KIT | KIT-Bibliothek | Impressum | Datenschutz

Band engineering of Dirac cones in iron chalcogenides

Lauke, Lars 1; Heid, Rolf 1; Merz, Michael 1; Wolf, Thomas 1; Haghighirad, Amir-Abbas 1; Schmalian, Jörg 1,2
1 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)
2 Institut für Theorie der Kondensierten Materie (TKM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

By band engineering the iron chalcogenide Fe(Se,Te) via ab initio calculations, we search for topological surface states and realizations of Majorana bound states. Proposed topological states are expected to occur for nonstoichiometric compositions on a surface Dirac cone where issues like disorder scattering and charge transfer between relevant electronic states have to be addressed. However, this surface Dirac cone is well above the Fermi level. Our goal is to theoretically design a substituted crystal in which the surface Dirac cone is shifted toward the Fermi level by modifying the bulk material without disturbing the surface. Going beyond conventional density functional theory, we apply the Blackman, Esterling, and Berk coherent potential approximation in a mixed basis pseudopotential framework to scan the substitutional phase space of cosubstitutions on the Se sites. We have identified iodine as a promising candidate for intrinsic doping. Our specific proposal is that $FeSe_{0.325}I_{0.175}Te_{0.5}$ is a very likely candidate to exhibit a Dirac cone right at the Fermi energy without inducing strong disorder scattering.


Download
Originalveröffentlichung
DOI: 10.1103/PhysRevB.102.054209
Web of Science
Zitationen: 3
Dimensions
Zitationen: 4
Zugehörige Institution(en) am KIT Institut für QuantenMaterialien und Technologien (IQMT)
Institut für Theorie der Kondensierten Materie (TKM)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 25.08.2020
Sprache Englisch
Identifikator ISSN: 2469-9950, 2469-9969
KITopen-ID: 1000123438
HGF-Programm 43.21.01 (POF III, LK 01) Quantum Correlations in Condensed Matter
Erschienen in Physical review / B
Verlag American Physical Society (APS)
Band 102
Heft 5
Seiten Art.Nr. 054209
Schlagwörter KNMF 2019-022-025949 WERA
Nachgewiesen in Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page