
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Domain-specific Language for Data-driven
Design Time Analyses and Result Mappings

for Logic Programs

Master’s Thesis of

Sebastian Hahner

at the Department of Informatics
Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf H. Reussner
Second reviewer: Prof. Dr.-Ing. Anne Koziolek
Advisor: M.Sc. Stephan Seifermann
Second advisor: M.Sc. Frederik Reiche

January 15, 2020 – August 17, 2020

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, August 17, 2020

. .
(Sebastian Hahner)

Abstract

In today’s connected world, exchanging data is essential to many business applications.
With the increase in connectedness and the growing volume of data, ensuring security,
privacy and conformance to legal restrictions becomes increasingly critical. In order to
cope with these requirements early, design time data �ow analyses have been proposed.
By explicitly modeling data and their characteristics, the architectural model can be auto-
matically tested against formulated data �ow constraints. These veri�cation approaches
transform the modeled architecture into underlying formalisms such as logic programs. In
order to enhance the expressiveness of constraints, they often have to be formulated in
the underlying formalism as well. This requires architects to know about the formalism,
the transformed architecture and the veri�cation environment.

We aim to bridge the gap between the architectural domain and the underlying formalism
which occurs in constraint formulation. We propose a domain-speci�c language (DSL)
which enables architects to de�ne constraints while de�ning the architecture. By utilizing
the terminology which is used to model the architecture, individualized constraints can
be formulated without knowledge on the veri�cation process. We provide a mapping
of constraints formulated in our DSL from the architectural domain to the underlying
formalism. Analysis results are mapped back into the architectural domain to ease their
interpretation.

The DSL is based on the generalization of existing constraints from real-world case
studies. We evaluate the DSL’s expressiveness, usability and space e�ciency for di�erent
sized data �ow restrictions. Approximately 75% of examined constraints can be expressed
using the �rst version of our DSL while requiring up to 10 times less code. Besides the
basics of data �ow modeling and the modeling environment, no further knowledge on the
transformation and veri�cation mechanism is required. Additionally, we investigate the
equivalence of analysis results of transformed constraints de�ned in our DSL with con-
straints formulated in the underlying formalism. In our tests, the transformed constraints
achieve 100% recall while maintaining 90% precision.

i

Zusammenfassung

In der vernetzten Welt von Heute ist der Austausch von Daten für viele Anwendungen un-
erlässlich. Mit der zunehmenden Vernetzung und dem wachsenden Datenaufkommen wird
die Gewährleistung von Sicherheit, Datenschutz und die Einhaltung rechtlicher Vorgaben
immer wichtiger. Um diesen Anforderungen frühzeitig gerecht zu werden, können Daten-
�ussanalysen zur Entwurfszeit eingesetzt werden. Durch explizite Modellierung der Daten
und ihrer Eigenschaften kann das Architekturmodell automatisch gegen Daten�ussbe-
schränkungen getestet werden. Diese Veri�kationsansätze transformieren die modellierte
Architektur in ihnen zugrunde liegende Formalismen wie z.B. logische Programme. Um die
Aussagekraft der Beschränkungen zu erhöhen, müssen diese oft ebenfalls unter Nutzung
des Formalismus ausgedrückt werden. Dies erfordert von den Architekten Kenntnisse über
den Formalismus, die transformierte Architektur und die Veri�kationsumgebung.

Unser Ziel ist es, die Lücke zwischen der architektonischen Domäne und dem zugrunde-
liegenden Formalismus zu schließen, die bei der Formulierung von Daten�ussbeschränkun-
gen auftritt. Wir schlagen eine domänenspezi�sche Sprache (DSL) vor, die es Architekten
ermöglicht, Einschränkungen bereits während der De�nition der Architektur festzulegen.
Durch die Verwendung der selben Terminologie, die auch zur Modellierung der Archi-
tektur eingesetzt wird, können individualisierte Beschränkungen ohne Kenntnisse des
Überprüfungsprozesses formuliert werden. Zusätzlich stellen wir eine Abbildung der in
unserer DSL formulierten Einschränkungen von der Architekturdomäne in den Forma-
lismus vor. Analyseergebnisse werden in die Architekturdomäne zurück abgebildet, um
deren Interpretation zu erleichtern.

Die DSL basiert auf der Sammlung und Generalisierung bestehender Einschränkungen
aus realen Fallstudien. Wir bewerten die Aussagekraft, Nutzbarkeit und Kompaktheit
der DSL für Daten�ussbeschränkungen unterschiedlicher Größe. Ungefähr 75% der un-
tersuchten Beschränkungen können mit der ersten Version unserer DSL ausgedrückt
werden, wobei bis zu 10-mal weniger Quelltext benötigt wird. Neben den Grundlagen der
Daten�ussmodellierung und Wissen über die Modellierungsumgebung sind keine weite-
ren Kenntnisse über den Transformations- oder Veri�kationsmechanismus erforderlich.
Zusätzlich untersuchen wir die Äquivalenz der Analyseergebnisse von Beschränkungen,
die in unserer DSL formuliert wurden mit Beschränkungen, welche direkt unter Nutzung
des Formalismus ausgedrückt wurden. In unseren Tests erreichen Beschränkungen, welche
mit Hilfe unserer DSL formuliert wurden, eine 100%ige Ausbeute bei einer Präzision von
90%.

iii

To Alina, Beate and Markus

v

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Contribution . 2
1.2. Outline . 2

2. Foundations 5
2.1. Data Flow Diagrams . 5
2.2. Data-Centric Palladio . 6
2.3. Domain Speci�c Languages . 7
2.4. Logic Programming . 8

3. RelatedWork 11
3.1. Alternative Analysis for PCM . 11
3.2. Security Modeling . 12
3.3. Data Flow Oriented Modeling . 12
3.4. Comparison . 13

4. Example Scenarios 15
4.1. Geolocation Constraints . 15
4.2. Access Control . 16

5. Supporting the Existing Analysis Process 21

6. Language Requirements 23
6.1. Case Studies . 23
6.2. Underlying Formalism . 27

7. Language Syntax 31
7.1. Overview . 31
7.2. Types and Imports . 33
7.3. Selection . 35
7.4. Conditions . 38
7.5. Constraints . 44
7.6. Example Instances . 46

7.6.1. Geolocation Constraints . 46
7.6.2. Access Control . 49

vii

Contents

8. Language Semantics 53
8.1. Overview . 53
8.2. Selection . 57
8.3. Conditions . 62
8.4. Constraints . 67
8.5. Result Mapping . 70
8.6. Example Transformations . 72

8.6.1. Geolocation Constraints . 72
8.6.2. Access Control . 76

9. Evaluation 79
9.1. Goals and Questions . 79
9.2. Evaluation Design . 81

9.2.1. Studied scenarios . 81
9.2.2. G1 - Expressiveness . 83
9.2.3. G2 - Usability . 84
9.2.4. G3 - Space E�ciency . 87
9.2.5. G4 - Equivalence of Analysis . 88

9.3. Results and Discussion . 91
9.3.1. G1 - Expressiveness . 91
9.3.2. G2 - Usability . 96
9.3.3. G3 - Space E�ciency . 102
9.3.4. G4 - Equivalence of Analysis . 106
9.3.5. Summary . 112

9.4. Threats to Validity . 113
9.5. Assumptions and Limitations . 114
9.6. Data Availability . 115

10. Conclusion 117
10.1. Summary . 117
10.2. Future Work . 118
10.3. Acknowledgements . 119

Bibliography 121

A. Appendix 125
A.1. Well-formedness of Conditions . 125
A.2. Correctness Evaluation . 128
A.3. Mapped Prolog Code Examples . 135
A.4. Meta-Model . 137

viii

List of Figures

2.1. Simple data �ow scenario of user input data processing 6
2.2. SEFF with data �ow annotation . 7
2.3. A simple class diagram . 8

4.1. Deployment diagram of the Geolocation Constraints example scenario . 16
4.2. Deployment diagram of the Travel Planner example 18
4.3. Sequence diagram of the Travel Planner example 19

5.1. Extended development process with Data-Centric Palladio 22

7.1. Simpli�ed abstract syntax of constraints in our DSL 32
7.2. Abstract syntax of top-level elements . 34
7.3. Abstract syntax of data and destination selection as well as classes 35
7.4. Abstract syntax of conditions . 39
7.5. Abstract syntax of exemplary operations and references to variables . . . 40
7.6. Abstract syntax of condition operations (simpli�ed) 41
7.7. Abstract syntax of constraints and their contained elements 44
7.8. Geolocation constraints example instance using the DSL 47
7.9. Geolocation constraints example instance with characteristic classes . . 48
7.10. Travel Planner access control example instance using the DSL 50

8.1. Data �ow diagram of the transformation and solving process 54
8.2. Object diagram of four di�erent CharacteristicTypeSelectors 58
8.3. Abstract syntax tree of a mapped characteristic selector 58
8.4. Abstract syntax tree of an exemplary condition in the DSL 64
8.5. Abstract syntax tree of the transformation to Prolog of an exemplary

condition . 65

9.1. Adapted diagram of Morris on compiler correctness proofs 89

A.1. Complete abstract syntax of the meta-model of our DSL 138

ix

List of Tables

3.1. Comparison of related work . 14

4.1. Constraint violation examples in access control systems 17
4.2. Actors and roles in the Travel Planner example 17

7.1. All CharacteristicSetOperations which can be used in conditions 42
7.2. All BooleanOperations which can be used in conditions 43

8.1. Mapping of operations of a condition to Prolog predicates 63
8.2. Possible arguments created by the mapping of constraints 69

9.1. Expressiveness of predicates of the Constraint Query API 93
9.2. Collected operations on elements and sets 95
9.3. Change e�ort of di�erent DSL change scenarios 96
9.4. Usage of modeling concepts in case study constraints 98
9.5. Required knowledge to de�ne constraints with or without the DSL . . . 101
9.6. Number of model elements of scenarios’ constraints 105
9.7. Change in number of elements in change scenarios 106
9.8. Number of found violations of di�erent constraints 111

xi

List of Listings

2.1. PlantUML DSL code of a simple class diagram 8
2.2. Simple Prolog example with facts and rules 9
2.3. Simple Prolog queries and results . 9

6.1. Basic predicates of the Constraint Query API 28
6.2. Advanced predicates of the Constraint Query API 29

7.1. Simpli�ed Geolocation Constraints example given in concrete syntax . . 33
7.2. Concrete syntax of type and import statements 35
7.3. Concrete syntax of selectors and characteristic classes 37
7.4. Concrete syntax of conditions using operations 44
7.5. Full-�edged constraint given in concrete syntax 45
7.6. Concrete syntax of the Geolocation Constraints example instance 48
7.7. Concrete syntax of the Access Control example instance 50

8.1. Simpli�ed concrete syntax of the DSL prior to its transformation 56
8.2. Excerpt of the DSL transformation result represented as Prolog code . . . 56
8.3. Simpli�ed textual representation of a violation after the result mapping . 57
8.4. Prolog code of the transformed four characteristic selector types 59
8.5. Prolog code of an transformed attribute selector and a property selector . 59
8.6. Return value and call state predicates . 60
8.7. Concrete syntax of characteristic class and a attribute class selector . . . 61
8.8. Prolog code of a transformed characteristic class and its referencing . . . 61
8.9. Selector de�ning a characteristic set variable and the mapped result . . . 62
8.10. Nested operations and their Prolog counterpart 64
8.11. Complete structure of transformed constraints 68
8.12. Raw Prolog result of a single constraint violation 70
8.13. Complete textual representation of a mapped constraint violation 72
8.14. Shortened concrete syntax of the Geolocation Constraints example scenario 73
8.15. Excerpt of the DSL transformation result of the �rst Geolocation constraint 74
8.16. Excerpt of the DSL transformation result of the second Geolocation constraint 74
8.17. Prolog solving result of the Geolocation Constraints scenario 75
8.18. Mapped result of the Geolocation Constraints scenario 76
8.19. Shortened concrete syntax of the Access Control example scenario . . . 76
8.20. Excerpt of the DSL transformation result of the Access Control constraint 77
8.21. Exemplary Prolog solving result of the Access Control scenario 78
8.22. Mapped exemplary result of the Access Control scenario 78

xiii

List of Listings

9.1. Excerpt from the Xtext grammar which de�nes the DSL 99
9.2. Excerpt from the grammar which de�nes encapsulated operations 100
9.3. Concrete syntax of a minimal constraint 102
9.4. Concrete syntax of a large constraint . 103
9.5. Concrete syntax of the UMLsec Secure Links constraints 104

A.1. Examples for conditions which consist of multiple operations 125
A.2. Shortened concrete syntax of constraints of both exemplary scenarios . . 135
A.3. Complete transformation result of the Geolocation Constraints scenario 136
A.4. Complete transformation result of the Access Control scenario 137

xiv

1. Introduction

In today’s connected world, exchanging data is vital for a lot of business applications.
To ensure software quality attributes like performance and reliability, the e�ect of data
processing has to be considered early in the design process. By only considering the
control �ow of applications, some of these e�ects do not become visible. Data-driven
analyses try to answer design questions by modeling the �ow of data explicitly.

Data-driven architecture description is especially helpful in terms of security and privacy
reasoning, because "people usually talk about con�dentiality in terms of data rather than
in terms of processes." [41]. To ensure properties such as con�dentiality, the modeled data
�ow has to be analyzed. Automated data �ow analyses are needed because "detecting
con�dentiality issues manually is not feasible" [41]. The prerequisite of automated analyses
are formalized architectural models.

In order to aid the software architect, Data-Centric Palladio [41], an extension of the
Palladio Component Model (PCM) [37] has been proposed. Explicitly modeled architectures
allow veri�cation at design time through techniques like simulation [37], model checking,
and theorem proving [15]. Data-Centric Palladio uses the logic programming language
Prolog to test modeled data �ows against speci�ed constraints [41]. An example is the
restriction of con�dential data like personal user details to never leave a speci�ed part of
a system, e.g. an internal, protected server.

A transformation chain enables automatic veri�cation by mapping the modeled ar-
chitecture to executable Prolog code [41, 25]. After the execution, constraint violations
indicate security issues and can be traced back. In order to de�ne speci�c constraints on
the system’s behavior and �ow of processed data, the constraints have to be explicitly
expressed by an architect using Prolog.

Here, multiple problems occur: First, it cannot be assumed, that software architects
know the underlying formalism well enough and are able to express constraints without
additional training. Second, knowledge about the automated transformation and the
target meta-model is required since constraints are expressed against this meta-model
and the resulting code from the transformation. Third, the analysis results represented as
Prolog solution and are not mapped back to the architectural model which makes their
interpretation more di�cult.

This gap between the architectural domain and the underlying formalism can also be
observed in related work [24, 26, 49, 15, 17, 23, 21, 34]. With higher analysis variability, more
knowledge about the underlying formalism is required. For instance, using logical formulas
[49, 15] is more di�cult than using previously de�ned metrics [24, 26] or annotations [18,
34, 21].

In the following, we outline the contribution and give an overview of the thesis’ structure
and content.

1

1. Introduction

1.1. Contribution

We propose an approach to enable modeling of constraints using the terminology and
abstraction of the architectural domain without the need of knowledge about the underly-
ing formalism. We aim to de�ne a domain-speci�c language (DSL) to express constraints
and analysis goals at design time. Using this language, an architect shall be capable of
de�ning generic or individualized data �ow constraints for a modeled system without
knowledge of the underlying formalism Prolog. Afterwards, our approach transforms the
constraint into executable Prolog code which checks whether the data restrictions hold
for the modeled architecture. Last, possible constraint violations are transformed back to
the architectural domain to ease the interpretation through the architect.

Besides the engineering aspect of providing ready-to-use tooling, we answer the follow-
ing research questions as part of this thesis:

RQ1 Which architecture-level constructs and language elements are necessary in order
to de�ne data �ow constraints?

RQ2 How is the mapping of constraints and results between architecture and formalism?

We aim to minimize the risk of rebuilding the formalism in another domain without
respect to real-world use cases. Thus, we collect case studies from related work to answer
these questions. We focus on analysis goals in order to �nd a generalized approach
to express data �ow constraints. Additionally, we consider the analysis capabilities of
the underlying formalism and its usage in Data-Centric Palladio [41, 25] as in�uential
factor regarding the expressiveness of our domain-speci�c language. We present a list of
requirements for such a language.

To answer RQ1, we derive modeling concepts from these requirements and formalize
them in a detailed meta-model in the architectural domain. Please note, that this does
not imply a feature-�nished language with the same possibilities as Prolog but rather
an approach to enable to formulation of analysis goals for the majority of analyzed case
studies.

We answer RQ2 by extending the existing transformation approach from Data-Centric
Palladio with a mapping from the newly de�ned domain-speci�c language to compliant
Prolog code that reuses existing analysis capabilities [25]. Additionally, we de�ne mappings
for the analysis results from the executed Prolog program back to the architectural domain.
Please note, that this step is not supposed to be equivalent to round-trip-engineering as
seen in model synchronization because we expect di�erent concepts in the analysis results
than de�ned for the domain-speci�c language.

1.2. Outline

The remainder of this thesis is structured as follows: In Chapter 2, we discuss fundamentals
like data �ow modeling and domain speci�c languages. In Chapter 3, we present related
work in the domain of transformation and analysis of architectural models. In Chapter 4,
we summarize example scenarios used in the remainder of this thesis. We discuss the

2

1.2. Outline

integration of our approach in the existing analysis process of Data-Centric Palladio in
Chapter 5. Afterwards, we collect language requirements in Chapter 6 which arise from
case studies and the underlying formalism. We derive our domain-speci�c language’s
syntax from these requirements in Chapter 7. Then, we discuss the language’s semantics,
its transformation to Prolog code and the mapping of results in Chapter 8. In Chapter 9,
we evaluate our approach. We conclude with Chapter 10 and provide a short outlook on
future work.

3

2. Foundations

In this chapter, we introduce fundamentals needed to explain this thesis. First, in Section 2.1,
we present the basic terminology used in data �ow modeling. Then, in Section 2.2, we
brie�y explain Data-Centric Palladio [41], an extension of the Palladio Component Model
(PCM) [37] to model and to analyze data �ows. In Section 2.3, we focus on domain-speci�c
languages (DSLs). Last, the concept and terminology of logic programming is summarized
in 2.4.

2.1. Data Flow Diagrams

A Data Flow Diagram (DFD) represents a systems structure by modeling interfaces and
data �ows inbetween [9]. The �ow of control (e.g. one component calling another) is not
in focus. DeMarco highlights that these diagrams "present the workings of a system as
seen by the data, not as seen by the data processors" [9] which helps abstracting from
individual operations. Data �ows are often described using graphical notations. DeMarco
provides rather informally semantics in natural language.

The following conceptual elements can be used inside of Data Flow Diagrams [9]:

• Processes, represented by named circles

• Data Flows, represented by annotated arrows between processes

• Files, represented by straight lines

• Data Sources, represented by boxes with only outgoing data �ows

• Data Sinks, represented by boxes with only incoming data �ows

A �ow of data starts at a source - e.g. a user’s input - is processed inbetween and is
terminated in a data sink, e.g. stored on a server. We visualize this simple scenario with
exemplary processes in Figure 2.1. Here, the input from the user is veri�ed and then
�ltered using �lter settings which originate from a �le. Last, the �ltered input is stored.

DeMarco de�nes data �ows as "pipeline through which packets of information of known
composition �ow" [9]. This means that there is no upper limit of possible pipelines between
two processes if data of di�erent kind or with di�erent purposes is sent. Through denoting
multiple �ows when applicable, the interface becomes more distinct. Data �ow names
shall represent what is known about the data and its state, e.g. by di�erentiating User Input
and Filtered User Input in Figure 2.1. Naming data �ows from �les is optional since the �le
description is considered su�cient [9].

5

2. Foundations

Filter
InputUser

Verify
Input Store

Verified
User
Input

Filter Settings

Filtered
User
Input

User
Input

Figure 2.1.: Simple data �ow scenario of user input data processing

Processes transform incoming data �ows into outgoing data �ows. As discussed above,
any number of incoming and outgoing data �ows are valid. DeMarco de�nes �les as
"temporary repository of data" [9] and thereby di�erentiates them from data sinks. Ad-
ditionally, data sources or sinks are outside of the context of the modeled system. The
Store-Element in Figure 2.1 is considered outside of the diagram’s focus and thus modeled
as sink. Otherwise, denoting it as �le would be more accurate. Boxes in data �ow diagrams
can represent both a data source and a data sink simultaneously. Being outside the modeled
system, data sources and sinks are not allowed to modify data. Only processes are allowed
to transform data and are modeled explicitly inside the systems boundaries.

2.2. Data-Centric Palladio

Palladio is an approach to model software architectures and predict quality attributes such
as performance and reliability [37]. The Palladio Component Model (PCM) is a domain-
speci�c language for "specifying and documenting software architectural knowledge" [37].
Through analysis methods like simulation, complex software systems performance can be
predicted early in the design process.

To achieve this, we specify several information: We encapsulate Component behavior
in Service E�ect Speci�cations (SEFFs), which are stored in the Component Repository Model.
We wire these components together using the System Model. We describe in the Component
Allocation Model how the system is deployed on hardware. The hardware is de�ned in the
Execution Environment Model. Last, the Usage Model describes the users behavior while
interacting with the system. Combined, these �ve models allow the prediction of quality
attributes like performance [37].

To allow further analysis regarding software quality attributes like security or privacy,
Data-Centric Palladio has been proposed by Seifermann et al. [41]. Based on a "conventional
software architecture model" [41], data-driven constraints can be added by the architect
through custom annotations.

The meta-model of Data-Centric Palladio allows the speci�cation of data �ow descrip-
tions using data, sources and sinks, characteristics and processing operations. We explain
data �ow modeling with sources, sinks and processes in Section 2.1.

6

2.3. Domain Speci�c Languages

Additionally, data and processes can hold characteristics. Characteristics are "named
�nite sets of values" [41]. These are used e.g. to express roles or access rights on data. The
data �ow analysis compares the characteristics of data and processes. Here, characteristics
can be modeled explicitly by the architect or inferred implicitly. An example for this are
data characteristics depending on the data’s source. Thus, characteristics of data may
change when beeng processed in the system. We use processing operations to express the
transformation of data �ows from source to sink. Examples are data �ltering or aggregation
[41]. To exchange data between components, we de�ne data transmissions.

InIntteerrnnaallAAccttiioonn
gegettFFlliighghttOOffffeerrss

LoadAllData

Selection

ReturnData

FlightOfferStore

FlightOffer[]

FlightOffer[]
FlightOffer

FlightOffer

RequestData

Figure 2.2.: SEFF with data �ow annotation

Using the meta-model of Data-Centric Palladio, Palladio’s SEFFs can be annotated with
data �ow information, as shown in Figure 2.2 [41]. All speci�ed data and processes can
hold characteristics. The action getFlightO�ers is described using a data �ow from the
FlightO�erStore to the user. Based on the requested data, results are processed (selection).

After modeling data �ows, we can evaluate speci�ed constraints automatically. For this
analysis, the model is transformed into executable Prolog code. The output of the program
provides insight whether or not the modeled architecture holds the speci�ed requirements.

2.3. Domain Specific Languages

Several de�nitions of domain-speci�c languages can be found in other work [1, 20, 28,
29, 46]. Van Deursen et al. de�ne them as follows: "A domain speci�c language (DSL)
is a programming language or executable speci�cation language that o�ers, through
appropriate notations and abstractions, expressive power focused on, and usually restricted
to, a particular problem domain" [46]. This de�nition holds multiple aspects of DSLs, we
want to brie�y discuss in the following.

DSLs o�er appropriate notations for end-users and can also be called "end-user pro-
gramming" [46]. Thus, the end-user needs no in-depth knowledge of formalisms and only
needs to understand the DSL to "be more capable of handling more complex tasks." [33].
This can have a positive impact on the user’s productivity [28]. Other opportunities of
DSLs are self-documentation through meaningful notations, consistency, proper level of
abstraction and enhanced maintainability [46]. Use cases are analysis, veri�cation and
optimization [28].

In comparison, a general-purpose language (GPL) o�ers a more generic approach: "A DSL
o�ers appropriate domain-speci�c notations from the start" [28]. Additionally, GPLs tend

7

2. Foundations

to require more boilerplate code. Conciseness shall be considered throughout development
in order to avoid accidental complexity.

DSLs don’t have to be directly executed [28] and can rather be transformed into an
executable representation. To create a DSL, domain-speci�c knowledge has to be combined
with language development skills which is considered "hard" [28].

In the following, we present PlantUML as an example for a DSL which shows both
the enhanced intuitiveness and the restrictiveness to a de�ned domain. PlantUML [38]
is a open-source DSL to textually de�ne UML-diagrams. Figure 2.3 shows a simple class
diagram, modeling the (simpli�ed) relation of an Object and an ArrayList [38]. We show
the textual representation in Listing 2.1. Even without seeing the diagram, PlantUML code
can be understood due to its intuitiveness. However, this is not the case for all textual
representations of UML diagrams, e.g. XML is worse readable.

Object

equals()

ArrayList

elementData: Object[]

size()

Figure 2.3.: A simple class diagram

1 @startuml

2 class Object {

3 equals()

4 }

5
6 class ArrayList {

7 elementData: Object[]

8 size()

9 }

10
11 Object <|-- ArrayList

12 @enduml

Listing 2.1: PlantUML DSL code of a simple class diagram

2.4. Logic Programming

Logic programs follow a di�erent paradigm than "classic" procedural programming lan-
guages like Java or C++ [3]. The procedural paradigm consists of statements, which are
executed from start to end. These can be encapsulated inside control structures like condi-

8

2.4. Logic Programming

tional constructs or loops. In comparison, logic programs follow the declarative paradigm.
They consist of facts and rules which can be combined and solved by the programming
environment. The programmer does not specify how to solve the program.

A well known logic programming language is Prolog, which stands for "Programming in
Logic" [3]. Using the Prolog environment, questions (called "queries") can be asked to a
previously de�ned system of facts and rules. We provide a short example based on Bramer
et al. [3] in Listing 2.2. The �rst two lines are facts which declare that fido and henry are
dogs. The third line is a rule, specifying that anything can be called an animal, if it’s a dog;
or in more natural language: "All dogs are animals".

1 dog(fido).

2 dog(henry).

3 animal(X) :- dog(X).

Listing 2.2: Simple Prolog example with facts and rules

With this simple set of facts and rules, some �rst questions can be asked. To answer
these, the Prolog environment solves the underlying logic program. We show queries
and their results in Listing 2.3. The �rst query is straightforward: We ask if fido is a dog.
Because of the �rst fact in Listing 2.2, this is evaluated to true. The second query asks
if fido is an animal. Because of our rule in the last line of Listing 2.2, this is also true. In
the last query, we ask if there can be found any facts about dogs, which evaluate to true.
This is the case for both fido and henry. Based on these building blocks, complex logical
relations can be formalized and solved. A detailed description how Prolog approaches
such problems using uni�cation and backtracking can be found in [3, Chapter 3].

1 ?- dog(fido).

2 true.

3 ?- animal(fido).

4 true.

5 ?- dog(X).

6 X = fido;

7 X = henry

Listing 2.3: Simple Prolog queries and results

In order to expand this basic understanding of the Prolog environment, we summarize
important language elements and terminology [43].

Terms are a basic building block of Prolog programs. By adding arguments, they become
Compound Terms. The number of arguments is speci�ed by their arity. The next bigger
building block is the clause, also called sentence, or rule [3]. It consists of a head and a
body. The head represents the identity of the rule and can be expressed using an atom
(a textual constant) or a compound term with arguments. The body itself is a clause and
thus a term. The semantics are straightforward: The body implicates the head. In line 3
of Listing 2.2, we see such a rule: animal(X) :- dog(X). The head and body are built up
from compound terms with one argument and thus with an arity of one.

9

2. Foundations

Facts are clauses without body. Thus, they have no condition which must be satis�ed. In
Listing 2.2, we can see such facts for fido and henry. A predicate represents a collection of
clauses with the same functor, which means matching name and arity (like dog). A Prolog
program is a collection of predicates.

After de�ning the program, the Prolog engine can answer questions called goals or
queries, as shown in Listing 2.3. If a goal succeeds, a solution with bound variables is
returned. The query fails if Prolog is unable to �nd a solution which satis�es the question.

10

3. RelatedWork

In this chapter, we give an overview of related work for this thesis. The common research
�eld of all related work is the design time analysis of software architectures. Related work
discusses the use of di�erent formalisms to analyze software quality attributs like perfor-
mance or to ensure security. In order to perform analyses, these approaches transform to
formalisms which allow automated veri�cation.

This includes approaches based on the Palladio Component Model (PCM) [24, 27] in
Section 3.1, security modeling approaches like UMLsec [18] and Software Architecture
Models [15, 49] in Section 3.2, and data �ow oriented approaches like Secure Data Flow
Diagrams [34] and iFlow [21] in Section 3.3. We close with a short comparison of related
work and our approach in Section 3.4.

3.1. Alternative Analysis for PCM

The Palladio Component Model [37] is a DSL to document and evaluate software quality
attributes like performance and reliability (please see Section 2.2 for fundamentals). To
analyze these models, di�erent approaches were proposed. We summarize the analysis
using Layered Queueing Networks (LQN) [24] and Queueing Petri Nets (QPN) [27]. Both
approaches use metrics which limit the expression possibilities of analysis goals of an
architect.

Koziolek et al. present A Model Transformation from the Palladio Component
Model to Layered Queueing Networks [24]. They propose an automated model trans-
formation from the architectural layer to a connected LQN solver. Their goal is to create a
reusable transformation approach with performance advantage over discrete-time simula-
tion. The transformation is based on a de�ned mapping between PCM and LQN. The model
is serialized afterwards and sent to the LQN solver for performance analysis. Users can
change parameters of the architecture to quickly evaluate their in�uence on performance
attributes. A limitation of their approach is the lack of solver feedback. Thus, analysis
results are not processed but rather printed to the screen and have to be interpreted
manually by the architect.

Meier et al. propose an Automated Transformation of Component-based Soft-
ware Architecture Models to Queueing Petri Nets [27]. They use a model-to-model
transformation from PCM to lower level QPNs and simulate the modeled system after-
wards. The mapping is provided using QVTO. To enable user input and speci�cation of
desired analysis results, a "Instrumentation UI and Instrumentation Model" [27] is de�ned.
Together with result integration, this approach lets the user view simulation results and
identify performance problems without leaving the architectural abstraction level. The
user can de�ne the level of detail of desired results from simple aggregations to detailed

11

3. Related Work

histograms [26]. This in�uences the amount of collected data and the simulation time.
Although the results are mapped back to architectural domain, they are only "printed to
the console and to a results �le" [26] without further processing.

3.2. Security Modeling

The �eld of Model Driven Security (MDS) tries "to solve security-related questions at design
time using model-driven approaches" [13]. Through early modeling of critical system
aspects, costly changes in later steps of the software development process can be avoided.
These approaches are related to our work because they also handle transformations
from the architectural domain and analysis goal speci�cation. We present the modeling
approaches Software Architecture Model (SAM) [15, 49] and UMLsec [18]. These have
already been discussed in previous work [13].

Yu and He et al. propose the usage of Software Architecture Models for security
analysis of distributed systems [49] and as formal basis for analyzing software architectural
speci�cations [15]. SAM is based on a "dual-formalism consisting of petri nets and temporal
logic" [13]. The approach allows hierarchical decomposition of software architectures and
verifying constraints automatically using model checking or theorem proving. To analyze
an formalized architecture, it is transformed into a �nite state system [15]. User input
constraints, formalized in Linear Temporal Logic (LTL), are transformed into Computation
Tree Logic (CTL). The analysis returns whether the constraint holds for the given system.
If not, the failure is demonstrated by an execution sequence. This approach o�ers a higher
analysis variability compared to other related work. Still, the architect has to use the
formalism LTL to specify constraints.

Jürjens et al. present the UMLsec [18] approach which extends the Uni�ed Modeling
Language (UML) with "security engineering related techniques" [13]. Through the usage
of stereotypes and constraints, UML diagrams can be annotated with security attributes,
e.g. by de�ning data as con�dential. To verify modeled systems, a transformation into
Abstract State Machines is provided. These can be model-checked against an adversary
using SPIN and the Promela-language [18]. The adversary’s behavior is based on the
previously annotated diagrams. If a vulnerability has been found, a trail �le "which records
the sequence of actions of the potential attack" [18] is produced. This �le is handed over
to the error analyzer, which creates a report containing the problems found. Through
this transformation, the architect can model the systems security and view the analysis
results on the same abstraction level. However, Jürjens states that there is still lack of
"feedback from the model checker back into the UML model" [18] which makes the result
interpretation more di�cult.

3.3. Data Flow Oriented Modeling

In this section, we summarize related work providing approaches for data �ow oriented
analysis. This includes Security Data Flow Diagrams (SecDFD) [34] and iFlow [21, 23].
Please note, that these approaches could also be considered as security modeling (see

12

3.4. Comparison

Section 3.2). We chose to list them separately because of their strong relation to data �ow
oriented analyses. Both approaches use annotations which limit the architects analysis
capabilities compared to a DSL.

Peldszus et al. present Secure Data-Flow Compliance Checks between Models
and Code based on Automated Mappings [34]. The mapping is created (semi-) auto-
matically through combining design-level SecDFD-models with corresponding implemen-
tations. SecDFD is a graphical representation of data �ow diagrams, extended by security
annotations. Their goal is to aid the architect by discovering "secure data-�ow compliance
violations" [34]. Peldszus et al. state the importance of tool-assistance because manual
mappings are "ine�cient and error-prone" [34]. They propose a semi-automated mapping
between model and code based on heuristics like matching structures and signatures. The
user has to verify these mappings afterwards in an iterative process. The �nal mapping
can be used for compliance checks, e.g. by applying security metrics. The veri�cation
of modeled data �ow contracts without the help of external analysis tools is considered
future work.

Katkalov et al. propose the Model-Driven Development of Information Flow-
Secure Systems with IFlow [23]. IFlow provides an environment for modeling of �ow-
sensitive applications. These models can be be used to "automatically generate deployable
app and web service code as well as a formal model" [23]. Based on an annotated UML
diagram, restrictions can be formally veri�ed. Therefore, the model is transformed into an
Abstract State Machine and used as input for theorem proving. Proof goals are generated
automatically based on security level annotations by the user, e.g. which data is considered
to be kept private. The proving step yields whether the rules of non-inference hold for the
speci�ed system and restrictions. Its not discussed if there is any other processing of the
analysis results.

3.4. Comparison

To conclude, we compare the di�erent approaches listed before. We focus on aspects
which are relevant in the scope of the thesis. This includes the user’s in�uence on the
analysis goals and their domain of de�nition, the analysis method, and the processing of
results. The comparison is summarized in Table 3.1.

All approaches have the common goal to aid the architect on design decisions by
analyzing architectural models. First, we discuss the domain of analysis goals. Possible
domains are the architectural domain if no knowledge is required about the underlying
formalism. Except for SAM, all approaches use the architectural domain to formulate
analysis goals. The variability of requirements, constraints or analysis goals depends on
the provided formalization. Related work uses metrics, logical statements or annotations
for modeled software systems. We consider the selection of metrics having a lower analysis
variability than annotating models. Using the underlying formalism or a DSL is supposed
to have the highest variability.

A common gap is mapping of analysis results. Only UMLsec and Palladio QPN o�er a
transformation of analysis output back into the architectural domain. Still, this mapping

13

3. Related Work

Approach Analysis
variability

Goal for-
mulation

Constraint
domain

Analysis
method

Result
mapping

Palladio
LQN [24] low metrics architecture analytical

solver no

Palladio
QPN [27] low metrics architecture simulation yes

SAM [49] high temporal
logic formalism theorem

proving no

UMLsec
[18] medium annotations architecture model

checking yes

SecDFD
[34] medium annotations architecture theorem

proving no

iFlow [23] medium annotations architecture theorem
proving no

Data-
Centric
Palladio

high logic
program formalism logic

program no

Aspired goal high
domain
speci�c

language
architecture logic

program yes

Table 3.1.: Comparison of related work

is limited and does not allow result interpretation in the same view which has been used
for modeling.

We added a comparison to the current state of Data-Centric Palladio as well as the
aspired goal of this thesis. Data-Centric Palladio relies on the formulation of constraints
using a formalism in addition to annotating the architectural model. Thus, we consider it
having high analysis variability. The goal of this work is to enable the architect to de�ne
constraints in the architectural domain using a DSL instead of the formalism. Additionally,
we use result mapping to transform analysis results back in the architectural domain which
eases the interpretation of constraint violations.

14

4. Example Scenarios

In this chapter, we introduce two example scenarios. These scenarios are used for the
requirements analysis, the language design (RQ1) and the mapping to the underlying
formalism (RQ2). Both scenarios originate from other work in the �eld of design time
analysis [23, 47].

4.1. Geolocation Constraints

This example scenario is based on work by Seifermann et al. [41], Kunz [25] and Weimann
[47]. It has been previously used to develop parts of the transformation of Data-Centric
Palladio. We simplify the scenario to clearly show the usage of characteristics for data
�ow analyses.

The scenario is based on geolocation restrictions implied e.g. from the government. An
example are the General Data Protection Regulations (GDPR), which do only allow personal
data "to be processed or stored within the European Union or certain countries with
equivalent privacy regulations" [25]. Thus, this example represents a data �ow restriction
based on the kind of data and the processing location. We de�ne the characteristics of this
scenario as follows:

• Privacy level: Either personal or anonymous. Data is considered to be personal if it
can be associated with a person (e.g. name, address, phone number). Otherwise, it is
considered to be anonymous (e.g. product lists, stock quantities, item descriptions).

• Location: In this example scenario either EU, USA, or Asia. Thus, a place can be
inside the EU or not.

As mentioned previously, personal data shall be protected in conformance to legal
restrictions: personal data with its origin inside the EU is not allowed to be processed in a
non-EU-location. In order to implement this scenario using Data-Centric Palladio, we use
the data’s privacy level (personal or anonymous) and the location of a service (EU, USA,
or Asia) as characteristics. We annotate a modeled system with these characteristics.

A common instance of this scenario are (international) online shops which have to
synchronize shop information across borders but are not allowed to do so with personal
data. In Figure 4.1, we show the diagram of a simple online shop. The Shop Server
contains the Web Store component, which is used to view and buy products. If the user
views products, the Web Store calls an recommender to get additional information and
products to show to the user while browsing. This component is deployed on a separate
Recommendation System. When the user buys a product, its personal data is stored in a
database, which is deployed on a Database Server.

15

4. Example Scenarios

Shop Server

Web Store

Recommendation
System

Recommender

Database Server

User
Database

Location: EU

View Products

Buy Products

Store User

Get Info

Location: USA

Location: Asia

Data: Anonymous

Data: Personal

Figure 4.1.: Deployment diagram of the Geolocation Constraints example scenario

We annotate all servers with the location characteristic which represents the location of
their deployment and we annotate all user endpoints with the privacy level characteristic.
Trivially, USA and Asia are non-EU-locations. With this information, we can test if the
constraint "No personal information is processed outside of the EU" holds for every data �ow.

In the example shown in Figure 4.1, the data �ow from the user to the web store to
the recommender ful�lls this constraint. Although the recommender is deployed with the
Recommendation System in the USA (a non-EU-location) only anonymous data is processed
which is excluded from the restriction. This is not the case for the buy products data �ow.
Personal information �ows through the web store �rst which is no problem since it is
located inside the EU. However, storing the user data in the user database violates the
constraint since the Database Server is located in Asia.

Please note, that this example represents a very basic scenario. Still, it is prototypical
for real-world problems regarding legal regulations and one can simply imagine that
complex, international online shops cannot be checked against data �ow constraints by
hand without tool-support.

4.2. Access Control

This scenario represents another popular use case of data �ow restrictions. Access control
systems manage security by assigning access rights to sensitive information. Prior to
allowing data access of actors, the system checks their authorization. A well known
example of this behavior is the Unix �le system [25].

The data �ow constraint of access control systems can be formulated as follows: Data
access is only permitted if the actor’s role is authorized. We model this behavior using the
actor’s roles and the data access rights as characteristics. Every datum has a de�ned list of
authorized roles. A constraint violation occurs if an actor gets access to a datum which
does not have the actors role in its authorized role list. We illustrate this in Table 4.1 using

16

4.2. Access Control

Authorized
roles

Actor roles Intersection
of both sets

Constraint
violation

{A,B,C} {C} {C} no
{A,B} {C} ∅ yes
{A,B,C} {C,D} {C} no
{A,B} {C,D} ∅ yes

Table 4.1.: Constraint violation examples in access control systems

Actor Role

TravelPlanner App User
CreditCardCenter App User
TravelAgency TravelAgency
Airline Airline

Table 4.2.: Actors and roles in the Travel Planner example

four simple roles. In theory, this represents a test for emptiness of the intersection of two
sets.

We consider a simpli�ed version of the TravelPlanner case study [23, 22] which has been
previously used in other work [41, 25]. In this case study, users install a travel planning
application on their smartphone. They have also a CreditCardCenter App installed which
manages their credit card details. The TravelPlanner app is "sponsored and developed
by a travel agency that acts as a broker for the airline" [22]. Typical usage scenarios
are requesting �ight o�ers and booking �ights. Since the latter requires the exchange of
sensitive information, we model the roles explicitly in Table 4.2 [25]. Possible roles are User,
TravelAgency and Airline. Both, the TravelAgency and the Airline have their corresponding
roles. The TravelPlanner App and the CreditCardCenter App have the role User since both
are installed on the user’s smartphone.

We show the deployment diagram of the simpli�ed scenario (with according role anno-
tations) in Figure 4.2 and the sequence diagram in Figure 4.3. In the following, we discuss
the occurring data �ows and the access rights of exchanged data. First, the user requests
�ight o�ers using the TravelPlanner App. The app forwards the request to the TravelAgency
which forwards it again to the Airline. The list of �ight o�ers is then sent back through the
TravelAgency to the TravelPlanner App and displayed to the user. All exchanged data (the
�ight o�er request and the resulting o�er) authorize all existing roles (User, Travel Agency
and Airline). Trivially, no constraint violation occurs.

The user chooses a �ight o�er and initializes the booking process through the Trav-
elPlanner App. This time, the request is sent directly to the Airline. Thus, the datum holding
the selected �ight only authorizes the roles User and Airline. A constraint violation would
occur if information about the selected �ight would �ow to the TravelAgency. Additionally,
the TravelPlanner App transmits credit card data to the airline. Initially, this data only
authorizes the role User since it is considered sensitive. In order to be passed to the airline,

17

4. Example Scenarios

User Smartphone

TravelPlanner App

Travel Agency

TravelAgency

Airline

Book Flight Offer

Get Flight Offers

Role: User

Airline

CreditCardCenter
AppGive Permission

Declassify Credit
Card Details

Get Flight Offers

Get Flight Offers

Book Flight Offer

Role: TravelAgency

Role: Airline

Figure 4.2.: Deployment diagram of the Travel Planner example

it has to be declassi�ed �rst using the CreditCardCenter App which includes a permission
request shown to the user. By accepting this request, the role Airline is added to the credit
card data. This allows the airline to access selected information about the credit card
without a constraint violation.

In comparison with the geolocation constraint scenario shown in Section 4.1, this data
�ow analysis requires additional e�ort. The characteristics of data which �ows from
the CreditCardCenter App are not �xed but rather depend on user input. Additionally,
characteristics are represented by sets instead of single values.

18

4.2. Access Control

Tr
av

el
Pl

an
ne

r
A

pp
C

re
di

tC
ar

dC
en

te
r

A
pp

Tr
av

el
A

ge
nc

y
A

ir
lin

e

G
et

 F
lig

ht
 O

ff
er

s

U
se

r

B
oo

k
Fl

ig
ht

 O
ff

er

G
et

 F
lig

ht
 O

ff
er

s
G

et
 F

lig
ht

 O
ff

er
s

D
ec

la
ss

if
y

C
re

di
t C

ar
d

D
et

ai
ls

G
iv

e
Pe

rm
is

si
on

B
oo

k
Fl

ig
ht

 O
ff

er

Figure 4.3.: Sequence diagram of the Travel Planner example

19

5. Supporting the Existing Analysis
Process

In this chapter, we discuss the integration of our approach into the existing development
process of Data-Centric Palladio proposed by Seifermann et al. [41].

As discussed in Chapter 1, the status-quo su�ers from multiple problems: There is
no abstraction enabling the architect to de�ne analysis goals without knowledge of the
underlying formalism and the representation of the transformed architectural model.
Analysis results are also a�ected by this domain gap. We propose the usage of a domain-
speci�c language (DSL) to bridge this gap and inspect high-level constructs (RQ1) and
their mapping to Prolog (RQ2).

Figure 5.1 shows the extended development process. White elements represent existing
process elements while gray elements are part of our contribution. Elements with dashed
borders annotated with gear icons are hereby fully automated without user interference.
All other activities are performed by the architect.

The starting point ofData-Centric Palladio is a software architecture description based on
the Palladio Component Model which does "not consider data and its processing explicitly"
[41]. In order to enable the analysis of data �ows, the architects de�nes data and its
processing explicitly. In order to do that, he de�nes characteristics and annotates the
existing software architecture model. These characteristics represent e.g. the sensitivity of
data as shown in Section 4.1. For more information on the usage of Data-Centric Palladio,
please refer to Section 2.2.

After the data �ows under consideration are de�ned, Data-Centric Palladio transforms
the model and its annotations to the Operation Model. This intermediate step is proposed
"because it decouples the analysis from the ADL [architectural description language]
used to model the system" [41]. The Operation Model is a "simpli�ed analysis model" [41]
consisting of operations and their processing of data. Afterwards, the generated model is
transformed to executable Prolog code. Both steps can be executed automatically.

The de�nition of analysis goals is independent from this transformation. The architect
uses our proposed DSL to de�ne data �ow constraints. He de�nes restrictions based on
the characteristics from the previous step. An exemplary constraint from Section 4.1 is
the restriction of sensitive user data to not �ow to a speci�ed location.

Afterwards, the formulated constraint is transformed to executable Prolog code and
combined with the previously generated code from the Operation Model. The result of this
step is a Prolog program which is used to �nd data �ow issues by evaluating every de�ned
constraint.

The result of this analysis is a list of violations which refer to the Operation Model. In
order to aid the architect, these violations are mapped back into the architectural domain.
This enables the architect to interpret the results in the last step without the need to leave

21

5. Supporting the Existing Analysis Process

Define conventional
Software Architecture

Define Data Processing
using Annotations

Transformation to the
Operation Model

Transformation of Model
to Prolog

Define Anlysis Goals
using the DSL

Result Mapping

Transformation of DSL
to Prolog

Architecture Analysis

Result Interpretation

[else]

[Requirements met]

Figure 5.1.: Extended development process with Data-Centric Palladio

his domain. All steps from the transformation of the DSL to Prolog to the Architecture Analysis
and the Result Mapping are automated.

Data-Centric Palladio favors an iterative approach. If the modeled architecture does not
meet all requirements it can be adjusted based on the analysis results. Previously de�ned
data �ow constraints can also be changed or re�ned after each execution.

22

6. Language Requirements

In this chapter, we collect requirements for the language design. In order to discuss which
constructs and high-level elements are necessary for our DSL (RQ1), we consider two
in�uential factors. First, we show case studies and analysis approaches from the security
modeling domain (please see Section 3.2) in section Section 6.1. Then, we summarize the
existing analysis approach from Data-Centric Palladio which uses Prolog and the Constraint
Query API from Kunz [25] in Section 6.2.

This method is motivated by the Feature-Oriented Domain Analysis (FODA) [19] which
"supports reuse at the functional and architectural levels" [19]. They identify four major
factors which in�uence a generic domain model: The capabilities from the end-user’s
perspective, the applications environment, the domain technology and the implementation
techniques. This can be summarized as user-centered (or top-down) and technology-
centered (or bottom-up). Thus, we both generalize existing case studies (top-down) and
abstract from existing constraints formulated in the underlying formalism (bottom-up).

The results from the case studies can be interpreted as lower limit of requirements
which the language has to satisfy in order to de�ne applicable data �ow constraints. The
underlying formalism, namely the Constraint Query API is the upper limit of functionality
since we cannot de�ne any constraint which is not translatable into it. Trivially, using
Prolog without our DSL represents this upper limit but lacks the desired abstraction.

6.1. Case Studies

We collect data �ow scenarios from case studies [47, 23] and analysis approaches from
other work [15] in the security modeling domain. The studies have already been used in
previous Data-Centric Palladio related work from Kunz [25]. We extract information about
data �ows and their case-related restrictions. Then, we show similarities and generalize
the constraint requirements. This represents the lower-limit of language requirements.

The Geolocation Scenario was used in previous work from Kunz [25] and Weimann
[47]. It describes data �ow restrictions which originate from the legal framework of
international online shops. We describe a simpli�ed version of this scenario in Section 4.1
which only divides the sensitivity of data in "fully sensitive" and "fully anonymous" without
�ner gradations. The restriction of data �ows rather depends on their processing and the
environment. We repeat the de�nition of three con�dentiality levels from the work of
Weimann [47]:

• Type-0 (Personal information): Data which is directly related to personal information
(e.g. name, adress or credit card number).

23

6. Language Requirements

• Type-1 (Personal identi�able information): Data which does not directly contain
personal information. If this data is combined with other Type-0 or Type-1 data,
personal information can be reconstructed.

• Type-2 (Anonymous data): Data which does not reveal any personal information
even combined with other data

In the following, we discuss the constraint formulation. The simpli�ed scenario shown
in Section 4.1 focuses on Type-0 and Type-2 data. As Type-2 does not hold any personal
information, its data �ows are not restricted. Type-0 data holds sensitive information and
thus always needs to be protected. We only allow the processing of Type-0 data �ows in
safe locations. In the context of a legal framework, this is e.g. the same country the data
originates from. In Section 4.1, we describe the constraint as: "No personal information is
processed outside of the EU". By using con�dentiality levels, this can be generalized to:

"No Type-0 information is allowed to �ow outside of a safe location"

Here, the term �ow implicitly covers processing or storing of data. Please note that we
do not de�ne safe locations here but rather leave this to the concrete analysis.

The restrictions on Type-1 need further information about the context of data processing.
Here, the joining of two di�erent data �ows from from di�erent sources has to be prohibited
because this would enable the retrieval of personal identi�able information. Kunz models
the source of data as data type for "illustration purposes" [25]. However, he points out
that an alternative would be use of "an additional attribute to the data which speci�es the
information source" [25]. In order to prevent the joining of data �ows, the constraint can
be formulated as follows:

"No Type-1 data is allowed to �ow to a location where other Type-1 data is processed
if both have di�erent data types"

This �rst scenario reveals multiple requirements for formulating data �ow constraints
and thus language elements. We collect our �ndings in the following:

R1 Constraints restrict the �ow of data between source, processes and sinks (please see
Section 2.1 for details on the terminology). They abstract from concrete processing
operations, parameters and control �ow

R2 Data can be selected by its characteristics (e.g. Type-0 data)

R3 Data can be selected by its data type

R4 Groups of processes and sinks can be selected by their characteristics (e.g. the
location)

R5 Processes and sinks can be selected by their identity (e.g. restricting multiple data
�ows from being handled in one process)

R6 Characteristic selection can be inverted (e.g. every location except the EU)

24

6.1. Case Studies

R7 Characteristic selection accepts multiple values (e.g. Asia and USA)

R8 Multiple forms of a characteristic can be combined to named classes (e.g. safe
locations)

R9 Multiple data �ows can be considered in one constraint (e.g. two distinct Type-1
data �ows)

The TravelPlanner case study originates from the I�ow project [23]. It represents an
access control system. This system only permits an actor to gain access if the requested
datum is open for the actor’s role. A simple example are system critical �les of an operating
system: A system administrator is allowed to access these �les while normal users are
not. The actor’s roles and the authorized roles of a datum can be both modeled using
characteristics.

The travel planner case study presents a typical scenario of planing a travel by plane.
We explained this case study in detail in Section 4.2. The involved actors are the user, a
travel agency and an airline. The user books a �ight o�er and transmits credit card details
which is considered to be sensitive. Thus, only the airline is permitted to gain access
after the user explicitly declassi�ed the information. This can be explicitly modeled by
controlling the roles which are allowed to gain access on the credit card data. The list of
roles is not static but changes over time, e.g. when the data is declassi�ed and sent to the
airline. Other information such as data about �ight o�ers is not restricted at all and can be
viewed by all actors.

This case study represents only one case of the usage of access control systems. In order
to de�ne a generalized constraint, we do not consider example data (e.g. credit card data)
but rather restrict the data access using the characteristics actor’s roles and authorized roles.
Both characteristics are modeled using sets rather than single values. If a datum’s list of
authorized roles does not contain at least one of the accessing actor’s roles, a constraint
violation occurs. There is no di�erentiation if an actor actively asks for the datum (in the
sense of a call in the control �ow) or if the datum passi�y �ows to the actor like in the
example presented above. We de�ne the constraint as follows:

"Information is only allowed to �ow to an actor if the intersection of its authorized roles
and the actor’s roles is not empty"

Intuitively, a non-empty intersection of both sets implicates that the authorized roles
contain at least one of the actor’s roles. We prefer the set opertation since it can be used in
a broader context.

The analysis of this case study reveals additional requirements. We extend our list as
follows:

R10 Characteristics can be variable (e.g. an authorized role) and thus require further
restrictions

R11 Variable Characteristics can be represented by single values or sets (e.g. a single or
multiple roles)

25

6. Language Requirements

R12 Variable characteristic can be analyzed using set operations (e.g. the intersection of
two sets or a test for emptiness of a set)

Formal Software Architecture Models (SAM) are related work to this thesis. Yu et
al. [49] present another exemplary travel planner to explain their use of formalisms for
de�ning requirement speci�cations. Please see Section 3.2 for more information.

The travel planner receives travel information and then books an appropriate �ight,
reserves a hotel room and rents a car. The �ight ticket is bought from Delta Airlines if their
o�er is lower than $400, otherwise the ticket is purchased at Continental Airlines. This
internal decision is the critical point of the system: If the agent which returns ticket prices
for Delta Airlines gains knowledge about the $400 threshold it could always return $399.
This would ensure that they always sell their own ticket while still maximing their pro�t
per ticket. To avoid this problem, they de�ne the following constraint (simpli�ed):

"An agent’s decisive data is not allowed to be leaked to another agent"

Here, the decisive data can be an arbitrary combination of input data, e.g. the price, user
information, selected route or travel time. In the example above, the ticket price represents
decisive data. The sensitivity of data has to be labeled for every agent.

This constraint introduces one additional requirement:

R13 Data and processes can be selected by combining the selection of multiple charac-
teristics

In the following, we summarize the �ndings from this section. Our goal is to de�ne
a lower limit of functional requirements for the language design. Besides de�ning lan-
guage elements, we seek to �nd similarities and a common constraint shape. We start by
enumerating the previously determined data �ow constraints:

(1) No Type-0 information is allowed to �ow outside of a safe location

(2) No Type-1 data is allowed to �ow to a location where other Type-1 data is processed if
both have di�erent data types

(3) Information is only allowed to �ow to an actor if the intersection of its authorized roles
and the actor’s roles is not empty

(4) An agent’s decisive data is not allowed to be leaked to another agent

Despite the fact that these constraints originate from di�erent case studies and related
work they show several similarities. First, they restrict the �ow of data by not allowing it
or only allowing it under certain circumstances (R1). The modality of these restrictions is
�xed, never allowing a data �ow or leakage.

Second, these restrictions only apply for selected cases and not for all data �ows.
Examples are (1) only considering Type-0 information or (4) only restricting decisive
data. There is no information on data which does not �t the selection. In the geolocation

26

6.2. Underlying Formalism

scenario, Type-2 data is allowed to �ow to any safe or unsafe location. The data �ow
constraints follow a blacklisting approach.

Data is selected based on its characteristics (R2) or other attributes like its data type
(R3). The selection can also be inverted (R6) or combined with other characteristics (R13).
Multiple values (R7) and classes of characteristics (R8) are also possible, e.g. all safe
locations. In some cases, the static value of a characteristic is not relevant but rather its
value in comparison with other data characteristics values, e.g. in (3) which requires more
detailed restrictions (R10 and R11).

Besides the selection of data based on its characteristics, nodes like processes and sinks
are selected. These are sometimes also called entities, actors, agents or locations. Nodes
are selected by their characteristics (R4) or by their identity (R5).

The restriction of data �ows in (2) and (3) is coupled on an additional condition. This
condition uses previously de�ned characteristic variables and evaluates them, e.g. by
testing for distinct sets in (3). Other variable comparisons and set operations are imaginable
(R12). All constraints consider one data �ow at a time except for (2) which restricts the
joining of distinct data �owing from multiple sources (R9).

6.2. Underlying Formalism

In order to discuss the upper limit of of functionality, we summarize the Operation Model
and the Constraint Query API [25] which are used by Data-Centric Palladio [41]. Because
we extend this approach (please see Chapter 5 for details) the analysis capabilities of this
underlying formalism represent the upper limit of possible constraints. Last, we discuss
abstraction possibilities and gaps between the architectural domain and the analysis
domain.

The Operation Model is used as intermediate model between the architectural description
of a system and lower-level Prolog code. It can be seen as "simpli�ed analysis model" [41].
The transformations between the modeled architecture, the Operation Model and Prolog
code are fully automated. Because our proposed DSL is also transformed into Prolog code
which refers to this model, it’s viable to consider it early in the design process.

In the following, we show important elements form the Operation Model:

• Operations are central structural elements and represent processes which manipulate
data, e.g. a database store operation

• Call Parameters and Return values are used to exchange data between operations,
sources and sinks, e.g. the data to store in a database

• State Variables represent globally accessible data which can be also used by operations

• Properties represent characteristics of an operation, source or sinks. Properties are
static and set in the transformation, e.g. the location of a database

• Attributes represent characteristics of data �owing between operations. Attributes
are dynamic and can be manipulated from operations, e.g. the sensitivity of data

27

6. Language Requirements

• ValueSetTypes are containers for characteristics values or literals. Both properties
and attributes refer to these types, e.g. the characteristics location and sensitivity

The Operation model does not work with single data instances but rather classes of
data with matching characteristics. Data-Centric Palladio doesn’t specify the �ow of data
instances either; the use of characteristics to select classes of data is in focus. Characteristics
are "named �nite sets of values" [41] represented by ValueSetTypes and used in properties
or attributes. This distinction is due to semantic di�erences between constant operation
characteristics and variable data characteristics [25]. Every entry of an ValueSetType is
represented as boolean value. E.g. setting a data’s privacy characteristic to private results
in the data types attribute privacy.private set to true.

Using the Constraint Query API "the system can then be queried for constraint violations"
[25]. Prior to the development of our DSL, this was the proposed way of interacting with
the Operation Model. We summarize the predicates which are provided by the API. For a
full reference, please refer to [25, p. 41].

Listing 6.1 shows basic predicates of the API which can be used to bind typing informa-
tion. This can be seen as �rst step to more complex queries "for which one would normally
use the universal or the existential quantors" [25]. Line 1 to 3 shows predicates for the
names of atomic building elements, namely properties, attributes and operations. Using
the predicates from line 5 to 7, we can combine this information to ask if a named value,
attribute or property belongs to a ValueSetType. With the predicates from line 9 to 11, the
relation of operations with parameters, return values and state variables can be queried.

1 isProperty(P) % true if P is a property

2 isAttribute(A) % true if A is a attribute

3 isOperation(OP) % true if OP is an operation

4
5 valueSetMember(T,V) % true if V is a value which belongs to the ValueSetType T

6 attributeType(A,T) % true if A is an attribute and T is its ValueSetType

7 propertyType(P,T) % true if P is a property and T is its ValueSetType

8
9 opertationParameter(OP,P) % true if OP is an operation with a parameter P

10 opertationReturnValue(OP,R) % true if OP is an operation with a return value R

11 opertationState(OP,ST) % true if OP is an operation with a state variable ST

Listing 6.1: Basic predicates of the Constraint Query API

Based on this information, we can use more advanced predicates which query the �ow of
data and their characteristics. We summarize these predicates in Listing 6.2. The Operation
Model uses a stack to represent the control �ow through the system. Every operation and
each call is put onto this stack. The most upper element is always the current operation
under consideration, the most lower element of a correct call stack is the SystemUsage
which can be seen as entry point to any valid call sequence. The predicate stackValid
checks if an arbitrary list represents such a correct call stack.

The predicates in line 3 and 4 are used to determine if an operation has a property
(or a property with a given value). As stated before, properties represent characteristics

28

6.2. Underlying Formalism

of processes in the data �ow. E.g. hasProperty(OP,location) evaluates to true for every
operation if the location would be modeled for all operations.

1 stackValid(S) % true if the list S represents a correct call sequence

2
3 hasProperty(OP,PR) % true if the operation OP has a property PR

4 operationProperty(OP,PR,V) % true if the operation OP has a property PR

5 which is set to value V

6
7 callArgument(S,P,A,V) % true if the operation on the top of stack S has a

8 parameter P with value V of the attribute A

9 returnValue(S,R,A,V) % true if the operation on the top of stack S has a

10 return value R with value V of the attribute A

11
12 preCallState(S,OP,ST,A,V) % true if the operation OP with its call on top of

13 stack S has a state variable ST with value V of

14 attribute A before its execution

15 postCallState(S,OP,ST,A,V) % true if the operation OP with its call on top of

16 stack S has a state variable ST with value V of

17 attribute A after its execution

Listing 6.2: Advanced predicates of the Constraint Query API

Characteristics of data �owing through the system in the form of parameters or return
values are modeled using attributes. The predicates from line 7 and 9 are used to check if
the operation on the top of the call stack has call parameters or return values with their
attributes set to the requested value. Is e.g. the sensitivity characteristic of data modeled
explicitly, every ingoing parameter and outgoing return value of any operation in the call
stack can be tested for sensitivity.

This is also the case for state variables. Since state variables have to be unambiguously
identi�ed, the containing operation which uses these variables must also be speci�ed in
order to use the predicates from line 12 and 15. The choice of predicate (pre or post)
determines if the variable is considered before or after the operation call.

In order to discuss both lower and upper limits, we combine the �ndings from this
section with the discussion on higher-level language requirements from the previous
section. The comparison of the interaction with the Constraint Query API and the way
we formulated constraints in Section 6.1 shows multiple domain gaps which have to be
resolved.

First, a gap in the representation of model elements exists. All constraints refer to
architectural model elements (e.g. components) or higher-level entities (e.g. agents or
actors). In the context of data �ow modeling these are represented by sources, processes or
sinks (please see Section 2.1). These elements are selected by characteristics (R4) or their
identity (R5). Fortunately, the existing transformation of Data-Centric Palladio transforms
these elements from the architectural domain to the Operation Model while retaining their
characteristics (or properties in the terminology of the Operation Model).

29

6. Language Requirements

This is also the case when speaking about data. All constraints select data, e.g. by
their characteristics (R2) or meta-attributes (R3). Also multiple characteristics (R13)
or characteristics with multiple accepted values (R7) are possible. The transformation
to the Operation Model transforms characteristics to ValueSetTypes. Using predicates
like callArgument and returnValue, this information can be querried. Combinations of
multiple characteristics or values are also possible using Prologs built-in predicates to
combine multiple terms.

Some constraints require additional conditions (R10, R11 and R12), e.g. comparing
two sets of roles for access control systems. The realization of these constraints using
the Constraint Query API requires additional steps, e.g. introducing new variables and
evaluating them separately. This also can be achieved using Prolog.

Besides selecting data and processes, all constraints show a similar structure. They re-
strict the �ow of data to e.g. never allowing it under certain circumstances (R1). Constraints
following this approach can be expressed by using the predicates from the Constraint
Query API shown in this chapter and bridging the domain gaps discussed before. We select
data (parameters, return values and state variables) and operations from the call stack. The
execution of the formulated query then returns violations which match our selection.

30

7. Language Syntax

In this chapter, we present the syntax of our domain-speci�c language (DSL). RQ1 asks
which elements are necessary to de�ne data �ow constraints. We discuss architecture-level
constructs and language elements which are used to satisfy the requirements discussed
in Chapter 6. We start by giving a brief conceptual overview of the DSL in Section 7.1.
In Section 7.2 to Section 7.4, we discuss the language elements in detail and show their
relation to the previously collected requirements. Last, we formulate constraints for the
example scenarios shown in Chapter 4 and explain the usage of the DSL in Section 7.6.

We focus on the abstract syntax of our DSL which is represented by the language’s
meta-model. Our contribution to RQ1 is the analysis of domain elements rather than their
concrete representation. Furthermore, an abstract syntax can be represented by multiple
concrete syntaxes. We show our concrete syntax at the end of each section but refer to it
as exemplary concrete syntax.

7.1. Overview

The purpose of our DSL is to de�ne constraints which restrict the data �ow. In order to aid
the architect to reason about these data �ows, we only use concepts from the architectural
domain. In Section 6.1, we discuss that all analyzed constraints follow a common pattern.
They restrict the �ow of selected data without considering the control �ow (R1). They
use the modality of never allowing a data �ow. Furthermore, conditions can be used to
precisely specify forbidden behavior.

In Figure 7.1, we show the simpli�ed abstract syntax of constraints in our DSL. We
annotate the elements with notes to show how the syntax parts relate to the exemplary
constraint from Section 4.1: "No personal information is processed outside of the EU". Please
note, that this is only a simpli�cation. For the complete meta-model, refer to Section A.4.

A Constraint is a named entity de�ned by the architect. Each Constraint contains a Rule
which de�nes the desired restriction on data �ows. The statement sets the modality of of
the rule. As discussed before, all constraints gathered in Section 6.1 require a data �ow to
never �ow under certain circumstances.

A constraint only subjects selected data and selected destinations. The selection step is
required because restricting all data �ows without limitation is not considered to return
viable results. Thus, DataSelector and DestinationSelector are obligatory elements of each
Rule. We include multiple ways to select data and destinations. First, they can be selected
using characteristics which have been introduced by Data-Centric Palladio. Our DSL is
integrated in the analysis process and references characteristics on previously de�ned
architectural models (for more information on the complete process, see Chapter 5). A
characteristic selection can be used both as DataSelector and DestinationSelector. In the

31

7. Language Syntax

Constraint

Rule

1 DataSelector

DestinationSelector
1..*

Statement

Condition

1..*

0..1

1

e.g. "never flows"

e.g. "personal
information"

e.g. "outside of
the EU"

e.g. "NoFlowOustideTheEU"

Figure 7.1.: Simpli�ed abstract syntax of constraints in our DSL

case of the Geolocation Constraints scenario, we select data which contains "personal
information" (using a characteristic) and select destinations "outside of the EU" (using
another characteristic).

Besides specifying single characteristic literals, also the selection of multiple literals
and the exclusion of literals are possible. Another way of using characteristics is to de�ne
characteristic classes which encapsulate the characteristic selection. By using classes,
selections can be prede�ned by an architect and referenced in multiple constraints. This
indirection is considered useful in more advanced scenarios. Last, DestinationSelectors
can refer to elements of the architectural model created with Data-Centric Palladio. Using
this identity selection, restrictions can be de�ned more precise and tailored to speci�c
operations or components.

Some constraints do not rely on �xed characteristics (or sets of characteristics) but
rather compare the values of data and destination characteristics. An example are role-
based approaches where processes emit data with dynamically set authorization roles.
To formulate such constraints, we add characteristic variables and set variables. These
variables are de�ned using DataSelectors and DestinationSelectors. We add Conditionswhich
restrict possible variable values with regard to other variables. The simplest case is a
value comparison of characteristic variables of data �owing to a destination with other
characteristic variables. More complex scenarios which compare characteristic sets using
set operations or the conjunction of multiple conditions are also supported.

The language elements Statement, DataSelector and DestinationSelector are obligatory.
The Condition of a rule is optional and only required if a DataSelector or DestinationSelector
de�nes a characteristic variable.

Regarding the concrete syntax, we aim to provide a modular design which can be easily
read by an architect without prior knowledge. Because most of the language elements
shown above are non-optional, every Rule has the same structure:

32

7.2. Types and Imports

〈DataSelector〉 〈Statement〉 〈DestinationSelector〉 〈Condition〉

This structure is motivated by the constraints formulated in natural language: "Data with
certain characteristics never �ows to destinations with certain characteristics where...". List-
ing 7.1 shows a possible constraint for the Geolocation Constraints example which prohibits
personal data to �ow outside of the EU using our DSL. We describe each compartment in
the following sections.

1 constraint NoFlowOutsideTheEU {

2 data.attribute.privacy.personal NEVER FLOWS node.property.location.!EU

3 }

Listing 7.1: Simpli�ed Geolocation Constraints example given in concrete syntax

7.2. Types and Imports

The development process with our DSL is integrated in Data-Centric Palladio. We reference
characteristics and architectural model elements. Prior to using these to de�ne data �ow
constraints, they have to be properly included from the environment explicitly.

We identify the following external information to be relevant:

• Characteristic Types: Data-Centric Palladio de�nes containers which encapsulate the
type’s name and possible values called literals. They are represented as enumeration.
E.g. for a characteristic called Privacy level which models the privacy of personal
data, possible literals are personal and anonymous.

• Palladio Models: In order to refer to speci�c nodes or destinations of data �ows, we
need information about the architectural model and its deployment. The latter is
stored in the Allocation Model which references the Execution Environment Model,
the System Model and transitively the Component Repository Model. The UsageModel
describes the users behavior and provides insights on entry points of control- and
data �ow. Combined, these models represent modeled information of the architecture
for which we de�ne data �ow constraints. For more information on the Palladio
Component Model, see Section 2.2.

In the following, we describe how this information is included and processed in order
to be used to de�ne data �ow constraints. Figure 7.2 shows the abstract syntax of the root
container Model and contained language elements such as constraints discussed before.
The Include element is used to import the information speci�ed above from other models.
These models are serialized and store in XMI-�les. Thus, the Include-statement references
these. If constraints only rely on characteristics and don’t relate to speci�c architectural
elements, only including Characteristics Types is su�cient. Otherwise, all relevant Palladio
models have to be also included as stated above.

33

7. Language Syntax

Model AbstractElement
*

TargetModelType
1

CharacteristicTypeCharacteristicClassConstraint Include

Figure 7.2.: Abstract syntax of top-level elements

Every Model requires a de�nition of one TargetModelType. We use this explicit de�nition
to separate the constraint formulation from the architectural description which is repre-
sented by the TargetModelType. Possible types are Data-Centric Palladio and the underlying
Operation Model. We support both model types since the choice only has minor impact on
the DSL complexity while giving the architect more �exibility. Besides the target type,
architects state which imported Characteristic Types and Palladio Models shall be used to
resolve references.

Characteristics have to be explicitly declared before they can be used inside constraints.
Using the CharacteristicType language element, the architect binds types to included Char-
acteristics Types. This indirection of type de�nition has multiple advantages: First, Charac-
teristic Types can be renamed for the usage inside of constraints which can enhance the
understandability of the formulated restriction. Second, not all included Characteristic
Types are sometimes needed, e.g. if only a subset of these are required in the de�ned
constraints. Third, this indirection is considered to be more generic regarding the desired
target model type. Using separate characteristic type de�nitions, multiple target models
can be supported without the need of rewriting constraints.

Other language elements which are directly contained in the root Model are Constraints
and Characteristic Classes. As outlined in Section 7.1, Characteristic Classes encapsulate one
or more characteristic selections. They can be referenced throughout all constraints in
the same �le and are thus de�ned independently. We discuss their syntax in Section 7.3.
Constraints are also directly contained in the Model. They are the main language element
to formulate data �ow restrictions and are explained in Section 7.5.

Last, we show our exemplary concrete syntax in Listing 7.2. We use the import-keyword
to include external information like Characteristic Types and Palladio Models in line 3 to 5.
De�ning import-statements in the head of a code �le is common practice in many program-
ming languages. We start each �le with the de�nition of the TargetModelType, as shown in
line 1. We use the keyword target followed by the model type (DataCentricPalladio or
OperationModel). Additionally, included Characteristic Types and Palladio Models which
shall be used to resolve references prior to the analysis are added to a comma-separated list.
We reference them by their �le name without �le name extension. The list starts after the
using-keyword. At least one source with Characteristic Type de�nitions is required. We
use the type-keyword to indicate a declaration of CharacteristicTypes. A type declaration

34

7.3. Selection

contains the desired type name for the usage inside Constraints and Characteristic Classes
followed by the name of the included characteristic. An example is shown in line 7.

1 target DataCentricPalladio using characteristicTypes, allocationModel, usageModel

2
3 import "characteristicTypes.xmi"

4 import "allocationModel.allocation"

5 import "usageModel.usagemodel"

6
7 type internalTypeName : OriginalTypeName

Listing 7.2: Concrete syntax of type and import statements

7.3. Selection

With our DSL, we formulate restrictions to data �ows in software systems. These restric-
tions are always applicable to only a subset of all possible data �ows. Disallowing all data
�ows would not yield viable results because any function call would be interpreted as
constraint violation. Thus, the selection of data and data �ow destinations is crucial. Using
Data-Centric Palladio, the proposed way of selection is by characteristics.

CharacteristicTypeCharacteristicClass

CharacteristicTypeSelector

DataSelector

CharacteristicSelectorCharacteristicClassSelector

DestinationSelector

AttributeSelector
AttributeClassSelector

PropertySelector

PropertyClassSelector

NodeIdentitySelector

1

*

1

1..*

*
1

Rule

1..*

1..*

Figure 7.3.: Abstract syntax of data and destination selection as well as classes

35

7. Language Syntax

In Figure 7.3, we show the abstract syntax of data- and destination selections, called
Selectors. The majority of these Selectors work with characteristics and thus with the
CharacteristicType element, discussed in Section 7.2. The CharacteristicTypeSelector is used
to select literals from a referenced CharacteristicType. In the following, we enumerate all
possible selections using the CharacteristicTypeSelector. For each selection, we give an
example with the characteristic type Privacy level which models the privacy of personal
data. Possible literals are personal and anonymous.

• Single literals: The most basic case of characteristic selection is to select one single
literal (R2, R4). This is the case if e.g. only one type of data is considered in a
constraint, e.g. only personal data.

• Multiple literals: This characteristic selection is used if more than one literal are
under consideration (R7). There is no maximum number of selected literals. Thus,
this selection is only limited by the number of de�ned literals in the characteristic
type, e.g. personal and anonymous.

• Inversion: One or multiple literals can be selected by selecting any literals except
one (R6). This is considered to be a inversion, e.g. selecting every literals which is
not anonymous (which results in the selection of the personal literal in our example).

• Variables: Variables are used to evalaute multiple selections, e.g. by comparing them
(R10). Variables do not restrict the selection to a de�ned subset of possible literals
but work as a placeholder. They require the architect to make further assumptions
in the Condition part of a rule. We discuss this case in Section 7.4.

This selection is embedded in the CharacteristicSelector. We use the selection of charac-
teristic literals in two parts of an constraint’s Rule. We select data using the DataSelector
and we select the data �ow destination using the DestinationSelector. In Figure 7.3, we use
multiple inheritance to indicate the combined meaning of Selectors being part of a Rule
and their speci�c selection goal. AttributeSelectors represent both CharacteristicSelectors
and DataSelectors which are used to de�ne which data is restricted using characteristics.
Accordingly, PropertySelectors represent CharacteristicSelectors and DestinationSelectors,
determining the restricted data �ows destination using characteristics. We use the termi-
nology of the Operation Model which di�erentiates between properties (characteristics of
operations) and attributes (characteristics of data). For more information, see Section 6.2.

Besides selecting characteristic literals directly inside a Rule, CharacteristicClasses can
be de�ned (R8). These classes are not part of a Rule and thus can be referenced in any
constraint. The use of CharacteristicClasses o�ers multiple bene�ts: First, it’s possible
to share characteristic selections among multiple constraints. This does not only speed
up development by reusing selections but also reduces the change impact to a single
source rather than changing all a�ected constraints. Second, multiple selections can be
encapsulated into a named class. This enables the architect to name a speci�c combination
of selections and thus enhances the understandability.
CharacteristicClasses contain one or multiple CharacteristicTypeSelectors. Thus, the se-

lection of characteristics is independent from the later usage in DataSelectors or Desti-
nationSelectors. We de�ne two concrete Selectors following the same pattern discussed

36

7.3. Selection

above. AttributeClassSelectors reference CharacteristicClasses and are used as DataSelec-
tor. Accordingly, PropertyClassSelectors reference CharacteristicClasses and are used as
DestinationSelector.

Last, we discuss NodeIdentitySelectors. These represent the only Selectors which do not
depend on characteristics. Instead, they reference architectural elements like components
directly (R5). There are two possibilities to identify destinations. If the constraint is de�ned
for the TargetModelType OperationModel (see Section 7.2), the name of the operation is
su�cient. Otherwise, if the TargetModelType is set to Data-Centric Palladio, the destination
is identi�ed using elements from Palladio Models which have to be included in advance.
For a fully quali�ed reference, the architect needs to specify the Assembly Context (from
an included System Model or Repository Model), a Component from this context and a
contained Service E�ect Speci�cation (SEFF).

We present our exemplary concrete syntax of Selectors and CharacteristicClasses in
Listing 7.3. Please note, that line 5 to 14 do not represent complete constraints but are
intended to show multiple usage scenarios of Selectors. For this example, we use the already
introduced characteristic Privacy with its literals personal and anonymous. Additionally,
we use the characteristic Location with its literals EU, USA and Asia. Both characteristics
have been introduced in Section 4.1.

1 class NonPersonalData {

2 privacy.!personal

3 }

4
5 data.attribute.privacy.personal

6 data.attribute.privacy.!personal

7 data.class.NonPersonalData

8
9 node.property.location.EU

10 node.property.location.!EU

11 node.property.location.[USA, Asia]

12
13 node.identity.name."OperationName"

14 node.identity.ExemplaryAssemblyContext.ExemplaryComponent.ExemplarySEFF

Listing 7.3: Concrete syntax of selectors and characteristic classes

Line 1 to 3 show the de�nition of a CharacteristicClass. Using this class, all literals except
personal are selected in line 2. In our example, thats only true for the literal anonymous.
The concrete syntax of such CharacteristicTypeSelectors starts with the characteristic name
(privacy) followed by the literal selection (not personal). The class name NonPersonalData
re�ects this selection. Line 5 and 6 show a characteristic selection used as DataSelector.
Therefore, they are introduced by the keyword data. The keyword attribute indicates
the CharacteristicSelector type. Line 5 selects only data with the characteristic privacy

set to personal. Line 6 indicates the opposite. Line 7 shows the data selection using a
AttributeClassSelector and referencing the CharacteristicClass de�ned in line 1 to 3. This
is indicated by the class-keyword. Because the referenced characteristic class selects

37

7. Language Syntax

all literals which are not personal, using this class as DataSelector is equivalent to the
selection in line 6.

Line 9 to 11 show PropertySelectors which are both CharacteristicSelector and Destina-
tionSelectors. This is indicated by the keyword node and property, respectively. All three
PropertySelectors reference the characteristic location. The �rst statement in line 9 selects
all destinations with the characteristic location set tot EU. The second statement in line 10
selects all destinations with the characteristic location set not to EU. The third statement
in line 11 selects all destinations with characteristic location set to either USA or Asia. In
order to simplify the syntax, the inversion of literals and the selection of multiple literals
cannot be combined. The conjunction of multiple (inverted) selections can be achieved by
utilizing multiple DataSelectors. Because in our example, the three possible literals are USA,
Asia and EU, the selections from line 10 (not EU) and line 11 (all location literals except EU)
are equivalent. Please note, that this does not indicate a semantic equivalence. If another
characteristic was added afterwards, the selection of both lines would become di�erent
again.

Line 13 and 14 show NodeIdentitySelectors as indicated by the keyword identity. If
the TargetModelType is set to Operation Model, destinations are selected bei their name
using an arbitrary string. In order to identity destinations using Data-Centric Palladio, the
architect speci�es the Assembly Context (e.g. ExemplaryAssemblyContext), the Component
(e.g. ExemplaryComponent) and the Service E�ect Speci�cation (e.g. ExemplarySEFF).

7.4. Conditions

For some data �ow restrictions such as the role-based access control scenario presented
in Section 4.2, de�ning rules with �xed values is not su�cient. In order to extend the
architects’ capabilities, we introduce characteristic variables and characteristic set variables
in Section 7.3. These variables represent placeholders for possible literals in the analysis
process (R10). The initial usage of variables does not restrict the data �ow in any way.
Thus, architects need to restrict possible values of multiple characteristic variables by
evaluating them (R12). This is achieved using the Condition compartment of a Rule.

Conditions are de�ned to work with variables and sets. In order to make restrictions
on their allowed values, we de�ne operations. These operations reference variables and
combine them or evaluate them to boolean statements. Simple examples are testing if
two variables are equal or checking if a variable’s value is element of another set variable.
It’s also possible to create combinations of variables, e.g. by unifying two set variables’
literals. Last, operations can be nested which enables architects to formulate more complex
Conditions.

Figure 7.4 shows the abstract syntax of Conditions. In order to enhance the readability, we
omit concreteOperations and show these separated in Figure 7.6. As discussed in Section 7.3,
CharacteristicTypeSelectors refer to de�ned CharacteristicTypes. Instead of binding a selection
to speci�c literals, architects can postpone the restriction to the Condition-part of a Rule by
using a CharacteristicVariableType. They either de�ne a new CharacteristicVariable or a new
CharacteristicSet variable. Both are required to have an unique name. CharacteristicVariables
represent placeholders for exactly one characteristic literal, CharacteristicSet variables

38

7.4. Conditions

CharacteristicType

CharacteristicTypeSelector

CharacteristicVariableType

CharacteristicVariable

CharacteristicSet

Rule

Condition

0..1
Reference

CharacteristicReference

CharacteristicSetReference
*

0..1
CharacteristicSetOperation

BooleanOperation

Operation

1

*

1

*
1

0..1

1

0..1

Figure 7.4.: Abstract syntax of conditions

represent placeholders for a set of characteristic literals. Thus, multiple literals, one literal
or none (empty set) are possible instances.

In order to reference these variables in Operations, we use References which point on
CharacteristicVariableTypes de�ned in CharacteristicTypeSelectors. We use CharacteristicRefer-
ences to reference CharacteristicVariables and we use CharacteristicSetReferences to reference
CharacteristicSets. These references are used from concrete operations e.g. a comparison
operation which checks two distinct variables for equality using two CharacteristicRefer-
ences. In Figure 7.4, we omit all containment relations of References because these belong
to concrete Operations which inherit from either BooleanOperation or CharacteristicSetOp-
eration.
Operations follow the functional paradigm strictly. They accept one or more arguments

(represented by References) and return a single value without any side e�ects. We classify
Operations depending on their return type. CharacteristicSetOperations return a Charac-
teristicsSet. Thus, CharacteristicSetReferences can refer to these operations (nesting) as
well as to concrete CharacteristicSet variables. BooleanOperations return a boolean value,
either true or false. They can be nested in other BooleanOperations, e.g. the conjunction of
two values. We don’t de�ne a separate CharacteristicOperation because we don’t realize
any operation which has a CharacteristicVariable return type. A Condition is represented
by exactly one BooleanOperation. Which concrete operation is used and wether or not
multiple operations are nested is up to the architect.

We show three exemplary operations and their usage of Refernces in Figure 7.5. The
three concrete operations are highlighted gray. The CreateSetOperation is used to convert

39

7. Language Syntax

ReferenceCharacteristicReference CharacteristicSetReference

CharacteristicSetOperation

BooleanOperation

Operation

EmptySetOperation

LogicalAndOperation

CreateSetOperation

1

0..1

1

1

1

1

Figure 7.5.: Abstract syntax of exemplary operations and references to variables

a single CharacteristicVariable to a CharacteristicSet with a single entry (the variables value).
Thus, the operation refers to one CharacteristicReference. The CreateSetOperation is a
CharacteristicSetOperation and can thus be referenced from other operations which accept
a CharacteristicSetReference. An example for such an operation is the EmptySetOperation
which tests a referenced CharacteristicSet for emptiness. Because a set can either be
empty or not, this represents a BooleanOperation. The LogicalAndOperation accepts two
arbitrary BooleanOperations and returns the conjunction of their boolean values. Thus,
it represents a BooleanOperation itself. We don’t use References for BooleanOperations
because these only exist in the Condition and can be nested directly. This is not the case
for CharacteristicVariables and CharacteristicsSets which originate from DataSelectors or
DestinationSelectors and thus have to be referenced.

The containment relations in Figure 7.5 show how multiple Operations can be nested.
For instance, a CreateSetOperation can be used as argument in a EmptySetOperation using
a CharacteristicSetReference. Another example is the conjunction of multiple EmptySe-
tOperations using the LogicalAndOperation. Also LogicalAndOperations can be nested in
other LogicalAndOperations. This approach gives the architect the freedom to formulate
complex Conditions while only accepting syntactically correct nesting. We discuss this
well-formedness of nested Condition operations using the lambda-calculus in Section A.1.

In total, we de�ne a base set of 11 Operations which are shown in Figure 7.6. These
operations originate from basic literature on set theory [5, 10]. The intersection, union and
subtraction of sets are considered to be basic operations to create new sets [10, p. 46]. We
add an operation to convert an element to a set which contains only this element, since

40

7.4. Conditions

CharacteristicSetOperationBooleanOperation

Operation

VariableEqualityOperation

VariableInequalityOperation

EmptySetOperation

ElementOfOperation

LogicalAndOperation

LogicalOrOperation

LogicalNegationOperation

IntersectionOperation

UnionOperation

SubtractOperation

CreateSetOperation

Figure 7.6.: Abstract syntax of condition operations (simpli�ed)

elements and sets are not equivalent [10, p. 39]. Other operations check if a set contains a
speci�ed element and if a set is empty [10, p. 40]. We add operations to test the equality
and inequality of variables [5, p. 23]. In order to create more complex Conidtions, we add
three boolean operations: Conjunction (And), Disjunction (Or) and Negation (Not). These
represent a complete operator system. The selected Operations are su�cient to express all
constraints from the case studies presented in Section 6.1.

We list our selection of CharacteristicSetOperations in Table 7.1 and our selection of
BooleanOperations in Table 7.2. For each operation, we show the expected arguments,
discuss the operation’s result and give a short example. In order to simplify the notation,
we use numbers instead of characteristic literals. However, this has no impact on the
semantics of these operations. Please note, that the examples do not represent our concrete
syntax but rather use mathematical and logical symbols and notations.

In order to simplify the base set of Operations of our DSL, we exclude several Operations
which can be expressed by combining included Operations. We discuss four examples in
the following. Here, upper case letters (like A) represent set variables, lower case letters
(like x) represent variables.

41

7. Language Syntax

Operation Arguments Result Examples

Intersection Two set variables
A set variable containing all
literals which occur in both
arguments

A = {1, 2, 3}
B = {2, 3, 4}

A ∩ B = {2, 3}

Union Two set variables
A set variable containing all
literals which occur in at least
one of the arguments

A = {1, 2, 3}
B = {2, 3, 4}

A ∪ B = {1, 2, 3, 4}

Subtract Two set variables
A set variable containing all
literals which occur in the �rst
but not in the second argument

A = {1, 2, 3}
B = {2, 3, 4}
A \B = {1}

Create Set One variable A set variable which only
contains the argument

A = 1
set(A) = {1}

Table 7.1.: All CharacteristicSetOperations which can be used in conditions

• Test for disjoint sets: A common use case is to test whether or not two sets contain
no matching items. We exclude this operation since it can be easily expressed by
testing if the intersection of two sets contains zero elements and thus represents the
empty list. Formally: distinct(A,B) ⇔ (A ∩ B) = ∅

• Equality of sets: The equality of sets can be expressed by testing whether or not both
sets become empty if subtracted from another: A = B ⇔ (A \B = ∅)& (B \A = ∅)

• Adding an element to a set: We do not include an operation which adds an element
to a set. Instead we use the CreateSet-operation together with the Union operation:
addElement(A, x) = A ∪ set(x)

• Removing an element from a set: We do not include an operation which removes
an element from a set. We use the CreateSet-operation together with the Subract-
operation: removeElement(A, x) = A \ set(x)

Please note, that this enumeration is not comprehensive. This is also the case for our 11
selected Operations. In order to cope with this problem, we minimize the change impact of
adding new operations to the DSL. Figure 7.5 shows that all concrete operations inherit
from either BooleanOperation or CharacteristicSetOperation. Other than that, they only have
containment relations to References or Operations which are used as arguments. Thus, we
can add or remove Operations easily without changing the meta-model at another point.

Last, we discuss our exemplary concrete syntax of Operations in the Condition part of
a Rule. Listing 7.4 shows multiple operations which use References on one characteristic
variable in line 1 and two characteristics set variables in line 2 and 3. Please note, that the
conditions starting in line 5 do not represent complete constraints but are used to show
multiple usage scenarios of Operations.

42

7.4. Conditions

Operation Arguments Result Examples

Variable Equality Two variables
true, if both variables’
literals are equal. false,
otherwise.

(3 = 3) = true
(1 = 4) = false

Variable Inequality Two variables
true, if both variables’
literals are unequal.
false, otherwise.

(3 , 3) = false
(1 , 4) = true

Empty Set
One set
variable

true, if the set vari-
able contains zero el-
ements. false, other-
wise.

({3} = ∅) = f alse
({ } = ∅) = true

Element of
One variable

and one
set variable

true, if the set variable
contains the others lit-
eral false, otherwise.

(3 ∈ {3, 5}) = true
(3 ∈ {4, 5}) = f alse

Logical Or
Two boolean
operations

true, if at least one of
the operations evalu-
ates to true. false, oth-
erwise.

(true ∨ f alse) = true
(f alse ∨ f alse) = f alse

Logical And
Two boolean
operations

true, if both operations
evaluate to true. false,
otherwise.

(true ∧ f alse) = f alse
(true ∧ true) = true

Logical Negation
One boolean

operation

true, if the operation
evaluates to false. false,
otherwise.

¬true = f alse
¬f alse = true

Table 7.2.: All BooleanOperations which can be used in conditions

43

7. Language Syntax

1 data.attribute.privacy.$A

2 data.attribute.privacy.$B{}

3 data.attribute.privacy.$C{}

4
5 isEmpty(B)

6 isEmpty(intersection(B,C))

7 elementOf(A,B)

8 isEmpty(B) & !(isEmpty(C))

Listing 7.4: Concrete syntax of conditions using operations

In order to represent a valid Condition, the most-outer operation of line 5 to 8 has to
be a BooleanOperation. This is the case because EmptySetOperations, ElementOfOperation
and LogicalAndOperation inherit from BooleanOperation. The Condition in line 5 evaluates
to true if the set represented by the characteristic set variable B has zero literals. Line 6
evaluates to true if the intersection of the characteristic set variables B andC is empty. The
Condition in line 7 returns true if the characteristic literal represented by the variable A is
also contained in the characteristic set B. And line 8 is true if the set variable B has zero
elements but the set variable C has at least one and is thus not empty. Using this simple
notation, architects can formulate even complex conditions in a straightforward manner.

7.5. Constraints

We motivated the structure of constraints in Section 7.1. In this section, we discuss further
details of constraints and show their concrete syntax using the building blocks presented
in Section 7.2 to Section 7.4.

Constraint

Rule

1 DataSelector

DestinationSelector
1..*

Statement

StatementTypeStatementModality

11

Condition

1..*

0..1

1

Figure 7.7.: Abstract syntax of constraints and their contained elements

We show the abstract syntax of Constraints in Figure 7.7. A constraint has an unique
name and exactly one Rule. We model the Rule explicitly to enhance the expandability of

44

7.5. Constraints

our DSL, e.g. by adding the possibility to combine multiple rules. Each Rule has exactly
one Statement which holds details on the concrete �ow restriction. The restriction is
de�ned by its StatementModality and its StatementType. We also model these explicitly
to enable further re�nement in future versions of the DSL. Currently, the only possible
StatementType restricts the �owing property of data. The only possible StatementModality
is never. Following the foundations of modal logic, other modalities like always are
imaginable. Combined, the statement of Rules in the current DSL restrict the data to never
�ow.

We select data which is restricted to never �ow using DataSelectors and the destination
of such �ows using DestinationSelectors. Every rule is required to have at least one
DataSelector and at least one DestinationSelector. It’s also possible to select data using
multiple DataSelectors (R13) in a single Rule. This is not equivalent to selecting multiple
literals from a single characteristic but rather enables the architect to apply further �ltering
on the selected data by combining more than one characteristic selection. The same is
possible for DestinationSelectors. A simple example is considering data security: if e.g.
personal data is only allowed to �ow outside of an internal server if it’s encrypted, this
can be achieved by combining a DataSelector on the Privacy characteristic of the data with
a DataSelector on a characteristic which represents the data’s encryption status. More
information on Selectors can be found in Section 7.3.

In some cases, selecting data or destinations by specifying concrete characteristic literals
is not su�cient. We de�ned characteristic variables which represent placeholders for
possible characteristics literals in Section 7.3. If architects use variables, they are required
to make further assumptions in the Condition part of a Rule. Thus, it depends on the data
and destination selection whether a Condition is required. We discussed the structure and
restriction capabilities of Conditions in Section 7.4.

We combine the parts of the concrete syntax of DataSelectors, DestinationSelectors,
Statements and Conditions to formulate complete Rules and Constraints. Listing 7.5 shows
the concrete syntax of multiple exemplary constraints. We use the characteristic Location
(with the literals EU, USA and Asia).

1 constraint SimpleConstraint {

2 data.attribute.location.EU NEVER FLOWS node.property.location.USA

3 }

4
5 constraint WithCondition {

6 data.attribute.location.$DataLocation

7 NEVER FLOWS node.property.location.$DestinationLocation

8 WHERE DataLocation != DestinationLocation

9 }

Listing 7.5: Full-�edged constraint given in concrete syntax

Every Constraint starts with the constraint-keyword followed by the name of the
constraint. The constraint’s Rule is surrounded by brackets. Both Rules contain the
required elements: DataSelector, Statement and DestinationSelector. The second constraint
additionally uses a Condition in line 8. We aim to enable the architect to read constraints

45

7. Language Syntax

like natural language. Thus, we use speaking names as keywords and structure Rules
following the data �ow from source to destination. We use upper case letters for some of
the keywords like NEVER, FLOWS and WHERE to show a simple partitioning at �rst glimpse.
This approach is in�uenced by the common declarative database language SQL.

The �rst constraint in line 1 to 3 restricts data which has a characteristic location set to
EU to never �ow to a destination with this characteristic set to USA. The second condition in
line 5 to 9 is formulated less precisely and therefore uses a Condition. Data with a variable
location is never allowed to �ow to a destination with its characteristic location set to
another literal. Thus, the second constraint implies the �rst one because the literals of the
location characteristic di�er in the DataSelector and DestinationSelector. However, the
opposite is not the case. The second constraint e.g. also restricts data with its location
set to Asia to never �ow to a destination with its location set to EU.

7.6. Example Instances

In this section, we present the application of our DSL in real-world examples. We use the
language elements presented in the previous sections to describe the constraints from the
example scenarios presented in Chapter 4. For each scenario, we summarize its use case
and all de�ned characteristics with their belonging literals. We analyze the constraints
and show how they can be formalized using our meta-model. This includes a discussion
of the usage of our exemplary concrete syntax.

7.6.1. Geolocation Constraints

The Geolocation Constraints scenario in Section 4.1 is motivated by legal restrictions, e.g.
from the European General Data Protection Regulations (GDPR). They restrict the �ow of
personal data and disallow data to be passed to non-whitelisted countries. This constraint
does e.g. a�ect the architecture of (international) online shops which have to synchronize
data across borders. However, this is not allowed for personal data. The example instance
of the Geolocation Constraints scenario uses a Shop Server deployed in the EU while the
Database Server is located in Asia.

Using Data-Centric Palladio, the following characteristics have been de�ned to model
this scenario:

privacy = { personal, anonymous }

location = { EU, USA, Asia }

The privacy characteristic represents the privacy level of data and is personal if it
can be associated with a person. The location characteristic represents the location of
deployment of servers and components. The constraint is formulated as follows: "No
personal information is processed outside of the EU". Following the legal restriction of
the GDPR, this can also be formulated in a broader sense: "In unsafe locations, it is never
permitted to process or store [personal] data" [25]. The second constraint uses an additional

46

7.6. Example Instances

classi�cation for safe locations (e.g. EU) and unsafe locations (e.g. Asia) and is thus more
expandable. We model both constraints in the following.

: TargetModelType

type = DataCentricPalladio
typeContainer = "types.xmi"

: Model

privacy : CharacteristicType

ref = PrivacyLevel

location : CharacteristicType

ref = Locations

:Include

fileName = "types.xmi"

NoFlowOutsideTheEU: Constraint

: Rule

: Statement

Never : StatementModality Flows: StatementType

: AttributeSelector

: PropertySelector

: CharacteristicTypeSelector

inverted = false
literals = [personal]

: CharacteristicTypeSelector

inverted = true
literals = [EU]

Figure 7.8.: Geolocation constraints example instance using the DSL

Figure 7.8 shows the structure of the �rst Constraint which prohibits the �ow of personal
data to destinations outside of the EU. We include an external �le types.xmi which contains
the characteristics of the architectural model created with Data-Centric Palladio. We
use these characteristics to create CharacteristicTypes called privacy and location. These
are referenced in CharacteristicTypeSelectors. The AttributeSelector selects data with the
characteristic privacy set to personal. The PropertySelector selects destinations with the
characteristic location not set to EU. This is represented by the inverted-�ag set to true.
Both selectors are used in a Rule with the Statement never �ows. The rule is contained in a
Constraint with the name NowFlowOutsideTheEU.

The alternative constraint from Kunz [25] expands this constraint by classifying lo-
cations to be either safe or unsafe. We model this scenario using CharacteristicClasses.
Figure 7.9 shows the structure of this constraint. We use a CharacteristicClass called Un-
safeLocations to embed the CharacteristicTypeSelector used to select all destinations which
have a characteristic location not set to EU. We then reference this class in the destination
selection part of the Rule using a PropertyClassSelector.

The major bene�t of using CharacteristicClasses in this scenario is the interchangeability.
Architects can add or remove characteristics and literals in the class without having to
change any constraints which reference the class. An exemplary use case in this scenario
would be to check data �ows to various locations. Additionally, they can reference the
class in multiple Constraints since it is an independent element.

47

7. Language Syntax

: Model

privacy : CharacteristicType

ref = PrivacyLevel

location : CharacteristicType

ref = Locations

NoFlowToUnsafeLocations: Constraint

: Rule : AttributeSelector

: PropertyClassSelector

: CharacteristicTypeSelector

inverted = false
literals = [personal]

: CharacteristicTypeSelector

inverted= true
literals = [EU]

UnsafeLocations : CharacteristicClass

: TargetModelType

type = DataCentricPalladio
typeContainer = "types.xmi"

:Include

fileName = "types.xmi"

: Statement

Never : StatementModality Flows: StatementType

Figure 7.9.: Geolocation constraints example instance with characteristic classes

1 target DataCentricPalladio using types

2 import "types.xmi"

3
4 type privacy : PrivacyLevel

5 type location : Locations

6
7 class UnsafeLocations {

8 location.!EU

9 }

10
11 constraint NoFlowOutsideTheEU {

12 data.attribute.privacy.personal NEVER FLOWS node.property.location.!EU

13 }

14
15 constraint NoFlowToUnsafeLocations {

16 data.attribute.privacy.personal NEVER FLOWS node.class.UnsafeLocations

17 }

Listing 7.6: Concrete syntax of the Geolocation Constraints example instance

We show the formulation of both constraints using our exemplary concrete syntax in
Listing 7.6. We de�ne the TargetModelType and include the characteristics de�nition �le in
line 1 and 2. We de�ne the CharacteristicTypeswhich are used in the constraints in line 3 and

48

7.6. Example Instances

4. The �rst constraint which doesn’t use CharacteristicClasses is shown in line 11 to 13. The
second constraint in line 15 to 17 uses a reference to the CharacteristicClass de�ned in line 5
to 7. In this example, the selection of both DestinationSelectors is identical despite the fact
that the �rst constraint directly de�nes the literals while the second constraint references
a class. It’s up to the architect whether or not the de�nition of a CharacteristicClass is worth
the additional e�ort.

7.6.2. Access Control

The second example scenario is based on Access Control Systems like the Unix �le system.
Prior to accessing any data, the actor’s role is checked against the list of all authorized
roles of the requested data. We illustrated this scenario in Section 4.2 using a simpli�ed
version of the TravelPlanner case study [23, 22]. In this example, users request �ight o�ers
from a TravelAgency. They choose an o�er and book it by directly contacting the o�ering
Airline. This booking process includes the transfer of Credit Card Details which has to be
permitted by the user explicitly. Otherwise, this would represent a privacy violation.

Using Data-Centric Palladio, the following characteristics have been de�ned to model
this example:

roles = { User, TravelAgency, Airline }

accessRiдhts = { User, TravelAgency, Airline }

Both characteristics enumerate the same set of literals. Possible literals are the User

which books the �ight, the TravelAgency which collects �ight o�ers and the Airline. We
use the characteristic roles to model an actor’s role and the characteristic accessRights
to model all actor’s roles which are authorized to access a speci�c datum, e.g. the user’s
Credit Card Details. The generic constraint for Access Control Systems like the presented one
can be formulated as follows: "Data access is only permitted if the actor’s role is authorized".
An actor is authorized, if one of its roles is contained in the accessRights characteristic set
of the accessed data.

Figure 7.10 shows the structure of this constraint. The usage of TargetModelType, Include
and Statement is equivalent to the Geolocation Constraints example explained in Subsec-
tion 7.6.1. We import characteristics types and refer to them using CharacteristicTypes. In
this scenario, further restrictions to the data �ows are de�ned which cannot be expressed
using concrete literals in AttributeSelectors or PropertySelectors. Thus, we declare two
CharactersticSet variables which are called rights and roles. These variables are de�ned as
part of the CharacteristicTypeSelectors whose attribute isVariableSelector is set to true. This
indicates that variables are used which have to be restricted in the Condition of the Rule.

As discussed before, actors (and thus destinations) are only authorized to access data if at
least one of their roles is also contained in the data’s access rights set. This can be evaluated
by the intersection of both sets. If this intersection is not empty, at least one role exists in
both sets which implicates a permitted data access. If the intersection is empty, a violation
is found. We model this by using a EmptySetOperation together with a IntersectionOperation.
The latter uses two CharacteristicSetReferences to reference the CharacteristicSet variables

49

7. Language Syntax

: TargetModelType

type = DataCentricPalladio
typeContainer = "types.xmi"

: Model

accessRights : CharacteristicType

ref = AccessRights

roles : CharacteristicType

ref = Roles

:Include

fileName = "types.xmi"

AccessRightsViolation: Constraint

: Rule

: Statement

Never : StatementModality

Flows: StatementType

: AttributeSelector

: PropertySelector

: CharacteristicTypeSelector

isVariableSelector = true

: CharacteristicTypeSelector

isVariableSelector = true

rights : CharacteristicSet roles : CharacteristicSet: Condition : EmptySetOperation

: CharacteristicSetReference : CharacteristicSetReference

: IntersectionOperation

: CharacteristicSetReference

Figure 7.10.: Travel Planner access control example instance using the DSL

created from the AttributeSelector and the PropertySelector. The EmptySetOperation uses a
CharacteristicSetReference to refer to the result of the IntersectionOperation. Figuratively
speaking, this represents nesting both operations. The EmptySetOperation is contained by
the Condition which expects a boolean results; in this case if the intersection is empty or
not.

1 target DataCentricPalladio using types

2 import "types.xmi"

3
4 type accessRights : AccessRights

5 type roles : Roles

6
7 constraint AccessRightsViolation {

8 data.attribute.accessRights.$rights{}

9 NEVER FLOWS node.property.roles.$roles{}

10 WHERE isEmpty(intersection(rights,roles))

11 }

Listing 7.7: Concrete syntax of the Access Control example instance

Listing 7.7 shows the formulation of this constraint using our exemplary concrete syntax.
Line 1 and 2 are identical to the Geolocation Constraints example shown in Subsection 7.6.1:
we de�ne the target model and import the characteristics from Data-Centric Palladio. In line
3 and 4, we de�ne the CharacteristicTypes needed for the Constraint. The Constraint is called

50

7.6. Example Instances

AccessRightsViolation and contains the required elements Statement, DataSelector (in
the form of an AttributeSelector) and DestinationSelector (in the form of a PropertySelector).
Both selectors do not refer to concrete characteristic literals but de�ne CharacteristicSet
variables, called rights and roles. The Condition refers to these variables by �rst applying
an IntersectionOperation on both sets. The intersection is then checked on it’s emptiness
using a EmptySetOperation.
CharacteristicSetReferences are only used in the abstract syntax but not visible in the

concrete syntax. Their main purpose is to connect an operation to its arguments. These
arguments can be concrete variables as seen e.g. in the IntersectionOperation of this example.
Alternatively, the arguments are results of other, nested operations. While this di�erence
is important for the abstract representation, it is not for the user. Thus, we decide to use a
simple concrete syntax motivated by the functional paradigm which omits the internals.
To conclude, we want to point out the similarity of the constraint formulated in our DSL
with the constraint written in natural language. We consider architects to be capable of
understanding the constraint even with no or only little training in data �ow modeling.

51

8. Language Semantics

In this chapter, we discuss the semantics of our domain-speci�c language (DSL). The
semantics of our language are de�ned by the mapping from language elements presented
in Chapter 7 to parts of executable Prolog programs. This mapping bridges the gap between
the architectural domain and the underlying formalism used for the analysis. Additionally,
we discuss the mapping of results from the analysis back into the architectural domain.
By providing a detailed description of the mapping between both domains, we strive to
answer RQ2.

We start by giving an overview of the mapping in Section 8.1. This includes a dis-
cussion of additional dependencies other than the constraints formulated with our DSL.
In Section 8.2 to Section 8.4, we present details of the semantics of individual language
elements. We discuss the mapping of analysis results back in the architectural domain in
Section 8.5. Last, we show two example transformations based on the example scenarios
from Chapter 4 in Section 8.6.

8.1. Overview

Our DSL is used to de�ne data �ow constraints. In order to analyze whether or not
modeled architectures violate these constraints, they have to be mapped to the underlying
formalism Prolog. This mapping is realized using a model-to-model transformation from
our meta-model presented in Chapter 7 to a Prolog meta-model developed by Seifermann
[40]. Generated prolog models can be serialized afterwards.

As discussed in Chapter 5, this transformation is embedded in the process of Data-
Centric Palladio. Thus, we use the existing analysis capabilities of the Operation Model
together with the Constraint Query API summarized in Section 6.2. Prior to the de�nition
of our DSL, architects had to manually de�ne constraints by writing Prolog code. By using
our DSL together with Data-Centric Palladio, both the modeled architecture and its de�ned
constraints are transformed into Prolog code automatically.

The Prolog engine performs the analysis in the underlying formalism by solving the
de�ned constraints. The results, a list of zero or more data �ow constraint violations, are
transformed back into the architectural domain. The bene�t of this additional mapping is
the simpli�ed interpretation without the need of knowing the underlying formalism. The
result mapping only transforms the results and not the constraints or the architectural
model. Thus, our approach is not considered to be round-trip engineering.

In order to generate executable Prolog code which interacts with the Data-Centric
Palladio environment, we must consider additional aspects as input to our transformation.
Strembeck et al. [42] consider the platform of the DSL execution as "software building
blocks that provide functions to implement the DSL’s semantics" [42]. Examples are

53

8. Language Semantics

"programming languages and frameworks" [42], e.g. Prolog or the Operation Model. In our
scenario, additional dependencies occur since the transformation of the DSL also relies on
the architectural model and its transformation to the platform.

Architectural
Model Characteristics

Result

Model
Mapping

Operation Model

Transformation
Trace

Complete model Charateristics
and Literals

Transformed
Model

Trace Information

Constraint
Definition

 Characteristics
and Literals

Model Elements

DSL
Mapping

DSL Model

Prolog
Solving

Transformed
DSL

Result
Mapping

 DSL Model

Prolog Results

Serialized
Results

Global
Constants

Constraint
Query API

User Input

Figure 8.1.: Data �ow diagram of the transformation and solving process

Figure 8.1 shows the data �ows and thus dependencies between the architectural model
and the constraint de�nitions, their transformation and the underlying formalism. We use
the notations of data �ow diagrams presented in Figure 2.1. We model the Architectural
Model, Characteristics and the Constraint Query API as data sources because they are "lying
outside the context of [our] system" [9] and are considered to be available throughout the
whole transformation process. Global Constants represent another data source which holds
naming conventions for di�erent language elements. These conventions can be chosen
freely but need to be the same in the DSL Mapping and Result Mapping process.

We model the Result as data sink which receives the constraint violations mapped back
into the architectural domain. We show the de�nition of constraints using our DSL as
process which receives information about the ArchitecturalModel and its Characteristics and
returns a DSLmodel as described in Chapter 7. This is the only step in the transformation
process which requires User Input, e.g. an architect de�ning the constraints. The Prolog
Solving process takes both the mapped results from the Model Mapping as well as the DSL

54

8.1. Overview

Mapping and uses the Constraint Query API to analyze the constraints and return Prolog
Results.

There are three major mappings in Figure 8.1 which are highlighted. The Model Mapping
takes information about the Architectural Model and the Characteristics and transforms
these into the Operation Model. This process is de�ned by Data-Centric Palladio [41, 25].
Additionally, a Transformation Trace is generated which holds transformation instance
speci�c mapping information. With this information, elements in the transformation
output can be traced back to their origin in the Architectural Model.

The DSL mapping is the �rst transformation we describe in this chapter. We use this
mapping to create a Prolog representation of the constraints which can be analyzed
afterwards. The execution of this transformation depends on multiple artefacts:

• DSL Model: This is the major input of the mapping. This model is an instance of the
meta-model described in Chapter 7 and holds all information about the constraints
formulated by an architect.

• Constraint Query API : The transformation generates Prolog code which calls the
Constraint Query API to analyze the transformed architectural model. Thus, the
resulting code depends on the de�nition of the API.

• Transformation Trace: An architect can select data �ow destinations by their identity
(see Section 7.3). The Transformation Trace is used to resolve the transformed element
identities, e.g. elements of the architectural model

• Global Constants: In order to simplify the Result Mapping, we use constants which
exist throughout the solving process and in the Prolog Results. The constants are
need to identify speci�c variables in the Prolog Results, e.g. by using de�ned variable
pre�xes

The result of the DSLmapping is the Transformed DSL which is serialized as Prolog code
and used for the Prolog Solving process. The results of the analysis represent zero or
more constraint violations which are mapped back into the architectural domain to be
interpreted by an architect. As with the DSLmapping, the execution of this transformation
depends on multiple artefacts:

• Prolog Results: The results of the PrologSolving process represent constraint violations
in the form of bound variables, e.g. the speci�c element where a violation occurs.
These violations are the major input of this mapping.

• Transformation Trace: The results of the analysis are based on the Operation Model.
In order to map them back into the architectural domain, the originating elements
have to be resolved. This step is the counterpart to the usage of the Transformation
Trace in the DSLmapping.

• Global Constants: These constants have been introduced by the DSL Mapping. They
can be used to identify relations in the Prolog Results which are not represented by
the underlying formalism, e.g. the meaning of a variable

55

8. Language Semantics

• DSL Model: We use the information on the originating constraint de�nition to
enhance the representation of mapped results. By combining information about the
constraint and its violations, we aim to simplify the interpretation by an architect.

In the following, we present simpli�ed results of the transformation in order to show
the di�erent artefacts on which the DSL Mapping and the Result Mapping depend. We use
the Geolocation Constraints example scenario with the characteristics privacy (personal
or anonymous) and location (EU, Asia or USA) presented in Section 4.1. For the complete
transformation, please refer to Section 8.6. Listing 8.1 shows the constraint of this scenario.
Data which is considered to be personal is not allowed to �ow to any location which is
not considered to be in the EU. Both selections use characteristics.

1 constraint NoFlowOutsideTheEU {

2 data.attribute.privacy.personal NEVER FLOWS node.property.location.!EU

3 }

Listing 8.1: Simpli�ed concrete syntax of the DSL prior to its transformation

Listing 8.2 shows serialized Prolog code which represents the result of the DSL Mapping.
Please note that this is only an excerpt; the complete generated code can be found in
Section A.3. The clause which starts in line 1 exists to check if the transformed Operation
Model contains Call Arguments which violate the constraint discussed above. Call Arguments
represent the �ow of data to a process as arguments of an operation. The predicate in
line 6 represents the selection of personal data using the Constraint Query API. Line 7
represents the selection of operations with the characteristic location not set to EU.

1 constraint_NoFlowOutsideTheEU_CallArgument(QueryType, OP, S, P) :-

2 QueryType = ’CallArgument’,

3 S = [OP | _],

4 stackValid(S),

5 operationParameter(OP, P),

6 callArgument(S, P, ’privacy’, ’personal’),

7 \+ operationProperty(OP, ’location’, ’EU’).

Listing 8.2: Excerpt of the DSL transformation result represented as Prolog code

This snippet shows three of the four in�uences modeled in Figure 8.1. First, the DSL
Model contains the information on the constraints and in�uences the usage of selections
and characteristics. Second, the Constraint Query API is used to query the transformed
Operation Model and thus in�uences the structure of the clause and the used predicates.
Third, variable names as QueryType or OP and pre�xes as constraint originate from the
Global Constants. The TransformationTrace is not used in this example because no operations
are selected by their identity.

The generated Prolog code from the Operation Model is combined with the generated
code from the DSL. Using the latter predicates, goals can be formulated for the Prolog
Solving process. If a prohibited data �ow exists, the goal succeeds and a solution with
bound variables is returned which represents a constraint violation. This violation is
mapped back to the architectural domain using Result Mapping.

56

8.2. Selection

Listing 8.3 shows the textual representation of an exemplary violation. In line 1 to 4, the
Constraint Details are summarized. This information depends on the DSL Model input
of the Result Mapping. Line 6 - 8 show a detected constraint violation. The variables in line
7 and 8 originate from the Prolog Results and are assigned using the common knowledge
of the Global Constants. Line 8 shows the call stack which contains all operations and
operation calls which lead to the data �ow violation. If the target model (see Section 7.2)
is set to Data-Centric Palladio, the Transformation Trace is used to map operations from the
Operation Model back to their counterpart in the modeled architecture.

1 CONSTRAINT DETAILS

2 Data Characteristics: "privacy" set to "personal"

3 Statement: NEVER FLOWS

4 Destination Characteristics: "location" not set to "EU"

5
6 CONSTRAINT VIOLATIONS

7 Parameter "customer" is not allowed to be call argument in operation "store".

8 - Call Stack: "store", "storeUser", "ShopServer_buy", "buy", "usage"

Listing 8.3: Simpli�ed textual representation of a violation after the result mapping

8.2. Selection

The selection of data and data �ow destinations is a key aspect of our language. Every Rule
de�ned in our DSL is required to have at least one DataSelector and one DestinationSelector
(see Section 7.3). Most selectors refer directly or indirectly (using CharactersiticClasses)
to characteristics. In order to explain the mapping of those selectors, we �rst discuss the
representation of characteristics in the Operation Model and the querying of these using
the Constraint Query API.

As described in Section 6.2, characteristics are represented as ValueSetTypes which are
"named �nite sets of values" [41]. In the Operation Model, data attributes and operation
properties refer to these ValueSetTypes. The assignment of concrete characteristic literals
depends on the architectural model.

In order to query the Operation Model for data and destinations with certain character-
istics, the Constraint Query API de�nes �ve relevant predicates. Data is represented as
call argument or return value of an operation or as globally accessible call state. We use
the predicates callArgument, returnValue, preCallState and postCallState to test for
�owing data with speci�c attributes. Destinations are represented as operations. We use
the predicate operationProperty to test for operations with speci�c properties.

In order to combine the selection of data and destinations, we use call stacks which
are used by the Operation Model to represent every possible control �ow through the
system. The stackValid predicate ensures that a call stack is correct which is the case if it
represents a possible control �ow through the system, starting at the usage of an user. By
utilizing Prolog’s backtracking mechanism, we can test all possible control �ows and thus
all occurring combinations of data and destinations in the Operation Model.

57

8. Language Semantics

location : CharacteristicType

ref = Locations

: PropertySelector

: CharacteristicTypeSelector

isVariableSelector = false
inverted = false
literals = [USA]

: CharacteristicTypeSelector

isVariableSelector = false
inverted = true
literals = [EU]

: CharacteristicTypeSelector

isVariableSelector = false
inverted = false

literals = [EU, Asia]

place : CharacteristicVariable

: CharacteristicTypeSelector

isVariableSelector = true
inverted = false

literals = []

Figure 8.2.: Object diagram of four di�erent CharacteristicTypeSelectors

CompoundTerm

Value

operationProperty

Arguments

CompoundTerm

Value

OP

AtomicQuotedString

Value

location

AtomicQuotedString

Value

USA

Figure 8.3.: Abstract syntax tree of a mapped characteristic selector

In our DSL, CharacteristicTypeSelectors represent the selection of characteristic literals
and are referenced by AttributeSelectors and PropertySelectors. They can select single
literals, multiple literals, use inverted selections or de�ne variables. Figure 8.2 shows these
four possible combinations which are referenced from a PropertySelector. The left-most
CharacteristicTypeSelector only selects destinations with the property location set to USA.
The next selects only destinations with their location not set to EU. The thirds selects
destinations with location set to either EU or Asia. The right-most does not de�ne any
literals but uses a characteristicVariable named place instead.

We use the operationProperty predicate to specify the relationship between an opera-
tion from the Operation Model and a characteristic literal. The predicate is used with three
arguments: The operation, the characteristic and it’s literal. If the speci�ed operation has
set the speci�ed literal, the predicate succeeds. Figure 8.3 shows the abstract syntax tree of
the generated Prolog code. We use the terminology from the Prolog meta-model [40]. The
generated CompoundTerm contains its name (the value operationProperty) and the three
arguments. OP represents a variable and is thus represented by another CompoundTerm
with zero arguments. location and USA are �xed values represented by AtomicQuotedStrings.

58

8.2. Selection

Listing 8.4 shows the Prolog code of the transformed selector shown in Figure 8.3 in
line 1. Line 3 to 8 show the other three transformed selectors from Figure 8.2. We omit the
remaining three abstract syntax trees for the sake of brevity.

1 operationProperty(OP, ’location’, ’USA’).

2
3 \+ operationProperty(OP, ’location’, ’EU’).

4
5 (operationProperty(OP, ’location’, ’EU’) ;

6 operationProperty(OP, ’location’, ’Asia’)).

7
8 operationProperty(OP, ’location’, Var_place).

Listing 8.4: Prolog code of the transformed four characteristic selector types

The second transformed selector in line 3 speci�es operations which do not have the
characteristic location set to EU. This is realized using Prolog’s "\+" predicate which
evaluates to true if its argument cannot be proven. The third selector accepts multiple
literals from the same characteristic. This is realized in line 5 and 6 using Prolog’s or-
predicate which evaluates to true if one of its two arguments evaluates to true. The last
mapped selector in line 8 does not specify a literal but declares a new variable. Further
details of this variable behove to the mapped Condition part. In order to identify the
variable as characteristicVariable, it is pre�xed with the global constant Var.
AttributeSelectors are mapped in a similar way using the predicates discussed above:

callArgument, returnValue, preCallState and postCallState. Since we analyze a data
�ow as a whole and not its direction, the transformed result uses them all. Additionally, a
call stack variable is generated and tested for validity using the stackValid predicate.

1 S = [OP | _],

2 stackValid(S),

3 operationProperty(OP, ’location’, ’USA’),

4 callArgument(S, P, ’privacy’, ’personal’),

5 operationParameter(OP, P).

Listing 8.5: Prolog code of an transformed attribute selector and a property selector

Listing 8.5 shows the combination of a mapped AttributeSelector together with a mapped
PropertySelector and the generated call stack variable. The call stack variable is uni�ed
in line 1. Using Prolog’s list syntax, we bind the variable OP to the head of a list S. The
underscore indicates that the remainder of the list remains unspeci�ed. The stackValid

predicate in line 2 ensures that the list S represents a correct call stack. The opera-

tionProperty predicate in line 3 tests the operation at the top of the call stack OP for its
characteristic location. This represents the left-most selector shown in Figure 8.2. Line
4 uses the callArgument predicate to test if a parameter P holds the literal personal of
the characteristic privacy. The predicate therefore uses the operation at the head of the
list S. We ensure that this parameter P belongs to the operation OP using the predicate

59

8. Language Semantics

operationParameter in line 5. All these predicates are combined using Prolog’s built-in
conjunction predicate ",".

In addition to the callArgument predicate, other data related predicates returnValue,
preCallState and postCallState have to be used because we do not consider the data
�ows direction only its existence. However, this does not alter the structure of the code
snippet presented in Listing 8.5. We show other predicates in Listing 8.6 which can be
used instead of the callArgument and operationParameter predicates in line 4 and 5 of
Listing 8.5. The arguments of these predicates are similar. In order to cover all data �ows,
these have to be combined using multiple clauses.

1 operationReturnValue(OP, P),

2 returnValue(S, P, ’privacy’, ’personal’).

3
4 operationState(OP, ST),

5 postCallState(S, OP, ST, ’privacy’, ’personal’).

6
7 operationState(OP, ST),

8 preCallState(S, OP, ST, ’privacy’, ’personal’).

Listing 8.6: Return value and call state predicates

Another selector type are NodeIdentitySelectors. These selectors don’t select destinations
by their characteristic but rather by their identity which is represented by the destination’s
name. This can be represented in Prolog by unifying the operation variable OP with a
AtomicQuotedString which holds the name, e.g. "OP = ’destinationName’". However, this
simple mapping is only possible if the de�ned DSL constraint targets the Operation Model.
If the TargetModelType (see Section 7.2) references Data-Centric Palladio, the following
additional steps are required to correctly resolve the targeted operation.

If a constraint is de�ned for Data-Centric Palladio, destinations are referenced by a Com-
ponent, its Assembly Context and a Service E�ect Speci�cation (SEFF). All these elements
are contained in the architectural model for which the data �ow constraint is de�ned. In
order to reference the correctly named operation in the Operation Model, the transforma-
tion of the originating architectural model has to be traced. This is achieved using the
Transformation Trace which is an additional output of the Model Mapping (see Figure 8.1).
The Transformation Trace holds all mappings from a concrete architectural model to the
Operation Model. It can be queried using an interface of Data-Centric Palladio and returns
the name of the mapped operation in the Operation Model. This name is then used for
the Prolog uni�cation, e.g. "OP = ’ResourceDemandingSEFF (GDFtwHKJEeq9tYpRa9lb6Q)

- AC q7weoHKJEeq9tYpRa9lb6Q’".
This additional resolution step is also needed for the names of characteristics and their lit-

erals used by AttributeSelectors and PropertySelectors. Figure 8.1 shows that characteristics
are another input of the Model Mapping. If constraints are de�ned for Data-Centric Palladio
the mapping of characteristics and literals has to be queried using the Transformation
Trace.

Besides referencing characteristics directly to select data and destinations, Character-
isticClasses can be used. They also select attributes inside an AttributeClassSelector and

60

8.2. Selection

properties inside a PropertyClassSelector but de�ne the selection independent from the
referencing constraint. Thus, they represent an indirection. For more information on
CharacteristicClasses see Section 7.3. Listing 8.7 shows a simple example of a Character-
isticClasses which selects locations which are literals as EU or USA using the location

characteristic in 1 to 3. Additionally, a PropertyClassSelector in line 5 refers to this class.

1 class EUorUSA {

2 location.[EU,USA]

3 }

4
5 node.class.EUorUSA

Listing 8.7: Concrete syntax of characteristic class and a attribute class selector

We show the generated Prolog code from the transformation in Listing 8.8. Please note
that this snippet doesn’t represent a completely transformed constraint but is only used to
illustrate the mapping of CharacteristicClasses. These classes are mapped to separate clauses
like characteristicsClass_EUorUSA in line 3. For each selection of a class, two terms are
generated: First, the valueSetMember term in line 4. This belongs to the Constraint Query
API and is used to ensure that a variable represents a literal from the speci�ed characteristic,
e.g. location. Second, we add a predicate in line 5 which is used to select the speci�ed
literals. Line 1 and 2 are facts which represent this selection. Using Prolog’s backtracking
mechanism, we ensure that one of them exists and is member of the characteristic location
in order to make this clause succeed.

1 characteristicsClass_EUorUSA_location_0(’EU’).

2 characteristicsClass_EUorUSA_location_0(’USA’).

3 characteristicsClass_EUorUSA(ClassVar_EUorUSA_location) :-

4 valueSetMember(’location’, ClassVar_EUorUSA_location),

5 characteristicsClass_EUorUSA_location_0(ClassVar_EUorUSA_location).

6
7 operationProperty(OP, ’location’, ClassVar_EUorUSA_location),

8 characteristicsClass_EUorUSA(ClassVar_EUorUSA_location).

Listing 8.8: Prolog code of a transformed characteristic class and its referencing

CharacteristicClasses are de�ned independently in our DSL and are also transformed
independently to their use in constraints. They are de�ned for characteristics in general
and neither bound to attributes or properties. This binding is de�ned later in line 7. This
line represents an DestinationSelector as described above. The major di�erence is, that
instead of specifying a concrete literal (e.g. EU), a variable is inserted. This variable is then
used together with the predicate from the transformed CharacteristicClass in line 8.

If the Prolog engine is requested to prove the term operationProperty in line 7 for
a speci�ed operation OP the following steps happen: The unbound variable with the
name ClassVar_EUorUSA_location is detected and tried to resolve using the term in line
8 which refers to the clause from the transformed CharacteristicClass in line 3. Using the
valueSetMember predicate, the range of possible values is reduced to all literals of the the

61

8. Language Semantics

location characteristic, e.g. EU, USA and Asia. Then, line 5 further reduces possible values
to EU and USA. By utilizing backtracking, both values are tried to bind to the variable in
order to prove the operationProperty term. This succeeds if the speci�ed operation OP is
labeled with one of this characteristics, as stated in the original DSL selector.

The example shown in Listing 8.8 uses several pre�xes and post�xes de�ned in the
Global Constants. We use these to identify the usage of variables and to avoid naming
con�icts. Without this decoration, a characteristic called e.g. OP might collide with the
identical named term which represents an operation. Additionally, we use an iterator for
all transformed selectors of a CharacteristicClass because there is no restriction how many
selectors can be contained by a class for a single characteristic. This is similar to Rules
which can contain any number of DataSelectors but at least one.

8.3. Conditions

Besides specifying concrete characteristic literals, DataSelectors and DestinationSelectors
can de�ne CharacteristicVariables which represent single literals or sets of literals. If such a
variable is de�ned, an additional Condition is required which de�nes further restrictions
on the variable’s value. In order to de�ne these restrictions, a number of Operations can
be used. Examples are testing if a variable’s literal is contained in another CharacteristicSet
or if a CharacteristicSet is empty. For more information, see Section 7.4.

In order to de�ne a mapping from Conditions to Prolog, three domain gaps have to be
bridged: The mapping of CharacteristicVariables, the transformation of single Operations
to Prolog predicates and the representation of the structure of nested Operations of our
abstract syntax. The mapping of variables which are introduced in characteristic selectors
is similar to the mapping of CharacteristicClasses. Instead of using a Constraint Query API
like operationProperty with a constant literal, a new variable is introduced. We’ve shown
this above in Listing 8.4. We use simple variables to represent CharacteristicVariables and
lists to represent CharacteristicSets. This is motivated by the strong support for lists by the
Prolog language. For our usage scenario, lists without duplicate entries are close enough to
the semantics of sets. Prolog’s documentation also refers to sets as "unordered list without
duplicates" [44].

1 node.property.location.$A{}

2
3 findall(IteratorTemplate, operationProperty(OP, ’location’, IteratorTemplate),

VarSet_A)

Listing 8.9: Selector de�ning a characteristic set variable and the mapped result

To obtain all possible literals of an attribute or property, we uses Prolog’s built-in findall

predicate. Listing 8.9 shows a DestinationSelector with a CharacteristicSet variable in line 1
and the transformed result in line 3. The findall predicate accepts a template variable, a
goal to solve and a list to store all results. The predicate tries to satisfy the goal (in this case
the operationProperty predicate) using backtracking. All successful uni�cations with
the template variable IteratorTemplate are stored in the list VarSet_A. The pre�x VarSet

62

8.3. Conditions

Operation Prolog predicate Example

Intersection intersection/3
?- intersection([1,2],[1,3],X).

X = [1].

Union union/3
?- union([1,2,3],[3,4],X).

X = [1, 2, 3, 4].

Subtract subtract/3
subtract([1,2,3,4],[1,4],X).

X = [2, 3].

Create Set unification/2
?- =(X,[1]).

X = [1].

Variable Equality unification/2
?- 3 = 3. % true

?- 3 = 4. % false

Variable Inequality
unification/2,
not/1

?- \+ 3 = 4. % true

?- \+ 3 = 3. % false

Empty Set
length/2

(with length 0)
?- length([],0). % true

?- length([1,2],0). % false

Element of memberchk/2
?- memberchk(1,[1,2,3]). % true

?- memberchk(4,[1,2,3]). % false

Logical Or or/2
?- true ; false. % true

?- false ; false. % false

Logical And and/2
?- true , true. % true

?- true , false. % false

Logical Negation not/1
?- \+ false. % true

?- \+ true. % false

Table 8.1.: Mapping of operations of a condition to Prolog predicates

originates from the Global Constants and is used to mark this variable as CharacteristicSet
variable.

A Condition consists of operations which have to be mapped. Fortunately, Prolog’s
lists-library [44] already contains several common predicates, e.g. intersection or union.
These predicates are de�ned for sets ("list[s] without duplicates" [44]) and thus suppress
duplicates. An example is the union predicate which �lters duplicates while two lists are
combined. Table 8.1 shows all operations which can be used inside Conditions and the
predicate they are mapped to. We provide a short example for each predicate.

Although the mapping of operations to Prolog’s built-in predicates is straightforward,
the mapping of the structure of nested operations needs additional e�ort. The Condition
in our DSL follows the functional paradigm strictly. Operations accept one or multiple
arguments and return exactly one return value. There exist no states or side e�ects.
Additional variables other than the CharacteristicVariables de�ned in selectors cannot be

63

8. Language Semantics

EmptySetOperation

CharacteristicSetReference

IntersectionOperation

CharacteristicSetReference

X

CharacteristicSetReference

Y

Figure 8.4.: Abstract syntax tree of an exemplary condition in the DSL

declared. On the other hand, Prolog follows the logic paradigm. Using facts and rules,
goals can be proven. This is realized by binding all variables in a term. A goal succeeds if
all variables can be bound without con�ict. The term X = 3, X = 4. ("Unify x with 3 and
unify x with 4") will always fail because there is no possible value for X which satis�es
both terms. The term X = 3; X = 4 ("Unify x with 3 or unify x with 4") always succeeds.
Prolog doesn’t have concepts like return values from functional programming. Goals can
either be proven and all variables bound, or the goal is not provable. Cabot et al. also
encounter this gap while mapping the Object Constraint Language (OCL) to Prolog [6].

In order to map nested operations from the functional paradigm to Prolog, we have
to make up for the missing concept of return values. To do so, we introduce new Prolog
variables for every transformed operation. The only exceptions are LogicalAnd, LogicalOr
and LogicalNot which can be transformed directly.

We discuss a simple example for the usage of these variables in the following. Listing 8.10
shows two nested operations in line 1 and the transformed Prolog code in line 3. The
Condition term tests if the intersection of two CharacteristicSets is empty. This is mapped
to a length predicate and intersection predicate as described above in Table 8.1. The
CharacteristicSets X and Y are mapped to Prolog variables using the VarSet pre�x from
the Global Constants to mark them as set variables. In order to combine the statement of
both predicates in line 3, a new variable Temp_0 is introduced. The Prolog engine uni�es
the set variables and binds the result to the new variable. Using this variable, the length

predicate is tried so satisfy which only succeeds if the variable represents an empty list.

1 isEmpty(intersection(X,Y))

2
3 intersection(VarSet_X, VarSet_Y, Temp_0), length(Temp_0, 0).

Listing 8.10: Nested operations and their Prolog counterpart

We illustrate this gap using abstract syntax trees. Figure 8.4 shows the tree of the condi-
tion formulated in our DSL. The nesting is realized using a CharacteristicSetReference in the
EmptySetOperation. These references can either refer to nested operations or to concrete
CharacteristicVariables. Thus, an architect can nest an arbitrary number of operations.

64

8.3. Conditions

and

CompoundTerm

Value

intersection

Arguments

CompoundTerm

Value

VarSet_X

CompoundTerm

Value

VarSet_Y

CompoundTerm

Value

Temp_0

CompoundTerm

Value

length

Arguments

CompoundTerm

Value

Temp_0

AtomicNumber

Value

0

Figure 8.5.: Abstract syntax tree of the transformation to Prolog of an exemplary condition

Figure 8.5 shows the tree of the transformation result in Prolog. The CompoundTerms
which represent the intersection and length predicate are not nested in each other but
rather combined using a and predicate. This also shows why logical operations (namely
LogicalAnd, LogicalOr and LogicalNot) don’t need additional variables: They can be directly
mapped to their Prolog counterpart.

In the following, we summarize the process of transforming nested operations to Prolog
terms. Algorithm 1 shows the pseudo code of our algorithm. We present the mapping of
three di�erent operations: LogicalAndOperation which represents boolean operations with
boolean arguments, EmptySetOperation which represents boolean operations with a set as
argument and IntersectionOperation which represents operations with sets as argument
and return type. All other mappings are de�ned similar to these examples despite the fact
that they have di�ering numbers of arguments.

The algorithm accepts a BooleanOperation as input, which is contained by the Condition
element (see Section 7.4). The output is a stack of Prolog CompoundTerms which can be
combined using and predicates. The mapping is started by calling the map() function in
line 4. In the shown excerpt, three functions with di�erent arguments types exist. The
LogicalAndOperation mapping in line 5 to 11 transforms a conjunction in the DSL to a
conjunction in Prolog. Therefore, the left and right subtrees of the conjunction are mapped
independently. The call of a map() function always results in the transformed prolog term
lying on top of the stack E. After both subtrees are mapped and stored in variables, the
conjunction of both is pushed back to the stack E to be used in the surrounding operation
or returned as result.

The EmptySetOperation mapping is shown in line 12 to 16. This operation accepts a
reference to a CharacteristicSet variable or a reference to a nested operation which returns
such a variable. This is realized using the resolve() operation which expects a Reference.
If this is a reference to a real variable used in a selector, the variable is pushed to the
variable stack V in line 28. Otherwise, a variable is pushed to the stack in 32 and the
operation mapped next which binds this variable. This represents the nesting of operations.
Calling the resolve() function at the start of the mapping like in line 13, 18 or 19 ensures
that either the variable itself lies on the variable stack V or a additional variable lies on
the stack V together with the operations which bind this variable lying on the stack E.

65

8. Language Semantics

Input: A BooleanOperation b which represents the top-level element of a Condition
Output: A stack of Prolog terms E which can be conjuncted

1 E ← Empty stack of Prolog terms;
2 V ← Empty stack of variables;
3 i ← 0;
4 map(b);
5 Function map(o : LogicalAndOperation):
6 map(o.left);
7 le f t ← E.pop();
8 map(o.right);
9 riдht ← E.pop();

10 term ← AndTerm{left← left, right← right};
11 E.push(term);
12 Function map(o : EmptySetOperation):
13 resolve(o.value);
14 variable ← V .pop();
15 term ← Term{value← "length", arguments← [variable, 0]};
16 E.push(term);
17 Function map(o : IntersectionOperation):
18 resolve(o.left);
19 resolve(o.right);
20 riдht ← V .pop();
21 le f t ← V .pop();
22 temporal ← V .head();
23 term ← Term{value← "intersection", arguments← [left, right, temporal]};
24 E.push(term);
25 Function resolve(r : Reference):
26 if r references a variable then
27 variable ← r .variable;
28 V .push(variable);
29 else
30 temporal ←TemporalVariable{value← i};
31 i ← i + 1;
32 V .push(temporal);
33 map(r.operation);
34 end

Algorithm 1: Mapping algorithm of Conditions from the DSL to Prolog

Afterwards, this variable is popped from the stack in line 14 and used to create the
CompoundTerm with the length predicate in line 15. This term is then pushed to stack
E. The mapping of the IntersectionOperation in line 17 to 24 works similarly. Instead of
one CharacteristicSet reference, this operation expects two references which explains both
resolve() calls in line 18 and 19. However, an IntersectionOperation does not return a
boolean value but a characteristic set which has to be further evaluated. Thus, the variable

66

8.4. Constraints

which is bound to the result of the intersection is not popped but left on the stack in line
22. The variable has to be used by the surrounding operation which nested the Intersec-
tionOperation. It is ensured that such an operation exists because only BooleanOperations
are allowed as entry point of a Condition.

We illustrate the usage of this algorithm by discussing the single transformation steps of
the Condition shown in Listing 8.10 and Figure 8.4. The algorithm starts with the EmptySe-
tOperation as input and calls the accurate map() function in line 12. This mapping calls the
resolve() function in line 13 which recognizes the reference to an IntersectionOperation
and thus maps this nested operation �rst using the accurate map() function in line 17.
Prior to executing this mapping, an additional variable is generated an pushed on the
variable stack V in line 32. The mapping of the IntersectionOperation starts by resolving
the variables by calling resolve() twice in line 18 and 19. Because these reference real
CharacteristicSet variables, no further nesting is required and both variables are pushed to
the stack onto the existing variable. Afterwards, both variables are popped from the vari-
able stack V and used to create the �rst CompoundTerm with the intersection predicate
in line 23. Additionally, the variable (which is now again head of the stack) is referenced
but not popped from it. Last, the created CompoundTerm is pushed to the stack E in line
23 and the function returns the control �ow to the calling resolve() function which
returns to the mapping of the surrounding EmptySetOperation in line 13. In line 14, the
variable which was left on the variable stack V is popped from it and used afterwards to
create a CompoundTerm with the length predicate in line 15. This term is pushed to the
stack E in line 16. Then, the control �ow returns to line 4 and the algorithm ends with
two CompoundTerms in the stack E which are combined afterwards using Prolog’s and

predicate. The result is shown as abstract syntax tree in Figure 8.5 and serialized in line 3
of Listing 8.10.

8.4. Constraints

After Constraints have been de�ned using our DSL, they are mapped to Prolog code.
Afterwards, the generated code is combined with the transformed architectural model as
input for the Prolog Solving process. In previous sections, we discussed the mapping of
single parts of a Constraint, e.g. the selection of data and destinations Section 8.2 and the
de�nition of conditions in Section 8.3. In order to be analyzed, these individual elements
have to be combined after the transformation. The result is a Prolog clause which can be
queried in the analysis process and combines all mapped predicates.

In Section 8.2, we discussed that multiple predicates of the Constraint Query API can be
used to query data attributes: callArgument, returnValue, preCallState and postCall-

State. To create a comprehensive result of constraint violations, all predicates have to be
evaluated separately. Thus, we map each CharacteristicSelector four times in separate rules.

To identify which query predicate returned a constraint violation, we add an additional
QueryType variable to each rule. This variable is uni�ed with a string representing its
type, e.g. "QueryType = ’CallArgument’". This variable is combined with the result of
the selector mapping using Prolog’s and predicate. If CharacteristicVariables are used to
select data or destinations, the mapped Condition is also added. The four clauses are

67

8. Language Semantics

then combined using Prolog’s or predicate in one clause which represents the complete
Constraint. To associate violations to their originating Constraints, another uni�cation of a
variable with the Constraint name is added. The �nal predicate can then be satis�ed by the
Prolog engine.

Listing 8.11 shows the general structure of the complete Prolog code generated from
a single Constraint (called ExemplaryConstraint in this example). De�ned Characteristic-
Classes are transformed independently and also added to the result as shown in line 1.
Moreover, Listing 8.11 shows several pre�xes and post�xes which originate from the
Global Constants. They are used to prevent any naming con�ict of the transformed rules.

1 characteristicsClass_ExemplaryClass(...) :- ...

2
3 constraint_ExemplaryConstraint(...) :-

4 ConstraintName = ’ExemplaryConstraint’,

5 (constraint_ExemplaryConstraint_ReturnValue(...);

6 constraint_ExemplaryConstraint_PostCallState(...);

7 constraint_ExemplaryConstraint_CallArgument(...);

8 constraint_ExemplaryConstraint_ReturnValue(...)).

9
10 constraint_ExemplaryConstraint_ReturnValue(...) :- ...

11
12 constraint_ExemplaryConstraint_PostCallState(...) :- ...

13
14 constraint_ExemplaryConstraint_CallArgument(...) :- ...

15
16 constraint_ExemplaryConstraint_ReturnValue(...) :- ...

Listing 8.11: Complete structure of transformed constraints

The Statement "never �ows" which is used by all Constraints is implicitly mapped. The
semantics of this Statement is to blacklist certain data �ows. The analysis selects the
blacklisted data �ows and returns violations of these restrictions. Thus, no further negation
or inversion of complete Constraints is necessary. This discussion is supported by the
fundamentals of temporal logic. Statements use the modality never. The negation of "never"
("always not") can be formulated as "at least once" (or eventually).

More formally:

¬(�¬P) ⇔ �P

Thus, �nding violations which represent evidence to the contrary of the modality "never"
is the proposed analysis approach. This relationship between formulated constraints and
analysis results has also been identi�ed by Kunz [25].

In order to interpret the results of the Prolog Solving process, all relevant variables have
to be declared as arguments in the head of the generated rules. Although Prolog goals
only succeed if all variables can be bound without con�icts, the variables’ values are not
shown to the user if they are not declared as arguments in the queried predicate. Moreover,
we do not only use a static set of variable names like QueryType or OP but rather create

68

8.4. Constraints

Argument Appearance Description

OP always
The OperationModel operation where the
constraint violation occurred

S always
The complete call stack of the constraint
violation

P In CallArgument and
ReturnValue queries

The datum which caused the constraint
violation

ST In CallState queries The call state which caused the constraint
violation

ConstraintName always
The name of the constraint for which a
violation was found

QueryType always

The type of the query which found the
violation (possible values are: CallArgu-
ment, ReturnValue, PreCallState and Post-
CallState)

ClassVar_ . . . For each referenced
CharacteristicClass

Arguments with this pre�x indicate the
state of an characteristic selected by a ref-
erenced CharacteristicClass

Var_ . . . For each de�ned
CharacteristicVariable

Arguments with this pre�x indicate the
state of a variable which leads to the con-
straint violation

SetVar_ . . . For each de�ned
CharacteristicSetVariable

Arguments with this pre�x indicate the
state of a set variable which leads to the
constraint violation

Table 8.2.: Possible arguments created by the mapping of constraints

custom variables for CharacteristicVariables and CharacteristicClasses. To obtain all relevant
violation details, we gather variables used in the generated rules. This enhances the Prolog
results and simpli�es the interpretation for the architect after the Result Mapping. Often,
variable names are used in more then one rule. For instance, all rules shown in line 10 to
16 in Listing 8.11 use the variable OP which represents the operation under consideration.
When these rules are used together in line 5 to 8, it’s su�cient to include the variables’
name as argument in the surrounding rule once.

This collection approch is embedded in the mapping of Constraints to Prolog Clauses.
When a predicate is used inside a clause’s body, all arguments are collected and used
as arguments of the surrounding clause as well. This ensures that the predicate which
represents the entry point to the PrologSolving process contains all necessary arguments. In
Listing 8.11, the clause’s arguments in line 3 are represented by the union of the arguments
of all used predicates in line 5 to 8 together with the variable ConstraintName.

69

8. Language Semantics

We show possible arguments in Table 8.2. We also state if the arguments’ appearance
depends on other properties of the mapped Constraint. For instance, variables which
represent the selection of a CharacteristicClass are only generated if a Selector references
such a class. For each constraint violation, the arguments’ values are returned after the
Prolog Solving process.

8.5. Result Mapping

The Prolog Code which results from the DSLmapping is combined with the Code generated
from the transformation of the architectural model. The Prolog Solving process yields
zero or more constraint violations. In order to ease the interpretation, these violations
are mapped back into the architectural domain by the Result Mapping. In Section 8.1, we
summarized the in�uences of this mapping: Besides the raw Prolog Results, information
on the Transformation Trace, Global Constants and the constraints originating from the DSL
Model is necessary. In the following, we discuss these in�uences and how they are used to
abstract from the underlying formalism.

The Prolog Solving is used to prove a goal which is represented by the main predicate
which is created by mapping a Constraint. The Prolog environment tries to prove this goal
which succeeds if at least one constraint violation is found. Otherwise, the environment
yields false which is mapped to the simple statement: "No constraint violation was found".
If the goal succeeds, the predicates arguments’ bound values are returned. A simple Prolog
result which is represented by bound variables is shown in Listing 8.12. We consider this
to be the main input of the Result Mapping.

1 ConstraintName = ’SampleConstraintName’,

2 QueryType = ’CallArgument’,

3 OP = ’ResourceDemandingSEFF (_GDFtwHKJEeq9tYpRa9lb6Q) - AC
_q7weoHKJEeq9tYpRa9lb6Q’,

4 S = [’ResourceDemandingSEFF (_GDFtwHKJEeq9tYpRa9lb6Q) - AC
_q7weoHKJEeq9tYpRa9lb6Q’, opCall_f7b0423c |...],

5 ST = ’DB.store.param.input_STATE_5e4e3009’,

6 ClassVar_personal = ’EnumCharacteristicLiteral true (_6MC8YHKKEeq9tYpRa9lb6Q)’.

Listing 8.12: Raw Prolog result of a single constraint violation

This result shows the values of all arguments discussed in Section 8.4. This state leads to
a constraint violation. The Prolog output contains information about the Constraint in line
1 to 2 and about the data �ow in line 3 to 6. The values in line 3 to 6 represent elements
from the Operation Model. This model is only used by the underlying formalism. Using
the Transformation Trace, we can resolve the originating elements from the architectural
domain. In this example, line 3 to 5 represent elements from the modeled architecture and
the value in line 6 represents a characteristic literal.

The names of the variables in line 1 to 5 and the variable’s pre�x in line 6 originate from
the Global Constants. By using the same constant names in the DSL mapping and the Result
mapping, we simplify the identi�cation of the variables’ meaning. These constants are

70

8.5. Result Mapping

required to match in both mapping executions. The pre�x ClassVar_ in line 6 indicates
that this constraint references a CharacteristicClass. However, the Prolog result does not
o�er any information about the usage or details of this class. We use the original DSL
Model as additional input to the Result Mapping to �ll this gap.

We identify 4 di�erent tasks in the Result Mapping. We summarize these in the following:

1. Mapping basic variables: Variables like OP and ST represent the point in the system
where the constraint violation occurred. Mapping these variables is considered to
be the minimal information which is needed by an architect in order to interpret
the analysis result. The mapping of these variables depends on the Global Constants
as well as the Transformation Trace.

2. Mapping the call stack: The call stack represents the stack of operations in the
Operation Model and is used internally to query possible data �ows. However, this
information can also be useful to trace back the call sequence which leads to the
constraint violation. Thus, it’s mapped back using the Transformation Trace.

3. Mapping class variables: For each referenced CharacteristicClass, a variable is gener-
ated which holds the selected literal which leads to the constraint violation. The
variable is identi�ed by its pre�x from the Global Constants. Afterwards, information
about the CharacteristicClass is gathered using the variables name and the DSL Model.
Combined, this mapping yields the parameter, its literal and the referenced class.

4. Mapping characteristic variables: For each CharacteristicVariable which is used in a
Selector, a variable is created. After the Prolog Solving process, this variable is bound
to the literal which leads to the constraint violation. We map each variables’ value
using the Transformation Trace.

In addition to the mapped Prolog results, we also process all constraints from the DSL
Model and summarize their restrictions. We consider the combination of information about
the constraint (e.g. which data and destinations are selected) and information about the
constraint’s violations (e.g. literal combinations and the call stack) to be easier to interpret.

After the Result Mapping, we serialize the results and show them to the architect. In order
to minimize the change impact of di�erent concrete representations of mapped results, we
decoupled the mapping and the serialization process. Currently, we support the creation of
plain text �les as well as the markdown format. Using the latter, information like variable
assignment and call stacks can be presented as tables. Additionally, the presentation of
variables’ values bene�ts from more formatting options. We implemented the conversion
of the abstract Result Mapping results to the concrete representation using the Template-
Pattern. Thus, other representations can be integrated easily. A conceivable possibility
would be the graphical representation integrated into diagrams of the architectural model.

Listing 8.13 shows a exemplary serialized result mapping. First, general information
about the scenario, the constraint and the violations is shown in line 1 to 7. In line 9 to
12, we show constraint details. In this example, data is selected using two characteristics
and the destination is selected using a CharacteristicClass. Last, all constraint violations
are enumerated. For each violation, a short summary is displayed. Afterwards, additional

71

8. Language Semantics

information like the call stack or selected literals from CharacteristicClasses are shown.
Any information which is not used by the constraint under observation is omitted. For
instance, no CharacteristicVariables or Conditions are used by the constraint in this example.
The Result Mapping and the serialization adapts to the formulated constraint.

1 GENERAL

2 Case name: "example-scenario"

3 Constraint count: 1

4
5 CONSTRAINT

6 Constraint name: "SampleConstraint"

7 Violations found: 2

8
9 CONSTRAINT DETAILS

10 Data Characteristics: "sensitivity" set to "high", "encrypted" set to "false"

11 Statement: NEVER FLOWS

12 Destination Classes: "isNotSafe"

13
14 CONSTRAINT VIOLATIONS

15 1. Parameter "details" is not allowed to be call argument in operation "save".

16 - Call Stack: "save", "saveData", "Server_saveData", "usage"

17 - Characteristic Classes: Parameter "location" (Class "isNotSafe") set to "USA"

18 2. Parameter "info" is not allowed to be return value in operation "send".

19 - Call Stack: "send", "analyze", "External_Server", "usage"

20 - Characteristic Classes: Parameter "location" (Class "isNotSafe") set to "Asia"

Listing 8.13: Complete textual representation of a mapped constraint violation

8.6. Example Transformations

In this section, we show the application of the mapping in real-world examples. We use the
scenarios presented in Chapter 4 which were already used to discuss the language’s syntax
in Section 7.6. We discuss the constraints and their transformation results and compare
them to constraints formulated using the underlying formalism. Additionally, we show
exemplary constraint violations and the mapping of these results back to architectural
domain.

8.6.1. Geolocation Constraints

The Geolocation Constraints scenario deals with the �ow of personal data motivated by
legal restrictions. The example scenario models an online shop which operates inside the
EU but uses servers which are deployed in Asia. The constraint prohibits personal data
to �ow outside the European Union. Therefore, two characteristics have been de�ned.
The privacy characteristic states whether data is personal or anonymous. The location

72

8.6. Example Transformations

characteristic represents the deployment location. In this scenario, possible locations are
EU, USA and Asia.

Listing 8.14 repeats the constraint using our exemplary concrete syntax. In addition
to the basic constraint shown in line 5 to 7, a more generic approach is shown in line
9 to 11. Instead of prohibiting personal data to �ow out of the EU, unsafe locations are
de�ned using a characteristics class. This class is shown in line 1 to 3. Although both
constraints represent di�erent analysis goals, they yield the same constraint violations in
this scenario.

1 class UnsafeLocations {

2 location.!EU

3 }

4
5 constraint NoFlowOutsideTheEU {

6 data.attribute.privacy.personal NEVER FLOWS node.property.location.!EU

7 }

8
9 constraint NoFlowToUnsafeLocations {

10 data.attribute.privacy.personal NEVER FLOWS node.class.UnsafeLocations

11 }

Listing 8.14: Shortened concrete syntax of the Geolocation Constraints example scenario

We transform both constraints to the underlying formalism using our DSL mapping. We
use the Operation Model as target model in order to simplify the generated Prolog code.
Listing 8.15 shows an excerpt from the transformation result of the �rst constraint. For the
sake of brevity, we only show the main predicate in line 1 to 4 and the clauses generated
to handle call arguments in line 5 to 11 and return values in line 14 to 20. We leave out the
generated code which handles call states. The full generated Prolog code can be found in
Section A.3.

The clause in line 1 to 4 uni�es the ConstraintName variable with the original name of
the constraint. This information is needed in the Result Mapping step to associate single
results with their originating constraints. Afterwards, all predicates for handling data
�ows are referenced. In this simpli�ed example, only call arguments and return values are
under consideration. Both clauses contain a uni�cation of the QueryType variable followed
by the use of the call stack. Afterwards, data is selected using the callArgument predicate
in line 11 and the returnValue predicate in line 19 together with the selection of the data
�ow destination using the operationProperty predicate.

In Listing 8.16, we show an excerpt from the transformation result of the second con-
straint. Here, we only consider the handling of call arguments. Line 1 to 4 show the
transformation result of the CharacteristicClass which is referenced by the second con-
straint. The location EU is denoted as fact in line 1 which is then used in line 4 inside the
predicate which represents the class. This predicate is referenced in line 17 together with
the selection of the destination using the operationProperty predicate in line 16.

73

8. Language Semantics

1 constraint_NoFlowOutsideTheEU(ConstraintName, QueryType, OP, S, P) :-

2 ConstraintName = ’NoFlowOutsideTheEU’,

3 (constraint_NoFlowOutsideTheEU_CallArgument(QueryType, OP, S, P);

4 constraint_NoFlowOutsideTheEU_ReturnValue(QueryType, OP, S, P)).

5
6 constraint_NoFlowOutsideTheEU_CallArgument(QueryType, OP, S, P) :-

7 QueryType = ’CallArgument’,

8 S = [OP | _],

9 stackValid(S),

10 operationParameter(OP, P),

11 callArgument(S, P, ’privacy’, ’personal’),

12 \+ operationProperty(OP, ’location’, ’EU’).

13
14 constraint_NoFlowOutsideTheEU_ReturnValue(QueryType, OP, S, P) :-

15 QueryType = ’ReturnValue’,

16 S = [OP | _],

17 stackValid(S),

18 operationReturnValue(OP, P),

19 returnValue(S, P, ’privacy’, ’personal’),

20 \+ operationProperty(OP, ’location’, ’EU’).

Listing 8.15: Excerpt of the DSL transformation result of the �rst Geolocation constraint

1 characteristicsClass_UnsafeLocations_location_0_NEG(’EU’).

2 characteristicsClass_UnsafeLocations(ClassVar_location) :-

3 valueSetMember(’location’, ClassVar_location),

4 \+ characteristicsClass_UnsafeLocations_location_0_NEG(ClassVar_location).

5
6 constraint_NoFlowToUnsafeLocations(ConstraintName, QueryType, OP, S, P,

ClassVar_location) :-

7 ConstraintName = ’NoFlowToUnsafeLocations’,

8 constraint_NoFlowToUnsafeLocations_CallArgument(QueryType, OP, S, P,

ClassVar_location).

9
10 constraint_NoFlowToUnsafeLocations_CallArgument(QueryType, OP, S, P,

ClassVar_location) :-

11 QueryType = ’CallArgument’,

12 S = [OP | _],

13 stackValid(S),

14 operationParameter(OP, P),

15 callArgument(S, P, ’privacy’, ’personal’),

16 operationProperty(OP, ’location’, ClassVar_location),

17 characteristicsClass_UnsafeLocations(ClassVar_location).

Listing 8.16: Excerpt of the DSL transformation result of the second Geolocation constraint

74

8.6. Example Transformations

The additional variable ClassVar_location which holds the selected literal is used as
argument in both predicates in line 6 and 10. This enables the Result Mapping to display
the variables concrete value to the architect in the case of a constraint violation.

We compare the semantics of the transformed constraints to the original constraint
from Kunz [25]. In natural language, he describes the Prolog constraint as follows:

"Does an operation o exist within any call sequence, where for any parameter p of o
the [privacy] is [personal] and the deployment speci�ed by the location property of o

speci�es an unsafe location."

This de�nition is equivalent to the predicate shown in line 10 to 17. Using Prolog’s
backtracking mechanism together with the stackValid predicate in line 13, any possible
call sequence is queried. The selection of any parameter with the matching characteristics
is performed by the callArgument predicate in line 15 and the location is selected using
the operationProperty predicate together with the UnsafeLocations CharacteristicClass
in line 16 and 17.

As discussed before, both constraints yield the same violations because they select
the same data and destinations. In the following, we discuss the Prolog result and its
mapping back to the architectural domain. Listing 8.17 shows an exemplary constraint
violation represented by the raw Prolog Solving output of the second constraint using
CharacteristicClasses. This result holds the uni�cation for data �ow related variables like
OP and S but also mapping related information like the constraint and type of query where
the violation was found.

1 ConstraintName = ’NoFlowOutsideTheEU’,

2 QueryType = ’CallArgument’,

3 OP = ’UserDB_store’,

4 S = [’UserDB_store’, storeUser, ’ShopServer_buy’, buy, usage],

5 P = customer,

6 ClassVar_location = ’Asia’.

Listing 8.17: Prolog solving result of the Geolocation Constraints scenario

Listing 8.18 shows the mapped result. First, information about the constraint is presented
in line 1 to 12. Then, all constraint violations are listed. Therefore, the result from the
analysis is processed. In this example, the violation occurs because of a store operation
on a database which is deployed in Asia and which handles personal customer data.

75

8. Language Semantics

1 GENERAL

2 Case name: "geolocation-constraints"

3 Constraint count: 1

4
5 CONSTRAINT

6 Constraint name: "NoFlowOutsideTheEU"

7 Violations found: 1

8
9 CONSTRAINT DETAILS

10 Data Characteristics: "privacy" set to "personal"

11 Statement: NEVER FLOWS

12 Destination Classes: "UnsafeLocations"

13
14 CONSTRAINT VIOLATIONS

15 1. Parameter "customer" is not allowed to be call argument in operation

"UserDB_store".

16 - Call Stack: "UserDB_store", "storeUser", "ShopServer_buy", "buy", "usage"

17 - Characteristic Classes: Parameter "location" (Class "UnsafeLocations") set to

"Asia"

Listing 8.18: Mapped result of the Geolocation Constraints scenario

8.6.2. Access Control

The second scenario is based on Role-based Access Control. In this case study, the �ow of
sensitive data from a Travel Planner smartphone application to a travel agency and an
airline is modeled. We use characteristics which represent the roles of these actors and
access rights to di�erent types of data. For instance, the access to credit card details is only
permitted to roles authorized by the user. This can be formulated by comparing an actor’s
roles and the access rights for each datum. If the intersection is empty, no authorized
role can be found and thus a constraint violation occurs. We repeat the constraint using
our exemplary concrete syntax in Listing 8.19. We use CharacteristicSetVariables which
represent roles and access rights in line 2 and 3. In line 4, we reference these variables
to create Condition which tests the emptiness of the intersection of both sets.

1 constraint AccessRightsViolation {

2 data.attribute.accessRights.$rights{}

3 NEVER FLOWS node.property.roles.$roles{}

4 WHERE isEmpty(intersection(rights,roles))

5 }

Listing 8.19: Shortened concrete syntax of the Access Control example scenario

In Listing 8.20, we show an excerpt from the transformation result using our DSLmap-
ping. The predicates contain two additional arguments: VarSet_rights and VarSet_roles.
These represent the CharacteristicSetVariables from the modeled constraint. In line 10 and

76

8.6. Example Transformations

11, Prolog’s findall predicate is used to collect all possible roles for the system state under
consideration. The intersection of these roles is then tested for emptiness using Prolog’s
list and set operations in line 12.

1 constraint_AccessRightsViolation(ConstraintName, QueryType, OP, S, P,

VarSet_rights, VarSet_roles) :-

2 ConstraintName = ’AccessRightsViolation’,

3 constraint_AccessRightsViolation_CallArgument(QueryType, OP, S, P,

VarSet_rights, VarSet_roles).

4
5 constraint_AccessRightsViolation_CallArgument(QueryType, OP, S, P, VarSet_rights,

VarSet_roles) :-

6 QueryType = ’CallArgument’,

7 S = [OP | _],

8 stackValid(S),

9 operationParameter(OP, P),

10 findall(IteratorTemplate, callArgument(S, P, ’authorizedRoles’,

IteratorTemplate), VarSet_rights),

11 findall(IteratorTemplate, operationProperty(OP, ’accessRoles’,

IteratorTemplate), VarSet_roles),

12 intersection(VarSet_rights, VarSet_roles, Temp_0), length(Temp_0, 0).

Listing 8.20: Excerpt of the DSL transformation result of the Access Control constraint

We compare the semantics of the transformed constraints with constraints formulated
by Kunz [25]. He describes a Prolog constraint which �nds access control violations as
follows:

"Does an operation o exist within any call sequence, where for any parameter p of o
with the attribute authorizedRoles, no role r exists so that both p.authorizedRoles.r

and o.roles.r are true."

The iteration over operations in possible call sequences is achieved using the call stack
from the Operation Model in line 7 and 8. We collect authorizedRoles of the parameter
under consideration with the �rst findall predicate in line 10. The accessRoles are
collected with the second findall predicate in line 11. "Being true" causes the appearance
of a role in one of the two sets. Thus, the lack of existence of at least one role in both sets
can be formulated as test for the emptiness of the intersection of both sets as described in
line 12.

We show an exemplary Prolog result after the Prolog sovling in Listing 8.21. In addition
to the uni�cation of general variables like the constraint name and the call stack, the
assignment of both CharacteristicSetVariables is shown in line 6 and 7. In the result shown
here, an actor with the role Airline tries to access data which is only allowed to be
accessed from actors with the role User. The intersection of both sets represents the empty
set and thus a constraint violation. This can expressed as: roles ∩ rights = ∅.

Listing 8.22 shows the mapped result. After the general information in line 1 to 7, we
show the constraint details in line 8 to 13. Both the data and destination selection display
the use of CharacteristicSetVariables. The Condition is printed as de�ned in the DSL. We

77

8. Language Semantics

choose to display the function in its original shape because we consider a description of
the Condition in natural language to become confusing quickly.

1 ConstraintName = ’AccessRightsViolation’,

2 QueryType = ’CallArgument’,

3 OP = ’requestDetails’,

4 S = [’requestDetails’, fetchDetails, ’TravelPlanner_bookFlight’, book, usage],

5 P = request,

6 VarSet_roles = [’Airline’],

7 VarSet_rights = [’User’].

Listing 8.21: Exemplary Prolog solving result of the Access Control scenario

Afterwards, the constraint violations are displayed in line 15 to 18. For each violation,
the values of all CharacteristicVariables are displayed in addition to the basic information like
the call stack or which operation call caused the violation. This information is especially
helpful after the problem location has been identi�ed in order to understand the properties
of the data causing it.

1 GENERAL

2 Case name: "travel-planner-access-control"

3 Constraint count: 1

4
5 CONSTRAINT

6 Constraint name: "AccessRightsViolation"

7 Violations found: 1

8
9 CONSTRAINT DETAILS

10 Data Characteristics: "authorizedRoles" set to variable "rights"

11 Statement: NEVER FLOWS

12 Destination Characteristics: "accessRoles" set to variable "roles"

13 Condition: "isEmpty(intersection(authRoles,accessRoles))"

14
15 CONSTRAINT VIOLATIONS

16 1. Parameter "request" is not allowed to be call argument in operation

"requestDetails".

17 - Call Stack: "requestDetails", "fetchDetails", "TravelPlanner_bookFlight",

"book", "usage"

18 - Characteristic Variables: Variable "rights" set to "User", variable "roles"

set to "Airline"

Listing 8.22: Mapped exemplary result of the Access Control scenario

The serialization to plain text �les prints all variables an their values as list for each con-
straint violation. Alternatively, we implemented a serialization which creates markdown
�les. Here, variables and their values are displayed as simple table which is considered to
enhance the readability especially for constraints which utilize many di�erent Characteris-
ticVariables.

78

9. Evaluation

In this chapter, we present the evaluation of our approach. We evaluate the domain-
speci�c language (DSL) as well as the mapping between the architectural domain and the
underlying formalism. In order to minimize the risk of "collecting unrelated, meaningless
data" [2] we use a Goal-Question-Metric-Plan [2]. Basili et al. propose de�ning goals �rst
and then deriving questions of interest. While goals are on a conceptual level, questions are
on a operational level and try to characterize the "object of measurement" [7]. Metrics are
then used to collect (quantitative) data to evaluate questions and measure the ful�llment
of previously de�ned goals.

There is already work on DSL quality [20, 33] and the development of DSLs available
[1, 28, 46]. This work identi�es several quality attributes of DSLs such as simplicity,
uniqueness, consistency, space economy and the choice of the right abstraction level.

We present goals and resulting questions in Section 9.1. In Section 9.2, we explain the
evaluation design which is used to answer these questions. We present and discuss the
evaluation results in Section 9.3. Afterwards, we discuss threats to validity in Section 9.4
and limitations of our approach in Section 9.5. We close with information on the availability
of the data to reproduce our evaluation in Section 9.6.

9.1. Goals and Questions

The goal of this evaluation is to show whether or not the research questions presented in
Section 1.1 have been answered satisfactorily. In research question RQ1, we ask about
architecture-level constructs are necessary to de�ne data �ow constraints. Research
question RQ2 asks for a mapping of these constraints from the architectural domain into
the underlying formalism as well as a mapping of analysis results.

Based on these research questions, we derive evaluation goals. We evaluate the expres-
siveness of the DSL (RQ1) and the usability and space e�ciency as proposed by other
work presented above. In order to evaluate the mapping between the architectural domain
and the formalism (RQ2), we evaluate the equivalence of the analysis. We de�ne the
following evaluation goals:

G1 Expressiveness: The domain speci�c language shall provide concepts which allow
the versatile constraint speci�cation for di�erent applications.

G2 Usability: The domain speci�c language shall improve an architects analysis pro-
ductivity by reducing the tasks complexity.

G3 Space E�ciency: The domain speci�c language shall be concise without verbose
elements or structures for small and larger problem speci�cations.

79

9. Evaluation

G4 Equivalence of analysis: The transformation of the domain speci�c language to
the native formalism shall preserve the semantics.

Goal G1 evaluates the expressiveness of our DSL. A high expressiveness indicates that
many architecture-level constructs are supported and thus many data �ow constraints
can be expressed using our DSL. In order to discuss the expressiveness, we analyze the
formulation of di�erent constraints derived from related work (Q1). Additionally, we
discuss the usage of well-known terminology and the analysis environment provided by
Data-Centric Palladio. This includes an evaluation whether the supported concepts to
formulate constraints on variables and sets are su�cient (Q2).

To evaluate G1, we de�ne the following questions:

Q1 Are the supported DSL concepts su�cient to formulate constraints in the context of
data �ow modeling?

Q2 Does the DSL constraints o�er required concepts to reason about characteristics
variables and characteristic sets?

Paige et al. [33] stress the importance of simplicity and usability of a DSL. The ex-
pressiveness of a DSL has to be paired with decent usability in order to add value to the
architect’s analysis process. Thus, we evaluate the usability with goal G2. First, we discuss
the abstraction from the formalism which is used for the analysis (Q3). Next, we discuss
the DSL’s conciseness and generalization (Q4). A too low degree of conciseness makes the
practical usage of the DSL more di�cult while a too high degree of generalization might
lead to more abstract concepts which are hard to understand.

Additionally, we evaluate typical language properties like orthogonality (Q5) and unique-
ness (Q6). Orthogonality increases the understandability of constraints because language
features do not overlap and thus can be considered one at a time. The concept of uniqueness
ensures that multiple language elements cannot be used to express the same constraint
which can lead to confusion while learning the language as well as while reading code
written by other architects. Ultimately, we consider the knowledge required to use our
DSL in comparison to the underlying formalism (Q7).

To evaluate G2, we de�ne the following questions:

Q3 Does the DSL provide abstraction from the underlying formalism to the architectural
domain?

Q4 Is the DSL concise without a too high degree of generalization?

Q5 Does the DSL provide orthogonality, avoiding overlapping features?

Q6 Does the DSL follow the rules of uniqueness, avoiding multiple ways to express the
same constraint or analysis goal?

Q7 How much and which knowledge is required to use the DSL for de�ning data �ow
constraints?

80

9.2. Evaluation Design

Goal G3 evaluates the space e�ciency of our DSL. First, we consider lower and upper
bounds regarding complexity. The DSL shall be applicable for simple analysis without
requiring much boilerplate code (Q8). This would cause simple analysis goals to be hard
to de�ne and hard to read which also harms the usability. On the other hand, the DSL
shall be applicable for larger constraints and analysis goals with multiple goals as well
(Q9). Last, we compare the space e�ciency of the DSL with the underlying formalism
(Q10). Here, we consider not only the absolute di�erence in e�ort to write equivalent
constraints but also the scalability of the DSL compared to the underlying formalism with
growing number of referenced elements and de�ned constraints.

To evaluate G3, we de�ne the following questions:

Q8 Can the DSL be applied to formulate simple analyses without requiring much boil-
erplate code?

Q9 Can the DSL be applied to formulate large analyses without being verbose?

Q10 Does the DSL improve space e�ciency compared to the underlying formalism?

Last, we evaluate the equivalence of the analysis results in goal G4. Without doubt,
expressiveness, usability and space e�ciency are important properties of a DSL. However,
a language created to de�ne constraints becomes less useful if the mapping to the for-
malism used for the analysis is error-prone. An erroneous transformation might lead to
di�ering analysis results in comparison to constraints de�ned directly using the underlying
formalism. Due to the importance of this topic, we choose to analyze the preservation of
semantics by performing a correctness proof (Q11) as advised in the domain of compiler
construction [30]. Additionally, we compare analysis results from di�erent constraints
formulated both using our DSL and the underlying formalism (Q12).

To evaluate G4, we de�ne the following questions:

Q11 Does the transformation preserve semantics?

Q12 Does using the native formalism compared to the transformed DSL yield the same
constraint violations and thus analysis results?

9.2. Evaluation Design

In this section, we discuss the evaluation design and how we strive to answer the questions
presented above. In order to avoid over�ting of our DSL, we use additional scenarios
other than the exemplary scenarios introduced in Chapter 4. We brie�y present all studied
scenarios in Subsection 9.2.1. Afterwards, we discuss the evaluation design for each goal
in Subsection 9.2.2 to Subsection 9.2.5.

9.2.1. Studied scenarios

Prior to the de�nition of our DSL, we collected requirements from scenarios from related
work which de�ne constraints on the �ow of data. We described this approach in Section 6.1.

81

9. Evaluation

In total, we identi�ed 7 di�erent scenarios. We choose two scenarios as input for the
requirements analysis process. First, the Geolocation Constraints [25, 47] scenario which
uses two di�erent constraints to restrict the �ow of Type-0 and Type-1 data. We consider
them from now on separately due to the major di�erence in their goal formulation (see
Section 6.1). Second, we analyzed the Travel Planner case study [22]. In the following, we
brie�y describe all 8 scenarios which will be used throughout the evaluation whenever
applicable.

Geolocation (Type-0 data). This scenario describes an online shop which handles
personal data. Personal "Type-0" data is not allowed to be stored in unsafe locations. For
more information, see Section 6.1.

Geolocation (Type-1 data). This scenario also described an online shop which handles
personal data. Personal identi�able information is not allowed to be joined with data from
other origins. For more information, see Section 6.1.

Geolocation Constraints using encryption. This scenario was de�ned by Kunz [25]
by altering the original Geolocation Constraints scenario. The context remains the same
describing an online shop which handles personal data. Additionally, a characteristic is
de�ned which describes the encryption status of data. Instead of using a location character-
istic to describe the deployment of services, the constraint prohibits the �ow of personal
but unencrypted data to a speci�c element of the architecture.

Travel Planner. This case study originates from the iFlow approach [21] and has
been also used to evaluate previous work in the context of Data-Centric Palladio [41]. It
describes the �ow of data through a travel planning smartphone application. For more
information, see Section 6.1.

ContactSMSManager. This scenario also originates from the iFlow approach [21] and
describes the interaction of two smartphone apps: a ContactManager and a SMSManager.
The latter is only permitted to access a subset of personal contact data when authorized by
the ContactManager. This constraint is another instance of the Access Control restriction
presented in Section 4.2.

DistanceTracker. This case study also originates from the iFlow approach [21] and
describes a �tness app which tracks the GPS position of the user. Afterwards, this data
is sent to another service for further evaluation. However, this service is not allowed to
gather information about the user’s current position. This constraint can also be realized
based on the Access Control example.

UMLsec Secure Links. The scenario originates from UMLsec [17] and is used to
validate the secrecy of selected data. Therefore, an attacker with a set of capabilities (e.g.
read or delete) is modeled. Additionally, the transmission of the data under consideration
is described. The constraint analyzes di�erent combinations of attackers and transmission
types. For instance, an attacker might delete an encrypted data transmission, but cannot
ready the data.

UMLsec Secure Dependencies. This scenario also originates from UMLsec [17] and
describes a structural security analysis. This analysis veri�es whether or not speci�ed
security requirements such as secrecy or integrity are ful�lled by all classes which de-
pend on a selected interface. Therefore, the analysis checks whether all connectivity of
dependent classes satis�es the requirements.

82

9.2. Evaluation Design

9.2.2. G1 - Expressiveness

The �rst goal of this evaluation is the investigation of the DSL’s expressiveness. An
expressive DSL enables the user to formulate many di�erent scenarios without being
limited by the number or power of language concepts and elements. In Chapter 6, we
described two approaches: �rst, analyzing real-world case studies as lower limit of the
desired expressiveness. We named this the top-down approach. Second, the analysis
capabilities of the underlying formalism as upper limit of the power of our DSL. We
described this approach being bottom-up.

Question Q1. First, we discuss whether or not the current state of our DSL satis�es the
collected requirements su�ciently and covers all required concepts. We use all scenarios
described in Subsection 9.2.1 to complete our selection for the top-down approach. This
enables us to test whether or not the expressiveness is su�cient to formulate constraints
for 8 scenarios in total. Please note, that this selection is not exhaustive but represents all
scenarios gathered in this thesis.

Second, in order to provide a bottom-up evaluation, we compare the expressiveness of
our DSL with the Constraint Query API by Kunz [25]. This API is used by the underlying
formalism to validate constraints against the transformed architecture. We brie�y described
its capabilities in Section 6.2. Our mapping to the underlying formalism uses this API
as well as all constraints directly formulated as Prolog code without the use our DSL.
Thus, this represents the upper limit of analysis possibilities of the current version of
Data-Centric Palladio. This API consists of 24 Prolog predicates in total. We evaluate
whether each of the predicates can be expressed in our DSL explicitly or implicitly. We
consider a predicate to be expressed implicitly if it is either used by the API together
with an explicitly expressed predicate or if it is implicitly created by our mapping but not
explicitly formulated by an architect.

Third, we discuss which of our requirements from Chapter 6 have been ful�lled. Re-
quirements which have been gathered from real-world use cases but have not been ful�lled
indicate a limited expressiveness of our DSL. Thus, we analyze the coverage of require-
ments.

Question Q2. The highest degree of freedom in goal formulation is o�ered by the
Condition part of our DSL described in Section 7.4. Architects can de�ne precise conditions
using operations from set theory. We discuss the completeness of the set of operations
supported by our DSL. In order to answer this question, we performed a literature research
on set theory [5, 10] to collect operations on elements and sets. We also include operations
from the list-library of SWI-Prolog [44] which are applicable on sets. For each collected
operation, we show whether it was included or excluded. For all excluded operations, we
show whether or not they can be expressed by combining included operations.

In order to combine multiple operations on sets and elements besides nesting, we added
boolean operations to the Condition part. We discuss the completeness of selected boolean
operations with regard to propositional logic separately.

83

9. Evaluation

9.2.3. G2 - Usability

The second goal evaluates the language’s usability. Often, the evaluation of usability-
related topics includes the execution of user studies. Due to the e�ort of executing such
studies with a representative selection of subjects, we choose to evaluate usability by
objective measures. This evaluation is focused on the abstract syntax since this represents
the major contribution of Chapter 7. However, we include a discussion of our exemplary
concrete syntax whenever applicable.

Question Q3. One major goal of DSLs is to provide a sound abstraction from the
underlying formalism. With our DSL, we abstract from the Prolog programming language
and the Constraint Query API [25] which is used for the analysis of Data-Centric Palladio.

In order to evaluate the abstraction, we analyze the required e�ort of di�erent change
scenarios in our DSL compared to native Prolog code. Here, less e�ort indicates good
abstraction because the constraint formulation is closer to the real problem under consid-
eration.

In order to enable a fair comparison between the DSL and Prolog, we use handwritten
Prolog code instead of generated code from our DSL mapping process. Otherwise, we
would run into danger to evaluate the DSLmapping instead of the abstract syntax. We only
consider change scenarios which originate from the architectural domain because these
are closer to changes in real constraint speci�cations.

We collected change scenarios by iterating over all elements of the abstract syntax. We
omit too strongly related scenarios, e.g. changing variable references in di�erent types of
operations which has similar change impacts independent from the selected operation.
Furthermore, we do not consider scenarios where elements are deleted since these yield the
same numerical results as equivalent scenarios where elements are added to constraints.
We collected the following 15 change scenarios:

S0 Constraint creation
S1 Change a Constraint name
S2 Change a characteristic literal of a CharacteristicTypeSelector
S3 Change a characteristic type of a CharacteristicTypeSelector
S4 Change a condition variables name in a CharacteristicTypeSelector
S5 Change a characteristic literal’s inversion in a AttributeSelector
S6 Change a characteristic literal’s inversion in a DestinationSelector
S7 Change a AttributeSelector to a reference in a CharacteristicClassSelector
S8 Change a NodeIdentitySelector name
S9 Change a CharacteristicSetOperation

S10 Change a BooleanOperation
S11 Add a characteristic literal to a CharacteristicTypeSelector
S12 Add a DataSelector to a Constraint
S13 Add a DestinationSelector to a Constraint

84

9.2. Evaluation Design

S14 Add a CharacteristicClass and a CharacteristicTypeSelector

S15 Add a Condition and a BooleanOperation

The �rst scenario S0 is no real change scenario but included for reference. In this
scenario, a minimal constraint with one AttributeSelector and one PropertySelector is created.
This constraint’s name is changed in scenario S1. The scenarios S2 to S8 represent basic
change scenarios in di�erent DataSelectors and DestinationSelectors. The scenarios S9 and
S10 represent simple change scenarios in a constraint’s Condition. Last, the scenarios S11
to S15 represent the expansion of the basic constraint. They range from minimal additions
like a new literal in S11 to larger changes like the addition of a new CharacteristicClass in
S14 or a Condition in S15.

We measure the change e�ort of these scenarios by counting the required atomic steps
and distinguish between minor and major changes to the formulated constraints. We
consider the change of an attribute value and adding or removing arguments as minor
change impact while we consider adding or removing domain elements as major change.
We count the changes using the abstract syntax for our DSL and the Prolog meta-model
[40] for constraints formulated within the formalism. Additional e�ort which is required
to prepare the constraints to the change scenario such as S0 is excluded. The measurement
always starts with semantically equivalent constraints in both domains.

Question Q4. We discuss the DSL’s conciseness. A major strength of DSLs is the
language’s capabilities to create speci�cations with less verbosity than the underlying
formalism. However, there is an upper limit of the usability of concise language concepts.
If the degree of generalization is too high, the language becomes hard to learn and hard to
use. In order to measure the DLS’s conciseness, we analyze which language concepts are
used how often in total throughout all scenarios described in Subsection 9.2.1. Language
concepts which are seldomly used indicate a too high degree of generalization and shall
be examined more closely. However, this is no comprehensive review because we do not
consider our selection of constraints to be exhaustive in the �rst place.

The choice of evaluated concepts is based on the abstract syntax of our DSL. The more
often a concept is utilized, the better. We evaluate how often the following language
concepts are used:

C1 Constraints and Rules

C2 CharactersticTypes and CharacteristicTypeSelectors

C3 CharacteristicClasses and CharacteristicClassSelectors

C4 AttributeSelectors

C5 PropertySelectors

C6 NodeIdentitySelectors

C7 Conditions

C8 BooleanOperations

C9 CharacteristicSetOperations

85

9. Evaluation

Question Q5. A language bene�ts from a high degree of orthogonality because this
allows the user to interpret language concepts independently. Language orthogonality can
also be described as independence of modeling concepts. Orthogonality violations might
cause unwanted dependencies between seemingly unrelated elements which leads to
worse maintainability and understandability. We evaluate the orthogonality of constraints
formulated in our DSL based on the structure presented in Section 7.1: DataSelectors,
DestinationSelectors, Statement and Condition. The discussion is based on relations in the
abstract syntax which indicate coupling between di�erent parts of the DSL.

Question Q6. Languages which satisfy uniqueness avoid providing more then one
way to express semantically identical speci�cations. Paige et al. [33] state: "By avoiding
duplication of features, the language is kept smaller and more explainable". However,
uniqueness shall not be mixed-up with the sacri�ce of features; it only favors smaller
subsets of "powerful features that may be useful in more than one context" [33]. In some
cases, uniqueness and expressiveness become mutually exclusive. This requires the careful
consideration by the languages designer.

Our evaluation of uniqueness is twofold: First, we analyze the mapping between concrete
syntax and abstract syntax. Here, a uniqueness violation would cause confusion which
element from the concrete syntax is the correct or best one to describe a constraint.
Second, we analyze the uniqueness of di�erent concepts of our language; also by taking
the semantics of di�erent elements into consideration. Here, the tolerance of uniqueness
violations is higher due to the trade-o� between expressiveness and uniqueness. Still,
every violation must be weighted up carefully.

Question Q7. We discuss the knowledge which is required to de�ne constraints using
our DSL in comparison to the underlying formalism. We distinguish between complexity
which is essential to a problem and complexity which is added by accident because of the
choice of abstraction or environment [4]. An abstraction like the use of a DSL bene�ts
from minimizing accidental knowledge. This enables new users to learn the DSL more
quickly and understand constraints written by other architects more easily. However, it’s
hard to quantify knowledge. Therefore, we focus on which knowledge is required and
discuss the amount qualitatively.

We gathered di�erent domain concepts and terminology which in�uences the process
of de�ning constraints with or without the use of our DSL. This includes knowledge
on the syntax and the modeled architecture under consideration but also the analysis
environment. As discussed above, complexity which is introduced by the environment and
requires knowledge can be essential or accidental. Based on the analysis process described
in Chapter 5 and the transformation overview discussed in Section 8.1, we identify the
following domains and concepts:

K1 Data �ow diagrams and architectural modeling, e.g. knowing how to de�ne architec-
tures and use the terminology proposed by data �ow diagrams. This is essential to
the modeling domain.

K2 Data-Centric Palladio, e.g. knowing how to use the modeling environment and de�ne
concrete models using Palladio. This is essential to use both approaches.

86

9.2. Evaluation Design

K3 The architectural model in use and it’s characteristics, e.g. knowing about modeled
data and the characteristic’s names and literals. This essential to the architect.

K4 The DSL mapping and result mapping, e.g. knowing details about the transformation
and the internal processing. This adds to the accidental complexity.

K5 Global constants, e.g. knowing about the names and usage of these constants which
also adds to the accidental complexity.

K6 Operation Model and Constraint Query API, e.g. knowing about the structure of the
model or how to use single API predicates. This is also considered to be accidental
complexity when using the DSL.

K7 Transformation and trace, e.g. knowing about the resolution of transformed elements
or how to manually resolve them. Manually resolving traces is considered to be
accidental complexity and thus avoidable.

K8 Prolog, e.g knowing about the logic paradigm, about the basic syntax or about
common predicates. This is essential when using the underlying formalism.

K9 The DSL, e.g. knowing about the structure of constraints and the concrete syntax.
This is essential when using the DSL.

Additionally, we discuss which knowledge is required in order to interpret the analysis
results after the result mapping. Ideally, no further knowledge is required other than the
knowledge needed to de�ne the constraints using our DSL.

9.2.4. G3 - Space E�iciency

The third goal evaluates the language’s space e�ciency. A space e�cient language can
reduce the e�ort required by "modelers and tools [...] in order to maintain the models"
[33]. As already discussed in usability-related questions, there is an upper limit for space
e�ciency to improve the language. A too high degree of space e�ciency harms the
usability by impairing the readability.

To evaluate space e�ciency, we consider constraints of di�erent sizes which could also
be named scalability. However, we choose the term space e�ciency to clarify that the
scaling factor under consideration is the number of language elements required to describe
a certain speci�cation. This includes discussing the concrete syntax of these elements. We
do not consider analysis or transformation performance since both are out of scope and
not considered to become critical.

Question Q8. We discuss the formulation of simple analysis goals using our DSL. We
construct a minimal constraint which only uses mandatory parts of the Rule. We analyze
the space e�ciency regarding the abstract and concrete syntax and discuss the trade-o�
between maximizing space e�ciency while retaining the same readability.

Question Q9. This question discusses the opposite of question Q8. We consider large
analyses such as big constraints with many elements. We investigate vertical composition
by adding more elements to an constraint and horizontal composition by adding more

87

9. Evaluation

constraints. To evaluate the verbosity of bigger constraints, we construct a constraint
which contains all types of elements of the abstract syntax and discuss its readability.
Additionally, we discuss the UMLsec secure links scenario which is considered to have a
large constraint.

Question Q10. We compare the DSL’s space e�ciency with the space e�ciency of
constraints formulated in the underlying formalism. Thereto, we recreate constraints for-
mulated with the DSL using handwritten Prolog code. We don’t use generated Prolog code
from the DSLmapping in order to exclude the mapping performance from the consideration
and thus to provide a fair comparison to the native formalism. This question is related to
the discussion of abstraction in question Q3. In question Q10, we don’t consider change
e�ort but count the concrete number of elements of di�erent constraints. Therefore, we
use the abstract syntax of the DSL and the Prolog meta-model [40].

We utilize all expressible constraints from the scenarios described in Subsection 9.2.1. We
also include the minimal constraint from question Q8 and the comprehensive constraint
from question Q9. We evaluate the absolute number of model elements as well as the
growth of these numbers for bigger constraints. Since all constraints di�er in their structure
and use di�erent language elements with di�erent intensities, this enables us to evaluate
the space e�ciency of these elements compared to native Prolog code. In order to gain
additional insights, we perform the change scenarios S11 to S15 from questions Q3 which
add di�erent elements to the constraint under consideration.

9.2.5. G4 - Equivalence of Analysis

The fourth goal evaluates the equivalence of the analysis using the DSL compared to
the underlying formalism. We de�ne the equivalence as receiving the same analysis
results which represent the same constraint violations. Formulating constraints using our
DSL shall yield the same results as de�ning similar constraints using Prolog code and
the Constraint Query API. This goal is important, because di�ering analysis results can
signi�cantly decrease the bene�t gained by using the DSL as abstraction to the underlying
formalism.

Question Q11. Due to the importance of this topic, we use a formal correctness proof
to evaluate the preservation of semantics. A transformation preserves semantics if the
semantics of the language’s elements are equivalent to the semantics of the transformed
result. This approach is motivated by Narayanan et al. which checked "whether the
semantics of the input model were preserved in the output model of a transformation"
[32] for graph transformations.

Figure 9.1 shows the structure of correctness proofs performed e.g. in the domain
of compiler construction. This approach is based on Morris’ advice [30] as well as the
discussion by Thatcher et al. [45] and Dyber [11]. The �gure shows the transformation γ
of a source language L into a target language T . In our scenario, the source language L is
represented by the DSL, the target language T by Prolog Code using the Constraint Query
API and the transformation γ by the DSLmapping. Both languages use semantics θ and
ψ which map an arbitrary well-formed language construct to a meaning. This mapping
depends on the language contexts C and K which are transformed by π . In our scenario,
this context is de�ned by Data-Centric Palladio and its Operation Model, respectively. Last,

88

9.2. Evaluation Design

source
language

L

target
language

T

source
meanings

M

target
meanings

U

source
context

C

target
context

K

transform ?

encode ?

source
semantics
?

target
semantics

?

transform ?

Figure 9.1.: Adapted diagram of Morris on compiler correctness proofs

the source meanings M which are de�ned by the source semantics θ shall imply the
target meanings U de�ned by the target semanticsψ . If this encoding is erroneous, the
interpretation or execution of code in the target language T would not behave as de�ned
in the source language L which would break the correctness. In our scenario, this would
yield a di�ering analysis result.

In order to prepare this proof, we formalize several aspects of our DSL. This includes the
source language L, the source semantics θ and the transformation γ . Other parts of this
proof originate from other work: The Constraint Query API as part of the target language
T and its semanticsψ have been de�ned by Kunz [25]. The source context C and target
context K have been de�ned by Seifermann et al. [41]. In order to construct this proof, we
present the formalization of these concepts. Ultimately, we perform a structural induction
to show the encoding ϵ for varying language combinations L but �xed transformation
rules γ .

We use universal algebra to formalize the language and the transformation as proposed
by Jackson et al. [16] to reason about semantics of DSLs. Universal algebra enables us to
de�ne "a set of n-ary function symbols for encoding the modeling concepts" [16] which
can be nested, "naturally expressing relations over relations" [16]. Jackson et al. de�ne
a domain by enumerating all concepts, components and primitives in a structure ϒ. The
set of all possible model realizations is denoted by Rϒ. In the following we only consider
well-formed model realizations.

Transformation rules as de�ned by our DSLmapping pattern match against the input
model realization and generate an output model realization. Accordingly, a transformation
γ is a three tuple of disjoint signatures ϒL and ϒT of both domains and a set of transformation
rules τ . The signatures ϒL and ϒT are derived by enumerating all domain concepts of the

89

9. Evaluation

source language L and target language T , respectively. A transformational interpretation
J Kγ is a mapping between model realizations following the rules de�ned in γ :

γ = 〈ϒL, ϒT , τ 〉,

J Kγ : RϒL → RϒT

Last, we consider the semantics of our language θ by de�ning a mapping valθ based on
propositional logic. This interpretation evaluates given domain elements from the source
language L to true or false. Accordingly, the mapping valψ evaluates domain elements
from the target language T :

valθ : RϒL → {true, f alse}

valψ : RϒT → {true, f alse}

We use these mappings to describe the structural induction. Our goal is to show the
encoding ϵ for every possible realization RϒL of the domain ϒL which is implied by the
source language L. We denote the implication between the source meanings M and target
meaning U as follows:

∀r ∈ RϒDSL : valθ (r) =⇒ valψ (JrKγ)

The source meanings M are denoted by applying the mappingvalθ on a arbitrary source
model realization r . This mapping originates from the semantics θ of the source language
L. The transformational interpretation J Kγ is used to transform this realization to a target
model realization JrKγ based on the transformation γ . Using the semanticsψ of the target
language T , we denote the meanings of this transformed realization as valψ (JrKγ). By
testing this implication for every source model realization r using a structural induction,
we proof the encoding ϵ of meanings.

Question Q12. We compare the analysis results of transformed constraints from our
DSL with constraints formulated in the underlying formalism. Therefore, we gathered
speci�ed constraints from other work [25, 31] and reformulated the constraints using our
DSL. Since the collected constraint speci�cations originate from other, evaluated theses,
we treat them as gold program. We classify each result of our transformed constraints
as true-positive (accepted a valid violation), true-negative (rejected an invalid violation),
false-positive (accepted an invalid violation) or false-negative (rejected a valid violation).
This enables us to use the metrics of binary classi�cations [36]:

Precision =
true-positive

true-positive + false-positive
Recall =

true-positive
true-positive + false-negative

Please note, that question Q11 and Q12 not only use di�erent approaches but also
evaluate di�erent aspect of the language semantics. Question Q11 focuses on the de�ned

90

9.3. Results and Discussion

semantics of our language while question Q12 includes the formulation of constraints
based on real examples from other work. Thus, the latter also evaluates the applicability
of the DSL’s semantics while the formal proof only discusses its correctness.

9.3. Results and Discussion

In this section, we present and discuss the results of our evaluation. In Subsection 9.3.1 to
Subsection 9.3.4, we discuss the results for each evaluation goal separately. Afterwards,
we summarize the results in Subsection 9.3.5.

9.3.1. G1 - Expressiveness

The �rst goal G1 evaluates the expressiveness of our DSL. Question Q1 discusses whether
the DSL covers all required concepts while question Q2 focuses on the expressiveness of
the Condition part of a constraint.

Question Q1. This question is threefold: First, we evaluate the expressiveness in a top-
down approach by utilizing constraints from other work. Afterwards, we discuss the upper
limit of the expressiveness by analyzing the mapping to the underlying formalism and the
Constraint Query API in a bottom-up manner. Last, we discuss whether all requirements
presented in Chapter 6 have been satis�ed.

As discussed in Subsection 9.2.1, we collected a total of 8 scenarios which can be used
to answer this question. Three of these scenarios have already been used as input to
the requirements process. In the following, we show whether or not the scenarios can
be expressed using our DSL. If a constraint cannot be expressed, we discuss the missing
elements. If a constraint can be expressed, we show a short excerpt how it could be
formulated using our exemplary concrete syntax:

1. Geolocation Constraints, Type-0 data [25] 3

This constraint can be expressed by formulating a simple Rule with basic Character-
isticTypeSelectors and a CharacteristicClass:
data.attribute.level.Type0 NEVER FLOWS node.class.isNotSafe

2. Geolocation Constraints, Type-1 data [25] 7

This constraint is formulated by joining two di�erent data �ows (see Section 6.1)
which cannot be expressed in the current version of our DSL.

3. Geolocation Constraints using encryption [25] 3

This constraint can be expressed by combining multiple DataSelectors which work
with di�erent characteristics with a NodeIdentitySelector:
data.attribute.origin.EU & data.attribute.personalInformation.isTrue &

data.attribute.encrypted.!isTrue NEVER FLOWS node.name."storeInDB"

4. TravelPlanner [21] 3

This scenario was used to gather requirements for the Condition part of constraints.
Its constraint can be expressed by using CharacteristicVariables and two Operations:

91

9. Evaluation

data.attribute.rights.$rights NEVER FLOWS node.property.roles.$roles

WHERE isEmpty(intersection(rights,roles))

5. ContactSMSManager [21] 3

This scenario is another instance of role-based access control systems. It can be
expressed by using the same constraint as shown for the TravelPlanner scenario.

6. DistanceTracker [21] 3

This scenario is another instance of role-based access control systems. It can be
expressed by using the same constraint as shown for the TravelPlanner scenario.

7. UMLsec Secure Links [17] 3

This scenario models an attacker with varying capabilities which tries to attack
di�erently protected parts of a system. It can be expressed by using multiple Charac-
teristicClasses and constraints, e.g.:
data.class.AllSensitivities NEVER FLOWS node.property.Link.Internet

8. UMLsec Secure Dependencies [17] 7

This analysis veri�es security requirements of dependent elements of a software
system. It cannot be expressed due to the lack of support for the lnot predicate
of the Constraint Query API in the DSLmapping. However, it would be possible to
support this predicate without changing the abstract syntax of our DSL.

The DSL is capable of expressing 6 out of 8 constraints or 75%. Next, we discuss our
bottom-up approach. We collected all 24 predicates of the Constraint Query API de�ned
by Kunz [25] and evaluated whether these can be expressed using our DSL. Thereto, we
review the DSL mapping and discuss the explicit and implicit usage of these predicates.
We consider a predicate to be expressed implicitly if it is either used by the API together
with an explicitly expressed predicate or if it is implicitly created by our mapping but not
explicitly formulated by an architect.

Table 9.1 shows the result of this analysis. Most of the predicates from the Constraint
Query API can be expressed. However, most of them are implicitly generated or used
inside the API in order to aid the constraint analysis. 5 predicates cannot be expressed at
all. In total, 19 of 24 predicates or approximately 80% of all predicates can be expressed.
The high number of implicitly expressed predicates can be explained with the additional
abstraction of our DSL. Especially the predicates in the type information category "can be
used for both testing or as generators" [25] when writing constraints using the underlying
formalism. Because of the �xed structure of constraints in our DSL which never allow the
�ow of data there is no need for an architect to specify these generators by hand.

Last, we discuss whether or not the requirements presented in Chapter 6 have been
satis�ed. We used these requirements to de�ne a goal for the expressiveness of our lan-
guage. Thus, not satisfying a requirement can be considered to be a lack of expressiveness.
In total, we de�ned 13 language requirements. We realized the structure of constraints
(R1), the selection of data (R2) and destinations (R4) using characteristics, the selection of
elements by their identity (R5), the inversion of selections (R6), the selection of multiple

92

9.3. Results and Discussion

Predicate name Explicitly Implicitly Not expressible

Type information

isProperty 7

isDataType 7

isAttribute1 7

isOperation 7

isSystemUsage 7

valueSetMember 7

attributeType 7

propertyType 7

dataTypeAttribute 7

operationParameter 7

operationParameterType 7

operationReturnValue 7

operationReturnValueType 7

operationState 7

operationStateType 7

Operations, Usage and Calls

callArgument 7

returnValue 7

stackValid 7

preCallState 7

postCallState 7

defaultState 7

operationCall 7

hasProperty 7

operationProperty 7

Table 9.1.: Expressiveness of predicates of the Constraint Query API

93

9. Evaluation

characteristic literals (R7) and the creation of classes (R8). Additionally, we created Char-
acteristicVariables (R10), CharacteristicSetVariables (R11), Conditions (R12) and enabled the
combination of multiple selectors (R13).

However, two requirements were not realized. We did not add a DataSelector which is
able to select data by its type (R3) because this can also be modeled using characteristics
which has already been discussed by Kunz: "An alternative representation would be to
add an additional attribute to the data" [25]. Second, we did not realize the consideration
of multiple data �ows in one constraint (R9). Together, these gaps explain why the DSL is
not capable of expressing the Type-1 constraint from the Geolocation Constraints example
explained above.

To sum up, these results indicates an overall good expressiveness. 75% of tested con-
straints can be expressed, utilizing 80% of the predicates o�ered by the Constraint Query
API. This has been achieved by realizing 11 of 13 language requirements. Please note that
this is no exhaustive answer. It cannot be assumed that this collection of scenarios or
constraints is comprehensive. By extending the DSL mapping, these numbers could be
improved. However, in order to receive optimal results, the syntax of our DSL has to be
altered by adding support for multiple data �ows. This is considered to be a major change
but feasible due to the orthogonal structure of constraints (see question Q5 for details).

Question 2. The Condition part of our DSL o�ers multiple operations to de�ne precise
conditions on CharacteristicVariables. Due to the high degree of freedom in the Condition
part, we evaluate its expressiveness separately. First, we analyze the selection of operations
on elements and sets. Afterwards, we discuss the nesting and combination of these
operations using propositional logic.

Table 9.2 shows 18 operations which we collected from literature [5, 10] and the list-
library of SWI-Prolog [44]. We denote whether an operation is included or excluded. If an
operation is excluded, we state whether it is expressible using other, included operations.

We included a set of basic operations which enable the architect to express most of the
collected operations. With the 8 operations included, we can express 16 of 18 operations
or approximately 90%. We discussed the possibility of expressing excluded operations by
combining included operations in Section 7.4. However, the set of selected operations is
not minimal. For instance, we included operations for both the equality and inequality of
variables which can also be expressed using logical negation. The discussion whether or
not a language should only include a minimal set of operations is not considered to be
expedient. This is also supported by the fact, that most modern programming languages
support more than the absolute minimum of required operations.

We excluded the operation power set, because the concept of a set containing other sets
is not expressible using our type system and we found no real constraint which would
pro�t from this feature. This is also the case for the operation element count. We consider
testing for emptiness of sets to be su�cient for most constraints. However, adding other
operations on existing types, e.g. testing for disjoint sets is considered to have a low
change impact due to the use of polymorphisms.

In order to combine multiple operations on sets and elements beside nesting, we added
boolean operations. The combination of AND, OR and NOT represent a functionally complete
set of operations thus allowing architects to express any combination of operations using
propositional logic. It should be noted that this set is not minimal [48].

94

9.3. Results and Discussion

Operation Included Expressible Excluded

Element of Set 7

Not element of set 7

Equivalence of sets 7

Empty set 7

Subset 7

Power set 7

Subset 7

Disjoint set 7

Union 7

Intersection 7

Set di�erence 7

Symmetric di�erence 7

Create set 7

Variable equality 7

Variable inequality 7

Add element to set 7

Remove element of set 7

Element count 7

Table 9.2.: Collected operations on elements and sets

95

9. Evaluation

Description DSL Prolog Di�erence
Major Minor Major Minor Major Minor

0 Constraint created 9 0 19 0 10 0

1 Constraint renamed 0 1 0 1 0 0
2 Literal changed 0 1 0 1 0 0
3 Characteristic type changed 0 1 0 1 0 0
4 Condition variable renamed 0 1 0 1 0 0
5 Data selection inverted 0 1 4 0 4 -1
6 Destination selection inverted 0 1 1 0 1 -1
7 Class reference replaced 3 0 2 1 -1 1
8 Node identity changed 0 1 0 1 0 0
9 Set operation changed 0 1 0 1 0 0
10 Boolean operation changed 0 1 0 1 0 0
11 Literal added 0 1 2 0 2 -1
12 Data selector added 2 0 2 0 0 0
13 Destination selector added 2 0 2 0 0 0
14 Class and selector added 2 0 4 0 2 0
15 Condition added 4 0 2 0 -2 0

Sum 1 - 15 13 10 19 8 6 -2

Table 9.3.: Change e�ort of di�erent DSL change scenarios

9.3.2. G2 - Usability

The second goal G2 evaluates the usability of our DSL. Question Q3 evaluates the abstrac-
tion from the underlying formalism, question Q4 discusses the conciseness and question
Q5 evaluates the language’s orthogonality. Question Q6 checks whether the language sat-
is�es uniqueness and questions Q7 asks which knowledge is required to use our approach
compared to the underlying formalism.

Question Q3. This questions ask whether our DSL provides a signi�cant abstraction
from the underlying formalism. Therefore, we analyze the change e�ort for one constraint
creation scenario and 15 di�erent change scenarios. We measure atomic change operations
and categorize them into major changes (e.g. adding new elements) and minor changes
(e.g. change an existing value).

Table 9.3 shows the change e�ort of these scenarios. First, we compare the e�ort to
create a constraint in our DSL compared to the underlying formalism. Both constraints
shall yield the same analysis results. The e�ort to create this constraint using Prolog and
the Constraint Query API is twice as much as using the DSL.

The scenarios S1 to S10 represent simple change scenarios, e.g. renaming a constraint
or changing the selected literal. Scenarios S1 to S4 and S8 to S10 show no di�erence
in e�ort at all. Other scenarios require less e�ort using the DSL. Only the replacement

96

9.3. Results and Discussion

of class references in scenario S7 requires more e�ort when using the DSL. This is the
case because the Prolog representation only requires the replacement of terms while
the DSL requires a new selector. In the scenarios S11 to S15, elements are added to
the constraint. The di�erence between DSL and Prolog code is similar to the change
scenarios discussed before. However, scenario S15 shows doubled e�ort using the DSL
in comparison to Prolog. This can be explained by the representation of operations and
references to CharacteristicVariables in the DSL. Prolog is well suited for clauses which
include the processing of elements and lists.

In summary, the change e�ort of the evaluated change scenarios is smaller on average.
There are less changes required which are also smaller. This can be seen when comparing
the di�erence in major and minor changes. This indicates good abstraction of the DSL
from the underlying formalism. Prolog is a high-level programming language with much
more formulation possibilities than provided of our DSL. Thus, achieving large di�erences
in the required e�ort is considered to be di�cult.

Question Q4. We evaluate the DSL’s conciseness regarding the degree of generalization.
A too low degree of conciseness lowers the language abstraction while a too high degree
of generalization impairs the language’s readability and usability. We measure how often
di�erent concepts of our language are used in the constraints considered in this thesis.
Here, low numbers indicate a possibly too high degree of generalization and shall be
discussed.

Table 9.4 shows the relation between concepts of our DSL and their usage in the
scenarios. Concepts C1 and C2 are used in every scenario which is implied by them
beeing required parts of every constraint. AttributeSelectors (C4) and PropertySelectors
(C5) are also commonly used among all scenarios. Condition related scenarios (C7 to C9)
are used whenever variable characteristic literals are under consideration.

The most infrequently used concepts are CharacteristicClasses (C3) and NodeIdentitySe-
lectors (C6). However, we don’t consider them to be a threat to the language’s conciseness.
CharacteristicClasses are motivated by constraints written in natural language. In more
than one case, architects use characteristics as patterns e.g. by de�ning unsafe locations.
NodeIdentitySelectors are used to identify elements from the architectural model. In theory,
this can always be achieved by de�ning a new characteristic and applying a literal only to
one element. However, this workaround violates the semantics of selecting an element
which can be achieved more directly using NodeIdentitySelectors. As discussed previously,
our collection of scenarios is not comprehensive. Thus, these numbers can only be seen as
indicators.

Question Q5. This question evaluates the language’s orthogonality. A high orthogonal-
ity is indicated by independent language concepts. This in�uences other desried properties
like readability, maintainability and scalability. The discussion of orthogonality is based
on the abstract syntax.

In Section 7.1, we presented an overview of the abstract syntax of our DSL. Here, we
discussed the di�erent parts of a constraint: Its Statement, DataSelector, DestinationSelector
and Condition. This structure is also shown by the concrete syntax:

〈DataSelector〉 〈Statement〉 〈DestinationSelector〉 〈Condition〉

97

9. Evaluation

Modeling concept G
eo

lo
ca

tio
n

Co
ns

tr
ai

nt
s

G
eo

lo
ca

tio
n

w
.E

nc
ry

pt
io

n

Tr
av

el
Pl

an
ne

r

Co
nt

ac
tS

M
SM

an
ge

r

D
is

ta
nc

eT
ra

ck
er

U
M

Ls
ec

Se
cu

re
Li

nk
s

1 Constraints and Rules 3 3 3 3 3 3

2 CharacteristicClasses and CharacteristicClassSelectors 3 3 3 3 3 3

3 CharactersticTypes and CharacteristicTypeSelectors 3 7 7 7 7 3

4 AttributeSelectors 7 3 3 3 3 3

5 PropertySelectors 7 7 3 3 3 3

6 NodeIdentitySelectors 7 3 7 7 7 7

7 Conditions 7 7 3 3 3 7

8 BooleanOperations 7 7 3 3 3 7

9 CharacteristicSetOperations 7 7 3 3 3 7

Table 9.4.: Usage of modeling concepts in case study constraints

The division of constraints in di�erent parts already indicates good orthogonality. How-
ever, in order to give a comprehensive review, we discuss all relations between these parts
and the rest of the abstract syntax. An overview of the complete abstract syntax can be
found in Figure A.1. The Statement of a rule is de�ned completely independent to other
parts of the constraint and thus preserves orthogonality. DataSelectors and DestinationSe-
lectors are de�ned mostly independent. Both can relate to CharacteristicTypeSelectors and
CharacteristicClasses. These contain other CharacteristicTypeSelectorswhich ultimately refer
to CharacteristicTypes. CharacteristicTypeSelectors which are contained directly in DataSe-
lectors or DestinationSelectors are independent from each other. They only might share
common references to CharacteristicTypes. None of these references are cyclic. Additionally,
CharacteristicClasses are de�ned independently from their use inside of CharacteristicClass-
Selectors. In summary, all relations are unidirectional and none of them are considered to
be strongly coupled. Thus, all elements can scale independently and the orthogonality is
preserved.

Another interaction between parts of a constraint are CharacteristicVariables. These
variables are de�ned and contained in CharacteristicTypeSelectorwhich are used by Attribute-
Selectors and PropertySelectors. The variables are referenced from inside the Condition part
to specify the restriction of the variables’ values. In order to decouple this relation, we
introduced CharacteristicReferences. These references are used by operations inside the
Condition part to either reference variables or other operations. They represent the only
way to interact with variables and are de�ned unidirectional.

98

9.3. Results and Discussion

In summary, all parts of Constraints have a di�erent concern, do not overlap and are
only loosely coupled. Thus, we assume a high degree of orthogonality.

Question Q6. Languages with a high degree of uniqueness avoid the duplication of
features which enhance the language’s understandability. First, we discuss the mapping
between concrete and abstract syntax and whether elements of the abstract syntax can be
created by di�erent elements from the concrete syntax. This would violate the uniqueness.
Second, we discuss the mapping between our DSL and the underlying formalism.

We realized the DSL by de�ning a grammar using Xtext [12]. This grammar maps to the
abstract syntax. In order to discuss the uniqueness of this relation, we discuss whether this
represents a one-to-one mapping where every element of the abstract syntax is related to
exactly one element from the concrete syntax. Following the mapping approach, elements
from the abstract syntax are created by rules denoted in the grammar. Listing 9.1 shows an
excerpt from our Xtext grammar. Line 1, 4 and 11 de�ne new rules. These rules determine
the concrete syntax. For instance, line 2 de�nes the concrete syntax of constraints which
start with the keyword constraint followed by the constraint’s name and its rule which is
de�ned separately. It’s also possible to de�ne inheritance relationships. For instance, line
11 to 12 specify AttributeSelectors and AttributeClassSelectors as children of DataSelectors.
All these elements are rules of the concrete syntax and also part of the abstract syntax.

1 Constraint:

2 ’constraint’ name=ID ’{’ rule=Rule ’}’;

3
4 Rule:

5 dataSelectors+=DataSelector (’&’ dataSelectors+=DataSelector)*
6 statement=Statement

7 destinationSelectors+=DestinationSelector

8 (’&’ destinationSelectors+=DestinationSelector)*
9 (condition=Condition)?;

10
11 DataSelector:

12 AttributeSelector | AttributeClassSelector;

Listing 9.1: Excerpt from the Xtext grammar which de�nes the DSL

The grammar consists of 43 rules in total. 10 of these rules implicate an inheritance
relation like DataSelector and cannot be directly instantiated using the DSL. The abstract
syntax contains 42 elements. Each of these rules refer to exactly one element of the
abstract syntax and thus preserve the uniqueness. There is only one exception: in order to
enhance the readability, we enable architects to encapsulate parts of the Condition using
parenthesis. Listing 9.2 shows the excerpt from the grammar where this rule is de�ned.
Using the return keyword, we indicate that this rule returns a BooleanOperation and does
not create an EncapsulatedLogicalOperation element in the abstract syntax. This represents
a threat to the uniqueness because the encapsulation of operations is optional enabling
architects to de�ne the same constraint in two di�erent ways. However, allowing the use
of parenthesis to enhance the readability or alter the semantics is common among most
modern programming languages. As discussed before, uniqueness and expressiveness

99

9. Evaluation

can become mutually exclusive when followed blindly. In this case, we prefer higher
expressiveness.

1 EncapsulatedLogicalOperation returns BooleanOperation:

2 LogicalOrOperation |

3 ’(’ LogicalOrOperation ’)’;

Listing 9.2: Excerpt from the grammar which de�nes encapsulated operations

Next, we discuss the mapping between the DSL and the underlying formalism. Here, it’s
not su�cient to consider the mapping of single elements. Instead, we analyze the semantics
of groups of elements and discuss combinations which express similar restrictions. A
uniqueness threat occurs whenever a constraint with identical analysis results can be
de�ned using di�erent elements of the abstract syntax. We exclude the reordering of
elements which does not introduce new features and thus cannot violate uniqueness.

In the current version of the DSL, we identify two possible threats to the uniqueness:
First, the set of operations which can be used inside the Condition part of an constraint is not
minimal. Thus, operations can be substituted which violates the uniqueness. As discussed
with question Q2, this is intentional and can be found in most modern programming
languages. As stated above, in case of doubt we prefer expressiveness over uniqueness.

The second threat is the concept of CharacteristicClasses. Everything which can be
selected by de�ning and referencing CharacteristicClasses can also be selected directly
by utilizing AttributeSelectors oder PropertySelectors, respectively. This is due to the
common containment relation to CharacteristicTypeSelectors. However, the meaning of
both language concepts is di�erent: the use of CharacteristicClasses enables architects to
de�ne selections of characteristics independently of their use inside of constraints. As
discussed in question Q4, this is motivated by constraints formulated in natural language.
Again, we prefer expressiveness over uniqueness.

In summary, there are only few concerns regarding uniqueness. All possible threats
represent a trade-o� decision between expressiveness and uniqueness and have been
chosen intentionally.

Question Q7. We discuss which knowledge is required to use our DSL compared to
using the underlying formalism. Based on the analysis process, we identi�ed 9 di�erent
concepts or knowledge categories. Table 9.5 shows which knowledge we consider to be
required in order to de�ne constraints in either of both domains.

Some knowledge requirements are independent from the choice whether or not the DSL
shall be used. This includes basic knowledge on data �ow modeling (K1), Data-Centric
Palladio (K2) and the architectural model in use (K3). It’s also independent of the approach
how much knowledge is needed because the architectural model and its characteristics
have to be de�ned using both approaches.

When de�ning constraints without the DSL, knowledge about the formalism is required.
This includes understanding the Operation Model and the Constraint Query API (K6). In
order to reference elements from the architectural model and its characteristics, architects
have to retrieve information from the transformation trace (K7). Additionally, at least basic
knowledge on the logic paradigm, the syntax and common Prolog predicates is required
to de�ne constraints in Prolog code (K8).

100

9.3. Results and Discussion

Concept Without the DSL With the DSL

1 Data �ow diagrams and
modeling

Yes, but only basic knowledge on data �ow modeling
is required, no details on data �ow diagrams.

2 Data-Centric Palladio Yes, knowledge on de�ning architectural models, char-
acteristics and Palladio is required.

3 The architectural model in
use and it’s characteristics

Yes, knowledge about the model under consideration
and its use of de�ned characteristics and their meanings
is required.

4 The DSL mapping and re-
sult mapping

No, because this concept
only exists in the approach
using the DSL.

No, because the mapping
is fully transparent to the
architect without manual
interference.

5 Global Constants No, because this concept
only exists in the approach
using the DSL.

No, because they are
added while mapping to
Prolog and removed in
the result mapping. Thus,
they are fully transparent
to the architect.

6 Operation Model and API Yes, because constraints
are de�ned against them.

No, because they are hid-
den for the architect and
only visible to the auto-
mated transformation.

7 Transformation and Trace Yes, because constraints
are written using trans-
formed elements such as
characteristics.

No, because this informa-
tion is only used in the
mapping process.

8 Prolog Yes, at least basic knowl-
edge is required because
the constraints are written
in Prolog.

No, because constraints
are written in the DSL and
transformed to Prolog au-
tomatically.

9 The DSL No, because this concept
only exists in the approach
using the DSL.

Yes, knowledge on the
structure of constraints,
the concrete syntax and its
semantics is required.

Table 9.5.: Required knowledge to de�ne constraints with or without the DSL

101

9. Evaluation

When de�ning constraints by using the DSL, knowledge on the DSL is required (K9).
This includes at least knowing the structure of constraints, the concrete syntax and
common elements. Knowing the internals of the mapping and result mapping (K4) or
global constants (K5) is not required as well as knowing about the Operation Model
(K6), the transformation trace (K7) or the Prolog language (K8). This is also the case
when discussing the mapped results: They reference the architectural model and its
characteristics (K3) and we consider basic knowledge on data �ow modeling (K1) to be
helpful when interpreting constraint violations.

This discussion yields several results: First, both approaches require common base
knowledge (K1, K2 and K3). Beside this common knowledge, the speci�c knowledge
required to de�ne constraints using Prolog (K6, K7 and K8) and using the DSL (K9) is
mutually exclusive. This supports the fact that the DSL provides a real abstraction over
the underlying formalism. In order to de�ne constraints without the DSL, we count 6
concepts to be relevant. Using the DSL, we only count 4. This indicates that the use
of the DSL might simplify the process by requiring less diverse knowledge. Using the
DSL hides accidental complexity because the de�nition of constraints only depends on
essential concepts (e.g. knowledge about Palladio and the architectural model) and not on
transformation artefacts (e.g. knowledge about the Operation Model or the transformation
trace). However, its hard to quantify knowledge. Thus, we cannot proof this assumption
without extensive user studies.

9.3.3. G3 - Space E�iciency

The third goal evaluates the language’s space e�ciency. We discuss simple analysis goals
with question Q8 and larger analyses with question Q9. Last, we compare the DSL’s space
e�ciency compared to constraints formulated in the underlying formalism in question
Q10.
Question Q8. This question evaluates the space e�ciency of simple constraints. There-

fore, we discuss the amount of elements in the abstract syntax and the amount of boilerplate
code in the concrete syntax of a minimal constraint. This constraint only consists of re-
quired elements, namely a Rule, a Statement, a DataSelector and a DestinationSelector. We
use an exemplary characteristic type which consists of the literals A and B. Listing 9.3
shows the concrete syntax of the minimal constraint.

1 constraint MinimalConstraint {

2 data.attribute.type.A NEVER FLOWS node.property.type.B

3 }

Listing 9.3: Concrete syntax of a minimal constraint

We require architects to name constraints, e.g. MinimalConstraint. The name of a
constraint has no e�ect on the analysis process. However, named constraints are easier
to be recognized when reading DSL code from other architects or interpreting mapped
analysis results. Next, we discuss the keywords of the abstract syntax, namely data,
attribute, node, property and NEVER FLOWS. These keywords are only examples which
we chose in order to close the gap between the concrete syntax of the DSL and constraint

102

9.3. Results and Discussion

formulated in natural language. Still, they introduce some boilerplate code. attribute
and property are used to determine that the constraint selects Characteristics. data and
node don’t serve this purpose and can only be justi�ed by arguing with readability. This
is a conscious trade-o�. We consider less or shorter keywords would bene�t the space
e�ciency not enough to justify the loss of understandability. In order to fully understand
the e�ect of several keywords, user studies are required.

Next, we discuss the abstract syntax. DataSelectors and DestinationSelectors are well
integrated into our language and serve multiple purposes, e.g. selecting Characteristics,
classes or nodes by their identity. In the current version of the DSL, Rules and Statements
are less important. Rules have to be contained exactly once in every constraint and are
implicitly created in the concrete syntax. Thus, all relations on Rules could be moved to
Constraints without changing the concrete syntax. We justify the decision of Rules with the
language’s expandability. More complex constraints might combine multiple rules using
propositional logic in one constraint in future versions of the DSL. This also applies to the
Statement. In the current version of the DSL, the only possible statement is NEVER FLOWS.
However, future versions might support more modalities and �ow relations. In order to
support this evolution, we kept both Rules and Statements as part of the abstract syntax.
This does not in�uence the concrete syntax and is thus not considered to be problematic
to architects who write constraints using the DSL.

In summary, multiple non-minimal elements can be identi�ed in both abstract and
concrete syntax. These elements are motivated by the language’s evolution and readability.
It’s possible to remove these elements from the abstract syntax and shorten the concrete
syntax. However, we don’t consider the removal of 4 elements in the abstract syntax and
2 keywords to be signi�cantly enough to the space e�ciency in order to justify worse
maintainability and worse understandability.

Question Q9. We discuss the verbosity of large constraints and both the vertical
composition (adding more elements to an constraint) and the horizontal composition
(adding more constraints). First, we de�ne an synthetic constraint which uses most of
the provided elements of our DSL. Using all elements (e.g. all provided operations) is not
considered to represent a realistic scenario. Thus, we selected one element of each type,
e.g. one ClassSelector, one CharacteristicSelector and so on. This enables us to discuss the
vertical composition.

1 constraint LargeConstraint {

2 data.attribute.type.A & data.class.SampleClass & data.attribute.type.$X

3 NEVER FLOWS node.name."SampleNode" & node.property.type.$Y{}

4 WHERE !elementOf(X,Y)

5 }

Listing 9.4: Concrete syntax of a large constraint

Listing 9.4 shows the concrete syntax of our exemplary large constraint. We use an
AttributeSelector, a CharacteristicClassSelector and a CharacteristicVariable in line 2. Line 3
de�nes a NodeIdentitySelector and uses a CharacteristicSetVariable. Both variables are used
inside the Condition together with BooleanOperations in line 4. We consider this constraint
to be large but still representative for complex analysis goals.

103

9. Evaluation

First, we discuss the readability. The di�erent parts of the constraint are divided using
the upper-case keywords NEVER FLOWS and WHERE. Multiple Selectors are divided using the
& operator. This shall improve the distinction as well as implicate that multiple Selectors
evaluated together. The readability bene�ts from the orthogonality discussed in question
Q5. Operations in the Condition part of the DSL can be nested or combined with operators
known from propositional logic. As discuss previously, no �nal statement is possible on
the language’s readability without the execution of user studies. However, because of
the orthogonality discussion, it can be assumed that constraints of di�erent sizes remain
readable. This indicates good vertical composition.

Second, we consider the horizontal composition of constraints. More complex analysis
goals require the de�nition of multiple constraints. An example is the analysis goal of the
UMLsec Secure Links scenario presented in Subsection 9.2.1. We show the constraints using
our concrete syntax in Listing 9.5. This scenario uses two CharacteristicClasses together
with three constraints. All constraints are fairly simple and only consist of one DataSelector
and one DestinationSelector.

1 class AllSensitivities {

2 Sensitivity.[High,Integrity,Secrecy]

3 }

4
5 class AllLinks {

6 Link.[Encrypted,Internet,LAN]

7 }

8
9 constraint InsiderAttacker {

10 data.class.AllSensitivities NEVER FLOWS node.class.AllLinks

11 }

12
13 constraint DefaultAttackerInternet {

14 data.class.AllSensitivities NEVER FLOWS node.property.Link.Internet

15 }

16
17 constraint DefaultAttackerEncrypted {

18 data.attribute.Sensitivity.High NEVER FLOWS node.property.Link.Encrypted

19 }

Listing 9.5: Concrete syntax of the UMLsec Secure Links constraints

Individual classes and constraints are independent by design. CharacteristicClasses can
only be referenced using CharacteristicClassSelectors. There is no possibility to reference
constraints or to combine them. The orthogonality is preserved. Thus, we propose a good
horizontal composition.

Question Q10. We compare the DSL’s space e�ciency to the space e�ciency of
constraints formulated in the underlying formalism. Therefore, we gathered several
constraints and use change scenarios already discussed in question Q3. We use the
abstract syntax of the DSL and the Prolog meta-model [40]. Although we don’t discuss
the concrete syntax in this question, the evaluation of number of elements using abstract

104

9.3. Results and Discussion

Scenario / Constraint DSL Prolog

Minimal constraint from Q8 9 101
Geolocation Constraints 9 102
Geolocation Constraints with Classes 10 116
Geolocation Constraints with Identity 12 119
TravelPlanner 18 118
ContactSMSManger 18 118
DistanceTracker 18 118
UMLsec Secure Links 28 205
Large constraint from Q9 29 151

Table 9.6.: Number of model elements of scenarios’ constraints

syntaxes can be still used as indicator. For the discussion of space e�ciency of the concrete
syntax, please see questions Q8 and Q9. We collected multiple scenarios and constraints.
We formulated the constraints using our DSL and using native Prolog code together with
the Constraint Query API.

Table 9.6 shows the number of elements of the analyzed constraints. The number of
elements used for constraints formulated with our DSL is signi�cantly lower than the
number of elements required to formulate the same constraints in Prolog. The range is
between 10 time less code (e.g. for the minimal constraint) and 5 times less code (e.g. for
the large constraint).

Taking into account which DSL elements are used to formulate the constraints yields
additional results. For instance, the gap between both approaches grows when multiple
constraints are de�ned. We analyzed the UMLsec Secure Links constraints in question Q9
when discussing horizontal composition. This is the only evaluated scenario with three
independent constraints. Because each constraint requires a separate clause in Prolog, the
number of model elements grows.

The opposite can be observed regarding the vertical composition with the synthetic,
large constraint. Multiple combined selectors require many DSL elements. Prolog bene�ts
from the reuse of predicates and thus scales better. This indicates a better horizontal
composition than vertical composition. However, the results provide not enough data for
a �nal judgement.

In order to gain additional insights whether or not the usage of selected DSL elements
in�uences the ratio between the number of model elements, we analyze selected change
scenarios from question Q3. We measure the change in the number of model elements for
change scenarios S11 to S15 which add di�erent elements to an existing constraint.

The result is shown in Table 9.7. As shown above, the DSL requires signi�cantly less
elements than constraints formulated using Prolog. The ratio between both approaches
remains nearly the same for the most of the change scenarios. The only outlier is the
addition of a Condition with one Operation in change scenario S15. Due to the existence of
many useful predicates in the list-library of Prolog [44], Conditions can be expressed very
space e�ciently in Prolog. Additionally, our DSL uses CharacteristicReferences in order to
decouple Selectors and Conditions which adds extra elements. This is also indicated by the

105

9. Evaluation

Change Scenario DSL Prolog

11 Literal added 0 8
12 Data selector added 2 8
13 Destination selector added 2 8
14 Class and selector added 2 10
15 Condition added 4 4

Table 9.7.: Change in number of elements in change scenarios

scenarios which use Conditions in Table 9.6, namely TravelPlanner, ContactSMSManger and
DistanceTracker. Here, the number of elements when using the DSL is higher compared
to the Geolocation Constraints examples while the number of Prolog elements remain
consistent. We discussed this desgin decision together with the language’s orthogonality
in question Q5.

In summary, the space e�ciency of constraints de�ned in our DSL is better compared
to constraints formulated with Prolog code using the Constraint Query API. The e�ciency
of di�erent concepts of the DSL di�ers: Some elements like Selectors are very space
e�cient while other elements like Operations can be reproduced in Prolog with similar
space e�ciency. The overall ratio is between 5 to 10 times less elements when using the
DSL.

9.3.4. G4 - Equivalence of Analysis

The fourth goal evaluates the equivalence of the analysis using the DSL compared to
the underlying formalism. In question Q11, we evaluate the correctness of the mapping
between the DSL and Prolog code which uses the Constraint Query API. Afterwards, we
discuss concrete analysis results from constraints formulated both using the DSL and the
underlying formalism in question Q12.
Questions Q11. We perform a correctness proof to validate the preservation of seman-

tics of our DSLmapping. This approach is motivated by the domain of compiler construction
[30, 45, 11]. Due to the e�ort of such formal approaches, we only consider the core part
of our DSL which consists of Constraints, Rules, DataSelectors, DestinationSelectors and
CharacteristicClasses. Additionally, we only consider well-formed constraints formulated
in our DSL because the DSL mapping is only de�ned for well-formed constraints. The
abstract syntax shows clear restrictions whether or not constraints are well-formed, e.g.
by de�ned multiplicity. The highest degree of freedom is achieved using the Condition
part where arbitrary operations can be nested and combined using propositional logic.
Thus, we append a short discussion of the well-formedness of Conditions using the lambda
calculus in Section A.1.

In the following, we show excerpts of the formalization of our DSL and the DSLmapping
prior to performing the structural induction. The complete de�nitions can be found in
Section A.2. According to the structure of this proof presented in Subsection 9.2.5, this
discussion is structured as follows: First, we formalize the source context C , the source
language L, the target context K and the target language T using universal algebra. Then,

106

9.3. Results and Discussion

we formalize the transformation between the languages γ and the source semantics θ and
target semanticsψ . Based on this information, we conduct the structural induction which
consists of a proposition, a basis and the induction step.

We start by de�ning the source context C . This contains concepts which we use from
Data-Centric Palladio: Characteristics, literals and elements of the architectural model. We
de�ne the domains by enumerating all concepts in a structure ϒC as proposed by Jackson
et al. [16]. Using universal algebra, this can be denoted as follows:

ϒC =


CharacteristicType(C) : C is the name of a characteristic type
CharacteristicLiteral(L,C) : L is the name of a literal of Characteristic type C
ArchitecturalElement(N,L) : N is the name of an architectural elem. with literal L

A realization r ∈ RϒC of this context can represent a concrete architectural element. For
instance, an online shop deployed inside the EU (see Section 4.1 for the complete example)
can be denoted as follows:

ArchitecturalElement(OnlineShop, CharacteristicLiteral(EU, CharacteristicType(Location)))

This enables us to de�ne arbitrary architectural elements with characteristics and literals
as it’s done by the architectural model of Data-Centric Palladio. We use this structure ϒC of
the source context domain to formalize the source language L which represents our DSL.
We present an excerpt of the structure ϒL:

ϒL =


CharacteristicTypeSelectorSingle(C,L) : C is a characteristic type, L one of its literals
AttributeSelector(C) : C is a CharacteristicTypeSelector*
Rule(D,Z) : D is the rule’s DataSelector*, Z its DestinationSelector*
Constraint(N,R) : N is the name of a constraint, R is its rule

We marked several elements with a star, namely DataSelector, DestinationSelector and
CharacteristicTypeSelector. As implied by the meta-model, these can be replaced by their
sub types using polymorphisms. For instance, every AttributeSelector is also a DataSelector.
In order to correctly formalize this relation, multiple entries of a structure ϒ can be denoted.
To enhance the readability, we choose to highlight these elements and refer to our abstract
syntax for more information on inheritance relations. For the complete formalization of
our core DSL, please refer to Section A.2.

Similar to the formalization of the source context C and the source language L, we
formalize excerpts from the target context K and the target languageT . The target context
K represents both Prolog predicates and concepts of the Operation Model. We denote an
excerpt from the structure ϒK :

107

9. Evaluation

ϒK =



ValueSetType(T) : T is the name of a ValueSetType
AttributeType(A,T) : A is the name of an attribute type, T its ValueSetType
Term(V) : V is a Prolog term
Clause(H,B) : H is the clauses head, B its body; both are terms
Unification(L,R) : Uni�cation of L and R; both are terms
NotProvable(P) : Invert the statement of P; P is a term
And(L,R) : Combine the statements of L and R; both are terms

ValueSetTypes and AttributeTypes are elements from the Operation model and represent
characteristics [25]. The other entires are syntactical elements of Prolog or common
predicates. The shown structure ϒK is not meant to be comprehensive; it only shows how
Prolog elements can be formalized using universal algebra.

Accordingly, we present an excerpt of the structure ϒT which consists of elements of the
Constraint Query API. We discussed this API in Section 6.2. Two exemplary elements are:

ϒT =


StackValid(S) : S is the name of a stack which represents a valid call sequence
CallArgument(S,P,A,V) : S is a call stack, P a parameter name, A an

AttributeType, V a value of this AttributeType’s ValueSetType

Based on these four domains, ϒC , ϒL, ϒK and ϒT the transformations π and γ can be
de�ned. The transformation π maps the source context C to the target context K and is
out out of scope of this work. It has already been informally de�ned by Kunz [25]. We
only consider the transformation γ which maps from the source language L to the target
language T . This transformation is de�ned as: γ = 〈ϒL, ϒT , τ 〉. In order to discuss the
mapping, we give examples for the transformation rules τ :

τ =


AttributeSelector(CharacteristicTypeSelectorSingle(C, L))

→ CallArgument(Term(S), Term(P),C, L)
Constraint(N , Rule(D,Z)) → Clause(Term(N ,O, S, P),

And(Unification(S, List(O)), And(StackValid(S), And(D,Z))))

The �rst rule maps an AttributeSelector to a term using the CallArgument predicate. The
CharacteristicTypeSelector is also speci�ed, because a well-formed AttributeSelector always
contains one. The result uses the CallArgument predicate with two terms S and P and the
mapped Characteristic C and L. This mapping is part of π and thus not considered here.
Please note that we denote the mapped elements C and L using the same symbols as their
original based on the work of Jackson et al. [16]. Whenever a symbol is reused, its mapping
is realized by another transformation rule which is part of the language transformation γ
or the context transformation π .

The second rule transforms constraints. The result is a Prolog clause which consists of
the creation of a list variable S using the Unification, its validity check using the StackValid

108

9.3. Results and Discussion

predicate and the combination of the DataSelector D and the DestinationSelector Z. The
mapping of these elements is realized using other rules of τ . Although this mapping
result uses universal algebra, its structure resembles concrete Prolog code as discussed in
Listing 8.4.

The last step prior to the structural induction is the de�nition of the source semantics θ
and target semanticsψ . We show an excerpt from the mapping valθ which maps domain
elements to the boolean values true or false:

valθ (AttributeSelector(CharacteristicTypeSelectorSingle(C, L))) =
true, if an ArchitecturalElement with a data �ow with literal L of

characteristic type C is selected
false, otherwise

valθ (Constraint(N , Rule(D,Z))) =
true, if a selection of both D and Z is true for any valid data �ow

between any ArchitecturalElements
false, otherwise

The de�nition of semantics θ of the source language L is also based on the source context
C , e.g. by referring to ArchitecturalElements or Characteristics. Additionally, we show an
excerpt from the mapping valψ which de�nes the target semanticsψ . These semantics are
based on semantics de�ned in natural language by Kunz [25]:

valψ (StackValid(S)) ={
true, if the list S represents a correct call sequence
false, otherwise

valψ (CallArgument(S, P,A,V)) =
true, if the Value V of the Attribute A of the parameter P is present

given the call stack S. The operation which owns the
Parameter P is de�ned by the stack top of

false, otherwise

Based on the formalization discussed above, we conduct the structural induction. We
de�ned the proposition of this induction in Subsection 9.2.5: For every possible model
realization r , its meanings de�ned by the source semantics θ shall imply the meanings of
the transformation result of the realization. Formally:

∀r ∈ RϒDSL : valθ (r) =⇒ valψ (JrKγ)

In the induction basis, we discuss the implication of meanings of the atomic cases
discussed above. Based on the well-formedness, every element in a constraint can rely on

109

9. Evaluation

the context which is implied by the surrounding constraint. In the context of the target
language T , we assume the existence of a stack S with an operation O on top of which
represents the currently selected element. This operation has a parameter P. O is the
transformation result of the ArchitecturalElement which is derived using the mapping of
contexts π . We show the induction basis for two examples. First, the transformation of
AttributeSelectors to terms using the CallArgument predicate:

Source syntax: AttributeSelector(CharacteristicTypeSelectorSingle(C, L))
Target syntax: CallArgument(Term(S), Term(P),C, L)

Source semantics: true, if an ArchitecturalElement with a data �ow with literal L
of characteristic type C is selected

Target semantics: true, if the Value L of the Attribute C of the parameter P is
present given the call stack S. The operation which owns the
Parameter P is de�ned by the stack top of

The data �ow with literal L of characteristic type C is represented by the parameter P
of operation O in call stack S. This is ensured by the context and its transformation π .
The selection of such an ArchitecturalElement implies its existence on top of the call stack.
The parameter P has an attribute C with value L because its mapped from the original
ArchitecturalElement and its characteristic. Thus, the implication holds.

The second example is the transformation of complete constraints:

Source syntax: Constraint(N , Rule(D,Z))
Target syntax: Clause(Term(N ,O, S, P),

And(Unification(S, List(O)), And(StackValid(S), And(D,Z))))

Source semantics: true, if a selection of both D and Z is true for any valid
data �ow between any ArchitecturalElements

Target semantics: true, if at least one call stack S satis�es both D and Z.
The operation O is hereby the head of the call stack S.

Any valid data �ow is represented by the call stack S in combination with the StackValid
predicate. This call stack provides the operation O and parameter P which is the element
under consideration by both selectors. Both selectors D and Z in the source languages
imply the transformed selectors in the target languages. This is ensured by other parts
of the induction basis as disussed above for AttributeSelectors. In summary, the selected
element of the target language is the transformed element of the source language. This
is ensured by the context transformation π and the transformed selectors meanings are
implied by the originating selectors. Thus, the implication holds.

In the induction step, we show that the proposition holds for more complex examples
which rely on the induction basis. This includes the discussion of CharacteristicTypeSelec-
tors with multiple literals, the use of more than one DataSelector or DestinationSelector and

110

9.3. Results and Discussion

Constraint Equivalent Missing Additional

Geolocation without Classes 1 0 0
Geolocation with Classes 1 0 0
Geolocation with Encryption 1 0 0
TravelPlanner 0 0 3
TravelPlanner (Inv.) 6 0 0
UMLsec Secure Links 10 0 0

Table 9.8.: Number of found violations of di�erent constraints

the transformation of DataSelectors to terms using di�erent predicates than CallArgument,
e.g. ReturnValue or PreCallState. For the sake of brevity, we only present an informal
discussion.
CharacteristicTypeSelectors with more than one literal are mapped by γ to multiple terms

with the same predicate, e.g. to multiple CallArguments which are than combined using
Prolog’s Or predicate. The source semantics θ evaluate to true if at least one of the literals
is present. The target semanticsψ of Prolog’s Or predicate evaluate to true if at least one
of the selection predicates evaluates to true. This implication holds. The discussion of
multiple DataSelectors and DestinationSelectors is similar. The only di�erence is that all
selectors must evaluate to true. Thus, γ uses Prolog’s And predicate. The discussion of
di�erent data �ow related predicates like ReturnValue is based on the de�nition of data
�ows: In order to consider each type of �ow such as ingoing and outgoing data of an
operation, all predicates are generated implicitly. The use of call states extends mapped
constraints by another variable ST but does not change alter the underlying meanings.

In summary, we formalized parts of our language using universal algebra and conducted
a correctness proof using structural induction. The result shows that the semantics are
preserved by the transformation which is performed by the DSLmapping. In this section,
we did only explain few examples for the sake of brevity. A more comprehensive excerpt
can be found in Section A.2.

Question Q12. This question discusses the equivalence of analysis results. We gathered
formulated constraints which use the Constraints Query API from other work [25, 31]
and reformulated them using our DSL. This enables us to evaluate whether or not the
analysis results are identical. We consider an analysis result identical if the same constraint
violations are yield by the Prolog solving process. We hereby ignore the ordering of results.

We included three di�erent constraints from the Geolocation Constraints scenario. We
also included the constraint from the TravelPlanner case study. Here, we encountered an
additional inverted constraint which tests for permitted accesses. Last, we included the
UMLsec Secure Links analysis which originates from the additional constraints presented
in Subsection 9.2.1. Table 9.8 shows the results of this evaluation. Most of the resulting
constraint violations are found by both the original Prolog constraints and the reformulated
constraints. Using our DSL, the analysis did not miss any violations. However, the analysis
of the TravelPlanner case study yields three additional violations with the use of our
DSL. We investigated the reason of this problem and identi�ed that the DSLmapping does
not consider two predicates of the Constraint Query API in this context. The use of the

111

9. Evaluation

operationParameterType and the dataTypeAttribute predicate would have avoided the
false-positive violations. By altering the DSLmapping, this problem can be solved in future
versions without changing the DSL’s syntax.

Based on the metrics of binary classi�cations [36], we calculate the precision and recall:

Precision =
19

19 + 3
= 0.863 Recall =

19
19 + 0

= 1

We consider a 100% recall which maintains a precision of approximately 90% as good
result. The remaining false-positive results originate from the generalization step prior to
the development of the DSL and thus didn’t become visible throughout the correctness
proof which only analyzes the realized DSL mapping. By �xing this problem, we would
approach the equivalence of analysis results. However, strictly speaking this assumption
is only valid for the selected constraints and the analyzed part of our DSL.

9.3.5. Summary

We close the discussion of the results with a brief summary of our �ndings. We evaluated
the DSL’s expressiveness (G1), usability (G2) and space e�ciency (G3). Additionally, we
evaluated the equivalence of the analysis (G4) of our DSL compared to the underlying
formalism.

Goal G1 showed overall good expressiveness. In questions Q1, we evaluated whether
collected scenarios can be expressed using our DSL. 6 out of 8 scenarios or 75% are
expressible. Additionally, we analyzed the coverage of the underlying formalism namely
the Constraint Query API. Approximately 80% of this API can be expressed either explicitly
or implicitly. This result is supported by the evaluation of met requirements which we
collected in Chapter 6: 11 of 13 requirements have been realized throughout this thesis. So
sum up, the combination of this results indicates good expressiveness. However, there is
still room for a more detailed evaluation, e.g. by collecting more real-world scenarios.

With goal G2, we evaluated the languages usability. First, we detected a small reduction
in change e�ort compared to the underlying formalism (Q3). We analyzed whether di�erent
language concepts are used which is true for most of them. This yields a good degree of
conciseness (Q4). We evaluated the languages orthogonality (Q5). Due to the structure of
constraints which splits up the goal formulation in mostly independent parts, we achieved
lower coupling and high orthogonality. In question Q6, we discussed the uniqueness of
language features. One threat to the uniqueness is the concept of CharacteristicClasses
which can be justi�ed as trade-o� decision between expressiveness and usability. Last,
we discussed which knowledge is required in order to use the DSL compared to Prolog
code (Q7). Besides common knowledge on data �ow modeling, the DSL does not require
any knowledge about the transformation or the underlying formalism. Moreover, the
knowledge required to use our DSL is considered to be less diverse.

Goal G3 evaluates the language’s space e�ciency. We considered small analyses be
de�ning a minimal constraint in question Q8. We identi�ed multiple elements of the
abstract syntax which could be reduced but support the language’s evolution. Additionally,
they don’t violate the space e�ciency of the concrete syntax. We evaluated the horizontal
and vertical composition of larger constraints in question Q9. The overall level of verbosity

112

9.4. Threats to Validity

of our DSL is acceptable. Last, we compared the space e�ciency of our DSL with the
underlying formalism (Q10). The space e�ciency of our DSL is better than using the
underlying formalism. We measured ratios between 5 and 10 times more required meta-
model elements when using the underlying formalism.

Last, we evaluated the equivalence of the analysis with goal G4. In order to validate the
transformation, we conducted a correctness proof motivated by the domain of compiler
construction (Q11). We formalized the core of our DSL and performed a structural induc-
tion in order to show the correctness of our DSL mapping. Last, we evaluated concrete
results of constraints formulated in the underlying formalism compared to reformulated
constraints in the DSL (Q12). We compared the analysis results and mostly found equiv-
alent analysis results. This yields 100% recall while maintaining 90% correctness due to
several false-positive violations.

9.4. Threats to Validity

We discuss the threats to the validity of our evaluation. The validity indicates the "trustwor-
thiness of the results, to what extent the results are true and not biased by the researchers’
subjective point of view" [39]. We use the scheme proposed by Runeson et al. [39] and
discuss internal, external and construct validity as well as reliability separately.
Threats to the internal validity state whether the evaluation result only depends on

the investigated factor without interferences of a third factor. Overlooking or ignoring
additional in�uences to the result violate the strength of the conclusion. For every un-
considered confounding variable, competing hypotheses arise. In order to evaluate the
language’s expressiveness, we formulated existing analysis goals using our DSL (Q1). We
were not able to formulate 25% of the constraints. This might depend on the language’s
expressiveness or the author’s formulation abilities which represents a threat to the inter-
nal validity. However, since the author created the DSL in the �rst place the probability of
a lack of formulation abilities is negligible.

A similar threat occurs whenever we use handwritten Prolog code. This code is used to
compare the DSL’s abstraction (Q3) or it’s space e�ciency (Q10) compared to underlying
formalism. The Prolog code is optimized in order to create a fair comparison. Nevertheless,
the author’s experience of using Prolog is limited. An more experienced Prolog developer
might have written better code. However, especially the results of question Q10 are evident
which avoids this threat.

Due to the importance of the equivalence of results, we conducted a correctness proof of
our mapping (Q11). Prior to this proof, the author had near to no experience in correctness
proofs. We tried to minimize this threat by discussing our approach with more experienced
researches. However, there is still a risk of faults inside the formalization and structural
induction.
Threats to the external validity impact the generalization of our evaluation results. In

order to evaluate these threats, we discuss whether or not selected samples are represen-
tative for the population. The �rst threat occurs in question Q3. Here, we discussed the
abstraction of our DSL using a set of 15 change scenarios. This selection is not based on
a common approach to gather change scenarios of existing models and thus at risk to

113

9. Evaluation

not being comprehensive enough. The authors were not able to �nd a common basis for
these scenarios in other work and thus selected a to their knowledge comprehensive set
of change scenarios. This discussion also applies to our selection of knowledge domains
in question Q7. There is no comprehensive model available to identify these domains.
However, this selection is based on the foundations of this work and considers the sur-
rounding process of Data-Centric Palladio and its required knowledge which minimizes
the risk of missing concepts. Additionally, the discussion does not quantify knowledge
and only shows a trend in the required knowledge. Thus, the results are less vulnerable to
single missing domains.

The biggest threat to external validity is the selection of scenarios and constraints which
were used to gather requirements as well as to evaluate the DSL. It cannot be assumed
that our selection of 8 scenarios is representative for the domain of data-�ow modeling.
Strictly speaking, our results are only valid for the selected scenarios. In order to cope
with this uncertainty, we tried to generalize the DSL’s concepts whenever possible. For
instance, we included 11 operations which can be used in the Condition part of our DSL
although the constraints under consideration only required a subset of them. We discussed
the comprehensibility of this selection in question Q2. Still, this threat a�ects the DSL
and all questions which depend on the selection of constraints, e.g. the discussion of
expressiveness (Q1) and conciseness (Q4) as well as the equivalence of analysis results
(Q12).

Threats to the construct validity state whether our selection of questions and measure-
ments contribute to the overarching goals. To minimize this threat, we included the results
of other work on the development of DSLs [1, 20, 28, 33, 46] into our process. The usage
of a Goal-Question-Metric plan does also mitigate this threat. We consider our plan to be
su�cient to evaluate our approach. Still, some attributes cannot be evaluated without
considering the user’s behavior. Due to the high e�ort, we were not able to perform user
studies in the scope of this thesis.
Reliability deals with the repeatability of the evaluation and asks "to what extent the

data and the analysis are dependent on the speci�c researchers" [39]. In order to aid the
repeatability, we de�ned the evaluation design in Section 9.2 prior to the discussion of the
results. Additionally, we publish our prototypical implementation along with models and
constraints created throughout this thesis [14] to allow others to reproduce the evaluation.

9.5. Assumptions and Limitations

In this section, we discuss assumptions we made during the design and realization or our
DSL. This includes analyzing the limitations of the current version of our approach.

First, we assume our selection of scenarios and constraints to be su�ciently representa-
tive for the domain of data �ow modeling. We already discussed this concern together
with the external validity in Section 9.4. This also in�uences the design of our DSL. We
tried to generalize our approach but still depend on the scenarios we found during the
initial research.

Another assumption a�ects the analysis of data �ows using the Constraint Query API of
Data-Centric Palladio. The Operation Model uses call arguments, return values and call

114

9.6. Data Availability

states to represent data �owing in or out of operations. In order to cover all possible �ows,
our DSL Mapping combines all predicates: CallArgument, ReturnValue, PreCallState and
PostCallState. Here, two problems occur. In theory, it’s possible to identify a constraint
violation in ingoing data as call argument as well as in outgoing data as return value. This
would yield two constraint violations which belong to the same problem. Furthermore, it
depends on the architectural model whether these di�erent types are used. For instance,
if a transformed architecture does not use call arguments and return values at all, the
analysis becomes unnecessary and might even yield execution errors if these predicates
are not generated at all. This could be solved by coupling the transformation of the DSL
and the architectural model. For the initial design, we ignored this detail and always
considered all four data �ow related predicates as discussed above.

The �rst limitation is related to Palladio. Using NodeIdentitySelectors, architects can
select elements from the architectural model by specifying the assembly context, a compo-
nent and a SEFF. However, this integration is not complete. For instance, nested assembly
contexts are not supported.

The second limitation occurs from the strcuture of constraints in our DSL. We de�ned
a �xed structure of the selection of data and data �ow destinations. Constraints which
do not match to this structure cannot be expressed. This is related to the third limitation:
Because we did not meet requirement R9, our DSL is not capable of considering multiple
data �ows in one constraint.

9.6. Data Availability

The data of this thesis is publicly available [14]. This includes the prototypical implemen-
tation of our DSL, its mapping and the result mapping along with models and constraints
collected and created during this thesis.

115

10. Conclusion

To conclude this thesis, we summarize our approach and �ndings in Section 10.1. We
give an outlook on future work in Section 10.2 and express our acknowledgements in
Section 10.3.

10.1. Summary

The goal of this thesis was to provide an approach to formulate analysis goals for data-
driven design time analyses. In order to abstract from the underlying formalism, we
proposed the use of a domain-speci�c language (DSL) which uses the terminology known
from the domain of data �ow modeling. We provided a mapping between the DSL and
the formalism which is used for the analysis. In order to ease the interpretation of
analysis results, we de�ned a mapping of results back into the architectural domain.
Our research questions targeted the collection of architecture-level constructs to de�ne
data �ow constraints and the mapping of constraints and results between the architecture
and the formalism.

Our DSL is based on the collection of data �ow scenarios and constraints from other
work. We derived requirements from real-world use cases and combined this information
with analysis capabilities of the underlying formalism which is given by Data-Centric
Palladio. We generalized the analysis goals of multiple scenarios and de�ned the syntax of
our DSL. Using our DSL, architects are able to describe data �ow constraints by specifying
data and data �ow destinations using characteristics. The expressiveness of the selection is
enhanced by the de�nition of conditions on variable characteristics as well as the de�nition
of characteristic patterns using characteristic classes.

We de�ned a mapping from our DSL to the underlying formalism. This transformation
generates executable Prolog code which uses the Prolog API provided by Data-Centric
Palladio. Together with the existing transformation of architectural models to Prolog
code, our mapped constraints can be evaluated by the Prolog environment. Afterwards,
our result mapping transforms identi�ed constraint violations back into the architectural
domain and presents them to the architect.

Our approach enables architects to specify data �ow constraints while modeling the
architecture without the need of switching the abstraction level. The transformation to
and from the underlying formalism is fully automated. Thus, architects are not required to
know how to use the underlying formalism; only basic knowledge on data �ow modeling,
Data-Centric Palladio and our DSL is required.

We evaluated our approach regarding the DSL’s expressiveness, usability and space
e�ciency. In order to evaluate the expressiveness, we collected scenarios and case studies
from other work and reformulated the constraints. 75% of all considered constraints can be

117

10. Conclusion

expressed using our DSL which matches the coverage of the API of Data-Centric Palladio
which is 80%. Regarding the DSL’s usability, we considered the abstraction from the
underlying formalism, the language’s conciseness, orthogonality and the uniqueness of
features. Overall, the results look promising: our DSL requires less e�ort to de�ne and
alter data �ow constraints than the underlying formalism. All concerns regarding other
language quality attributes originate from trade-o� decisions regarding its expressiveness.
The evaluation of the DSL’s space e�ciency indicates that the DSL requires between 5 to
10 times less code than similar constraints de�ned using the underlying formalism.

Additionally, we evaluated the equivalence of the analysis using our DSL to de�ne
constraints compared to the underlying formalism. We performed a correctness proof of
the mapping of the core DSL. We also evaluated whether the analysis results of constraints
de�ned in our DSL match the results of already formulated constraints in Prolog. The
results show a recall of 100% while maintaining 90% precision.

This thesis aimed to improve the understanding of the de�nition of analysis goals
for design time analysis which bridge the gap between the architectural domain and
the underlying formalism. We developed and realized a DSL and its mapping which
improves the architects capabilities by removing accidental complexity. We also discussed
requirements which have to be considered in order to enable the mapping of analysis
results.

10.2. Future Work

The approach presented in this thesis is ready to be used in its current form. However, we
discovered several parts which can be enhanced and are thus subject to future work.

First, we identi�ed several smaller possible improvements of the current version of the
DSL. Currently, constraints always consist of exactly one rule which restricts the �ow
of data to one destination. Here, supporting multiple rules which could be combined
using propositional logic would enhance the architects capabilities. Another placeholder
element of our DSL is the statement which currently always restricts data to never �ow.
Here, more modalities would be possible, e.g. requiring data to always �ow or �ow at least
once. This discussion is based on modal logic and the underlying formalism is already
capable of analyzing constraints of such nature.

Moreover, the DSL could be extended to support types of constraints which don’t follow
the pattern of selecting data which �ows to a selected destination. An example is the
consideration of multiple data �ows which e.g. are not allowed to be joined in a selected
node. This requirement is motivated by a real-world scenario analyzed in this thesis.
Another type of constraint is the speci�cation of data without considering its destination.
For instance, requiring certain characteristics to never appear together in a datum during
the analysis.

In the current version of the DSL, architects can choose the target model type. Currently
supported are constraints based on Data-Centric Palladio or its underlying Operation Model.
However, the genericness of the DSL might su�ce to support more than these two data
�ow models. Further research is required to collect more data �ow modeling environments
and generalize their analysis goal formulation.

118

10.3. Acknowledgements

Last, the quality of the existing DSL could be enhanced by executing a user study. This
would not only help to improve on the concrete syntax and usability of the language
but also yield empirical results whether the usage of an abstraction approach like a DSL
improves the architects capabilities and performance while de�ning data �ow constraints.

10.3. Acknowledgements

I want to thank my advisors Stephan Seifermann and Frederik Reiche for their support
which greatly improved the quality of this thesis. I also want to thank Dr.-Ing. Thomas
Kühn for his advice on the realization of formal correctness proofs. Last, I want to thank
all participants of the breakout group "Evaluation of DSLs" during the research retreat in
march 2020 for their great input.

119

Bibliography

[1] Marcel van Amstel, Mark van den Brand, and Luc Engelen. “An exercise in iterative
domain-speci�c language design”. In: Proceedings of the joint ERCIM workshop
on software evolution (EVOL) and international workshop on principles of software
evolution (IWPSE). ACM. 2010, pp. 48–57.

[2] Victor R Basili and David M Weiss. “A methodology for collecting valid software
engineering data”. In: IEEE Transactions on software engineering 6 (1984), pp. 728–
738.

[3] Max Bramer. Logic programming with Prolog. Springer, 2005.
[4] F Brooks and HJ Kugler. No silver bullet. 1987.
[5] Theodor G Bucher. Einführung in die angewandte Logik. Vol. 2231. Walter de Gruyter,

1998.
[6] Jordi Cabot, Robert Clarisó, and Daniel Riera. “On the veri�cation of UML/OCL

class diagrams using constraint programming”. In: Journal of Systems and Software
93 (2014), pp. 1–23.

[7] Victor R Basili Gianluigi Caldiera and H Dieter Rombach. “The goal question metric
approach”. In: Encyclopedia of software engineering (1994), pp. 528–532.

[8] Luca Cardelli. “Type systems”. In: ACM Computing Surveys (CSUR) 28.1 (1996),
pp. 263–264.

[9] Tom DeMarco. “Structured Analysis and System Speci�cations, rentice-Hall”. In:
(1979).

[10] Hans M Dietz. Mathematik für Wirtschaftswissenschaftler. Springer, 2019.
[11] Peter Dybjer. “Using domain algebras to prove the correctness of a compiler”. In:

Annual Symposium on Theoretical Aspects of Computer Science. Springer. 1985, pp. 98–
108.

[12] Eclipse Foundation. Xtext - Language Engineering Made Easy! 2020. url: https:
//www.eclipse.org/Xtext/ (visited on 07/27/2020).

[13] Sebastian Hahner. “Con�dentiality Formalisms for Design Time Security Analyses”.
2019.

[14] Sebastian Hahner. Domain-speci�c Language for Data-driven Design Time Analyses
and Result Mappings for Logic Programs - Data Set. Aug. 2020. doi: 10.5281/zenodo.
3973100. url: https://doi.org/10.5281/zenodo.3973100.

[15] Xudong He et al. “Formally analyzing software architectural speci�cations using
SAM”. In: Journal of Systems and Software 71.1-2 (2004), pp. 11–29.

121

https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://doi.org/10.5281/zenodo.3973100
https://doi.org/10.5281/zenodo.3973100
https://doi.org/10.5281/zenodo.3973100

Bibliography

[16] Ethan Jackson and Janos Sztipanovits. “Formalizing the structural semantics of
domain-speci�c modeling languages”. In: Software & Systems Modeling 8.4 (2009),
pp. 451–478.

[17] Jan Juerjens. “Principles for secure systems design”. PhD thesis. University of Oxford,
2002.

[18] Jan Jürjens and Pasha Shabalin. “Automated veri�cation of UMLsec models for se-
curity requirements”. In: International Conference on the Uni�ed Modeling Language.
Springer. 2004, pp. 365–379.

[19] Kyo C Kang et al. Feature-oriented domain analysis (FODA) feasibility study. Tech. rep.
Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, 1990.

[20] Gabor Karsai et al. “Design guidelines for domain speci�c languages”. In: arXiv
preprint arXiv:1409.2378 (2014).

[21] Kuzman Katkalov. “Ein modellgetriebener Ansatz zur Entwicklung informations-
�usssicherer Systeme”. doctoralthesis. Universität Augsburg, 2017.

[22] Kuzman Katkalov. Modeling the Travel Planner Application with IFlow. 2013. url:
https://kiv.isse.de/projects/iflow/TravelPlannerSite/index.html (visited
on 06/20/2020).

[23] Kuzman Katkalov et al. “Model-driven development of information �ow-secure
systems with IFlow”. In: 2013 International Conference on Social Computing. IEEE.
2013, pp. 51–56.

[24] Heiko Koziolek and Ralf Reussner. “A model transformation from the palladio
component model to layered queueing networks”. In: SPEC International Performance
Evaluation Workshop. Springer. 2008, pp. 58–78.

[25] Jonas Kunz. “E�cient Data Flow Constraint Analysis”. MA thesis. Karlsruhe, Ger-
many: Karlsruhe Institute of Technology (KIT), 2018.

[26] Philipp Meier. “Automated Transformation of Palladio Component Models to Queue-
ing Petri Nets”. FZI Prize "Best Diploma Thesis". MA thesis. Karlsruhe, Germany:
Karlsruhe Institute of Technology (KIT), 2010.

[27] Philipp Meier, Samuel Kounev, and Heiko Koziolek. “Automated transformation
of component-based software architecture models to queueing petri nets”. In: 2011
IEEE 19th Annual International Symposium on Modelling, Analysis, and Simulation of
Computer and Telecommunication Systems. IEEE. 2011, pp. 339–348.

[28] Marjan Mernik, Jan Heering, and Anthony M Sloane. “When and how to develop
domain-speci�c languages”. In: ACM computing surveys (CSUR) 37.4 (2005), pp. 316–
344.

[29] Parastoo Mohagheghi and Øystein Haugen. “Evaluating domain-speci�c modelling
solutions”. In: International Conference on Conceptual Modeling. Springer. 2010,
pp. 212–221.

[30] F Lockwood Morris. “Advice on structuring compilers and proving them correct”.
In: Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of
programming languages. 1973, pp. 144–152.

122

https://kiv.isse.de/projects/iflow/TravelPlannerSite/index.html

[31] Philip Mueller. “Abbildung von UMLsec-Vertraulichkeitsanalysen auf Data-Centric
Palladio”. MA thesis. Karlsruhe, Germany: Karlsruhe Institute of Technology (KIT),
2019.

[32] Anantha Narayanan and Gabor Karsai. “Towards verifying model transformations”.
In: Electronic Notes in Theoretical Computer Science 211 (2008), pp. 191–200.

[33] Richard F. Paige, Jonathan S. Ostro�, and Phillip J Brooke. “Principles for modeling
language design”. In: Information and Software Technology 42.10 (2000), pp. 665–675.

[34] Sven Peldszus et al. “Secure Data-Flow Compliance Checks between Models and
Code based on Automated Mappings”. In: Oct. 2019.

[35] Benjamin C Pierce. Type Systems and Programming Languages. 2002.
[36] David Martin Powers. “Evaluation: from precision, recall and F-measure to ROC,

informedness, markedness and correlation”. In: (2011).
[37] Ralf H. Reussner et al. Modeling and Simulating Software Architectures: The Palladio

Approach. The MIT Press, 2016. isbn: 026203476X, 9780262034760.
[38] Arnaud Roques. Drawing UML with PlantUML. 2019. url: http://plantuml.com/

en/guide (visited on 11/18/2019).
[39] Per Runeson and Martin Höst. “Guidelines for conducting and reporting case study

research in software engineering”. In: Empirical software engineering 14.2 (2009),
p. 131.

[40] Stephan Seifermann. Palladio Supporting Prolog. 2020. url: https://github.com/
Trust40-Project/Palladio-Supporting-Prolog (visited on 07/03/2020).

[41] Stephan Seifermann, Robert Heinrich, and Ralf H. Reussner. “Data-Driven Software
Architecture for Analyzing Con�dentiality”. In: IEEE International Conference on
Software Architecture, ICSA 2019, Hamburg, Germany, March 25-29, 2019. IEEE, 2019,
pp. 1–10. doi: 10.1109/ICSA.2019.00009. url: https://doi.org/10.1109/ICSA.
2019.00009.

[42] Mark Strembeck and Uwe Zdun. “An approach for the systematic development
of domain-speci�c languages”. In: Software: Practice and Experience 39.15 (2009),
pp. 1253–1292.

[43] SWI-Prolog. SWI-Prolog Manual: Glossary. 2020. url: https://www.swi-prolog.
org/pldoc/man?section=glossary (visited on 06/16/2020).

[44] SWI-Prolog. SWI-Prolog Manual: library(lists). 2020. url: https://www.swi-prolog.
org/pldoc/man?section=lists (visited on 06/01/2020).

[45] James W Thatcher, Eric G Wagner, and Jesse B Wright. “More on advice on struc-
turing compilers and proving them correct”. In: Theoretical Computer Science 15.3
(1981), pp. 223–249.

[46] Arie Van Deursen, Paul Klint, and Joost Visser. “Domain-speci�c languages: An
annotated bibliography”. In: ACM Sigplan Notices 35.6 (2000), pp. 26–36.

123

http://plantuml.com/en/guide
http://plantuml.com/en/guide
https://github.com/Trust40-Project/Palladio-Supporting-Prolog
https://github.com/Trust40-Project/Palladio-Supporting-Prolog
https://doi.org/10.1109/ICSA.2019.00009
https://doi.org/10.1109/ICSA.2019.00009
https://doi.org/10.1109/ICSA.2019.00009
https://www.swi-prolog.org/pldoc/man?section=glossary
https://www.swi-prolog.org/pldoc/man?section=glossary
https://www.swi-prolog.org/pldoc/man?section=lists
https://www.swi-prolog.org/pldoc/man?section=lists

Bibliography

[47] Philipp Weimann. “Automated Cloud-to-Cloud Migration of Distributed So ware Sys-
tems for Privacy Compliance”. MA thesis. Karlsruhe, Germany: Karlsruhe Institute
of Technology (KIT), 2017.

[48] William Wernick. “Complete sets of logical functions”. In: Transactions of the Ameri-
can Mathematical Society 51.1 (1942), pp. 117–132.

[49] Huiqun Yu et al. “Formal Software Architecture Design of Secure Distributed Sys-
tems.” In: Jan. 2003, pp. 450–457.

124

A. Appendix

In the appendix, we present additional information which completes this thesis. In Sec-
tion A.1, we discuss the well-formedness of Conditions, a part of constraints in our DSL.
We show a more comprehensive formalization of the parts of the correctness proof in
Section A.2. In Section A.3, we show complete examples of generated Prolog using our
DSLmapping. Last, we present the complete meta-model in Section A.4.

A.1. Well-formedness of Conditions

The well-formedness of constraints formulated in our DSL is ensured by the abstract
syntax to a large extent. The highest degree of freedom exists in the Condition part, where
architects can freely nest and combine operations on characteristic variables (see Section 7.4
for all details). We chose a strictly functional approach without side e�ects or states. In
order to discuss the well-formedness of Conditions, we formulate these operations using
the lambda calculus. This discussion is part of the appendix because its not considered to
match the evaluation but instead provides a di�erent view on the de�nition of Conditions.

Listing A.1 shows several examples of Conditions. For instance the test for emptiness
and the intersection of two set variables in line 3 or the comparison of variables in line
4. Line 5 shows how these operations can be nested in order to formulate more complex
Conditions.

1 // A, B, C, D are characteristic variables

2 // X, Y, Z are characteristic set variables

3 isEmpty(intersection(X,Y))

4 A == B & C == D

5 elementOf(A, union(Y,intersection(X,Z)))

Listing A.1: Examples for conditions which consist of multiple operations

Operations can be expressed using the simply typed lambda calculus and our three types:
Characteristic Variable (short: Var), Characteristic Set Variable (short: Set) and boolean
variables (short: Bool). Translated operations can be denoted as follows:

125

A. Appendix

isEmpty : Set → Bool

elementOf : Var → Set → Bool

intersection : Set → Set → Set

union : Set → Set → Set

equals : Var → Var → Bool

and : Bool → Bool → Bool

We use this formalization to show the relation between strictly functional Conditions
and the type system of the simply typed lambda calculus. Cardelli uses a formal language
to de�ne type systems [8]. A type system is a set of judgements which represent assertions.
A judgement can be valid or invalid. The typing environment holding free variables is
denoted by Γ .

Our abstract syntax implies that the the most-outer operation is always a BooleanOpera-
tion. This assertion "The type of a well-typed condition C is always bool" can be formalized
as follows:

Γ ` C : Bool

Based on the concept of judgements, the type system of the simply typed lambda calculus
can be de�ned with the following rules [35].

T-Var:
x :A ∈ Γ
Γ ` x :A

(A.1)

T-Abs:
Γ, x :A ` M : B

Γ ` (λx :A.M) : (A→ B)
(A.2)

T-App:
Γ ` M :A→ B Γ ` N :A

Γ ` M N : B
(A.3)

The �rst rule (A.1) handles free variables in the typing environment Γ and is used to
extract a variable x of type A which can then be used in a term. The second rule (A.2) gives
a term a function type A→ B if its body is typed correctly. The third rule (A.3) applies a
function M to an argument N .

Based on these foundations, we can verify terms using the formalized operations and
the simply typed lambda calculus type system. The typing environment Γ contains all free
variables and all translated operations as shown above. This can be denoted as follows:

free : All free variables de�ned prior to the condition
operations : {isEmpty, elementOf, intersection, . . . }

(free ∪ operations) ∈ Γ

126

A.1. Well-formedness of Conditions

To demonstrate this, we show the type derivation of two terms which use the isEmpty

operation. First, we use a characteristic set variable S. This term is typed correctly. Second,
we use a characteristic variable V which is not typed correctly because a single variable
can not be empty. Thus, isEmpty is only de�ned on set variables. This can also be seen
in the formalization of the operations shown above which de�nes isEmpty as lambda
expression from Set to Bool .

The derivation tree for the correctly typed term isEmpty(S)with S being a characteristic
set variable looks as follows:

isEmpty : Set → Bool ∈ Γ
T-Var

Γ, x : Set ` isEmpty : Set → Bool

x : Set ∈ Γ
T-Var

Γ, x : Set ` x : Set
T-App

Γ, x : Set ` isEmpty(x) : Bool
T-Abs

Γ ` λx : Set . isEmpty(x) : Set → Bool

S : Set ∈ Γ
T-Var

Γ ` S : Set
T-App

Γ ` (λx : Set . isEmpty(x)) S : Bool

Starting at the bottom of the derivation, we �rst split the term isEmpty(S) into its
operation isEmpty(x) and the variable S on which its applied using the T-App rule. This
variable is a free variable and thus part of the typing environment Γ which is veri�ed using
the T-Var rule. The isEmpty(x) operation is further split into its argument and the atomic
operation using the T-Abs and T-App rules. Last, the existence of the operation in the
typing environment Γ is veri�ed using the T-Var rule. In this derivation, every judgement
succeeds until no further rules can be applied. Thus, the term is typed correctly.

Next, we consider the derivation tree of an incorrectly typed term isEmpty(V) with V
being a characteristic variable:

...
Γ, x : Set ` isEmpty(x) : Bool

T-Abs
Γ ` λx : Set . isEmpty(x) : Set → Bool

V : Set , V : Var ∈ Γ E
T-Var

Γ ` V : Set
T-App

Γ ` (λx : Set . isEmpty(x))V : Bool

The structure of this tree is similar to the example discussed before. However, after
the application of the T-App rule, a variable of type Set is expected because the operation
isEmpty(x) is de�ned with the function type Set → Bool . Thus, the T-Var rule tries to
�nd a variable V of type Set in the typing environment Γ which fails because V has the
type Var . Thus, not every applicable judgement succeeds and the a type error occurs.

These two simple examples show how the simply typed lambda calculus can be used to
express and verify Conditions. This approach is applicable to terms of arbitrary size and
nesting based on the three judgements presented above. Thus, we consider Conditions
which follow our abstract syntax to be type-safe.

127

A. Appendix

A.2. Correctness Evaluation

As part of goal G4 which considers the equivalence of the analysis, we outlined a cor-
rectness proof with question Q11 in Subsection 9.2.5. In the results discussion in Subsec-
tion 9.3.4, we presented only short excerpts of the formalization for the sake of brevity. In
this section, we show more comprehensive examples. We present concepts of the source
context C , the source language L, the target context K and the target language T . Then,
we show the formalization of the transformation γ as well as the semantics of L and T .
Last, we present more examples of the induction basis as part of the structural induction.
Please note, that the formalization shown in this Section is still not exhaustive and has
only been performed for the subset required for the structural induction.

ϒC =


CharacteristicType(C) : C is the name of a characteristic type
CharacteristicLiteral(L,C) : L is the name of a literal of Characteristic type C
ArchitecturalElement(N,L) : N is the name of an architectural elem. with literal L

ϒL =



CharacteristicTypeSelectorSingle(C,L) : C is a characteristic type, L one of its literals
CharacteristicTypeSelectorNegated(C,L) : C is a characteristic type, L one of its literals
CharacteristicTypeSelectorMulti(C,L1,L2) : C is a characteristic type, L1 and L2 its literals
CharacteristicClass(N,C) : N is the name of a class, L a list of CharacteristicTypeSelectors*
AttributeSelector(C) : C is a CharacteristicTypeSelector*
PropertySelector(C) : C is a CharacteristicTypeSelector*
AttributeClassSelector(C,N) : C is a characteristic type, N is a characteristic class
PropertyClassSelector(C,N) : C is a characteristic type, N is a characteristic class
NodeIdentitySelector(N) : N is the name of an architectural element
Rule(D,Z) : D is the rule’s DataSelector*, Z its DestinationSelector*
Constraint(N,R) : N is the name of a constraint, R is its rule

ϒK =



ValueSetType(T) : T is the name of a ValueSetType
AttributeType(A,T) : A is the name of an attribute type, T its ValueSetType
PropertyType(P,T) : P is the name of a property type, T its ValueSetType
Operation(O) : O is the name of an operation
Term(V,A) : V is a Prolog term, A a list of arguments (terms)
Fact(H) : H is the facts head (term)
Clause(H,B) : H is the clauses head, B its body; both are terms
Unification(L,R) : Uni�cation of L and R; both are terms
NotProvable(P) : Invert the statement of P; P is a term
And(L,R) : Combine the statements of L and R; both are terms
Or(L,R) : Combine the statements of L and R; both are terms

128

A.2. Correctness Evaluation

ϒT =



ValueSetMember(T,V) : T is a ValueSetType, V a value
StackValid(S) : S is the name of stack which represents a valid call sequence
CallArgument(S,P,A,V) : S is a call stack, P a parameter name,

A an AttributeType, V a value of this AttributeType’s ValueSetType
ReturnValue(S,R,A,V) : S is a call stack, r a return value name,

A an AttributeType, V a value of this AttributeType’s ValueSetType
PreCallState(S,O,T,A,V) : S is a call stack, O an operation, T a state variable

A an AttributeType, V a value of this AttributeType’s ValueSetType
PostCallState(S,O,T,A,V) : S is a call stack, O an operation, T a state variable

A an AttributeType, V a value of this AttributeType’s ValueSetType
OperationProperty(O,P,V) : O is an operation, P an PropertyType

V a value of this PropertyType’s ValueSetType

τ =



NodeIdentitySelector(N)
→ Unification(Term(O),N)

CharacteristicClass(N,CharacteristicTypeSelectorSingle(C,L))
→ Fact(Term(X),L),Clause(Term(N),And(ValueSetMember(C,L),Term(X,L)))

CharacteristicClass(N,CharacteristicTypeSelectorNegated(C,L))
→ Fact(Term(X),L),Clause(Term(N),And(ValueSetMember(C,L),

NotProvable(Term(X,L))))
CharacteristicClass(N,CharacteristicTypeSelectorMulti(C,L1,L2))
→ Fact(Term(X),L1),Fact(Term(Y),L2),Clause(Term(N),And(ValueSetMember(C,L),

Or(Term(X,L1),Term(Y,L2))))
PropertySelector(CharacteristicTypeSelectorSingle(C,L))
→ OperationProperty(Term(O),C,L)

PropertySelector(CharacteristicTypeSelectorNegated(C,L))
→ NotProvable(OperationProperty(Term(OP),C,L))

PropertySelector(CharacteristicTypeSelectorMulti(C,L1,L2))
→ Or(OperationProperty(Term(O),C,L1),OperationProperty(Term(O),C,L2))

AttributeSelector(CharacteristicTypeSelectorSingle(C, L))
→ CallArgument(Term(S), Term(P),C, L)

AttributeSelector(CharacteristicTypeSelectorNegated(C,L))
→ NotProvable(CallArgument(Term(S),Term(P),C,L))

AttributeSelector(CharacteristicTypeSelectorMulti(C,L1,L2))
→ Or(CallArgument(Term(S),Term(P),C,L1),CallArgument(Term(S),Term(P),C,L2))

129

A. Appendix

τ =



PropertyClassSelector(C,N)
→ And(OperationProperty(Term(OP),C,Term(V)),Term(N,V))

AttributeClassSelector(C,N)
→ And(CallArgument(Term(S),Term(P),C,Term(V)),Term(N,V))

Constraint(N , Rule(D,Z))
→ Clause(Term(N ,O, S, P),

And(Unification(S, List(O)), And(StackValid(S), And(D,Z))))

valθ (NodeIdentitySelector(N) ={
true, if an architectural element with name N is selected
false, otherwise

valθ (CharacteristicClass(N,CharacteristicTypeSelectorSingle(C,L)) ={
true, if used to select a literal L of characteristic type C
false, otherwise

valθ (CharacteristicClass(N,CharacteristicTypeSelectorNegated(C,L)) =
true, if used to select any literal except L of

characteristic type C
false, otherwise

valθ (CharacteristicClass(N,CharacteristicTypeSelectorMulti(C,L1,L2)) =
true, if used to select a literal L1 or L2 of

characteristic type C
false, otherwise

valθ (PropertySelector(CharacteristicTypeSelectorSingle(C,L)) =
true, if an ArchitecturalElement with literal L of

characteristic type C is selected
false, otherwise

valθ (PropertySelector(CharacteristicTypeSelectorNegated(C,L)) =
true, true, if an ArchitecturalElement without literal L

of characteristic type C is selected
false, otherwise

130

A.2. Correctness Evaluation

valθ (PropertySelector(CharacteristicTypeSelectorMulti(C,L1,L2)) =
true, if an ArchitecturalElement with either literal

L1 or L2 of characteristic type C is selected
false, otherwise

valθ (AttributeSelector(CharacteristicTypeSelectorSingle(C, L))) =
true, if an ArchitecturalElement with a data �ow with literal L

of characteristic type C is selected
false, otherwise

valθ (AttributeSelector(CharacteristicTypeSelectorNegated(C,L)) =
true, if an ArchitecturalElement without a data �ow

with literal L of characteristic type C is selected
false, otherwise

valθ (AttributeSelector(CharacteristicTypeSelectorMulti(C,L1,L2)) =
true, if an ArchitecturalElement with a data �ow with literal

L1 or L2 of characteristic type C is selected
false, otherwise

valθ (PropertyClassSelector(C,N) =
true, if an ArchitecturalElement with characteristic type C is

selected for which the evaluation of class N returns true
false, otherwise

valθ (AttributeClassSelector(C,N) =
true, if an ArchitecturalElement with a data �ow of characteristic type C

is selected for which the evaluation of class N returns true
false, otherwise

valθ (Constraint(N , Rule(D,Z))) =
true, if a selection of both D and Z is true for any valid

data �ow between any ArchitecturalElements
false, otherwise

131

A. Appendix

valψ (ValueSetMember(T,V) =
true, if V is the name of a Value which belongs to the

ValueSetType with the name T
false, otherwise

valψ (StackValid(S) ={
true, if the list S represents a correct call sequence
false, otherwise

valψ (CallArgument(S,P,A,V) =
true, if the Value V of the Attribute A of the parameter P

is present given the call stack S. The operation which owns the
Parameter P is de�ned by the stack top of

false, otherwise

valψ (ReturnValue(S,R,A,V) =
true, if the Value V of the Attribute A of the return value R

is present given the call stack S. The operation which owns the
Return Value R is de�ned by the stack top of S

false, otherwise

valψ (PreCallState(S,O,T,A,V) =
true, if the Value V of the Attribute A of the state variable T

owned by the operation O is present before the call to the
operation on top of the call stack S is executed

false, otherwise

valψ (PostCallState(S,O,T,A,V) =
true, if the Value V of the Attribute A of the state variable T

owned by the operation O is present after the call to the
operation on top of the call stack S is executed

false, otherwise

valψ (OperationProperty(O,P,V) =
true, if the property P of Operation O has the

Value V as present value
false, otherwise

132

A.2. Correctness Evaluation

Source syntax:NodeIdentitySelector(N)
Target syntax:Unification(Term(O),N)

Source semantics: true, if an architectural element with name N is selected
Target semantics: true, if N can be uni�ed with O which

is the case if O has the name N
Encoding:Valid, because O is the the transformed architectural

element currently selected

Source syntax: PropertySelector(CharacteristicTypeSelectorSingle(C,L))
Target syntax:OperationProperty(Term(O),C,L)

Source semantics: true, if an ArchitecturalElement with literal L of
characteristic type C is selected

Target semantics: true, if the property C of Operation O has the
Value L as present value

Encoding:Valid because O is the the transformed architectural
element currently selected

Source syntax: AttributeSelector(CharacteristicTypeSelectorSingle(C, L))
Target syntax: CallArgument(Term(S), Term(P),C, L)

Source semantics: true, if an ArchitecturalElement with a data �ow with literal L
of characteristic type C is selected

Target semantics: true, if the Value L of the Attribute C of the parameter P
is present given the call stack S. The operation which owns the
Parameter P is de�ned by the stack top of

Encoding:Valid because the data �ow with literal L of characteristic type C
is represented by the parameter P in call stack S. The selected
architectural element is represented by the operation on
the top of the stack S. Thus, the implication holds.

133

A. Appendix

Source syntax: AttributeSelector(CharacteristicTypeSelectorNegated(C,L))
Target syntax:NotProvable(CallArgument(Term(S),Term(P),C,L))

Source semantics: true, if an ArchitecturalElement without a data �ow with literal L
of characteristic type C is selected

Target semantics: false, if the Value L of the Attribute C of the parameter P is present
given the call stack S. The operation which owns the Parameter P is
de�ned by the stack top of

Encoding:Valid, because the CallArgument query acts as described above.
But only if no parameter P with the given requirements exists,
the term cannot be proven. In this case, the NotProvable predicate
returns true as is implicated by the negated selector.

Source syntax: AttributeSelector(CharacteristicTypeSelectorMulti(C,L1,L2))
Target syntax:Or(CallArgument(Term(S),Term(P),C,L1),CallArgument(Term(S),Term(P),C,L2))

Source semantics: true, if an ArchitecturalElement with a data �ow with literal L1 or L2
of characteristic type C is selected

Target semantics: true, if the values L1 or L2 of the Attribute C of the parameter P are
present given the call stack S. The operation which owns the Parameter P
is de�ned by the stack top of

Encoding: Either L1 or L2 have to present in order to select the architectural
element (or its mapped operation on top of call stack S). This is true
because either the �rst or second CallArgument query have to be proven
in order to prove the Or predicate. Thus, the implication holds.

Source syntax: CharacteristicClass(N,CharacteristicTypeSelectorSingle(C,L))
Target syntax: Fact(Term(X),L),Clause(Term(N),And(ValueSetMember(C,L),Term(X,L)))

Source semantics: true, if used to select a literal L of characteristic type C
Target semantics: true, if L is the name of a Value which belongs to the ValueSetType

with the name C and L is used in fact X
Encoding:Valid because literal L belongs to characteristic type c and thus also

to the generated ValueSetType. The fact X can be proven for the literal L.
Thus, the conjunction is true and the implications holds.

134

A.3. Mapped Prolog Code Examples

Source syntax: Constraint(N , Rule(D,Z))
Target syntax: Clause(Term(N ,O, S, P),

And(Unification(S, List(O)), And(StackValid(S), And(D,Z))))

Source semantics: true, if a selection of both D and Z is true for any valid
data �ow between any ArchitecturalElements

Target semantics: true, if at least one call stack S satis�es both D and Z.
The operation O is hereby the head of the call stack S.

Encoding:Any valid data �ow is represented by any valid call stack in the
Operation Model. If a selection of both D and Z is valid for at least
one data �ow, both D and Z can be proven for this state of the call stack S
and the operation O on the top of the stack. Thus, the implication holds.
The concrete selection depends on the choice of selectors as shown above.

A.3. Mapped Prolog Code Examples

In Section 8.6, we discussed the transformation of two exemplary scenarios: The Geoloca-
tion Constraints scenario and the Access Control scenario. For the sake of brevity, we only
presented excerpts from the generated Prolog code using the DSLmapping. In this Section,
we show the complete generated code for both examples.

1 class UnsafeLocations {

2 location.!EU

3 }

4
5 constraint NoFlowToUnsafeLocations {

6 data.attribute.privacy.personal NEVER FLOWS node.class.UnsafeLocations

7 }

8
9 constraint AccessRightsViolation {

10 data.attribute.accessRights.$rights{}

11 NEVER FLOWS node.property.roles.$roles{}

12 WHERE isEmpty(intersection(rights,roles))

13 }

Listing A.2: Shortened concrete syntax of constraints of both exemplary scenarios

Listing A.2 repeats the constraints of both scenarios. The �rst constraint in line 5 to
7 and the CharacteristicClass in line 1 to 3 belong to the Geolocation Constraints scenario.
The second constraint in line 9 to 13 belongs to Access Control scenario. We show the
generated code of the Geolocation Constraints scenario in Listing A.3 and the code of the
Access Control scenario in Listing A.4.

135

A. Appendix

1 characteristicsClass_UnsafeLocations_location_0_NEG(’EU’).

2 characteristicsClass_UnsafeLocations(ClassVar_location) :-

3 valueSetMember(’location’, ClassVar_location),

4 \+ characteristicsClass_UnsafeLocations_location_0_NEG(ClassVar_location).

5
6 constraint_NoFlowToUnsafeLocations(ConstraintName, QueryType, OP, S, P, ClassVar_location)

:-

7 ConstraintName = ’NoFlowToUnsafeLocations’,

8 (constraint_NoFlowToUnsafeLocations_CallArgument(QueryType, OP, S, P, ClassVar_location);

9 constraint_NoFlowToUnsafeLocations_ReturnValue(QueryType, OP, S, P, ClassVar_location);

10 constraint_NoFlowToUnsafeLocations_PreCallState(QueryType, OP, S, ST, ClassVar_location);

11 constraint_NoFlowToUnsafeLocations_PostCallState(QueryType, OP, S, ST,

ClassVar_location)).

12
13 constraint_NoFlowToUnsafeLocations_CallArgument(QueryType, OP, S, P, ClassVar_location) :-

14 QueryType = ’CallArgument’,

15 S = [OP | _],

16 stackValid(S),

17 operationParameter(OP, P),

18 callArgument(S, P, ’privacy’, ’personal’),

19 operationProperty(OP, ’location’, ClassVar_location),

20 characteristicsClass_UnsafeLocations(ClassVar_location).

21
22 constraint_NoFlowToUnsafeLocations_ReturnValue(QueryType, OP, S, P, ClassVar_location) :-

23 QueryType = ’ReturnValue’,

24 S = [OP | _],

25 stackValid(S),

26 operationReturnValue(OP, P),

27 returnValue(S, P, ’privacy’, ’personal’),

28 operationProperty(OP, ’location’, ClassVar_location),

29 characteristicsClass_UnsafeLocations(ClassVar_location).

30
31 constraint_NoFlowToUnsafeLocations_PreCallState(QueryType, OP, S, ST, ClassVar_location) :-

32 QueryType = ’PreCallState’,

33 S = [OP | _],

34 stackValid(S),

35 operationState(OP, ST),

36 preCallState(S, OP, ST, ’privacy’, ’personal’),

37 operationProperty(OP, ’location’, ClassVar_location),

38 characteristicsClass_UnsafeLocations(ClassVar_location).

39
40 constraint_NoFlowToUnsafeLocations_PostCallState(QueryType, OP, S, ST, ClassVar_location) :-

41 QueryType = ’PostCallState’,

42 S = [OP | _],

43 stackValid(S),

44 operationState(OP, ST),

45 postCallState(S, OP, ST, ’privacy’, ’personal’),

46 operationProperty(OP, ’location’, ClassVar_location),

47 characteristicsClass_UnsafeLocations(ClassVar_location).

Listing A.3: Complete transformation result of the Geolocation Constraints scenario

136

A.4. Meta-Model

1 constraint_AccessRightsViolation(ConstraintName, QueryType, OP, S, P, ST, VarSet_rights,

VarSet_roles) :-

2 ConstraintName = ’AccessRightsViolation’,

3 (constraint_AccessRightsViolation_CallArgument(QueryType, OP, S, P, VarSet_rights, VarSet_roles);

4 constraint_AccessRightsViolation_ReturnValue(QueryType, OP, S, P, VarSet_rights, VarSet_roles);

5 constraint_AccessRightsViolation_PreCallState(QueryType, OP, S, ST, VarSet_rights, VarSet_roles);

6 constraint_AccessRightsViolation_PostCallState(QueryType, OP, S, ST, VarSet_rights, VarSet_roles)).

7
8 constraint_AccessRightsViolation_CallArgument(QueryType, OP, S, P, VarSet_rights, VarSet_roles) :-

9 QueryType = ’CallArgument’,

10 S = [OP | _],

11 stackValid(S),

12 operationParameter(OP, P),

13 findall(IteratorTemplate, callArgument(S, P, ’authorizedRoles’, IteratorTemplate), VarSet_rights),

14 findall(IteratorTemplate, operationProperty(OP, ’accessRoles’, IteratorTemplate), VarSet_roles),

15 intersection(VarSet_rights, VarSet_roles, Temp_0), length(Temp_0, 0).

16
17 constraint_AccessRightsViolation_ReturnValue(QueryType, OP, S, P, VarSet_rights, VarSet_roles) :-

18 QueryType = ’ReturnValue’,

19 S = [OP | _],

20 stackValid(S),

21 operationReturnValue(OP, P),

22 findall(IteratorTemplate, returnValue(S, P, ’authorizedRoles’, IteratorTemplate), VarSet_rights),

23 findall(IteratorTemplate, operationProperty(OP, ’accessRoles’, IteratorTemplate), VarSet_roles),

24 intersection(VarSet_rights, VarSet_roles, Temp_0), length(Temp_0, 0).

25
26 constraint_AccessRightsViolation_PreCallState(QueryType, OP, S, ST, VarSet_rights, VarSet_roles) :-

27 QueryType = ’PreCallState’,

28 S = [OP | _],

29 stackValid(S),

30 operationState(OP, ST),

31 findall(IteratorTemplate, preCallState(S, OP, ST, ’authorizedRoles’, IteratorTemplate),

VarSet_rights),

32 findall(IteratorTemplate, operationProperty(OP, ’accessRoles’, IteratorTemplate), VarSet_roles),

33 intersection(VarSet_rights, VarSet_roles, Temp_0), length(Temp_0, 0).

34
35 constraint_AccessRightsViolation_PostCallState(QueryType, OP, S, ST, VarSet_rights, VarSet_roles) :-

36 QueryType = ’PostCallState’,

37 S = [OP | _],

38 stackValid(S),

39 operationState(OP, ST),

40 findall(IteratorTemplate, postCallState(S, OP, ST, ’authorizedRoles’, IteratorTemplate),

VarSet_rights),

41 findall(IteratorTemplate, operationProperty(OP, ’accessRoles’, IteratorTemplate), VarSet_roles),

42 intersection(VarSet_rights, VarSet_roles, Temp_0), length(Temp_0, 0).

Listing A.4: Complete transformation result of the Access Control scenario

A.4. Meta-Model

We present the complete abstract syntax of our meta-model in Figure A.1. In order to
enhance the readability, we omit attributes and the relations between Operations and
References. For more information, please see Chapter 7.

137

A. Appendix

M
od

el
A

bs
tr

ac
tE

le
m

en
t

Ta
rg

et
M

od
el

Ty
pe

C
ha

ra
ct

er
is

ti
cT

yp
e

C
ha

ra
ct

er
is

ti
cC

la
ss

C
ha

ra
ct

er
is

ti
cT

yp
eS

el
ec

to
r

C
ha

ra
ct

er
is

ti
cV

ar
ia

bl
eT

yp
e

C
ha

ra
ct

er
is

ti
cV

ar
ia

bl
e

C
ha

ra
ct

er
is

ti
cS

et

C
on

st
ra

in
t

R
ul

e
D

at
aS

el
ec

to
r

C
ha

ra
ct

er
is

ti
cS

el
ec

to
r

C
ha

ra
ct

er
is

ti
cC

la
ss

Se
le

ct
or

D
es

ti
na

ti
on

Se
le

ct
or

A
tt

ri
bu

te
Se

le
ct

or
A

tt
ri

bu
te

C
la

ss
Se

le
ct

or

Pr
op

er
ty

Se
le

ct
or

Pr
op

er
ty

C
la

ss
Se

le
ct

or

N
od

eI
de

nt
it

yS
el

ec
to

r

St
at

em
en

tSt
at

em
en

tT
yp

e
St

at
em

en
tM

od
al

it
y

C
on

di
ti

on

R
ef

er
en

ce

C
ha

ra
ct

er
is

ti
cR

ef
er

en
ce

C
ha

ra
ct

er
is

ti
cS

et
R

ef
er

en
ce

C
ha

ra
ct

er
is

ti
cS

et
O

pe
ra

ti
on

B
oo

le
an

O
pe

ra
ti

on

O
pe

ra
ti

on

V
ar

ia
bl

eE
qu

al
it

yO
pe

ra
ti

on

V
ar

ia
bl

eI
ne

qu
al

it
yO

pe
ra

ti
on

Em
pt

yS
et

O
pe

ra
ti

on

El
em

en
tO

fO
pe

ra
ti

on

Lo
gi

ca
lA

nd
O

pe
ra

ti
on

Lo
gi

ca
lO

rO
pe

ra
ti

on

Lo
gi

ca
lN

eg
at

io
nO

pe
ra

ti
on

In
te

rs
ec

ti
on

O
pe

ra
ti

on

U
ni

on
O

pe
ra

ti
on

Su
bt

ra
ct

O
pe

ra
ti

on

C
re

at
eS

et
O

pe
ra

ti
on

In
cl

ud
e

Figure A.1.: Complete abstract syntax of the meta-model of our DSL

138

	Abstract
	Zusammenfassung
	Introduction
	Contribution
	Outline

	Foundations
	Data Flow Diagrams
	Data-Centric Palladio
	Domain Specific Languages
	Logic Programming

	Related Work
	Alternative Analysis for PCM
	Security Modeling
	Data Flow Oriented Modeling
	Comparison

	Example Scenarios
	Geolocation Constraints
	Access Control

	Supporting the Existing Analysis Process
	Language Requirements
	Case Studies
	Underlying Formalism

	Language Syntax
	Overview
	Types and Imports
	Selection
	Conditions
	Constraints
	Example Instances
	Geolocation Constraints
	Access Control

	Language Semantics
	Overview
	Selection
	Conditions
	Constraints
	Result Mapping
	Example Transformations
	Geolocation Constraints
	Access Control

	Evaluation
	Goals and Questions
	Evaluation Design
	Studied scenarios
	G1 - Expressiveness
	G2 - Usability
	G3 - Space Efficiency
	G4 - Equivalence of Analysis

	Results and Discussion
	G1 - Expressiveness
	G2 - Usability
	G3 - Space Efficiency
	G4 - Equivalence of Analysis
	Summary

	Threats to Validity
	Assumptions and Limitations
	Data Availability

	Conclusion
	Summary
	Future Work
	Acknowledgements

	Bibliography
	Appendix
	Well-formedness of Conditions
	Correctness Evaluation
	Mapped Prolog Code Examples
	Meta-Model

