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ABSTRACT:

Current mobile augmented reality devices are often equipped with range sensors. The Microsoft HoloLens for instance is equipped
with a Time-of-Flight (ToF) range camera providing coarse triangle meshes that can be used in custom applications. We suggest to use
these triangle meshes for the automatic generation of indoor models that can serve as basis for augmenting their physical counterpart
with location-dependent information. In this paper, we present a novel voxel-based approach for automated indoor reconstruction from
unstructured three-dimensional geometries like triangle meshes. After an initial voxelisation of the input data, rooms are detected in
the resulting voxel grid by segmenting connected voxel components of ceiling candidates and extruding them downwards to find floor
candidates. Semantic class labels like ’Wall’, ’Wall Opening’, ’Interior Object’ and ’Empty Interior’ are then assigned to the room
voxels in-between ceiling and floor by a rule-based voxel sweep algorithm. Finally, the geometry of the detected walls and their openings
is refined in voxel representation. The proposed approach is not restricted to Manhattan World scenarios and does not rely on room
surfaces being planar.

1. INTRODUCTION

Current head-worn Augmented Reality (AR) devices like the Mi-
crosoft HoloLens1 hold great potential for enriching indoor en-
vironments with the in-situ visualisation of location-dependent
information, e.g. from digital building information models (Hüb-
ner et al., 2018). While suchlike building models are currently
gaining in prevalence with the increasing use of Building Informa-
tion Modeling (BIM) techniques in the planning and construction
stages of building projects (Jung and Lee, 2015), already existing,
older buildings frequently lack such a digital representation that
could be used in such indoor AR scenarios (Lu and Lee, 2017).

Mobile indoor AR devices are however often equipped with range
sensors to facilitate 1) tracking and relocalisation within indoor
environments and 2) convincing placement and interaction of
virtual content with the physical surrounding. The HoloLens for
instance is equipped with a Time-of-Flight (ToF) range camera
providing range images and preprocessed triangle meshes that
can be used in custom applications. The geometric accuracy of
these meshes was found to be in the range of few centimetres,
however drift effects on scales larger than single rooms can occur
(Hübner et al., 2019, 2020; Khoshelham et al., 2019). We suggest
to use these data for the automatic generation of digital models of
indoor environments that can serve as basis for augmenting their
physical counterpart with location-dependent informative content
in an indoor AR setting.

While the automated reconstruction of indoor building models
from unstructured three-dimensional geometries is an active field
of research (Ma and Liu, 2018), prevalent approaches use dense
point clouds acquired by LiDAR sensors or range cameras. To
the best of our knowledge, there is currently no attempt on indoor
reconstruction using sparse triangle meshes as provided by the
HoloLens system.

∗Corresponding author
1https://www.microsoft.com/en-us/hololens

In this paper, we present a novel indoor reconstruction approach
for automatically deriving indoor building models as voxel rep-
resentation from sparse triangle meshes. The proposed approach
is not restricted to Manhattan World scenarios and does not rely
on room surfaces being planar. It can furthermore be easily trans-
ferred to using input data in the form of dense point clouds in the
scope of future work.

After briefly summarising related work in Section 2, we describe
our voxel-based method for the reconstruction of indoor environ-
ments from sparse triangle meshes and the applied evaluation
procedure in Section 3. After presenting evaluation results in Sec-
tion 4 and discussing them in Section 5, we provide concluding
remarks and suggestions for further research in Section 6.

2. RELATED WORK

Recently, a range of notable work on indoor reconstruction was
published which is briefly summarised in this section. Tran and
Khoshelham (2019) for instance proposed to detect rooms in Li-
DAR point clouds via a space subdivision approach by RANSAC
planes, first horizontally for separating storeys and then vertically
per storey. In each storey, the resulting cell complex generated by
the intersecting planes is arranged to the most probable composi-
tion of rooms by a stochastic approach, where the likelihood of a
cell being part of a room is determined by the amount of points
constituting its surface. Points obstructing room interior space are
penalised.

Yang et al. (2019) proposed to detect rooms in a cell complex
of intersecting lines by an energy minimisation approach. Wall
surfaces constituting the cell complex are derived in this case by
detecting and refining closed contours in 2D sections shortly below
ceiling height, where the amount of furniture can be expected to
be minimal. This approach is capable of reconstructing rooms
with horizontally curved walls.

Ochmann et al. (2019) focused on indoor reconstruction relying
on RANSAC for plane detection. Rooms are segmented from
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the detected planes by Markov clustering based on the mutual
visibility of plane patches. The detected room surface planes are
subsequently intersected in 3D space to reconstruct volumetric
wall and slab objects via an integer linear programming approach.

Nikoohemat et al. (2018) presented an approach to reconstruct
indoor models from point clouds captured by mobile LiDAR-
based indoor mapping systems while also incorporating trajectory
information e.g. for separating storeys and stairwells. Planar sur-
face patches are detected and successively merged depending on
coplanarity and distance. The resulting plane patches are arranged
in an adjacency graph and subjected to a rule-based process to
reconstruct and refine room surface geometry. Wall openings
are distinguished from occlusion-caused absence of points by a
voxel-based ray-tracing approach emanating from the trajectory
and by checking if the trajectory itself passes through an opening.
Rooms are discerned by a voxel-based space partitioning, again
incorporating trajectory information.

Xie et al. (2019) also focused on detecting planar patches and
subsequently refining them by merging. Then vertical patches
are selected based on their normal direction as wall surfaces and
contour lines are extracted in 2D sections in a similar way as
proposed by Yang et al. (2019). Here, however, multiple contours
are extracted over the whole height range of the room to account
for vertical changes in wall geometry like protrusions or recesses.
The refined contours are then assembled to 3D room surfaces.

Díaz-Vilariño et al. (2019) presented an indoor reconstruction
approach, that also relies on region growing for extracting planar
surfaces. The planes are subsequently classified in obstacles and
room surfaces, with the latter being further refined by intersecting
the individual planes with each other. For each wall surface,
rectangular openings are detected by applying the Generalized
Hough Transformation on 2D raster representations of the walls.
The reconstructed indoor models are further used in an indoor
path-finding framework.

Like Nikoohemat et al. (2018), Flikweert et al. (2019) also use
mobile LiDAR point clouds while also taking the trajectory into
account as additional source of information. Wall surfaces are
detected in the point cloud by applying the Medial Axis Trans-
form. Doors are then detected in voxelized walls with regard to
the voxelized trajectory. Rooms are finally segmented by region
growing among floor voxels while stopping on floor voxels within
the detected doors.

Gorte et al. (2019) also use a 3D voxel representation of the
input data for floor detection. They however do not reconstruct
complete indoor models but focus on detecting navigable floor
space for indoor path-finding to building exits. Floor voxels are
detected as non-empty voxels with a certain amount of vertical and
horizontal free space above them. Region growing with a threshold
on the maximum height difference between neighbouring floor
voxels generates connected components of navigable floor voxels
extending over stairs. Here, indoor voxel models prove to be a
suitable form of data representation for distance calculation for
navigation tasks.

3. METHODOLOGY

In this section, we present our novel method for reconstructing
voxel models of indoor environments from unstructured 3D data
with normal directions. After stating necessary data preparation
steps, we provide an in-depth explanation of our proposed recon-
struction algorithm. Subsequently, we elaborate on our evaluation
procedure.

The proposed approach is summarised in Figure 1 with Table 1
detailing the respective voxel colours. 3D data of indoor environ-
ments are transformed to a voxel representation and subsequently
a model of the respective indoor environment is reconstructed
in voxel space. To this aim, voxels are assigned to rooms and
semantic classes. While the method is applicable for unstructured
3D data with absolute normals and thus could also be applied to
point clouds provided they have normals, we focus in this study
on triangle meshes captured with the Microsoft HoloLens.

3.1 Data Preparation

While our proposed method is not restricted to Manhattan World
scenarios, where all room surfaces have to be aligned with the co-
ordinate axes, the results are cleaner and visually more appealing
when planar wall surfaces are aligned with the coordinate axes.
Thus, it can make sense to align the model along the coordinate
axes as a preprocessing step. This is, however, optional and not
necessary for the reconstruction method presented here to work.
Furthermore, our method does not rely on wall surfaces to be
planar but can also deal with curved wall surfaces.

For now, however, we presuppose, that walls are vertical. Verti-
cally slanted walls with an inclination of more than 45° are valid
though. These are reconstructed as ceiling surfaces. We further-
more assume that the upward direction is known and corresponds
to one of the coordinate axes.

As a preliminary processing step, the input dataset is converted
to a voxel representation. To this aim, a certain range of space
encompassing the input data is subdivided by a three-dimensional
grid of cubical, non-overlapping cells of uniform size, i.e. voxels.
Each voxel intersecting a geometric primitive of the input data (i.e.
a point of a point cloud or a triangle of a triangle mesh as is the
case here) is marked as non-empty. These non-empty voxels are
classified according to the normal directions of the intersecting
geometric primitives. If the majority of the normal vectors of
intersecting primitives points upwards or downwards within a
range of ±45°, the voxel is classified as ’Normal Up’ or ’Normal
Down’, respectively. Otherwise, non-empty voxels are classified
as ’Normal Horizontal’.

Voxels can thus be characterised as having one of four possible
states: ’Empty’, ’Normal Up’, ’Normal Down’ or ’Normal Hori-
zontal’. Hence, the voxel representation can be stored memory-
efficiently as a three-dimensional array of byte values. The voxel
size as parameter of the voxelisation process is set to 5 cm in the
scope of this paper, a reasonable value in consideration of the typ-
ical dimensions of indoor environments and the resolution of the
HoloLens triangle meshes. The same voxel size has been used e.g.
by Gorte et al. (2019) for the automated extraction of navigable
space in indoor environments.

The resulting voxel grid serves as input for the reconstruction
algorithm presented in the following sections. The aim of the
proposed algorithm is to segment this voxel grid in rooms and to
classify voxels belonging to a room as ’Ceiling’, ’Floor’, ’Wall’,
’Wall Opening’, ’Empty Interior’ or ’Interior Object’.

3.2 Room Detection

In a first processing step, rooms are detected in the voxel model
by segmenting ceiling candidates. In subsequent refinement steps,
ceilings and floors are reconstructed as voxel representation for
each room.
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Result: reconstructed voxel model
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Figure 1. Processing workflow from input mesh to final recon-
structed voxel model. The colour scheme of the normal classifica-
tion is described in Table 1(a). The other depictions are coloured
according to Table 1(b). A part of the ceiling is removed for the
sake of visibility.

Table 1. Colour schemes for voxel classes.

a) Normal Direction

Colour Class Label

" Normal Down
" Normal Up
" Normal Horizontal

b) Indoor Reconstruction

Colour Class Label

" Ceiling
" Floor
" Wall
" Wall Opening
" Interior Object

3.2.1 Ceiling Detection Initially, ceiling segments are detected
as seeds for room candidates. This is achieved by segmenting ’Nor-
mal Down’ voxels to connected components based on a 3D-26-
neighbourhood via 3D region growing. Beforehand, a rule-based
voxel sweep is performed by iterating section-wise from bottom to
top through the voxel grid along the upward direction and switch-
ing ’Normal Down’ voxels that have a ’Normal Horizontal’ voxel
directly below them to ’Normal Horizontal’ themselves. This en-
sures that the ceiling segments resulting from the region growing
algorithm represent distinct room candidates divided by walls.

Ceiling segments are discarded as room candidates if they have a
horizontal coverage of less than 0.5m2. In our algorithm, param-
eters like this one are generally set as metric values in order to be
independent of the applied resolution of the voxel grid. The re-
spective values are chosen in consideration of typical dimensions
of indoor environments.

3.2.2 Ceiling Refinement The remaining ceiling candidates
are subsequently refined. In this refinement process, horizontal
holes in the voxel segments representing ceilings are detected.
These holes are eventually closed later on if they satisfy certain
criteria trying to ensure that only holes are being closed, that are
caused by incomplete acquisition of the geometric primitives the
voxel representation is derived from, e.g. caused by occlusion.
Actual holes in ceiling surfaces caused e.g. by columns or corners
pointing convexly inside the room, on the other hand, should not
be closed.

For the detection of holes in ceiling segments, the ceiling seg-
ments are transformed to a horizontal two-dimensional pixel grid
covering the whole horizontal extension of the respective ceiling
segment. Pixels are marked as non-empty if a voxel of the ceil-
ing segment occupies its position. The ceiling pixel is assigned
the height in voxel grid integer coordinates of the lowest ceiling
segment voxel occupying its position.

Hole pixels are then detected within this two-dimensional grid by
searching for empty pixels that are in-between two non-empty
pixels along the four main directions resulting from a 2D-8-
neighbourhood. Hole pixels need not be directly neighbouring
their enclosing non-empty pixels, i.e. holes can have an extent
of multiple pixels. The detected hole pixels are subsequently
segmented to hole segments based on a 2D-4-neighbourhood.

Furthermore, each hole pixel is assigned a height value in inte-
ger voxel grid coordinates. This height value is determined by
2D ray-tracing from ceiling pixels that are positioned in a 2D-
4-neighbourhood of hole pixels across the hole in the four main
directions resulting from a 2D-8-neighbourhood. If a 2D ray ends
in another ceiling pixel, the height of hole pixels along the ray is
interpolated linearly between the height values of the two ceiling
pixels. Otherwise, the height of hole pixels is set directly from the
ceiling pixel the ray started from. The height value of each hole
pixel is kept as a moving average over all rays and subsequently
rounded to an integer value. Finally, a smoothing of the height
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values is applied across all hole pixels belonging to a common
hole segment.

3.2.3 Floor Detection Once all hole pixels have been assigned
a height value, it is decided per hole segment if the hole can be
closed, i.e. if the voxels corresponding to hole pixels and their
respective height values should be included as ceiling voxels in
the respective ceiling segment. To make this decision, knowledge
about the supposed vertical extent of the room under the respective
ceiling voxel is necessary. Hence, for each voxel corresponding to
a ceiling or hole pixel and its respective height, a corresponding
floor voxel candidate needs to be found.

To this aim, another two-dimensional pixel grid of the same extent
as the respective ceiling pixel grid is created for each ceiling
voxel segment. The voxel grid is traced through downwards from
each ceiling or hole voxel position. If a ’Normal Up’ voxel is
encountered before reaching the bottom of the voxel grid or a
’Normal Down’ voxel belonging to another ceiling segment, the
respective floor pixel grid position is marked as floor candidate
and assigned the height value of the ’Normal Up’ voxel.

These floor candidate pixels are subsequently segmented in floor
candidate pixel segments based on a 2.5D-8-neighbourhood per
2D floor grid. The 2.5D-8-neighbourhood is realised by 2D region
growing with a threshold of 18 cm (a common height of stair steps)
as maximally allowed height difference between neighbouring
floor candidate pixels.

Floor candidate segments with a horizontal extent of less than
0.5m2 are discarded, unless there are no floor candidate segments
with a horizontal extent larger than this in the respective floor
pixel grid. From the remaining floor candidate segments, the
segment containing the lowest height is selected as final floor for
the respective room. All pixels belonging to other segments are
set to ’Empty’.

The selected value of 18 cm as maximum height difference on
floors proved to result in floor segments that can extend over stairs
and ramps while mostly avoiding to spread over to surfaces on top
of furniture like tables or chairs.

For each floor pixel grid, all empty pixels corresponding to a
ceiling pixel or hole pixel in the respective corresponding ceiling
pixel grid need to have a height value assigned. Their height is
determined via the same procedure as used for the height of the
hole pixels in the ceiling pixel grids as detailed beforehand.

3.2.4 Ceiling and Floor Finalisation On the basis of the floor
reconstruction, the decision which ceiling holes are to be closed
can now be made by analysing the voxels below hole voxels in
the height range restricted by the height values in the respective
floor grid pixels. If a horizontal hole extent overlaps with another
already reconstructed room within this height range, it cannot be
closed. If this is not the case and at least 75% of the horizontal
hole extent is occupied by a non-empty voxel in the input voxel
grid within the height range between ceiling and floor, the hole is
to be closed. Otherwise, the hole can potentially still be closed,
unless the vertical extent of the border between hole and room
is filled to at least 75% in the input voxel grid, indicating the
presence of a wall.

At this state, ceilings and floors of all detected rooms are deter-
mined as connected voxel components with each ceiling voxel
having a corresponding floor voxel somewhere below it. Subse-
quently, a smoothing process is applied to the height of ceilings
and floors per room. Furthermore, wall voxels are initialized along
the border of ceilings as a closed contour of voxels neighbouring
the ceiling segment on the outside.

3.3 Voxel Classification

During the complete reconstruction process detailed here, the state
of the voxel grid is stored in a three-dimensional array of integer
arrays. Under certain circumstances, our algorithm allows for
voxels to belong to two different classes at once for the same
room as well as to belong to multiple rooms at once with different
classes. For instance, a voxel can be classified as ’Ceiling’ as well
as as ’Wall’ at once for the same room to represent the fact, that
the edge between the actual ceiling and wall surfaces runs through
this voxel. This is the case for the wall voxels initialized along the
contours of ceilings. Similarly, voxels can belong simultaneously
to the classes ’Floor’ and ’Wall’.

Furthermore, voxels can belong to more than one room. This is
the case, if the surfaces of neighbouring rooms are covered by
the same voxel. The frequency of this occurrence depends on the
voxel size as well as on the width of walls and horizontal slabs
of the buildings represented by the data. In those cases where a
voxel belongs to more than one room, its respective classes can
only occur in certain specific combinations. While a voxel can
e.g. represent the walls of two neighbouring rooms or ceiling for
one room and floor for another directly above it, it for example
cannot represent floor for more than one room at once. Also
voxels belonging to the room interior (classes ’Empty Interior’
and ’Interior Object’) can only belong to one room, as rooms can
only share voxels along their borders.

For classifying voxels besides the already reconstructed floors
and ceilings, the voxel grid is traversed section-wise from top to
bottom, while voxels are assigned to rooms and classes depending
on the state of the voxel above it. In doing so, all voxels below
a ceiling voxel get assigned to the same room the ceiling voxel
belongs to, until a floor voxel of the respective room is encountered.
When the ceiling voxel does not also have the class label ’Wall’ for
the same room, the voxels between it and the floor will be assigned
to the classes ’Empty Interior’ or ’Interior Object’, depending on
the respective voxel being empty or not in the input data. Voxels
below ceiling voxels that are simultaneously wall voxels of the
same room, on the other hand, are classified as ’Wall’ or ’Wall
Opening’ based on the same criterion. When walls finally hit their
corresponding floor voxel, that voxel gets assigned the class label
’Wall’ additionally to it being classified as ’Floor’.

3.4 Voxel Model Refinement

After applying the voxel sweep algorithm described previously,
voxels have assigned class labels and room affiliations. The re-
sulting indoor voxel model is further improved in subsequent
refinement sweeps.

Preliminarily, horizontal two-dimensional normal directions in
integer voxel grid coordinates are determined pointing towards the
room interior for all wall voxels (class ’Wall’ or ’Wall Opening’)
based on a 2D-4-neighbourhood. As is the case with class labels,
these normal directions are managed on a per-room basis. Thus, a
voxel can have two sets of normal directions if it is a wall voxel
neighbouring two rooms.

3.4.1 Wall Geometry Refinement In a first refinement pass,
missing wall sections are detected and completed by searching for
voxels belonging to the room interior (classes ’Empty Interior’ and
’Interior Object’) that are horizontally neighbouring voxels that
do not belong to the same room based on a 2D-4-neighbourhood.
These neighbouring voxels not belonging to the same room can
either belong to other rooms or no room at all.

Such situations can occur on discontinuities in height of horizon-
tally neighbouring ceiling or floor voxels. This can occur e.g. on
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vertical windows in slanted ceilings or on the floor where large
discontinuities in height are possible despite of the threshold on
height difference of neighbouring voxels in the region growing
of floor segments. This can happen, when parts of the floor on
different height levels are connected by stairs or ramps (e.g. in the
case of staircases or platforms like stages). In these cases, interior
voxels are converted to wall voxels (class ’Wall’ or ’Wall Opening’
depending on the voxel being empty in the input data) or to ceiling
or respectively floor depending on the height of the discontinu-
ity being larger or smaller than the aforementioned threshold of
18 cm.

So far, all reconstructed walls have a thickness of one voxel. This
results from the fact, that they have been initialised as a contour
with the width of one voxel along the border of the ceilings and
were then just traced vertically downwards. However, also vertical
walls as presupposed by this algorithm can encompass elements
with a certain extent perpendicular to the wall surface, e.g. applica-
tions such as bordures, light switches, window ledges or window
recesses that are normally considered as part of the wall and not
as individual furniture objects (which would belong to the class
’Interior Object’). To include suchlike elements in our voxel recon-
struction of walls, a wall refinement procedure is applied for each
pre-existing wall voxel (class ’Wall’ or ’Wall Opening’). New wall
voxels arising in the course of this procedure are not recursively
processed by it.

First, for each wall voxel, we sweep through the neighbouring
voxels along the reversed normal directions of the voxel, i.e. going
away from the room to the outside. Here, non-empty voxels that
do not yet belong to a room are searched within a distance of up
to 15 cm. If there are any non-empty voxels within this search
distance, they are added to the wall of the respective room and the
normal directions of the initial voxel are copied. If there are also
empty voxels in-between, these are also added with class label
’Wall Opening’.

Next, we apply a similar procedure going from the initial voxel
along its normal directions up to 15 cm towards the inside of the
room. Here, however, we immediately stop if we encounter a
voxel labeled as ’Empty Interior’. Only a continuous succession
of ’Interior Object’ voxels can potentially be added to the wall.
Before doing so, however, we check if this continuous succession
of voxels goes further than the search distance of 15 cm. If this
is the case, we assume that they belong to a large furniture object
like e.g. a table and do not add them to the wall.

3.4.2 Wall Opening Refinement In a next step, we refine the
occurrence of wall opening labels. This again is done by travers-
ing the voxel grid along the normal directions towards the room
interior and away from it for all pre-existing wall voxels (i.e. all
wall voxels that already existed before the last refinement step).
Thus, for each pre-existing wall voxel, we get stacks of wall voxels
along the normal directions. If any of these voxels has the label
’Wall’, we set all ’Wall Opening’ voxels in the stack to ’Wall’.

Furthermore, for all voxels that are still labeled as ’Wall Opening’
after applying this refinement step, we again traverse the voxel
grid along the normal directions going towards the room interior
with a search distance of 70 cm to check if there are surfaces of
large furniture objects occluding this part of the wall. If this is the
case, the whole wall voxel stack is set to ’Wall’ as well.

3.5 Evaluation

As the indoor reconstruction method proposed in this work does
not process the geometric primitives comprising the input datasets
themselves but voxel representations derived from them, ground

truth data for evaluation purposes should in the end also be given
as voxel representation. Thus, a possible approach would be to
manually label voxel representations of input data with ground
truth information. However, to be able to automatically evaluate
the influence of the voxel size in the scope of future work, we
chose not to label our ground truth data in voxel space but to
construct ground truth data in the metric space of the input data
and pass it through the voxelisation step as well.

As our aim is to not only semantically classify the geometric
primitives comprising the input data, but also to geometrically
reconstruct indoor environments in the voxel representation, the
generation of ground truth data must exceed simple labelling of
the geometric primitives. The input data in the form of triangle
meshes may contain gaps caused by occlusion or incomplete map-
ping of the represented indoor environments. The reconstruction
algorithm, however, is expected to fill these gaps by labelling
the voxels there as room surface. Thus, suchlike gaps must be
manually closed by geometries in the ground truth data.

We hence approached ground truth data generation by manually
cutting the triangle meshes comprising the input data in different
parts and labelling them. First, the meshes are manually split in
rooms and then on per-room basis split in semantic classes as
’Floor’, ’Ceiling’ and ’Wall’. The resulting meshes are then com-
pleted by manually constructing planes to close gaps in the data,
e.g. where walls are occluded by furniture. Furthermore, openings
in the meshes that should explicitly be detected as openings by
the reconstruction algorithm such as window openings or door
openings are also manually constructed as planes.

The resulting labelled ground truth meshes are then voxelized as
described in Section 3.1, while their labels are passed on to the
resulting voxels. For evaluation purposes, test data as well as
ground truth data are both voxelized by the same grid, i.e. for
determining the grid extensions, we use a bounding box including
both datasets. Thus, we ensure that voxel coordinates are directly
comparable.

Some rules are applied to handle situations, where ground truth
meshes with conflicting labels are intersecting the same voxel.
For instance, if a voxel intersects ’Wall’ meshes as well as ’Wall
Opening’ meshes, it should be labelled as ’Wall’. Furthermore, the
ground truth voxel model should use the same data representation
as the one created by the algorithm to be evaluated, i.e. voxels can
belong to multiple classes and multiple rooms.

As the manual labelling of furniture as ’Interior Object’ and the
construction of volumetric geometries representing ’Empty Inte-
rior’ would be too time-consuming, these classes were excluded
from the evaluation. Voxels belonging to these classes are for
evaluation purposes treated as empty voxels not belonging to any
room, as they are represented in the ground truth data.

As the labelling of room numbers may differ between test data and
ground truth data and, furthermore, the segmentation of rooms
may differ between the datasets, a mapping between rooms of
both datasets has to be determined. On the one hand, this serves to
evaluate the room segmentation of the proposed algorithm and, on
the other hand, this is used for evaluating the voxel classification.

To this end, a weighted mapping between rooms from both datasets
is derived by analysing voxels, that in both datasets are classified
as ’Ceiling’. If such a voxel is assigned in the ground truth dataset
as belonging to room X and in the test data as belonging to room
Y , the weight counter of room mapping X → Y is incremented.
Room mappings with negligible weight can be discarded.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-4-2020-79-2020 | © Authors 2020. CC BY 4.0 License.

 
83



Table 2. Dataset characteristics.

Dataset Office Attic

Spatial Extent [m] 13×21×8 8×9×3
Time for Acquisition [min] 29 16
Mesh Vertices [·106] 2.87 0.08

In the evaluation procedure, we currently only check for corre-
sponding voxels to hold exactly similar states in due consideration
of the above-mentioned room mapping and the treatment of room
interior voxels as not belonging to a room. This means that we do
currently not consider cases, where a voxel has the correct state for
one room but an incorrect one for another room, as partly correct.

4. RESULTS

In the evaluation process, we use two datasets. Both triangle
meshes were captured with a Microsoft HoloLens (version 1). The
first dataset (’Office’) represents an indoor office environment with
multiple rooms on two storeys including furniture. The input mesh
as well as the reconstructed voxel model including voxels of the
class ’Interior Object’ are depicted in Figure 1. The second dataset
(’Attic’) represents an attic with slanted ceilings comprised of five
rooms used as storage area. The triangle mesh and the resulting
voxel reconstruction are depicted in Figure 2. Data characteristics
such as spatial extent, resolution and time for acquisition are listed
in Table 2.

For the ’Office’ dataset, a ground truth voxel representation de-
rived from manually labeled and constructed ground truth meshes
is depicted in Figure 3(a), while Figure 3(b) depicts our recon-
struction with voxels of the classes ’Interior Object’ and ’Empty
Interior’ omitted. To demonstrate that our reconstruction algo-
rithm is not restricted to Manhattan World scenarios, we also
rotated the input mesh as well as the ground truth mesh by 30°
around the up-axis. The resulting voxel models are depicted in
Figures 3(c) and 3(d), respectively.

(a) Triangle mesh.

(b) Reconstructed voxel model, where voxels are colourised according to
Table 1(b).

Figure 2. The dataset ’Attic’.

(a) Ground truth for the axes-aligned dataset.

(b) Reconstruction result for the axes-aligned dataset.

(c) Ground truth for the dataset rotated by 30° around the up-axis.

(d) Reconstruction result for the dataset rotated by 30° around the up-axis.

Figure 3. Voxelized ground truth data and reconstruction results
for the ’Office’ dataset. Voxels are colourised according to Ta-
ble 1(b). In each case, a part of the ceiling is removed for the sake
of visibility.
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Table 3. Evaluation results (Vx.: Voxels, NE: Non-Empty, GT:
Ground Truth, RC: Reconstruction).

Dataset Office Office
Rotated Attic

Vx. [·106] 18.89 30.26 1.73
NE Vx. in RC [%] 5.24 3.23 6.8
Rooms GT 25 25 5
Rooms RC 30 29 5
Wrong Rooms from GT 1 1 0
Correct Vx. [%] 95.18 96.72 92.91
Correct Vx. in
RC NE [%] 51.77 53.70 44.04

Correct Vx. in
GT and RC NE [%] 91.66 91.82 84.53

Table 4. The meaning of the colours in Figure 4 (GT: Ground
truth, RC: reconstruction)

.

Colour Label

" Voxel classified correctly
" Voxel not empty in GT and RC, but wrong class
" Voxel empty in GT, but not in RC
" Voxel empty in RC, but not in GT

The evaluation results for these datasets are detailed in Table 3. In
both cases of the ’Office’ dataset (axes-aligned and rotated mesh),
all rooms except for the stairwell were detected correctly. The
stairwell being defined as one room in the ground truth model
was in both cases split into multiple rooms by the reconstruction
algorithm. In the case of the ’Attic’ dataset, all five rooms were
correctly detected.

For all datasets, the high overall ratio of correctly classified voxels
is heavily biased by an enormous predominance of correctly clas-
sified empty voxels. The low ratio of correctly classified voxels
in proportion to non-empty voxels in the reconstructed model,
however, is also misleading as will be discussed in the following
section. The ratio of correctly classified voxels in proportion to
voxels that are not empty in the reconstruction as well as in the
ground truth, on the other hand, is again over 90 % for the ’Office’
dataset and around 85 % for the ’Attic’ dataset. The results for
the axes-aligned and the rotated version of the ’Office’ dataset
are quite comparable, both visually as well as concerning the
evaluation results presented in Table 3.

Figure 4 gives an impression of the spatial distribution of wrongly
classified voxels for the axes-aligned ’Office’ dataset. Voxels
being correctly identified as non-empty but having the wrong class
label are mainly constituted by wall voxels missing a second class
label for ceiling or floor and false wall openings that should have
been classified as ’Wall’. Furthermore, it is apparent, that the low
ratio of correctly classified voxels in relation to non-empty voxels
in ground truth or reconstruction is mainly caused by layers of
missing or superfluous voxels along the room surfaces.

5. DISCUSSION

As already mentioned, the low ratio of correctly classified voxels
in proportion to the total count of voxels being not empty in the
reconstructed model seems to indicate a quite low quality of the
classification results. However, as Figure 4 indicates, missing
voxels in the reconstruction are in large parts situated as layers
along room surfaces as is the case with voxels that should be empty

(a) All cases as listed in Table 4.

(b) Only voxels that are not empty in the reconstruction as well as in
the ground truth model.

Figure 4. Spatial distribution of correctly and wrongly classified
voxels for the reconstruction of the axes-aligned model from Fig-
ure 3(b). The voxels are colourized according to Table 4. A part
of the ceiling is removed for the sake of visibility.

according to the ground truth, but are not in the reconstruction.
The high amount of voxels that should be empty according to the
ground truth along wall surfaces can be attributed to the geometric
refinement of the walls presented in Section 3.4.1 which results
in a thickening of the voxel representation of the reconstructed
walls. Layers of missing voxels, on the other hand, mainly occur
on top of ceiling and floor voxel surfaces, which indicates that
our approach seems to systematically underestimate the height of
these horizontal slabs.

Generally, it needs to be discussed, if an evaluation procedure
accounting only for the presence or absence of values on exact
voxel positions is adequate in a reconstruction scenario such as this.
However, it would rather be more appropriate to try to quantify
the displacement between entities such as walls or slabs between
ground truth data and reconstruction. This, however, presupposes a
meaningful segmentation of such entities and the correct allocation
of them between reconstruction and ground truth. Generally, a
meaningful comparison between different model representations
or mapping results representing the same indoor environment is
not a trivial matter. Valuable discussions on this topic can be found
e.g. in (Chen et al., 2018) or (Khoshelham et al., 2018).

As indicated by Figure 4(b), there is clearly still potential for
improvement in the distinction between actual wall openings and
the absence of geometric primitives caused by occlusion. While
checking for large occluding furniture objects directly in front of
wall opening voxels works quite well in many cases, occlusions
from tables where the occluding object is not in front but above the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-4-2020-79-2020 | © Authors 2020. CC BY 4.0 License.

 
85



wall opening are not yet accounted for. Some cases of erroneous
wall openings could also potentially be prevented by checking if
the adjacent wall of a neighbouring room shows a corresponding
opening. If this is not the case, it could be reasoned that the
respective wall opening can be closed.

The voxel representation of indoor environments used in this work
can be considered as an intermediate form of data representa-
tion, that enables a straight-forward detection and segmentation of
building elements such as walls and rooms. More compact, preva-
lent forms of indoor models such as the boundary representation
can later on be derived from voxel models in the scope of future
work. However, in some application scenarios, voxel models can
have advantages over more compact forms of indoor models. Its
explicit, discrete, volumetric representation of empty indoor space
with clearly defined neighbourhood relations between voxels can
facilitate tasks like determining the shortest exit route from arbi-
trary positions inside the indoor environment as demonstrated by
Gorte et al. (2019). In the case of more compact forms of indoor
models, solving a suchlike task would be more complicated.

6. CONCLUSION

In this work, we presented a novel approach for reconstructing
models of indoor environments in the form of voxel representa-
tions from unstructured three-dimensional geometries like triangle
meshes. This process encompasses the voxelisation of the input
data. Rooms are detected in the resulting voxel grid by segmenting
connected voxel components of ceiling candidates and extruding
them downwards to find floor candidates. Semantic class labels
like ’Wall’, ’Wall Opening’, ’Interior Object’ and ’Empty Interior’
are then assigned to the room voxels in-between ceiling and floor
by a rule-based voxel sweep algorithm. Finally, the geometry of
the detected walls is refined in the voxel representation.

We demonstrated by means of quantitative evaluation, that the
presented algorithm holds potential for the reconstruction of in-
door environments from sparse and noisy data of complicated
and clutter-rich three-dimensional indoor environments. Further
work should be directed in merging over-segmented rooms and
extracting three-dimensional topological relations between the
reconstructed rooms such as adjacency and accessibility through
sufficiently large wall openings. Furthermore, the conversion of
the resulting voxel model into more common forms of building
data representation such as surface models or volumetric objects
would enable the further processing of the reconstructed models
with prevalent BIM tools.

A further goal for future research is to make these indoor models
derived from data acquired by a mobile augment reality device
accessible in the context of indoor augmented reality by enrich-
ing them with additional space-related information that can then
be visualised directly in the location that it refers to. An open
research question in this context is how a mobile AR device can
be automatically localised within large-scale indoor environments
only on the basis of an abstracted indoor model without relying
on artificial markers or other kinds of infrastructure.
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