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ABSTRACT: 
Unanchored containers, e.g. for toxic waste, are required to be checked against 
overturning under seismic actions. Usually this is done by calculating static 
equilibrium, therewith ensuring stiction and avoiding overturning.  

When concepting seismic actions as displacement controlled base excitation with 
reversals, it becomes obvious that neither the beginning of an overturning motion 
nor the loss of stiction necessarily causes the structure to fall over. 

Based on a simplified rigid body assumption for the unanchored container, analytical 
methods are used to describe the states of no-motion, sliding, rocking, overturning 
and restoring of the overturning motion by reversion of the base displacement. Of 
course, if this is extended into a numerical simulation, the rigid body assumption 
(“rocking block”) can be dropped and deformations of the container, e.g. shell 
modes, can be considered. 

Depending on the aspect ratio and a variation of friction coefficients parameter 
confidence boundaries are identified, within which the structure is safe against 
overturning.  
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1 Introduction  
Motivation of the present paper is an industrial project, where the first author 
investigated the tilting stability of stacked steel boxes as given in Figure 1 under 
earthquake and wind in Germany [1]. It was obvious, that the Lateral Force Method 
([2], see worked example in [3]) is very conservative, when it comes to reversed base 
motion as with earthquake. In a quasi-static approach, loss of stiction indicates loss 
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of bearing capacity; really this is not the case, there is just a displacement. As well, 
in a quasi-static approach tilting indicates loss of bearing capacity; really, if tilting 
starts short before reversal of the ground motion, some bumping will happen, but the 
stack will not fall over.  

 
Figure 1: Outer steel box of a double wall mercury container [4] 

In the present paper we develop a less conservative approach, but still using quasi-
static formulations for limit conditions instead of employing a strict dynamic 
solution. Thus, “simple” means the model is wrong in a mechanical sense, because 
we are describing dynamic phenomena with a quasi-static approach. However, from 
a designer’s point of view, the model given in Figure 2 is not worse than the Lateral 
Force Method proposed in EC8 [2]. 

2 Terms, Definitions and Abbreviations 

 
Figure 2: Mechanical model (elevation); tilting/sliding body on a rigid surface 

a, b, c [m] dimensions of the body in direction of the x-, y- and z-coordinate 

a [m/s2] acceleration  

A [m] amplitude of the ground motion 



2nd International Conference on 
Seismic Design of Industrial Facilities 

Aachen, 04.-05.03.2020 
 

aspect ratio c/a – a big aspect ratio is describing a slender body 

coordinates: origin: on the surface between body and ground; right hand rule 
x: horizontal coordinate; z: vertical (upward) coordinate 

DAF dynamic amplification factor 

DOF degree(s) of freedom 

Lyapunov Stability engineering definition used in this paper: 
a) long time amplitudes do not diverge; i.e. existence of a limit cycle 
(attracting orbit);  
b) without steady state drive the amplitudes are converging to zero 
motion; 
Note, that Klotter used the term semi-stable for the limit cycle 
described under a), because perturbations to the outside are 
divergent while perturbations to the inside are stable [5]. 

m [kg] mass 

non-smooth dynamical system system with discontinuity in the restoring force 

PGA peak ground acceleration 

r = c/2 / sin α radius of the trajectory of the center of mass when rotating around a 
bottom corner 

T (s) oscillating period; (see ω) 

α = arc tan (c/a) [rad] angle against the horizontal; pointing from a bottom corner 
of the body towards the center of gravity 

β = π/2 – α angle against the vertical; pointing from a bottom corner of the body 
towards the center of gravity 

 − గଶ  ≤ 𝜑 ≤ + గଶ  [rad]  rotational DOF of the body 

 𝜂 = ஐఠ   normalized driving frequency  

μs; μk;  (constant) coefficients of static and kinetic friction 

ρ [kg/m3] density 

Ω [rad/s] driving frequency 

ω [rad/s] pseudo-eigenfrequency of the oscillator; The term pseudo-
eigenfrequency was used by Nagel [6] to make clear, that a nonlinear 
oscillator exhibits a periodic motion, but the latter cannot be 
described by means of classical (linear) dynamics as T = 2π √(m/c). 
However, using T in a less rigorous definition, we can refer to the 
period as describing the time along three zero-crossings, regardless 
of the motion in between being harmonic or periodic non-harmonic. 
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3 Assumptions 
We investigate a prismatic body standing on a horizontal surface; body and surface 
are rigid; for stacked boxes this implies, that either gapping between the boxes is 
counterbalanced by the self-weight or the boxes are bolted; the stack remains rigid, 
“whipping” is excluded. 

The body has a continuous density, so that the mass of the body is given by 𝑚 = 𝑎 ∙ 𝑏 ∙ 𝑐 ∙ 𝜌 ( 1 ) 

In this first study we investigate a 2D problem in the x-z-plane. Thus, the findings 
do also hold for a vertical cylindrical body instead of a prism. 

For simplicity, in this study the seismic action is assumed to be a horizontal harmonic 
ground motion given by   𝑥(𝑡) = 𝐴 ∙ sin Ω𝑡. Restrictions and further discussion of 
this simplification is given by Knoedel/Hrabowski [7]. 

For simplification, we assume the asperity of both contact surfaces being represented 
by constant coefficients of static friction and kinetic friction. 

Due to the harmonic ground motion we have decaying speeds towards the extreme 
points, so that the relative motion between body and ground gradually comes to a 
halt. This may lead to stick-slip phenomena towards the reversal of the motion 
(“rattling”), which have been investigated e.g. by Vielsack [8]. However, these 
effects near the reversal do not affect the findings of this study. 

4 Dynamic Behavior 

4.1 General 
Nonlinear dynamics of rocking (tilting) oscillators have been described by e.g. 
Klotter [5], DeJong/Dimitrakopoulos [9] and Vassiliou/Markis [10]. 

Nonlinear dynamics of sliding oscillators have been described by e.g. den Hartog 
[11], Klotter [5], Leine et al. [12], Hong/Liu (including a review of literature [13]), 
Vielsack [8] and Gaus [14]. Typically, the model of a mass on a belt is used, which 
is derived from technical applications such as screeching of a disc brake. 

To the authors knowledge, there is no simple engineering solution published, which 
includes friction with “belt-reversals” and which allows to estimate he behavior of 
an oscillator rocking and sliding. 

4.2 Properties of Rocking Oscillators 
In Klotter 5.43 [5] a linearized solution (small rotation; requires small amplitudes) 
for a quarter fundamental period is given, which is here extended to a full period for 
convenience and retransformed into physical units. 
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 𝑇 = 8ටఝబ∙௥మ௔∙௚     ( 2 ) 

with φ0 being the initial rotation. Remark: As Klotter includes only a translatory 
point-mass in the center of gravity of the block, this describes a mathematical 
pendulum rather than a physical pendulum. 

In DeJong/Dimitrakopoulos [9] a “frequency parameter” is given, which is here 
rearranged as fundamental period for convenience. 

 𝑇 = 2𝜋ටସ∙௥ଷ∙௚    ( 3 ) 

This solution coincides with a physical bar pendulum of L = 2r including rotational 
inertia. Further on, we refer to the value given by Eq. 3 because this seems to be a 
better representation for our engineering problem. 

As will be seen in the example below, the rocking period of bodies with practical 
dimensions is T ≥ 2 s. Thus, the period of the body is by far larger than the control 
period TC given in EC8-1 Tab. 3.2 and 3.3 [2]. The effective acceleration is at least 
by a factor of 

 𝑘 = ்಴் = ଴.଼ ௦ଶ.଴ ௦ = 0.4    ( 4 ) 

smaller than the plateau value. This means in turn, that the big amplitudes in the 
response spectrum do not really affect the oscillator. With a prescribed base 
displacement and η > 1, even for a steady state drive the DAF for the absolute 
amplitude of the oscillator remains < 1: the displacement amplitudes of the center of 
gravity of the oscillator are smaller than the driving amplitudes at the base. 

4.3 A Note on Friction Coefficients 
In EN 12812 informative Annex B [15] values are given for steel on concrete:  

 0,3 ≤ 𝜇௦ ≤ 0,4 ( 5 ) 

In this study we will be using (arbitrary) 

 𝜇௦ = 0,4 ( 6 ) 
 𝜇௞ = 0,2 

Note, that also the relation of μk being app. 50 % of μs is arbitrary: 

Vatansever/Yardımcı [16] reported a slip coefficient being 92 % of the stiction. 
Afzali et al. [17] reported a slip coefficient of nearly 100 % of the stiction, compare 
also EN 1090-2:2018 Fig. G.2 [18]. 

It seems, that big differences result from higher displacement rates, while in the test 
setup according to EN 1090-2:2018 the load increase up to slip is very slow. 
Furthermore, the procedure in EN 1090-2 is for qualifying coating, and thus might 
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have a different behavior than a loose block on a surface. However, due to space 
restrictions, this cannot be discussed in detail in the present paper. 

5 Identification of Modes 

5.1 Quasi-Static Mode (sticking) 
Assessment of the quasi-static mode is possible only, if the center of gravity of the 
body is accelerated instead of the base. 

Limit conditions 
Base shear does not exceed friction 
Tilting moment does not exceed restoring moment from self weight 
(φ = 0) 

Inertia of the mass 

 𝐹ூ(𝑡) = −𝑚 ∙ 𝑎(𝑡) ( 7 ) 

Static friction 

 𝐹ி௦(𝑡) = +𝑚 ∙ 𝑎(𝑡)   ≤   𝐺 ∙ 𝜇௦ = 𝐹ி,௟௜௠௦   ( 8 ) 

Tilting moment 

 𝑀்(𝑡) =  +𝑚 ∙ 𝑎(𝑡) ∙ ௖ଶ ( 9 ) 

Restoring Moment 

 𝑀ோ = −𝐺 ∙ ௔ଶ ( 10 ) 

5.2 Slipping Mode 
Limit conditions 
Base shear does exceed friction 
Tilting moment does not exceed restoring moment from self weight 
(φ = 0) 

Kinetic friction 

 𝐹ி௞(𝑡) = +𝑚 ∙ 𝑎(𝑡)   ≤   𝐺 ∙ 𝜇௞  =  𝐹ி,௟௜௠௞  ( 11 ) 

Compared to stiction, the accelerating base shear is reduced during slipping. Thus, 
the body is less accelerated, leading to a smaller rotation φ if tilting. With the same 
displacement amplitude A, the motion of the body becomes less critical.  
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5.3 Rocking Mode 
Limit conditions 
Base shear does not exceed friction (more complex terms for slipping) 
Tilting moment does exceed restoring moment from self weight 
(φ ≠ 0) 

Tilting moment 

 𝑀்(𝑡) =  +𝑚 ∙ 𝑎(𝑡) ∙ ௖ଶ∙ୱ୧୬ ఈ sin(𝜑 + 𝛼) ( 12 ) 

Restoring Moment 

 𝑀ோ = −𝐺 ∙ ௔ଶ∙ୡ୭ୱ ఈ cos(𝜑 + 𝛼) ( 13 ) 

Note, that the restoring moments is negative for 𝜑 > 𝛽. 

Note that the condition A ≤ a/2 is only a conservative description of the falling over 
limit. It neglects the acceleration of the center of mass during the first quarter period, 
leading to φ < β for A = a/2.   

5.4 Overturning Mode 
Limit conditions 
Base shear does not exceed friction (more complex terms for slipping) 
Tilting moment does exceed restoring moment from self weight 
Steady state amplitude A > a/2 (quasi-static, weak condition) 

6 Numerical Analysis 
In parallel to the analytical solutions presented here, a FEA demonstrator model is 
prepared. This enables to perform a transient analysis and to check the plausibility 
of the above assumptions. When trying to drive a highly non-linear system to 
maximum response amplitudes, the tuning of the driving frequency can be difficult, 
as described in [19]. In order to overcome this difficulty, a wide range of driving 
frequencies are investigated, and the response of the container is mapped. However, 
due to space restrictions, the results such as phase portraits etc. will not be included 
in this paper. 

7 Example 
In the example we use the features of the container shown in Fig. 1. 

Steel box L/W/H = app. 1.100/1.100/1.000 mm; center of gravity at app. 500 mm 
elevation; self weight plus fill app. 25 kN (data taken from [1]), resulting in a virtual 
density of 2.066 kg/m3. 

Stiction limit load 
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 𝐹ி,௟௜௠௦ = 𝐺 ∙ 𝜇௦ = 25 𝑘𝑁 ∙ 0,4 = 10 𝑘𝑁 ( 14 ) 

Restoring moment 

 𝑀ோ = −𝐺 ∙ ௔ଶ = −25 𝑘𝑁 ∙ ଵ.ଵ଴଴ ௠௠ଶ = −13,8 𝑘𝑁𝑚 ( 15 ) 

Sliding limit load 

 𝐹ி,௟௜௠௞ =   𝐺 ∙ 𝜇௞  =  25 𝑘𝑁 ∙ 0,2 = 5 𝑘𝑁 ( 16 ) 

We assume a PGA of 1,6 m/s2 as used in the example in [7] with a soil factor S = 
1,5, a behavior factor of q = 1,5 and an importance factor of γI = 1,0. Thus, according 
to EC8-1 4.3.3.1 with Eqs. 4.5 and 3.14 [2], we obtain a quasi-static plateau base 
shear of 

 𝐹௕ =  𝑚 ∙ 𝛾ூ ∙ 𝑎௚ோ ∙ 𝑆 ∙ 2,5/𝑞 ( 17 ) 
 𝐹௕ =  2.500 𝑘𝑔 ∙ 1,0 ∙ 1,6 ௠௦మ ∙ 1,5 ∙ ଶ,ହଵ,ହ = 2.500 𝑘𝑔 ∙ 4.0 ௠௦మ = 10 𝑘𝑁   

This corresponds to a harmonic base acceleration of 2,4 m/s2 corresponding to a 
harmonic base displacement with an amplitude of app. 50 mm [7]. 

The tilting moment amounts to 

 𝑀்(𝑡) =  +10 𝑘𝑁 ∙ 500 𝑚𝑚 = 5 𝑘𝑁𝑚 ( 18 ) 

In this example, the body will just remain in the sticking mode and will not tilt. 

Fundamental period 𝑇 = 2𝜋ටସ ∙ ଴.଻ସ௠ଷ ∙ଵ଴೘ೞమ = 1.98 𝑠    ( 19 ) 

In the same way we obtain the numbers when stacking up 4 boxes: 
FF,lim = 40 kN; MR = –55,0 kNm; Fb = 40 kN; MT = 40 kN * 2,0 m = 80 kNm; 
T = 3,30 s 

In this example, the body will just remain in the sticking mode and will tilt. 

A driving displacement amplitude of 50 mm is << a/2 = 600 mm. Regardless of 
sticking or slipping the tilting of the body will remain well within the limit cycle. 
Thus, Lyapunov stability is given. 

8 Summary 
By extending the analysis also to dynamic modes, it was possible, to come to less 
conservative results than before.  

– Slipping is not affected by the number of boxes in the stack, only by the base 
acceleration and the coefficient of friction. 

- According to the above findings slipping leads to increased overall stability. 
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– We assume that the stack has been designed for a maximum quasi-static load 
coming from the plateau value of the response spectrum. Then, by dynamic 
effects, there is no amplification that leads to higher horizontal loads. 

– Employing dynamic criteria enables a less conservative statement on global 
rocking stability. 

– Even more precise findings can be expected by FE time history analysis. 
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