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a b s t r a c t 

Printed electronics offer great potential for new applications such as Internet of Things devices and wearables. 

However, to date, only a limited number of electronic functions and integration densities can be realised by 

printing processes. Hence, hybrid printed electronic circuits are actually created by mounting silicon electronic 

components. Since both printed materials and processes are continuously evolving, an accompanying structured 

development methodology is required. This paper highlights a digital workflow from design to automated fabrica- 

tion using the example of a demonstrator circuit. A multi-layer vector ink-jet printing process to print electronic 

devices onto foil substrates with three functional inks is presented. This printing process is improved using a 

newly set-up printing system: Integrating a piezo print head into the path planning of the printing system and 

its control as a virtual stepper axis enable highly precise vector printing. This leads to printed resistors with low 

tolerances. Adaptations of surface mount technology for assembling silicon electronic components onto printed 

foil substrates are discussed. Finally, image processing methods to cope with deformations of the flexible foil 

substrates in the fabrication process are introduced. 
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. Introduction 

Printed electronics holds the potential to fabricate flexible, low cost

lectronic devices and systems to realise new applications such as wear-

bles, Internet of Things (IoT) devices and sensors [1-3] . The low ma-

erial consumption due to the additive nature of the process complies

ith the trend towards resource efficiency. 

The key component of printed electronics are functional inks based

n novel nanomaterials. The ink portfolio is continuously growing, rang-

ng from materials for printing conductors, passive components (e.g.

esistors, capacitors), and active components (e.g. diodes, transistors)

 4 , 5 ]. Established printing techniques such as offset printing, screen

rinting or ink-jet printing [6] have been adapted for functional print-

ng [ 7 , 8 ]. New printing techniques such as aerosol-jet printing and elec-

rohydrodynamic ink-jet printing have specifically been developed for

unctional printing applications [9] . This growing number of printing

echniques allows good scalability from digital processes such as ink-

et or aerosol-jet printing for small numbers of piece-parts to high-

hroughput production by for example roll-to-roll (R2R) screen-printing.

fter the ink has been deposited on the substrate by the printing process,

ne or more postprocessing steps such as drying, curing and sintering

re required to yield the desired functional layer on the substrate. De-

ending on the complexity of the circuit, the sequence of printing and
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ostprocessing is repeated several times with different functional mate-

ials. 

The benefits of printed electronics come, however, at the price of a

ew challenges. The performance of printed components is frequently

ubstantially lower than that of silicon components. For example, the

onductivity of printed silver conductor tracks is lower than bulk silver

y a factor of two or more; switching frequencies of printed transis-

ors are in the low MHz range, while silicon transistors easily reach GHz

evels [2] . In addition, complexity and integration density of printed cir-

uits are also orders of magnitude lower than current integrated silicon

ircuits, implying that a printed microcontroller, for example, cannot be

xpected in the near future [1] . Progress in silicon electronics has been

ignificantly fostered by industry. 

For decades, companies and research institutions have coopera-

ively developed and standardised silicon electronics materials, design

ethodologies, processes and equipment. These activities have led to

remendous technological progress, given rise to new industries and

ave made new products available to the consumer [10] . Compared

o this state of the art of silicon electronics, printed electronics is still

n its infancy. Hence, in the field of printed electronics research, ques-

ions and challenges exist along the entire development and fabrication

hain. To start with, functional printing is still lacking the design in-

rastructure (e.g. design rules, process design kits) established in classic

lectronic fabrication. First rule sets and tools are under development

ut there is still a long way to go [ 2 , 11 ]. In semiconductor fabrication,
020 
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tructure size is primarily defined by lithography. In functional print-

ng, structure size, e.g. line width depends on the interaction between

nk and substrate, i.e. the wetting properties of the substrate for a given

nk. Moreover, in piezo ink-jet printing the structure size on the sub-

trate depends on the droplet diameter generated by the print head. The

roplet diameter is determined by the printing nozzle diameter and by

he piezo actuation waveform [12] . Thus, in functional printing, struc-

ure size depends on the interactions between printing system, ink and

ubstrate. Finally, as printed electronics is still a technology in ramp-up

hase, materials properties and their reproducibility frequently remain

n issue affecting process yield and product quality. Furthermore, ink

roperties may vary from batch to batch. Thermal stability of substrates

uts constraints on postprocessing steps and limits geometric fidelity

f printed structures. Substrate suppliers optimise the substrate surface

or structural definition by chemical functionalisation and in some cases

dditionally by nano-structuring of the substrate surface [13] . For low

emperature substrates, suppliers offer heat stabilised foils. This does,

owever, not exclude anisotropic elongation, shrinkage or even warpage

uring processing. These effects must be detected and considered in the

abrication process. 

Hence, in order to reap the above-mentioned benefits of printed elec-

ronics, a substantial effort is involved in investigating printing param-

ters and ink substrate interaction [13] . Moreover, in order to take ad-

antage of the adaptability of flexible electronics, printed device perfor-

ance under flexural strain has to be taken into account [14] . 

A pragmatic approach in realizing printed circuits despite these

hallenges is to decide which components are reasonable candidates

or printing, then to select the respective materials, establish the rel-

vant printing processes and gradually establish the complete fabrica-

ion flow to ultimately realise the comprehensive circuit. Functional el-

ments that cannot yet be realised by functional printing are mounted

y adapted surface mounting processes (e.g. by adhesive bonding of

urface-mounted devices (SMD)) onto the printed substrate yielding hy-

rid printed electronic circuits [9] . The present paper highlights a new

ethodical approach using a fully digital design and fabrication work-

ow from design to ink-jet printing and component mounting outlined

n [15] in greater detail. 

To this end, the remainder of the present paper is organised as fol-

ows: In Section 2 , the applied materials and methods are introduced,

ncluding equipment used as well as design, fabrication and measure-

ent set-ups. In Section 3 , the theoretical basis for the novel control

f the vector ink-jet printing process is represented. In Section 4 , the

esults regarding the advances of the design and fabrication workflow

re outlined, discussed and a printed, hybrid integrated demonstrator

ircuit is presented. Finally, a conclusion is given, including an outlook

nd challenges to be addressed in future research. 

. Materials and methods 

In the following, the materials and methods used to realise the auto-

ated fabrication of hybrid printed electronics are introduced. 

.1. Materials 

.1.1. Inks 

The wiring, contact pads, capacitor base, top plates and fiducial

arks are printed with the nanoparticle silver ink Advanced Nano Prod-

cts DGP 40LT-15C; the resistors with the carbon ink Methode Electron-

cs Ink 3804. The capacitor dielectric and the cross-connect insulation

re realised using a Barium-Strontium-Titanate (BST) ink developed at

IT [16] . 

.1.2. Adhesive 

The conductive adhesive to contact the electronic components to the

ubstrate is the two-component adhesive Elecolit 325 by Panacol with

 mixing ratio of 1:1 filled with silver particles with a size of 25 μm.
o improve the mechanical fixation of the SMD components, the non-

onductive structural adhesive Loctite 3094 is additionally applied. 

.1.3. SMD components 

The tetrode Infineon BF2040 in a SMD SOT143 package is used for

ealisation of the transistor function by hybrid integration. 

.1.4. Substrates 

Two Polyetheylentherephthalate (PET) foil substrates, Dupont

elinex ST 506 and Mitsubishi Paper Mills NB-TP-3GU100 are used.

he Melinex substrate has a thickness of 125 μm, a clear reflective sur-

ace and is modified by a chemical process for improved printability.

he other PET substrate, NB-TP-3GU100 by Mitsubishi Paper Mills, is

 135 𝜇m thick flexible PET substrate with a nano-porous top layer for

mproved printability. Due to this layer conductive structures can be

chieved with the silver nano-particle ink without thermal postprocess-

ng. 

.2. Methods 

.2.1. Workflow 

Fig. 1 illustrates the digital workflow. The data flow goes in the ver-

ical direction starting with circuit development, layout definition in the

omputer aided design (CAD) system Altium and fabrication programme

eneration in the generator tool. The fabrication flow is depicted in the

orizontal from printing over inspection to SMD component mounting.

.2.2. Circuit design and automatic generation of fabrication programs 

The circuit and the derived PCB layout are designed with the CAD

oftware Altium version 14.1.5. The design space is defined by the poly-

er substrate size of 150 mm x 150 mm. The CAD design of the circuit

s the basis for all steps of the fabrication workflow. Circuit elements are

llocated to different CAD layers according to their function in order to

e able to assign separate properties to them for the subsequent pro-

essing steps. Moreover, component position, orientation and package

ypes are included in the layout. The objective is to derive as many data

s possible for subsequent steps from this base information. The indus-

ry standard for exchange of layout data ODB ++ is chosen to export the

AD data from the Altium CAD system [17] . By means of a generator

ool developed in Python control programs for the processing stations

rinting and SMD component mounting as well as a template for qual-

ty control with image processing are derived from the CAD layout. The

ool imports the ODB ++ files of the different CAD layers and builds an

nternal data model of the circuit from these data. After verification and

leaning this data model leads to two weighted graphs, one for one-

imensional features (conductor tracks) and one for two-dimensional

eatures (e.g. pads, capacitor plates) [18] . Generation of tool paths for

achining tasks is a problem typically tackled by graph traversal algo-

ithms [19] . Tool paths can be subdivided into machining paths where

he tool interacts with the workpiece and empty runs where the tool is

oved from one machining site on the workpiece to the next. It is evi-

ent that empty runs are unproductive auxiliary process time and thus

ave to be kept as short as possible. Hence, the main optimisation cri-

erion is the reduction of empty runs, as this directly reduces overall

achining time and thus cost. This NP-hard optimisation task is treated

s travelling salesman problem, for which no optimal but a number of

ffective algorithms exist [20] . For generation of optimised toolpaths for

ne-dimensional features i.e. the conductor tracks of the circuit a near-

st neighbour algorithm [ 18 , 21 ] and an ant colony algorithm [ 22 , 23 ]

ave been implemented in Python. 

.2.3. Vector ink-jet printing 

A custom-built print head motion system is used for ink-jet vector

rinting ( Fig. 2 ). The system basis is a Newport optical table (RS 1000)

ounted on Newport SLM-6A legs to damp potential environmental vi-

rations. The motion system consists of an OWIS Limes 170–400 HSM
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Fig. 1. Digital workflow from design to code generation and ink-jet printing and component mounting. 
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recision stage with 400 mm stroke and ± 3 μm repeatability mounted

o the optical table as an x-axis. Above the x-axis, a gantry built with

WIS SYS 65 profiles is mounted carrying the same axis type as the y-

xis. On top of the y-axis, an OWIS Limes 60–100 HSM precision stage

s mounted as a z-axis with a stroke of 105 mm and ± 2 μm repeatability.

All three stages are driven by ball screws with two-phase stepper

otors. The motion control is realised by means of a Beckhoff CX2040

ndustrial PC running Windows 7 and TwinCAT 3 PLC with the PTP

nd NCI modules. The Beckhoff NCI module allows path control (linear,

ircular) and motion programming in G-Code (ISO 6983). The stepper

otors of the three precision stages are connected to the CX2040 con-

roller by Beckhoff EL7047 stepper motor terminals (SMT). 

The single-nozzle Microfab print head (MJ-AL-01–50–8MX) is

ounted to the z-axis. It is controlled by the MicroFab Jet Drive III

iezo controller and a vacuum controller. Piezo parameters and droplet

ormation are controlled by the MicroFab Jetserver software running

n a Windows PC. It allows waveform parameters to be adjusted and

isual observation of droplet formation using a camera and a strobo-

cope. The jetting frequency can either be set for continuous jetting in

 frequency range from 0 to 20 kHz or by initiating single shots from

n external + 5 V trigger signal. An integrated image processing system

ADCIS Aphelion) is used to monitor droplet formation, droplet velocity

nd droplet volume from images acquired by a drop watcher camera.

he substrates to be printed are clamped on a vacuum chuck mounted

nto the x-axis. As substrate temperature is an important parameter for

ontrolling ink spreading and thus printing precision, the vacuum chuck

an be heated up to 200 °C. 

.2.4. Adaptation of smd component mounting 

In addition to printing structures and components, the automated

orkflow includes mounting of discrete electronic components onto the

rinted circuit. This hybrid set-up serves two purposes. First, as outlined

n Section 2.2.6 , in the development phase devices realised by mounted

MD components can be step by step replaced by printed electronic com-

onents. The functionality of each kind of printed components can thus

e tested within the circuit. The second purpose of the mounting process

s the integration of complementary silicon components that cannot yet

e realised by functional printing. 

SMD component mounting on rigid thermally stable printed circuit

oards (PCBs) is a standard process established for decades [24-26] .
his component mounting technology can be adapted to thermally less

table, flexible foil substrates. The lower thermal stability implies that

tandard PCB soldering processes are not applicable. While conductive

dhesive bonding offers a viable, low temperature alternative, mounting

 rigid SMD component or bare die on printed contact pads on a flexible

ubstrate poses a few challenges: 

(1) The adhesion of a printed contact pad on a polymer foil substrate

is comparatively weak. According to [27] the dominating effect

binding nano-particles to a planar polymer surface such as the

Dupont Melinex ST 506 are van-der-Waals forces increased by

nano-indentation. 

For a polymer substrate with a nano-structured surface such as

the Mitsubishi Paper Mills NB-TP-3GU100, a mechanical inter-

locking between the nano-particle layer and the porous surface

can be observed [13] . Still, this interlocking does not result in a

strong adhesion comparable with copper layers on a conventional

PCB. 

(2) If the flexibility of the foil substrate is required by the application

of the printed system, the mounted component is likely to peel

off when foil bending occurs in its vicinity. Hence, the interface

between the rigid component and the flexible foil has to be made

robust against this additional strain. 

(3) In conventional electronics self-centring of components due to

surface minimisation of molten solder supports component align-

ment on the PCB [ 26 , 28 ]. This effect is not applicable when

mounting components with conductive adhesive on printed foils.

Thus, component placement has to be more precise also taking

into account substrate deformations due to the thermal processes

as outlined in Section 2.2.5 . 

In conventional electronics, the mechanical fixation of a flip-chip on

 PCB does not rely on the mechanical properties of the electrical con-

ection (solder or conductive adhesive) alone. In cases where excessive

train of the connection is to be expected due to, e.g., thermal strain or

ibrations [26] , a function separation of the PCB/flip-chip connection

s achieved by: 

• electrical connection: Solder or conductive adhesive between flip-

chip and PCB bond pads 



U. Gengenbach, M. Ungerer and L. Koker et al. Mechatronics 70 (2020) 102403 

Fig. 2. The custom-built vector printing system MIBBS2 [15] . 
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• mechanical fixation: Underfiller, an adhesive that builds an addi-

tional mechanical joint between the silicon die and the PCB [26] 

A similar principle can be used to alleviate the first and address the

econd challenge by creating an additional mechanical joint between

MD component/bare die and printed foil with a structural adhesive.

ut unlike the underfiller, the structural adhesive is applied before the

omponent is placed. Shear tests of SMD components mounted onto PET

oils with this principle confirmed that the mechanical fixation is in-

reased significantly [29] . Still, the electrical connection might be weak

ue to poor adhesion of the printed bond pad on the foil substrate. This

ituation can be improved by just the opposite strategy than above, by

unction integration. The prerequisite is however, that not the entire

ond pad surface is required for transfer of the electrical power. If this

s the case, the bond pad shape can be redesigned in such a way that

t yields both an electrical connection with its metal coated area and a

echanical connection with the plain substrate area. 
The SMD components are assembled with the four-axis Cartesian

andling platform MIMOSE [30] ( Fig. 3 ). Substrate fiducial mark po-

ition is acquired with top camera Basler acA1920–25uc with a resolu-

ion of 1920 px × 1080 px and a variable field of view. Furthermore,

he bottom camera Basler acA 1300–200uc in combination with a TZ3–

X-32-MA objective and a right-angle adaptor with a resolution of 1280

x × 1024 px and a field of view of 3.2 mm × 2.4 mm are used for

omponent inspection from below. The foil substrate is clamped on the

y-stage by a vacuum chuck. The substrate has printed fiducial marks for

ubstrate alignment at the four corners. The MIMOSE is further equipped

ith a vacuum gripper tool and two pressure time dispensers. The con-

rol software of the MIMOSE is from LPKF Motion Systems and can be

ccessed by a C/ C ++ -API. The two cameras are read out via the soft-

are Pylon supplied by the manufacturer Basler. Acquired images are

rocessed with C ++ programs based on OpenCV. An in-house image
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top camera with illumination
vacuum gripper tool

dispenser needle
of pressure time dipenser

bottom camera with objective
and right-angle adapter

component tray

foil substrate on vacuum chuck

tool carrier

Fig. 3. MIMOSE assembly machine and schematic optical path of the MIMOSE bottom camera. 
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Fig. 4. Deflectometric measurement principle (adapted from [34] ). 
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rocessing software tool is applied for development and calibration pur-

oses. 

.2.5. Image processing for substrate deformation characterisation and 

efect detection 

Under thermal treatment e.g. nanoparticle sintering at 120 °C, the

ET substrates exhibit a deformation behaviour, shrinkage and warpage

hat has to be taken into account in the fabrication process. Manufac-

urers claim isotropic substrate shrinkage of e.g. 0.15% at 120 °C for

he Melinex ST 506 foil. It was however observed in our experiments,

hat in reality the deformation is strongly anisotropic after the thermal

reatment in our process chain. A possible explanation are the mechan-

cal strains that are embedded in the foil by the roll-to-roll fabrication

rocess, the strains in rolling direction being higher than transversely. 

In order to face the challenge of the substrate deformations, a sys-

ematic evaluation of the deformation behaviour is being performed for

very process inducing thermal load on the substrates. The evaluation

s divided into two steps: the analysis of deformation in the x-y-plane

shrinkage) and a warpage analysis. 

.2.5.1. Detection of shrinkage. During printing as well as during com-

onent mounting the substrate is planarised by the vacuum chuck of

he respective process station. Thus, during processing, the deformation

n the x-y-plane is most relevant. In order to investigate this shrinkage,

 matrix of fiducial marks is applied to the substrate. Positional devi-

tions of these fiducial marks are evaluated by image processing after

very thermal process step. As a first step, deformation of empty sub-

trates under thermal load is investigated. 

.2.5.2. Detection of warpage. Strong warpage of the substrate may lead

o mechanical strain in the printed structures and in the interconnection

f the assembled parts after the release of the vacuum clamping. More-

ver, it might even cause height variations of the substrate during the

rocessing steps, despite the vacuum clamping. If further structures are

rinted onto the substrate after sintering, those height variations have to

e determined and compensated, in order to ensure a constant distance

etween substrate and print head. 

In order to measure the substrate surface topography, a deflecto-

etric measurement process is being developed. The set-up exploits the

eflective surface characteristic of the foil substrates. The measurement

rinciple is shown in Fig. 4 . The substrate to be analysed is used as a mir-

or. A camera and a pattern generator (e.g. a computer screen) are posi-

ioned so that the light emitted from the pattern generator is reflected by

he surface of the substrate into the camera. The surface area under test

as to be captured by the field of view of the camera. The measurement

rocess uses a series of specific patterns that encode the screen location p

n x- and y-direction [31] . From the recorded image sequence, a map of

orrespondences between camera pixels c and the corresponding screen
ocations p ( c ) can be calculated. Given that the position of the camera

s known in relation to the pattern generator, these correspondences in-

er information on the surface under test (more precisely on its normal

ector) by tracing the view rays of the camera pixels. This information

s ambiguous for a single-camera set-up; for example two different view

ay paths for a camera pixel c with reflections at potential surface points

 ( c ) and s ’( c ), respectively, are illustrated in Fig. 4 . Several approaches

ave been proposed to circumvent this ambiguity [31] . One possible

olution is stereo-deflectometry which introduces a second camera into

he set-up [32] . In essence, every camera measures a field of potential

ormal vectors in the 3D measurement space. For a stereo-camera set-

p, the two measured normal vector fields coincide at actual surface

oints (e.g. s ( c )) and differ everywhere else (e.g. s ’( c )). This information

s used to reconstruct the surface under test. It should be noted that, for

on-opaque substrate materials, a fraction of the light emitted by the

attern generator will enter the substrate, will be reflected at the back

urface, and interfere with the front surface reflection signal [33] . Con-

idering the similarity of both partial signals due to the small thickness

f the substrates used (125 μm), the effect of the backside reflection on

he measurement is neglected. 

.2.5.3. Optical inspection of printed structures. After every printing and

ostprocessing step the substrate is automatically inspected by means of

n image processing system [18] ( Fig. 1 ). The measurement plan for the

nspection system is also derived from the layout by the generator tool.

ased on the Bead Module of the Matrox Imaging Library the inspec-

ion software measures track width and detects gaps. A gap means that

roplets are completely missing leading to an interruption of the track.

his yields the circuit non-functional and hence to discard of the printed

tructure. A local, lower track width will increase track resistance, but

he circuit may still be functional. Hence, in order to improve yield,

ircuits where track widths below 50% of the nominal track width are

etected are marked for visual inspection by an operator and subsequent

ecision to discard or keep in the process chain. 
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Fig. 5. Demonstrator circuit (a) schematic (b) layout for printing (c) iterative design for transistor to be printed (top) and to be assembled with SMD component 

BF2040 (bottom). 
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.2.6. Iterative design of the demonstrator circuit 

The iterative design approach describes a step-by-step realisation of

 fully printed circuit. Thereby, structured testing and, if necessary, op-

imization are performed in every realisation step. In the following, this

pproach is introduced by using the example of a demonstrator circuit,

n astable multivibrator. The circuit is composed of six resistors, two ca-

acitors and two transistors, and its output is an oscillating voltage [35] .

he schematic of the demonstrator circuit is shown in Fig. 5 (a), includ-

ng the desired resistive and capacitive values. The iterative design starts

ith circuit simulations with the LT-Spice software. Thereby, parasitic

esistances of conductive tracks and printed capacitors are modelled as

dditional resistors. Additionally, the circuit is simulated as fully printed

etup as well as with mounted SMD transistors. The results show, that

ith a supply voltage of 1.5 V, the circuit output with a frequency of

a. 425 Hz can be used to drive a piezo buzzer [35] . In parallel a first

est vehicle based on a printed circuit board (PCB) with mounted SMD

omponents is set up. This first physical model also takes peculiarities of

he printed circuit into account, e.g. parasitic resistances of the conduc-

ive tracks and the capacitors, by including additional resistors. Then

he printed passives are characterised separately. In the next versions

f the PCB test vehicles the printed passives are gradually mounted on

he PCB and tested in the circuit. Moreover the conductive tracks are

rinted onto a foil substrate, all other circuit devices are mounted as

MD components and this circuit is also tested [18] . When the function

f the individual printed components has been verified in this way ulti-

ately they are combined in a comprehensive layout and process chain

o print the full circuit. The main challenge is the printing of active com-

onents, particularly the transistors. The circuit is therefore designed to

e modular, allowing transistors to be printed directly into the circuit or

iscrete devices to be mounted onto the foil substrate (SMD transistors

r printed transistors [29] on a separate substrate). The same design and

esting philosophy is applied for the cross-connects. These can either be

rinted directly or realised by mounting discrete components (SMD zero

hm resistors). In the printing layout presented in Fig. 5 (b), all passive

omponents including conductive tracks, resistors, capacitors and cross-

onnects are printed. Every layer colour indicates either a specific ink

ype being printed to realise a specific functionality (e.g. red: wiring,

lue: resistors) or a mounted component. These layer colours mainly

eflect the different layers used in the Altium CAD software to address

he different functionalities. The only exception are the fiducial marks

hat are placed on a separate layer in Altium to facilitate fiducial mark

cquisition and positioning of the substrates during the fabrication pro-

ess steps. Due to the iterative design, the cross-connects R7, R8 and R

 and the transistors T1 and T2 comprised in the schematic can either

e assembled with SMD zero Ohm resistors and tetrodes BF2040 or re-

lised by printed components. The layout allows for both approaches
 m
y integrating contact pads for SMD components as well as contacts for

rinted cross-connects and transistors. In Fig. 5 (c), this iterative design

pproach is visualised using the example of the printed (top) or assem-

led (bottom) transistor. 

Several approaches exist for adapting the properties of printed re-

istors. Jung et al. adapt resistance by altering ink properties and by

rinting multiple layers while keeping the geometry (line length) of the

rinted resistor constant [36] . Our approach uses the line length as gov-

rning parameter while keeping resistance per printed length unit con-

tant. A carbon resistor ink with constant ink properties is printed in

 single layer using a novel vector printing process. Thus, in the lay-

ut in Fig. 5 (b), two different line lengths (blue) are designed to realise

wo resistive values. The capacitor is realised as a three-layer plate ca-

acitor setup: two silver plate electrodes at top and bottom and a BST

ielectric in the middle. The effective capacitive area is 4 × 4 mm 

2 . The

arget capacitance is 1.3 nF. The variations of capacitance are still rel-

tively high, resulting partly from variations in ink composition, area,

hickness and uniformity of the printed dielectric. Moreover since the

rinted capacitors are not packaged, in operation, capacitance is sensi-

ive to ambient humidity. All of these influences are being investigated

nd addressed in current research [37-39] . 

The mounted tetrode Infineon BF2040 in a SMD SOT143 package

llows the properties of the printed transistor to be emulated as closely

s possible. The next step towards a fully printed circuit can be taken

y printing the transistors between the Gate (G), Drain (D) and Source

S) contacts as shown in the top part of Fig. 5 (c). While the output of

he multivibrator circuit was two LEDs blinking at a single digit Hertz

requency [18] in the first version with printed tracks and mounted SMD

omponents, the present circuit is adapted to the device parameters of

apacitors [16] and transistors currently printed at KIT. 

This final demonstrator circuit yields an output of several hundred

ertz that is made clearly audible by the piezo buzzer driven by the

ircuit. 

In the course of the enhancement of the design, the cross-shaped

ducial marks shown in Figs. 5 and 6 are enhanced to circular fiducial

arks containing a cross in the centre to optimise positioning based on

mage processing. 

.2.7. Fabrication process 

In Fig. 6 , the fabrication process for the demonstrator is visualised

oth as flow diagram (left side) and as layer structure of the circuit grow-

ng from top to bottom (right side). The process sequence consists of

our different printing processes, each including postprocessing (drying

r UV-curing) and optical inspection, as well finally a SMD component

ounting process. 
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Fig. 6. Fabrication process of the demonstrator circuit composed of four print- 

ing steps and discrete component mounting (adapted from [15] ). 
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. Calculations 

Fine-grained control of droplet overlap on the substrate is a require-

ent for obtaining reproducible properties for printed functional struc-

ures [40] . In the case of conductive tracks or resistors, for nanopar-

icle inks in addition to base material conductivity and postprocessing

onditions (e.g. sintering), constant droplet spacing is the key parame-

er that determines resistance. Thus, by means of a precisely controlled

roplet spacing over the entire line length, high-precision resistors can

e printed directly. For a vector ink-jet printed capacitor, droplet over-

ap and line spacing are process parameters that influence the thickness

f the dielectric layer and thus capacitance. A novel strategy for inte-

rating control of the piezo print head shooting frequency into the path

lanning of a motion system is introduced in the following. 

 s ( t ) = f 
𝑠 
( t ) l step (1) 

 p ( t ) = f p ( t ) d dot (2) 

In Eq. (1) , the motion velocity v s (t) of a stepper axis depends on the

onstant length per step increment l step (μm) and the variable stepper

ulse frequency f s (t) (Hz). Integrating Eq. (1) over time yields the mo-

ion path of the axis. In vector printing a line is a concatenation of single

ots. Thus, a line printing velocity v p (t) can be written as the product
f the constant dot offset d dot (μm) and the variable piezo shooting fre-

uency f p (t) (Hz) in Eq. (2) . Thereby, the parameter d dot is an empirical

onstant used to set the overlap between consecutive dots. The choice

f d dot depends on the functional requirements of the printed line. 

A low d dot e.g. 25% of the dot diameter will yield a high overlap

etween dots, with uniform line width and good conductivity. A high

 dot , for example, 80% of the dot diameter on the other hand will re-

ult in a line of dots barely touching each other and a more “wavy ” line

ontour [40] . In this case, the conductivity will be lower and less uni-

orm over line length, but ink consumption and processing time will also

e reduced. A low d dot is recommended to enable highly reproducible

rinting of resistors. The print head is positioned by the handling system.

rinting with a constant piezo frequency would lead to ink accumulation

n the acceleration and deceleration phases of print head motion. To ob-

ain uniform drop spacing, the print head shooting frequency has to be

djusted to the axis velocity. It is evident that the two velocities (1) and

2) are conceptually equivalent, which means that the piezo print head

an be regarded as a virtual stepper axis. Following the same reasoning,

he real stepper axis parameter “maximum velocity ” has an equivalent

aximum line printing velocity depending on the “maximum jetter fre-

uency ” f pmax . This parameter needs to be experimentally determined

or every combination of ink and print head. The other stepper axis pa-

ameters “acceleration “ and “jerk ” have no physical equivalent for the

iezo print head. These values can therefore be set to arbitrarily high

alues beyond the maximum values of a real stepper axes, so that they

re not constraining. 

. Results and discussion 

The digital workflow outlined in Section 2.2.1 is enhanced both, with

espect to data processing and with respect to the fabrication processes.

he effects of these enhancements are assessed with test structures and

 demonstrator circuit. 

.1. Vector toolpath generation for single nozzle piezo ink-jet printing 

The wiring of six demonstrator circuits on a substrate resulting in a

raph with 254 nodes for the algorithms to consider is used as bench-

ark to compare the performance of the two tool path generation al-

orithms (nearest neighbour and ant colony). Both are implemented in

ython and the benchmarks are run under Ubuntu 16.04 Linux on a sin-

le core of an Intel (R) Core (TM) i7–7700 at 3.6 GHz. Using arbitrary

tarting points, the nearest neighbour algorithm is run 1012 times, while

he ant colony algorithm was run with different sizes of ant colonies (10,

0, 30, …, 250) 2134 times in total. 

Table 1 outlines the performance of the two algorithms. The ant

olony algorithm running with a small colony size of only ten ants

chieves worse results than the nearest neighbour algorithm at an in-

rease of computation time by a factor of 80. Best performance, a 4%

eduction of empty run length, of the ant colony algorithm is obtained

ith a colony size of 70 ants. The computing time increased however by

 factor of 3750. This increase is substantial; it may however be worth-

hile as computing time is way less expensive than machining costs.

oreover, this computing time is a one-off cost while the reduction of

achining costs is realised for every printed foil substrate. 

.2. Improvement of line printing quality with the virtual stepper axis 

Operating the MicroFab piezo print head with fixed jetting fre-

uency leads to droplet accumulation during acceleration and decel-

ration phases of the print head motion system. In order to make this

isible and quantifiable the printing parameters are modified in such a

ay that the dots do not overlap but rather form a dotted line. With

roper print head frequency and velocity the droplet spacing should

e constant along printed lines. Printed dotted lines are imaged with

 computer controlled microscope Leica INM 200 with a field of view
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Table 1 

Comparison of tool path generation algorithms. 

Nearest neighbour Ant colony (10 ants) Ant colony (70 ants) 

Number of runs of algorithm 1012 87 31 

Length of empty runs (mm) 

Minimum 1265 1255 1194 

Maximum 1398 1722 1288 

Mean 1328 1355 1232 

Computation time (CPU seconds) 2 170 7500 

Fig. 7. Contact pad and meander of conduc- 

tor tracks printed with fixed jetting frequency 

and increased droplet spacing to visualise ink 

accumulation in acceleration and deceleration 

phases. 

Fig. 8. Droplet spacing along one line of the meander in the region where dis- 

tinct droplets can be identified ( Fig. 7 ). 
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f 1.8 × 0.9 mm 

2 yielding a pixel resolution of 0.88 μm in both direc-

ions. The single images are stitched together to create expanded mosaic

mages of the entire printed structure. Fig. 7 shows a cut-out of such a

est structure, a meander with contact pads on both ends. It is printed

ith silver nano-particle ink onto the Mitsubishi PET substrate at a fixed

etting frequency f pmax of 100 Hz, a print head velocity of 15 mm/s, ac-

eleration of 1500 mm/s 2 and jerk of 15,000 mm/s 3 . Already with the

aked eye the droplet accumulation when the print head moves at non-

onstant velocity is clearly visible at the beginning and end of the lines

nd the contact pad. Due to the wetting of the ink on the substrate,

roplet separation occurs beyond a droplet spacing of about 120 μm.

or these regions of the line, droplet centres of gravity and the spacing

rom one droplet centre to the next are calculated by image processing.

ig. 8 plots the resulting droplet spacing along one line of the meander

f Fig. 7 . 

The acceleration and deceleration phases are clearly reflected in the

roplet spacing. Such a nonuniform droplet spacing reduces the quality

f printed electronic devices. Thus, in order to synchronise the jetting

requency with the velocity of the print head motion, the piezo print

ead is defined as virtual stepper axis in addition to the real axes driv-

ng the motion system in the Beckhoff TwinCat control of the printing

ystem as outlined in Section 3 . However while the axis parameters of

he real stepper axes are fixed, the axis parameters of the virtual axis

re calculated in the generator tool based on prior knowledge, such as

nk type, print head type and ink/substrate interaction. This method al-

ows to include the piezo print head in the path planning of the Beckhoff
CI module ( Fig. 9 ). The stepper pulses generated by the NCI module

or the virtual stepper axis are fed to a Beckhoff EL2521 pulse train ter-

inal (PTT) whose pulse signal is converted to a + 5 V trigger signal

or the piezo print head controller by means of an adaptor circuit. The

enerator tool generates G-Code motion commands for the x-, y- and

-axes and the virtual stepper axis. The Beckhoff TwinCat NCI module

alculates the path planning over the three real and the “virtual ” print

ead stepper axes and ultimately generates the output to the axes. In

he case of the “virtual ” print head stepper axis the generated stepper

ulses are used to trigger the print head via the pulse train terminal. 

Dotted lines are printed as test structures with the same motion pa-

ameters as above, with the jetting frequency adapted to the print head

elocity by means of the virtual stepper axis with the maximum fre-

uency set to 100 Hz. Thereupon, ink accumulations at the beginning

nd end of the line are no longer visible to the naked eye. Hence, this

tructure can be characterised over the entire line length by image pro-

essing and the droplet spacing can be calculated with the same method

s before. 

Table 2 compares the droplet parameters calculated over several test

tructures printed with the two jetter control methods. Between the two

ypes of test structures, mean droplet size differs by about 6%, mean

roplet spacing in the central part differs by about 4%. Moreover, it

hould be noted, as outlined above, that for the line printed with con-

tant jetter frequency, the beginning and end of the line where the dots

erge are excluded for analysis. Despite these limitations, the above

esults indicate that operation of the jetter as virtual axis significantly

educes droplet spacing variations. 

To properly implement this method for the three inks, test suites

ere performed to investigate ink-print head interaction and ink-

ubstrate interaction. Influencing factors are e.g. rheological properties

f the ink, interfacial energies of ink, printing nozzle material and sub-

trate material. From these tests process windows for print head fre-

uency f p and dot spacing d dot were identified. Depending, on the re-

uired structure quality the parameter values were selected for configu-

ation of the piezo print head as virtual stepper axis in the Beckhof con-

rol. This approach shall be illustrated with the following example: In or-

er to print the conductor tracks in the demonstrator circuit ( Figs. 6 and

3 ) with 110 μm width the virtual stepper axis parameter d dot ( Eq. (2) )

s set to 50 μm. The motion system is set to move the piezo print head at

 velocity of 10 mm/s (acceleration 1500 mm/s 2 , jerk 15,000 mm/s 3 ).

ence according to Eq. (2) the corresponding virtual stepper axis i.e.

iezo print head frequency f pmax is 200 Hz. The print head frequency is

amped up and down in the acceleration and deceleration phases by the
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Fig. 9. Integration of the piezo print head 

“virtual stepper axis ” [15] . 

Table 2 

Comparison of droplet spacing measurements. 

Constant jetter frequency Jetter as „virtual stepper axis “

Start Centre End Start Centre End 

Mean droplet size/std. deviation (μm) 103.6 μm/0.8 μm 110.3 μm/3.5 μm 

Mean droplet spacing (μm) 144.1 149.8 144.2 154.9 155.2 155.4 

Minimum measured droplet spacing (μm) 124.7 143.9 129.0 147.9 151.1 152.7 

Std. deviation (μm) 8.5 2.1 3.8 3.3 1.5 2.0 

Fig. 10. (a) Schema of printed bond pad geometry for combined mechanical and electric fixation, additionally applicable as fiducial marks for image processing (b) 

BF2040 footprint with rectangular pads (c) BF2040 footprint with cross-shaped pads. 
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eckhoff TwinCat NCI Module in the same way as the stepper pulses of

he motion system axes thus yielding uniform printed lines. 

.3. Mounting of smd components on flexible foil substrates 

In Section 2.2.4 , different challenges in the adaption of SMD compo-

ent mounting to flexible substrates are outlined that will be addressed

n the following. Fig. 10 (a) illustrates the concept of enhancement of

MD component fixation on printed structures with a novel contact pad

esign on the example of a cross-shaped bond pad. This design pro-

ides areas where the conductive adhesive is in contact with the printed

onductive track as well as areas where it is in contact with the plain

ubstrate. The conductive adhesive is in the first place a base adhesive

ith embedded conductive material (flakes, nano particles). Thus, a me-

hanical connection is established in the area with substrate contact,

rovided that the base adhesive chemistry matches with the substrate

aterial. In the area of contact with the conductive tracks, the electrical

onnection is realised. This additional mechanical connection will con-

iderably reduce the risk of delamination of the conductive tracks from

he substrate due to weak adhesion. It is evident that this mounting

oncept can be combined with the above outlined structural adhesive

oncept for even more enhanced connection stability. Figs. 10 (b) and

c) show the original footprint of the BF2040 with printed square bond
ads and the adapted design with cross-shaped bond pads, respectively.

oth footprint layouts follow the iterative approach that allows for SMD

omponent assembly as well as for printing of a transistor between the

ontact pads. 

A further challenge is the more precise component positioning. In

rder to address this challenge, the SMD component mounting process

s enhanced by an additional step for the precise positioning of compo-

ents that are imprecisely supplied. Though mounting of SMD compo-

ents, flip chips and bare dies on PCBs is state of the art in industrial

pplications [ 24 , 25 ], its integration in an evaluation set-up is an indis-

ensable step towards realizing functional printed systems and a pre-

ondition for automated assembly based upon standard feeders of SMD

omponents such as reels. In our set-up, components are supplied with

ow positional accuracy in trays. In addition to the automatic position-

ng of small and less complex SMD components described in [15] , the

asis for a fully automated assembly process of complex components is

stablished and described in the following. 

To start the assembly process, the machine is equipped with substrate

nd electronic components. Then, the positions of the fiducial marks on

he substrate are measured. One challenge hereby is the reflecting sur-

ace of the foil substrates. The centre of the fiducial marks is determined

y analysing the grayscale image and reducing the noise using binari-
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Fig. 11. Images captured by the bottom camera of the MIMOSE system: (a) binarised image generated by image processing (b) extraction of positioning parameters 

like rotation angle and component position using component identifiers (in this case: smallest circumscribed rectangle) (c) corrected component position (d) thermal 

pad used as component identifier (e) largest circumscribed rectangle of the ball centres in BGA used as component identifier (f) centre of outer pins used as component 

identifier. 
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ation with an adaptive threshold. After a morphologic transformation,

he circle is found with the help of a Canny edge detector and a Circle

ough transform [ 41 , 42 ]. 

After calibration and adhesive application, the mounting process be-

ins by picking up the component with a vacuum tool and capturing an

mage from below with the bottom camera. The image processing steps

onsist of the subtraction of the background image, contrast amplifica-

ion by normalizing the captured greyscale values to the entire spectrum

f greyscale values and bilateral filtering. In order to create a binary im-

ge ( Fig. 11 (a)), a threshold value is determined automatically. Then,

he identifiers for the respective component are acquired, e.g. the small-

st circumscribed rectangle of the component outline ( Fig. 11 (b)). Sub-

equently, the component angle and lateral position are determined. The

otation angle is corrected ( Fig. 11 (c)) and the component can be placed

nto the final mounting position. For correction of the rotation angle of

omponents, it has to be considered, that the centre of the component

nd the axis of rotation do not coincide. There are two reasons: the

ripper tool is mounted eccentrically in the machine and frequently the

ripping position does not exactly match the centre of the component

ue to imprecise feeding in the magazine. Therefore, a transformation

f the respective positions is necessary. 

Depending on the type and size of the components, different methods

re applied for the acquisition of the component identifiers. For small

nd less complex SMD components which can be captured by the field

f view of the camera, the smallest circumscribed rectangle is identified

hose centre and angle are used. The positional uncertainty of the com-

onent on the gripper based on the image processing is approx. ± 20 μm

15] . The same method is applied for components larger than the field

f view. For QFN packages (Quad Flat No-Lead) or comparable compo-

ents, the thermal pad at the bottom including a special fiducial mark for

ositioning is used. For BGAs (Ball Grid Arrays), the balls are detected

sing the Circle Hough Transform. Then, the largest circumscribed rect-

ngle of the ball centres is determined. It has to be guaranteed by the

ositioning of the component above the camera, that at least two border

ows of balls are captured in the field of view. For components with pins

e  
ithout significant bottom fiducial marks exceeding the field of view,

ike Small Outline Integrated Circuit (SOIC) or Thin Shrink Small Out-

ine Package (TSSOP), first the top camera is used to roughly acquire the

ngle of the component. Then, two images are captured of the outer di-

gonal pins with the bottom camera. Using the centre of these pins and

he information on the component shape, the centre of the component

an be calculated. Figs. 11 (c)-(f) show the application of the described

mage processing methods for respective examples of component posi-

ioning. 

.4. Measurement of substrate warpage by deflectometry 

In order to validate applicability of deflectometry measurement for

etection of substrate warpage, a pristine 200 × 200 mm 

2 sheet of

upont Melinex ST 506 was subjected to a typical oven process for ther-

al sintering of the silver nano-particle ink with a temperature of 120 °C

or one hour. Fig. 12 shows the substrate surface before and after the

ven process reconstructed from deflectometry measurements. 

This example indicates that this measurement principle can be ap-

lied to detect substrate warpage. Furthermore, it illustrates that already

ristine, unprinted substrates have an embedded strain that can lead to

ignificant warpage. Therefore, either special clamping or adjustment of

he print head distance to the substrate surface is required during the

rinting process. 

.5. Final printed, hybrid integrated demonstrator circuit 

Fig. 13 shows the final printed demonstrator circuit realised by

he application of the improved automated workflow. The circuit com-

rises the printed structures wiring, resistors, plate capacitors and cross-

onnects as well as transistors mounted as SMD tetrodes. It proves to

e functional with an audible output at the piezo buzzer. The new ap-

roach for integrating the piezo print head as a virtual stepper axis in the

ath planning yields highly precise vector printing. This control strat-

gy allows to print resistor values with a standard deviation of resistance
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Fig. 12. Substrate surface before and after sintering, the depth map is reconstructed from deflectometry measurements. 

Fig. 13. Printed, hybrid integrated demonstrator circuit [15] . 
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elow 5%. The enhanced mounting techniques for SMD components sig-

ificantly improve mechanical fixation. 

However process yield was identified as serious issue. In the first step

f the process chain (see Fig. 6 ) the wiring of fifty circuits was printed.

fter every step the results were inspected and the known good circuits

ere forwarded to the next process step. In the end after all printing,

ostprocessing and SMD component mounting steps there remained a

ingle fully functional circuit. It oscillated with a frequency of 415 Hz

easonably close to the target frequency of 425 Hz (see 2.2.6) to drive the

iezo buzzer. This simple demonstrator circuit already illustrates that in

he same way as in conventional electronics the longer the process chain,

he more severe yield issues become. 

. Conclusions 

A digital workflow for fabricating hybrid printed electronic circuits is

resented. The method to automatically generate fabrication programs

rom a CAD circuit layout proves particularly useful both for fabricating

est vehicles and for multistage printing and component mounting pro-

esses. Improving the printing process by integrating a piezo print head

s a “virtual stepper ” axis improves homogeneity of droplet spacing on

he substrate. This enables the direct printing of resistors with low toler-

nces of the resistor values. As complementary process to realise more

omplex electronic circuits (e.g. integrated micro-controllers) by means

f hybrid printed circuits, surface mount technology is adapted to the

hallenges of foil substrates. New solutions for improving electrical con-

ection and mechanical fixation of SMD components on printed struc-
ures are introduced. Moreover, solutions are implemented to better

ope with positional uncertainties during the mounting process. Based

pon the envisaged results of systematic investigations of shrinkage in

he x-y-plane as well as warpage resulting from postprocessing steps,

djustments have to be implemented into the mounting process. Homo-

eneous deformation can be compensated by acquiring the positions of a

mall number of fiducial marks at the substrate corners by means of im-

ge processing and determining the real component set-down position

sing a mathematical model of foil deformation. For inhomogeneous

eformations, e.g. caused by ink accumulations, a more elaborate ap-

roach is necessary. Local fiducial marks will be used to identify the

espective position of each electronic component. For this purpose, a

ross-shaped pad design is proposed to be utilised as additional fiducial

ark, thereby saving design space. 

Furthermore, image processing methods are developed to cope with

eformations of the foil substrate during the circuit fabrication process

ue to embedded strain. First results already allow identification of de-

ormations of pristine substrates by deflectometry. It is to be expected

hat printed substrates with layout dependant non-uniform ink coverage

ver larger areas such as in a printed capacitor or a ground-plate aerial

ill exhibit even more non-uniform warpage. The non-uniform reflec-

ivity of the foil substrate due to the printed features has to be taken

nto account in image processing. Moreover, systematic effects of the

et-up such as a non-ideally planar surface of the pattern generator may

ave a significant impact on the measurement results. Thorough investi-

ations on these influences on measurements in the present application

re attractive topics for future research. 

All these measures enhance printing precision, component place-

ent precision and robustness of hybrid printed electronics circuits and

hus circuit reliability. For higher integrated hybrid printed circuits with

maller device features and reliable mounting of small pitch flip-chips

r bare dies further work is required. 

In sum, with the introduced workflow, the basis for automated fabri-

ation of hybrid printed electronic circuits is established. Nevertheless,

 lot of groundwork has to be done to realise the full potential of hy-

rid printed electronics. Process yield remains a significant challenge

n fabricating complex electronic circuits with multiple printing steps,

everal inks and component mounting. In future work, therefore, meth-

ds have to be developed which increase process stability and reliability

n every stage of the design and fabrication process in order to achieve

easonable yield numbers. Moreover due to the observed influence of en-

ironmental conditions, in particular humidity, on circuit performance

n operation, another future focus of research lays on the encapsulation

f printed circuits [39] . 
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