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Abstract. A ground-based, high-spectral-resolution Fourier
transform infrared (FTIR) spectrometer has been operational
in Addis Ababa, Ethiopia (9.01° N latitude, 38.76° E longi-
tude; 2443 m altitude above sea level), since May 2009 to ob-
tain information on column abundances and profiles of vari-
ous constituents in the atmosphere. Vertical profile and col-
umn abundances of methane and nitrous oxide are derived
from solar absorption measurements taken by FTIR for a
period that covers May 2009 to March 2013 using the re-
trieval code PROFFIT (V9.5). A detailed error analysis of
CH4 and N»O retrieval are performed. Averaging kernels of
the target gases shows that the major contribution to the re-
trieved information comes from the measurement. Thus, av-
erage degrees of freedom for signals are found to be 2.1
and 3.4, from the retrieval of CHy and N,O for the total
observed FTIR spectra. Methane and nitrous oxide volume
mixing ratio (VMR) profiles and column amounts retrieved
from FTIR spectra are compared with data from the reduced
spectral resolution Institute of Meteorology and Climate Re-
search/Instituto de Astrofisica de Andalucia (IMK/TAA) MI-
PAS (Version V5R_CH4_224 and V5R_N20_224), the Mi-
crowave Limb Sounder (MLS) (MLS v3.3 of N>O and CHy
derived from MLS v3.3 products of CO, N,O, and H,0),
and the Atmospheric Infrared Sounder (AIRS) sensors on
board satellites. The averaged mean relative difference be-
tween FTIR methane and the three correlative instruments
MIPAS, MLS, and AIRS are 4.2 %, 5.8 %, and 5.3 % in the
altitude ranges of 20 to 27 km, respectively. However, the bi-
ases below 20 km are negative, which indicates the profile of

CHy from FTIR is less than the profiles derived from cor-
relative instruments by —4.9 %, —1.8 %, and —2.8 %. The
averaged positive bias between FTIR nitrous oxide and cor-
relative instrument, MIPAS, in the altitude range of 20 to
27km is 7.8 %, and a negative bias of —4 % at altitudes be-
low 20 km. An averaged positive bias of 9.3 % in the altitude
range of 17 to 27 km is obtained for FTIR N,O with MLS. In
all the comparisons of CHy from FTIR with data from MI-
PAS, MLS, and AIRS, sensors on board satellites indicate a
negative bias below 20 km and a positive bias above 20 km.
The mean error between partial-column amounts of methane
from MIPAS and the ground-based FTIR is —5.5 %, with a
standard deviation of 5 % that shows very good agreement
as exhibited by relative differences between vertical profiles.
Thus, the retrieved CH4 and NoO VMR and column amounts
from Addis Ababa, tropical site, is found to exhibit very good
agreement with all coincident satellite observations. There-
fore, the bias obtained from the comparison is comparable to
the precision of FTIR measurement, which allows the use of
data in further scientific studies as it represents a unique en-
vironment of tropical Africa, a region poorly investigated in
the past.

1 Introduction

Methane (CHy), nitrous oxide (N>O), and chlorofluorocar-
bons (CFCs) are tropospheric species, which are the main
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source gases for the chemical families NO,, ClO,, and HO,
(Jacobson, 2005). The reaction of CHy with hydroxyl rad-
icals reduces ozone in the troposphere, and it influences the
lifetime or production of other atmospheric constituents such
as stratospheric water vapor and CO, (Michelsen et al., 2000;
Boucher et al., 2009), whereas the lifetime of N, O is deter-
mined by its rate of UV photolysis or reaction with O('D)
(Collins et al., 2010).

Methane retrievals from near-infrared spectra recorded by
the SCIAMACHY instrument on board ENVISAT suggested
an unexpectedly large tropical CHy emissions and the im-
pact of water spectroscopy on methane retrievals, with the
largest impacts in the tropics (Frankenberg et al., 2008b).
The recent increasing impact of CHs and N;O to global
warming has also been assessed by the last AR4 IPCC report
(IPCC, 2007; Sussmann et al., 2012). Nitrous oxide (N,O)
becomes the dominant ozone-depleting substance emitted in
the 21st century (Ravishankara et al., 2009). In 2007 and
2008, The Infrared Atmospheric Sounding Interferometer
(IASI) on board METOP-A observed an increase in midtro-
posphere methane in the tropical region of 9.5+2.8 and
6.3 4 1.7ppbv yr~!, respectively (Crevoisier et al., 2013).
Long-lived compounds ascend in the tropics, across the trop-
ical tropopause, and are subsequently redistributed by the
Brewer—Dobson circulation (Holton, 2004). According to the
World Meteorological Organization (WMO), the 2010 report
(WMO, 2010), 96 % of the increase in radiative forcing is
due to the five long-lived greenhouse gases: carbon dioxide,
methane, nitrous oxide, CFC-12, and CFC-11. The sources
and sinks of atmospheric methane (CH4) and its budget in
the tropics are not yet well quantified and have large uncer-
tainties due to the scarcity of measurements (e.g., Meirink et
al., 2008).

The tropics is the location where two important exchange
processes in the atmosphere are taking place, the interhemi-
spheric exchange and the entry of tropospheric air mass into
the stratosphere (Petersen et al., 2010; Fueglistaler et al.,
2009). Moreover, composition of a tropical atmosphere also
plays a critical role in the stratospheric chemistry (Solomon,
1999; TIPCC, 2007). Measurements and interpretation of at-
mospheric trace gas composition of the tropics is vital for
a better understanding of the budgets, sources, and sinks
of trace gases in the atmosphere and their effects on atmo-
spheric chemistry, greenhouse effect, and climate changes
globally. Emissions within the tropics contribute substan-
tially to the global budgets of many important trace gases
(IPCC, 2007; Frankenberg et al., 2008a).

The ground-based FTIR measurement at the Addis Ababa
site was launched in 2009, in collaboration with Karlsruhe
Institute of Technology, Germany, to measure concentrations
of various trace gases in the lower and middle atmosphere
over Addis Ababa. Thus, Addis Ababa FTIR measurements
of atmospheric trace gases and their importance to under-
stand various lower and middle atmospheric processes have
been reported in a number of previous studies (Takele Ke-
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nea et al., 2013; Mengistu Tsidu et al., 2015; Schneider et
al., 2015, 2016; Barthlott et al., 2017). HyO volume mixing
ratio (VMR) profiles and integrated column amounts from
ground-based FTIR measurements of the Addis Ababa site
were also compared with the coincident satellite observations
of the Tropospheric Emission Spectrometer (TES), Atmo-
spheric Infrared Sounding (AIRS), and Modular Earth Sub-
model System (MESSy) model, and the result confirmed rea-
sonably good agreement (Samuel, 2014). Laeng et al. (2015)
found that the MIPAS CHy4 profiles VSR_CH4_222 below 20
to 25 km is biased high by +14 %. For a later and improved
data version, namely VSR_CH4_224, Plieninger et al. (2016)
found a positive bias between 0.1 and 0.2 ppmv. For the
MIPAS N;O data version VSR_N20_224, Plieninger et al.
(2016) determined the bias to be between 0 and +30 ppb.

In this study, previous work on the intercomparison of
ozone (Takele Kenea et al., 2013) and water vapor (Samuel,
2014) are extended to source gases CH4 and N;O from
ground-based FTIR. Intercomparisons of vertical profiles
and column amounts retrieved from solar spectra observed
by the Fourier transform spectrometer at the Addis Ababa
site with data from MIPAS, MLS, and AIRS sensors on board
satellites were made to assess the quality of the data derived
from FTIR. The observed differences between ground-based
FTIR and satellite observation of CH4 and N, O are analyzed
using the statistical tools detailed in von Clarmann (2006).
The measurement site and the FTIR spectrometer along with
the retrieval approach will be introduced in Sect. 2, and the
retrieved information content and spectral analysis will be
discussed in Sect. 3. A short description of satellite mea-
surement techniques followed by the detailed intercompar-
ison with those products will be presented in Sects. 4 and 5,
respectively. Finally, a summary and conclusions are given
in Sect. 6.

2 Measurement site and instrumentation
2.1 Measurement site

The ground-based FTIR at Addis Ababa was established to
acquire high-quality, long-term measurements of trace gases
to understand chemical and dynamical processes in the at-
mosphere and to validate models and satellite measurements
of atmospheric constituents. The geographic position of the
observatory is 9.01° N, 38.76° E, 2443 ma.s.l., and its suit-
ability has been confirmed from the measurements of trop-
ical stratospheric ozone, precipitable water vapor, and iso-
topic composition of water vapor (Takele Kenea et al., 2013;
Mengistu Tsidu et al., 2015; Schneider et al., 2015, 2016;
Barthlott et al., 2017). Addis Ababa is a tropical high-altitude
observing site and as such is important to the understanding
of processes near the tropical tropopause. Physical process in
the tropics, mainly around tropopause layer, has a vital role
in climate change and the general circulation of the tropi-
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cal troposphere, which would control the transport of energy,
water vapor, and trace gases in the climate system derived
by the deep convection (Holton and Gettelman, 2001). Thus,
the observed variation in the measurement of atmospheric
trace gases would help us to understand the effects of tropi-
cal dynamics on the site. Besides, it fills a data gap due to the
scarcity of ground-based measurements in tropics.

2.2 The FTIR spectrometer and retrieval

Fourier transform spectroscopy has been applied success-
fully to study trace gases in the atmosphere by examining at-
mospheric absorption lines in the infrared spectrum from so-
lar radiation. Measurement of the sun’s spectra at the Earth’s
surface provides information about atmospheric composi-
tion. This technique uses the sun as a light source in order to
quantify molecular absorptions in the atmosphere and then
retrieve trace gases abundance. The high-resolution FTIR
spectrometer, Bruker IFS120M, upgraded with 125 M elec-
tronics, from Bruker Optik GmbH, in Germany, was installed
in May 2009 at the Addis Ababa site. This interferometer is
equipped with indium—antimonide (InSb) detector, which al-
lows coverage of the 1500-4400cm™! spectral interval. In
this spectral range, a large number of species that reside in
the atmosphere can be detected.

The measured spectra have been analyzed using an algo-
rithm that simulates the spectra and Jacobians by the line-
by-line radiative transfer model PRFFWD (PRoFit ForWarD
model) to produce the synthesized spectra, and the verti-
cal profiles of CH4 and N>O would be derived by apply-
ing a retrieval code PROFFIT (Ver95) (Hase et al., 2004). It
has been developed based on semiempirical implementation
of the optimal estimation method (Rodgers, 2000) to derive
the VMR profiles and column amounts of multiple species.
Hence, CH4 and N, O profiles from measured spectra in the
microwindows that span a spectral range of 2400-2800 cm ™!
have been discussed in this paper. A Tikhonov—Phillips reg-
ularization method on a logarithmic scale was used to derive
the profiles. Retrieved state vector X is related to a priori (x,)
and true state vectors (x) by the following mathematical ex-
pression:

F=x,4+AXx—x,) +e, 4))

where A is averaging kernel matrix, and ¢ is the measure-
ment error. Moreover, the actual averaging kernel matrix de-
pends on several parameters including the solar zenith angle,
the spectral resolution and signal-to-noise ratio, the choice of
retrieval spectral microwindows, and the a priori covariance
matrix S,. The elements of the averaging kernel for a given
altitude gives the sensitivity of retrieved profiles at which the
real profile is present, and its full width at half maximum is
a measure of the vertical resolution of the retrieval at that al-
titude (Rodgers, 1990). Error estimation analysis is based on
the analytical method suggested by Rodgers (2000) as fol-
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lows:
x—x=A-Dx—x,)+GK,b—b,) +Ge. 2)

The averaging kernel matrix can be defined as A = GK; I is
the identity matrix, and G is the gain matrix that represents
the sensitivity of retrieved parameters to the measurement.
K, is the sensitivity matrix of the spectrum to the forward
model parameters b. Since we do not know the true state of
the atmosphere, we can not specify the actual retrieval er-
ror; we can only make a statistical estimate of it, which is
expressed in terms of a covariance matrix. The total error
in the retrieved profile can be described as a combination of
measurement error and forward model parameter error. It has
been suggested by Rodgers (2000) to include smoothing er-
ror in the total error budget, but this concept has been revised
by von Clarmann (2014).

3 Information content and error analysis
3.1 Spectroscopic data and a priori profiles

In our retrieval strategy, the profiles of CH4 and N> O were re-
trieved, while the profiles of interfering species (see Table 1)
were scaled. A prior x, profiles for methane and the inter-
fering species above Addis Ababa were taken from 40-year
averages (1980-2020) of the Whole Atmosphere Community
Climate Model (WACCM; Garcia et al., 2007). Similarly, the
a priori profile for nitrous oxide has also been constructed
from monthly average data available from WACCM (e.g.,
Tilmes et al., 2007), whereas the grid to be used for the Ad-
dis Ababa site is found with the WACCM mixing ratio pro-
file data at ftp://ftp.acom.ucar.edu/user/jamesw/IRWG/2013/
WACCM/V6/Addis_Ababa/ (last access: 21 July 2020),
as recommended by the NDACC/IRWG (Network for
the Detection of Atmospheric Composition Change/ In-
frared Working Group). WACCM is a numerical model
developed at the National Center for Atmospheric Re-
search (NCAR). Daily profiles of pressure and temperature
were taken from the National Centers for Environmental
Prediction (NCEP) (http://www.cdc.noaa.gov/data/gridded/
data.ncep.reanalysis.html) (last access: 21 July 2020) reanal-
ysis and are made available through the NASA Goddard
Space Flight Center automailer. The spectroscopic param-
eters were taken from the HITRAN (high-resolution trans-
mission molecular absorption) database, version 2008, for
N>O, and 2009 for HO (Rothmann et al., 2009), and the
updated HITRAN 2012 for CO, CHy4, and NO; (Rothmann
et al., 2013) were used during retrieval of CH4 and N> O.
Both methane (CH4) and nitrous oxide (N;O) are well
mixed in the troposphere, and their VMR decreases with
height and becomes negligible with no variation above
55km. The vertical variability in NoO and CHy4 in the
lower stratosphere is characterized by a somewhat higher
vertical gradient as compared to the other layers. Both
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Table 1. Microwindows, interfering gases, and their DOFs listed in the table are used for the retrieval of VMR profiles and column amounts

of CH4 and N, O from FTIR spectra recorded at Addis Ababa.

Gas Microwindow (cmfl)

CHy4 (2599.8, 2600.5)
(2614.87, 2615.4)

(2650.8, 2651.29)

(2760.6, 2761.23)

(2778.22, 2778.55)

N,O (2464.2, 2465.57)
(2486.55, 2488.18)

(2491.86, 2492.9)

(2522.95, 2524.1)

Interfering species DOFs
H,0, CO,, NO, 2.045+0.18
H,0, CO,, CHy 3.38£0.15

profiles and columns of CH4 and N>O over Addis Ababa
have been obtained by fitting five and four selected spectral
regions for CHs and N;O, respectively. Here, spectral
microwindows used for the retrieval are selected such
that they contain absorption features of the target species
along with a minimal number of interfering absorption
lines; and they have been adopted from different sources
(Senten et al., 2008; Sussmann et al.,, 2011; Meier et
al., 2004). Microwindows, target, and interfering species
used in this paper are summarized in Table 1. However,
the microwindows are somewhat modified for the Addis
Ababa FTIR site from the windows recommended by
NDACC, as mentioned in a result of work done within the
EU UFTIR projects (http://projects.amap.no/project/uftir-
time-series-of-upper-free-troposphere-observations-from
-a-european-ground-based-ftir-network/, last access: 21 July
2020). The choice of these microwindows over those recom-
mended by NDACC is due to their improved performance as
indicated in the Supplement. The main criterion for selection
of these microwindows is high sensitivity to methane and
low interference from other gases. Our tests have shown
that these windows are still appropriate for the Addis
Ababa site. Methane and nitrous oxide vertical profiles
over Addis Ababa have been obtained by fitting five and
four microwindows, respectively. The retrieved state vector
contains volume mixing ratios of the target gas defined in 41
layers of the tropical atmospheric conditions.

PROFFIT includes various retrieval options such as
scaling of a priori profile, the Tikhonov—Phillips method
(Phillips, 1962; Tikhonov, 1963), or the optimal estimation
method (Rodgers, 2000). In this study, an optimized retrieval
strategy for Addis Ababa has been established for CHy and
N>O by applying it first to single spectra, as test cases, and
later routinely to the full set of measurements. Partly, the
strategy to optimally retrieve the total columns of CHy and
N>O is to search for a set of spectra microwindows. A con-
straint, initial guess, and a priori profile are chosen in such
a way that all the structures visible in the retrieved distribu-
tions originate from the measurements and are not artifacts
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due to any constraints. At the Addis Ababa site, we did not
use the a priori covariance matrix as an optimal estimation.
However, the Tikhonov-type L; regularization method (Suss-
mann et al., 2009) on a logarithmic scale is used during the
retrieval of CHy4 and N»O. The retrieval is performed on a
fine vertical grid from 2.45 to 85km and is stabilized by a
first-order Tikhonov constraint, R = « LT L, where « is the
strength of the constraint, and L is the first-order derivative
(Borsdorff et al., 2014), which smooths the solution without
biasing it towards the a priori profile. The parameter deter-
mines the weight of regularization, and it is also important
to choose it to be appropriate to the problem. One way to fix
this parameter is the L-curve method (Hansen, 1992). The
regularization strength «, is determined by finding a trade-
off between the number of degrees of freedom (a measure of
the amount of information in methane and nitrous oxide re-
trieval), which is given by the trace of the averaging kernel
matrix and the noise-induced error (Rodgers, 2000). A reg-
ularization strength o of 2.5 x 10* was found optimum for
CHy retrieval.

The spectral fit and residual between measured and sim-
ulated spectra at five microwindows for CH4 are shown in
Fig. 1 for spectra recorded on 26 February 2013. Four mi-
crowindows are used for NoO and depicted in Fig. 2 for
spectra recorded on 31 December 2009. The last column
of Table 1 provides typical values for the degrees of free-
dom for signal (DOFs), and it indicates the possible indepen-
dent pieces of information for the target gases distribution.
The magnitude of residuals found from spectral fits span a
range from a maximum of +0.25 % to —0.64 % for CH4 and
+0.34 % to —0.34 % for N,O. Hence, the residuals indicate
systematic errors in the spectroscopic line data used to derive
the concentration of CH4 and N;O. Therefore, the fits are
good with an averaged root-mean-square residual of 0.12 %
for the microwindows selected in the retrieval of CHy.

The quality of FTIR measurements during time period of
May 2009-February 2011 for ozone has been revealed by
Takele Kenea et al. (2013), whereas the measurements qual-
ity for CH4 and N, O has also been assessed through the sen-
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Figure 1. The five spectral microwindows used for retrieval of CHy4, with the measured spectrum in red, simulated spectrum in black, and
residuals on top of the respective microwindow for spectrum recorded on 26 February 2013; time: 10h 17m 15 s; root mean square (rms)
= 0.1189; solar zenith angle (SZA) = 20.6°; optimal path difference (OPD) = 116.1; DOF = 2.23; field of view (FOV) =2.27 mrad.

sitivity, DOFs, and the contribution of different error sources
on measurements, in addition to the spectral residuals that
indicate systematic errors in the spectroscopic line data.

3.2 Vertical resolution and sensitivity assessment

The spectral resolution of a measurement affects the amount
of vertical information derived from the spectral line shape
of a measured species (Livesey et al., 2008). Figure 3 shows
averaging kernel matrices for the retrieval of the vertical pro-
files of CH4 and N,O mixing ratios, respectively, from the
FTIR measurements. The rows of the averaging kernel ma-
trices at selected altitudes which indicate the sensitivity of
retrieved CHy and N, O values at the level to true mixing ra-
tios are also presented. The dotted line represents the sum
of all the rows of the averaging kernel, which represents the
overall sensitivity of the FTIR measurement to observe CHy
and N,O.

Figure 3 shows a strong sensitivity in the altitude range of
the troposphere and lower stratosphere, i.e., 2.45 up to 27 km
for the retrieval of CH4 and N, O. Thus, the sum of rows of A
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for all the retrieval values of CH4 and N;O is greater than 0.5
up to 27 km. The trace of the row-averaging kernel for CHy,
which is 2.25 for the spectra recorded on 26 February 2013
and 2.11 £0.06 for all the data, implies that partial columns
representing two different altitude ranges in the atmosphere
can be obtained from the observations of CHy in tropical at-
mospheric conditions. Similarly, the trace of the averaging
kernel for N>O is 3.38 +0.15 on for all the data.

The amplitude of the averaging kernels indicates the sen-
sitivity of the retrieval, and the full widths at half maximum
(FWHM) indicate the vertical resolution of the correspond-
ing layer. We also ignore the altitude range where the resolu-
tion of the instrument is beyond 20 km, which has been com-
puted using the reciprocal of the diagonal values of averaging
kernels and multiplying by the intervals of the layers as re-
ported in Rinsland et al. (2005). The vertical resolution is less
than 20 km for altitudes below around 27 km (not shown).

Atmos. Meas. Tech., 13, 4079-4096, 2020
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3.3 Error estimation

The error calculations conducted here are based on the error
estimation package incorporated in the PROFFIT retrieval al-
gorithm that was developed based on the analytical method
suggested by Rodgers (2000). The quantified sources of er-
rors are temperature, measurement noise, instrumental line
shape, solar lines, line of sight, zero level baselines offset,
and spectroscopy. It has been observed that baseline and at-
mospheric temperature uncertainties are the leading contri-
bution to the total uncertainty. Details about the evaluation
of individual contributions to the error budget are provided
in Senten et al. (2008). Figure 4 shows the statistical (ran-
dom) error, systematic error, and total fractional error (left to
right) for CH4 (top) and N, O (bottom) retrieval from a spec-
trum recorded on 26 February 2013 and 31 December 2009,
respectively. It can be noted from Fig. 4 that the main system-
atic error source is the uncertainty in spectroscopic parame-
ters, whereas the major statistical error source is the baseline.
Random errors are dominated by the baseline offset uncer-
tainty and the measurement noise in the troposphere. Total
estimated random error due to parameter uncertainties is de-
picted as a dark-yellow line (see Fig. 4a). The total statisti-
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Figure 4. Estimated errors for the profiling retrieval of CH4 (top) and N>O (bottom) over Addis Ababa: (a) statistical (random) errors
(b) systematic errors of parameter listed in the legends, and (c) fractional total error (%).

cal error of CHy retrieval is about 0.07 ppmv (4.4 %) in the
lower troposphere and about 0.04 ppmv (2.25 %) in the upper
troposphere/lower stratosphere (UT/LS) region. Concerning
systematic errors, spectroscopic parameters are the dominant
uncertainty sources, and estimated total systematic error is
about 0.05 ppmv (3.5 %) and 0.1 ppmv (7.2 %) for the lower
troposphere and the UT/LS region, respectively.

Figure 4a—c (bottom panels) show the estimated random
and systematic errors for the NoO profile retrieved from
FTIR. Random errors are dominated by the baseline off-
set uncertainty and temperature in the troposphere. The to-
tal statistical errors in the middle and upper troposphere are
between 0.009 (3.5 %) and 0.03 ppmv (9 %), with its major
contribution from the baseline. Spectroscopic parameters and
baselines are the dominant uncertainty sources for system-
atic errors. The estimated total systematic error is less than
0.025 ppmv (8 %) at altitudes below 22 km. The total frac-
tional error of CH4 and N>O retrieved from ground-based
FTIR has been shown in the last column of Fig. 4. Fractional
error of CHy is less than 10 % at altitudes below 27 km with

https://doi.org/10.5194/amt-13-4079-2020

minimum fractional error of 4 % at middle troposphere. On
the other hand, the total fraction error of N, O retrieval is less
than 13 % at altitudes below 27 km, with a minimum value
of 4% at 6km and 7.5 % at 17 km.

Time series partial-column amount

Concentrations of CHy and N,O were derived from 166
spectra of NDACC filter 3 recorded from May 2009
to March 2013. Figure 5 shows the time series of the
retrieved total column amounts (in moleculescm™2) of
CHy and N;O obtained from the Addis Ababa FTIR
measurement site from 2009 to 2013. The mean total
column amounts of CHy and N;O measured at Addis
Ababa are 2.9 x 10" moleculescm™2 +3.4% and 5.23 x
10'® molecules cm™2 4 6.93 %, respectively. Due to sen-
sitivity of the observation in measuring CHs and N,O
trace gases being limited to an altitude of around 27 km
as explained using averaging kernel row of the mea-
surement, the mean partial column of CH4 and N,O
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Figure 5. Partial columns of (a) CH4 and (b) N, O gases over Addi

within the sensitivity range of the instrument are deter-
mined as 2.85 x 10'” moleculescm™2 +5.3% and 5.16 x
10" molecules cm ™2 =+ 6.95 %, respectively.

The sensitivity from the averaging kernel analysis is used
to determine the upper altitude limit up to which CH4 and
N>O data from ground-based FTIR can reasonably be used.
The DOFs within these partial-column limits are about 1.03
and 1.27 for CH4 and N, O, respectively. Error analysis indi-
cates that the statistical error accounts for 2.3 % in the total
column amounts of CHy4 and 2.0 % in total columns of N> O.
Similarly, the systematic error accounts for 2.1 % in the to-
tal columns of CHy4 and 2.26 % in the total columns of N,O.
Generally, the overall contribution of both statistical and sys-
tematic errors to the total error during the retrieval of CHy
and N>O from ground-based FTIR are 3.1 % and 3 %, re-
spectively.

4 Satellite measurements

4.1 Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS)

Michelson Interferometer for Passive Atmospheric Sound-
ing (MIPAS) is a Fourier transform spectrometer for the de-
tection of limb emission spectra from the upper atmosphere
to the lower thermosphere and is designed for global ver-
tical profile measurement of many atmospheric trace con-
stituents relevant to the atmospheric chemistry, dynamics,
and radiation budget of the middle atmosphere. The verti-
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s Ababa in the altitude range of 2.45 to 27 km.

cal resolution of MIPAS ranges from 2.5 to 7km for CHy
and from 2.5 to 6km for N>O in the reduced-resolution
period (Plieninger et al., 2015). In this study, we have
used the reduced spectral resolution Institute of Meteorology
and Climate Research/Instituto de Astrofisica de Andalucia
(IMK/TAA) MIPAS methane and nitrous oxide data products
V5R_CH4_224 and V5R_N20_224 (Plieninger et al., 2016,
2015). MIPAS profile points, with the diagonal element of
the averaging kernels above 0.03 and the visibility flag of 1,
have been used (Plieninger et al., 2016).

4.2 Microwave Limb Sounder (MLS)

The Earth Observing System (EOS) Microwave Limb
Sounder (MLS) is one of four instruments on NASA’s EOS
Aura satellite, launched on 15 July 2004, into a near-polar,
sun-synchronous orbit at 705 km altitude (Schoeberl et al.,
2006). It measures N> O in spectral region, 640 GHz from the
stratosphere into upper troposphere (Waters, 2006). More-
over, spatial coverage of this instrument is nearly global
(—82°S to 82°N), and individual profiles are spaced hori-
zontally by 1.5° or 165km along the orbit track. Roughly,
the satellite covers these latitudinal bands with 15 orbits per
day or around 3500 profiles per day with vertical resolution
of 4-6 km for N, O. This instrument ascends in the equatorial
region at local time of around 13:45 LT.

MLS N,O data set has been used to validate the ground-
based FTIR measurements. However, methane (CH4) data
are derived using coincident measurements of atmospheric
water vapor (H,O), carbon monoxide (CO), and nitrous ox-
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ide (N>O) from the EOS MLS instrument on the NASA Aura
satellite, and details are given in Minschwaner and Man-
ney (2015). Selection criteria were implemented as stated in
Livesey et al. (2013). More details regarding the MLS ex-
periment and data screening are provided in the above refer-
ences in detail and at https://mls.jpl.nasa.gov/data/datadocs.
php (last access: 21 July 2020). MLS N>O v2.2 has been
validated, and its precision and accuracy is in Lambert et
al. (2007). The authors reported that MLS N»O precision is
24-14 ppbv (9 %—41 %) and the accuracy is 70-3 ppbv (9 %—
25 %) in the pressure range of 100—4.6 hPa.

4.3 Atmospheric Infrared Sounder (AIRS)

Operating in nadir sounding geometry, the Atmospheric In-
frared Sounder (AIRS) on board the Aqua satellite launched
into Earth orbit in May 2002 (Chahine et al., 2006). AIRS is a
medium-resolution infrared grating spectroradiometer, and a
diffraction grating disperses the incoming infrared radiation
into 17 linear detector arrays comprising 2378 spectral sam-
ples. The satellite crosses the Equator at approximately 01:30
and 13:30 local time, resulting in near-global coverage twice
a day. AIRS has 2378 channels that cover from 649 to 1136,
1217 to 1613, and 2169 to 2674 cm™!. It also measures trace
gases such as O3, CO, and to some extent CO,. AIRS CHy
and N;O retrievals have been characterized and validated by
Xiong et al. (2008, 2014), respectively. Both AIRS and MLS
data were obtained through the Goddard Earth Sciences Data
and Information Services Center (https://daac.gsfc.nasa.gov/,
last access: 21 July 2020).

5 Comparison of FTIR with MIPAS, MLS, and AIRS
observations

5.1 Comparison methodology

The quality of FTIR CH4 and N,O for a period that cov-
ers May 2009 to March 2013 is assessed through compari-
son with data from MIPAS (May 2009 to December 2010),
MLS (May 2009 to March 2013), and AIRS (May 2009
to March 2013) sensors on board satellites. MIPAS, MLS,
and AIRS retrievals were used after averaging data obtained
within coincident criteria of =2° of latitude and £10° of lon-
gitude from the ground-based FTIR site in Addis Ababa and
within time difference of £24 h. The more stringent latitudi-
nal criterion has proven to be a good choice for all compar-
isons, since latitudinal variations are, in general, more pro-
nounced than longitudinal ones (Takele Kenea et al., 2013).
These criteria yielded 29, 77, and 118 d of coincident mea-
surements between FTIR and MIPAS, MLS, and AIRS, re-
spectively.

The ground-based FTIR measurements of CH4 and N,O
have been validated at different locations (e.g., Senten et al.,
2008). The satellite data (MIPAS, MLS, and AIRS) have
a considerably better vertical resolution than ground-based
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FTIR profiles due to observation geometry, spectral win-
dows, and measurement techniques. Thus, analysis of the
comparison between volume mixing ratio values derived
from FTIR and MIPAS were performed for the data sets col-
lected on May 2009 to December 2010. Furthermore, the
comparison of FTIR (CH4 and N>O) with MLS (CH4 and
N>O) and AIRS (CHy) for the time period of May 2009 to
February 2013 has also been applied to assess quality of the
data derived from FTIR. Hence, the profiles from MIPAS,
MLS, and AIRS have been smoothed to make a compari-
son with FTIR as satellite observations attain better verti-
cal resolution. Therefore, the satellite measurement profiles
are smoothed using the FTIR averaging kernels of individ-
ual species obtained from the ground-based FTIR retrieval
by applying the procedures reported in Rodgers and Connor
(2003) and given as

Xgi =X, +AX; —Xxa), 3

where xg; is the smoothed profile, x, and A represent the a
priori and averaging kernel for CH4 and N, O obtained from
the ground-based FTIR instrument, respectively, and x; is the
retrieved profile obtained from satellite measurements after
we interpolated it to the FTIR grid spacing. We also calculate
the following error statistics that can characterize the features
of the instruments and parameters to be observed, such as the
bias between the instruments using the difference (absolute
or relative) in the daily mean profile. The difference (abso-
lute or relative) at each altitude layers of a pair of profile is
calculated using

8i(z) = [FTIR; (z) — X (2)]. “4)

The mean squares error can be expressed as

| N(Z)

MSE; (z) = PBIETE) 5)
i=l1

N(z) -1

The mean difference (absolute or relative) for a complete set
of coincident pair profiles obtained from the ground-based
FTIR and the correlative satellites is expressed as

1 Nf [FTIR; (z) — ¥ (2)]

Arel(z) = 100(% ’
1) = 1000%) > 5 2 [FTIR, (2) + %1(2)1/2

(6)

i=1

where §;(z) is the difference (absolute or relative), N(z) is
the number of coincidences at z, and FTIR; (z) is the FTIR
VMR at z and the corresponding x4 (z) volume mixing ra-
tio derived from satellite instruments. The standard deviation
from the mean differences (absolute or relative) ogif(z) is
important to partially characterize the measurement error. As
reported in von Clarmann (2006), some use debiased stan-
dard deviation, which measures the combined precision of
the instruments instead of the standard deviation of the mean
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1 N(Z)

———— ) [8i(2) — Dars(D)T?, (7
N(@) -1 ;

0diff (2) =
where §; (z) is the difference (absolute or relative) for the ith
coincident pair calculated using Eq.(4). The statistical uncer-
tainty in the mean differences (absolute or relative), which is
standard error of the mean (SEM), is the quantity used to
judge the statistical significance of the estimated biases, and
it can be expressed in terms of the standard deviation of the
mean as follows:

0(2)
VN2

One can also conduct the comparison of FTIR and MI-
PAS using partial columns obtained from both FTIR and
smoothed MIPAS CH4 and N,O. Hence, the relative dif-
ference between ground-based FTIR and smoothed MIPAS
partial columns of CH4 and N,O by taking into account the
lower altitude limit of MIPAS observations and upper limit
of ground-based FTIR sensitivity has been calculated using

(PCrr1R (2) — PCsat(2)) }
(PCrrir (2) + PCsat(2))/2 ]’

SEM(Z) =

®)

€))

RDiff(%) = 100 x [

where PC is a partial column of FTIR and the corresponding
satellite measurements. Here in this paper coincidence and
smoothing errors are not taken into account in the full error
analysis of the comparisons between remotely sensed data
sets (von Clarmann, 2006). Hence, we focus on the random
uncertainties in each instrument (Combined random error)
that has been used to evaluate the comparison uncertainty
(standard deviation of the difference).

5.2 Comparison of FTIR CHy4

In Fig. 6, mean profiles, mean differences, and estimated er-
rors versus deviations of the difference between FTIR and
MIPAS_CH4_224 mixing ratios are shown. The comparison
has been made using 29 coincident data for a time period
between November 2009 and December 2010. Figure 6b in-
dicates a negative bias of —4.8 % at around 16 km and 2 % at
22 km. Between 23 and 27 km, the FTIR value is higher than
MIPAS values. The difference increases with altitude from
23 to 27 km (4.6 %) with a maximum at 27 km. A large nega-
tive bias in FTIR CHy is obtained; i.e., FTIR CHy values are
lower by 0.07 (4.8 %) to 0.04 ppmv (2.2 %).

Figure 6a indicates that the standard deviation of the mean
differences is larger than the combined random error of the
two instruments throughout the altitude range. For instance,
it is twice the combined standard deviation at altitudes above
20km and less below 20 km, which indicates the underesti-
mation of random errors from one or both of the instruments.
In addition, the overestimation of standard deviation of the
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difference may result from not taking all the error budget of
MIPAS into account, and the spatial and temporal criteria
sets used to collect the coincidence data of MIPAS can create
a discrepancy as well. The natural variations in the methane
have also contributed to the overestimation of a standard de-
viation of the difference, as biases vary with seasons as re-
ported in Payan et al. (2009).

Figure 7b shows the comparison between FTIR CH4 pro-
files and CHy4 derived from MLS measurements of atmo-
spheric water vapor (H,O), carbon monoxide (CO), and ni-
trous oxide (N>O) and indicates that no significant bias in
FTIR CHy4 data is present between 18 and 20km. In the
tropopause layer, the comparison indicates a negative bias of
—1.7% at 17 km; i.e., the FTIR value is slightly high. FTIR
CHy values are lower at altitudes between 20 and 27 km with
a bias of below 11 %, which is maximum at 27 km or on av-
erage by 0.12 ppmv (6.7 %) between 20 and 27 km. The bias
below 19km and above 27 km can not be explained by the
systematic errors of FTIR as the bias is larger than the sys-
tematic errors of FTIR. However, the latter, which is for al-
titudes above 27 km, is also out of the sensitivity ranges of
FTIR. Furthermore, the standard deviation of the difference
is larger than the combined random errors of the instruments.
A bias in the altitude range of 20 to 27 km can be explained
by the systematic error of FTIR.

In Fig. 8 mean profiles, differences, and estimated error
versus deviation of the difference between FTIR and AIRS
mixing ratios are shown. The largest negative bias is found at
altitudes between 11 and 19 km, with a maximum difference
of —0.08 ppmv at around 15 km. A negative bias of the AIRS
mixing ratio of CHy is higher than that the FTIR as shown
in Fig. 8. A positive bias existed at altitudes between 7 and
9km, and similarly, it also has been shown at altitudes be-
tween 21 and 27 km, with a maximum value at around 27 km,
and its bias is 0.14 ppmv (9 %). The standard deviation of the
difference agrees with the combined random error at altitudes
below 20 km, and it overestimates above 20 km.

In all the comparisons of FTIR CH4 with data from MI-
PAS, MLS, and AIRS, sensors on board satellites indicate a
negative bias below 21 km and a positive bias above 21 km,
with similar bias of not higher than 5.8 % in the altitude range
of 21-27 km (see Table 2.). The volume mixing ratios derived
from the satellite are higher at altitudes lower than 21 km.

5.3 Comparison of FTIR N,O

FTIR N>O mixing ratio MIPAS comparison results are
shown in Fig. 9, where it represents the mean profiles, mean
absolute difference, and standard deviation of the mean along
with the combined errors of the two instruments. Mean pro-
files of FTIR show a maximum at around 23 km and de-
crease smoothly as altitude increases, and that of the MI-
PAS_N20_224 value starts to decline starting from the low-
ermost stratosphere.
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Figure 7. Comparison of CHy from MLS (V3.3) and FTIR. Details as in Fig. 11.
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Figure 8. Comparison of CHy from AIRS and FTIR. Details as in Fig. 11.

Table 2. Averaged statistical means (M) and standard deviations (SD) of the relative differences 100 x [%%ng] (%) defined in the

2
altitude range of 17-20 and 21-27 km. The numbers of coincidences (N) within a spatiotemporal criterion of £2° of latitude and +10°
of longitude and time difference of +24 h are selected for intercomparison. This is for FTIR CH4 and N,O with the corresponding other

instruments (stated in second column).

Gas  Instrument Altitude range M= SD  Period N
CHs MIPAS 17-20/21-27 —4.8/42+52/55 May 2009-Dec 2010 29
MLS 17-19/20-27 —1.8/5.8+8/8.8  Jun 2009-Feb 2013 77
AIRS 17-20/21-27 —2.8/5.3+3.5/5.4 Jun 2009-Feb 2013 118

Comparison of FTIR N;O profiles to MIPAS
(V5R_N20_224) measurements (see Fig. 9b) indicates
that FTIR value is higher than the MIPAS above 20km,
and the maximum mean absolute difference in N>O is 15 %
(0.04 ppmv) at around 24 km, while the FTIR value is less at
altitudes below 20 km, with a maximum difference of —7 %
(—0.02ppmv) at around 17km. The bias at 19km is not
statistically significant, as the standard error of the mean is
larger than the bias. In the remaining altitudes, standard error
of the mean is smaller than the mean bias, and the biases are
statistically significant. Since, the bias at altitudes between
20 and 27 km is smaller than the FTIR systematic errors, the
bias could be explained in terms of systematic uncertainties
in FTIR (see Fig. 4b, bottom panel). The standard deviation
of the difference is larger than the combined error of the
two instruments at altitudes above 20 km (see Fig. 9¢c), and
the standard deviation of the difference agrees with the
estimated combined random error in the altitude ranges

Atmos. Meas. Tech., 13, 4079-4096, 2020

between 20 and 27 km. For the altitudes below 20 km, the
estimated combined random error is overestimated.

Figure 10a represents the mean profiles of N»>O derived
from the coincident pairs of FTIR and MLS. Throughout the
whole altitude range, the value derived from FTIR is over-
estimated (relative to MLS). The FTIR values of N,O are
larger than the MLS value of N>O by a factor of 1.2 and 1.1
at around 21 and 27 km, respectively. The mean relative dif-
ference in FTIR and MLS N, O value increases as altitude in-
creases; its value is less than 18.6 % at altitudes below 27 km,
and its bias below 22 km is less than 8 %, which can be ex-
plained in terms of the systematic error of FTIR N>O. Thus,
the positive bias is statistically significant as the mean differ-
ence in the comparison is larger than the standard error of the
mean.

https://doi.org/10.5194/amt-13-4079-2020
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Figure 9. Comparison of NoO from MIPAS (V5R_N20_224) and FTIR. Details as in Fig. 11.

(a) B 30 45 0 15 30 (©
50 50 50
FTIR Tﬁé‘g MAD —— De-baisMAD
B MLS MRD_lP = -+ = Combined error
1 !
40 - 40/ 40
-
e _ T
— E &
£ et = g
= (] 5
s 30 e g 304 2 30
2 T+ = <
= —t <
< ]
i
[re—
204 T 20 20
bt
ot
10— : T 10 T 10 r
0.00 015 0.30 0.3 0.0 0.3 0.000  0.025  0.050
Vol. mix ratio [ppmv] Vol. mix. rat. [ppmv] Vol. mix. rat. [ppmv]

Figure 10. Comparison of N»O from MLS (V3.3) and FTIR. Details as in Fig. 11.
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FTIR (stars) and MIPAS (V5R_CH4_224 and V5R_N20_224) (inverted triangles) partial columns. Left panels: relative differences between
ground-based FTIR and MIPAS (V5R_CH4_224 and VSR_N20_224) partial columns.

5.4 Comparisons of partial columns

For the partial-column (PC) comparisons of FTIR with MI-
PAS, it is vital to take into account the lower altitude limit
of MIPAS, which is 15 km for both target gases. The ground-
based FTIR sensitivity is used to determine the upper altitude
limit, which is reasonable up to ~ 27 km for CH4 and N>O
in the tropical atmospheric condition. Therefore, the PC that
we use in the comparison is limited to the altitude range of
15-27 km. The DOFs within these partial columns’ limit are
about 1.0 and 1.2 for CH4 and N> O, respectively.

Figure 11 shows the time series of the partial columns
and relative differences of CHy (a) and N, O (b). The partial-
column comparison of CHy between values of FTIR and MI-
PAS revealed a mean error of —5.5 %, mean squares error of
7.4 %, and standard deviation from the mean error of 5 %.
Similarly, N>O values between FTIR and MIPAS revealed a
mean error of 0.5 %, mean square error of 3.7 %, and stan-
dard deviation from mean error of 3.8 %; in the latter case
a significant positive bias is observed, and in CH4 negative
bias was obtained.
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6 Summary and conclusions

The vertical profiles and partial columns of CH4 and
N>O over Addis Ababa, Ethiopia, were derived from
ground-based FTIR. The mean partial column of CHy
and N>O within the sensitivity ranges of the instrument,
which is from the surface to around 27km, is deter-
mined as 2.85 x 10! moleculescm™245.3% and 5.16 x
10'® molecules cm™2 4 6.95%, respectively. Furthermore,
the overall contribution of both statistical and systematic er-
rors, i.e., a total error of CHs and N,O from ground-based
FTIR, is 3.1 % and 3 %, respectively.

From comparison of FTIR CH4 and MIPAS_CH4_224
products, a statistically significant maximum negative bias
of —4.8 % at an altitude of 15 km that extends to 21 km and
maximum positive bias of 4.6 % at an altitude 27 km were ob-
tained. The largest negative bias is found at altitudes between
11 and 19 km, with a maximum difference of —0.08 ppmv
(—4.8%) at around 15km, and a positive bias of less than
0.14 ppmv (9 %) is found at altitudes between 21 and 27 km,
with a maximum value at around 27 km in the FTIR CHy
comparison with AIRS. On the other hand, from a compari-
son of CHy from ground-based FTIR and MLS version 3.3,
we obtained a significant positive average bias of 0.12 ppmv
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(6.7 %) in the altitude range of 20-27km and a negative
bias of —1.7 % at 17 km. In the case of FTIR N,O and MI-
PAS_N20_224, a significant positive bias of less than 15 %
in the altitude range of 22-27 km with a maximum value at
around 25 km and a negative bias of —7 % at 17 km has been
obtained. A positive bias of less than 18.6 % for altitudes be-
low 27 km is noted for N> O between FTIR and MLS, and its
bias below 22 km is less than 8 %, which can be explained in
terms of the systematic error of FTIR N>O.

In general, the retrieved CHs and N,O VMR and col-
umn amounts from Addis Ababa, tropical site, exhibited very
good agreement with all coincident satellite observations in
the altitude ranges of 17-27km with a positive mean rela-
tive difference within 20-27 km and negative below 20 km.
In addition, the bias obtained from the comparison and pre-
cision of the FTIR measurements is also comparable. The
intercomparisons of CH4 and NoO VMR from ground-based
FTIR with data from MIPAS, MLS, and AIRS sensors on
board satellites reported in this work establish main features
that characterize the FTIR instruments at Addis Ababa. The
FTIR data can be used in further scientific studies as it repre-
sents a unique environment of tropical Africa, a region poorly
investigated in the past. Furthermore, the results of this in-
tercomparison for FTIR observations with the satellites can
ensure that FTIR can now be used to validate satellite mis-
sions. Thus, for the FTIR data, it is anticipated that the use of
the data in further scientific studies may provide some insight
into the processes that govern chemical transport and chem-
istry in the atmosphere as well as sources of green gases in
this part of the globe.
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