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ABSTRACT 

 

The paper describes the implementation of the multi-scale coupling of an advanced, best-estimate reactor 

system code – TRACE and an open-source CFD code – TrioCFD, in order to better simulate the 3D 

thermal-hydraulic in the Reactor Pressure Vessel (RPV). The coupling of a system and a CFD code was 

implemented based on the Interface for Code Coupling (ICoCo), which relies on key-functionalities of the 

European open-source SALOME platform and it defines a standardized specification for code coupling. 

Implementation of the coupling was divided into two parts: spatial and temporal coupling. The spatial 

coupling could be further subdivided into computational domain coupling and physical field mapping. 

The domain-overlapping strategy was selected for the domain coupling and the SALOME mesh/field-

processing library - MED and MEDCoupling- were used to handle the data mapping between different 

meshes of TRACE and TrioCFD. The temporal coupling is implemented for both Steady State (SS) and 

Transient simulations. An Operator Splitting (OS) approach was adopted for the temporal coupling in 

order to ensure the codes’ synchronization during the time advancing. An OpenMPI-based C++ parallel 

supervisor was developed to coordinate the operation and data exchange of the two codes. This multi-

scale coupled code system was verified with a special mass flow distribution problem and the results 

indicate that the implementation was physical sound.  
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1. INTRODUCTION 

 

Thermal-hydraulic simulation tools are playing increasing roles in the present-day nuclear industry and 

research. The spatial scales of the thermal-hydraulic phenomena occurring in the NPP mainly involve 

system scale, component scale, mesoscale and microscale [1]. Furthermore, with the help of more 

powerful tools and technologies, nanoscale could also be involved [2]. The corresponding characteristic 

length of those spatial scales could vary from meters down to nanometer. Many thermal-hydraulic (TH) 

simulation tools have been developed worldwide over the past decades. System codes e.g. RELAP, 

TRACE, ATHLET are extensively used to simulate various scenarios on system scale e.g. Large Break 

Loss of Coolant Accidents (LBLOCA). Sub-channel codes e.g. COBRA-TF, FLICA, SUBCHANFLOW 

are used to estimate safety parameters in the core on component scale e.g. Critical Heat Flux (CHF). In 

order to catch TH-details and phenomena taking place in mesoscale e.g. turbulence, CFD codes e.g. 

FLUENT, STAR-CCM, OpenFOAM and TrioCFD are also applied by the nuclear communities, 

increasingly. Investigations are also underway to improve the two-phase models of CFD codes and to 

mailto:kanglong.zhang@kit.edu
mailto:xilin.zhang@kit.edu
mailto:victor.sanchez@kit.edu
mailto:robert.stieglitz@kit.edu


enhance the numerical stability, physical models, treatment of the different flow and heat transfer modes 

which may exist within a reactor core or during accidental situations such as the multi-phase Critical Heat 

Flux (CHF) [3]. 

 

Few investigations are also devoted to simulating a complete nuclear power plant using CFD-codes [4], 

[5] [6] [7]. In practice, the primary and secondary sides are relatively well resolved in space and others 

such as the core are represented by means of the porous-media approach. Otherwise, the computational 

problem could be too big to fit in the memory of current computers. Another shortcoming is that the 

description of each fuel rod and each subchannel within the core as part of an integral CFD-plant model 

may result in an unmanageable input deck. Consequently, the combination of the simulation capabilities 

of different thermal-hydraulic codes by developing multi-scale thermal-hydraulic coupling approaches 

seems to be a promising area of research in order to increase the prediction accuracy of safety-relevant 

phenomena of nuclear power plants with acceptable computing resource consumption. Examples of such 

developments are coupled code systems such as MARS [8], RELAP-3D/COBRA-TF [9], 

TRACE/FLUENT [10], ATHLET-CFX [11]. 

 

At the Karlsruhe Institute of Technology (KIT), the multi-scale investigations are devoted to the coupling 

of system codes with sub-channel and CFD codes. This paper is dedicated to the coupling of the system 

thermal-hydraulic code TRACE with the open source CFD code TrioCFD using a new modularized and 

standardized Interface for Code Coupling (ICoCo) [12]. Several explicit meshes in MED-format were 

created for the TRACE post-processing, field mapping and interpolation between the involved 

computational domains of the different TH-solvers. Furthermore, TRACE was split into several 

functional components as a prerequisite for the coupling. The time advancement and data exchange of the 

coupled codes are managed by a newly developed parallel C++ supervisor. A brief description of the 

selected codes and tools will be presented in chapter 2. The coupling approaches are presented in chapter 

3. The code testing is discussed in chapter 4. The summary and outlook complete this paper. 

 

2. SELECTED TOOLS AND CODES FOR MULTI-SCALE COUPLING 

 

2.1. The System Code TRACE 
 

TRACE is the reference best-estimate thermal-hydraulic system code of the U.S. Nuclear Regulatory 

Commission (NRC) for Light Water Reactors (LWR). A system of six balance equations in the two-fluid 

formulation plus additional equations to describe the transport of boron dissolve in the liquid phase and of 

non-condensable in the gas phase is solved for one-dimensional and three-dimensional components used 

to represent a nuclear power plant. TRACE takes a component-based approach to model a reactor system. 

The complete nuclear power plant can be represented by the use of TRACE-components such as PIPE, 

PUMP, VALVE, POWER, VESSEL, etc. The VESSEL-component is the special 3D component which 

can model the Reactor Pressure Vessel (RPV) and other components in which 3D phenomena take place. 

State equations for water and steam as well as for other coolants e.g. Sodium, CO2, Lead, Lead-Bismuth 

are also included. Dedicated models are available for the description of critical flow, thermal 

stratification, counter-current flow, etc. Both stationary and time-dependent thermal hydraulic problems 

can be solved by TRACE. Moreover, neutronic kinetics is also implemented in TRACE using a point 

kinetics model. It is also coupled with a three-dimensional diffusion solver, named PARCS [13]. 

 

At KIT, substantial programming effort was made to integrate TRACE into the SALOME platform and to 

develop the ICoCo-module for TRACE [14], [15]. As a result, TRACE has its own explicit meshes (based 

on MED, which is a module in SALOME) and functional components (based on YACS which is also a 

module in SALOME). This paves the way for the coupling of TRACE with other solvers within the 



SALOME-platform using ICoCo. In total four mesh types were developed for TRACE for different 

purposes as follows: 

 Polyhedron-cell-mesh: for cell-data e.g. temperature, pressure post-processing, 

 Tetrahedron-cell-mesh: for cell-data e.g. temperature, pressure interpolation, 

 3D-edge-mesh: for spatial edge-data e.g. velocity, pressure-drop post-processing and 

interpolation, and  

 2D-edge-mesh: for plane edge-data post-processing and interpolation. 

 

2.2. The open source code TrioCFD 
 

TrioCFD is an open source CFD code based on the TRUST platform (TRio_U Software for Thermo-

hydraulics) being developed by the Thermo-hydraulics Service and Fluid Mechanics (STMF) of the 

Department of Nuclear Energy at the CEA. TrioCFD includes many physical models and it applies 

advanced numerical methods with the help of massive parallelism allowing the simulation of various 

problems varying from local two-phase flows to turbulent flows on industrial facilities such as portions of 

nuclear reactors. Two main models in TrioCFD are the Reynolds-Averaged Navier-Stokes (RANS) and 

the Large Eddy Simulation (LES). The Direct Numerical Simulation (DNS) is also available but mostly 

for academic purposes. The governing equations are solved with a staggered finite-volume approach. 

TrioCFD is able to generate robust meshes or import meshes from other software. The code supports full 

parallelepiped or full tetrahedral meshes, which could be structured or unstructured. The spatial 

discretization methods corresponding to the different types of mesh elements are called finite volume 

differences (V.D.F.) for parallelepipeds and finite volume elements (V.E.F.) for the tetrahedron. The 

V&V is now a major process providing an evaluation of the reliability level of the computed solutions, as 

well as the correct implementation of the desired models [16]. 

 

ICoCo is an inherent module in TrioCFD developed to couple TrioCFD with the system code CATHARE 

[17]. The explicit meshes always exist for both TrioCFD-standalone and coupled code applications. 

Nevertheless, compulsive modifications and re-compilation of the source code are required in order to 

transform the stand-alone TrioCFD to the coupled codes despite ICoCo is already part of the TrioCFD 

source code. 

 

2.3. The Interface for Code Coupling (ICoCo) and the Supervisor 
 

Each involved code in the coupled system is referred to as the “Problem” notion, which could be treated 

as an object computing a time-dependent simulation. ICoCo specifies several methods that the problem 

has to provide as well as the descriptions of what they are supposed to do. ICoCo doesn’t contain any real 

functional codes but it just poses a framework and standard. Developers have to fill in the frame and to 

establish the connections between ICoCo and the target codes [12]. Table 1 lists the ICoCo methods and 

the corresponding functions.  

 
Table 1 – Methods defined by ICoCo 

setDataFile initTimeStep iterateTimeStep getInputMEDFieldTemplate 

setMPIComm solveTimeStep save setInputMEDField 

initialize validataTimeStep restore getOutputFieldsNames 

presentTime abortTimeStep foget getOutputMEDField 

computeTimeStep isStationary getInputFieldsNames ternimate 

 

ICoCo supplies the methods to insert various input ports and output ports to the coupled-codes making 

the inter-code interaction quite flexible and convenient. Those methods are coordinated by a supervisor, 



which completes the coupling system. The general form of the system is shown in Figure 1. There, the 

following key features are listed:  

1) ICoCo is a cross-language interface. Within this coupling system, TRACE is in Fortran and 

TrioCFD is in C++. 

2) Two essential prerequisites are called: a) each code should first be equipped with explicit meshes 

which are used for post-processing and field mapping and interpolation with other codes; b) the 

codes must be split into several functional components for the sake of flexible coupling. The two 

prerequisites are exactly the ICoCo key functions. Normally, once the ICoCo was well developed, 

the two requisites should be already implemented. 

3) Three options are available for the supervisor: C++, Python and SALOME. Since MPI is essential 

for TrioCFD, it plays a key role in the supervisor selection. Python supports MPI but this 

capability was not widely used. SALOME is the European open source platform which dedicates 

for pre- and post-processing of simulation data as well as for codes coupling. But MPI is not 

supported by SALOME for the time being. C++ not only supports MPI but the community also 

has rich experience in MPI usage. So, the supervisor was written in C++. 

4) Another feature which is not illustrated in Figure 1 is that the supervisor could run in both serial 

and parallel mode. But codes structure of the two kinds of supervisors differs significantly. The 

parallel C++ supervisor was developed in this paper. 

 

 
Figure 1 – Multi-Scale Coupling of TRACE and TrioCFD based on ICoCo 

 

3. DESCRIPTION OF THE COUPLING 

 

Key-elements of the coupling of two different solvers are the spatial coupling and the temporal coupling.  

 

3.1. Spatial Coupling 
 

The intended application of the coupled code TRACE/TrioCFD is to improve the description of the 

physical phenomena within a nuclear power plant, where e.g., TRACE simulates the whole system 

dynamic and TrioCFD simulates the downcomer and lower plenum. In this case, TrioCFD could describe 

the flow conditions e.g. during an MSLB or Boron dilution transient in a much precise manner leading to 

an improved core behavior by the 3D TRACE-simulation. In principle, the coupling approach and its 

corresponding spatial mapping are very flexible and it may allow the combination of different solution 

domains of the involved codes for example regarding the flow and heat transfer within an RPV. 

 

The spatial coupling is composed of two parts. The first one is domain coupling which handles the 

domain division strategy. The other one is field mapping which manages the field data translation 

between different meshes of TRACE and TrioCFD. As to the domain coupling, two approaches are 

possible: domain-decomposition and domain-overlapping, Figure 2 (here the CFD part only includes 

downcomer for consistency with the testing case in chapter 4). There, for example, TrioCFD simulates the 

downcomer for both modes. TRACE only simulates the rest of the vessel (do not include the downcomer) 

under the former mode while it simulates the whole vessel (including the downcomer) under the latter 

mode. The domain-decomposition method can be easily and straightforward implementated since only 

2D-plane fields need to be passed over between the codes as boundary conditions. However, it may crash 

under some special conditions. The domain overlapping method is more difficult to implement compared 

to the domain decomposition since part of the transferred data is in 3D. But it is more robust than the 



domain-decomposition method. Thanks to the powerful mesh processing capability of SALOME-MED 

[18] and a newly-developed closure-on-demand approach [19] [20], the domain-overlapping method was 

selected for the sake of robustness in this investigation. 

 

 
               a. Domain-decomposition              b. Domain-overlapping 

Figure 2 – Two Approaches for Domain Coupling  

 

In the coupled code system, the 2D-plane pressure field at the TRACE downcomer outlet is transferred to 

the downcomer outlet of TrioCFD as the new pressure outlet boundary condition. The inlet boundary 

condition of TrioCFD is predefined to strictly follow the TRACE-inlet conditions. Once TrioCFD gets the 

new field data after one-time step calculation, it will pass the 3D spatial velocity and 3D spatial pressure 

fields to TRACE correcting the flow friction coefficients in the overlapped downcomer region. The 

correlation was done by implementing a so-called closure-on-demand approach, which uses 3D TrioCFD 

fields to correct the TRACE-resolution on the fly and finally forces TRACE to produce CFD-like velocity 

profile, pressure profile and pressure-drop [21] [22]. At the moment, only velocity and pressure 

correlations were implemented. Other correlation e.g. the temperature will be done in the near future. This 

approach will be further explained in next section. 

 

A new overlapped-cell-auto-recognition algorithm was developed enabling TRACE to recognize the 

overlapped cells whose parameters should be corrected while keeping other cells untouched. This is a 

fully automated process which indicates that no additional modifications have to be done to the original 

TRACE model. The already existing TRACE-models for a standalone execution could be directly used 

for the coupling calculation. This is a remarkable improvement compared to the domain-decomposition 

method where abundant modifications have to be done to the original TRACE-model. 

 

As it was stated before, the MED-module of the SALOME-platform was used to manage the field 

mapping and mesh interpolation between different meshes of the codes. The MED-module can mainly 

handle three kinds of mesh interpolation: 1) cell-to-cell; 2) cell-to-edge; 3) edge-to-edge. The 

intersections are based on an “overlapped volume or area weighted fraction” algorithm which could map 

source field on all source mesh cells, which joint one single target mesh cell and calculate the target field 

by different weighted fractions or contribution ratio. Figure 3 presents a simple intersection case of two 

typical unstructured cells. Moreover, both point-based fields and cell-based fields can be processed by the 

MED-module. In the current coupled system, TrioCFD runs an unstructured cell-based mesh, which 

contains only tetrahedron cells. A new TRACE tetrahedron cell-based mesh was developed for 

interpolation with the TrioCFD mesh. Specially, interpolation of the cell-based mesh has four natures: 1) 

IntensiveConservation; 2) ExtensiveConservation; 3) IntensiveMaximum; 4) ExtensiveMaximum [18]. 

Selections of these functionalities are essential for the interpolation between TRACE and TrioCFD since 

the codes’ meshes differ significantly. 

 



 
Figure 3 – The Mesh Intersection Could be Handled by MED 

 

3.2 Principles of the Correlations to TRACE for Domain-Overlapping Coupling 
 

The momentum equation of TRACE is carefully studied in order to successfully implement the coolant 

velocity and pressure correlations. Take the 1D components in TRACE for instances, the governing 

motion equation is Equation 1, whose items could be characterized to four types of pressure drop as 

shown in Equation 2. Similar items could also be derived for TrioCFD, Equation 3. From left to right, 

they are: 

 ∆𝑃𝑎𝑐𝑐 – The acceleration pressure drop or inertial pressure drop which comes from the variation 

of coolant velocity along the problem time. 

 ∆𝑃𝑐𝑜𝑛 – The convective pressure drop which comes from the mass and momentum transfer along 

the flow path. 

 −∆𝑃𝑡𝑜𝑡 – The total static pressure drop which is also known as the manometer pressure drop. 

The minus sign stands for its negative correlations with the other three pressure drops.   

 ∆𝑃𝑓𝑟𝑖𝑐 – The friction pressure drop which is caused by the friction between the fluid  and the 

solid structures. It could also include form losses. 
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    ∆𝑃𝑎𝑐𝑐
𝑇𝑅𝐴𝐶𝐸    +        ∆𝑃𝑐𝑜𝑛

𝑇𝑅𝐴𝐶𝐸         +           (−∆𝑃𝑡𝑜𝑡
𝑇𝑅𝐴𝐶𝐸)       +                     ∆𝑃𝑓𝑟𝑖𝑐

𝑇𝑅𝐴𝐶𝐸                   = 0 Equation 2 

    ∆𝑃𝑎𝑐𝑐
𝑇𝑟𝑖𝑜𝐶𝐹𝐷 +        ∆𝑃𝑐𝑜𝑛

𝑇𝑟𝑖𝑜𝐶𝐹𝐷      +           (−∆𝑃𝑡𝑜𝑡
𝑇𝑟𝑖𝑜𝐶𝐹𝐷)     +                    ∆𝑃𝑓𝑟𝑖𝑐

𝑇𝑟𝑖𝑜𝐶𝐹𝐷                 = 0 Equation 3 

 

Since the convective and friction pressure drops predicted by other TH codes are more accurate than 

TRACE, the two corresponding terms in Equation 2 are replaced with that from the fine results, as 

Equation 4 shows. The reason why the acceleration pressure drop can’t be erased is because of the 

ineradicable time term which explicitly binds two adjacent time layers. In order to counteract ∆Pacc
TRACE, 

the corresponding acceleration pressure drop ∆𝑃𝑎𝑐𝑐
𝑇𝑟𝑖𝑜𝐶𝐹𝐷 was dropt from the total static pressure drop 

∆𝑃𝑡𝑜𝑡
𝑇𝑟𝑖𝑜𝐶𝐹𝐷 of sub-channel or CFD codes. The new added two pressure drops could be further integrated 

into one fake friction pressure drop ∆𝑃𝑓𝑟𝑖𝑐,𝑓𝑎𝑘𝑒
𝑇𝑅𝐴𝐶𝐸 = ∆𝑃𝑐𝑜𝑛

𝑇𝑟𝑖𝑜𝐶𝐹𝐷 + ∆𝑃𝑓𝑟𝑖𝑐
𝑇𝑟𝑖𝑜𝐶𝐹𝐷 = ∆𝑃𝑡𝑜𝑡

𝑇𝑟𝑖𝑜𝐶𝐹𝐷 − ∆𝑃𝑎𝑐𝑐
𝑇𝑟𝑖𝑜𝐶𝐹𝐷 by 

imposing a fresh friction factor 𝐶
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2
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1

2
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𝑛 . Now the TRACE motion 

governing equation becomes Equation 5. 

 

∆𝑃𝑡𝑜𝑡
𝑇𝑅𝐴𝐶𝐸 =  ∆𝑃𝑎𝑐𝑐

𝑇𝑅𝐴𝐶𝐸 + ∆𝑃𝑐𝑜𝑛
𝑇𝑖𝑜𝐶𝐹𝐷 + ∆𝑃𝑓𝑟𝑖𝑐

𝑇𝑟𝑖𝑜𝐶𝐹𝐷 = ∆𝑃𝑎𝑐𝑐
𝑇𝑅𝐴𝐶𝐸 + (∆𝑃𝑡𝑜𝑡

𝑇𝑟𝑖𝑜𝐶𝐹𝐷 − ∆𝑃𝑎𝑐𝑐
𝑇𝑟𝑖𝑜𝐶𝐹𝐷) Equation 4 
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The fake friction pressure drop ∆𝑃𝑓𝑟𝑖𝑐,𝑓𝑎𝑘𝑒
𝑇𝑅𝐴𝐶𝐸  in Equation 5 is proportional to the product of 𝐶

𝑗+
1

2
,𝑓𝑎𝑘𝑒

𝑛  and 

the square of velocity. Thus, the fresh fake coefficient could be calculated by Equation 6.  
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𝑇𝑅𝐴𝐶𝐸
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𝑉𝑇𝑟𝑖𝑜𝐶𝐹𝐷 2  Equation 6 

 

The general data flow between TRACE and TrioCFD within the coupling system is illustrated in Figure 

4. Here please note that the boundary data from TRACE to TrioCFD includes both of the inlet and outlet 

boundary conditions, which is slightly different from the demonstrated spatial coupling in section 3.1. 

Nevertheless, this diagram is displayed from a general perspective so that each possible boundary 

condition exchange is considered. 

 

 
Figure 4 – The temporal workflow of the coupling code TRACE/TrioCFD 

 

 

3.3. Temporal Coupling 
 

The Operator Splitting (OS) method [23] was implemented for temporal coupling of TRACE and 

TrioCFD. It is more or less an explicit coupling approach since field mapping and data exchange 

performs only one time for one time step. The coupling workflow during the time advancement is 

illustrated in Figure 5. 

 



 
Figure 5 – The temporal workflow of the coupling code TRACE/TrioCFD 

 

The program chart illustrates the ICoCo-based execution procedures of the coupled codes under the 

management of a parallel supervisor. Moreover, TrioCFD may also run in parallel within the coupling 

framework. The workflow is described in detail hereafter: 

1) The supervisor launches and opens the TRACE-ICoCo and TrioCFD-ICoCo libraries. 

2) The two codes read in their input files, set their output path to put the output files and do the 

initialization. TrioCFD will additionally set its MPI environment. 

3) The two codes enter the time loop and calculate the current time step size first. 

4) The supervisor collects the two time step size, select one as the public time step size and send it to 

the two codes. 

5) The codes reset their time step size based on the public one. 

6) The codes propose the names of their desired fields from the other code and check them. 

7) The supervisor collects the names of the desired fields from one code and passes them to the 

other code. 

8) Depending on the names of the desired fields from the code itself, the codes generate a target 

field template to receive the target field from the other code. 

9) Depending on the names of the desired fields from the other code, the codes derive the source 

fields to be sent to the other code. 

10) The supervisor maps the field from the source field from one code to the target template of the 

other code, produces the target field and sends it to the target code. 

11) The codes write the fields they got from the supervisor into the memory to update the new 

parameters for the current time step. 



12) Check whether the codes terminate or not. If yes, the calculation ends. Otherwise, go ahead to a 

new time step. 

 

4. TESTING OF THE ICoCo BASED COUPLING CODES TRACE/TrioCFD 

 

To test the new capabilities of the coupled code, an academic problem is analyzed with 

TRACE/TrioCFD. This problem describes a single-phase flow within an RPV of a four loop PWR. The 

TRACE model of the RPV consists of a 3D VESSEL (includes 4 azimuthal sectors, 2 radial sectors and 

15 axial levels), four inlet boundary conditions (mass flow rate/velocity and temperature) and four outlet 

boundary conditions (pressure), Figure 6. The TrioCFD-model represents the four RPV-inlet volumes and 

the downcomer.  
 

 
Figure 6 – Cross-section Sketch of the Vessel and Four Primary Loops of the Testing Case 

 

In this test problem, a steady state solution of a flow distribution within the RPV is analyzed with the 

coupled code TRACE/TrioCFD. The boundary conditions for the test problem are given in Table 2. There 

it can be seen that the inlet mass flow rate of three loops (#2, #3 and #4) amounts 5 m/s while the first 

loop is 7 m/s. All other boundary conditions such as pressure and inlet temperature of all four loops have 

the same value. The power of the core is zero.  

 
Table 2 – Boundary Conditions of the Testing Case 

 Loop #1 Loop #2 Loop #3 Loop #4 

Inlet Velocity 7 m/s 5 m/s 

Temperature 400 K 

Outlet Pressure 15.55 MPa 

 

The TRACE model is presented in Figure 7, where the flow paths were illustrated from the cold leg to the 

downcomer, enter the lower plenum, go up through the core and finally go to the hot legs. 

 

 
 



Figure 7 – TRACE model in SNAP 

 

The TRACE and TrioCFD computational domains with their different meshes (MED format) are 

displayed in Figure 8. The tetrahedron mesh for TRACE is shown in Figure 8a, while the edge mesh for 

TRACE is presented in Figure 8b. There, one can clearly see how the two computation domain overlaps 

to each other. In this exercise, two types of interpolation are realized: cell-to-cell (Figure 8a) and cell-to-

edge (Figure 8b) interpolation. 

 

 
                            a) cell-to-cell     b) cell-to-edge 

Figure 8 – TRACE and TrioCFD Meshes for the Coupling Codes and the Two Overlapped Interpolation 

Types Between TRACE and TrioCFD 

 

The goal of this test problem is to check if TRACE in the coupled system is able to predict the similar 

velocity distribution and pressure drop within and along the downcomer region as TrioCFD fields which 

are believed to be more precise. Since now the TRACE-meshes are explicitly defined and several ICoCo 

functions e.g. getOutputMEDField can be conveniently called during the calculation to derive various 

data sets from TRACE-memory to the meshes on the fly. The post-processing module PARAVIS in 

SALOME supplies powerful, intuitionistic and visual inspection capabilities for the TRACE-data. In 

Figure 9, the velocity distribution predicted by TRACE and TrioCFD is exhibited by SALOME-

PARAVIS, where it can be observed that TRACE in the coupled system now is able to generate a 

TrioCFD-like velocity profile. 

 

 
Figure 9 – Axial Velocity Distribution of TRACE and TrioCFD Indicating TRACE Could Generate CFD-

like Velocity Profile 

 

It is worth to note that the TRACE-cells overlapped with TrioCFD-mesh could be automatically 

identified in the coupling approach so that only the fields in those overlapped TRACE cells are corrected 



while others remain untouched. In Figure 9, only the overlapped cells of TRACE are assigned with 

corrected data (colourful) while others kept the original TRACE fields (dark). Significant improvements 

were obtained when comparing the velocity predicted by the coupled code and TRACE-standalone, see 

Figure 10 and Table 3. 

 

 
Figure 10 – Correlations of the Velocity Distribution in the Four Loops by TRACE Before and After 

Coupled with TrioCFD 

 
Table 3 – Velocity Errors of TRACE Before and After the Coupling Compared to TrioCFD Solution 

 TRACE Before TRACE After TrioCFD Error 1 Error 2 

Outlet #1 -2.79 m/s -1.87 m/s -1.92 m/s 45.3% 2.6% 

Outlet #2 -2.62 m/s -2.91 m/s -3.02 m/s 13.2% 3.6% 

Outlet #3 -2.61 m/s -2.89 m/s -2.95 m/s 11.5% 2.0% 

Outlet #4 -2.62 m/s -2.97 m/s -3.03 m/s 13.5% 1.9% 

 

Within the coupled codes TRACE/TrioCFD, TRACE and TrioCFD first run isolated until they both reach 

steady state (in this case, the isolated computation lasted around 120 seconds). Subsequently, the coupled 

code TRACE/TrioCFD is initiated and data exchange begins. The errors are calculated by the relation: E= 

ABS [(VTRACE – VTrioCFD) / VTrioCFD]. It is obvious that the error of the velocity distribution predicted by TRACE 

after the coupling point is dramatically reduced in order of magnitude compared to that before the 

coupling point. The other key parameter to be examined is the pressure drop along the downcomer. In 

Figure 11, the pressure evolutions of the loop-1 predicted by TRACE before and after the coupling with 

TrioCFD are shown. In Table 4, the pressure drop errors are calculated by the relation: error = ABS 

[(Pdrop_TRACE – Pdrop_TrioCFD) / Pdrop_TrioCFD]. It was found out that the error of the pressure drop along downcomer 

predicted by TRACE after the coupling point is dramatically reduced also in order of magnitude 

compared to that before the coupling point indicating that the pressure drop in the downcomer region is 

greatly improved. 

 



 
Figure 11 – Correlations of the Pressure Drop in the Four Loops by TRACE Before and After Coupled with 

TrioCFD in Downcomer Sector #1 

 
Table 4 – Pressure Drop Errors of TRACE Before and After the Coupling Compared to TrioCFD Solution 

 TRACE Before TRACE After TrioCFD Error 1 Error 2 

Sector #1 12604 Pa 51661 Pa 54092 Pa 76.7% 4.5% 

Sector #2 11435 Pa 49321 Pa 53606 Pa 78.7% 7.9% 

Sector #3 11503 Pa 49651 Pa 53249 Pa 78.4% 6.7% 

Sector #4 11445 Pa 49309 Pa 52433 Pa 78.2% 5.9% 

 

At last, it is worth to note that the correlations is not just directly using TrioCFD pressure and velocity 

fields to force TRACE produce totally the same hydraulic fine fields. Instead, the applied approach in this 

paper use the TrioCFD pressure and velocity fields correct the TRACE momentum loss coefficients on 

each edge and “guide” the system produce the desired fields, naturally. This is also the reason why 

TRACE with this method could not hundred percent reproduce the TrioCFD results. Though not perfect, 

it is reasonable. 

 

5. CONCLUSIONS 

 

A multi-scale coupling of TRACE and the open source CFD code TrioCFD was developed using the 

ICoCo-methodology and a parallel C++ supervisor. The domain-overlapping approach was implemented 

along with a closure-on-demand approach. The SALOME-MED-module was used for field mapping and 

interpolation between different meshes of TRACE and TrioCFD. The Operator Splitting method, which is 

an explicit coupling approach, was adopted for the temporal coupling. The coupling system was verified 

with an academic flow distribution problem. The results show that TRACE in the coupling system is able 

to reproduce TrioCFD-like velocity distribution and pressure drop. This test case demonstrates that the 

coupled system TRACE/TrioCFD is working correctly and that it improved the simulation of 3D-flow 

inside the RPV. 

 

6. OUTLOOK 

 



Despite the promising results of the first testing of the coupled code TRACE/TrioCFD, realistic cases for 

the application and the experimental data need to be identified for validation purposes and for the 

demonstration of the new prediction capabilities and flexibility of the coupled code under development. 

This work paves the way for interesting applications not only to LWR but also to liquid metal cooled 

reactor systems.  
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