KIT | KIT-Bibliothek | Impressum | Datenschutz

Case Study of the Tensile Fracture Investigation of Additive Manufactured Austenitic Stainless Steels Treated at Cryogenic Conditions

Bidulský, Róbert; Bidulská, Jana; Gobber, Federico Simone; Kvačkaj, Tibor; Petroušek, Patrik; Actis-Grande, Marco; Weiss, Klaus-Peter; Manfredi, Diego

Abstract:
Additive manufacturing is a key enabling technology in the manufacture of highly complex shapes, having very few geometric limitations compared to traditional manufacturing processes. The present paper aims at investigating mechanical properties at cryogenic temperatures for a 316L austenitic stainless steel, due to the wide possible cryogenic applications such as liquid gas confinement or superconductors. The starting powders have been processed by laser powder bed fusion (LPBF) and tested in the as-built conditions and after stress relieving treatments. Mechanical properties at 298, 77 and 4.2 K from tensile testing are presented together with fracture surfaces investigated by field emission scanning electron microscopy. The results show that high tensile strength at cryogenic temperature is characteristic for all samples, with ultimate tensile strength as high as 1246 MPa at 4.2 K and 55% maximum total elongation at 77 K. This study can constitute a solid basis for investigating 316L components by LPBF for specific applications in cryogenic conditions.

Open Access Logo


Verlagsausgabe §
DOI: 10.5445/IR/1000123258
Veröffentlicht am 03.09.2020
Originalveröffentlichung
DOI: 10.3390/ma13153328
Scopus
Zitationen: 9
Dimensions
Zitationen: 8
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Physik (ITEP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 1996-1944
KITopen-ID: 1000123258
HGF-Programm 31.03.04 (POF III, LK 01) Fusionsmagnete und Magnetkomponenten
Erschienen in Materials
Verlag MDPI
Band 13
Heft 15
Seiten Art.Nr. 3328
Bemerkung zur Veröffentlichung This article belongs to the Special Issue Advanced Metal Forming Processes
Vorab online veröffentlicht am 27.07.2020
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page