
photonics
hv

Article

Wave Front Tuning of Coupled Hyperbolic Surface
Waves on Anisotropic Interfaces

Taavi Repän 1,2,* , Osamu Takayama 2 and Andrei V. Lavrinenko 2

1 Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
2 DTU Fotonik—Department of Photonics Engineering, Technical University of Denmark,

2800 Kgs. Lyngby, Denmark; otak@fotonik.dtu.dk (O.T.); alav@fotonik.dtu.dk (A.V.L.)
* Correspondence: taavi.repaen@kit.edu

Received: 16 April 2020; Accepted: 14 May 2020; Published: 20 May 2020
����������
�������

Abstract: A photonic surface wave, a propagating optical mode localized at the interface of two
media, can play a significant role in controlling the flow of light at nanoscale. Among various
types of such waves, surface waves with hyperbolic dispersion or simply hyperbolic surface waves
supported on anisotropic metal interfaces can be exploited to effectively control the propagation of
lightwaves. We used semi-analytical and numerical methods to study the nature of surface waves
on several configurations of three-layers metal–dielectric–metal systems including isotropic and
anisotropic cases where the metal cladding layers were assumed to have infinite thickness. We used
semi-analytical and numerical approaches to study the phenomena. We showed that the propagation
of surface wave can be tuned from diverging to converging in the plane of the interface by the
combination of metals with different anisotropic properties.

Keywords: surface wave; metamaterial; hyperbolic metamaterial; anisotropic material

1. Introduction

A photonic surface wave or surface electromagnetic wave is a propagating electromagnetic mode
localized at the interface of two dissimilar media. Its electromagnetic fields decay exponentially away
from the boundary [1,2]. Surface waves supported on various interfaces have been investigated having
among others traditional surface plasmon polaritons [3–5], Bloch surface waves on periodic boundaries
and Tamm states on terminated dielectric photonic crystals faces [6–10]. One peculiar property of
surface waves supported on interfaces of anisotropic media enabling us to control the flow of light is
directionality of their propagation [2]. In the case of dielectric anisotropic media whose permittivity
tensor components are all positive, Dyakonov surface waves are supported [11–17], as well as other
variations including the ones on left-handed materials [18], Dyakonov-Tamm surface waves [19–22],
and Dyakonov-Voigt surface waves [23]. When one or all of permittivity tensor components are
negative, surface wave with hyperbolic dispersion, so-called Dyakonov plasmons [24] or hyperbolic
surface waves (HSWs) [25], can be supported. Hyperbolic metamaterials (HMMs) with negative and
positive permittivity tensor components [26–33] support directional surface waves [34–40]. In the case
of anisotropic metal, when all permittivity tensor components are negative, there exist hyperbolic
surface waves, as well [25]. Controlling the propagation of light on the surface is the hallmark of
surface wave, opening up new ways for manipulating light at nanoscale, such as, enabling directional
quantum emitters [24,34], or steering of optical signals [17,36].

Here, we show that propagation direction of surface waves can be tuned by three layers system
composed of different anisotropic layers. Motivation for use of a three-layer system comes from Shin
and Fan [41], where they discussed negative refraction of surface waves using a three-layer system.
First, we start with a structure composed of isotropic metal and dielectric layers. Then, we study a

Photonics 2020, 7, 34; doi:10.3390/photonics7020034 www.mdpi.com/journal/photonics

http://www.mdpi.com/journal/photonics
http://www.mdpi.com
https://orcid.org/0000-0001-6596-2022 
https://orcid.org/0000-0003-3525-3262
https://orcid.org/0000-0001-8853-2033
http://www.mdpi.com/2304-6732/7/2/34?type=check_update&version=1
http://dx.doi.org/10.3390/photonics7020034
http://www.mdpi.com/journal/photonics


Photonics 2020, 7, 34 2 of 10

symmetric metal–isotropic dielectric– metal structure with identical uniaxial metal layers. To the best
of our knowledge, such metal-dielectric-metal system with uniaxial metal layers is considered for the
first time. Tuning of dispersion of surface waves by two cladding uniaxial metal layers is a novel way
of controlling light propagation. Note that through out the article, the uniaxial media have their optical
axes in the plane of interface. Furthermore, we study asymmetric metal–isotropic dielectric– metal
structures where uniaxial metal layers differ from each other in order to tune the hyperbolic dispersion
of surface waves. Finally, we combine two different three layer systems in series in order to impose
possible tuning of the wave front of surface waves.

2. Symmetric Isotropic System (Metal-Dielectric-Metal)

We first look onto symmetric three layer system Figure 1a, consisting of two semi-infinite metallic
layers (ε1 = εm < 0), separated by a dielectric layer (ε2 = εd > 0) with thickness h. For the analysis,
we assume purely real (lossless) material parameters, but in numerical simulations we consider lossy
media. There is no analytic explicit formula for modes dispersion in this three-layer system [4,42,43].
However, at least for this case we can derive an implicit equation for the guided modes.
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Figure 1. (a) Geometry for isotropic three-layer system under consideration, metal-dielectric-metal
layers. A dielectric (spacer) layer with thickness, h, is sandwiched between two metal layers.
(b) Propagation constant of modes, β in three-layer system for various spacer layer thicknesses,
h. Blue lines indicate even modes, while green solid (dotted) lines indicate odd modes with normal
(reversed) phase propagation direction.

As this is an isotropic system, we can limit the analysis to TM modes only, as TE modes do not
support surface modes [4]. We assume a plane wave solution

E(i) = E(i)
0

(
−k̃zŷ + k̃(i)y ẑ

)
exp

(
iβz + ik(i)y y

)
, (1)

where k̃x,y = kx,y/k0. We then use the interface conditions to reach the implicit dispersion relation

± exp
(

ik(2)y h
)
=

ε1k(2)y + ε2k(1)y

ε2k(1)y − ε1k(2)y

, (2)

where k(1,2)
y are corresponding y-components of the wave vectors in media 1 and 2 assuming

propagation constant β = kz

k(i)y =
√

k2
0εi − β2.
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The system can support two modes, depending on the sign chosen in Equation (2). We shall refer
to these modes as odd (−) and even (+) modes, indicating parity of the Ey fields. Note that in case of
h = ∞ we recover solution for the single interface: [4]

β = ±
√

ε1ε2

ε1 + ε2
. (3)

We solve numerically Equation (2) and plot the solutions for various spacer (isotropic dielectric
layer) thicknesses h in Figure 1b. First we note that as h is increased both even and odd solutions
converge towards the solution of a single interface (Equation (3)), as expected. Second thing to consider
is that the even mode is always above the single interface solution, whereas the odd mode is below.
As larger β for the same frequency implies larger ky, this means that the fields on the two interfaces are
stronger coupled for the odd mode. Therefore, for small h the odd solution is significantly altered by
coupling of the fields on the two interfaces.

Now, we need to calculate total energy flux in z-direction in order to check whether a mode given
by β is forward- or backward-propagation. Integrating power flux Pz = − 1

2 EyH∗x and plugging in
Equation(1) reads

P(i)
z = −1

2
ωε0ε(i)kz

∣∣∣E(i)
0

∣∣∣ exp
[
−2Im

(
k(i)y

)
y
]

, (4)

from which we get a straightforward expression in the bottom layer

∞∫
h/2

P(1)
z dy =

iβ3 |E1|2

2k(1)y

. (5)

In the dielectric spacer we have now two modes, one propagating towards +z, the other towards
−z. From symmetry of the system we can fix the the amplitudes of the modes and then we get the
following result of the integration

h/2∫
0

P(2)
z dy = ∓

β3
(
−i exp

(
−ik(2)y h

)
± 2 hk(2)y + i exp

(
ik(2)y h

))
ε2k(2)y

, (6)

where the signs indicate even and odd modes. Adding the two contributions gives the total energy flux
in z-direction. We have calculated this numerically for the modes in Figure 1b. Here the permittivity
of the dielectric layer is εd = 2 close to that of calcium fluoride [44] and magnesium fluoride [45].
Note that odd mode is also referred to as symmetric mode and short-range surface plasmon polariton
(SPP), and even mode as antisymmetric mode and long-range SPP, respectively [5].

3. Symmetric Anisotropic System (Uniaxial Metal-Isotropic Dielectric-Uniaxial Metal)

We consider a symmetric system consisting of a dielectric layer (εd) with thickness h, which is
sandwiched between two semi-infinite anisotropic layers [ε̂ = diag (εe, εo, εo)], instead of isotropic
metallic layer as in Figure 1a. Note that the optical axes of both uniaxial anisotropic layers are parallel
and lie in the plane of the interfaces along z-axis through out the article. Following results for the
isotropic case we expect existence of even and odd modes in the system. Due to the amount of plane
wave terms in the three layers (in total we have six terms: forward- and backwards propagating TE
and TM waves in the dielectric along with ordinary and extraordinary waves in each of the anisotropic
layers) we do not expect to reach an analytic expression for dispersion relation in the general case of
anisotropic three-layer system. Therefore we will resort to numerical solutions to the equations.

However, there are some useful asymptotic cases that can be noted. Most importantly, we note
that coupling between the two interfaces scales with exp

(
ik(2)y h

)
. In a limit where we let kx, kz to

infinity this coupling term goes to zero (as kx, kz → ∞ implies also k(2)y → ∞). It follows that the
asymptotic behavior is identical to the HSW solution on a single interface [25]. However, in the
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opposite case of small kx, kz we instead are looking at the “strong coupling” limit, when dispersion
deviates significantly from the one of a single interface case. This is especially true for the odd mode,
which due its field profile experiences stronger coupling than the even mode.

As in the case of HSWs on a single interface [25], we can, in the same way, classify HSWs in a
three layer system into type-1 and type-2 HSWs, as shown in Figure 2. For a large spacer thickness
the three-layer system behaves similarly to a single interface, but for small thicknesses the behavior
diverges. We show this in Figure 2, where we plot HSW dispersions for a type-1 and a type-2 system
for various thicknesses. Similar to the isotropic case, the even mode is less affected by coupling of
fields on the two interfaces, and therefore the even mode better resembles the corresponding single
interface solution [25].
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Figure 2. Even (green) and odd modes (blue lines) in symmetric three layer system (uniaxial
metal-isotropic dielectric-uniaxial metal), for various spacer (isotropic dielectric layer) thicknesses.
Both (a) type-1 εo = −2.37, εe = −1 and (b) type-2 εo = −1, εe = −7 systems are shown. The black
dotted line shows solution from corresponding two-layer system of uniaxial metal and isotropic
dielectric interface. The black dashed line shows single-interface solution.

On the contrary, the odd mode is significantly affected by coupling, especially with decreasing
spacer thickness h. Importantly, we note that in the strong coupling regime we can effectively force the
type-1 HSW to look like a type-2 mode (and vice versa). A type-2 HSW on a single interface (the black
dashed line in Figure 2b) is characterized by low-k cutoff: for |kx| < 2.5k0 there is no propagation
allowed in z-direction. Figure 2a shows that by decreasing the spacer layer we can evolve the odd
mode of type-1 such that it also exhibits the low-k cutoff, in principle behaving close to a type-2 HSW.

As we showed for the isotropic three-layer system, the even mode was identified by larger
propagation constant kz, and thus weaker coupling between the two interfaces. Due to the weaker
coupling we assume that the even mode always follows behavior of the single interface solution.
This means that waves on the type-1 interface it will exhibit coinciding energy and phase propagation
along the z-direction and on the type-2 interface it phase and energy propagation directions will be
anti-parallel.

The odd mode, on the other hand, exhibits stronger coupling between the two interfaces. Indeed,
this is the reason why phase propagation can be reversed in the isotropic case. Thus we can expect that
the phase propagation direction might not follow from the single interface solution. Hence, for the
cases considered here we used numerical calculations to verify that the propagation direction matches
the expectation from the single interface solution.

To study wave propagation on the interfaces we use full-wave FEM simulations (using COMSOL
Multiphysics) and simple semi-analytical approach based on angular spectrum representation [46].
For this calculations we Fourier transform fields into plane wave components and then propagate
them using numerically calculated propagation constant kz. In doing this we neglect reflections and
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scattering from the interfaces. The full-wave simulations give complete picture of field propagation
but have high computational requirements due to needing 3D geometry along with very fine mesh
in the thin dielectric layer. In Figures 3 and 4 we now look on the field profiles of the odd and even
modes of the type-2 structure (Figure 2b, with spacer thickness h = 0.1λ). We show both full-wave
FEM simulations and semi-analytical calculations. To ensure convergence in numerical simulations we
allow for weak losses materials in the calculations:

εo = −1.68 + iγ . (7)

εe = −3.07 + iγ . (8)

Figures 3 and 4b,c show the influence of loss of the uniaxial layers on surface waves in both
wavevector space and real space. With increased losses (from γ = 0.01 to γ = 0.1), high-k components
degrade and disappear, resulting in the complete change of the surface wave propagation pattern.
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Figure 3. (a) Real and imaginary parts of the propagation constant kz for the odd mode in the three
layer system (details in the text) for losses γ = 0.01 (blue) and γ = 0.1 (orange). Dotted black line
indicates corresponding dispersion of single interface. (b,c) Semi-analytically calculated field profiles
for losses γ = 0.01 (b) and γ = 0.1 (c). (d) Full-wave simulations of the field profile for losses γ = 0.1.
Insets show Fourier transformed fields, showing dispersion of the propagating waves.
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Figure 4. (a) Real and imaginary parts of the propagation constant kz for the even mode in the three
layer system (details in the text) for losses γ = 0.01 (blue) and γ = 0.1 (orange). The black line shows
corresponding HMM dispersion. (b) Semi-analytically calculated field profiles for losses γ = 0.01.
(c) Full-wave simulations of the field profile for losses γ = 0.1. Insets show Fourier transformed fields,
showing dispersion of the propagating waves.
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4. Asymmetric Anisotropic System (Uniaxial Metal-Isotropic Dielectric-Isotropic Metal)

In the previous section we showed that a symmetric anisotropic three layers system supports
two HSW modes. We presented a system that produced a negative phase velocity (in comparison
to a “reference” two layers system) for the odd mode. However, the system also supports an even
mode, which does not produce the desired dispersion for the surface wave. In order to suppress the
unwanted even mode we now consider an asymmetric three layers system. The dielectric spacer layer
(with thickness h = 0.1λ) is now sandwiched between an anisotropic medium (given by Equations (7)
and (8)) and an isotropic metal with εm. In order to avoid any new modes we constrain εm to
−εd < εm < 0. This means that the interface between the isotropic metal and dielectric, εd–εm, does
not support a surface mode on its own since the propagation constant (Equation (3)) is imaginary.

In Figure 5a, we explore effect of εm on dispersion of the HSW mode. We see that the asymmetric
system has significantly altered dispersion in the low-k regime by flattening out the HSW dispersion.
Looking at propagation of waves (Figure 5b,c) this manifests as an additional beam: we see the usual
narrow high-k beams, but also a wider beam propagating straight ahead (corresponding to the flat
low-k regime). This suggests that by combining anisotropic and isotropic metals in the asymmetric
system, we can modify the dispersion of surface waves from conventional “hyperbolic” to other shapes.
This provides another way to tune the dispersion alternative to the metasurface approaches with
structured nanofilms [47–49]. However, this behavior is not suitable for phase compensation purposes
as this structure can not achieve perfect pseudocanalization for the single anisotropic interface: phase
of these low-k waves will not be properly compensated.
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Figure 5. (a) Propagation constant for the symmetric three layer system (dashed black line, uniaxial
metal-isotropic dielectric-uniaxial metal) and for asymmetric (uniaxial metal-isotropic dielectric-isotropic
metal) system, plotted for various different εm. Orange line indicates εm = −1.89 chosen for the
simulations. (b) Semi-analytically calculated fields for low-loss (γ = 0.01) system. (c) Simulated fields as
per FEM simulations with γ = 0.1.

5. Wave Front Tuning of Hyperbolic Surface Waves on Anisotropic Interfaces

In the previous sections we covered engineering of phase propagation properties of surface waves
in a three-layer system. The idea now is to combine HSWs on a single interface with a two-layer
system, which is engineered to have opposite phase propagation properties. In such combined system
where there is effectively no phase accumulated during propagation (so-called pseudo-canalizing
operation [46]), allowing beams to propagate with minimal distortion. To achieve that we combine
two media with “complementary” dispersion (see Figure 6). One part of the system is an anisotropic
interface supporting HSWs, with εo = −2.48 + 0.1i and εe = −0.75 + 0.1i (indicated with (2) in
Figure 6). The thickness of the dielectric layer is h = 0.1 λ. The phase-compensating part, with opposite
phase propagation, is either realized by a symmetric three layer system (Figure 3) or an asymmetric
system (Figure 5).
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Figure 6. Geometry for the two pseudocanalizing systems, with symmetric (a) and nonsymmetric
(b) three layer system, with anisotropic media indicated by (1) and (2) and the metal for asymmetric
system shown with (3). Insets indicate placement of dipole sources to excite the waves. In (a) the
sources are aligned such to only excite the odd mode. (+) and (-) indicate regions with normal and
reversed phase propagation, respectively.

The symmetric system offers better phase compensation, as there the surface waves resemble
closely the HSWs on a single anisotropic interface. However, this approach is less practical, because we
artificially suppress the unwanted even mode for better illustration of the effect. As shown in Figure 6a
we excite the waves using two anti-parallel dipoles to ensure that mainly the odd mode is excited.

Another approach is to employ the asymmetric three-layer design, where only the odd-like mode
exists. This comes at the cost of distorted HSW dispersion, leading to worse pseudocanalization.
However, for this structure we can use a more realistic single point source without worrying about
exciting any unwanted modes.

We show results of full-wave simulations of the structures in Figure 7. For comparison we included
fields calculated semi-analytically as well. This approach neglects reflections from the interfaces and
thus, these calculations are only included for a qualitative proof-of-concept reference. However,
these calculations enable fast calculations for a low loss case, allowing showing pseudocanalizing
behavior. On the other hand, for the 3D finite-element simulations finer mesh (with quickly growing
computational costs) is required to resolve fine spatial features, which become present with decreasing
losses. From full-wave simulations we see that reflection from the interfaces is an important aspect.
For example, in ref. [41], which discusses negative phase propagation for isotropic surface waves,
the authors introduced an optimized system to improve mode overlap to reduce reflections from the
three-layer system.

We see that the symmetric system can offer relatively good performance in the low-loss case
(Figure 7b) and in case of higher losses (γ = 0.1) the performance is expectedly reduced, but nevertheless,
full-wave simulations (Figure 7a) match relatively well with the simplified calculations (Figure 7c).
However, for more practical case of asymmetrical design the pseudocanalization performance is
degraded even for the simplified calculations (Figure 7e), while the full-wave simulations (Figure 7d)
show differences with the semi-analytical calculations (Figure 7f). This is likely due to reflections from
the boundary between the parts of the system, which could be reduced by optimizing overlap between
the modes in the two uniaxial metal layers similar to ref. [41].
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Figure 7. Comparison of surface wave implementations of a pseudocanalizing system. Full-wave
simulation results of a symmetric system are shown in (a), with corresponding semi-analytical
calculations with reduced losses (γ = 0.01) in (b) and full losses (γ = 0.1) in (c). Similarly (d) shows
FEM results of an asymmetric system, with corresponding semi-analytically calculated fields for
γ = 0.01 in (e) and γ = 0.1 in (f). (+) and (-) indicate regions with normal and reversed phase
propagation [with geometry and material parameters specified Figure 6a for (a)–(c) and Figure 6b for
(d)–(f)]. The dashed line shows the distance for which waves travelled equal distance through the two
regions with opposite phase propagation properties. With ideal pseudocanalization the original source
fields would be restored here.

6. Conclusions

We study hyperbolic surface waves supported on three layer structures with two layers being
uniaxial anisotropic metal layers. We show that such structures support modes with hyperbolic
dispersion similar to hyperbolic metamaterials. By engineering the three layer structure, material
anisotropy and dielectric spacer thickness, it is possible to tune the dispersion from a simple hyperbolic
to more diversified ones. By combining two different three- layer systems, wave front shapes can
also be controlled varying from diverging to converging, resembling the so-called pseudocanalization
regime. We also carried out proof-of-concept simulations with close-to-real parameters showing that
the pseudocanalization regime with hyperbolic surface waves is feasible.
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