KIT | KIT-Bibliothek | Impressum | Datenschutz

First-time synthesis of a magnetoelectric core-shell composite via conventional solid-state reaction

Henrichs, Leonard F. 1,2; Mu, Xiaoke 2; Scherer, Torsten 2,3; Gerhards, Uta 4; Schuppler, Stefan 5; Nagel, Peter 5; Merz, Michael 5; Kübel, Christian ORCID iD icon 2,3; Fawey, Mohammed H. 2; Hansen, Thomas C.; Hahn, Horst 2
1 Institut für Angewandte Geowissenschaften (AGW), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
3 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
4 Institut für Mikroverfahrenstechnik (IMVT), Karlsruher Institut für Technologie (KIT)
5 Institut für Quantenmaterialien und -technologien (IQMT), Karlsruher Institut für Technologie (KIT)

Abstract:

In recent years, multiferroics and magnetoelectrics have demonstrated their potential for a variety of applications. However, no magnetoelectric material has been translated to a real application yet. Here, we report for the first time that a magnetoelectric core–shell ceramic, is synthesized via a conventional solid-state reaction, where core–shell grains form during a single sintering step. The core consists of ferrimagnetic $CoFe_{2}O_{4}$, which is surrounded by a ferroelectric shell consisting of $(BiFeO_{3})_{x}–(Bi_{1/2}K_{1/2}TiO_{3})_{1−x}$. We establish the core–shell nature of these grains by transmission-electron microscopy (TEM) and find an epitaxial crystallographic relation between core and shell, with a lattice mismatch of 6 ± 0.7%. The core–shell grains exhibit exceptional magnetoelectric coupling effects that we attribute to the epitaxial connection between the magnetic and ferroelectric phase, which also leads to magnetic exchange coupling as demonstrated by neutron diffraction. Apparently, ferrimagnetic $CoFe_{2}O_{4}$ cores undergo a non-centrosymmetric distortion of the crystal structure upon epitaxial strain from the shell, which leads to simultaneous ferrimagnetism and piezoelectricity. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000123290
Veröffentlicht am 01.07.2021
Originalveröffentlichung
DOI: 10.1039/d0nr02475a
Scopus
Zitationen: 6
Web of Science
Zitationen: 6
Dimensions
Zitationen: 8
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Institut für Mikroverfahrenstechnik (IMVT)
Institut für Nanotechnologie (INT)
Institut für Quantenmaterialien und -technologien (IQMT)
Universität Karlsruhe (TH) – Interfakultative Einrichtungen (Interfakultative Einrichtungen)
Karlsruhe Nano Micro Facility (KNMF)
KIT-Zentrum Klima und Umwelt (ZKU)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2040-3364, 2040-3372
KITopen-ID: 1000123290
HGF-Programm 43.22.01 (POF III, LK 01) Functionality by Design
Erschienen in Nanoscale
Verlag Royal Society of Chemistry (RSC)
Band 12
Heft 29
Seiten 15677–15686
Vorab online veröffentlicht am 25.06.2020
Schlagwörter 2018-020-022269, TEM, FIB, KNMF 2016-016-014529 WERA
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page