
Metrika (2021) 84:401–427
https://doi.org/10.1007/s00184-020-00795-x

A new test of multivariate normality by a double estimation
in a characterizing PDE

Philip Dörr1 · Bruno Ebner2 · Norbert Henze2

Received: 27 November 2019 / Published online: 31 August 2020
© The Author(s) 2020

Abstract
This paper deals with testing for nondegenerate normality of a d-variate random vector
X based on a random sample X1, . . . , Xn of X . The rationale of the test is that the
characteristic functionψ(t) = exp(−‖t‖2/2) of the standard normal distribution inRd

is the only solution of the partial differential equationΔ f (t) = (‖t‖2−d) f (t), t ∈ R
d ,

subject to the condition f (0) = 1, whereΔ denotes the Laplace operator. In contrast to
a recent approach that bases a test formultivariate normality on the differenceΔψn(t)−
(‖t‖2−d)ψ(t), whereψn(t) is the empirical characteristic function of suitably scaled
residuals of X1, . . . , Xn , we consider a weighted L2-statistic that employs Δψn(t) −
(‖t‖2 −d)ψn(t). We derive asymptotic properties of the test under the null hypothesis
and alternatives. The test is affine invariant and consistent against general alternatives,
and it exhibits high power when compared with prominent competitors. The main
difference between the procedures are theoretically driven by different covariance
kernels of theGaussian limiting processes,which has considerable effect on robustness
with respect to the choice of the tuning parameter in the weight function.

Keywords Test for multivariate normality · Affine invariance · Weighted
L2-statistic · Consistency · Laplace operator · Harmonic oscillator

1 Introduction

A useful tool for assessing the fit of data to a family of distributions are empirical
counterparts of distributional characterizations. Such characterizations often emerge
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as solutions of an equation of the type ρ(D f , f ) = 0. Here, ρ(·, ·) is some distance on
a suitable function space, while f may be either the moment generating function, the
Laplace transform, or the characteristic function. Moreover, D denotes a differential
operator, i.e., this operator can be regarded as ordinary differentiation if f is a func-
tion of only one variable or, for instance, the Laplace operator in the multivariate case.
Such (partial) differential equations have been used to test for multivariate normality,
see Dörr et al. (2020), Henze and Visagie (2020), exponentiality, see Baringhaus and
Henze (1991a), the gamma distribution, see Henze et al. (2012), the inverse Gaussian
distribution, see Henze and Klar (2002), the beta distribution, see Riad and Mabood
(2018), the univariate andmultivariate skew-normal distribution, seeMeintanis (2010)
and Meintanis and Hlávka (2010), and the Rayleigh distribution, see Meintanis and
Iliopoulos (2003). In all these references, the authors propose a goodness-of-fit test
by plugging in an empirical counterpart fn for f into ρ(D f , f ), and by measur-
ing the deviation from the zero function in a suitable function space. If, under the
hypothesis to be tested, the function f has a closed form and is known, there are two
options for obtaining an empirical counterpart to the characterizing equation, namely
ρ(D fn, f ) = 0, or ρ(D fn, fn) = 0. To the best of our knowledge, the effect of con-
sidering both options for the same testing problem and to study the consequences on
the performance of the resulting test statistics has not yet been considered, neither
from a theoretical point of view, nor in a simulation study. In this spirit, the purpose
of this paper is to investigate the effect on the power of a recent test for multivariate
normality based on a characterization of the multivariate normal law in connection
with the harmonic oscillator, see Dörr et al. (2020).

In what follows, let d ≥ 1 be a fixed integer, and let X , X1, . . . , Xn, . . . be indepen-
dent and identically distributed (i.i.d.) d-dimensional random (column) vectors, that
are defined on a common probability space (Ω,A,P). We write PX for the distribu-
tion of X , and we denote the d-variate normal law with expectationμ and nonsingular
covariance matrix Σ by Nd(μ,Σ). Moreover, Nd = {Nd(μ,Σ) : μ ∈ R

d , Σ ∈
R
d×d positive definite} stands for the class of all nondegenerate d-variate normal

distributions. To check the assumption of multivariate normality means to test the
hypothesis

H0 : P
X ∈ Nd , (1)

against general alternatives. The starting point of this paper is Theorem 1 of Dörr
et al. (2020). To state this result, let Δ denote the Laplace operator, ‖ · ‖ the Euclidean
norm inRd , and Id the identity matrix of size d. Then Theorem 1 of Dörr et al. (2020)
states that the characteristic function ψ(t) = exp

(−‖t‖2/2), t ∈ R
d , of the d-variate

standard normal distribution Nd(0, Id) is the unique solution of the partial differential
equation

{
Δ f (x) − (‖x‖2 − d) f (x) = 0, x ∈ R

d ,

f (0) = 1.
(2)

Writing Xn = n−1 ∑n
j=1 X j for the sample mean and Sn = n−1 ∑n

j=1(X j −
Xn)(X j − Xn)

� for the sample covariance matrix of X1, . . . , Xn , respectively, where
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Tests of fit for multivariate normality 403

the superscript � means transposition, the standing tacit assumptions that PX is abso-
lutely continuous with respect to Lebesgue measure and n ≥ d + 1 guarantee that Sn
is invertible almost surely, see Eaton and Perlman (1973). The test statistic is based
on the so-called scaled residuals

Yn, j = S−1/2
n (X j − Xn), j = 1, . . . , n.

Here, S−1/2
n is the unique symmetric positive definite square root of S−1

n . Letting
ψn(t) = n−1 ∑n

j=1 exp(it
�Yn, j ), t ∈ R

d , denote the empirical characteristic function
(ecf) of Yn,1, . . . ,Yn,n , the test statistic proposed in Dörr et al. (2020) is

Tn,a = n
∫

Rd
|Δψn(t) − Δψ(t)|2 wa(t) dt, (3)

where
wa(t) = exp(−a‖t‖2), t ∈ R

d , (4)

and a > 0 is a fixed constant. The statistic Tn,a has a nice closed-form expression as
a function of Y�

n,i Yn, j , i, j ∈ {1, . . . , n} (see display (10)-(12) of Dörr et al. (2020))
and is thus invariant with respect to full-rank affine transformations of X1, . . . , Xn .
Theorems 2 and 3 of Dörr et al. (2020) show that, elementwise on the underlying prob-
ability space, suitably rescaled versions of Tn,a have limits as a → ∞ and a → 0,
respectively. In the former case, the limit is a measure of multivariate skewness, intro-
duced in Móri et al. (1993), whereas Mardia’s time-honored measure of multivariate
kurtosis (see Mardia 1970) shows up as a → 0. As n → ∞, the statistic Tn,a has a
nondegenerate limit null distribution (Theorem 7 of Dörr et al. 2020), and a test of
(1) that rejects H0 for large values of Tn,a is able to detect alternatives that approach
H0 at the rate n−1/2, irrespective of the dimension d (Corollary 10 of Dörr et al.
2020). Under an alternative distribution satisfying E‖X‖4 < ∞, n−1Tn,a converges
almost surely to a measure of distance �a between P

X and the class Nd (Theorem
11 of Dörr et al. 2020). As a consequence, the test for multinormality based on Tn,a

is consistent against any such alternative. By Theorem 14 of Dörr et al. (2020), the
sequence

√
n(n−1Tn,a −�a) converges in distribution to a centered normal law. Since

the variance of this limit distribution can be estimated consistently from X1, . . . , Xn

(Theorem 16 of Dörr et al. 2020), we have an asymptotic confidence interval for �a .
The novel approach taken in this paper is to replace both of the functions f occurring

in (2) by the ecf ψn . Since, under H0, Δψn(t) and (‖t‖2 − d)ψn(t) should be close to
each other for large n, it is tempting to see what happens if, instead of Tn,a defined in
(3), we base a test of H0 on the weighted L2-statistic

Un,a = n
∫

Rd

∣∣∣Δψn(t) −
(
‖t‖2 − d

)
ψn(t)

∣∣∣
2
wa(t) dt (5)

and reject H0 for large values of Un,a .
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Since Δψn(t) = −n−1 ∑n
j=1 ‖Yn, j‖2 exp(it�Yn, j ), the relation

∫

Rd
(‖t‖2 − d)2 cos(t�c) exp(−a‖t‖2)dt

=
(π

a

)d/2 1

16a4
exp

(
−‖c‖2

4a

) (
16d2a3(a − 1) + 4d(d + 2)a2

+(8da2 − 4(d + 2)a)‖c‖2 + ‖c‖4
)

, (6)

valid for c ∈ R
d and a > 0, and tedious but straightforward calculations yield the

representation

Un,a =
(π

a

)d/2 1

n

n∑

j,k=1

exp

(
−‖Yn, j − Yn,k‖2

4a

) [
‖Yn, j‖2‖Yn,k‖2

− (‖Yn, j‖2 + ‖Yn,k‖2) 1

4a2
(‖Yn, j − Yn,k‖2 + 2ad(2a − 1)

)

+ 1

16a4

(
16d2a3(a − 1) + 4d(d + 2)a2 + ‖Yn, j − Yn,k‖4

+ (
8da2 − 4(d + 2)a

)‖Yn, j − Yn,k‖2
)]

, (7)

which is amenable to computational purposes. Moreover, Un,a turns out to be affine
invariant.

The rest of the paper is organized as follows. In Sect. 2, we derive the elementwise
limits of Un,a , after suitable transformations, as a → 0 and a → ∞. Section 3 deals
with the limit null distribution of Un,a as n → ∞. In Sect. 4, we show that, under the
condition E‖X‖4 < ∞, n−1Un,a has an almost sure limit as n → ∞ under a fixed
alternative to normality. As a consequence, the test based onUn,a is consistent against
any such alternative.Moreover, we prove that the asymptotic distribution ofUn,a , after
a suitable transformation, is a centered normal distribution. In Sect. 5, we present the
results of a simulation study that compares the power of the test for normality based
onUn,a with that of prominent competitors. Section 6 shows a real data example, and
Sect. 7 contains some conclusions and gives an outlook on potential further work.

2 The limits a → 0 and a → ∞
This section considers the (elementwise) limits of Un,a as a → 0 and a → ∞. The
results shed some light on the role of the parameter a that figures in the weight function
wa in (4). Notice that, from the definition ofUn,a given in (5), we have lima→∞ Un,a =
0 and lima→0Un,a = ∞, since

∫ ∣∣Δψn(t) − (‖t‖2 − d
)
ψn(t)

∣∣2 dt = ∞. Suitable
transformations of Un,a , however, yield well-known limit statistics as a → 0 and
a → ∞.
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Theorem 1 Elementwise on the underlying probability space, we have

lim
a→0

[( a

π

)d/2
Un,a − d(d + 2)

4a2

]
= 1

n

n∑

j=1

‖Yn, j‖4 − d2. (8)

Proof Starting with (7), (a/π)d/2Un,a is, apart from the factor 1/n, a double sum over
j and k. Since each summand for which j 	= k vanishes asymptotically as a → 0, we
have

( a

π

)d/2
Un,a = 1

n

n∑

j=1

[
‖Yn, j‖4 − d(2a − 1)

a
‖Yn, j‖2 + d2(a − 1)

a
+ d(d + 2)

4a2

]
+ o(1)

as a → 0, and the result follows from the fact that
∑n

j=1 ‖Yn, j‖2 = nd. 
�
Theorem 1means that a suitable affine transformation ofUn,a has a limit as a → 0,

and that this limit is—apart from the additive constant d2 — the time-honoredmeasure
of multivariate kurtosis in the sense of Mardia, see Mardia (1970). The same measure
— without the subtrahend d2 — shows up as a limit of (a/π)d/2Tn,a as a → 0,
see Theorem 3 of Dörr et al. (2020). The next result shows that Un,a and Tn,a , after
multiplication with the same scaling factor, converge to the same limit as a → ∞, cf.
Theorem 2 of Dörr et al. (2020).

Theorem 2 Elementwise on the underlying probability space, we have

lim
a→∞

2

nπd/2 a
d/2+1Un,a = 1

n2

n∑

j,k=1

‖Yn, j‖2‖Yn,k‖2Y�
n, j Yn,k . (9)

Proof The proof follows the lines of the Proof of Theorem 2 of Dörr et al. (2020) and
is thus omitted. 
�

The limit figuring on the right hand side of (9) is ameasure ofmultivariate skewness,
introduced by Móri et al. (1993). Theorems 1 and 2 show that the class of tests for
H0 are in a certain sense “closed at the boundaries” a → 0 and a → ∞. However,
in contrast to the test for multivariate normality based on Un,a for fixed a ∈ (0,∞),
tests for H0 based on measures of multivariate skewness and kurtosis lack consistency
against general alternatives, see, e.g., (Baringhaus and Henze 1991b, 1992; Henze
1994).

3 The limit null distribution of Un,a

In this section, we assume that the distribution of X is some nondegenerate d-variate
normal law. In view of affine invariance, we may further assume that E(X) = 0 and
E(XX�) = Id . By symmetry, it is readily seen thatUn,a defined in (5) takes the form

Un,a =
∫

Rd
S2n (t)wa(t) dt, (10)

123



406 P. Dörr et al.

where

Sn(t) = 1√
n

n∑

j=1

(‖Yn, j‖2 + ‖t‖2 − d
)(
cos(t�Yn, j ) + sin(t�Yn, j )

)
, t ∈ R

d .

(11)

In view of (10), our setting for asymptotics will be the separable Hilbert space
H of (equivalence classes of) measurable functions f : R

d → R that satisfy∫
f 2(t)wa(t) dt < ∞. Here and in the sequel, each unspecified integral will be over

R
d . The scalar product and the norm inH are given by 〈 f , g〉H = ∫

f (t)g(t)wa(t) dt

and ‖ f ‖H = 〈 f , f 〉1/2
H

, respectively. Notice that, in this notation, (10) takes the form
Un,a = ‖Sn‖2H, where Sn is given in (11).

Putting ψ(t) = exp(−‖t‖2/2) as before, and writing
D−→ for convergence in dis-

tribution, the main result of this section is as follows.

Theorem 3 If X has some nondegenerate normal distribution, we have the following:

a) There is a centered Gaussian random element S of H having covariance kernel

K (s, t) = ψ(s − t)
{
2d + ‖s‖2‖t‖2 − 2s�t‖s − t‖2 − 4‖s − t‖2

}

+2ψ(s)ψ(t)
{
2‖s‖2 + 2‖t‖2 − d − 2s�t − 4(s�t)2

}
, s, t ∈ R

d ,

such that, with Sn defined in (11), Sn
D−→ S as n → ∞.

b) We have

Un,a
D−→

∫
S2(t)wa(t) dt as n → ∞. (12)

Proof Since the proof is analogous to the proof of Proposition 5 of Dörr et al. (2020),
it will only be sketched. If S0n (t) stands for the modification of Sn(t) that results if we
replace Yn, j with X j , then a Hilbert space central limit theorem holds for S0n , since
the summands of S0n are square-integrable centered random elements ofH. The idea is

thus to find a random element S̃n of H such that S̃n
D−→ S and ‖Sn − S̃n‖H = oP(1).

Putting Yn, j = X j + Δn, j in (11) and using the fact that cos(t�Yn, j ) = cos(t�X j ) −
sin(Θ j )t�Δn, j , sin(t�Yn, j ) = sin(t�X j ) + cos(Γ j )t�Δn, j , where Θ j , Γ j depend
on X1, . . . , Xn and t and satisfy |Θ j − t�X j | ≤ |t�Δn, j |, |Γ j − t�X j | ≤ |t�Δn, j |,
some algebra and Proposition 18 of Dörr et al. (2020) show that a choice of S̃n is given
by

S̃n(t) = 1√
n

n∑

j=1

h(X j , t),

where

h(x, t) = (‖x‖2 + ‖t‖2 − d
)(
cos(t�x) + sin(t�x)

)
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−ψ(t)
{
2‖t‖2 + ‖x‖2 − d + 2t�x − 2(t�x)2

}
.

Tedious calculations then show that the covariance kernel of S, which is
E[h(X , s)h(X , t)], is equal to K (s, t) given above. 
�

Notice that the covariance kernel figuring in Theorem 3 is much shorter than the
corresponding kernel given in Theorem 7 in Dörr et al. (2020) for the related test
statistic Tn,a defined in (3). Thus, the double estimation leads to a simpler covariance
kernel. LetU∞,a denote a random variable having the limit distribution ofUn,a given
in (12). Since the distribution of U∞,a is that of ‖S‖2

H
, where S is the Gaussian

randomelement ofHfiguring in Theorem3, it is the distribution of
∑

j≥1 λ j N 2
j , where

N1, N2, . . . is a sequence of i.i.d. standard normal random variables, and λ1, λ2, . . . are
the positive eigenvalues corresponding to normalized eigenfunctions of the integral
operator f �→ A f on H, where (A f )(s) = ∫

K (s, t) f (t) wa(t) dt . It seems to be
hopeless to obtain closed-form expressions of these eigenvalues. However, in view of
Fubini’s theorem, we have

E[U∞,a] =
∫

E
[S2(t)

]
wa(t) dt =

∫
K (t, t)wa(t) dt,

and thus straightforward manipulations of integrals yield the following result.

Theorem 4 Putting γ = (a/(a + 1))d/2, we have

E[U∞,a] = 2d
(π

a

)d/2
{
1 − γ + γ

a + 1
− (d + 2)γ

(a + 1)2
+ d + 2

8a2

}
.

From this result, one readily obtains

lim
a→0

[ ( a

π

)d/2
E

[
U∞,a

] − d(d + 2)

4a2

]
= 2d. (13)

It is interesting to compare this limit relation with (8). If the underlying distribution
is standard normal, i.e., if PX = Nd(0, Id), we have E‖X‖4 = 2d + d2. Now, writing
Yn, j = X j +Δn, j and using Proposition 18 of Dörr et al. (2020), the right hand side of
(8) turns out to converge in probability toE‖X‖4−d2 asn → ∞, and this expectation is
the right hand side of (13). Regarding the case a → ∞, the representation ofE[U∞,a]
easily yields

lim
a→∞

[
2ad/2+1

πd/2 E[U∞,a]
]

= 2d(d + 2).

This result corresponds to (9), since, by Theorem 2.2 of Henze (1997), the right hand
side of (9), after multiplication with n, converges in distribution to 2(d + 2)χ2

d as
n → ∞ if PX = Nd(0, Id). Here, χ2

d is a random variable having a chi square
distribution with d degrees of freedom.
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4 Limits of Un,a under alternatives

In this section we assume that X , X1, X2, . . . are i.i.d., and that E‖X‖4 < ∞. More-
over, let E(X) = 0 and E(XX�) = Id in view of affine invariance, and recall the
Laplace operator Δ from Sect. 1. The characteristic function of X will be denoted by
ψ(t) = E[exp(it�X)], t ∈ R

d . Letting

ψ±(t) = E[cos(t�X)] ± E[sin(t�X)], t ∈ R
d ,

we first present an almost sure limit for n−1Un,a , which is the same limit as for Tn,a ,
see Theorem 11 in Dörr et al. (2020).

Theorem 5 We have

Un,a

n
a.s.−→ Γa :=

∫

Rd
z2(t)wa(t) dt = ‖z‖2

H
,

where
z(t) = −Δψ+(t) + (‖t‖2 − d)ψ+(t). (14)

Proof In what follows, we write CS±(ξ) = cos(ξ) ± sin(ξ), and we put Y j = Yn, j ,
Δ j = Δn, j for the sake of brevity. From (10) and (11), we have n−1Un,a = ‖Vn +
Wn‖2H, where

Vn(t) = 1

n

n∑

j=1

‖Y j‖2CS+(t�Y j ), Wn(t) = (‖t‖2 − d)
1

n

n∑

j=1

CS+(t�Y j ).

Putting

V 0
n (t) = 1

n

n∑

j=1

‖X j‖2CS+(t�X j ), W 0
n (t) = (‖t‖2 − d)

1

n

n∑

j=1

CS+(t�X j ),

the strong law of large numbers in Hilbert spaces (see, e.g., Theorem 7.7.2 of Hsing
and Eubank (2015)) yields ‖V 0

n + W 0
n ‖2

H

a.s.−→ Γa as n → ∞, and thus it suffices to

prove ‖Vn + Wn‖2H − ‖V 0
n + W 0

n ‖2
H

a.s.−→ 0. From

‖Vn + Wn‖2H − ‖V 0
n + W 0

n ‖2
H

= 〈
Vn − V 0

n + Wn − W 0
n , Vn + Wn + V 0

n + W 0
n

〉
H
,

the Cauchy–Schwarz inequality, the fact that max(|Wn(t)|, |W 0
n (t)|) ≤ 2(d + ‖t‖2),

|Vn(t)| ≤ 2d, |V 0
n (t)| ≤ 2n−1 ∑n

j=1 ‖X j‖2 and Minkowski’s inequality, it suffices to

prove ‖Vn − V 0
n ‖H a.s.−→ 0 and ‖Wn − W 0

n ‖H a.s.−→ 0 as n → ∞. As for Wn − W 0
n ,

the inequalities | cos(t�Y j ) − cos(t�X j )| ≤ ‖t‖ ‖Δ j‖, | sin(t�Y j ) − sin(t�X j )| ≤
‖t‖ ‖Δ j‖ and the Cauchy–Schwarz inequality yield |Wn(t) − W 0

n (t)| ≤ (‖t‖2 +
d)2‖t‖(n−1 ∑n

j=1 ‖Δ j‖2)1/2. In view of Proposition 18 b) of Dörr et al. (2020), we
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Tests of fit for multivariate normality 409

have‖Wn−W 0
n ‖H a.s.−→ 0.RegardingVn−V 0

n , we decompose this difference according
to

Vn(t) − V 0
n (t) = 1

n

n∑

j=1

(‖Y j‖2 − ‖X j‖2)CS+(t�Y j )

+1

n

n∑

j=1

‖X j‖2
(
CS+(t�Y j ) − CS+(t�X j )

)
.

The squared norm in H of the second summand on the right hand side converges to
zero almost surely, see the treatment ofUn,1 in the Proof of Theorem 11 of Dörr et al.
(2020). The same holds for the first summand, since itsmodulus is bounded from above
by 4‖t‖n−1 ∑n

j=1 ‖Δ j‖+ 2n−1 ∑n
j=1 ‖Δ j‖2, and the inequality n−1 ∑n

j=1 ‖Δ j‖ ≤
(n−1 ∑n

j=1 ‖Δ j‖2)1/2, together with Proposition 18 b) of Dörr et al. (2020), yield the
assertion. 
�

Since, under the conditions of Theorem 5, Γa is strictly positive if the underlying
distribution does not belong toNd , Un,a converges almost surely to ∞ under such an
alternative, and we have the following result.

Corollary 1 The test which reject the hypothesis H0 for large values of Un,a is consis-
tent against each fixed alternative satisfying E‖X‖4 < ∞.

The next result, which corresponds to Theorem 13 of Dörr et al. (2020), shows that
the (population) measure of multivariate skewness in the sense of Móri, Rohatgi and
Székely emerges as the limit of Γa , after a suitable scaling, as a → ∞.

Theorem 6 Under the condition E‖X‖6 < ∞, we have

lim
a→∞ 2a

( a

π

)d/2
Γa =

∥∥∥E
(
‖X‖2X

)∥∥∥
2
.

Proof By definition,

Γa =
∫

(‖t‖2 − d)2ψ+(t)2wa(t)dt − 2
∫

(‖t‖2 − d)ψ+(t)Δψ+(t)wa(t) dt

+
∫

(Δψ+(t))2wa(t)dt

= Γa,1 + Γa,2 + Γa,3 (say).

In what follows, let Y , Z be independent copies of X . Since
ψ+(t)2 = E[CS+(t�Y )CS+(t�Z)], the addition theorems for the cosine and the
sine function and symmetry yield

Γa,1 = E

[ ∫
(‖t‖2 − d)2 cos

(
t�(Y − Z)

)
wa(t) dt

]
.

123
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Putting c = Y − Z , display (6) then gives

Γa,1 =
(π

a

)d/2 1

16a4
E

[(
16d2a3(a − 1) + 4d(d + 2)a2 + ‖Y − Z‖4

+ (8da2 − 4(d + 2)a)‖Y − Z‖2
)
exp

(
−‖Y − Z‖2

4a

)]
.

Likewise, it follows that ψ+(t)Δψ+(t) = −E[‖Y‖2 cos(t�(Y − Z))], whence

Γa,2 = 2E

[
‖Y‖2

∫
(‖t‖2 − d) cos

(
t�(Y − Z)

)
wa(t) dt

]

= −2
(π

a

)d/2
E

[
‖Y‖2

(‖Y − Z‖2
4a2

+ d − d

2a

)
exp

(
−‖Y − Z‖2

4a

)]
.

Finally,

Γa,3 =
(π

a

)d/2
E

[
‖Y‖2‖Z‖2 exp

(
−‖Y − Z‖2

4a

)]
,

and it follows that

2a
( a

π

)d/2
Γa = 2aE

[
‖Y‖2‖Z‖2 exp

(
−‖Y − Z‖2

4a

)]

− 4aE

[
‖Y‖2

(‖Y − Z‖2
4a2

+ d − d

2a

)
exp

(
−‖Y − Z‖2

4a

)]

+ 1

8a3
E

[(
16d2a3(a − 1) + 4d(d + 2)a2 + ‖Y − Z‖4

+ (8da2 − 4(d + 2)a)‖Y − Z‖2
)
exp

(
−‖Y − Z‖2

4a

)]
.

Now, dominated convergence yields

2a
( a

π

)d/2
Γa = 2ad2 − 1

2
E

[‖Y‖2‖Z‖2‖Y − Z‖2] − 4ad2 + dE
[‖Y‖2‖Y − Z‖2]

+2d2 + 2d2(a − 1) − d3 + o(1)

as a → ∞. Since E‖Y‖2 = d = E‖Z‖2 and E(Y ) = E(Z) = 0, we have

E
[‖Y‖2‖Z‖2‖Y − Z‖2] = 2dE‖Y‖4 − 2E

∥∥‖X‖2X∥∥2,

E
[‖Y‖2‖Y − Z‖2] = E‖Y‖4 + d2,

and the assertion follows. 
�
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We close this section with a result on the asymptotic normality of Un,a under
fixed alternatives. That such a result holds in principle follows from Theorem 1 of
Baringhaus et al. (2017). To state themain idea, write again CS±(ξ) = cos(ξ)±sin(ξ)

and notice that, by (10), Un,a = ‖Sn‖2H, where Sn(t) is given in (11). Putting

S∗
n (t) = Sn(t)√

n
= 1

n

n∑

j=1

(‖Yn, j‖2 + ‖t‖2 − d
)
CS+(t�Yn, j ), t ∈ R

d ,

Theorem 5 and (14) show that

√
n

(
Un,a

n
− Γa

)
= √

n
(‖S∗

n‖2
H

− ‖z‖2) = √
n〈S∗

n − z,S∗
n + z〉H

= √
n〈S∗

n − z, 2z + S∗
n − z〉H

= 2〈V∗
n , z〉H + 1√

n
‖V∗

n‖2
H
, (15)

where V∗
n (t) = √

n(S∗
n (t) − z(t)), t ∈ R

d . In the sequel, let ∇( f )(t) denote the
gradient of a differentiable function f : Rd → R, evaluated at t , and write H f (t) for
the Hessian matrix of f at t if f is twice continuously differentiable. By proceeding as
in the Proof of Theorem 6 of Dörr et al. (2020), there is a centered Gaussian element
V∗ of H having covariance kernel

K ∗(s, t) = E
[
h∗(X , s)h∗(X , t)

]
, s, t ∈ R

d ,

where

h∗(x, t) = (‖x‖2 + ‖t‖2 − d
)
CS+(x, t) + 2∇ψ−(t)�x − (‖t‖2 − d)ψ+(t)

+
(
1

2
∇Δψ+(t)� − 1

2
(‖t‖2 − d)∇ψ+(t)�

)
(xx� − Id)t

+(
Δψ−(t) − (‖t‖2 − d)ψ−(t)

)
t�x + x�Hψ+(t)x,

such that V∗
n

D−→ V∗ as n → ∞. In view of (15) and the fact that the distribution of
2〈V∗, z〉H is centered normal, we have the following result.

Theorem 7 Under the standing assumptions stated at the beginning of this section,
we have

√
n

(
Un,a

n
− Γa

)
D−→ N(0, σ 2

a ),

where

σ 2
a = 4

∫

Rd

∫

Rd
K ∗(s, t)z(s)z(t)wa(s)wa(t) dsdt .
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We remark that a consistent estimator of σ 2
a can be obtained by analogy with the

reasoning given in Dörr et al. (2020), see Lemma 15, Theorem 16 and the Remark
before Section 7 of that paper. Note that the above result differs from that of Theorem
6 in Dörr et al. (2020), since h∗(·, ·), compared to v(·, ·) in display (23) of Dörr et al.
(2020), has different components. Interestingly and in contrast to the null distribution,
the formulas for h∗(·, ·) are more involved.

5 Simulations

In this section, we present the results of a Monte Carlo simulation study on the finite-
sample power of the tests based onUn,a and Tn,a . This study is twofold in the sense that
we consider testing for both univariate andmultivariate normality, where the latter case
is restricted to dimensions d ∈ {2, 3, 5}. Moreover, the study is designed to match and
complement the counterparts in Dörr et al. (2020), Section 7, and Henze and Visagie
(2020), since we take exactly the same setting with regard to sample size, nominal
level of significance and selected alternative distributions. In this way, we facilitate an
easy comparison with existing procedures. Note that the test families Un,a and Tn,a

have been implemented in the R package mnt, see Butsch and Ebner (2020). In the
univariate case,we consider sample sizes n ∈ {20, 50, 100} and restrict the simulations
to n ∈ {20, 50} in the multivariate setting. The nominal level of significance is fixed
throughout all simulations to 0.05. We simulated empirical critical values under H0
for d−2 (a/π)d/2Un,a with 100,000 replications, see Table 1, and used Table 2 in
Dörr et al. (2020) for critical values of Tn,a . In each table, the rows entitled ’∞’ give
approximations of the quantiles of the limit random elementU∞,a = ∫ S2(t)wa(t) dt
in Theorem 3(b). The entries have been calculated by the method presented in Dörr
et al. (2020), Section 7, setting � = 100, 000 and m = 2000 for d ∈ {2, 3, 5, 10}.
Note that this approach only relies on the structure of the covariance kernel given in
Theorem 3(a), the multivariate normal distribution, and the weight function.

In the univariate case, we consider the following alternatives: symmetric distri-
butions, like the Student tν-distribution with ν ∈ {1, 3, 5, 10} degrees of freedom
(note that t1 is the standard Cauchy distribution), as well as the uniform distribu-
tion U(−√

3,
√
3), and asymmetric distributions, such as the χ2

ν -distribution with
ν ∈ {5, 15} degrees of freedom, the beta distributions B(1, 4) and B(2, 5), and the
gamma distributions Γ (1, 5) and Γ (5, 1), both parametrized by their shape and rate
parameter, the Gumbel distribution Gum(1, 2) with location parameter 1 and scale
parameter 2, the Weibull distribution W(1, 0.5) with scale parameter 1 and shape
parameter 0.5, and the lognormal distribution LN(0, 1). As representatives of bimodal
distributions, we simulate the mixture of normal distributions NMix(p, μ, σ 2), where
the random variables are generated by (1 − p)N(0, 1) + pN(μ, σ 2), p ∈ (0, 1),
μ ∈ R, σ > 0. Note that these alternatives can also be found in the simulation studies
presented in Betsch and Ebner (2020), Dörr et al. (2020), Romão et al. (2010). We
chose these alternatives in order to ease the comparison with many other existing tests.

First we oppose the tests Tn,a and Un,a in Table 2. Remarkably, the test based on
Un,a shows a better performance for the NMix-alternatives, especially for the choice
of the tuning parameter a ∈ {0.25, 0.5}. On the other hand, Un,a is almost uniformly
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Table 1 Empirical quantiles for
d−2 (a/π)d/2 Un,a and
α = 0.05 (100,000 replications)

d n\a 0.1 0.25 0.5 1 2 3 5

1 20 147.99 25.86 7.14 2.46 1.47 1.27 1.02

50 149.69 26.20 7.29 2.62 1.61 1.39 1.13

100 150.85 26.45 7.34 2.65 1.63 1.42 1.16

∞ 152.52 27.70 7.94 2.43 1.61 1.43 1.16

2 20 64.59 11.61 3.41 1.26 0.72 0.61 0.49

50 65.63 11.87 3.50 1.33 0.79 0.68 0.56

100 65.81 11.94 3.52 1.34 0.80 0.70 0.58

∞ 66.33 12.12 3.46 1.39 0.78 0.71 0.58

3 20 46.49 8.22 2.45 0.91 0.49 0.40 0.33

50 46.81 8.37 2.52 0.97 0.55 0.47 0.38

100 46.88 8.41 2.53 0.97 0.56 0.48 0.40

∞ 51.69 8.38 2.55 0.92 0.55 0.48 0.41

5 20 35.79 6.11 1.79 0.65 0.31 0.25 0.20

50 36.05 6.20 1.85 0.70 0.37 0.30 0.25

100 36.07 6.23 1.86 0.71 0.38 0.31 0.26

∞ 39.38 6.27 1.90 0.68 0.38 0.32 0.27

10 20 30.13 4.93 1.33 0.42 0.17 0.12 0.09

50 30.21 5.01 1.41 0.49 0.23 0.18 0.14

100 30.22 5.02 1.42 0.50 0.25 0.19 0.15

∞ 32.70 5.39 1.47 0.52 0.25 0.20 0.16

dominated by Tn,a for the tν-distribution. If the underlying distribution is χ2, beta,
gamma, Weibull, Gumbel or lognormal, both procedures have a comparable power.
Table 4 in Dörr et al. (2020) also provides finite-sample powers of strong either time-
honored or recent tests for normality, like the Shapiro–Wilk test, the Shapiro–Francia
test, the Anderson–Darling test, the Baringhaus–Henze–Epps–Pulley test (BHEP),
see Henze and Wagner (1997), the del Barrio–Cuesta-Albertos–Mátran–Rodríguez-
Rodríguez test (BCMR), see del Barrio et al. (1999), and the Betsch–Ebner test, see
Betsch and Ebner (2020). For a description of the test statistics and critical values, see
Dörr et al. (2020) and the references therein. A comparison shows that, for suitable
choice of the tuning parameter, Un,a can compete with each of these tests, sometimes
outperforming them, for example in case of the uniform distribution, n = 20, and
a = 0.25, and the χ2

15-distribution for all sample sizes and a = 5, but mostly being
on the same power level. It is interesting to see that the finite-sample power of Un,a

depends heavily on the choice of a. This observation is in contrast to the behavior of
Tn,a , the power of which depends much less on a.

In the multivariate case, the alternative distributions are selected to match those
employed in the simulation studies in Dörr et al. (2020), Henze and Visagie (2020),
and are given as follows. Let NMix(p, μ,Σ) be the normal mixture distribution gen-
erated by

(1 − p)Nd(0, Id) + pNd(μ,Σ),

123



414 P. Dörr et al.

Ta
bl
e
2

E
m
pi
ri
ca
lp

ow
er

of
U
n,
a
an
d
T n

,a
(d

=
1,

α
=

0.
05

,1
0,
00

0
re
pl
ic
at
io
ns
)

A
lt.

n\
a

U
n,
a

T n
,a

0.
1

0.
25

0.
5

1
2

3
5

0.
1

0.
25

0.
5

1
2

3
5

N
(0

,
1)

20
5

5
5

5
5

5
5

5
5

5
5

5
5

5

50
5

5
5

5
5

5
5

5
5

5
5

5
5

5

10
0

5
5

5
5

5
5

5
5

5
5

5
5

5
5

N
M
ix

(0
.3

,
1,
0.
25

)
20

18
28

27
20

19
19

19
12

14
15

18
20

19
19

50
45

65
61

49
46

45
43

28
33

38
44

46
45

43

10
0

79
93

90
80

77
76

73
61

67
72

76
78

76
73

N
M
ix

(0
.5

,
1,
4)

20
20

40
44

39
36

35
33

36
37

38
38

37
35

33

50
53

83
84

71
64

60
54

65
67

69
69

65
60

54

10
0

88
99

99
95

91
87

79
90

93
94

94
92

88
79

t 1
20

72
84

88
86

85
84

82
86

87
87

86
85

84
82

50
97

99
10

0
10

0
99

99
99

10
0

10
0

10
0

10
0

99
99

99

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

t 3
20

12
24

37
39

38
37

36
40

40
40

39
38

37
37

50
21

49
66

68
65

63
61

68
69

69
68

66
64

61

10
0

36
75

88
89

87
85

82
87

89
89

88
87

86
83

t 5
20

6
11

19
22

21
21

21
23

23
23

22
21

21
21

50
8

21
36

40
38

37
35

41
41

41
40

38
37

35

10
0

11
34

54
59

57
55

51
58

61
61

60
57

55
51

123



Tests of fit for multivariate normality 415

Ta
bl
e
2

co
nt
in
ue
d

A
lt.

n\
a

U
n,
a

T n
,a

0.
1

0.
25

0.
5

1
2

3
5

0.
1

0.
25

0.
5

1
2

3
5

t 1
0

20
5

7
10

11
11

11
11

12
12

12
12

11
11

11

50
6

8
15

18
17

17
16

19
19

19
18

17
17

16

10
0

6
10

21
26

25
24

23
26

27
28

27
25

24
23

U
(−

√ 3,
√ 3)

20
12

22
18

2
1

1
1

1
1

1
1

2
1

1

50
30

59
64

20
4

2
1

40
25

14
12

5
2

1

10
0

67
95

97
87

50
20

3
98

96
89

80
59

24
3

χ
2 5

20
10

24
39

41
42

42
42

33
35

37
40

42
42

42

50
21

60
82

85
85

85
85

75
79

82
84

85
85

85

10
0

44
93

99
10

0
10

0
10

0
99

99
99

99
10

0
10

0
10

0
99

χ
2 15

20
5

9
16

18
19

19
19

16
16

17
18

19
19

19

50
7

18
37

44
45

45
46

33
37

40
43

45
45

46

10
0

9
34

64
75

76
76

77
60

67
71

74
76

76
77

B
(1

,
4)

20
21

39
49

46
46

46
45

34
38

42
45

45
50

59

50
55

87
95

94
92

92
91

90
91

92
93

92
94

98

10
0

92
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0

B
(2

,
5)

20
7

11
15

14
14

14
14

11
12

13
15

15
15

16

50
10

26
41

41
40

40
39

31
33

37
40

40
43

50

10
0

16
55

80
82

80
79

78
78

79
79

80
79

81
90

Γ
(1

,
5)

20
39

64
75

73
73

73
72

60
64

67
71

73
73

72

50
86

99
10

0
10

0
10

0
10

0
99

99
99

99
10

0
10

0
10

0
99

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

123



416 P. Dörr et al.

Ta
bl
e
2

co
nt
in
ue
d

A
lt.

n\
a

U
n,
a

T n
,a

0.
1

0.
25

0.
5

1
2

3
5

0.
1

0.
25

0.
5

1
2

3
5

Γ
(5

,
1)

20
6

12
21

24
25

25
25

19
21

22
24

24
25

25

50
9

27
51

58
59

60
60

45
50

53
57

59
59

60

10
0

13
54

83
90

90
90

90
79

85
88

89
90

90
90

W
(1

,
0.
5)

20
39

65
76

74
74

74
73

61
65

68
72

74
74

73

50
86

98
10

0
10

0
10

0
10

0
99

99
99

99
99

10
0

10
0

99

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

G
um

(1
,
2)

20
7

16
28

32
33

33
33

29
30

31
33

33
33

33

50
10

37
62

70
71

71
71

57
63

66
69

70
71

71

10
0

17
67

90
95

95
95

95
88

92
94

95
95

95
95

L
N

(0
,
1)

20
62

82
90

89
89

89
89

84
86

88
89

89
91

93

50
97

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

123



Tests of fit for multivariate normality 417

where p ∈ (0, 1), μ ∈ R
d , and Σ is a positive definite matrix. In this notation, μ = 3

stands for a d-variate vector of 3’s, and Σ = Bd is a (d × d)-matrix containing 1’s on
themain diagonal, and each off-diagonal entry has the value 0.9.Wedenote by tν (0, Id)
the multivariate tν-distribution with ν degrees of freedom, see Genz and Bretz (2009).
The acronym DISTd(ϑ) stands for a d-variate random vector with i.i.d. marginal laws
that belong to the distribution DISTwith parameter ϑ . In the sequel, DIST is either the
lognormal distribution LN, the gamma distribution Γ , or the Pearson Type VII distri-
bution PV I I . Note that t1(0, Id) stands for the marginal standard Cauchy distribution
Cd(0, 1) in the previous notation. For the latter distribution, ϑ denotes the number of
degrees of freedom. The spherical symmetric distributions have been simulated using
the R package distrEllipse, see Ruckdeschel et al. (2006). These are denoted by
Sd(DIST), where DIST stands for the distribution of the radii, and was chosen to be
the exponential, the beta and the χ2-distribution.

Tables 3, 4, and5 canbe contrasted toTable 5–7 inDörr et al. (2020), and forn = 50,
with Tables 3–5 in Henze and Visagie (2020). Again, we start with a comparison of
Tn,a and Un,a . For d = 2 (see Table 3 and Table 5 in Dörr et al. (2020)), Tn,a is
outperformedbyUn,a forNMix(0.1, 3, I2) andNMix(0.9, 3, B2), but shows a stronger
performance for NMix(0.5, 3, B2). In case of the multivariate tν-distributions, both
procedures have a similar performance, as well as for the DISTd(ϑ) distributions.
The spherical symmetric distributions are dominated by Un,a for a suitable choice of
the tuning parameter, except for the Sd(χ2

5 ) distribution, where a similar behaviour is
asserted. Again,Un,a seems to be much more sensitive to the choice of a proper tuning
parameter than Tn,a . Competing tests of multivariate normality are the Henze–Visagie
test, see Henze and Visagie (2020), the Henze–Jiménez-Gamero test, see Henze and
Jiménez-Gamero (2019), the BHEP-test, the Henze–Jiménez-Gamero–Meintanis test,
seeHenze et al. (2019), and the energy test, seeSzékely andRizzo (2005).Adescription
of the test statistics, as well as procedures for computing critical values is found in
Henze and Visagie (2020). The BHEP-test performs best for the NMix(0.1, 3, I2)-
distribution (NMIX1 in Henze and Visagie 2020) but is outperformed by Tn,a for
NMix(0.5, 0, B2), and byUn,a for theNMix(0.9, 3, B2) (NMIX2 inHenze andVisagie
2020), where these procedures show the best performance of all tests considered. A
similar behavior is observed for the tν- and the spherical symmetric distributions,
where again Un,a and Tn,a are strong competitors to all procedures considered.

6 A real data example

As a real data example, we examine the meteorological data set weather provided
in the R package RandomFields, see Schlather et al. (2019), which consists of
differences between forecasts and observations (forecasts minus observations) of tem-
perature and pressure at n = 157 locations in the North American Pacific Northwest.
The data are pointwise realizations of a bivariate (d = 2) error Gaussian random field,
see Fig. 1. The forecasts are from the GFS member of the University of Washington
regional numerical weather prediction ensemble, see Eckel andMass (2005), and they
were valid on December 18, 2003 at 4p.m. local time, at a forecast horizon of 48
hours. We ignore the given location of measurements in this evaluation and test the
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Fig. 1 Histogram of n = 157 (upper row) and n = 50 (lower row) differences between forecasts and
observations of temperature (left) and pressure (middle) and scatterplot of temperature and pressure (right)
in the North American Pacific Northwest

Table 6 Empirical p-values for Un,a for univariate and bivariate cases of the complete data set n = 157
and the subsample n = 50 (10,000 replications)

Diff. n\a 0.1 0.25 0.5 1 2 3 5

Temperature 0.0128 0 0 0.0001 0.0001 0 0.0001

Pressure 157 0.1042 0.0155 0.0102 0.0235 0.0292 0.0322 0.0407

Bivariate 0.0001 0 0 0 0 0 0

Temperature 0.9472 0.6847 0.3675 0.3144 0.3145 0.3168 0.3337

Pressure 50 0.1649 0.2019 0.1822 0.2282 0.2169 0.2101 0.2109

Bivariate 0.8485 0.6694 0.5528 0.5413 0.3497 0.2998 0.2879

hypothesis that the pairs of differences can be modeled as i.i.d. copies from a bivari-
ate normal distribution. In Table 6, we calculate empirical p-values based on 10,000
replications forUn,a for the univariate differences of temperature and pressure, as well
as for the bivariate data for the whole data set, n = 157, and for a random selection
of n = 50 points (selected in R with function sample() and seed fixed to ’0721’).
Regarding the complete data set, we reject the hypothesis of normality in nearly all
cases on a 5% level of significance, while on a 1% level of significance we are not
able to reject H0 for the differences in pressure. However, for the temperature and
the bivariate data the hypothesis of normality is nearly always rejected. These results
are not surprising, since the weather data set is an example of influence of spatial
correlation, which has to be carefully modeled. In Gneiting et al. (2010), a bivariate
Gaussian random field is fitted to the data, taking the mentioned spatial correlation
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Table 7 Empirical p-values for Tn,a for univariate and bivariate cases of the complete data set n = 157
and the subsample n = 50 (10,000 replications)

Diff. n\a 0.1 0.25 0.5 1 2 3 5

Temperature 0.0002 0.0003 0.0002 0.0001 0.0001 0.0001 0.0002

Pressure 157 0.0300 0.0231 0.0236 0.0269 0.0297 0.0334 0.0411

Bivariate 0 0 0 0 0 0 0.0001

Temperature 0.5775 0.4011 0.3100 0.2502 0.2173 0.2104 0.2118

Pressure 50 0.5871 0.4401 0.3787 0.3393 0.3164 0.3214 0.3375

Bivariate 0.7589 0.7084 0.7279 0.6455 0.4094 0.3236 0.2948

into account, for a visualization of the locations see Figure 3 in Gneiting et al. (2010).
For the subsample of points we see that the structure vanishes, and we throughout do
not reject the hypotheses. In Table 7 we conduct the same study using the method Tn,a

to contrast the empirical p-values to those of Un,a . As would be expected, we nearly
draw the same conclusions, although we can reject the hypothesis of normality for
pressure in all cases on a 5% level of significance for the full data set. In comparison,
the p-values in Table 7 show a smaller fluctuation than in Table 6. Here, we have only
applied the methods as a proof of principle.

7 Conclusions and outlook

We have introduced and studied a new affine invariant class of tests for multivariate
normality that is easy to apply and consistent against general alternatives. Although
consistency has only been proved under the condition E‖X‖4 < ∞, the test should be
“all the more consistent” if E‖X‖4 = ∞, and we conjecture that, as is the case for the
BHEP-tests, also the test basedonUn,a is consistent against eachnonnormal alternative
distribution. A further topic of research would be to choose the tuning parameter a
in an adaptive way, similar to the bootstrap based univariate approaches in Allison
and Santana (2015) and Tenreiro (2019). It would also be of interest to obtain more
information on the limit null distribution ofUn,a . We finish the outlook by pointing out
that, with respect to the references in the introduction regarding other procedures and
distributions, a similar analysis can be performed, and it is of theoretical and practical
relevance to study the resulting statistics in order to assess the influence of the options
of estimating or not estimating certain of the pertaining functions.

After a comparison of Un,a and Tn,a from Dörr et al. (2020), and in view of the
results of the simulation study, we recommend to use Tn,a , since it seems to be more
robust with respect to the choice of the tuning parameter a. Nevertheless, Un,a is a
strong competitor, and with a suitable data driven procedure for the choice of a at
hand, Un,a may turn out to be a favorable choice over the most classical and recent
tests of uni- and multivariate normality.
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