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ABSTRACT: Emergence and re-emergence of pathogens bearing Patient Rapid epitope
the risk of becoming a pandemic threat are on the rise. Increased serum mapping,
travel and trade, growing population density, changes in urban- diagnostics &
ization, and climate have a critical impact on infectious disease [ 1) vaccine
spread. Currently, the world is confronted with the emergence of a development
novel coronavirus SARS-CoV-2, responsible for yet more than =L ‘

800000 deaths globally. Outbreaks caused by viruses, such as Protein sequence ) '
SARS-CoV-2, HIV, Ebola, influenza, and Zika, have increased over A\ 4 I;§

the past decade, underlining the need for a rapid development of

diagnostics and vaccines. Hence, the rational identification of wmmmmm Overlapping / I

biomarkers for diagnostic measures on the one hand, and antigenic s peptides /
targets for vaccine development on the other, are of utmost __ Peptide array

importance. Peptide microarrays can display large numbers of

putative target proteins translated into overlapping linear (and

cyclic) peptides for a multiplexed, high-throughput antibody analysis. This enabled for example the identification of discriminant/
diagnostic epitopes in Zika or influenza and mapping epitope evolution in natural infections versus vaccinations. In this review, we
highlight synthesis platforms that facilitate fast and flexible generation of high-density peptide microarrays. We further outline the
multifaceted applications of these peptide array platforms for the development of serological tests and vaccines to quickly encounter
pandemic threats.
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1. INTRODUCTION recent definition by the dictionary of epidemiology states that a
In a pandemic situation, the outbreak of an infectious disease pandemic is “an epidemic occurring over a very wide area,
has spread globally with a major impact on morbidity and crossing international boundaries, and usually affecting a large
mortality. Besides a severe negative impact on health, number of people. Only some pandemics cause severe disease
pandemics are accompanied by an enormous economic loss, in some individuals or at a population level.* In contrast, an
as well as social and political implications. Pandemics have epidemic just differs in size of the area where a new or re-
threatened humankind for centuries, such as the Bubonic emerging pathogen causes disease, while an outbreak is even

plague (Black Death) pandemic (14th century), the fifth
cholera pandemic (19th century), as well as the influenza and
human immunodeficiency virus (HIV) pandemics in the 20th
and 21st century.' Most pandemics found their origin from
zoonotic transmissions from domesticated animals (e.g., avian
influenza) or wildlife (e.g., Ebola). Since late 2019, humanity is
faced with the currently ongoing Coronavirus disease Special Issue: Proteomics in Pandemic Disease
(COVID)-19 pandemic responsible for more than 23 million Received: June 30, 2020
infections and over 800 000 deaths worldwide (as of 24th of Published: September S, 2020
August 2020).>

The definition of a pandemic is still the subject of debate
because of its multifactorial and multidisciplinary extent. A

more localized.*” Factors that define the severity of a
pandemic, such as spread and transmissibility, case/fatality
rate, immunity of a population, time span of the asymptomatic
phase (facilitating undetected distribution), a challenging
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Figure 1. Typical workflow of a peptide microarray experiment. The pathogens of interest are selected; their protein sequences are cut into
overlapping peptides, and these peptides are then synthesized on peptide microarrays. Patient samples are incubated on the arrays and serum
antibodies bind to distinct epitopes. This information is the basis for many different applications.

clinical picture (difficult to be differentiated or diagnosed), and
economic impact, are not included in such definitions.*”

The dramatic Ebola virus (EBOV) outbreak in West Africa
in 2013—2016 has shown the need for a preparedness strategy
against pathogens with epidemic potential. In the aftermath of
the outbreak, the World Health Organization (WHO) initiated
a blueprint for research and development to accelerate
diagnostics, therapeutics, and vaccines.” This initiative is a
response to the experience with past epidemics, highlighting
the need to improve emergency preparedness.

Thus, the rapid development of diagnostic measures and
intervention strategies is of utmost importance to combat the
emergence of (novel) pathogens, causing life-threatening
diseases. Understanding the host immune defense mechanisms
and identifying the pathogens Achilles heel can guide the
design of drugs and vaccines. Humoral responses are known to
play a vital role in clearing many infections.” Moreover,
pathogen-specific antibody responses are often used as a basis
for serological diagnostics.'” Hence, the in-depth analysis of
the underlying antigens of (protective) immune responses
eliciting (1) neutralizing antibodies, (2) (early) antibodies that
can be used for diagnostics, and (3) antibodies that can be
applied for epidemiological or immune monitoring studies is
necessary to control pandemic infections.

Peptide microarrays'" are an ideal tool to decipher epitope-
specific humoral immune responses toward the (full)
proteome of an emerging pathogen (Figure 1). They enable
the analysis of tens of thousands of peptides simultaneously in
a fast and cost-effective way for applications, such as epitope
mapping, diagnostics, epitope discrimination, vaccine develop-
ment, and vaccine monitoring. Other technologies, enabling
insights into antibody responses on epitope level encompass
phage display'”™"® (or related display technologies), bead-
based multiplex systems,'”>* and peptide-based enzyme-
linked immunosorbent assays (ELISA).*7° A difference in
the mentioned technologies is certainly the number of
parameters (here peptides), which can be measured simulta-
neously per sample. ELISA, with the lowest number of possible
parameters per sample (1 peptide per sample), is followed by
bead-based multiplex systems (up to ~S00 peptides per
sample),”’ peptide microarrays (typically 500—50 000 peptides
per sample), and phage display (library size up to 10°—10'?)."*
Unique for the latter one is the generation of phage particles,
expressing an unrivaled diversity of peptides. However, it
apparently also has some inherent bias, since it is a biological
workflow, prone to for example unspecific binding (e.g., the
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VirScan approach'® did not identify a highly common polio
virus epitope). The prerequisite of a presynthesis of peptides in
larger scale is common for ELISA and bead-based multiplex
systems. For peptide microarrays, pre- or in situ synthesis of
peptides is possible, depending on the technology used for
microarray production, as described in the next section.

In this Review, we discuss the currently available peptide
microarray synthesis technologies, highlighting those techni-
ques with the capacity to rapidly generate thousands of
peptides. Then, we give an overview on their applications in
the field of epidemic/pandemic infectious diseases, where parts
or the full proteome of an emerging or mutated pathogen were
screened, to quickly respond to a pandemic threat.

2. PEPTIDE MICROARRAYS AND RAPID
PRODUCTION TECHNOLOGIES

Since the advent of parallel peptide synthesis in the 1980s,
peptide and array production methods have become much
more refined and highly automated. Today, peptide arrays are
versatile, widespread, and easily accessible tools for research.
They are used for antibody profiling, for the mapping of
epitopes, to study ligand—receptor interactions, or to
determine substrate specificities of enzymes.'"”” Analogous
to the enzyme-linked immunosorbent assay (ELISA), they
offer the parallel analysis of thousands of peptides, resulting
immunogenicity maps of proteins or full proteomes in single
amino acid resolution.

In 1992, Ronald Frank invented the SPOT synthes.is,28
which revolutionized the automated production of peptides
and peptide arrays: Metal pins or pipettes spot dissolved amino
acid building blocks onto a cellulose surface in order to
parallelize Merrifield’s Nobel Prize awarded solid-phase
peptide synthesis (Figure 2).”” Together with advanced
activation and protecting group strategies, peptides are
elongated separately on each spot. The standard protocol for
a synthesis cycle consists of (1) printing of building blocks, (2)
coupling reaction, (3) washing, and (4) deprotection.
Nowadays, chain lengths of more than 25 amino acids can
be reached. For decades, the SPOT method represented the
gold standard in peptide and peptide array synthesis. Yet, the
method has one decisive drawback: it only achieves a spot
density of ~25 spots per cm? which translates into a limited
parallelized production output and expensive arrays with rather
high chemical costs. To manufacture peptide arrays with
higher density, the presynthesized peptides are solubilized and
afterward respotted in higher density onto glass substrates.

https://dx.doi.org/10.1021/acs.jproteome.0c00484
J. Proteome Res. 2020, 19, 4339-4354
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Figure 2. SPOT synthesis technology. (1) Syringe or pipet tip is used
to dispense solvents with solubilized amino acid building blocks onto
a surface. (2) Coupling reaction proceeds directly upon contact with
the surface-bound free reactive groups. (3) Excess and nonreacted
building blocks are removed by washing and (4) the fluorenylmethy-
loxycarbonyl (Fmoc) protecting group is removed in a subsequent
chemical washing step. SPOT synthesis is the gold standard in the
field, offering reliable access to peptides, but with a limited number of
peptides.

This procedure is widespread and readily available in many
different facets. It is commonly used to produce many array
replicates, but it is still relatively slow and costly. An interesting
concept to miniaturize this approach is to adapt principles
from atomic force microscopy to deliver minute amounts of
liquids selectively on a surface for synthesis.’> This approach
can enable arrays with very high spot densities, although an
automated production setup is still lacking.

To immediately react to an emerging pathogen, rapid
production of individual arrays with thousands of sequences is
needed. Here, in situ synthesis technologies have favorable lead
times and much higher parallelization capabilities. They allow
for an on-demand combinatorial preparation of minimal
amounts of peptides directly on a microarray surface. Although
these peptides are of somewhat lower quality (i.e., unpurified,
including truncated sequences), they are attractive for serum
profiling and antibody screenings, since antibodies can still find
their binding counterpart within the crude peptide mixture on
the surface. In principle, all of these in situ techniques are
directly or indirectly based on selective light irradiation.

A prominent in situ synthesis approach is based on the
photolithographic principle (Figure 3a), which is lent from
semiconductor chip fabrication. Almost 30 years ago, Fodor et
al.’ laid the foundation and showed that amino acids, carrying
a photolabile protecting group, can be selectively deprotected
by light, using a lithographic mask. Meanwhile, projection
technology has significantly progressed due to advanced
microelectromechanical systems engineering, and nowadays,
digital micromirror devices have replaced laborious mask
production. While Fodor et al. successfully switched their focus
to lithographic synthesis of DNA arrays, others followed the
path of lithographically synthesizing peptide microarrays.
Several sophisticated variants of this approach have
emerged.””™" However, the main disadvantages regarding
deprotection efficiency (photocleavage efficiencies is often
<80%), throughput (synthesis setup is occupied for the
synthesis of one complete array), contamination issues (stray
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light or diffusion of photo acids), and the requirement of
sophisticated equipment have apparently limited general
market access.

Other approaches leverage solid polymers, which serve as at
room temperature solid solvents for peptide synthesis. These
solid material-based peptide synthesis technologies facilitate a
highly flexible and affordable production of high-density
peptide microarrays. In contrast to other approaches with
dissolved building blocks, a solid polymer embedding the
amino acid building blocks is delivered as spots to a surface
(Figure 3b and c). The solid solvent has two major advantages:
It does not spread on the synthesis surface, facilitating high
spot densities, and it does not evaporate, allowing for the
parallelization of chemical processing. As a key difference to
the SPOT synthesis, after deposition of the solid solvent (i.e.,
polymer), a several minutes long heating step induces melting
and the amino acids couple within the polymer spots to the
surface. A modified laser printer (Figure 3b) with 20 amino
acid printing units is one of the technologies for the deposition
of amino acid toner particles onto a functionalized glass
surface.’® Variants of this technology employed a semi-
conductor chip and laser fusing to selectively deposit polymer
toner particles.””*® More recently, the combinatorial laser-
induced forward transfer technology (Figure 3c) was
developed,””*” which can be used for an automated peptide
array synthesis. Furthermore, a low-budget variant is available
for research laboratories.""

While many sophisticated peptide synthesis technologies
have been invented, only the SPOT synthesis with its many
variants and the laser printer approach are currently broadly
commercially available. Technologies, which enable the rapid
synthesis of thousands of different biomolecules, can play a
crucial part in future diagnostics and vaccine development. Yet,
there are still challenges for the production of peptide
microarrays to be resolved. Usually, only linear peptides are
produced but also cyclic constrained peptides are possible.
These can mimic looped epitope structures, enabling the
detection of (continuous) conformational epitopes. However,
discontinuous conformational epitopes are still difficult to
construct. Other, more cumbersome synthesis routes have to
be followed to enable such arrays."”*’ Another challenge
concerns posttranslationally modified peptides (phoiphoryla—
tion, glycosylation, hydroxamic acid-modification, * etc.),
which are currently difficult and expensive to be synthesized
in situ in the array format.

In the following sections, we give an overview on the
applications of peptide microarrays for the analysis of
pathogens with epidemic or pandemic potential. Not all arrays
were produced with the aforementioned rapid production
technologies (lithography, laser printing), since many
pathogens have been circulating for longer whiles. Yet, the
current SARS-CoV-2 outbreak highlights the need for
technologies, which enable a rapid response to tackle research
questions arising from endemic or pandemic threats.

3. APPLICATION OF PEPTIDE MICROARRAYS FOR
PANDEMIC DISEASES

Peptide microarrays have been applied for many different
infectious diseases. Table 1 gives a literature overview of
peptide array applications for SARS-CoV-2, Ebola, influenza,
flaviviruses, HIV, and Chikungunya virus, spanning from
infection- to vaccine-induced screenings.

https://dx.doi.org/10.1021/acs.jproteome.0c00484
J. Proteome Res. 2020, 19, 4339-4354
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Figure 3. Selected high-throughput technologies for the synthesis of peptide microarrays. Lithographic methods (a) use a digital micromirror
device to cleave photolabile protecting groups from amino acid building blocks via illumination, offering much higher spot densities. Solid material-
based synthesis methods, such as the laser printer technology (b) or the combinatorial laser-induced forward transfer approach (c), offer a highly
parallelized peptide array synthesis. Both rely on the deposition of at room temperature solid polymer, which embeds the amino acid building
blocks. Only after several minutes of heating in an oven, the coupling reaction begins. Since this allows for the separation of patterning and coupling
steps, these approaches can yield shorter process times for a rapid production of arrays.

3.1. Coronaviruses

Coronaviruses (CoV) belong to the subfamily Coronavirinae,
in the family Coronaviridae of the order Nidovirales. CoVs can
infect humans and may cause respiratory, enteric, and central
nervous system diseases. Prior to 2002, four human CoVs were
identified (HCoV-229E, HCoV-OC43, HCoV-NL63, HKU1)
that showed only mild disease progression in humans.®* Thus,
CoVs were considered to be not highly pathogenic, until the
emergence of the severe acute respiratory syndrome (SARS)-
CoV in 2002/2003.%~%" Ten years later, the Middle East
respiratory syndrome (MERS)-CoV was identified 2012 in
Saudi Arabia, which causes severe disease in humans and had a
fatality rate of 34.4%.°° The virus is generally transferred to
humans from infected dromedary camels. Now, seven years
later, the world is facing another CoV outbreak with SARS-
CoV-2, causing the Coronavirus disease (COVID)-19.% 1t is
assumed that SARS-CoV-2 already began to spread in
December 2019. In March 2020, the WHO declared this
outbreak as a pandemic. With more than 800 000 deaths (as of
24 August 2020), this outbreak is the most dramatic one in the
history of CoVs.
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All three viruses, SARS-CoV, MERS-CoV, and SARS-CoV-2,
are highly pathogenic and, therefore, are listed in the WHO
Blueprint as priority pathogens,® warranting epidemic prepar-
edness strategies.

In contrast to SARS-CoV, SARS-CoV-2 is easily transmitted,
generally through respiratory droplets and aerosols. Tracking
the virus is a challenge due to the generally mild symptoms,
lack of testing, and the high infectivity of the virus. Although
SARS-CoV-2 has only been identified around January 2020,
there is a large magnitude of peer-reviewed (>7000 COVID-
19-related publications)” and non-peer-reviewed (>1900
COVID-19-related preprints)” articles, describing many
aspects of the virus and its course of disease. However,
because of the short period of time since the outbreak, there is
still scarce knowledge on SARS-CoV-2 and COVID-19.
Reverse transcription polymerase chain reaction (RT-PCR)
diagnostics and ELISA tests have their limitations, since PCR
can only detect an acute infection with sufficient viral loads,
while ELISA tests have some sensitivity issues, as well as false
positive results.”’ Thus, many questions regarding immune
responses to SARS-CoV-2 are still open and need to be
addressed in the near future.

https://dx.doi.org/10.1021/acs.jproteome.0c00484
J. Proteome Res. 2020, 19, 4339-4354
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Table 1. Overview on the Diverse Applications of Peptide Microarrays in the Field of Pandemic Pathogens”

keywords with respect to peptide

REVETS

pathogen microarray applications peptide array content studied immune response sample origin ref
SARS-CoV-2  proteome-wide profiling of anti- proteome as overlapping peptides® infection-induced human 45, 46
body responses on epitope level
epitope mapping spike protein as overlapping peptides infection-induced human 47
peptide-PNA library of Spike protein infection-induced human 48
Ebola epitope mapping surface glycoprotein as overlapping peptides infection- and vaccination-  human 49
induced
influenza proteome-wide profiling of anti- proteome of influenza A virus (HIN1) and HA proteins of infection- and vaccination-  human S0
body responses on epitope level other Influenza A subtypes as overlapping peptides induced
immunosignatures to predict vac-  random peptide array vaccination-induced mouse 51
cine efficacy HA peptides vaccination-induced human 52
comparative study on different 4 HA proteins as overlapping peptides vaccination-induced mouse S3
vaccine approaches
peptide-based influenza inhibitors 1 peptide in 152 mutant variants (site directed substitution N/D labeled virus 54
of amino acids) strain
antibody characterization, epitope  nonstructural protein 1 as overlapping peptides N/D mAb 55
mapping
flaviviruses antibody profiling, discriminative proteomes of different arboviruses infection-induced monkey 56
epitopes, differential diagnostics peptides derived from different arboviruses infection-induced human 57
proteome of TBEV as overlapping peptides infection- and vaccination-  human 58
induced
ZIKV proteome as overlapping peptides infection-induced human 59
proteomes of different arboviruses as overlapping peptides infection- and vaccination human 60
induced
epitope mapping, molecular basis ~ ZIKV nonstructural protein 1 sequences as overlapping infection-induced human 61
on differential antibody binding peptides
immune-diagnostics, linear epito- ~ ZIKV nonstructural protein 1-derived peptides infection-induced human 43
pes vs discontinuous epitopes
antibody characterization, epitope ~ DENV2 nonstructural protein 4B as overlapping peptides N/D mAb 62
mapping ZIKV envelope protein-derived overlapping peptides N/D purified Ab 63
(rabbit)
epitope mapping, potential corre-  DENV nonstructural protein 1-derived overlapping infection (human)- and mouse, human 64
lates of protection peptides vaccination (mouse)-in-
duced
immunosignature analyses non-natural randomized peptides N/D purified Ab 65
(mouse)
epitope mapping ZIKV envelope protein-derived peptides vaccination-induced monkey 66
HIV specificities of bNAbs HIV envelope proteins as overlapping peptides (different infection-induced human 67
subtypes)
humoral immune response post HIV envelope proteins as overlapping peptides (different  vaccination-induced human 68—70
vaccination (clinical) subtypes)
HIV envelope proteins as overlapping peptides (different  vaccination- and infection human 71
subtypes) induced
GB virus C/HIV-1 coinfections, GBV-C E2 protein-derived peptides infection-induced human 72
diagnostics
humoral immune response post HIV envelope protein-derived overlapping peptides vaccination-induced rabbit 73
vaccination (preclinical) HIV envelope protein-derived overlapping peptides vaccination-induced monkey 74—76
(different subtypes)
library of peptides derived from HIV-1 proteome covering vaccination-induced guinea pig 77,78
the global sequence diversity
epitope diversity library of peptides derived from HIV-1 proteome covering infection- and vaccination- human, mon- 79
the global sequence diversity induced key, guinea
pig
microarray-based diagnostics, anti- HIV-1 clade C peptides and proteins covering the infection-induced human 80
body monitoring proteome
antibody response, analytical library of peptides derived from HIV-1 proteome covering infected/vaccinated/ART human 81
treatment interruption the global sequence diversity
bNAbs, CDR-H3, epitope recog- HIV-1 envelope protein as overlapping peptides vaccination-induced mouse 82
nition
CHIKV proteome-wide profiling of anti- proteome as overlapping peptides infection- and vaccination-  human 83

body responses on epitope level

induced

“Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; refs, references; mAb, monoclonal antibodies; PNA, peptide
nucleic acid; HA, hemagglutinin; TBEV, tick-borne encephalitis virus; bNADbs, broadly neutralizing antibodies; ART, antiretroviral therapy; HIV,
Human immunodeficiency virus; CDR-H3, heavy chain complementarity determining region 3; CHIKV, Chikungunya virus. bSee original articles
for more detailed information. “Different peptide to peptide overlaps.

While acute infections are identified by PCR, antibody
responses to SARS-CoV-2 are generally measured by ELISA

against the S1 subunit. Serological assays are crucial for patient
contact tracing, identifying asymptomatic spreads, as well as

against the spike glycoprotein (S GP), and more specifically seroconversion in populations. Amanat et al.”> developed an
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Figure 4. Immunogenic epitopes of the EBOV GP (676 AA), identified with peptide microarrays (figure derived from Heidepriem et a

1,9

reprinted with permission). (A) Comparison of the immunogenic IgG epitopes from Heidepriem et al. (S, survivor; V, vaccinee) in the EBOV GP
with the published epitopes from other human response studies (Becquart et al., Rijal et al.).”**” (B—D) 3D view of the EBOV GP trimer structure
with the in Heidepriem et al. identified IgG epitopes highlighted in cyan.

ELISA with the full-length S GP ectodomain (AA1—1213) and
the receptor-binding domain (AA319—541) with the signal
peptide (AA1—14) using expression in mammalian cells or in
insect cells. Testing patient sera from different time points after
onset of symptoms revealed that the full-length S GP has
improved performance in the detection of seroconversion.
Here, peptide microarrays can give a more detailed picture,
enabling the differential binding studies toward the complete
sequence. This can yield important biomarkers (some may
directly correlate with protection or disease progression), as
well as information on domain specificity and, together with
structural protein data, epitope accessibility.

In a preprint, Wang and colleagues™ identified IgG and IgM
targeted epitopes from ten COVID-19 patient sera with whole
proteome peptide microarrays. They found one epitope of a
potential neutralizing antibody in the receptor-binding domain
(RBD, AA456—460) of the spike protein. Furthermore, in
another preprint, Dahlke et al.*® reported the kinetics of the
development of SARS-CoV-2-specific IgA, IgG, and IgM
antibody responses within patients in relation to clinical
features using whole proteome peptide microarrays. The
promptness of antibody development in patients may be
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related to the severity of symptoms and progression of the
disease. Furthermore, results showed an early IgA response
within a few days after onset of symptoms, which may be
picked up earlier than standard ELISA testing. In both studies,
overlapping peptide sequences of the spike glycoprotein were
identified in the RBD (AA446—463) and the fusion peptide
(AA806—831). The use of peptides with more sequence
overlap (15-mer peptides with 13 amino acids overlap) enables
a more precise detection of linear epitopes. Others reported in
a preprint’’ that they have identified three linear epitopes
using 12-mer peptides with an overlap of 6 amino acids with 5§
convalescent sera, which were used for the enrichment of spike
protein neutralizing antibodies. Finally, the Winssinger lab
reported in a recent preprint study48 on a variant peptide array
approach. They used 12-mer peptide—peptide nucleic acid
(PNA) conjugates with an overlap of 6 amino acids of the
spike ectodomain, coupled to a DNA microarray via
hybridization. These investigations revealed epitopes in the
spike glycoprotein regions between AA553—684 and AA764—
829. For the development of immunity, neutralizing antibodies
against the spike glycoprotein will be of vast impact.
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The SARS-CoV-2 research field is progressing quickly and
more samples are currently analyzed with microarrays and
should be publicly available soon. Screening longitudinal
samples from patients will allow to follow the individual
epitope development (epitope spread or reduction) over the
course of the disease and afterward, as well as to analyze long-
term epitope stability many months after the infection.

3.2. Ebola Virus Disease

The Ebola virus disease (EVD) is one of the most threatening
illnesses due to high fatality rates. The 2013—2016 outbreak of
the Ebola virus (EBOV) in West Africa was the largest since its
discovery in 1976 and resulted in 11308 deaths.”® This
outbreak affected for the first time more than one country, with
a high number of cases in Guinea, Liberia, and Sierra Leone.
The world was ill-prepared to limit the spread of the virus,
highlighting the need to improve emergency response.

The disease can be diagnosed by RT-PCR or immunoassays,
such as enzyme-linked immunosorbent assay (ELISA) or
simple lateral flow immunoassays for antigen detection.

However, the need for high biosafety standards results in
limited access to human samples. Becquart et al.”* used
overlapping 15-mer peptides of the surface glycoprotein (GP),
nucleoprotein (NP), and matrix viral proteins VP40 and VP3$§
for an ELISA study of pooled sera, collected from EVD
survivors 7 days after the end of symptoms and 7—12 years
postinfection in comparison with seropositive asymptomatic
individuals. They found early humoral responses mostly
against GP peptides.

Neutralizing antibodies against the EBOV GP can prevent
infections, demonstrating a straightforward way for an efficient
vaccination strategy or antibody-based treatment. Saphire et
al.”® analyzed a global collection of monoclonal antibodies
against EBOV GP regarding neutralization, effector function,
and binding site. To identify the binding epitopes, ELISA
assays, together with time-consuming studies with electron
microscopy and alanine scanning mutagenesis of the EBOV
GP were performed.

Several vaccine candidates were tested during the outbreak,
but so far, only the recombinant vesicular stomatitis virus
(VSV)-based vector carrying the EBOV GP (rVSV-ZEBOV)
became a licensed EBOV vaccine. To draw a clear picture of
the antibody response to rVSV-ZEBOV in patients, Ehrhardt
et al.”® investigated the B cell and humoral immune response
18.5 to 26 months after single-dose vaccination in comparison
to seven EVD survivors. The vaccination elicits potent
neutralizing antibodies with a broad spectrum of targeted
epitopes. Additionally, the distribution of tar§7eted epitopes
coincides with antibodies identified by others”””® and those
from EVD survivors.

Showing a simple and rapid approach with high-density
peptide arrays, Heidepriem and Krihling et al.*’ identified
epitopes of EBOV S GP targeted by the antibodies of vaccinees
with rVSV-ZEBOV and an EVD survivor (Figure 4). By
mapping the whole S GP as overlapping peptide fragments in
single amino acid resolution, new epitopes were recognized,
and overlaps with epitopes from the literature were confirmed.
In addition, a highly selective binding epitope of one
neutralizing monoclonal antibody elicited from vaccination
with rVSV-ZEBOV could be verified.

3.3. Influenza Virus

Influenza pandemics have threatened the humanity in the past
century, with the Spanish flu (1918) being the most fatal,
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responsible for at least S0 million deaths globally, followed by
the Asian flu (1957), Hong Kong flu (1968), and the most
recent Swine flu in 2009.""°° Moreover, several outbreaks of
avian flu are of major concern.'” The vast potential of
influenza to mutate and spread as well as a wide range of hosts
makes the emergence of novel flu pandemics inevitable and
unpredictable. Despite influenza vaccines being available, the
high rate of mutation requires a constant redesign.'”"'%* The
versatile application of peptide microarrays in unraveling
epitope-specific antibody responses, drug and vaccine develop-
ment approaches for influenza are highlighted by several
studies.”" >

A peptide microarray, covering the entire proteome of the
influenza A virus, responsible for the pandemic swine flu in
2009 (HIN1) and hemagglutinin (HA) proteins from 12 other
influenza A subtypes were used to investigate the epitope
landscape of natural pandemic infections and vaccinees
receiving an HIN1 vaccine.”’ The study showed that natural
flu infection leads to a different epitope recognition pattern
than flu vaccination and identified one differential peptide
specific in vaccinated subjects, which was suggested to serve as
correlate of protection in the context of pandemic flu.* With
the aim being to predict vaccine performance, we applied
peptide microarrays in conjunction with a mouse flu model
system to define immunosignatures by profiling the antibody
repertoire.”’ A further study evaluated the efficacy of certain flu
vaccines in the mouse model®” and determined the vaccine-
induced immune responses. Among others, linear antibody
epitope analyses were performed, comparing the antibody
reaction pattern elicited by the used vaccine approaches.

Peptide microarrays are ideally suited for epitope mapping of
monoclonal and serum antibodies. For example, a peptide
microarray was used to map the epitope of a monoclonal
antibody generated against the NS1 (nonstructural) protein of
avian influenza virus.”> As monoclonal antibodies are
important in the field of diagnostics and treatment, character-
izing the epitope (and eventually cross-reactivity) is essential
for further applications. The authors reported a 4-mer epitope
on the avian influenza virus NS1 protein that is recognized by a
monoclonal antibody.

Beside vaccines, drugs are essential anti-infective measures.
In a study addressing the development of peptide-based
influenza inhibitors, which may interfere with host cell entry,
peptide microarray-based site directed substitution of amino
acids assisted in the identification of HA binding peptides with
higher binding affinity.”* The peptides displayed a broader
specificity, binding on HA of human and avian pathogenic
influenza strains.

Although not addressing pandemic influenza, Price and
colleagues utilized the antibody reactivity profile obtained by
peptide microarray immunostainin% to predict the outcome of
vaccination for seasonal influenza.”” Epitope recognition was
associated with effective or ineffective responses to influenza
vaccination.

3.4. Flaviviruses

Many flaviviruses pathogenic to humans are arthropod-borne
viruses, transmitted by either mosquitoes or ticks, belonging to
the family of Flaviviridae. Among other viruses, the genus
includes Dengue (DENV), Zika (ZIKV), Yellow Fever (YFV),
West Nile virus (WNV), Japanese encephalitis (JEV), or tick-
borne encephalitis virus (TBEV).'” Clinically, most of these
viruses are associated with an influenza-like febrile illness
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syndrome, developing into more severe disease in a subset of
patients. DENV is estimated to affect almost half of the world’s
population with around 400 million cases annually,'* while
ZIKV and YFV recently caused large epidemics (ZIKV) or
local outbreaks (YFV) in Latin America and Africa,
respectively.' %

The challenge for the development of vaccines and
diagnostics against flaviviruses is the considerably high
proteome homology between some of its members, causing
cross-reactive immune responses. Hence, results of serological
diagnostic tests may be false positive due to previous
vaccination or natural infection with another flavivirus.'”” In
addition, cross-reactive antibodies can be subneutralizing and
enhance viral uptake as well as replication in monocytes
exacerbating disease outcome, known as antibody-dependent
enhancement (ADE).'**'% Currently, vaccines are licensed
for YFV, JEV, TBEV, and DENV. Postlicensure follow-up
studies of the DENV vaccine DENVaxia showed higher risk of
hospitalization in vaccinated individuals that were serologically
naive prior to vaccinations,''’ highlighting the potential of
immunological enhancement as pathomechanism.

Thus, vaccine approaches and diagnostics need to find a
balance between highly conserved immunogenic epitopes,
neutralizing cross-viral and highly variable epitopes, identifying
only specific viruses of the genus. Peptide microarrays covering
whole proteomes as linear overlapping peptides represent a
promising tool for the investigation of potential epitopes for
diagnostic or prognostic intervention.

Indeed, several studies using peptide microarrays focused on
the identification of discriminating epitopes between certain
flaviviruses.**~®° For example, Viedma and colleagues57 used a
peptide microarray presenting 866 peptides of DENV
serotypes 1—4, ZIKV, WNV, as well as CHIKV, a member
of the family Togaviridae. By combination of experimental and
computational work, they could identify peptides bound by
virus specific antibodies, hence, having possible diagnostic
potential. Another study discovered 13 ZIKV specific epitopes
by using serum samples from ZIKV, DENV, WNV, YFV, and
TBEV infected individuals on a ZIKV peptide microarray.”” An
outstanding example was shown by Mishra et al,’* where a
ZIKV specific NS2B epitope was identified, which was
translated into a highly selective and specific ELISA test.
Therefore, they tested serum samples of flavivirus vaccinated
or naturally infected individuals on peptide microarrays derived
from different flavivirus proteomes.

While the microarray surface (e.g, functionalization and
protein resistance) plays a major role in antibody binding, the
impact of linear vs conformational peptides, as well as
discontinuous epitopes, is often difficult to study, due to
technological barriers. The study by Freire and co-workers®’
presented insights into the molecular basis on how monoclonal
antibodies differentially recognize ZIKV NS1 and DENVs NS1
proteins. By using bioinformatic predictions and modeling in
conjunction with peptide microarray data, two conformational
and one linear epitope within in the NS1 protein of ZIKV were
described. Comparing these epitopes to their homologous
regions in NS1 from DENV2 revealed differences in the
epitope flanking regions, responsible for a difference in the
electrostatic surface potential and, hence, differential antibody
discrimination.’’ A further study by Sola et al.** focused on a
comparison of linear epitopes (i.e., single peptides) versus
discontinuous epitopes (i.e., multiple linear peptides) of ZIKV.
The authors used a peptide microarray with single linear
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peptides of ZIKV NS1 as well as combinations of peptides
mimicking the proximity in the native protein and, hence,
discontinuous epitopes. Results showed that single linear
peptides did not lead to antibody recognition, while
combination of peptides showed an antibody response.

Since antibodies are the key to diagnostics and treatments
against these viruses, mapping their precise epitopes is
essential. Applying peptide microarrays, Xie et al.®* found
two monoclonal antibodies, recognizing one highly conserved
as well as one highly variable peptide sequence within the
DENV NS4B protein. In contrast, another study investigated
polyclonal antibodies, recognizing three domains of the Env
protein of DENV serotypes 1—3, but not WNV, highlighting
that antibodies can be used as possible distinguishable
diagnostic tools.”®

As the magnitude, specificity, and breadth of antibody
response induced by vaccines is crucial for protection,
investigation of these parameters is of crucial importance.
Therefore, high-density peptide microarrays provide an
opportunity to give rapid insights into the immune
response.”*”*® The cited studies used different adjuvants, as
well as vaccine platforms, and could show by peptide
microarrays that magnitude and antibody patterns differ
between approaches dependent on adjuvant and platform of
vaccination.

3.5. Human Immunodeficiency Virus (HIV)

First cases of HIV were reported in West Africa in 1981.
However, the HIV epidemic increased to pandemic
dimensions by the late 20th century."”” According to the
WHO, approximately 75 million individuals have become
infected since its first report. Extraordinary progress in the
development of diagnostics''"''* and antiretroviral therapy
has been made, however an efficacious vaccine is still
elusive.'""* In the field of HIV research, peptide microarrays
are widely used to profile antibody responses in the context of
vaccination, infection, and coinfection.’” ™%

Broadly neutralizing antibodies (bNAbs) are considered to
be crucial for an effective treatment and prevention of
infections with highly variable pathogens such as HIV.''>''
With the use of peptide microarrays, Tomaras and colleagues
studied the specificities of existing bNAbs and the
identification of potentially new targets of bNAbs in samples
of HIV-1 infected individuals. Overall, distinct bNADb
specificities were identified in the plasma of each donor,
which differ in the contribution to neutralization.”” A deeper
understanding of bNAbs provided a study by Wang and co-
workers.*” Specific features of bNADbs are an often uncommon
heavy chain complementarity determining region 3 (CDR-H
3s) and a high level of somatic hypermutations."'” Peptide
microarrays have been applied to study the effect of the CDR-
H3 amino acid content on the patterns of epitope recognition
of HIV-1 envelope protein.*”

Several studies utilized peptide microarrays to monitor
vaccine-induced antibody responses in preclinical”~"" and
clinical settings.”*~”""**" For example, a global HIV-1 peptide
microarray was used to evaluate the epitope diversity of
antibody responses in HIV-1 infected and HIV-1 vaccinated
humans, respectively. Furthermore, antibody responses in
HIV-1 vaccinated rhesus monkeys and guinea pigs were
profiled, which represent two commonly used animal models
in HIV vaccine research.”” Differences in recognized epitope
variants were uncovered, corroborating the application of
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2017 Elsevier B.V.

peptide microarrays for a better understanding of HIV- and
vaccine-induced humoral immune responses.

3.6. Chikungunya Virus (CHIKV)

Although not yet declared as a pandemic agent, the WHO
assigned CHIKYV infections as “epidemic and pandemic-prone
diseases”."'® As an emerging mosquito-borne virus, CHIKV has
spread effectively since its first discovery in Tanzania in
1952."" Cases of CHIKV have been reported in Africa, Asia,
Europe, the Americas and Oceania/pacific islands.'*’ So far,
neither a licensed sPeaﬁc antiviral treatment nor a licensed
vaccine is available.'"” Since humoral responses are key against
CHIKV and were known to correlate with protection,'”'
gaining in-depth knowledge of the targets will pave the way for
vaccine development.

Recently, a whole proteome CHIKV peptide microarrays
allowed the analysis of epitope-specific antibody responses in
CHIKV-lnfected individuals in a longitudinal setting as well as
in vaccinees.*> The study uncovered epitopes in the E2-B
domain and the flanking acid-sensitive regions (ASRs) as the
main antigenic targets in natural infection. In vaccinees,
however, the overall antibody reactivity was lower, detecting
epitope-specific responses only in one flanking acid-sensitive
region as major target. Hence, the data may assist in future
vaccine design.

3.7. Other Infectious Diseases

Peptide microarrays are also widely used in other infectious
diseases, which are not necessarily of pandemic magnitude, but
also cause large burdens on public health. To give several
examples of the extensive list, peptide arrays are employed to
decipher epitope-specific antibody responses, to evaluate or
map vaccine-induced immune responses, or to identify novel
targets for vaccine development and diagnostics in (1)
malaria,"**~"** (2) Lyme disease,"”*""*” (3) schistosomia-
sis,”*® (4) Chagas disease,*”"*" (5) toxoplasmosis,"*'~'** (6)
Crimean- Congo hemorrhagic fever,"**'*> (7) tick-borne
diseases,”” and (8) tick-borne encephalitis.”®

3.8. Random Peptide Array Approach for Disease Research

All aforementioned approaches have one prerequisite in
common: knowledge about the cause of the disease. This
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makes the design of the peptide array content straightforward,
by concentrating on the proteome of a pathogen. However,
many enigmatic diseases lack in any indication of origin. To
investigate, whether the antibody repertoire contains hints to
the disease etiology, for example an unknown pathogen or an
autoimmune reaction, peptide microarrays can be employed.
In contrast to the previous approaches, the complete humoral
antibody response has to be scrutinized without a priori
knowledge of a pathogen to decipher possible relations to
causative agents. Since proteomic assays can display only a
limited number of proteins/peptides, a random content
approach is currently the only way to tackle this problem. In
a proof of principle study,146 a human serum was first
prescreened in a random peptide phage display approach
(Figure S). Since this (biological) display technology usually
shows bias due to detection of unspecific binders or missing
out low affinity binders, all positive peptide binders were
subsequently validated on peptide arrays. Finally, by employing
the aforementioned rapid peptide microarrays synthesis
technologies, in-depth substitution analyses can be performed.
Similar to the alanine-scan approach (one amino acid in a
peptide is stepwise replaced by alanine), these analyses allow
for the identification of exact binding motifs of antibodies by
stepwise substituting one amino acid in a given peptide by all
other 19 amino acids. The result is an antibody “binding
fingerprint”, listing all amino acids that are indispensable or
irrelevant in a given epitope for antibody binding. Now,
protein databases can be queried for this “binding fingerprint”,
to link putatively causing agents or pathogens. With this
approach, Weber et al. found a fingerprint, which was likely
elicited by the polio vaccine.'*®

Another interesting concept by Johnston et al. is the
immunosignaturing approach.'*” It relies on microarrays with a
defined set of some 10 000 random peptides with a very high
peptide density, that is, a small interpeptide—peptide distance
in a spot of the chip. Here, the high density of the peptides
(peptide—peptide spacing of <3 nm) can increase the general
affinity of serum antibodies to the peptides more than 1000-
fold."*® Thus, each serum of a patient results in a unique
binding pattern with hundreds to thousands of strongly bound
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peptides on these immunosignaturing arrays. Because of the
high density of the peptides, they seem to form artificial
epitopes on the array surface, which do not (necessarily)
correlate with any proteome sequence. With this approach, the
binding patterns of healthy donors were compared to patient
serum samples. Although the peptides are not (necessarily)
related to a pathogen sequence, applying different statistical
analyses, these patterns (a limited set of peptide binders) may
be correlated to distinct diseases and even disease stages. Not
only diseases, but also different vaccines were investigated,
revealing that immunosignaturing is a promising tool to predict
vaccine efficacy. Examples of immunosignaturing are the
diagnosis of infections,'*” the monitoring of vaccine
responses,149 and diagnosing cancer.”*° In similar approaches,
fixed-complexity random-sequence peptide arrays were used
for epitope identification and characterization of monoclonal
antibodies.'*>"*" For myalgic encephalomyelitis/chronic fa-
tigue syndrome (ME/CFS),"*>">* which is a disease with
unknown etiology, two studies resulted in two sets of 25 and
256 peptides, which could discriminate the samples. Because of
the underlying technology of random artificial epitopes, no
relation to an infectious agent could be drawn. However, little
overlap between the two sets was found. This might be caused
by differences in patient samples or may be attributed the
immunosignaturing technology: its dependency on exact
peptide—peptide distances, forming artificial high-affinity
epitopes. This requires highly precise and reproducible control
of surface functionalization, which might be challenging.

In conclusion, the number of studies utilizing random
peptide libraries emphasizes their large potential for
diagnostics and therapeutics.

4. CONCLUSION

Peptide microarrays have become a versatile, widespread, and
easily accessible tool to examine epitope-specific antibody
responses in many disease areas. This Review highlighted the
diverse applications of peptide microarrays in the field of
infectious diseases with the focus on pandemic pathogens. As
experienced with the current COVID-19 pandemic, prompt
strategies are needed for (sero-)diagnostics and vaccine
development. In this context, the identification of immuno-
dominant (protective) or discriminating epitopes is crucial—
an investigation where peptide microarrays are an ideal
methodology.

Recent peptide microarray technologies allow for a highly
flexible and timely production, which enables the immediate
analysis of humoral responses against tens of thousands of
peptides in parallel. Moreover, it combines multiple advantages
in a single experiment, such as (i) reduced laboratory efforts
due to parallel screenings, (ii) minimal sample volumes, (iii)
flexibility to be used with diverse samples, and (iv)
simultaneous detection of different classes of antibodies (e.g.,
IgG, IgM, and IgA). For in-depth analysis of essential amino
acids within the epitope sequences, amino acid substitution
analysis can be performed, screening many similar peptide
variants of a peptide binder. This can help to elucidate the
crucial amino acids for binding or to identify potential cross-
reactivities. Such amino acid- or epitope-specific antibodies
may also be involved in antibody-dependent enhancement.

In conclusion, peptide arrays are a useful research tool to
analyze antibody responses and to deduce important epitopes
for the development of serological assays and vaccine design.
Thus, rapid and high-throughput array synthesis technologies
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can significantly accelerate research during pandemic out-
breaks.
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