
Nano Energy 78 (2020) 105231

Available online 12 August 2020
2211-2855/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Lithium-ion (de)intercalation mechanism in core-shell layered Li(Ni,Co, 
Mn)O2 cathode materials 

Weibo Hua a,b,*, Björn Schwarz b,**, Raheleh Azmi b, Marcus Müller b, 
Mariyam Susana Dewi Darma b, Michael Knapp b, Anatoliy Senyshyn c, Michael Heere b,c, 
Alkesandr Missyul d, Laura Simonelli d, Joachim R. Binder b, Sylvio Indris b,***, 
Helmut Ehrenberg b 

a State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China 
b Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany 
c Heinz Maier-Leibnitz Zentrum, Technische Universität München, Lichtenbergstrasse 1, D-85747, Garching, Germany 
d CELLS-ALBA Synchrotron, Cerdanyola del Valles, E-08290, Barcelona, Spain   

A R T I C L E  I N F O   

Keywords: 
Core-shell architecture 
Coexisting layered phases 
Chemical composition 
(de)Lithiation mechanism 

A B S T R A C T   

LiNixCoyMn1-x-yO2 (NCM) intercalation compounds with core-shell architecture have been found to be promising 
cathode candidates for next-generation lithium-ion battery applications. The NCM cathodes’ functional prop
erties are dependent on the transition metal relative ratios, making it a challenge to control the real structure of 
core-shell NCM cathode materials and to understand the synergistic effect of core and shell during the electro
chemical cycling. Herein, a universal and facile synthetic strategy is developed to synthesize the NCM material 
composed of an inner Ni-rich core and a Mn-rich shell on a secondary particle level. Both the Ni-rich particle core 
and the Mn-rich outer surface possess a layered α–NaFeO2–type structure with the same space group (R3m). The 
in situ synchrotron-based X-ray diffraction and absorption spectroscopy results demonstrate that the two layered 
phases do not participate in the electrochemical reaction simultaneously during the first cycle between 2.7 and 
4.3 V, while they exhibit a similar reversible (de)lithiation mechanism in the following cycles. These findings 
provide a new perspective for rational design of layered Ni-based cathode materials with high energy and long 
cycling life with particular two phase electrochemical characteristics.   

1. Introduction 

Achieving green energy technology application in energy storage 
systems (ESS) [1–3] and electric vehicles (EVs) is imperative to develop 
the next-generation cathode materials in lithium ion batteries (LIBs) 
[4–8]. To reach such goals, present research mainly focuses on the 
development of metal-O2/CO2 batteries [9,10], the preparation of new 
iron-based poly-anionic compounds [11,12], and the improvement of 
existing layered lithium-containing transition-metal oxides (LiNix

CoyMn1-x-yO2, abbreviated as NCM) [13–15]. The metal-O2/CO2 

cathodes have a substantially high theoretical capacity but these mate
rials are still far from being considered for practical applications because 
of their low working voltage. The poly-anionic compounds, e.g., the 
intensively investigated LiFePO4, show a good cycling stability due to 
the stabilization of oxygen anions via strong covalent bonds of poly
anions in the crystal structure [16,17]. The intrinsically poor bulk 
electronic and ionic conductivities of these compounds result in an 
inferior rate capability [18,41]. Currently, modified layered NCM 
cathodes could deliver the highest capacity (>200 mA h g− 1) of cathode 
materials utilized up-to-date, which would make them interesting 
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candidates for next-generation LIBs [19–22]. 
Layered NCM oxides possess a trigonal α–NaFeO2–type structure 

with space-group symmetry of R3m. These can be considered as an or
dered rock-salt (Fm3m) derivative, where the lithium ions and 
transition-metal (TM) cations are located on octahedral sites of alter
nating layers forming LiO6 and TMO6 octahedra, respectively, see 
Fig. S1 in the electronic supplementary information (ESI). Among the 
series of NCM compounds, a high nickel concentration is beneficial for 
the enhancement of specific capacity, high cobalt content is favourable 
for improving the rate performance and high manganese content could 
conduce to enhance the structural stability [23–25]. Recently, Sun et al. 
[26,27] have suggested that the controlled preparation of a Mn-rich 
shell surrounding a Ni-rich core is an efficacious approach to improve 
the cycling stability of NCM cathodes during electrochemical testing. 
However, the intercalation/de-intercalation mechanism of lithium ions 
into/from core-shell-architectured NCM cathode materials is not very 
clear. One open question is whether both phases are inter
calated/deintercalated subsequently or simultaneously. 

In this work, a core-shell NCM material was successfully synthesized 
by using a facile and scalable hydroxide co-precipitation method. The 
prepared NCM material possesses a layered Ni-rich core and a layered 
Mn-rich shell on a secondary particle level. Both these layered com
pounds have a rhombohedral crystal structure, space group (R3m), but 
subtle difference in the lattice parameters. Moreover, we focus on how 
non-equilibrium (de)lithiation reactions proceed in the core-shell- 
architectured NCM cathode. The variation of the lattice parameters of 
two phases is not simultaneously during the first cycle, such discrepancy 
become negligible in subsequent cycles. This study provides new in
sights into the synergistic effect of the peculiar core–shell architecture in 
positive NCM electrodes. 

2. Results and discussion 

On the basis of our previous work [28–30], a co-precipitation 
method was employed to obtain core-shell structured NCM cathode 
materials, as shown in Fig. S2. A Ni-rich aqueous solution made of 
NiSO4⋅6H2O, CoSO4⋅7H2O and MnSO4⋅H2O at a molar ratio of 5:2:3 was 
fed into a reactor Nr.1. Simultaneously, a sodium hydroxide solution 
(aq.) and a desired amount of NH4OH solution (aq.) were successively 
added into the reactor Nr.1. After the nucleation/crystallization process, 
the precipitates formed in reactor Nr.1 were slowly pumped into a 
reactor Nr.2 as crystal nuclei. Subsequently, a Mn-rich solution 
composed of NiSO4⋅6H2O, CoSO4⋅7H2O and MnSO4⋅H2O (cationic molar 
ratio of 2:2:6), a NaOH solution and an ammine solution were added into 
the reactor Nr.2. The pH value (11.3 ± 0.2), reaction temperature (52 ±
2 ◦C) and stirring speed (700 rpm) were carefully controlled during the 
reaction process, see electronic supplementary information (ESI) for 
more details. The molar ratio of the Ni-rich solution and Mn-rich solu
tion is 3:2. The precipitated precursor was filtered, washed and dried to 
remove impurity ions and adsorbed water. The precursor obtained from 
reactor Nr.1 and reactor Nr.2 are marked as precursor-1 and 
precursor-2, respectively. 

Both precursor-1 and precursor-2 particles are spherical agglomer
ates composed of thin nanoplates, see Fig. S3. A core-shell structured 
precursor-2 including a Mn-rich shell and a Ni-rich core was directly 
observed by cross-sectional scanning electron microscopy (SEM) image 
and by energy-dispersive X-ray spectroscopy (EDX) line-scan data, as 
shown in Fig. S4. That is, manganese is mainly distributed in the outer 
surface area whereas nickel is localized prominently in the interior re
gion of a secondary particle. Cobalt is distributed homogeneously in 
both inner and outer part of the particle as the same concentration of 
cobalt is present in both reactors. Fig. S5 displays a particle size distri
bution of both precursors. The cumulative profile and corresponding 
histogram curve of precursor-2 shift to a larger particle size when 
compared with those of precursor-1, indicating that precipitated crystals 

continue to grow or accumulate on the surface of precursor-1 in reactor 
Nr.2. 

A core-shell NCM cathode material was synthesized via a high tem
perature lithiation reaction (1) (Δ indicates heating):  

0.6Ni0.5Co0.2Mn0.3(OH)2 ⋅ 0.4Ni0.2Co0.2Mn0.6(OH)2 +
1
2
Li2CO3

+
1
4
O2 →Δ 0.6LiNi0.5Co0.2Mn0.3O2 ⋅0.4LiNi0.2Co0.2Mn0.6O2 +

1
2

CO2 + H2O

(1)  

For comparison, the components LiNi0.5Co0.2Mn0.3O2 (NCM523) and 
LiNi0.2Co0.2Mn0.6O2 (NCM226) were also prepared from the hydroxide 
precursor and lithium carbonate by using the same heating procedure. 
The microstructure and elemental distribution of the core-shell precur
sor could be preserved after the calcination process. The Ni-rich particle 
core and Mn-rich outer surface (of about 1 μm of thickness) are clearly 
seen from the SEM-EDX mapping images (Fig. 1(a-e) and Fig. S7). In 
particular, the Co content remains almost constant, the Ni concentration 
increases gradually from the particle surface to the particle center 
whereas the Mn concentration decreases concurrently (Fig. 1(f)). The 
elemental composition of Ni:Co:Mn in the surface and inner part of the 
core-shell precursor is roughly 0.23(5):0.25(5):0.52(5) and 0.55(5):0.23 
(5):0.22(5), see Fig. S4. After high-temperature lithiation reaction, these 
values become approximately 0.34(5):0.17(5):0.49(5) (shell) and 0.44 
(5):0.19(5):0.37(5) (core), respectively, suggesting an inter-diffusion of 
Ni and Mn during calcination driven by concentration gradient [31]. 

Surface chemical compositions and oxidation state of the core-shell 
NCM, NCM523 and NCM226 particles separately were investigated by 
X-ray Photoelectron Spectroscopy (XPS). The 2p spectra of Ni, Co, and 
Mn are shown in Fig. 2. The Ni 2p spectra consist of week Mn LMM 
auger, Ni2p satellites, and multiplets. According to the approach of Azmi 
et al. [32] the Ni ions in all three samples attributed to the Ni2+ state 
whereas the NCM532 particles contain also a minor contribution of Ni3+

ions, the spectra overlay of these 3 samples in Fig. S8 also shows a 
slightly broader FWHM for NCM532 in further confirmation of oxidation 
state assignment. The spectra of Co ions are all similar and show a 
characteristic structure of Co3+ ions, normally found in LiCoO2 com
pounds, with a main peak at 780.3 eV and a week satellite peak at 
around 9 eV higher than the main peak (at 789.8 eV) [32,33]. Therefore, 
the Co ions in NCM523, NCM226, and core-shell NCM samples are 
attributed to the Co3+ ions. The Mn 2p spectra in NCM226 and core-shell 
samples, in agreement with the splitting energy of 4.5 eV for Mn 3s 
spectra (see Fig. S8), could be successfully deconvoluted by using Mn4+

set of multiplets and considering the overlapping Ni LMM Auger peaks 
[32,33]. However, the weak Mn 3s spectra (see Fig. S8) of NCM532 
shows a splitting energy of around 5 eV which is mainly attributed to a 
mixed oxidation state [15,32,33] of Mn3+ and Mn4+ that could properly 
deconvolute the Mn 2p spectra of NCM532. The summary of oxidation 
states of transition metals and their surface elemental compositions 
quantified by XPS and normalized to Co being 0.2 is shown in Table 1. 
The normalized atomic percentages show that for a constant amount of 
Co, the core-shell secondary particles show Mn values near to the 
amount found for NCM226 particles whereas the Ni content is higher 
than NCM226 and lower than NCM523 particles so that Mn is enriched 
on the surface. Finally the overall chemical composition of the prepared 
core-shell material measured by inductively coupled plasma optical 
emission spectrometry (ICP-OES) demonstrates that its atomic ratios of 
Li:Ni:Co:Mn is around 1.00(2):0.37(2):0.19(2):0.43(2), which agrees 
well with the nominal value (1.00:0.38:0.20:0.42). 

High-resolution synchrotron radiation powder diffraction (SRD) was 
used to investigate the crystallographic structure of NCM523 and 
NCM226. All the reflections in SRD pattern of NCM523 can be indexed 
according to a rhombohedral layered phase (R3m), see Fig. 3(a–b). In 
comparison to NCM523, several weak reflections over a 2θ range of 
5.3–7.7◦ belonging to a honeycomb superstructure of a monoclinic 
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layered phase (C2/m) are found in NCM226, which is usually observed 
in Mn-rich layered oxides [34]. For comparison, Rietveld refinements 
for both NCM523 and NCM226 were performed by assuming a layered 
rhombohedral model (R3m), as shown in Fig. 3(a-b) and Tables S1–2. 
Considering the neutron powder diffraction (NPD) is sensitive to 
discriminate the transition metals with similar electronic densities (i.e. 
Ni, Co and Mn), high-resolution SRD and NPD were combined to 

determine the actual structure and to evaluate the chemical composition 
of prepared core-shell NCM material, see Fig. 3(c–d). Two layered 
α–NaFeO2 structures with the same R3m space group are determined in 
the sample. The absence of superlattice reflections at around 5.6◦ ex
cludes the possibility of monoclinic layered phase (C2/m) formation, 
which suggests that the Mn-rich shell may not have the same chemical 
composition as the NCM226 because of inter-diffusion of Ni and Mn in 

Fig. 1. Core-shell morphology of the prepared NCM material. (a) Cross-sectional SEM image and its corresponding EDX mapping of (b) nickel, (c) cobalt, (d) 
manganese and (e) oxygen elements of the prepared core-shell NCM material, (f) line-scan EDX intensity profile of the elements as a function of the distance. 

Fig. 2. Ni 2p, Co 2p, and Mn 2p XP spectra of NCM532 (top), NCM226 (middle), core-shell NCM (bottom).  
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core-shell NCM particles during heating. Simultaneous Rietveld refine
ment against NPD and SRD results were completed by assuming layered 
LiNi0.5Co0.2Mn0.3O2 (phase Nr.1) and layered LiNi0.2Co0.2Mn0.6O2 

(phase Nr.2) with the same space group of R3m. A good fit indicates that 
the structural model is reliable. The lattice parameters of the sample are 
depicted in Fig. 3 and Table S3, respectively. The layered Ni-rich phase 
Nr.1 presents an increase of both a and c lattice parameters when 
compared with the Mn-rich layered phase Nr.2, which can be attributed 
to the larger ionic radius of Ni2+ with respect to Mn4+ ions (rNi2+ = 0.69 
Å, rMn4+ = 0.53 Å). Even though quantification of the Ni, Co and Mn 
content along the particles is not straight forward, all the SRD, NPD, XPS 
and EDX results are consistent with the presence of a layered Ni-rich 
core surrounded by a layered Mn-rich shell in the obtained material. 

To study the electrochemical performance of the prepared cathode 
materials in LIBs, core-shell NCM, conventional NCM523, and conven
tional NCM226 were assembled into coin-type cells (CR2032) and tested 
between 2.7 and 4.3 V against Li metal at a current density of 27 mA g− 1 

(0.1 C) at room temperature. The charge and discharge curves of three 
electrodes (Fig. 4(a)) exhibit a similar smooth and monotonic charge- 
discharge profile, which is a typical solid-solution-like reaction char
acteristic of layered NCM materials [35]. As shown in Fig. 4(a), the 
electrodes exhibit different reaction potentials, probably because of 

their various chemical compositions. The initial discharge capacity of 
the core-shell NCM and the NCM523 was tested to be 158(5) and 157(5) 
mA h g− 1, respectively, which is higher than the value of the NCM226 
(134(5) mA h g− 1). The differential capacity (dQ dV− 1) curves of the 
electrodes are shown in Fig. 4(b). Two dQ/dV vs. V (oxidation) peaks are 
observed upon the first charge of the NCM523 (at around 3.73 and 3.80 
V). Only a broad redox peak is found in the core-shell NCM compared to 
the NCM523 and the NCM266. The number changes in dQ dV− 1 peaks 
indicate that the core-shell NCM cannot simply be considered as a 
physical mixture of layered NCM523 and layered NCM266. The diffu
sion coefficient of Li+ (DLi+ ) of the electrodes, obtained by the poten
tiostatic intermittent titration technique (PITT) (Fig. S10), is shown in 
Fig. 4(c). The DLi+ of the core-shell NCM is close to that of the NCM226 
during the initial charge, but is lower than that of the NCM523. Thus, the 
Li-ion transport from centre to surface of the secondary particles is 
possibly limited by the surface Mn-rich shell. These data reveal that the 
core-shell NCM cathode has integrated electrochemical behaviours of 
the Ni-rich core and the Mn-rich shell phases, i.e. the Mn-rich NCM shell 
dominates the potential curve at the beginning of charge process and the 
Ni-rich NCM core material leads to a higher capacity. 

Fig. 4(d) shows the cycling stability of core-shell NCM, NCM523, and 
NCM226 cathodes. It is obvious that the core-shell NCM electrode 

Table 1 
XPS quantification results of the samples.  

Item Ni Co Mn 

Oxidation state Normalized atomic % Oxidation state Normalized atomic % Oxidation state Normalized atomic % 

NCM532 ~80% Ni2+ 0.7 Co3+ 0.2 ~50% Mn3+ 0.2 
~20% Ni3+ ~50% Mn4+

NCM226 Ni2+ 0.3 Co3+ 0.2 Mn4+ 0.4 
Core-Shell NCM Ni2+ 0.5 Co3+ 0.2 Mn4+ 0.4 

Standard deviation: < 10% of atomic concentration, Binding energy uncertainty: ±0.2 eV. 

Fig. 3. Rietveld refinement against SRD patterns of (a) NCM523 and (b) NCM226; a simultaneous Rietveld refinement against (c) SRD and (d) NPD data of the core- 
shell NCM material, indicating an existence of two layered phases. 
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displays an improved electrochemical performance with a capacity 
retention of around 92% after 30 cycles at 0.1 C, when compared with 
the NCM523 electrode (~78%). The morphology of core-shell NCM is 

basically maintained after cycling, as supported by the EDX elemental 
mapping images in Fig. S11, thereby, favouring the improvement of its 
cycling stability. By contrast the discharge capacity of NCM226 is 131 

Fig. 4. Electrochemical properties of electrodes. (a) The initial charge-discharge voltage plots (b) the corresponding voltage derivatives of the specific capacity vs. 
voltage, (c) Li-ion diffusion coefficients (DLi+ ) calculated from the PITT curves vs. potential during the first charge process and (d) cycling performance and the 
corresponding coulombic efficiency of core-shell NCM, NCM523 and NCM226 electrodes at 0.1C. 

Fig. 5. (De)Lithiation mechanism of 
core-shell NCM cathode materials dur
ing cycling. (a) SRD reflection evolution 
of 003, 101, 018, and 110 of the core- 
shell NCM electrode during the first 
charge-discharge and the second charge 
process in the voltage range from 2.7 to 
4.3 V, R1 and R2 represent the rhom
bohedral Ni-rich layered phase Nr.1 and 
the rhombohedral Mn-rich layered 
phase Nr.2, respectively; (b) variation of 
lattice parameter as a function of de- 
lithiation and lithiation process, lattice 
parameters of each SRD pattern were 
calculated by using Rietveld refinement 
with two layered phases (R3m), 
revealing a good structural stability for 
the Mn-rich phase Nr.2; (c) in situ 
XANES spectra at Ni, Co, and Mn K- 
edges of the core-shell NCM cathode 
during cycling.   
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mA h g− 1 after 30 cycles, retaining about 98% of its initial capacity. 
Interestingly, the core-shell NCM electrode can still deliver a high ca
pacity of ~110 mAh g− 1, retaining approximately 69% of its initial 
capacity (~160 mA h g− 1) after high current density cycling (i.e. from 
0.1 C to 20 C), see Fig. S12. However, it is very difficult to discriminate 
the insertion/extraction behavior of Li-ions into the two individual, but 
similar, layered phases of the core-shell particles during cycling by 
electrochemical characterizations, since the shape of the electro
chemical profiles agrees well with the results reported for conventional 
homogenous particles reported in the literature [36–38] and those of the 
layered NCM electrode (see Fig. 4(a)). 

In order to unveil the structural and electronic evolution of the core- 
shell NCM electrode during electrochemical lithiation/delithiation in 
the voltage range from 2.7 to 4.3 V, in situ SRD and in situ X-ray ab
sorption near-edge structure (XANES) experiments were performed, as 
shown in Fig. 5. During delithiation (charging) process, the 003 reflec
tion gradually moves towards smaller 2θ angles. This can be ascribed to 
an increased lattice parameter c of the unit cell as Li ions extract from the 
Li layer, leading to an increased electrostatic repulsion between two 
neighbouring oxygen layers. Meanwhile, the 101 and 110 reflections 
shift to larger scattering angles demonstrating the decrease in the lattice 
parameter a (a = b), since TM–O bonds in TMO6 octahedra are shrinking 
upon charging. No significant change in the Co K-edge and Mn K-edge 
spectra are observed, see Fig. 5(c). The valence state of Co, and Mn looks 
not to change significantly as a function of reaction time and can be 
assigned close to 3+, and 4+, respectively. The Ni K-edge absorption 
rising edge shifts slightly towards higher energy by charging suggesting 
a structural contraction involving the Ni sites. Most likely the detected 
contraction in the a-b plane is principally involving Ni–O atomic pairs. 
The changes of lattice parameters show a reverse direction during the 
lithiation process, but both the Ni-rich phase (layered phase Nr.1) and 
the Mn-rich phase (layered phase Nr.2) phases do not return to their 
pristine state, especially for Ni-rich phase Nr.1, see (Fig. 5(a-b)). It looks 
like that the first charge is partially irreversible, differently for the next 
cycles. 

Very impressively, the lattice parameters (i.e. a, c and V) of the Ni- 
rich phase (layered phase Nr.1) change dramatically at the beginning 
of charge when compared with those of the Mn-rich phase (layered 
phase Nr.2), see Fig. 5(b). This small lattice parameter changes of the 
Mn-rich shell may have resulted from a relatively high Li-ion concen
tration since the Li-ion extracted from the Ni-rich core needs to pass 
through the Mn-rich shell. During the first discharge, the insertion of Li- 
ion into the Ni-rich phase is found to be slightly later when compared 
with the Mn-rich phase, as evidenced by a slow decrease in the lattice 
parameter c of layered phase Nr.1. It is worth to point out that both the 
Ni-rich phase and the Mn-rich phase reveal a similar ‘unit cell breathing’ 
mechanism during the first cycle [34], but both phases do not return to 
their pristine state, especially for Ni-rich phase Nr.1, see Fig. 5(a and b). 
This is probably due to the fact that the lithium-ion intercalation into the 
core-shell NCM stops before the core material is fully discharged, see in 
situ XANES spectra in Fig. 5(c). After the first cycle between 2.7 V and 
4.3 V, the changes in the parameter a, c and the unit cell volume V of the 
Ni-rich phase Nr.1 are 0.69, 0.62 and 0.76%, respectively, which are 
higher than that of the Mn-rich phase Nr.2 (0.16, 0.21 and 0.11%). Since 
the transition metal oxidation states seem not to change considerably, it 
is possible to assume that the reported structural variation are purely 
coming from the Li removal and consequent increase of the interlayer 
repulsion, with the Ni–O bonds being initially more flexible than those 
of the Mn–O. These results suggest the Ni-rich layered phase to enhance 
at least the first cycle capacity [39,40], with the Mn-rich exterior phase 
providing a protection layer for improving the structural stability. 
During the second charging process, the evolution of the lattice pa
rameters for both phases is nearly synchronous, suggesting that the 
defective Ni-rich core exhibits a similar electrochemical behavior as the 
Mn-rich shell. 

To further elucidate the Li-ion (de)intercalation process for core- 

shell NCM, a comparison study of in situ X-Ray powder diffraction 
(XRD) measurements of NCM532 and NCM226 electrodes was carried 
out, as shown in Fig. 6. Continuous changes of positions of reflections in 
the in situ diffraction patterns of both electrodes indicate a solid-solution 
reaction mechanism upon cycling (Fig. 6(a) and (c)). The variation of 
corresponding lattice parameters, a, c and V, are displayed in Fig. 6(b) 
and (d). Evidently, in contrast to NCM523, NCM226 has less pronounced 
alteration of lattice parameters, which could mitigate the mechanical 
and structural degradation and thus lead to a good cycling performance 
(Fig. 4(d)). Noticeably, the changes in the parameter a, c and V of the 
NCM523 are 0.20(2), − 0.41(2) and − 0.01(1) %, respectively, which is 
smaller than those of the Ni-rich phase Nr.1 in the core-shell NCM (see 
above). From the result above, a subsequent (de)lithiation process in the 
core-shell NCM electrode during the first cycle is proposed, as shown in 
Fig. 7. Due to the fact that the core-shell NCM material has fine open 
pores (Fig. 1(a)), lithium ions are firstly extracted from the Ni-rich core 
phase because of its higher concentration of reactive Ni, see in situ SRD 
results in Fig. 5(b). Since the DLi+ of Mn-rich phase is lower than that of 
the Ni-rich phase during the initial charge (Fig. 4(c)), the state of charge 
of the shell thus determines the electrochemical characteristics of the 
core-shell NCM and leads to the disappearance of the first peak at ~ 3.6 
V in the dQ/dV curve of the NCM523 (Fig. 4(b)). This means that, at the 
end of charging, the Ni-rich core experiences a larger variation of lattice 
parameters compared to the Mn-rich shell (less Li-ion vacancies). During 
the first discharge, lithium ions have to diffuse through the Mn-rich shell 
with a poor kinetic behavior, which makes them difficult to intercalate 
into the Ni-rich core, see Figs. 5(b) and Figure 6(b). Therefore, an irre
versible part of the structural evolution detected in the first charge is 
most likely caused by an irreversible lithium loss, resulting in a low 
columbic efficiency (Fig. 4(d)) and the formation of Li-deficient Ni-rich 
core (Fig. 7). While the partially irreversible change in the core-shell 
architecture during the initial cycle does not affect the final functional 
properties dramatically, see Fig. 4(d). 

3. Conclusion 

In summary, a core-shell NCM material was successfully synthesized 
by a hydroxide co-precipitation method followed by sintering with 
Li2CO3. Simultaneous Rietveld refinement against high-resolution SRD 
and NPD data reveals that the prepared core-shell NCM material consists 
of two similar layered rhombohedral phases (R3m), an inner Ni-rich core 
and a Mn-rich shell (on a secondary particle level). The Ni-rich phase 
appears to contribute more to the initial capacity, while the Mn-rich 
phase is supposed to be beneficial for the cathode structural stability. 
These findings could offer an intriguing explanation for the synergistic 
effect of the two layered phases in the core-shell morphology on the 
electrochemical performance of NCM cathode materials. Currently, the 
facile synthetic route is being utilized to synthesize Co-free Ni-rich 
layered NCM cathode materials with core-shell architecture in our 
group. Therefore, preparation procedure might be helpful for synthe
sizing the core-shell or concentration gradient oxide-based cathode 
materials for Li/Na ion batteries with good performance by structural 
design, morphological regulation, and chemical composition 
optimization. 
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Fig. 6. (De)Lithiation mechanism of NCM523 and NCM226 during cycling. XRD reflection evolution of 003, 101, 018, and 110 of (a) NCM523 and (c) NCM226 
electrodes during the first two cycles between 2.7 and 4.3 V; (b) variation of lattice parameter as a function of de-lithiation and lithiation process for (b) NCM523 and 
(d) NCM226 electrodes. 

Fig. 7. Schematic illustration of a subsequent (de)lithiation mechanism in the core-shell NCM cathode materials during the first cycle, showing an obvious change in 
the unit-cell volume of the Ni-rich phase within the interior region of a secondary particle with respect to the Mn-rich phase. TM: Ni – whitish; Mn – magenta; Co 
– blue. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.nanoen.2020.105231. 
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