems contradictory to one of the
motivations of using FPGA fabric as accelerator for cryptographic primitives in SoC:
although enabling SoCs to receive security patches in hardware well after the design
cycle [113], it may open doors to the previously unknown threats and attacks.

Considering the related works, the first powerful hardware Trojan has been presented
in [114], where the Trojan inserted at HDL level of a CPU design would give the attacker
unlimited access to the CPU resources. Further examples include malicious designs (at
netlist and HDL level) made public during the student hardware Trojan challenge
ICCD 2011 [115] or stealthy Trojans at the layout level [116]. Other works like [117–
119] have shown methods to build malicious designs which only leak out the secrets
when the attacker conducts specific SCA attacks. In [120], a design methodology for
building stealthy parametric hardware Trojans and its application to bug attacks has
been proposed. Other works, including [121, 122], propose Trojans which are triggered
by aging or reduced supply voltage. In [116], a Trojan is embedded into an SCA-
resistant design, and would result in the cryptographic keys leaking through the same
side channel but only under a particular condition, e.g., by means of a certain power
model.

The Trojan we present in this work aims at leaking the cryptographic keys through
a side channel as well. However, what makes our work different to the state of the art is
its remotely accessible feature. In short, we present how to design power consumption
sensors – synthesizable with FPGA primitives – which can be placed in another module
next to, or even far from, the cryptographic core.

The remaining section is structured as follows: In Section 5.1.1, we elaborate the
adversary model in more detail and explain the required background knowledge re-
garding PDNs and the voltage sensors. Subsequently, in Section 5.1.2, we explain the
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Figure 5.1.: Two scenarios of SCA attacks, where the circuits are logically separated, but
share the same PDN. a) In a shared FPGA, one user (A) can attack another
(B). b) In an FPGA SoC, a user with current access to the FPGA accelerator
can attack any software or operating system on the CPU.

implementation of the sensor and provide a discussion of the experimental results in
Section 5.1.3, while Section 5.1.5 gives a section conclusion.

5.1.1. Preliminaries

5.1.1.1. Adversary Model and Threat Analysis

Considering Figure 5.1, we assume two scenarios for the adversary in this section. In
both systems, the adversary’s goal is to extract secret information from the other system
components, with only access to the PDN, and no signal connections. In the first one,
the adversary has partial access to the FPGA fabric, whose resources are shared among
multiple users, e.g., FPGA accelerators shared in the cloud [4]. When the sensors are
hidden in a complex application – which for instance needs to communicate with the
outside of the FPGA – the inspection over the design would not detect any connection
between the cryptographic module and the rest of the application, i.e., low chance for
the Trojan to be detected. Automated isolation and verification countermeasures for
FPGAs with user-controlled logic especially in data centers have already been proposed
in [123]. Such techniques usually employ some physical gap between different IP cores
with well-formed interfaces [98, 124]. Yet, we later show that such a barrier might be
breached with internal voltage sensors, even when the sensors are placed far away from
the target.

In the second scenario, an attacker has full access to the FPGA while the FPGA is
part of a large system like an SoC where CPUs reside on the same die. For example,
we can recall reconfigurable fabric of an SoC, where 3rd party users are allowed to
use the FPGA. Any underprivileged user with access to the FPGA fabric can embed
the sensors, thereby potentially monitoring the voltage of the whole SoC. This is an
increasing threat under the trend of accelerator-use.

Note that, as opposed to the previous works about covert channels passing through
this isolation, e.g., by electrical coupling [125] or even by temperature [126], we do
not alter the attacked IP core in any form and only monitor the unintentional power
consumption. The effects of electrical coupling have been further investigated in [127,
128].
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5.1.1.2. Voltage Drop Sensors

While many FPGAs feature dedicated internal power sensors, they are shown to be
inappropriate for side-channel analysis [129]. Regarding the realization of suitable cus-
tom sensors based on reconfigurable logic, Zick et al. [44] showed an implementation
that uses existing FPGA fabric to sense variation in supply voltage, based on the con-
cept of measuring the propagation time of a signal with TDCs, as explained previously
in Section 2.5.

In this section we follow the same concept. The idea is to use a delay line, in which a
clock signal propagates through a chain of buffers. As the delay of these buffers depends
on the supply voltage, the buffers can be monitored as a surrogate of it. The delay
line can be tapped by adding latches between these buffers. The latches are enabled
with the same clock signal that is connected to the start of the delay line, and thus can
show how far the clock can propagate through the buffers within the time the latches
are enabled, i.e., half a clock cycle.

When any other circuit on the same PDN becomes active, power is consumed, leading
to a voltage drop that slows down the buffers of the delay line, resulting in a reduced
numeric value in the TDC’s output register. As this unary value can be quite large (i.e.,
64 bins in our case), a priority encoder is used to reduce this data to 6 bits. Because
of a symptom that higher valued bins can sometimes be faster than lower valued bins,
bubble correction needs to be applied [59].

To save area of the sensor, usually only the last bits of the buffer chain are tapped,
as the delay of the buffers do not change enough to affect the complete delay line.
Thus, Figure 2.2 shows part of the delay chain to be observable and another part to be
the initial delay. In FPGAs, the observable part is usually implemented using carry-
chain primitives (for Xilinx: CARRY4), as they provide the finest resolution per bit.
However, the initial delay is then based on elements with less area overhead, but higher
delay, like multiple LUT and latch elements, typically available in any FPGA. We show
an example floorplan of this sensor in Figure 5.2.

Because the real delay of the elements used for the sensor are not known at design
time, it has to be ensured that the clock signal reaches the latches through the observ-
able delay line within the respective clock cycle. In addition, it should not reach to the
last latches resulting in an output value saturated at the maximum. They need to be
calibrated at runtime or through adjusting and re-mapping the design. Thus, either
the delay line’s length has to be adjusted to the right length, or a second phase-shifted
clock has to be used on the latches. In this work, we basically adjusted the initial delay,
sufficient for our proof-of-concept. Please note, a more sophisticated attacker would
very well be able to use a combination of phase shift and initial delay adjustment.

What is missing in [44] and [18] is an evaluation on how the length of the initial
delay will impact the time quantization, i.e. how much time each individual bit in
the observable delay line represents, and in effect how detailed a voltage drop will be
visible. It is also not discussed how this initial delay can be found, when not using
phase-shifted clocks.

The primitives used in the observable delay line have their own delay, but the fluc-
tuations they show are those of the entire delay line (initial and observable) until the
respective latch. Thus, the higher the initial delay is in relation to the observable de-
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Figure 5.2.: Floorplan (rotated right) of one TDC Sensor with 18×(LUT, Latch) as part of
the Initial Delay.
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Figure 5.3.: Architecture of the underlying AES encryption core (ShiftRows and KeySchedule
not shown)

lay, the more variation is zoomed into by the observable part. Thus, more fine-grained
quantization levels are seen with higher initial delay, when checking the peak-to-peak
variation of a given voltage fluctuation. In Table 5.1, we show the initial delay and
resulting variations observed in our experiments.

5.1.2. Implementation of the PDN Trojan
To demonstrate the effectiveness of the internal sensors, we show a successful side-
channel attack on an AES-128 implementation using our sensors, and compare it to
an attack based on external power measurement. We first start by explaining the AES
module and the target platform as well as our sensor and its properties in the following.

5.1.2.1. AES module

The AES module is a relatively small implementation with a 32-bit datapath, occupying
265 Flip-Flops and 862 LUTs. The 128-bit plaintext, after being XORed with the first
roundkey, is loaded into the state registers si. At every cipher round, which takes five
clock cycles, first ShiftRows is performed. Afterwards, as shown in Figure 5.3, at each
clock cycle, four Sboxes followed by a MixColumn and AddRoundKey are performed
while the state register is shifted column-wise. The four Sbox instances are shared with
the (not shown) KeySchedule unit while ShiftRows is being performed. By bypassing
the MixColumns during the last cipher round — in total after 50 clock cycles — the
ciphertext is taken from the state register.

This AES module should generate much less voltage drop than seen in [18], since its
footprint in this FPGA is only 0.3% of the total flip flops and 0.9% LUTs, versus 8% of
flip flops in [18]. However, we show in the following that we can still gather sufficient
information for the attack.
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Figure 5.4.: Experimental setup showing the Sakura-G Board connected to our measurement
PC, with Chipscope ILA used for data acquisition.

5.1.2.2. Target Platform and Implementation

Figure 5.4 gives an overview of our experimental setup. We ran our experiments on
the widely-used side-channel evaluation platform SAKURA-G, featuring a main and
a control Xilinx Spartan-6 FPGA. The main FPGA is a larger XC6SLX75 for secu-
rity implementations, controlled by an auxiliary Spartan-6 XC6SLX9. As a proof of
concept, we considered the aforementioned AES encryption module as the targeted
cryptographic core, implemented in the main FPGA and ran at a frequency of 24 MHz.
The control FPGA generates random plaintexts to be encrypted on the main FPGA.
Our Trojan circuit to measure voltage sits in the main FPGA, logically disconnected
from the AES module. When the AES module sends out the ciphertext, we also receive
the voltage data from our sensors on the workstation, by utilizing the Xilinx Chipscope
Integrated Logic Analyzer (ILA). Here, the sensor values are first stored in the internal
BRAM and are then read out using the JTAG interface.

In Figure 5.5 (left), we show the entire floorplan of the experimental setup. We only
place our design in the lower part of the Spartan-6. In the center region, the AES core
is fixed and the sensor is placed on the left side of the AES module. The FPGA slices
used for the sensor’s delay line, including latches and output register, are not shared
with any other logic. For all the experiments, we kept the same placed and routed
partition for the AES core, in order to keep the results comparable. However, the logic
required for the ILA core are automatically added each time by the synthesis tool.

5.1.2.3. Data Acquisition

We compare the efficiency of our developed sensor to a traditional measurement setup.
To this end, we measured the voltage drop over a ≈0 Ω shunt resistor1 in the Vdd
path using a Picoscope 6403. Figure 5.6 (top) depicts the resulting trace, measured at
625 MS/s showing approximately 120 quantization levels. Note that the round struc-
ture of the underlying AES implementation can be observed through ten similar pat-
terns, each including five smaller peaks of each individual step, respectively. A 24 MHz
clock is externally given to the main FPGA which supplies both the AES module and

1The built-in shunt resistor of the SAKURA was shorted with a jumper.
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Figure 5.5.: Floorplans showing the Experimental Setup with all the relevant parts. Left:
the internal sensor is placed close to the AES module. Right: the internal sensor
is placed far away from the AES.

our developed sensor. Thus, in contrast to the oscilloscope that has an independent
time base, the internal sensor can sample the power consumption synchronously. The
side-channel information is expected to be amplitude-modulated over the clock sig-
nal, i.e., it is visible at the clock peaks. Therefore, it would be enough to sample the
power consumption (only) at this exact moment when the side-channel information
leakage occurs. This drastically lowers the required sample frequency for a successful
attack [130]. To verify this, we conducted different experiments by supplying the sen-
sor with different frequencies (24 MHz, 48 MHz, 72 MHz, and 96 MHz) while the AES
module always runs at 24 MHz. To this end, we used a Digital Clock Manager (DCM)
to generate the desired clock frequencies based on the external 24 MHz clock.

5.1.2.4. Sensor Feasibility Discussion
In our experiments we used Xilinx Chipscope to read the sensor values. Note that
besides using the same clock source, there is no connection made between the AES
core and the sensors, or the logic belonging to Chipscope. However, our developed
sensor has the additional advantage that even if it is not synchronized with the AES
clock, it catches all the variation that occurs in half of each clock cycle, since the clock
traverses the delay chain during half of the clock period in which the latches are enabled
(see Section 5.1.1.2).

When we use a 180° phase-shifted clock (or negative latch-enable signal) for either
the latches or a complete second sensor, the average of all variation in the time between
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Table 5.1.: Overview of different sensor’s sampling frequency with AES module @ 24 MHz.
Sampling frequency (MHz) 96 72 48 24
No. of primitives used for initial delay 10 14 22 46
Observed peak-to-peak variation 6 6 8 15

two samples can be covered. This is an advantage over oscilloscope based samples, so
even when the sensors clock domain would be separated, enough information can be
inferred.

Although we use JTAG to connect to Chipscope in our experimental setup, an actual
attacker would easily be able to use whatever remote connection he has, to transmit the
sensor values from internal BRAM to the outside. Since no logical signaling between
the attacked module and the sensor is desired, the attacker would need to adjust a
mechanism to trigger the start of saving the samples e.g., into the BRAM. This can be
achieved by observing the measured signal itself and trigger by detecting a large peak.
Indeed, the sensor value varies only slightly, indicating that the AES is inactive (cf.
Figure 5.6). The power consumption of the first round of the AES module results in a
large negative peak in the sensor value, enabling a stable reference point for aligning
the traces.

As described in Section 5.1.1.2, for each sensor frequency, the initial delay of the
sensor has to be adjusted. This leads to different levels of quantization, and thus the
observed peak-to-peak variation. This relationship is verified by our experimental data
in Figure 5.6, where sensors at lower operating frequencies show higher peak-to-peak
variation (cf. Table 5.1).

5.1.3. Results
In the following, we provide experimental results showing a successful attack using
the traces measured by the internal sensor. We compare the results to a traditional
measurement setup, i.e., measuring the power consumption externally.

As an example, we use a standard CPA attack on the AES module. Only a few
bits within each byte of the internal state showed a strong leakage. Hence, we chose
to predict only a single bit b to evaluate our key hypothesis khyp. Note that this was
identical both for the oscilloscope as well as the internal sensor. We ran the attack on
all bits of the state. The results in the following correspond to the bit position bitpos
showing the highest correlation. We have chosen the state just before the SubBytes
operation at the last round. Based on a ciphertext byte ci, our model is

b = Sbox−1 (khyp ⊕ ci) ∧ (2bitpos).

5.1.3.1. Sensor placed close to the AES core

Figure 5.7 depicts the results using the oscilloscope as well as placing the internal sen-
sor close to the AES core, with a gap of just 4 FPGA slices to avoid potential crosstalk.
In all cases the correlation curves using 5 000 traces and the progressive curves over
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Figure 5.6.: Single traces measured using an oscilloscope (top) and using our developed sensor
at different sampling frequencies (below). Time samples refer to the individual
samples captured at the respective sampling rate.

the number of traces are shown. Starting with the result using the oscilloscope, we
observed the maximum correlation of approximately −0.3 for the correct key hypoth-
esis. As shown, the attacks using the internally-measured traces by the sensor are also
successful. The correct key hypothesis is clearly distinguished from the others, but
with a slightly lower maximum correlation of about −0.2.

Comparing the results of the sensor at different sampling frequencies, we do not
observe a large deviation. This is caused by the synchronous sampling as most of
the information is contained in the respective peak anyway. Finally, we can observe
that the higher resolution (more quantization steps) slightly improves the maximum
correlation.

5.1.3.2. Distant Sensor

We further investigated whether we still can detect any side-channel leakage in case
the sensor is placed far away from the cryptographic block. We placed the sensor in
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Figure 5.7.: Results using the oscilloscope (top row), using the internal sensor at different
sampling frequencies (rows below), for each the correlation by means of 5 000
traces (left) and the progressive curves over the number of traces (right). The
correct key hypothesis is marked in black. Time samples refer to the individual
samples captured at the respective sampling rate.

the opposite region as far away as possible from the AES module. The right part of
Figure 5.5 depicts the corresponding layout. We examined this situation only with
96 MHz sampling frequency, i.e., the worst case in Figure 5.7. The corresponding CPA
results are depicted in Figure 5.8, indicating that the successful attack is still possible
with only a slight decrease in the correlation. This highlights the high risks involved
when sharing an FPGA among multiple users. Note that for a real-world design,
additional logic might be placed in between the AES and the sensor, resulting in noise
and an increased number of required traces for a successful attack. Anyhow, such effects
are also present for an external measurement. As stated, for the presented results we
made use of a SAKURA-G board optimized for SCA evaluations. However, we were
able to collect similar traces on standard Artix-7 and Zynq-7000 FPGA evaluation
boards as well.
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Figure 5.8.: Correlation using 5 000 traces (left) and progress of the maximum correlation
over the number of traces (right) using the internal sensor at 96 MHz sampling
frequency, placed far away from the AES module.

5.1.4. Extended Analysis inside a Lattice ECP5 FPGA
This is an analysis carried out for [25], in which a Lattice ECP5 FPGA was also tested,
whether an on-chip power analysis attacks are feasible.

We show that Lattice FPGAs are similarly vulnerable to a CPA attack, demon-
strated on a Lattice Semiconductor ECP5 FPGA on the Lattice ECP5 evaluation
board (LFE5UM5G-85F-EVN) with TDC-based on-chip sensors. To implement a sen-
sor delay line as described in Section 2.5 we use low-level ECP5 carry chain primitives
(CCU2C ), in which one FPGA slice is required for each 2-bits of the TDC sensor.

Using that sensor, we measure the on-chip fluctuations during the time a hardware
AES module implemented in the FPGA is performing encryption, for 10,000 random
plaintext messages. To perform the key recovery attack, the encrypted plaintexts
(ciphertexts) and voltage fluctuation data from the TDC are available. We target the
secret key in the last round of the AES encryption, correlating the sensor traces with
a standard Hamming-Distance for each byte based power model as explained earlier
in Section 2.8.

Figure 5.9 depicts the exemplary result of the successful CPA for a single byte.
The correct key byte, which is marked red, shows a significantly higher correlation
in the CPA results than the other 255 key candidates, shown as grey plots. The
correct key byte can be identified once it is clearly distinguishable from the others.
With this simple attack, approximately 50% key bytes can be recovered, with up to
100, 000 traces, recorded in less than three hours. This result proves the fundamental
vulnerability to such attacks. More sophisticated analysis or more traces can recover
the full key.

5.1.5. Section Conclusion
We have shown a Trojan which exploits the PDN as side channel to successfully retrieve
secret keys. To this end, we have developed sensors using reconfigurable resources
of FPGAs to internally capture the dynamic power consumption. We analyzed the
feasibility to sense minor variations through sufficient quantization. This relies on the
characteristics of the PDN of an FPGA: When the FPGA logic toggles, the supply
voltage fluctuates, which is observable through the PDN. The calibrated delay sensors
allow inferring the power consumption indirectly from delay changes due to such voltage
fluctuations.
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Figure 5.9.: CPA attack through on-chip sensors on the Lattice ECP5 FPGA; Correlation
progress over 10000 samples for all 256 secret AES key byte candidates with the
correct key byte marked red.

The Trojan can be inserted remotely without requiring physical access and with
no signal connection to the attacked module. Further, it provides a very strong side
channel to the entire device, even if the sensor is not placed in proximity of the attacked
module. In fact, our work is a proof of concept and warns that even with 100% logical
separation between the modules, the PDN carries SCA information which makes many
security threats and attacks possible. This reveals a major vulnerability in emerging
applications of FPGAs, such as FPGA fabric being shared between multiple users.
While we have used an FPGA for our experiments, this type of attack can be transferred
to other ICs and SoCs as well.

5.2. Remote inter-chip power analysis side-channel
attacks at board-level

Board-level integration is a complex engineering challenge in which many components
from various vendors, geographically scattered in the world, are integrated into a single
PCB to form a bigger electronic system [131]. To verify the system, a fully trusted
supply chain is assumed and important for system safety and security [132]. Leaving
aside the difficulties of establishing such a trusted supply chain, the chips in such larger
systems are based on their own software or firmware images that might be supplied
independently from the chip itself. Even after manufacturing and integration, some
chips are updated throughout their operational lifetime, while the system is in use.
In an existing chain of trust, these risks are mitigated by cryptographically signed
firmware updates [133], as they are supplied by manufacturers of smart TVs, networking
equipment, routers and any sort of IoT or home appliances, just to name a few.

These chains of trust can be broken in many cases. First of all, outdated cryptog-
raphy might be used for trusted firmware upgrades that is easy to break due to being
legacy or is not protected against all types of attacks [10, 134]. In other situations,
the manufacturer secret keys can be extracted or get leaked, or certain devices in the
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system might not support the mechanisms required for trusted firmware updates at
all [135].

Full system integrity is also hard to guarantee if software or firmware from a 3rd
party is run on any chip in the system. In these situations, malicious applications can
be introduced accidentally, for instance by executing any content from the Internet,
which might just be javascript on a website [96]. In those cases, it is of high importance
to provide proper isolation of individual system components, typically handled at the
logical level (cf. javascript sandboxes). For instance, in the recent Meltdown and
Spectre [11, 12] attacks it has been shown that such isolations can be broken, and a
user can escalate their privileges and gain superuser access.

Particularly FPGAs are increasingly used as accelerators in many systems, ranging
from Cloud-computing appliances [2–4] to getting integrated in complex SoC devices.
Very small FPGAs are often inserted as glue-logic as a translation layer between other
existing devices. What all FPGAs in these use cases have in common is that they are
part of a bigger system, probably sharing the power supply with other components, i.e.
even as a PCIe device.

As the previous section and [105] have shown, a chip containing FPGA fabric can
be used to implement sensors that are sufficient for remote power analysis side-channel
attacks within the FPGA. This threat from power analysis attacks was previously
assumed to require an attacker with physical access.

In this section, we escalate the risk of remote power analysis attacks from the chip
to the board-level, affecting much more potential components of an entire system.
We show that even through multiple levels of a power distribution network, in which
capacitive, inductive, and resistive effects persist, sufficient side-channel information
can be extracted to attack a cryptographic module in another chip placed on the same
board.
Contributions: Our main contribution is a first proof of a board-level SCA attack
from one chip to another, based on software-reconfigurable firmware. In short, the
contributions of this work can be summarized as follows:

• Our results prove that board-level power analysis attacks are possible through
firmware, and also highlight the threat of a malicious chip introduced in the
supply chain.

• Depending on the system configuration, the attack can be introduced remotely
and in software,

• We provide two case studies on an inter-chip attack on AES and RSA, proving
the high risk of this threat.

• If local access to a system is given only for a short time, the attack can infect a
system in a covert way, because no external or dedicated measurement equipment
is required.

Outline: The rest of this section is organized as follows: Section 5.2.1 elaborates our
adversary model in more detail and explains some background knowledge on board-level
supplies and power-analysis side channels. In Section 5.2.2, our experimental setup will
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be explained, followed by our results given in Section 5.2.3. Finally, we conclude on
these results in Section 5.2.4.

5.2.1. Adversary Model and Threat Analysis
Secure system design typically involves a trusted computing architecture in which ad-
versaries are allowed to manipulate any chip outside of a Trusted Computing Base
(TCB) in order to attack it by any means possible [136]. The TCB is achieved through
isolation and attestation. Isolation is implemented by access control to and from se-
cure enclaves, and attestation proves the integrity of system components within the
enclaved TCB, for example through protecting firmware images against unauthorized
modification. Because most trusted computing models do not consider the electrical
level, a famous architecture for SoCs, ARM TrustZone, was shown vulnerable to fault
attacks through power management [137].

While previous chapters have purely addressed on-chip attacks, here we assume
related threats, elevated to the board-integration level. In Figure 5.10 we show an
adversary scenario on a PCB with multiple chips, supplied by the same power supply.
Two of them (Chip A and B) are within a secure enclaved TCB. Chips outside of
the TCB can be accessed locally or remotely by a 3rd party entity, which can be an
attacker in Chip C. The goal of the adversary is to gather secret information from a
victim component within the secure enclave, for instance a cryptographic accelerator
in Chip A.

There are two possible cases for the adversarial access to Chip C outside of the TCB:

1. Chip C is provided by an attacker which can access the supply chain to introduce
a malicious chip into the system.

2. Chip C is a benign chip by design but can run different software or firmware (for
instance, a cloud accelerator). The adversary is restricted to reprogram the single
device Chip C, which is logically isolated from the enclave, but shares the same
power supply with the victim in the enclave.

By means of measurements on the power supply, Chip C can thus attack Chip A in
the enclave, even when a TCB was logically established. After the attack, the adversary

Figure 5.10.: Scenario of a shared power supply leading to a risk of side-channel attacks.
In this example Chip C tries to deduce information from the power supply on
Chip A.
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Figure 5.11.: Experimental setup showing the SAKURA-G Board connected to our measure-
ment PC.

with access to Chip C can use any type of communication channel to transmit the side-
channel information remotely and analyze it, to extract secret keys from the victim
system. If no proper communication channel exists, covert channels can be used to
transmit this information [126, 138, 139].

5.2.2. Experimental Setup
In this section we explain our experimental setup in general and then go on to briefly
explain the victim and attacker designs. Section 5.1 has shown that SCA attacks
are possible within a chip. Beyond that, we prove here that such attacks can be
performed inter-chip on the board-level. To this end, we use the well-known SAKURA-
G board [140] that was designed for external side-channel analysis research, e.g., by
offering measurement points for traditional oscilloscopes.

The main reason for using the SAKURA-G in our experiments is that it contains
two FPGAs on a single board, where both can be freely programmed. It contains two
Spartan-6 FPGAs: a small auxiliary FPGA (XC6SLX9), and a larger main FPGA
(XC6SLX75). We ran different configurations for the capacitors between VDD and
GND, i.e., the unaltered default configuration of the SAKURA-G and with all small-
value capacitors close to the FPGAs removed. In any case, we inserted a small bridge
so that the core voltage of the main FPGA is provided by the same power supply as for
the auxiliary FPGA. This modification does resemble more typical industrial boards,
in which power supplies of the same voltage level are shared for efficiency reasons.

Figure 5.11 gives an overview of this experimental setup. The auxiliary FPGA
receives plaintexts from the PC and encrypts them with an internal secret key, sending
the ciphertext back to the PC. The main FPGA uses a sensor and transfers the sensor
data to the PC. For the ease of experimentation, the main FPGA also receives a trigger
signal whenever the auxiliary FPGA starts an encryption. In a real-world scenario, an
encryption might be triggered externally (by the PC) or the traces can be realigned
using existing work. On the PC, we then launch simple and differential power analysis
attacks on the recorded sensor data. Fig. 5.12 shows the two FPGAs on the SAKURA-
G Board and their respective roles in our setup.
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Figure 5.12.: Setup showing the configuration of the two FPGAs on the SAKURA-G board.
The sensor to attack is in the main FPGA, while the cryptographic module
(AES or RSA) runs on the auxiliary FPGA.

Our victim designs are implemented on the smaller auxiliary FPGA. This FPGA
is still large enough to fit an AES module and a small RSA implementation, both
described in the following.

5.2.2.1. AES victim module

The AES module we use here is a simple implementation that is not side-channel pro-
tected and follows the same design principle that was explained in Section 5.1, to be
comparable. On systems that are just remotely-accessed, considering such an unpro-
tected module is a valid assumption, since the threat of power analysis side-channel
attacks is not considered in remote adversary models. We use a 128-bit AES implemen-
tation that is based on a 32-bit datapath. The 128-bit plaintext is XORed with the first
roundkey and then loaded in the state register si. Each cipher round requires 5 cycles
in this implementation. In each subsequent cipher round, the respective operations for
AES, Byte Substitution in the Sbox, ShiftRows (not shown since it is only re-wiring),
MixColumn and AddRoundKey are performed. In total the encryption takes 50 clock
cycles and the resulting ciphertext can be acquired from the state registers. In the
used auxiliary FPGA (Spartan-6 XC6SLX9), the resource utilization is minimal, but
percentage-wise higher compared to the larger FPGA used in Section 5.1. Here ,the
AES module is also running at 24 MHz.
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Algorithm 1 Right-to-left binary exponentiation (cf. 14.76 of [141])
Input: Message x, Exponent e, Modulus N
Output: xe mod n

1: A ← 1, S ← x
2: while e ,= 0 do
3: if e is odd then
4: A ← A · S mod N
5: else
6: A ← A · 1 mod N
7: end if
8: e ← -e/2.
9: S ← S · S mod N

10: end while
11: Return(A)

5.2.2.2. RSA victim module

We implemented RSA using a straightforward right-to-left binary exponentiation [141],
i.e., following the same principles as the one used in [105] for the sake of comparability.
The pseudo-code is given in Alg. 1. In each iteration step of the exponentiation, a
squaring is executed. If the current (secret) bit of the exponent is set, the squared
term of the previous step is multiplied to the register storing the result.

Like [105], if a specific step of the algorithm does not require a multiplication, one
of the inputs is set to 1, i.e., calculating the identity function. Thus, in order to
retrieve the secret exponent, the adversary tries to identify whether or not an actual
multiplication took place for each of the steps in the binary exponentiation.

Both squaring and multiplication are implemented as separate modules using ded-
icated multiplication cores with integrated modular reduction. The multipliers itself
operate on the shift-and-add principle: In each clock cycle, one operand is multiplied
by two (left shift) and reduced. If the current bit of the other operand is set, the shifted
term gets added to the result register.

The limited resources of our auxiliary FPGA only sufficed for a rather small key-size
of 224-bit, running at 24 MHz. However, we stress that RSA implementations with a
larger key size are usually much easier to attack using Simple Power Analysis (SPA)
than smaller ones. This stems from the fact that because of the larger operand sizes,
the multiplication cores require more cycles while consuming more power as well.

For our proof-of-concept implementation, we have 224 steps of the binary exponen-
tiation, each requiring 224 clock cycles for the squaring and the multiplication running
in parallel. Thus, for each step we have 224 clock cycles for which we have to decide
whether a multiplication is taking place or not. Considering for example an RSA with
a 4096-bit key size, the computation time is increased to 4096 cycles likewise.
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5.2.2.3. Sensor Attacker Module

We use the same TDC sensor from Section 5.1 to measure a fraction of the power
supply noise of the system, but here only look into measuring inter-chip attacks. We
also made sure to run our sensor in the same frequencies as in the previous work of 24,
48, 72, and 96 MHz. As we also use the same type of evaluation board and FPGAs,
this allows for comparable results. Furthermore, these frequencies are easily created
based on the board-level 48 MHz crystal oscillator.

We transmit our data through UART in our experimental setup. In a real design
other communication channels might be required. Thus, part of the key recovery
algorithm itself could even be performed on the FPGA, to transmit the data in a more
compressed format later on. If the compromised chip has no access to communication
devices, it might need to send information through one of the numerous possible covert
channels that previous works have explored [126, 138, 139].

5.2.3. Results
In the following, we present experimental results attacking AES using CPA and RSA
using Simple Power Analysis (SPA). For both cases, the respective cipher was running
on the auxiliary FPGA while the TDC sensor captured the inter-chip voltage drop
through its supply pin on the main FPGA.

5.2.3.1. Attack on AES

As discussed in Section 5.1, the TDC sensors incorporate an inverse relation between
the sampling frequency and the amount of variation that is captured. Hence, we chose
to run the attack for different sampling frequencies as well. Figure 5.13 depicts the
exemplary traces, for each sampling frequency averaged over 1000 measurements. The
AES encryption is taking place approximately between 3.6 and 5.7 µs.

Similar to Section 5.1, we run a textbook CPA attack, using the ciphertexts to pre-
dict the state before the last Sbox operation based on key hypothesis. Figure 5.14
depicts the corresponding results for the attacks: For each sensor frequency, the cor-
relation after 500 000 traces is plotted on the left and the progress of the maximum
of the correlation on the right. The curve belonging to the correct key candidate is
marked in black. Indeed, the attack succeeds for all tested sampling frequencies, yet at
a large deviation relation to the amount of required traces. For the 96 MHz sensor, the
correct key candidate is starting to stand out after approximately 200 000 processed
traces. Considering the 24 MHz sensor instead, the correct key candidate is visible
immediately after around 20 000 traces.

In Section 5.1 the sensor and target were implemented within the same FPGA If
we compare the results from here with those, we require more traces by a factor of 40,
considering the respective best attacks. It should be noted that none of the smallest-
value capacitors between VDD and GND were put in place when measuring the inter-
chip leakage. Only distant large-value capacitors were left in the VDD path as such
do not affect small variations anyway. Anyhow, we ran additional experiments with
the default configuration of the capacitors on the SAKURA-G, i.e., all small capacitors
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Figure 5.13.: Averaged traces measured during AES using the TDC sensors at different sam-
pling frequencies.

close to the FPGA chip were placed. A direct comparison at the sampling frequency
of 24 MHz is depicted in Figure 5.15. As expected, such additional capacitance acts as
a low pass filter that can be compensated by increasing the number of captured traces.
Indeed, when sampling at 24 MHz the correct key candidate started to stand out after
approximately 2.5 million traces using the default configuration but powering through
the same power supply. Note that 2.5 million traces still only correspond to around
38 Mbyte of encrypted data when using AES-128.

5.2.3.2. Attack on RSA

Based on the results for AES, we chose to measure the RSA core using a sampling
rate of 24 MHz. As before, both FPGAs share a power supply and all capacitors are
in place. The RSA is running at 24 MHz. Thus, we require at least 50 176 cycles to
capture the whole binary exponentiation (224 clock cycles for each of the 224 steps).
Figure 5.16 depicts the raw trace with an already visible variation over a time span of
approximately 2100 µs.
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Figure 5.14.: CPA attack on AES: Results to estimate the sensor quality at different sampling
rates, with a board when all relevant capacitors are removed. Each row shows
the correlation using 500 000 traces (left) and the progressive curves over the
number of traces (right). The correct key hypothesis is marked in black. Time
samples refer to the individual samples captured at the respective sampling rate.

We recall that the adversary’s goal is to recover the secret exponent by identifying
whether the multiplication took place or not. Every time a multiplication is performed
(in parallel to a squaring), the circuit consumes more power. Figure 5.17 depicts a
detailed view after applying a low pass filter with a cut-off frequency of 900 kHz. Instead
of simply capturing the increased power consumption during the multiplication, we can
observe that the TDC sensor receives a differential signal of the encryption. Thus, we
have to consider three different cases how the conditional multiplication in the binary
exponentiation will affect the TDC sensor:

• If the multiplication module is switched from the off-state (factor of 1 applied
to an input) to the enabled-state, the voltage will briefly drop until the power
supply is compensated for the increased current. The voltage drop will slow down
the signal in the TDC sensor, leading to a negative peak in the trace. An arrow
pointing downwards indicates this case is Figure 5.17.
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Figure 5.15.: CPA attack on AES: Progressive curves over the number of traces with a board
when all relevant capacitors are removed (left) and with the default capacitor
configuration (right), both sampled at 24 MHz. The correct key hypothesis is
marked in black. Time samples refer to the individual samples captured at the
respective sampling rate.

• In case the multiplication is switched from the on-state to the off-state, i.e.,
the FPGA suddenly consuming less power, the voltage overshoots briefly until
compensated. This leads to a positive peak in the trace due to the accelerated
sensor. This case is marked using an arrow pointing upwards. Also note the very
large positive peak at the end of the exponentiation in Figure 5.16, indicating
that both the multiplier and the squaring module got deactivated.

• If the state of the multiplication does not change, i.e., either staying enabled or
staying off, the power consumption remains identical. Thus, the voltage level is
constant, causing a steady sensor value. This is indicated by a dash.

These three cases are marked in the magnified view of Figure 5.17. Indeed, the se-
cret exponent can be read out easily even though the RSA and the TDC sensor are
implemented on separate FPGAs sharing the same source of supply voltage.

5.2.3.3. Discussion
Our results prove that board-level power analysis side-channel attack threats exist, even
in the presence of decoupling capacitors. Of course, same or even better results can be
achieved when adding a dedicated ADC directly to the power rails, but obviously not
without raising questions of its use. Instead, a seemingly disconnected FPGA would
not raise any alarm even in a fully trusted supply chain. The malicious behavior can
be enabled later on by a firmware to measure the supply voltage with the sensors.

Note that this threat is not limited to FPGAs in a board-level integrated system
when full supply chain trust is not ensured. Instead, such a threat exists for any
untrusted chip on the board. For example, an attacker could use an undocumented
internal ADC connected to the shared power supply as a power analysis attack vector.
The same is true for any other chip on the board that can be used as a measurement
device through maliciously altered firmware. An increasing number of sensors are
integrated into all kinds of chips for increased reliability and monitoring purposes,
even for voltage fluctuations [56, 142], elevating the risk of maliciously measuring them
for power analysis attacks. In a system where only remote access is considered to be
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Figure 5.16.: Binary exponentiation for RSA captured with the TDC sensor on separate
FPGAs, sampled at 24 MHz (raw trace).

Figure 5.17.: Detail of the binary exponentiation captured with the TDC sensor after applying
a 900 kHz low-pass filter. Dotted lines mark the time-span of an individual
step in the binary exponentiation. Arrows indicated whether the state of the
multiplication module changed (on to off: arrow upwards, off to on: arrow
downwards, and no change: dash). The bits above are a part of the (correctly)
recovered secret exponent according to this classification.

an attack vector, integrated cryptographic accelerators are often not protected against
power analysis side-channels (i.e., only timing side-channels are avoided). Such systems
could thus be attacked remotely if proper electrical isolation on the board integration
level does not exist.

5.2.4. Section Conclusion
In this section we showed the feasibility of launching remote power analysis attacks on a
full board, in which multiple trusted and untrusted chips share the same power supply.
Based on an exemplary FPGA, we show the high risk involved in integrating chips on
a board whose firmware or configuration is unknown at the time of board-integration.
We integrate sensors that are known to measure the voltage fluctuations inside FPGA
fabric and prove that they can also capture a fraction of the external inter-chip voltage
drop. Using this mechanism, any chip next to the FPGA can be analyzed by power
side-channel analysis attacks. We prove that this mechanism can lead to a successful
key-recovery attack on an AES and an RSA core in a chip neighboring to the FPGA
without any logical connections.

We should emphasize that the attack presented here is not limited to FPGAs, which
only serve as a case study. Other untrusted chips, through untrusted manufacturing
or untrusted firmware updates in the field, might also be able to measure such voltage
fluctuations from a neighboring chip, e.g. using voltage monitors that are integrated
for reliability reasons, but are re-programmable to serve other purposes. Thus, these
results give a warning sign to all board-integrators that proper isolation is also required
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on the electrical level, as even a remote attacker might get hold of sufficient sensors for
inter-chip board-level power analysis attacks.

5.3. Leaky Noise: New Side-Channel Attack Vectors in
Mixed-Signal IoT Devices

Traditional applications of microcontrollers and SoCs are embedded systems with ded-
icated and limited interfacing capabilities, which typically have to fulfill the require-
ments of low-cost and energy efficiency. As these devices are recently used in Internet
of Things (IoT) applications, their security against remote attacks becomes a major
concern [143, 144], as several breaches have already been reported [10, 145]. Unlike
security for highly dependable server systems, the energy efficiency imposes lightweight
cryptography [146]. However, there are potentially new security threats associated with
the underlying technology, which is not widely researched yet [147].

One of these technology-dependent threats is due to their Mixed-Signal-integration
of analog and digital logic on the same SoC. Inside the SoC, cross-coupling or voltage
fluctuations caused by the digital part can bias the analog circuit [38]. This bias
has been shown to even affect radio transceivers, such that electromagnetic (EM) side-
channel attacks [148] can be performed in proximity of up to 10 meters [147]. One of the
most widespread analog circuits that is integrated in SoCs is an ADC, essential in many
complex modules and applications such as temperature sensors, wireless transceivers or
multimedia audio applications, just to name a few. Even more, multiple of such systems
are often connected into complete sensor networks made out of smart sensors [149], and
in so-called Edge-IoT devices [150]. This is evident by the support in Amazon [151] and
Microsoft [152] IoT cloud applications for many SoC and microcontroller platforms.

In such mixed-signal SoCs, the analog and digital subsystems typically have a com-
mon power supply, and are spatially close on the same die or package, leading to
either crosstalk or voltage fluctuations from the digital logic propagating into ADC
measurement results, known as one of the challenges in mixed-signal design [37].

For FPGAs, it has already been shown in Section 5.1 and in [105, 153] that it is
possible to mount power analysis attacks just through software configuration. Those
attacks can also be extended to other chips on the same PCB through a shared power
supply, as shown in Section 5.2. For small wireless systems it has been shown that
electromagnetic side-channel leakage can be observed in close proximity of a few meters
to the device, without having to probe it directly [147]. Thus, there is increasing
evidence that power analysis attacks, originally considered a local issue, can also be
used in remote exploits.

In this section, we present another type of power analysis side channel that can be
exploited through software, potentially remotely. We show that ADC noise, which is
usually characterized using statistical methods [41–43], is not just statistical noise, but
is correlated to the activity in the digital subsystem. To assess the capability of this
side-channel, we perform leakage assessment [72, 73] on multiple platforms. Afterwards
we show a successful key recovery attack on the AES. In summary, this section contains
the following contributions:
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• First assessment of ADC noise as a software-only power analysis side-channel,
which could be used remotely.

• Elaborate leakage assessment of this side-channel on a range of systems under
different conditions, evaluated on a real-world cryptographic library.

• Successful ciphertext-based key recovery on AES using ADC noise.

In the remaining section, we first explain preliminaries in Section 4.2.1 regarding our
adversarial model and the essential background information, including related work.
We then explain our experimental setup in Section 5.3.2. Our results are presented
in Section 5.3.3, and discussed in Section 5.3.4. Finally, the section is concluded in
Section 5.3.5.

5.3.1. Adversarial Model
The basic principle of our adversarial model has two variants, which are summarized
in Figure 5.18. We consider a software-based model, in which an attacker has full or
partial access to ADC data, and a victim which is running cryptographic code. We
assume the ADC is read during the time the cryptographic code is executed, and the
adversary has access to that data, either directly through another task in the system,
or indirectly through a webserver hosting sensor data. Typically an ADC can be read
simultaneously by using a second core, Direct Memory Access (DMA), or interrupt-
driven operation, available in most microcontroller architectures.

This adversarial model applies to a broad range of applications and devices. For
instance, IoT applications based on smaller microcontrollers or SoCs are within that
model, available from a large range of manufacturers. The Amazon IoT FreeRTOS
project [151] has direct support for microcontroller boards from various manufactur-
ers. Microsoft Azure also supports various systems, where many smaller mixed-signal
microcontroller-based systems are included [152].

5.3.2. Experimental Setup
We show the overview of our common experimental setup in Figure 5.19. The basic
setup consists of a set of software components and different microcontroller boards that
all have basic hardware features like ADC or UART modules. We use the software
stacks provided by the board vendors themselves, which is very similar across the
boards. The stacks are all based on the common security library mbedTLS [154] and the
real-time operating system FreeRTOS [155]. These serve merely as a readily available
proof of concept platform. We do not exploit any particular vulnerabilities or side
effects from this stack. In the following subsections, we explain more details of this
experimental setup.

5.3.2.1. Hardware Platforms

Three different platforms are evaluated in our experiments, with the same basic ex-
perimental setup as in Figure 5.19. All of the used platforms are evaluation boards
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(a) Variant of the adversarial model in
which a malicious task (Task B) could
gain knowledge of secret information
processed in the victim (Task A), cir-
cumventing any access restrictions.

(b) Variant of the adversarial model where
side-channel leakage is embedded in
sensor data that leaves the system. An
external attacker can then use the sen-
sor data to retrieve secrets from Task A.

Figure 5.18.: Basic principle of the two variants of our adversarial model considered in this
section. In both cases an ADC in the Analog Subsystem is biased from Task A
in the digital subsystem. This bias can contain secret information that Task A
processes.

for 32-bit microcontroller systems that can be used in IoT applications. These are the
ESP32-devkitC, STM32L475 IoT Node, and two copies of the STM32F407VG Discov-
ery, which were bought apart from each other. These two boards were checked in order
to see how sample variation affects the results.

In the two STM32 microcontrollers, a Memory Protection Unit (MPU) is integrated
to prevent operating system tasks from reading memory outside their allowed range.
We did not use that unit, but it shows that these systems actually support a certain level
of isolation, which could potentially be broken through the ADC noise side-channel.

All platforms run in an operating frequency range of 80-168 MHz, and respective
ADC sampling frequencies were chosen, such that a whole trace of one cryptographic
operation can be saved in internal SRAM memory. The ADCs of these platforms all
support a 12-bit operation mode, which we selected when not noted otherwise.

The power supply on all the microcontroller boards uses the 5 V USB power as
input, which we supplied from a standard PC USB output. All boards use a volt-
age converter to produce a 3.3 V voltage for the Vdd of the respective controller. In
the STM32F407VG Discovery and STM32L475 IoT Node platform, the manufacturer
added a compensation network of capacitors and inductors through which the 3.3 V is
connected to the ADC reference pin. We did not do any modifications on any of the
boards, and thus also kept this compensation network. In the ESP32-devkitC platform,
only an internal ADC reference exists. The ADC of this platform can also be inter-
nally connected to Vdd, which we used throughout the results in this section for ’Vdd’,
instead of an external connection. The ESP32-devkitC contains three CPU cores, with
two Xtensa 32-bit CPUs and a ultra-low-power (ULP) core that can run independently
and also collect ADC samples. The STM32F407VG Discovery and STM32L475 IoT
Node are single core platforms with Cortex-M4 CPUs, such that DMA is required to
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Figure 5.19.: Overview of our common experimental setup, shared among the used platforms.

sample the ADC in parallel to a running CPU. This information is listed together with
details on sampling in Section 5.3.2.3, Table 5.3.

5.3.2.2. Software Environment
On the software side, we use two operating system tasks in the system. One task
encrypts plaintext messages received through UART from an attached w3orkstation,
while another has access to ADC data. The detailed operation is explained in the
following Section 5.3.2.3.

In all of the platforms, we used the development environment of the vendor and the
respectively provided library versions, of which we provide an overview in Table 5.2.
For the ESP32 platform, the Espressif IoT Development Framework (ESP-IDF) was
used, which integrates the listed mbedTLS and FreeRTOS versions. A project is based
on a simple Makefile that includes an ESP-IDF makefile. The compiler and assembler
versions come from the official setup guide, and we used the default ‘Release’ compiler
optimization for size (-Os). The STM32CubeMX software used for the ST Micorelec-
tronics platforms is a code generator, generating Makefile-based projects, also inte-
grating mbedTLS and FreeRTOS. The official ARM GCC compiler was taken through
a package provided for the Eclipse Development Environment and we also used opti-
mization for size (-Os). Only for a single experiment on CPA, -O0 was used, which is
specifically mentioned in the results later.

Please note that STM ships an old mbedTLS with their recent development
framework. For our evaluation, however, this is not relevant, since we verified
that the used functions for our experiments mbedtls_internal_aes_encrypt and
mbedtls_mpi_exp_mod did not contain any significant changes that would defeat the
comparability of our results.

We evaluate AES-128 for single encryptions of 128-bit plaintext messages, and re-
spective sliding window modular exponentiation with 512-bit exponentiations. For
AES we use basic single encryptions with mbedtls_internal_aes_encrypt to prove
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Table 5.2.: Used vendor toolchain versions and respective library and compiler versions
Platform Framework mbedTLS FreeRTOS Compiler(s)

Espressif
ESP32-devkitC ESP-IDF 3.11 2.12.0 8.2.0 Xtensa

Port2

xtensa
gcc 5.2.03

esp32ulp
2.28.514

ST Microelectronics
STM32F407VG
Discovery

STM32CubeMX5

4.26.1, 5.0.1 2.6.1 9.0.0 arm gcc 7.3.16

ST Microelectronics
STM32L475 IoT
Node

STM32CubeMX5

4.26.1 2.6.17 9.0.0 arm gcc 7.3.15

1 Espressif IoT Development Framework https://github.com/espressif/esp-idf/
2 Espressif explains the Xtensa Port in https://docs.espressif.com/projects/esp-idf/en/v3.

1/api-reference/system/freertos_additions.html, which mainly adds multicore support
3 crosstool-ng-1.22.0-80-g6c4433a-5.2.0 as linked in https://docs.espressif.com/projects/

esp-idf/en/v3.1/get-started/linux-setup.html
4 v2.28.51-esp32ulp-20180809, as linked in https://docs.espressif.com/projects/esp-idf/en/

v3.1/api-guides/ulp.html
5 STM32CubeMX Eclipse plug in https://www.st.com/en/development-tools/stsw-stm32095.

html, 4.26.1 was used for leakage assessment, 5.0.1 was used for the CPA attack in Section 5.3.3.5.
6 GNU MCU Eclipse, based on arm-none-eabi-gcc 7.3.1-1.1-20180724-0637 from https://

gnu-mcu-eclipse.github.io/blog/2018/07/24/arm-none-eabi-gcc-v7-3-1-1-1-released/
7 For this platform, none was provided in CubeMX, but the version from STM32F407VG worked

directly

principal information leakage. Please note that advanced operating modes of AES, like
counter-mode, are on principle also vulnerable to power analysis [156], but require more
effort. A knowledgeable attacker could deploy such attacks. For modular exponentia-
tion, we use mbedtls_mpi_exp_mod, which is also used in the RSA implementation of
mbedTLS, but does not prove its overall vulnerability. Please note that we only use
mbedTLS such that we have cryptographic relevant code for the leakage assessment,
but not to show any new attack on this specific library.

5.3.2.3. Sampling of Data, Transmission and Synchronization

As seen in Figure 5.19 in our experimental setup, a workstation PC sends encryption
requests to the microcontroller system using a simple UART interface, in which one
task performs encryptions, while another task has access to the ADC. To be able to
record side-channel leakage from the digital to the analog subsystem, the ADC must
be sampled during the time of the cryptographic operations of Task A. Task B should
not acquire ADC samples while it runs time-multiplexed to Task A, since the ADC
would not receive side-channel leakage. Thus, Task B needs to either run in parallel to
Task A on a separate CPU, or use hardware accelerated sampling, i.e. through DMA. A
separate DMA module is available in many microcontrollers or SoC systems to improve
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the performance of various tasks. Other controllers offer programmable state machines
or specific low-power cores that can control the ADC and other peripherals in parallel
to normal task execution on the main CPU(s).

In Figure 5.20 we show a more detailed description how the two tasks are executing in
parallel in our experiments. More detailed example code can be found in Section B.3.
At the beginning, Task A receives a message to be encrypted through UART and
notifies a sleeping/waiting Task B using a FreeRTOS notification (as the helper signal).
Task B starts collecting ADC data in parallel to Task A, either in dual-core operation
or using DMA operation of the ADC. Task A then encrypts the message using a
previously stored key, while the ADC is collecting data. After the encryption, it waits
for a notification. Upon finishing the fixed number of ADC samples, Task B sends
them to the workstation, and notifies Task A so everything can start afresh for another
message. Due to differences in the systems, we use DMA transfer in the two STM32
systems, and dual-core operation in the ESP32. However, after we had performed all
experiments, we found the ESP32 also has a sampling mode that does not require the
second core, by using its i2s-module.

There is still a fundamental difference between using the ADC with DMA, versus
using software on a CPU to acquire individual ADC samples in a loop. This difference
is visualized in Figure 5.21. Running the ADC in a continuous mode with DMA
at lower speeds will basically use more time in the ADC conversion itself, but will
not reduce the total time range in which the measurement is influenced by noise.
In comparison to that, in single-conversion software-based sampling, a certain time
between the ADC samples will be used to run software to store data and prepare the
next ADC acquisition. If we want to change the sampling rate, we will need to add
delay in software. Any analog noise in that time will not affect the ADC result, and
thus some side-channel leakage might not be captured in the acquired ADC data. In
our experiments we also introduced delays in CPU-based sampling, because of internal
memory size limitations. Since sampling with the CPU is usually slower, too, the
sampling rate can also be negatively impacted by CPU-based sampling.

Usually a sampling frequency above the CPU or circuit frequency is recommended
for power analysis attacks, but is not necessarily required for successful attacks [157].
For the platforms we use, an additional limitation is the amount of available internal
memory to store all samples. For RSA, we typically had to sample rather slow to not
fill the memory (2000-4000 samples per encryption). For AES we had to sample almost

Task A (mbedTask) Task B (adcTask)

uart_read(message)

ADC sample collection
(DMA or Task)mbedtls_mpi_exp_mod(msg) or

mbedtls_internal_aes_encrypt(msg)

uart_send(adc_data)sleep until notified

xTaskNotifyGive(..)

xTaskNotifyGive(..)

Figure 5.20.: Description of one loop iteration of the two FreeRTOS tasks.

102



5.3. Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

Figure 5.21.: Principle how different ADC sampling styles will cover less or more parts of the
voltage noise affecting the ADC result. DMA needs to be used for continuous
sampling, while software-based sampling (in the multi-core scenario) will always
introduce some gaps.

Table 5.3.: Overview of Leakage Assessment Experiments, repeated for ADC Pin =
{Vdd, GND, N/C}

Platform and Experiments Sampling
Style

ADC
Ref.

Filter
Algorithm

Samplerate
/
#Samples

ESP32-devkitC @80MHz ULP-CPU No AES-128 104 kHz / 16
CPU Exp-512 20.4 kHz / 2600

STM32F407VG Discovery @168MHz DMA Yes AES-128 980 kHz / 32
Exp-512 88 kHz / 4096

STM32L475 IoT Node @80MHz DMA Yes AES-128 684 kHz / 64
Exp-512 40 kHz / 4096

as fast as possible, to achieve a reasonably high sampling rate (100-1000kHz). For the
two STM32 devices this could be achieved by different ADC-DMA setups. For the
ESP32-devkitC we had to use the ULP-CPU to sample the ADC fast, and a normal
CPU task to sample it slow. That is because the ULP has only access to limited
memory below 2048 bytes in total, but also has a dedicated ADC instruction for fast
sampling. The finally-used sampling rates depending on the used board and algorithm
are shown in Table 5.3. The shown values were estimated by measuring on an external
pin, since it was not always clear from the software to find out the actual sampling rate.
It might be feasible to achieve higher sampling rates on the ESP32 with its i2s-module.

5.3.2.4. mbedTLS implementation details
This subsection clarifies the implementation details of RSA and AES in the mbedTLS
library, which we verified to be unchanged in the relevant parts for this section, for
both library versions (2.6.1 and 2.12.0).

The RSA implementation in mbedTLS is based on CRT (which can be dis-
abled) and can use the exponent blinding side-channel countermeasure if a sufficient
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source of randomness is provided to the library. The RSA private key function of
mbedTLS (mbedtls_rsa_private) uses bigint arithmetic, and among other functions
calls mbedtls_ mpi_exp_mod, which performs a sliding window modular exponentia-
tion. That function is where we perform some of our leakage assessments on, with a
512-bit exponent and modulus. We use the message transmitted by UART as the base
of this exponentiation. The other function we analyze is from the AES algorithm.

The mbedTLS library implements the AES using a T-table lookup based approach.
Originally, the AES is a round-based block cipher, where four different operations Sub-
Bytes, ShiftRows, MixColumns and AddRoundKey are repeatedly applied on a 128 bit
data block. A popular optimization is to implement those operations as a combination
of multiple table lookups and a subsequent XOR operation. This optimization requires
the precomputed T-tables, which take an input byte and output a 32 bit word. Besides
the addition of the first round key and the last round, the remaining rounds are exe-
cuted in pairs of two inside each loop iteration. Apart from these optimizations, the
mbedTLS AES implementation does not diverge from the textbook AES encryption
algorithm and does not include any side-channel countermeasures in particular.

5.3.3. Results
Before doing leakage assessment or CPA, we first show that ADC noise correlates with
the power consumption of the board. Subsequently, leakage assessment is performed
on AES and modular exponentiation of the mbedTLS library.

In all of the tested platforms, side-channel leakage was found in at least one of the
tested cryptographic algorithms and operation modes (configurations) of the ADC. In
many setups, generic noise was observable on the ADC, even when it was pulled to Vdd
or GND. Just in a few setups, we actually observe zero variance in the ADC output,
such that information leakage is impossible.

5.3.3.1. Preliminary Comparison between Voltage and ADC Noise

For this experiment, we use the STM32F407VG Discovery #1, and run the CPU in
high and low activity phases that should be easily distinguishable. In high activity
phases, we perform floating point operations, whereas during the intermediate low
activity phases, we issue nop-commands.

In Figure 5.22, we show the average of 1000 traces of the supply voltage Vdd and
supply current Idd measured with an oscilloscope. Concurrently, we show the acquired
samples of 6-bit ADC values at maximum sampling rate using DMA mode. Both were
recorded during the same activity phases of the CPU on the STM32F407VG Discovery
board. The ADC is connected to a floating pin, and neither to GND or Vdd. The
different phases of workload activity phases can easily be visually distinguished in both
of the traces. Our activity pattern can be identified in the externally collected traces for
both Vdd and Idd in the timeframe from 0µs to about 160µs, whereas the data transfer
of ADC traces to a workstation occurs after 160µs. Likewise, the ADC average values
in the bottom diagram reflect the activity in a clearly distinguishable way, albeit not
with linear correlation.
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Figure 5.22.: Average over 1000 traces for oscilloscope measurements on Vdd and Idd in the
first two plots and average of concurrently measured ADC values when the
ADC was set to 6-bit and the pin was not connected (N/C) on the bottom.
High activity phases are marked grey.

5.3.3.2. Comparisons on Average ADC Traces of AES and Modular
Exponentiation

The preliminary experiment to compare CPU activity phases already shows promising
results. However, this experiment is a synthetic test case in which extremely high and
low activity phases were chosen on purpose. Subsequently, we prove that even minor
differences in the data processed by cryptographic algorithms affects the ADC noise in
a systematic way. For that proof, we can already use the data required as a prerequisite
for the leakage assessment we explained in Section 2.7. We collect two sets of traces
while performing encryption operations. One of the sets contains the fixed traces, while
the other set contains the random traces. For this example, we connect the pin used for
ADC to GND and again use the same board as used in Section 5.3.3.1, STM32F407VG
Discovery #1.

In Figure 5.23, we compare the ADC noise that occurs during sliding window expo-
nentiation with a 512-bit secret exponent and modulus. In the first plot, an average
over 100,000 (100k) ADC traces is shown, where an exponentiation is performed on
the same fixed base. The second plot also shows the average, but with exponentiation
on 100k different random bases. The red lines show the averages, while the grey back-
ground contains all the single traces. The differences between these plots are indeed
distinguishable without further processing. Even more, a pattern is already visible in
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Figure 5.23.: Average over 100k traces for a fixed base exponentiated in a mbedTLS sliding
window exponentiation, and 100k traces with each a random base exponentiated
with the same secret exponent on the STM32F407VG Discovery #1. ADC
connected to GND.

Figure 5.24.: Average over 1M traces for a fixed message encrypted with mbedTLS AES and
the FIPS key, and 1M traces with each a random message encrypted with the
same key on the STM32F407VG Discovery #1. ADC connected to GND.

the average of the fixed traces, which is smoothed out in the case of random traces.
This example already shows that a power analysis attack for secret key extraction later
on might be feasible.

Additionally to modular exponentiation (Mod-Exp), we also show an average of
AES-128 for fixed and random messages in Figure 5.24. Since AES executes in much
shorter time relative to the ADC speed, we can only acquire a few samples, which
are at best 2-3 samples per AES round for this specific board. For AES, we collect
1,000,000 (1M) traces for each of the two sets of fixed and random messages. Similar to
Mod-Exp, the differences between the traces are visible, with the most distinguishable
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sample point around sample 20.

5.3.3.3. Leakage Assessment on AES and Modular Exponentiation

We analyze the differences between the traces collected during fixed and random mod-
ular exponentiations and AES encryptions using the t-test methodology from [72, 73]
as explained in Section 2.7. Exemplary, we show the results of leakage assessment on
the ADC traces collected on the STM32F407VG Discovery, which we presented in the
previous subsection. Further details from other platforms can be found in the appendix.

Figure 5.25 shows the first order leakage on the STM32F407VG Discovery for fixed-
vs-random traces collected during modular exponentiation. The mathematical evalua-
tion confirms the visual assessment from the previous section: The fixed and random
traces are distinguishable, as the absolute |t|-value exceeds the threshold limit of 4.5
significantly.

Likewise, in Figure 5.26 we present the first order fixed-vs-random leakage during
AES encryptions. Again, we confirm that the traces for fixed and random encrypted
messages are clearly distinguishable, as the |t|-value is above the threshold.

Subsequently to the initial experiments, we perform an analysis on the boards intro-
duced in the experimental setup, Section 5.3.2. First, we look into the ADC-observable
leakages from AES, and secondly into modular exponentiation. This way, we also test
the ADC noise characteristics at different operating frequencies. As we presented in
the experimental setup in Table 5.4, for AES we had to use rather high sampling fre-
quencies of the ADC on all the platforms (104 − 980kHz). For the ESP32-devkitC, no

Figure 5.25.: First order leakage assessment results based on a fixed-vs-random t-test for
100k traces collected during modular exponentiation on the STM32F407VG
Discovery #1.

Figure 5.26.: First order leakage assessment results based on a fixed-vs-random t-test for 1M
traces collected during AES encryptions on the STM32F407VG Discovery#1.
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Figure 5.27.: Leakage Assessment on mbedTLS AES and modular exponentiation (Mod-Exp)
with {Vdd, GND, N/C} connected to the ADC on all platforms. Flat lines on
the bottom are constant zero, shifted for visibility.

higher frequency than 104kHz is reachable, which leads to less than 16 samples over
the complete AES runtime. For modular exponentiation, the runtime is longer. Thus,
we sample slower (20−88kHz) to collect only as much samples as the memory capacity
of the internal SRAM.

In Figure 5.27, we show six plots of first order leakage assessments on AES and mod-
ular exponentiation (marked as ‘Mod-Exp’), separated by algorithm and the connection
of the ADC being Vdd, GND, or N/C, respectively. In these plots, the change of the
highest |t|-value inside the leakage assessment interval (cf. Figure 5.25,Figure 5.26) is
shown, over an increasing amount of traces used for the evaluation.

We start with the AES algorithm in the left column of Figure 5.27. We compare the
platforms when the ADC is connected to Vdd. In this configuration, |t| reaches values
clearly beyond the confidence threshold of 4.5, suggesting that all platforms are leaking
the information processed in the AES algorithm. For the case of a connection to GND,
both samples of the STM32F407VG Discovery leak, but not the other boards. For the
other boards, the ADCs actually output a constant value, such that Ground-Noise does
not occur. In the case, when we have no connection (N/C) on the ADC, i.e. the pin
is in a so-called floating state, all of the boards exhibit leakage (|t| / 4.5). We also
looked into second order leakage. However, there were no changes with respect to the
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Table 5.4.: Overview of Leakage Assessment over all tested Platforms and Configurations;
ADC connected to {Vdd, GND, not connected (N/C)}. Amount of collected traces
are 100k for modular exponentiation, and 1M for AES. The ADC was noise-free
when σ=0.

Platform
Leakage detected? (t > 4.5)

AES-128 (ADC fast) Mod-Exp-512 (ADC slow)
Vdd GND N/C Vdd GND N/C

ESP32-devkitC @80MHz yes σ=0 yes no1 σ=0 no1

STM32L475 IoT Node @80MHz yes σ=0 yes yes σ=0 σ=0
STM32F407VG Discovery #1 @168MHz yes yes yes yes yes yes
STM32F407VG Discovery #2 @168MHz yes yes yes yes yes yes

1 For the center 1/3 trace. For the beginning and/or end of the cryptographic function, |t| was above
4.5. For more details check Section B.1, Figure B.2.

conclusion, if leakage is observed (|t| > 4.5), or not (|t| ≤ 4.5).
In the case of Mod-Exp, we only show first order leakage again in Figure 5.27,

since there was no difference in the second order, similar to AES. We still compare
the platforms with ADC connections to {Vdd, GND, N/C}. For Mod-Exp, again both
STM32F407VG Discovery #1 and #2 leak in all of the tested cases. The other boards
leak less than for AES. While the ESP32-devkitC t-value reaches beyond |t| > 4.5
for Vdd and N/C, it only does during the beginning or end phase of the modular
exponentiation. We thus conclude negatively for the leakage assessment. This result
might be due to an input value being copied or recoded inside the function. Interested
readers can check the appendix, Figure B.2, for this detail. For the STM32L475 IoT
Node, the ADC was sufficiently noisy at faster sampling rates for AES, except when
the ADC was connected to GND. However, for modular exponentiation it also became
entirely noise free when being not connected (N/C).

5.3.3.4. Summary of Leakage Assessments

In summary, the ADC settings such as the sampling frequency and connection to Vdd,
GND or N/C levels affect the observable side-channel leakage. This relation exists,
because the sampling frequency also changes the inherent noise characteristics. The
connection of the ADC affects how it is coupled to the remaining parts of the system,
particularly the digital (CPU and memory) subsystem. In most cases when the ADC
shows any noise (sample data with σ > 0), the t-test detects leakage in the ADC data.
In other cases, when the ADC is completely noise free (σ = 0), surely no information
leakage is possible. The two boards that we used of the same type lead to almost the
same results, leading to the conclusion that sample variation only has a minor effect.
We summarize these results in Table 5.4. For reference, Section B.1 shows all leakage
assessments across all the boards in detail, including the assessment over the complete
time window when ADC samples were acquired (cf. Section 5.3.2.2).
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(a) Total correlation after 10M traces for all 256 key byte candidates; The correlation
with the correct key byte is marked red

(b) Correlation progress over 10M traces for all 256 key byte candidates; The correla-
tion with the correct key byte is marked red

Figure 5.28.: Results of a CPA attack on the 6th byte of the last secret round key of AES on
the STM32F407VG Discovery #1 @168MHz with the ADC connected to GND
and the program compiled with the -Os optimization option (like for leakage
assessment).

5.3.3.5. Correlation Power Analysis Attack on AES

In this subsection, we present results of CPA attacks on secret AES round keys in
different setups. We perform a ciphertext-based CPA on the last round of AES over
10M ADC traces and show both the final correlations for each key byte candidate with
the entire set of traces as well as the correlation progress over the amount of traces.
We evaluate the different preprocessing and power model variants, which are explained
in Section 2.8. Pre-aligning traces with a shift of ±2 using normalized cross-correlation,
and performing CPA with the standard S-box Hamming distance model is the most
successful variant. The CPA experiments are performed on the STM32F407VG Dis-
covery, which shows the most promising results during leakage assessment. Although
we attacked all 16 bytes of the AES round key, only the best results for the respective
setup are presented here. We state the total amount of recovered bytes for each setup
and display the correlation plots for all key bytes in the appendix.

We first evaluate a CPA attack on 10M traces using the same parameters as for
leakage assessment, when the ADC pin is connected to GND. Here, AES takes about
13µs, leading to an estimated 17 samples during the complete AES function call to

110



5.3. Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices

(a) Total correlation after 10M traces for all 256 key byte candidates; The correlation
with the correct key byte is marked red

(b) Correlation progress over 10M traces for all 256 key byte candidates; The correla-
tion with the correct key byte is marked red

Figure 5.29.: Results of a CPA attack on the 12th byte of the last secret round key of AES
on the STM32F407VG Discovery #2 @56MHz with the ADC connected to Vdd
and the program compiled with the -O0 optimization option.

mbedtls_internal_ aes_encrypt(..). In this setup, we are able to recover 2 secret
key bytes in total, where the best correlation is seen for the 6th byte. In Figure 5.28a,
the total correlation with all of the 256 possible values of the 6th byte of the last round
key after 10M ADC traces is shown. A small peak in the last part of the correlation
values indicates the sampling point that corresponds to the last AES round operation as
well as the correct value of the last round key byte, which has the maximum correlation
value at that point. However, the differences in correlation between the correct and
the incorrect key bytes and the peak in general are very small.

In addition to evaluating CPA attacks on the previous setup for leakage assessment,
we also adapt the compilation and frequency parameters to achieve a higher relative
ADC sampling rate. Additionally we found to be more successful when the ADC pin
is connected to Vdd. In that case, the MCU is running at 56MHz and the program
is compiled with -O0 optimization, making AES take about 40µs to compute. Due to
the on-chip clock network, the ADC is running slower, but faster relative to AES. This
relative improvement leads to about 43 ADC samples for the entire AES encryption.
Furthermore, we activate the DMA-based ADC sampling from the encryption task
directly. This avoids any misalignment and synchronizes exactly with the beginning
of the AES computations. In this setup, 6 secret key bytes can be recovered and the
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best correlation appears when attacking the 12th byte. The results can be seen in
Figure 5.29. A peak during the last part of the encryption is clearly visible, again
indicating the last AES round. Furthermore, we see that the correct key byte, which
is marked red, correlates much clearer with the collected traces than the incorrect key
bytes.

We conclude that key recovery attacks on the AES with data from ADC traces are
generally possible, albeit the success depends on the overall system parameters, such as
the clock speed, the ADC pin connection, and possibly even the code optimization at
compile time. For data collected with the ADC pin left unconnected, we were unable
to recover secret key bytes successfully.

5.3.4. Discussion
Our results prove the existence of a correlation between the data processed in a micro-
controller, and the noise that can be observed in their integrated ADCs. The correlation
is strong enough to distinguish the data processed in cryptographic algorithms, running
on a CPU in the system. By leakage assessment it was shown that this observation
is valid in most cases. Furthermore, we proved that the leakage can be sufficient to
perform a CPA-based key recovery attack on AES. Due to the protection mechanism
that can be enabled for the full RSA implementation of the used mbedTLS library,
we assume that more advanced attacks are required for that, but are generally feasi-
ble [158–160].

The performed experiments reveal an underlying problem of highly integrated mixed-
signal systems that consist of analog and digital components in a single chip. Such a
level of SoC integration is an increasing trend in many hardware platforms for IoT
applications and beyond. In these systems, both power supply based coupling effects
as well as crosstalk can cause the noise in the analog part, which can then be exploited
by anyone with access to the data measured in the analog circuit.

5.3.4.1. Practical relation to the adversarial model

Applications based on microcontrollers or SoCs use the ADC for various tasks, such as
audio streaming or other sensor measurements. For power saving applications, the re-
spective ADC pin is often pulled to GND, the supply voltage (Vdd) or left unconnected.
Any of these ADC pin configurations can be the recommended way to save power,
depending on the manufacturer and device. Often, it is possible to define by software
to which pin the ADC is connected, or even internally connect it to GND or Vdd, such
as Vref for the tested ESP32 chip. Some of these IoT or mobile applications make
their data publicly available, or execute untrusted code in a memory protected area.
In both ways, an adversary with the right access can get the necessary side-channel
data to perform an attack.

Accidentally allowing a high sampling rate in publicly accessible IoT sensors can
already be an attack vector from which sufficient leakage can be collected. For instance,
a reference application for one of the tested platforms contains a web server which
accepts any ADC sampling rate from its website. Any website hosted on that web
server can control the sampling rate through JavaScript. JavaScript in turn can be
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manipulated by any user that accesses the website. In effect, if this reference application
is used as the basis of a product, it introduces a threat. On the other hand, 3rd party
smartphone applications often need to use various analog sensors of the system, which
could contain the required side-channel information to perform an attack. Even a
typical audio sampling rate is already fast enough to distinguish differences in modular
exponentiation on the tested platforms, and it was already reported that such a low
sampling rate can be sufficient to attack RSA [161].

Our experimental setups were chosen for comparability across different vendor sys-
tems, and additionally to allow methods for leakage assessment to be performed easily.
Yet, these setups are sufficient to prove that ADC noise is generally a possible source
of side-channel information. Using the aforementioned example, this could actually be
exploitable in some existing products, and adds a dangerous new way to acquire power
side-channel information completely remotely.

If an attack on a real system can succeed depends on additional aspects. Next to
the basic requirement of access to ADC data, it is also required that the data can
be sampled during cryptographic operations, and the collected traces to be aligned
properly. However, it was shown that even in full commercial implementations, many
of such obstacles can still be circumvented, and complex attacks can be performed by
considering more aspects of a full system [11, 137, 162, 163]. For instance, it is often
still possible to find a way of synchronization. At least an estimation at which time an
encryption starts can often be achieved through the behavior of the overall application.
A remote user can thus estimate which part of sensor data might contain exploitable
side-channel leakage.

Another aspect in real systems is the side-channel data being modulated on top of
other sensor measurement data, or the available sampling rate. However, this should
only increase the number of traces required for differential attacks, which are specifically
suited to cope with such situations. Often the sensor data is not much of a problem if
it changes rather slowly, for instance a temperature sensor. It was also shown that a
sampling rate below the expected side-channel leakage can still be sufficient to perform
a full attack [157, 161].

Our results imply that even sensor data that a microcontroller measures and sends
over a digital connection made available online can leak sensitive information which is
accessible from anywhere in the world. In many scenarios, leaking the secret keys of
a sensor node might be just a small issue, but in other scenarios a more sophisticated
attacker could use such information as part of a larger scale attack, for instance on
SCADA systems [164, 165].

5.3.4.2. Mitigating the threat

As our results suggest, it is of high importance that designers of embedded systems or
integrated circuits for critical applications are aware of a potential security vulnerability
through integrated analog components. That fact is the most important take-away
message from the investigations performed in this work. We believe that noise of
analog components should not be just characterized as a noise margin, but needs to
be assessed for information leakage from security-related digital components in the
system.
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When designers are aware of this possible threat, it is achievable to design proper
mitigations, depending on the application. The task of mitigation, for instance, can be
considered in the hardware design of the ADC module to reduce or completely remove
the noise-related leakage. In small IoT systems in which all executed code can be
trusted, information leakage and possible attacks require a certain level of care, and
we suggest either of the following options as a possible isolation practice:

• It must be guaranteed that any analog measurements can only take place mutually
exclusive to security-related computations.

• If exclusive measurements cannot be guaranteed, a leakage assessment needs to
be performed on all analog measurement data that is made accessible to possible
attackers. If the data contains leakage, it has to be handled with the same security
level as the secret data that is processed in the system.

• Filter the ADC data in a way that leakage cannot be assessed anymore. For
instance, a filter for noise or specific frequencies might make attacks infeasible,
or reduce effective sampling rates.

However, in multi-user systems in which memory protection is used among unpriv-
ileged tasks that are not fully trusted, more serious care has to be taken in order to
prevent one of the tasks from extracting the secrets of another task. For instance,
underprivileged tasks should not be allowed to get arbitrary ADC measurements. This
could mean that in systems like a smartphone, a task that records the microphone
on one of the ADCs could potentially run power analysis side-channel attacks on the
remaining system. More research is needed to evaluate how widespread this threat is
in existing systems.

5.3.5. Section conclusion
Mixed-signal systems such as microcontrollers and other SoCs are increasingly adopted
in Internet-of-Things and personal computing appliances. In these systems, digital logic
such as a CPU causes noise in the analog components, for instance in the ADCs used
for a microphone, or any environmental sensors. In this section, leakage assessment was
performed on the noise of ADC data for various platforms. In the majority of cases,
leakage was detected. In one case we demonstrated a successful key recovery attack
on AES proving that the leakage can be exploited. Previous works have explored a
similar software-based power analysis side-channel, and this section generalizes those
results. It is now confirmed that power analysis side-channels are not just a threat for
attackers with physical access to the device. Any sensory data that leaves a system
might contain enough correlated noise that could be exploited to perform power analysis
attacks. Thus, we want to stress the importance to either use better isolation between
analog and digital subsystems, or protect cryptographic implementations against power
analysis attacks, even if local attackers are not considered in the threat model.
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6. Related Work and
Countermeasures

The sections in this chapter were partially overtaken from previously published works
included in this thesis, which were co-authored with (in no particular order): Falk
Schellenberg, Jonas Krautter, Fabian Oboril, Saman Kiamehr, Amir Moradi and
Mehdi B. Tahoori.

Next to the work carried out in this thesis, fault or side-channel attacks that can
be exploited even remotely through software are recently increasing. Probably the
most impactful seminal findings have been the Spectre and Meltdown speculative ex-
ecution attacks that use cache timing side-channels [166, 167] as covert information
channels [11, 12] to exfiltrate information from a speculative execution context. These
impact a wide range of mainstream CPUs in use, and have thus motivated further re-
search in the direction of microarchitectural attacks. However, in contrast to that, this
thesis focuses on a lower level, in which the electrical characteristics of the system can
be exploited and impacted from the software side. Thus, specifically power analysis
and timing or voltage-based fault attacks are the main focus.

6.1. Voltage- and Timing-based Fault Attacks through
Software access

The earliest shown voltage-based attack that can be influenced through user software
has been rowhammer [95], which demonstrates that faults can be caused in DRAM
through malicious access patterns on the memory. These access patterns use repetitive
reading of the same memory line, which can cause faults in an adjacent line, lead-
ing to bit flips. Because that adjacent memory line might be an important part of
protected operating system memory, certain bit flips can eventually lead to privilege
escalation, and finally exfiltrate secret information [95, 168–170]. This attack has been
first shown by programs running on the system, but later it has even been demonstrated
through JavaScript in a web browser [96], or for privilege escalation in virtualized en-
vironments [171, 172]. Furthermore, truly remote settings that only need a network
connection have also been explored [173–175].

Another example in which faults can be caused in software is an ARM-based SoC,
secured by ARM TrustZone. TrustZone is designed to securely isolate various com-
ponents of an SoC, and can also establish a Trusted Execution Environment (TEE)
for trusted applications on the ARM cores. The CLKSCREW [137] attack shows how
power management can be reprogrammed and exploited even by untrusted applications
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on the ARM CPU, affecting trusted applications or hardware in the SoC which other-
wise should not be accessible. Using CLKSCREW, the used RSA signature scheme in
TrustZone can also be subverted, leading to execution of self-signed applications. More
recently, we also saw control over power management being used to attack Intel SGX
in [176–178].

When looking into FPGAs, this thesis shows the first results on injecting tran-
sient faults merely through reconfiguration in Chapter 4. Others have extended these
attacks. In [179], timing faults are caused that make a random number generator mis-
behave. Other works have shown alternate ways to cause voltage drops or inject timing
faults. By specific memory access patterns to FPGA-internal BRAM, sufficient voltage
drop to cause faults can be generated [180]. On the other hand, alternate ring oscillator
designs, which do not require a combinational loop, have been shown in [109]. In [181],
it is further characterized what exact on-chip spatial and timing conditions are needed
to inject faults successfully.

6.2. Power Analysis Side-Channel Attacks through
Software access

Before this thesis, preliminary studies have analyzed the impact of electrical coupling
between logically isolated components in the same chip from a security perspective
in [127, 128]. In one study, the dedicated internal power sensors of an FPGA were
used, but were found to be insufficient for power analysis attacks [129]. In this work,
we presented a power analysis attack inside FPGAs in Chapter 5.

Since the first publication included as Section 5.1 from 2018, others have also worked
on this topic. Most of the works use the sensors introduced in Chapter 2, to either
count oscillations of ROs, or use TDC sensors. By using the TDC sensors as presented
in Chapter 2, a higher sampling rate can be achieved, reaching higher sampling rates
than the oscillator-based sensor. In [105] RO sensors are used to attack implementations
of a simple textbook RSA, both in FPGA fabric, as well as a co-residing CPU in an
SoC integrating CPUs and FPGA part. That extends the results from Section 5.1 from
FPGA to SoC level, while the results in Section 5.2 again lift this to PCB level. Some
recent works have also looked into improving the methods of sensing or evaluating the
data [182, 183], and attacking more than just textbook RSA in a SoC platform [184].

In 2018, it was shown how the noise in mixed-signal systems can be exploited by a
semi-remote attack [147], i.e. from a short distance. In their work, small wireless IoT
devices are attacked, which integrate the wireless radio circuit together with digital
logic. When the digital logic performs cryptographic operations, leakage through the
silicon substrate affects the analog radio circuit. If that circuit is used, a fraction of the
side-channel leakage from the cryptographic operations can actually be observed in the
electromagnetic wave emitted by the radio circuit into the nearby environment. In this
way, EM leakage is essentially extended to a larger range than usual [157]. This leakage
was sufficient to extract the secret keys of a simple tinyAES implementation from within
a distance of up to 10 meters, and 1 meter for mbedTLS. A similar effect of leakage
among chip components was shown for microcontrollers in [185], in which side-channel
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leakage could also be observed on digital port pins not connected to the power supply.
Thus, it is also an indication that an ADC could observe such leakage if it is connected
to a port pin from the inside. Extending the work presented in Section 5.3, O’Flynn
et al. [186] uses the noise of an ADC to perform power analysis attacks targeting the
secrets of an ARM TrustZone-M implementation.

6.3. Countermeasures
Both categories of attacks — fault or side-channel — require pragmatic solutions. For
FPGAs, some initial solutions have already been published in collaboration with the
author of this thesis, while minor suggestions have already been given in the respective
earlier chapters. In general, power analysis side-channel attacks could be tackled with
traditional countermeasures, such as hiding and masking schemes. However, given the
specific nature of FPGA on-chip attacks, other types of countermeasures can also be
developed.

One of these countermeasures is Active Fencing, which takes chip-wide floorplanning
and spatial relations of attacker and victim circuits into consideration [187]. Earlier
isolation techniques for FPGA security already suggest to put unused logic slices be-
tween victim and attacker circuits inside the FPGA [98], which should be able to
protected against attacks that are based on crosstalk between adjacent wires of victim
and attacker. Active fencing goes one step further, and instead puts active logic in
those slices. That logic can cancel out a significant degree of side-channel leakage that
travels through the on-chip PDN. In [187] it is demonstrated that a CPA attack can
require 166 × more traces when Active Fencing is applied.

Another possible countermeasure is to perform a check on the bitstream, which was
briefly mentioned for DoS in Section 4.1. A supervisor is integrated that reverse engi-
neers and checks bitstreams before they are loaded into the FPGA as a sort of FPGA
Anti-Virus. By analyzing the bitstreams for malicious signatures, circuit configurations
used for attacks can be detected and prevented to execute on the FPGA. With perfect
detection accuracy, all types of fault and side-channel attacks presented here could be
prevented. Like all detection approaches, the practical difficulties are in suggesting sig-
natures that allow to detect all malicious bitstreams, without rejecting actually benign
bitstreams. In [188] and [189] various signatures and detection methods are suggested.
Fundamental circuit properties are formulated that can be used for indirect sensing of
voltage fluctuations or to cause faults through voltage drop, as was presented in the
attacks in Chapter 4 and Chapter 5. In [189], these properties are then evaluated on a
broad range of benchmark circuits.

6.4. Cross-coupling based Side-Channel Analysis
Attacks in FPGAs

In 2007, Huffmire et al. [98] discussed potential countermeasures against security
threats in an FPGA, in which various IP cores with unknown trust are integrated
together. One of the discussed threats is a potential physical influence when wires
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from different designs are routed through the same switch matrix. As an isolation
mechanism, so-called moats provide what is considered as physical isolation by adding
unused FPGA slices between logical blocks, while drawbridges are used for a more re-
stricted communication [98]. Major FPGA vendors such as Xilinx and Intel (formerly
Altera) picked this up to suggest similar design flows for secure isolation [124, 190].
This countermeasure is considered a physical separation, however it misses the shared
PDN, and by that can not prevent the attacks shown in Chapter 4 and Chapter 5.

However, these isolation mechanisms protect against another type of attack that has
just recently been shown. In [125] it was shown first that long wires inside a single
switch matrix can influence each other. Later on, it was shown that this is sufficient for
a side-channel attack to extract information in [153]. Thus some studies have followed
to analyze the exact behavior of this long wire coupling effects [191, 192] Since moats
put additional space, that cross influence can be prevented, at the cost of unused slices.

6.5. Results of this Thesis and similar Related Work
Here we summarize the experiments that were shown in previous chapters, and also
some additional results, showing how various FPGA platforms from different vendors
are vulnerable to these attacks. Typically one type of attack was feasible on any of the
tested platforms. This overview is provided in Table 6.1, also including some of the
related work.
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Table 6.1.: Overview of experimental results on side-channel or fault attacks in FPGAs, sys-
tems containing FPGAs, or FPGA-based SoCs.

Attack successful?

Board Voltage
Drop-based

Denial of
Service

Voltage
Drop-based

Timing Fault
Injection

Key Recovery
by

Side-Channel

Intel Terasic DE0-Nano-SoC – Yes, this work –
Intel Terasic DE1-SoC Yes, this work Yes, this work –
Intel Terasic DE2-115 – – Yes, [153]1
Intel Terasic DE4 – Yes, this work –
Lattice ECP5 5G Evaluation Board – – Yes, this work
Lattice iCE40-HX8K Breakout
Board Yes, this work Yes, this work Yes, this work

Xilinx Artix-7 Basys-3 – – Yes, this work
Xilinx Kintex-7 KC705 Yes, this work – 5 –
Xilinx Pynq Zynq-ZC7020 Yes, this work2 – 5 Yes, this work
Xilinx Spartan-6 SAKURA-G – – Yes, this work4

Xilinx Ultrascale VCU108 Yes, this work Yes, this work –
Xilinx Virtex-6 ML605 Yes, this work – 5 –
Xilinx Virtex-7 VC707 – Yes, [179] –
Xilinx Zedboard Zynq-ZC7020 Yes, this work2 – 5 Yes, [105]3

1 Information leaks through cross-coupling of adjacent wires. This is less of a threat, since coupling
is prevented if interconnect matrices are not shared between multiple designs [153], which is also
recommended by standard secure design flow practices [98, 124].

2 It affects the whole SoC including the integrated ARM Cortex-A9 Dual-Core.
3 Sufficient leakage for key recovery was also shown from CPU to FPGA in the same SoC
4 In [23] it was additionally shown to work from one FPGA in the system (connected to the same

power supply) to another, on board-level.
5 A simple experiment was conducted, but the devices crashed before timing violations occured – it

might still be possible with more effort.
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7.1. Conclusion
The experiments conducted for this thesis show that new security threats emerge with
new use-cases of FPGA hardware, such as multi-tenancy, or as accelerators in a multi-
user system. Albeit FPGAs are intended as digital circuits, the methods used in this
thesis allow that voltage fluctuations can be generated or observed inside FPGA de-
signs, in a way sufficient to perform attacks. Thus, with software-based reconfiguration
of an FPGA, physical attacks such as power analysis and fault attacks are feasible in-
side the FPGA, but also to other chips that share the same power supply. Previously,
such attacks were believed to require local access to the device under attack, and ded-
icated test and measurement equipment. By this thesis these threats are now lifted
to a potentially remote attacker, exemplifying that they should not be disregarded in
threat modeling.

The results for FPGAs also indicate that the electrical level of semiconductor chips
in general should not be disregarded for a system-wide security analysis. Thus, to
demonstrate this generality, the thesis also analyzes a similar threat for mixed-signal
IoT devices. In that case, it reveals that power side-channel information is indirectly
available as the noisy part of on-chip ADCs.

In conclusion, this thesis has shown that the electrical level of semiconductor chips,
foremost FPGAs, is a feasible attack vector, even when the attacker has no direct
physical access to the device. The results of this thesis suggest that solutions have
to be found for multi-tenant FPGA security, before they can be used responsibly on
a wider scale. Considering other semiconductor devices, system-wide security threat
modeling needs to include the electrical level, and not only when a local attacker
is considered.

7.2. Perspectives on Applications, Research, and
Education

In the future, we need to consider multi-tenant FPGA systems, or any other system
with a shared power supply to be at potential risk of an attack, if on-chip resources
can be misused to either measure or manipulate power supply voltage. Thus, coun-
termeasures for at least the threats shown in Chapter 4 and Chapter 5 need to be
found. Specifically for these systems, we briefly discussed common recommendations
or countermeasures in the respective chapters, and also in the related work, Chapter 6.
These countermeasures so far try to either use existing FPGA fabric, or a more restric-
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tive system-level approach in which an FPGA design can only be loaded after it gets
checked.

More generally, these countermeasures are very specific to the application so far,
and do not yet solve or grasp the underlying problem of sharing a power distribution
network among components with different security privileges. For that, the underlying
electrical level needs to be more carefully analyzed in each new chip generation and
stands as an open research problem, which has also been introduced into the research
community recently.

Finally, as an interesting byproduct, the results of this thesis are also valuable for
education. Since this thesis showed that low-cost FPGA boards alone are sufficient to
perform practical fault or side-channel attacks, expensive test and measurement equip-
ment is not required anymore. By that, each student can be provided with their own
board in which all necessary experiments can be performed, even at home. Together
with an accompanying lecture, a course Practical Introduction into Hardware Security
is already established at the Karlsruhe Institute of Technology, in which we use these
benefits to teach fault and power analysis attacks.
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A. Appendix on FPGAhammer
A.1. Single Ring Oscillator Verilog Source Code
module osc ( enablein , dummyout );

input enablein ;
output dummyout ;
wire enablein_lut ;
wire loop_lut , loop;
lut_input enable_lutin (enablein , enablein_lut );
lut_input loop_lutin (loop , loop_lut );
lut_output loop_lutout (~ loop_lut & enablein_lut , loop );
assign dummyout = loop;

endmodule

Listing A.1: Single RO module Verilog source code using low-level primitives to implement a
two-input NAND gate

A.2. Ring Oscillator Grid Generation Verilog Source
Code

module osc_array ( clkin , enablein , rstin , dummyout , [...] );
parameter amount = 10000;
[...]
reg enable_oscs = 1’b0;
wire enable_oscs_g ;
// Global clock buffer routing :
global enable_oscs_glob (.in( enable_oscs ), .out( enable_oscs_g ));
output [amount -1:0] dummyout ;
genvar i;
generate

for (i=0; i < amount ; i=i+1) begin : oscs_gen
osc osc_inst (. enablein ( enable_oscs_g ), . dummyout ( dummyout [i]));

end
endgenerate
[...]

endmodule

Listing A.2: Relevant parts of the RO grid generation Verilog source code with global clock
buffer routing and dummy output signals

A.3. Top-Level RO Instantiation Verilog Source Code
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parameter ro_amount = 10000;
output [ro_amount -1:0] dummyout /* synthesis noprune =1

altera_attribute ="- name VIRTUAL_PIN ON" */;

osc_array osc_array_inst ( .clkin(clk), .rstin(rst_n),
. enablein ( enable_oscs ), . dummyout ( dummyout ), [...] );

defparam osc_array_inst . amount = ro_amount ;

Listing A.3: Instantiation of ROs with virtual pins in the top-level module; To generate bare
ROs without virtual pins, the dummyout output declaration is removed and the
respective port of the osc_array module instance left unconnected
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B. Appendix on Leaky Noise

B.1. Results of all Leakage Assessments

B.1.1. ESP32-devkitC

B.1.1.1. AES

(a) First order leakage assessment results based on
a fixed-vs-random t-test for 1k traces collected
during AES encryptions on the ESP32-devkitC
with the ADC pin connected to GND.

(b) First order leakage assessment results based on
a fixed-vs-random t-test for 1M traces collected
during AES encryptions on the ESP32-devkitC
with the ADC pin disconnected (N/C).

(c) First order leakage assessment results based on
a fixed-vs-random t-test for 1M traces collected
during AES encryptions on the ESP32-devkitC
with the ADC pin connected to Vdd.

(d) Leakage Assessment progress on mbedTLS AES
with {Vdd, GND, N/C} connected to the ADC
on the ESP32-devkitC.

Figure B.1.: Results of Leakage Assessments on ESP32-devkitC for mbedTLS AES.
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B.1.1.2. Sliding Window Modular Exponentiation

(a) First order leakage assessment results based on
a fixed-vs-random t-test for 1k traces collected
during modular exponentiation on the ESP32-
devkitC with the ADC pin connected to GND.

(b) First order leakage assessment results based on
a fixed-vs-random t-test for 100k traces col-
lected during modular exponentiation on the
ESP32-devkitC with the ADC pin disconnected
(N/C).

(c) First order leakage assessment result based on a
fixed-vs-random t-test for 100k traces collected
during modular exponentiation on the ESP32-
devkitC with the ADC connected to Vdd.

(d) Leakage Assessment progress on mbedTLS
modular exponentiation with {Vdd, GND,
N/C} connected to the ADC on the ESP32-
devkitC.

Figure B.2.: Results of Leakage Assessments on ESP32-devkitC for mbedTLS modular expo-
nentiation.
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B.1.2. STM32F407VG Discovery #1

B.1.2.1. AES

(a) First order leakage assessment results based on
a fixed-vs-random t-test for 1M traces collected
during AES encryptions on the STM32F407VG
Discovery #1 with the ADC pin connected to
GND.

(b) First order leakage assessment results based on
a fixed-vs-random t-test for 1M traces collected
during AES encryptions on the STM32F407VG
Discovery #1 with the ADC pin disconnected
(N/C).

(c) First order leakage assessment results based on
a fixed-vs-random t-test for 1M traces collected
during AES encryptions on the STM32F407VG
Discovery #1 with the ADC pin connected to
Vdd.

(d) Leakage Assessment progress on mbedTLS AES
with {Vdd, GND, N/C} connected to the ADC
on the STM32F407VG Discovery #1.

Figure B.3.: Results of Leakage Assessment on STM32F407VG Discovery #1 for mbedTLS
AES.

161



B. Appendix on Leaky Noise

B.1.2.2. Sliding Window Modular Exponentiation

(a) First order leakage assessment results based on
a fixed-vs-random t-test for 100k traces col-
lected during modular exponentiation on the
STM32F407VG Discovery #1 with the ADC
pin connected to GND.

(b) First order leakage assessment results based on
a fixed-vs-random t-test for 100k traces col-
lected during modular exponentiation on the
STM32F407VG Discovery #1 with the ADC
pin disconnected (N/C).

(c) First order leakage assessment results based on
a fixed-vs-random t-test for 100k traces col-
lected during modular exponentiation on the
STM32F407VG Discovery #1 with the ADC
pin connected to Vdd.

(d) Leakage Assessment progress on mbedTLS
modular exponentiation with {Vdd, GND,
N/C} connected to the ADC on the
STM32F407VG Discovery #1.

Figure B.4.: Results of Leakage Assessments on STM32F407VG Discovery #1 for mbedTLS
modular exponentiation.

162



B.1. Results of all Leakage Assessments

B.1.3. STM32F407VG Discovery #2

B.1.3.1. AES

(a) First order leakage assessment results based on
a fixed-vs-random t-test for 1M traces collected
during AES encryptions on the STM32F407VG
Discovery #2 with the ADC pin connected to
GND.

(b) First order leakage assessment results based on
a fixed-vs-random t-test for 1M traces collected
during AES encryptions on the STM32F407VG
Discovery #2 with the ADC pin disconnected
(N/C).

(c) First order leakage assessment results based on
a fixed-vs-random t-test for 1M traces collected
during AES encryptions on the STM32F407VG
Discovery #2 with the ADC pin connected to
Vdd.

(d) Leakage Assessment progress on mbedTLS AES
with {Vdd, GND, N/C} connected to the ADC
on the STM32F407VG Discovery #2.

Figure B.5.: Results of Leakage Assessments on STM32F407VG Discovery #2 for mbedTLS
AES.
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B.1.3.2. Sliding Window Modular Exponentiation

(a) First order leakage assessment results based on
a fixed-vs-random t-test for 100k traces col-
lected during modular exponentiation on the
STM32F407VG Discovery #2 with the ADC
pin connected to GND.

(b) First order leakage assessment results based on
a fixed-vs-random t-test for 100k traces col-
lected during modular exponentiation on the
STM32F407VG Discovery #2 with the ADC
pin disconnected (N/C).

(c) First order leakage assessment results based on
a fixed-vs-random t-test for 100k traces col-
lected during modular exponentiation on the
STM32F407VG Discovery #2 with the ADC
pin connected to Vdd.

(d) Leakage Assessment progress on mbedTLS
modular exponentiation with {Vdd, GND,
N/C} connected to the ADC on the
STM32F407VG Discovery #2.

Figure B.6.: Results of Leakage Assessments on STM32F407VG Discovery #2 for mbedTLS
modular exponentiation.
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B.1.4. STM32L475 IoT Node

B.1.4.1. AES

(a) First order leakage assessment results based on
a fixed-vs-random t-test for 1M traces collected
during AES encryptions on the STM32L475 IoT
Node with the ADC pin connected to GND.

(b) First order leakage assessment results based on
a fixed-vs-random t-test for 1M traces collected
during AES encryptions on the STM32L475 IoT
Node with the ADC pin disconnected (N/C).

(c) First order leakage assessment results based on
a fixed-vs-random t-test for 1M traces collected
during AES encryptions on the STM32L475 IoT
Node with the ADC pin connected to Vdd.

(d) Leakage Assessment progress on mbedTLS AES
with {Vdd, GND, N/C} connected to the ADC
on the STM32L475 IoT Node.

Figure B.7.: Results of Leakage Assessments on STM32L475 IoT Node for mbedTLS AES.
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B.1.4.2. Sliding Window Modular Exponentiation

(a) First order leakage assessment results based
on a fixed-vs-random t-test for 1k traces col-
lected during modular exponentiation on the
STM32L475 IoT Node with the ADC pin con-
nected to GND.

(b) First order leakage assessment results based
on a fixed-vs-random t-test for 1k traces col-
lected during modular exponentiation on the
STM32L475 IoT Node with the ADC pin dis-
connected (N/C).

(c) First order leakage assessment results based on
a fixed-vs-random t-test for 100k traces col-
lected during modular exponentiation on the
STM32L475 IoT Node with the ADC pin con-
nected to Vdd.

(d) Leakage Assessment progress on mbedTLS
modular exponentiation with {Vdd, GND,
N/C} connected to the ADC on the
STM32L475 IoT Node.

Figure B.8.: Results of Leakage Assessments on STM32L475 IoT Node for mbedTLS modular
exponentiation.
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B.2. Results of CPA for all secret AES key bytes on
Vdd and GND

B.2.1. ADC pin connected to GND

(a) CPA progress for the 0th secret key byte (b) CPA progress for the 1st secret key byte

(c) CPA progress for the 2nd secret key byte (d) CPA progress for the 3rd secret key byte

(e) CPA progress for the 4th secret key byte (f) CPA progress for the 5th secret key byte

(g) CPA progress for the 6th secret key byte (h) CPA progress for the 7th secret key byte

Figure B.9.: Results of a CPA attack on the last secret round key (bytes 0 to 7) of AES on the
STM32F407VG Discovery #1 @168MHz with the ADC connected to GND and
the program compiled with the -Os optimization option. Each plot shows the
correlation progress of all 256 key candidates for a specific key byte over 10M
traces and the respective correct key candidate is marked red.
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(a) CPA progress for the 8th secret key byte (b) CPA progress for the 9th secret key byte

(c) CPA progress for the 10th secret key byte (d) CPA progress for the 11th secret key byte

(e) CPA progress for the 12th secret key byte (f) CPA progress for the 13th secret key byte

(g) CPA progress for the 14th secret key byte (h) CPA progress for the 15th secret key byte

Figure B.10.: Results of a CPA attack on the last secret round key (bytes 8 to 15) of AES on
the STM32F407VG Discovery #1 @168MHz with the ADC connected to GND
and the program compiled with the -Os optimization option. Each plot shows
the correlation progress of all 256 key candidates for a specific key byte over
10M traces and the respective correct key candidate is marked red.
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B.2.2. ADC pin connected to Vdd

(a) CPA progress for the 0th secret key byte (b) CPA progress for the 1st secret key byte

(c) CPA progress for the 2nd secret key byte (d) CPA progress for the 3rd secret key byte

(e) CPA progress for the 4th secret key byte (f) CPA progress for the 5th secret key byte

(g) CPA progress for the 6th secret key byte (h) CPA progress for the 7th secret key byte

Figure B.11.: Results of a CPA attack on the last secret round key (bytes 0 to 7) of AES on
the STM32F407VG Discovery #2 @56MHz with the ADC connected to Vdd
and the program compiled with the -O0 optimization option. Each plot shows
the correlation progress of all 256 key candidates for a specific key byte over
10M traces and the respective correct key candidate is marked red.
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(a) CPA progress for the 8th secret key byte (b) CPA progress for the 9th secret key byte

(c) CPA progress for the 10th secret key byte (d) CPA progress for the 11th secret key byte

(e) CPA progress for the 12th secret key byte (f) CPA progress for the 13th secret key byte

(g) CPA progress for the 14th secret key byte (h) CPA progress for the 15th secret key byte

Figure B.12.: Results of a CPA attack on the last secret round key (bytes 8 to 15) of AES on
the STM32F407VG Discovery #2 @168MHz with the ADC connected to Vdd
and the program compiled with the -O0 optimization option. Each plot shows
the correlation progress of all 256 key candidates for a specific key byte over
10M traces and the respective correct key candidate is marked red.
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B.3. Simplified Source Code of the Experiments

Listing B.1: generic adcTask to sample the ADC for traces
1 // adcHandle = ..
2 void adcTask (void * pvParameters ) {
3 while (1) {
4 // wait for notify from mbedTask :
5 while ( ulTaskNotifyTake (pdTRUE , portMAX_DELAY ) == 0);
6 adc_get_samples (); // see details below (esp32: CPU , stm32: DMA)
7 uart_send (adc_data , sizeof ( adc_data ));
8 xTaskNotifyGive ( mbedHandle ); // notify mbedTask
9 }

10 }

Listing B.2: generic mbedTask to run mbedTLS AES or modular exponentiation
1 // mbedHandle = ..
2 void mbedTask (void * pvParameters ) {
3 // [...] init contexts / secrets for mbedtls here
4 while (1) {
5 // read message from uart
6 uart_read (msg , sizeof (msg ));
7 #ifdef EXP
8 mbedtls_mpi_read_string (&g, 16, msg)
9 #endif

10 // start ADC in other task:
11 xTaskNotifyGive ( adcHandle ); // notify adcTask
12 #ifdef EXP
13 mbedtls_mpi_exp_mod (& dummy , &g, &e, &modulus , NULL)
14 #else // AES
15 mbedtls_internal_aes_encrypt (&ctx , msg , dummy );
16 #endif
17 // wait for notify from adcTask :
18 while ( ulTaskNotifyTake (pdTRUE , portMAX_DELAY ) == 0);
19 }
20 }

Listing B.3: adc_get_samples for ESP32 CPU Task-based
1 static inline void adc_get_samples () {
2 for (int i=0;i< ADC_WORDS ;i++) {
3 adc_data [i] = adc1_get_raw ( ADC_CHAN_SEL );
4 }
5 }

Listing B.4: adc_get_samples for ESP32 ULP-based, plus ULP assembly code (adc.S). Please
note, in the actual implementation we directly used the ULP from the mbedTask
instead of a separate adcTask.

1 static inline void adc_get_samples () {
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2 adc1_ulp_enable ();
3 ulp_load_binary (0, ulp_main_bin_start , ulp_bin_size );
4 ulp_set_wakeup_period (0, 1000);
5 while ((( volatile typeof ( ulp_sync_back )) ulp_sync_back ) == 0);
6 *(( volatile typeof ( ulp_sync_back )*) & ulp_sync_back ) = 0;
7 uint32_t * p_ulp_adc_data = & ulp_adc_data ;
8 for (int i=0;i< ADC_WORDS ;i++) {
9 adc_data [i] = ( uint16_t ) (* p_ulp_adc_data ++) & 0xffff;

10 }
11 }
12

13 adc.S:
14 move r0 , adc_data
15 measure :
16 adc r2 , adc_nr , adc_channel + 1
17 st r2 ,r0 ,0
18 add r0 , r0 , 1
19 jumpr measure , adc_data +ADC_WORDS , lt
20 // sync back to main cpu , which spinlocks :
21 move r1 , sync_back
22 move r2 , 0x0001
23 st r2 , r1 ,0
24 halt

Listing B.5: adc_get_samples for STM32 and ADC-DMA interrupt handler
1 static inline void adc_get_samples ()
2 {
3 // start to acquire ADC samples through DMA
4 HAL_ADC_Start_DMA (& hadc3 , adc_data , ADC_WORDS )
5 // wait for ADC/DMA to finish while mbedTask executes
6 osSignalWait (0 x0001 , osWaitForever );
7 // make sure DMA is stopped
8 HAL_ADC_Stop_DMA (& hadc3 );
9 }

10

11 void HAL_ADC_ConvCpltCallback ( ADC_HandleTypeDef * hadc) {
12 osSignalSet (adcHandle , 0 x0001 );
13 }
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