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Vortex-lattice melting and paramagnetic depairing in the nematic superconductor FeSe
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The full H -T phase diagram in the nematic superconductor FeSe is mapped out using heat-capacity and
thermal-expansion measurements down to 0.7 K and up to 30 T for both field directions. A clear thermodynamic
signal of an underlying vortex-melting transition is found in both datasets and could be followed down to low
temperatures. The existence of significant Gaussian thermal superconducting fluctuations is demonstrated by a
scaling analysis, which also yields the mean-field upper critical field Hc2(T ). For both field orientations, Hc2(T )
shows Pauli-limiting behavior. Whereas the temperature dependence of the vortex-melting line is well described
by the model of Houghton et al. [Phys. Rev. B 40, 6763 (1989)] down to the lowest temperatures for H ⊥ FeSe
layers, the vortex-melting line exhibits an unusual behavior for fields parallel to the planes, where the Pauli
limitation is much stronger. Here, the vortex-melting anomaly is only observed down to T ∗ ≈ 2–3 K, and then
merges with the Hc2(T ) line as predicted by Adachi and Ikeda [Phys. Rev. B 68, 184510 (2003)]. Below T ∗,
Hc2(T ) also exhibits a slight upturn possibly related to the occurence of a Fulde-Ferrell-Larkin-Ovchinnikov
state.
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I. INTRODUCTION

In 1957 Abrikosov [1] predicted that a magnetic field
can penetrate a superconductor as an array of vortices, each
carrying a magnetic flux quantum �0 = h/2e. This occurs in
type-II superconductors in which the normal-superconducting
surface energy is negative, i.e., when the Ginzburg-Landau
parameter κ = λ/ξ , the ratio of the London penetration depth
λ to the coherence length ξ , exceeds the threshold value 1/

√
2

[2], Vortices repel each other and typically crystallize into
a hexagonal lattice. In the presence of weak and randomly
distributed disorder, e.g., point defects [3–5], this long-range
periodicity is lost and a new (dislocation-free) state of matter,
still displaying well-defined diffraction peaks, the so-called
“Bragg glass,” is formed [6,7].

In increasing magnetic field, the density of vortices and
their overlap increase up to the upper critical field Hc2(T )
where superconductivity disappears at a second-order phase
transition [2,8]. However, thermally induced and/or static
disorder can lead to a melting of the vortex solid well below
the upper critical field Hc2(T ) (for reviews, see Refs. [9–11]).
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This possibility has been first considered by Eilenberger [12],
but attempts to observe it in low-dimension geometries, to
enhance thermal fluctuations, remained unsuccessful [13,14].
Unequivocal thermodynamic evidence of a genuine vortex-
lattice melting transition finally came out soon after the
discovery of the cuprate superconductors, in which thermal
fluctuations are greatly enhanced due to their high-Tc, very
short coherence length and large anisotropy. In a very limited
number of exceptionally high-quality single crystals, vortex
melting manifests as a tiny discontinuity in the reversible mag-
netization [15–18], while heat-capacity [19–26] and thermal-
expansion [27] measurements exhibit a peak superimposed on
a step indicative of the additional degrees of freedom in the
high-temperature vortex-liquid phase. This first-order transi-
tion represents the only genuine phase transition for supercon-
ductivity in a magnetic field, since Hc2(T ) becomes a broad
crossover. Since then calorimetric features related to melting
were also reported for conventional low-Tc superconductors,
e.g., Nb3Sn, SnMo6S8, and for Fe-based superconductors
[28–31]. However, the fate of the melting transition for T → 0
remains unclear since the low-temperature/high-field region
is usually inaccessible, as in cuprates due to the high values
of Hc2(0), or because residual disorder disrupts the melting
transition [26]. Theoretically, the melting line for T → 0 may
(i) be suppressed due to quantum fluctuations [32–34], or (ii)
merge with Hc2(T ) or (iii) even disappear at finite temperature
in strongly Pauli-limited superconductors [35].
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The Zeeman effect represents another mechanism which
can affect the high-field superconducting phase transitions,
and intense research efforts in low-Tc unconventional super-
conductors including organics, ruthenates, and heavy fermion,
have focused on the emergence of high-field phases where
this effect is dominant (also referred to as strongly Pauli-
limited superconductors). Prominent examples are κ-(BEDT-
TTF)2Cu(NCS)2 [36] and CeCoIn5 [37,38], which exhibit
thermodynamic evidence of a modulated phase having Cooper
pairs with nonzero total momentum and a spatially nonuni-
form order parameter �(r) [39,40]. While for the former
the high-field phase appears to be a physical realization of
the original Fulde-Ferrell-Larkin-Ovchinnikov state (FFLO)
[41,42], the modulated phase in CeCoIn5 is believed to result
from a particular coupling between d-wave superconductiv-
ity and a field-induced incommensurate spin-density wave
[43–45].

The recently discovered Fe-based superconductors offer
another interesting platform for the study of vortex matter. As
anticipated theoretically [46], thermal fluctuations of interme-
diate magnitude between cuprates and conventional materials,
accompanied by a clear vortex-melting anomaly, were high-
lighted in the 122 and 1144 families via high-resolution ther-
modynamic measurements [30,31,47]. In parallel, a first-order
superconducting transition detected in the magnetostriction of
KFe2As2 stressed the relevance of Zeeman depairing in these
materials and raised the possibility of observing a FFLO phase
[48–50].

Among the Fe-based materials, FeSe has attracted con-
siderable interest as superconductivity emerges deep inside a
nonmagnetic but electronic nematic phase that breaks four-
fold rotational symmetry below Ts = 90 K [51,52]. Super-
conductivity is argued to arise from a spin-nematic pairing
driven by orbital-selective spin fluctuations [53–58]. De-
spite its low Tc ≈ 9 K, FeSe can be considered as a high-
Tc superconductor because of its very low carrier density
[59,60] and Kasahara et al. [61] have argued that it lies
deep inside the Bardeen-Cooper-Schrieffer/Bose-Einstein-
condensate (BCS/BEC) crossover. In this context, the same
authors have claimed (i) that a field-induced phase transition
of the Fermi liquid with strong spin imbalance occurs for
H ‖ c within the superconducting state at a field H∗ at which
the Zeeman energy becomes comparable to εF [61,62] and
(ii) that a genuine FFLO phase is observed for H ⊥ c [63].
Thus, both thermal fluctuations and paramagnetic effects are
expected to be large in this high-κ superconductor. The mod-
erate value of Hc2(0) < 30 T offers a unique opportunity to
study the H-T phase diagram down to the lowest temperatures
in clean single crystals.

In this article, using thermodynamic probes on high-quality
FeSe single crystals, we demonstrate the existence of sizable
field-induced Gaussian superconducting fluctuations using
a scaling approach and provide compelling thermodynamic
evidence of the existence of an underlying vortex-melting
transition. Our analysis of these data also clearly reveals that
Pauli depairing exerts a large influence on the vortex-melting
properties in high magnetic fields, in particular for H ‖ FeSe
layers. Here we find that the vortex-liquid phase disappears
for T � 3 K, i.e., below which the vortex-melting line merges
with the Hc2(T ) line. Interestingly, such a merging is pre-

dicted by mean-field theory [35]. It occurs near the expected
tricritical point from which the FFLO phase could emerge in
very clean single crystals [64]. Finally, our results exclude
that FeSe lies within the BCS/BEC crossover, and we find
no thermodynamic signature of the reported high-field phase
for H ⊥ FeSe layers [61–63].

This article is organized as follows. In Sec. II, the ex-
perimental methods (crystal growth and heat-capacity and
thermal-expansion measurements) are explained in detail.
In Sec. III, we present our raw heat-capacity and thermal-
expansion data, which already provide clear evidence for the
existence of both large superconducting fluctuations and a
vortex-melting transition. Scaling analysis of our thermody-
namic data is presented in Sec. IV and the resulting H-T
phase diagram is analyzed thoroughly using existing models
of the mixed state. The possible occurrence of the FFLO state
is discussed and a consistent check of our analysis is provided.
Conclusions are given in Sec. V.

II. EXPERIMENTAL METHODS

Stoichiometric single crystals of FeSe were synthesized by
chemical vapor transport using a eutectic mixture of KCl and
AlCl3 and characterized using single-crystal x-ray diffraction.
Samples 1 and 2, used in this work, were taken from batches
2 and 5 of Ref. [65], respectively.

Heat-capacity measurements were performed on sample 1
up to 30 T and down to 0.6 K using a home-made minia-
ture AC calorimeter. It consists of a bare Cernox chip from
Lakeshore Cryotronics, Inc. split into two parts and suspended
from a small copper ring with PtW(7 %) wires. One part is
used as an electrical heater while the other part is employed to
record the temperature oscillations (a few percent of the aver-
age sample temperature in the range 1–10 Hz; see Ref. [66] for
further details). A precise in situ calibration and corrections
for the thermometer magnetoresistance were accounted for
in the data analysis. This setup allows one to measure the
heat capacity of minute samples with an accuracy better
than ≈5%, inferred from measurements on 6N copper, with
a signal/noise ratio of about 104. High-resolution thermal-
expansion measurements were carried out on sample 2 using a
home-built capacitance dilatometer [67] with a typical relative
resolution �L/L ≈ 10−8–10−10 in fields up to 10 T.

III. EXPERIMENTAL RESULTS

Figures 1(a) and 1(b) display the temperature depen-
dence of δCe(T, H ) = Cs(T, H ) − Cn(T, H ), the difference
between the superconducting-state Cs(T, H ) and the normal-
state Cn(T, H ) heat capacities, for magnetic fields applied per-
pendicular (⊥) and parallel (‖) to the FeSe layers, respectively.
Here, Cn(T, H ) = γnT + B3T 3 was determined by fitting the
18 T data where superconductivity is fully suppressed down
to 0.5 K. The inferred values of the Sommerfeld coeffi-
cient and the Debye term amount to γn = 6.5 mJ mol−1 K−2

and B3 = 0.4 mJ mol−1 K−4, respectively, in good agreement
with previous reports [65,68]. Figures 2(a) and 2(b) display
the corresponding in-plane thermal expansion δαe(T, H ) =
αs(T, H ) − αn(T, H ) measured upon heating (solid line) af-
ter cooling in a magnetic field (dashed line). Here, the
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(a)

(b)

FIG. 1. (a),(b) Temperature dependence of δCe/T , the difference
between the superconducting- and normal-state heat capacities of
sample 1 for H ⊥ and ‖ to the FeSe layers, respectively. The insets
highlight the excess heat capacity (shaded area) ascribed to the vortex
melting transition Tm(H ) (see arrows).

normal-state contribution αn(T, H ) was determined by fitting
the 10 T data for T � 10 K.

A well-defined discontinuity is observed in the zero-field
heat capacity at T c = 8.9 K, with a width of about 1 K related
to disorder (twin boundaries and/or a very small number of Fe
vacancies [69,70]) indicating the transition from the nematic
to the superconducting state. A similar anomaly of compa-
rable width, but with a slightly higher T c = 9.1 K, is found
in our thermal-expansion data. We note that the anomaly is
very mean-field-like, in the weak-coupling limit, i.e., at odds
with the λ transition expected in the three-dimensional XY

(a) (b)

(c) (d)

FIG. 2. (a),(b) Temperature dependence of δαe, the difference
between the superconducting- and normal-state thermal expansions
of sample 2 for H ⊥ and ‖ to the FeSe layers, respectively. Measure-
ments were carried out upon heating (solid line) after cooling in a
magnetic field (dashed line). The inset highlights the excess thermal
expansion (shaded area) related to the vortex-melting transition
Tm(H ) (see arrows). (c),(d) Heat capacity of sample 1 as a function
of temperature for H ⊥ and ‖ to the FeSe layers, respectively. To
emphasize the discontinuity at Tm(H ), the 0 T data (7 T data) are
subtracted from those obtained for H⊥ � 8 T (for H⊥ > 8 T). In (b),
only the 0 T data are subtracted.

(3D-XY) universality class for an interacting Bose-Einstein
condensate [71], which superfluid 4He belongs to. This
rules out that FeSe actually lies deep within the BCS/BEC
crossover for which a cusplike anomaly is expected. For an
exhaustive discussion of the BCS/BEC crossover in a two-
band model, we refer to Ref. [72], and in the context of
high-temperature superconductivity to Refs. [71,73].

A. Large superconducting fluctuations

The strength of thermal fluctuations is usually quantified
by the Ginzburg number [9,10] given by

Gi = 1

2

(
1

4πμ0

kBTc�̃

H̃2
c (0)ξ̃ 3

⊥(0)

)2

, (1)

where ξ̃⊥(0), H̃c(0), and �̃ = ξ̃⊥(0)
ξ̃‖(0)

are the respective

Ginzburg-Landau values of the in-plane coherence length,
thermodynamic critical field, and Hc2 anisotropy expressed in
SI units. These can all be inferred from our thermodynamic
data. Here H̃c(0) = 0.21 T and ξ̃⊥(0) = 3.5 nm are calculated
from the zero-field heat capacity and the initial slope of
H⊥

c2(T ) (see Sec. IV B 1), respectively. �̃ ≈ 4.5 is inferred
from Fig. 6 where we find that the heat-capacity curve for
H⊥ = 1–2 T matches that of H‖ = 7 T. We obtain Gi = 5 ×
10−4 for FeSe, which is several orders of magnitude larger
than in classical superconductors, e.g., Nb (Gi ≈ 10−11), but
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(a)

(b) (c) (d)

FIG. 3. (a) Field dependence of δCe(H, T )/T , the difference
between the mixed- and the normal-state heat capacities of sample
1 for both H ‖ and ⊥ FeSe layers at the indicated temperatures.
The shaded areas indicate the excess heat capacity related to the
vortex-melting transition at Hm(T ). (b),(c) Same as in (a) but at
lower temperatures. No melting anomaly for H ‖ layers (c) and only
a broadened mean-field jump, vanishing below ≈1 K, is observed.
(d) Comparison of δCe(H, T )/T for the two orientations, plotted as
a function of H/Hc2, at T = 0.6–0.7 K.

slightly lower than in cuprate superconductors (10−1 < Gi <

10−3) [31]. This large value of Gi strongly suggests that
thermal fluctuations cannot be neglected in FeSe.

A telltale sign of thermal fluctuations is a broadening of
the superconducting transition in magnetic field [28,74,75].
As shown in Figs. 1, 2(a), and 2(b), a significant broadening
of the superconducting transition for both field directions in
both measurements is observed. This becomes particularly
evident for H⊥ � 2 T and H‖ � 7 T, where the broadening
clearly exceeds the intrinsic transition width. Evidence for
large fluctuations is also quite prominent in the field-sweep
measurements displayed in Fig 3(a), e.g., for T < 6.8 K where
the transition to the normal state extends over several Teslas
for both field orientations. A quantitative analysis of this
broadening is obtained by the scaling analysis presented in
Sec. IV A. As expected for thermally induced fluctuations,
this broadening finally reduces progressively with decreasing
temperatures for T < 3 K [see Figs. 3(b) and 3(c)].

B. Evidence for an underlying vortex-melting transition

Besides this large broadening of the transition, a small
anomaly is clearly resolved on the upward side of the heat-
capacity anomaly, particularly for H⊥ � 2 T and H‖ � 12 T
[see shaded area in the insets of Figs. 1 and 2(a)]. To make

this feature more visible and to facilitate comparison with
other superconductors, we have subtracted the H⊥ = 0 T (re-
spectively, H⊥ = 7 T) data from those obtained for H⊥ � 8 T
(respectively, H⊥ > 8 T), as illustrated in Figs 2(c) and 2(d).
The broad remaining discontinuity is very reminiscent of the
vortex-melting transition Tm(H ) initially reported by Roulin
et al. [23] on twinned YBa2Cu3O6.94 single crystals and more
recently in Ba0.5K0.5Fe2As2 [30] and RbEuFe4As4 [31]. It
was interpreted as a second-order melting transition between
a vortex glass and a vortex liquid [76]. A clear signature of
vortex melting is also visible in the H-sweep measurements
where heat capacity in excess (shaded areas in Fig. 3) is
detected for both field orientations. Interestingly, this melting
anomaly, which represents the only genuine phase transition
in a hard type-II superconductor with strong fluctuations, is
clearly less pronounced for H ‖ FeSe layers. Indeed it is only
observed in the range 7 < H‖ < 21 T [see Figs. 2(d) and 3(c)]
and no melting anomaly could be detected below ≈3 K [see
Fig. 3(c)] where only a broadened mean-field feature persists
which in turn vanishes for T � 0.7 K.

Additional evidence for the existence of an underlying
vortex-melting transition is obtained from thermal-expansion
measurements, which have proven to be a very sensitive and
complimentary probe of the vortex matter [27,30]. As shown
in the heating curves (after field cooling) of Figs. 2(a) and
2(b), extra peaks that grow in magnitude with increasing field,
are detected slightly below the broadened superconducting
transition, at positions which coincide rather well with Tm(H )
defined as the midpoint of the broadened discontinuity in
heat-capacity measurements. Their absence in the cooling
curves reveals that they are not electronic in origin, but
rather related to irreversible magnetostrictive effects at the
melting/irreversibility line due to flux pinning. Similar irre-
versible peaks were already observed at the melting transition
of both YBa2Cu3O7−δ [75] and Ba0.5K0.5Fe2As2 [30] crystals
with weak flux pinning. Lortz et al. [30,41] argued that they
are due to the pinning force, which prohibits flux expulsion
on cooling, thereby creating nonequilibrium flux gradients
and concomitant shielding currents. Upon heating, the pinning
force, which couples the crystal lattice to the applied magnetic
field, suddenly vanishes at the melting temperature, resulting
in a prominent thermal-expansion anomaly. These types of
anomaly in the cuprates were found to exhibit a behavior
comparable to a kinetic glass transition and are most likely
related to some glassy vortex phase [41,77], whose phase line,
however, corresponds rather well to the first-order melting line
in fully reversible crystals.

IV. DISCUSSION

A. Scaling of the heat capacity and thermal expansion

A natural way to study thermal fluctuations is to examine
the predicted scaling behavior of the heat capacity. The same
scaling relations apply to the reversible thermal expansion
which is closely related to the heat capacity through the
Ehrenfest or Pippard relations [78].

In optimally doped YBCO, thermal-expansion measure-
ments have demonstrated the existence of 3D-XY fluctua-
tions over a ±10 K interval around Tc [79,80] and their
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persistence in fields up to 11 T without phonon-background
subtraction [75]. For comparison, analyses of calorimetric
data were inconclusive mainly because the fluctuation compo-
nent represents at most 5% of the large phonon contribution
[81–91]. In FeSe, the phonon subtraction is straightforward
because Tc is low and superconductivity is fully suppressed for
H⊥ > 16 T. However, an analysis in zero field is impossible
since the intrinsic transition width ≈1 K clearly exceeds the
width of the critical region |T − Tc| � GiTc ≈ 4 mK. On the
other hand, in this critical XY regime, the field introduces
an additional length scale 
H = √

φ0/πH which reduces the
effective dimensionality [71,75] leading to a broadening of
the transition. According to Jeandupeux et al. [90], the mag-
netic field breaks the XY symmetry if the correlation length
ξXY ≈ ξ0t−2ν exceeds 
H (νXY = 0.669 is the XY critical ex-
ponent and t = T/Tc − 1). Thus, fluctuations are expected
to be observed only for H � HXY = 2H ′

c2TcGi2νXY . Using
H ′

c2⊥ = (∂Hc2⊥/∂T )Tc
≈ 3 T K−1 in FeSe (see Sec. IV B 1)

we obtain HXY ≈ 2 mT clearly indicating that this regime can
be neglected. Thus we restrict our analysis to the 3D lowest
Landau level (3D-LLL) framework [92].

In this model, the broadening of the transition is enhanced
in field by Gi(H ) = Gi1/3(H/H ′

c2Tc)2/3 [92]. It is applicable
if the field is high enough to confine the Cooper pairs in
their lowest Landau level, i.e., for H > HLLL = GiH ′

c2Tc ≈
10 mT for H ⊥ FeSe layers. In the vicinity of the mean-field
transition temperature Tc(H ), Thouless [93] has shown that
δCe(T, H ) normalized by δCm f (T, H ), i.e., the difference in
heat capacities expected from mean-field theory, is a universal
function of the single scaling variable

aT = rT

[
T − Tc(H )

(HT )2/3

]
. (2)

It measures the temperature shift with respect to Tc(H ) nor-
malized by the fluctuation broadening [31] and

rT =
(

2H ′2
c2Tc

Gi

)1/3

(3)

is a temperature- and field-independent constant.
In Ginzburg-Landau theory, δCm f (T, H ) is temperature

independent. However, similar to Nb [74], δCm f (T, H ) has
a sizable temperature variation in the transition region as
illustrated in Fig. 1. Therefore, we have normalized our
measurements to δCm f (T, H ) rather than the mean-field dis-
continuity since we are only concerned with that part of the
temperature dependence ascribed to fluctuations [74]. Here,
we have determined Cm f (T, H ) for each field by fitting the
data of Fig. 1 to a second-order polynomial for T 	 Tm(H )
and have extrapolated it through the transition region. The
same procedure is employed to evaluate αm f (T, H ) for the
cooling curves of sample 2.

In Fig. 4, we compare our scaled heat-capacity data to the
calculations of Li and Rosenstein [94–98] (thick solid line)
who successfully derived an analytical expression of the 3D-
LLL scaling function for −25 < aT < 8, which includes the
expected contributions from vortex melting. This expression
was found to describe the broadening of the calorimetric tran-
sitions and the melting discontinuity in RbEuFe4As4 [31] ex-
tremely well. An excellent agreement with the Li-Rosenstein

(a) (b)

(c) (d)

FIG. 4. (a),(b) 3D-LLL scaling of the T -dependent heat capacity
of sample 1 for H ⊥ and H‖ to the FeSe layers, respectively.
(c),(d) Same for the thermal expansion of sample 2 (cooling curve).
The thick line represents the scaling function calculated by Li and
Rosenstein [94–98] for the given values of rT (see text for details).
The discontinuity at aT = −9.5 corresponds to the vortex-lattice
melting transition. The dashed line indicates the mean-field Tc(H ).

calculation is also achieved in both our heat-capacity and
thermal-expansion data for a large range of field with the con-
stants rT ⊥ = 60 K−1/3 T2/3 and rT ‖ = 160 K−1/3 T2/3 which
lead to �̃ = (rT ‖/rT ⊥)3/2 = 4.3. These values are in very
good agreement with the respective values 68, 185, and 4.5
calculated using Eq. (3) and the values given in Table I,
demonstrating the pertinence of our scaling analysis. We note
that the 3D-LLL scaling breaks down for large field values
because H ′

c2 in Eq. (3) is no longer T -independent at high
fields due to higher-order gradient terms in the Ginzburg-
Landau functional, neglected in the 3D-LLL approximation,
become important.

A similar scaling approach should also work at very low
temperatures for field curves at constant temperature. We find
that a similar scaling function can be employed to analyze the
mixed-state heat capacity shown in Fig. 3(a). The argument of

TABLE I. Superconducting parameters of FeSe. ξ̃ (0) and �̃ are
the Ginzburg-Landau values of the coherence length and Hc2(T )
anisotropy inferred from the initial slope of Hc2(T ) (see Sec. IV B 1)
and Fig. 6, respectively. κ̃ is the Ginzburg-Landau parameter and
Gi the Ginzburg number derived in Sec. III A. Horb(0), Hp(0), and
αM are the orbital and Pauli critical fields and the Maki parameter
determined in Sec. IV B.

ξ̃ (0) (nm) �̃ κ̃ Gi Horb(0) (T) Hp(0) (T) αM

H ⊥ c 3.5 4.5 94 5 × 10−4 20 26.5 1.0
H ‖ c 0.8 4.5 420 5 × 10−4 90 29 4.4
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(a) (b)

(c) (d)

FIG. 5. (a),(b) 3D-LLL scaling of the H -dependent heat capacity
of sample 1 for H ⊥ and H ‖ to the FeSe layers, respectively.
The thick line represents the scaling function calculated by Li and
Rosenstein [94–98] for the given values of rH (see text for details).
The discontinuity at aH = −9.5 corresponds to the vortex-lattice
melting transition. The dashed line indicates the mean-field Hc2(T ).
(c),(d) Field dependence of δCe(H, T )/T , the difference between the
mixed- and the normal-state heat capacities of sample 1 plotted as a
function H2 for both field orientations.

the scaling function is now

aH = rH

[
H − Hc2(T )

(HT )2/3

]
, (4)

with the constant

rH =
(

2Tc

H ′
c2Gi

)1/3

. (5)

Here, we estimated Cm f (T, H ) for each temperature by fit-
ting our data to H2 away from Hm(T ) [see dotted lines in
Figs. 5(c) and 5(d)], which is characteristic of Pauli-limited
superconductors. Our scaled heat-capacity data are compared
to the Li-Rosenstein [94–98] calculation in Figs. 5(a) and
5(b). For H ⊥ FeSe layers, we find that our scaled data pre-
cisely collapse on the theoretical curve obtained with rH⊥ =
23 K2/3 T−1/3 calculated using Eq. (5) and the values given in
Table I. This agreement confirms the robustness of our scaling
analysis and the existence of Gaussian thermal fluctuations in
FeSe.

However, for T < 6 K, the 3D-LLL scaling breaks down
for H ‖ FeSe layers as illustrated in Fig. 5(b). We show in
Sec. IV B 2 that it is related to strong paramagnetic effects,
which are not accounted for in the 3D-LLL scaling approach.

Further, we note that the midpoint of our broad melt-
ing discontinuity lies around aT ≈ −11, i.e., below the Li-
Rosenstein value [94–98] (aT = −9.5) calculated for an ideal

FIG. 6. Comparison of the heat-capacity curves measured for
H perpendicular (red) and parallel (black) to the FeSe layers. The
inset shows an estimate of the temperature dependence of the Hc2(T )
anisotropy. The line represents the ratio Hc2‖(T )/Hc2⊥(T ) obtained
in Sec. IV B.

vortex lattice. We ascribe this difference to the weak flux
pinning observed in our thermal-expansion measurements.

As explained in Ref. [99], the influence of disorder on the
locus of the melting line can be quantified by the parame-
ter D/cL with D ≈ ( jc/ j0)1/2 ( jc and j0 are the zero-field
critical-current and depairing-current densities, respectively)
and cL the Lindemann number. Using jc ≈ 3 × 104 A cm−2

inferred from Ref. [100], j0 ≈ 107 A cm−2 and cL = 0.2 (see
Sec. IV B 1), we obtain D/cL ≈ 0.3 	 1 indicating that the
observed melting line in FeSe lies very close to the genuine
first-order transition line of the defect-free sample [99].

Here above, we have employed expressions derived for a
single-band system whereas FeSe is a two-band supercon-
ductor. We believe that it is a fair approximation since the
k-averaged energy gaps on the electron and hole bands are
found almost equal, i.e., 〈�h(k)〉k ≈ 〈�e(k)〉k ≈ 1.3 meV
[53,65]. In the opposite case, e.g., �h � �e, 3D-LLL scaling
breaks down because of the existence of two distinct energy
modes [101,102].

B. H-T phase diagram

The above scaling approach yields a mean-field Hc2(T )
and, together with the position of the melting anomaly, allows
us to construct (H-T ) phase diagrams which are displayed
in Figs. 7(a) and 7(b) for H ⊥ and ‖ to the FeSe layers,
respectively. The blue symbols correspond to the vortex-
melting line obtained from T - (circle) and H-sweep (square)
heat-capacity measurements and triangles are inferred from
thermal expansion. The locus of the mean-field Hc2(T ), de-
rived from our scaling analysis, is represented by the red
symbols and corresponds to aT , aH = 0 as indicated by the
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(a)

(b)

(c)

FIG. 7. (a),(b) H -T phase diagram of FeSe for H ⊥ and ‖
FeSe layers, respectively. Blue (red) symbols represent the melting
[mean-field upper critical field Hc2(T )] data. Black dotted lines are
calculations of the orbital critical field Horb(T ). Dashed red lines
represent fits to the Hc2(T ) data including Pauli limitation (assuming
a second-order transition). The solid blue lines represent calculation
of the melting within the Lindemann approximation (see text). T ∗

marks the temperature where Hm(T ) and Hc2(T ) merge. The green
solid line is the same as the dashed red line allowing for a FFLO
modulation Q(T ) [shown in (c)], assuming a second-order phase
transition between the FFLO and the normal states. For comparison,
the solid and dotted magenta lines are second- and first-order tran-
sitions calculated for the pure Pauli-limited case. The shaded area
denotes the extent of the FFLO region in the H -T plane. Tcp stands
for the tricritical point.

dotted lines in Figs. 4 and 5. In the following, we critically
analyze these thermodynamically derived phase diagrams,
which are more representative of the real phase transitions
than transport-derived phase diagrams [103], since the zero-
resistance criteria of the latter only mark the vortex melting
line.

1. H ⊥ FeSe layers

The large value of the Ginzburg-Landau parameter κ⊥ ≈
100 clearly indicates that FeSe is a strong type-II supercon-
ductor and thus represents a good candidate to study the
influence of Pauli-depairing effects on the vortex state. The
importance of spin paramagnetism is typically quantified by
the Maki parameter [104]

αM =
√

2
Horb(0)

Hp(0)
, (6)

where Hp(0) =
√

2�(0)
gμB

and Horb(0) = −0.727H ′
c2Tc are the

zero-temperature Pauli and orbital critical fields [105,106], re-
spectively (g is the gyromagnetic factor). In Fig. 7(a), we show
the temperature dependence of Horb(T ) computed within the
clean-limit Helfand-Werthamer framework [106] using the
measured initial slope H ′

c2⊥ = −3 T K−1 (black dotted lines).
We obtain Horb⊥(0) = 20 T which clearly exceeds the ex-
perimental value of Hc2⊥(0) ≈ 15 T by a significant amount,
strongly suggesting that Pauli depairing is already significant
in FeSe for H⊥ FeSe layers. To account for this effect, we
analyze our data within the Werthamer-Helfand-Hohenberg
(WHH) formalism [107,108] including Pauli effects. An ex-
cellent fit to our data (red dashed line) is obtained for Hp(0) =
26.5 T (left as a free parameter) which leads to a moderate
value of the Maki parameter αM⊥ ≈ 1.1. For completeness,
we also plot in Fig. 7 the temperature dependence of Hp(T )
(magenta curve) [105].

The melting line Hm⊥(T ) (blue symbols) exhibits a char-
acteristic upward curvature near Tc, similar to that of YBCO
[26], and then crosses over to a quasilinear dependence at
lower temperature, where it finally merges with Hc2(T ) at
T ≈ 0. The observation of the vortex-melting transition down
to T/Tc ≈ 0.1 in FeSe allows us to examine the numerous
theoretical models put forward to describe this phenomenon.
Here, we compare our results to the semiquantitative approach
of Houghton et al. [109] based on the Lindemann criterion. In
this approach, the flux-line lattice melts when the mean-square
amplitude u2

th of the fluctuations satisfies

u2
th = a2

0βA

√
Gi

2π

t

1 − bm

√
bm

bc2
FT (bm) ≈ c2

La0
2, (7)

where a0 ∼ �0/B is the vortex-lattice spacing, βA

is the Abrikosov parameter, bm = Hm(T )/Hc2(T ),
bc2 = Hc2(T )/Hc2(0), and t = T/Tc. Here, cL ≈ 0.1–0.2
is the Lindemann number and the analytical expression of FT

is given in Ref. [110]. We note that, for bm ≈ 1, Eq. (7) leads
to rH [Hc2(t ) − Hm(t )]/[HmT ]2/3 ≈ cste which coincides
with Eq. (4) for H = Hm [99]. Using our WHH calculation
for Hc2(T ) and Gi from Table I, we solve Eq. (7) and the
resulting curve is depicted in Fig. 7(a) (solid blue line). For
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cL = 0.15, our calculation fits our data remarkably well down
to T = 0. Thus, the melting transition in the presence of
weak/moderate paramagnetic depairing remains the only
genuine thermodynamic phase transition for H ⊥ FeSe
layers, as emphasized by Adachi and Ikeda [35], and the
vortex liquid smoothly crosses over to the normal state near
Hc2(T ). Finally, we note that we find no thermodynamic
evidence of the high-field modulated phase reported by
Kasahara et al. [61] and Watashige et al. [62] inferred from
heat- and electrical-transport and torque measurements.

2. H ‖ FeSe layers

The situation is very different for H ‖ FeSe layers since
paramagnetic effects are much stronger in this direction due
to the larger value of αM‖ = �̃αM⊥ ≈ 4.5. In such a case,
Adachi and Ikeda [35] predicted that Hm(T ) and Hc2(T ) could
already merge at finite temperature. This appears to be the
case realized in our data, as illustrated in Fig. 7(b) where the
two lines merge around T ∗ ≈ 3 K. Below this temperature,
the normal state is recovered before the vortex solid had a
chance to melt due to strong paramagnetic pair breaking,
which strongly suppresses Hc2(T ). The vortex liquid phase
thus no longer exists in this part of the phase diagram, and
Hc2(T ) again turns into a genuine phase transition for T <

T ∗. This reveals that paramagnetic effects tend to suppress
superconducting fluctuations, as can be expected as the tran-
sition becomes first-order-like. We note that the progressive
disappearance of the vortex-melting anomaly nicely correlates
with the drastic reduction of the resistive transition width
reported by Kasahara et al. [63].

In Fig. 7(b), we show our calculation of Hc2(T ) (red
dashed curve) using the WHH formula with the inferred
values of αM‖ = 4.5 and H ′

orb‖ = �̃H ′
c2⊥ = −13.8 T K−1. We

find that it accurately reproduces our Hc2(T ) data only for
T > T ∗. For T < T ∗, the Hc2(T ) values lie above this line,
and the behavior is reminiscent of FFLO-type physics. The
vortex melting line (solid blue curve), obtained within the
Lindemann approximation with the same value of Gi (see
Sec. IV B 1) and a slightly higher cL = 0.2, describes our
experimental data quite well only for T > 6.5 K. Below
6.5 K, the real melting (blue symbols) deviates strongly
from this line, which is not unexpected, since strong para-
magnetic effects are not accounted for in this model. We
note that the “jump” observed by Kasahara et al. [63] in
heat-transport measurements appears to coincide with the
dashed red line at low T . Theoretically, this line no longer
represents a genuine phase transition for T < T ∗, as explained
in Refs. [8,105], and the correlation with our experiments is
unclear.

In purely Pauli-limited superconductors, a spatially
modulated phase is predicted to appear at high field
for T < Tcp = 0.56Tc, as shown independently by Fulde
and Ferrell [FF,�(q)eiqr] and Larkin and Ovchinnikov
[LO,�(r) cos (qr)] [39,40]. Two effects are already expected
to mark the emergence of the FFLO phase below Tcp: (i)
a first-order transition between the uniform BCS and the
modulated states (dotted magenta line) and (ii) an enhance-
ment of Hc2(T ) which now defines the transition between the
FFLO- and the polarized normal-state phases (solid magenta

line). However, these lines are expected to lie very close to
each other in purely Pauli-limited 3D systems. Here, they
are only 2T apart at T = 0 [see shaded area in Fig. 7(b)].
Accounting for the orbital effect, we expect a shift of Tcp

towards lower temperature and the two lines to lie even closer
to each other [111–114]. For αM‖ ≈ 4.5, the FFLO state
should emerge theoretically below Tcp = 0.33Tc ≈ 3 K in
FeSe [64]. Interestingly, this corresponds to T ∗ where Hm(T )
and Hc2(T ) are found to merge. Therefore, we have recalcu-
lated Hc2(T ) (without additional parameters) allowing for a
finite modulation of the order parameter, Q = h̄vF q/2Tc, as-
suming a second-order FFLO/N transition [115]. The results
for Hc2(T ) and the related Q(T ) are displayed in Figs 7(b)
and 7(c) (green solid lines), respectively. They reproduce
the enhancement of Hc2(T ) observed for T < T ∗ remarkably
well. Unfortunately, we found no experimental evidence for
the required BCS/FFLO transition in our heat-capacity mea-
surements. However, recent heat-transport data from Kasahara
et al. [63] provide some evidence for such a modulated phase
for T < 2 K.

It appears that the transition to the normal state possibly
changes its character below T ∗. While it appears second -
order-like at T = 3 K, the transition exhibits a rather broad
heat-capacity discontinuity at T = 0.7 K [see Fig. 3(d)]. This
feature is reminiscent of the broadened discontinuity observed
around ≈27 T in heat-transport measurements [63]. Overall
our phase diagram is found to be in rough agreement with that
of Kasahara et al. [63]. However, additional measurements
(e.g., magnetocaloric measurements) would be very useful
to further establish the firm existence of an FFLO phase
in FeSe.

3. Consistency check of our analysis

It is worth noting that the analysis presented in Secs. IV B 1
and IV B 2, for both field orientations, were carried out with
only two free parameters, i.e., Hp(0) = 26–29 T and cL =
0.15–0.20 for determining Hc2(T ) and Hm(T ), respectively.
The other quantities reported in Table I are directly inferred
from our measurements using standard thermodynamic re-
lations. Similarly, the agreement between the experimental
values of rT and rH in Sec. IV A with these calculated directly
from Eqs. (3) and (5) is better than 15%.

Further, the transition at T = 0 in the purely paramagnetic
case occurs when the polarization energy equals the condensa-
tion energy, i.e., for [8]: (χn − χs)H2

p (0) = H2
c (0) where χn =

(μ0/2)(gμB)2N (0) represents the normal-state Pauli suscep-
tibility and χs = 0 for a singlet superconductor. Using our
values of Hp(0), Hc(0) = 0.12 T from our δCe (T, H = 0)
data and �(0) = 1.3 meV from Bogoliubov Quasiparticle
Interference experiments, we obtain χn ≈ 1.7 × 10−5 and
N (0) ≈ 2.2 × 1047 J−1 m−3 spin−1. These values lead to a
value of the Sommerfeld coefficient γn = 2π2

3 k2
BN (0) ≈ 6.7

mJ mol−1 K−2 in excellent agreement with the value inferred
from direct heat-capacity measurements. These consistency
checks provide us with great confidence concerning the rel-
evance of our scaling analysis, the accuracy of the inferred
mean-field Hc2(T ), and the validity of the presented phase
diagrams.
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V. CONCLUSIONS

We have determined the full H-T phase diagram of the
nematic superconductor FeSe for both field orientations.
Compelling evidence of an underlying vortex-melting tran-
sition is found in both heat-capacity and thermal-expansion
measurements down to low temperature and high magnetic
fields. We demonstrate the existence of significant Gaussian
thermal fluctuations via a scaling analysis of our thermo-
dynamic data which yields the temperature dependence of
the mean-field upper critical field. The antagonist interplay
between superconducting fluctuations and Pauli depairing
effects is studied. We argue that the predominance of the
paramagnetic limitation at low temperature is responsible for
the unusual disappearance of the melting transition at finite
temperature, around T ∗ ≈ 2 K, for H ‖ FeSe planes, as an-
ticipated theoretically. A slight upturn of Hc2(T ) for T < T ∗,
possibly related to the occurrence of the Fulde-Ferrell-Larkin-
Ovchinnikov phase, is observed. Additional thermodynamic
measurements, e.g., of the magnetocaloric effect or magne-

tostriction, with accurate in-plane field alignment, are neces-
sary to firmly establish the existence of this modulated phase.
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