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We present new contributions to the decay matrix element I'{, of the B, — Bq mixing complex, where
q = d or s. Our new results constitute the order a%Nf corrections to the penguin contributions to the Wilson
coefficients entering I'!, with full dependence on the charm quark mass. This is the first step toward the
prediction of the CP asymmetry af. quantifying CP violation in mixing at next-to-next-to-leading
logarithmic order (NNLO) in quantum chromodynamics (QCD) and further improves the prediction of
the width difference AI', between the two neutral-meson eigenstates. We find a sizable effect from the
nonzero charm mass and our partial NNLO result decreases the NLO penguin corrections to af. by 37%
and those to A’y by 16%. We further update the Standard-Model NLO predictions for afl and the ratio of
the width and mass differences of the B, eigenstates: If we express the results in terms of the pole mass

of the bottom quark, we find af, =
(433 £1.26) x 1073,
read aj, =
ATy/AM,; = (5.07 +0.96) x 1073,

DOI: 10.1103/PhysRevD.102.033007

I. INTRODUCTION

Flavor-changing neutral current (FCNC) processes probe
new physics with masses far beyond the reach of future
particle colliders. This justifies the experimental effort at
dedicated experiments like LHCb [1] and Belle II [2]. The
B, — B, and B, — B, mixing amplitudes are sensitive to
tree-level exchanges of potential new particles with masses
above 100 TeV. The oscillations between the flavor
eigenstates B, and Bq, where g = d or s, are governed
by two 2 x 2 matrices, the mass matrix M and the decay
matrix I". The inclusive, i.e., process-independent, quan-
tities entering all oscillation phenomena are |M%,|, [I',],
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(2 07 £0.10) x 1073, a =
and AFd/AMd = (448 £1.19) x 1073, In the MS scheme these numbers
(2.04 £0.11) x 107, af = (—4.64 £0.25) x 1074, AI\/AM =

033007-1

(—4.71 £0.24) x 1074, AT,/AM, =

(4.97 £1.02) x 1073, and

and arg(—M1?,/T'},)?. Diagonalizing M7 —il%/2 gives
the mass eigenstates BY and BY, with the subscripts
denoting “light” and “heavy,” respectively. The eigenvalues
—il'7/2 and M}, —iT'},/2 define masses and decay
widths of B and BY,, which obey exponential decay laws.
The above-mentioned three fundamental physical quan-
tities of B, —Bq mixing can be found by measuring
AM, = M}, — M} (coinciding with the B, — B, mixing
oscillation frequency), AT, =T'] =T, and [3]

ag, =Im—=. (1)
The standard way to measure af. involves the semileptonic

CP asymmetry

. T(B,(1) » Xttv,) —T(B, (1) —» X¢75,) )
“ET(B, (1) = XTv) + T(B,(1) = XF5p)

In the absence of direct CP violation in the semileptonic
decay amplitude one has af, = af. Direct CP violation in
B — X¢"v, is extremely suppressed in the Standard Model
(SM), so that this identification is justified. (In all plausible
models of new physics this statement holds as well for
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B — D¢*%v,, because the needed CP-conserving phase
comes from QED corrections only.) The ratio AI'y/AM , is
given by

Al r
q — —Re ~ 12 . (3)
AM, MY

In this paper we report on new contributions to I'!, /M1,
which constitute a portion of the next-to-next-to-leading
order (NNLO) QCD corrections to a?s in Eq. (1) and
AT'y/AM, in Eq. (3).

The mass differences AM, = (17.757 £ 0.021) ps~!
and AM; = (0.5064 + 0.0019) ps~' [4,5] have been deter-
mined very precisely by the CDF [6] and LHCb [7]
experiments from the B, — Bq oscillation frequencies.

The experimental values of the width differences [4,5],

ATS® = (8.9 4 0.6) x 1072 ps~!, (4)

ATSP =(=1.32 £ 6.58) x 1073 ps~! (5)

are based on measurements by LHCb [8,9], ATLAS [10],
CMS [11], and CDF [12]. The current experimental world
averages for the semileptonic asymmetries are [4,5]

a5 = (60 + 280) x 1075, (6)

sl
a%®? = (=21 +£17) x 1074, (7)

Clearly, AT is a precision observable, while the three other
quantities are still far from giving precise information on
fundamental parameters. For afds and AT, it is worthwhile
to study the clean sample of B — J/ywK, decays [13].
While new physics will primarily enter M?,, scenarios in
which T'Y, is affected have been studied as well [14,15],
especially the doubly Cabibbo-suppressed l“‘ll2 could play a
role in new-physics studies.

The state of the art of the theory predictions of a?s and
AT, is next-to-leading logarithmic order (NLO) QCD for
the leading-power contribution [16—19] and LO QCD for the
O(Aqcep/my,) power-suppressed corrections [19,20]. The
accuracy of AI'S™ in Eq. (5) calls for an NNLO calculation,
which is a formidable project. First steps in this direction
have been made in Ref. [21], in which terms of order a?N f
to I'j», where Ny = 5 is the number of active quark flavors,
have been calculated up to order m,/m,. This calculation
has permitted a better assessment of AI';, but not of a?s,
which is proportional to m?2/m3.

The purpose of the present paper is to do the next step in
the calculation of NNLO QCD corrections to I'j,. We
calculate the penguin contributions with full dependence on
the charm quark mass. These terms constitute an improve-
ment for the prediction of AI'y compared to Ref. [21] and,
more importantly, are the first step toward the prediction of
al. at NNLO accuracy.

Penguin contributions are small in the Standard Model,
because the Wilson coefficients of the corresponding
operators are small, of order 0.05 or smaller. However,
this makes these coefficients sensitive to contributions of
new physics, which can easily be of the same size [22] as
the SM coefficients. Thus in order to study such effects
beyond the SM a precise knowledge of the penguin
contributions to I'Y, is desirable.

This paper is organized as follows: In the following
section we summarize the theoretical framework of the
calculation. In Sec. III we present our analytical results and
subsequently perform a phenomenological analysis in
Sec. IV. Finally we conclude. Results for matrix elements
needed for the calculation are relegated to the Appendix.

II. THEORETICAL FRAMEWORK

The effective AB = 1 weak Hamiltonian, relevant for
b — s transition, reads [23]

f/g {/13 {Z C,0, + Cgog]

-7 Zci(o,*' - 0,->}, (8)
i=1

AB=1 __
Heff -

where

/?'lY = V;Fsvtbﬁ lft = VZsVub (9)

comprises the elements
Maskawa (CKM) matrix.
operators in Eq. (8) are

of the Cabibbo-Kobayashi-
The dimension-six effective

= (Sitj)y_a(@;bi)y_4, 5= (Sitt;)y_a(@;b;)y_a,
= (5i¢;)v-a(€;bi)y_a> 0, = (5i¢;)y_a(Cjb;)y_a.
= (5:ibi)v-a(3;9;)v-a> 04 = (5:0)y-a(@;qi)v-a>
= (5ibi)v-a(3;q;)via- O = (5:0)y-a(G;49i) v
9s < U a a

08 = 8ﬂ2 mbsiaﬂ (1 - YS)TUb/G/w (10)

Here i, j are color indices and summation over g = u, d, s,
¢, b is understood. V + A denote y,(1 £ys) and S+ P
(needed below) represents (1 +ys). Cy, ..., Cq and Cg are
the corresponding Wilson coefficients, which are functions
of the top mass m, and the W mass M. G is the Fermi
constant. The corresponding formulas for b — d transitions
can be obtained from Egs. (8)—(10) by replacing s with d.
To find AT ~2|T"|,| we must calculate

| :abs<BX|i/d4xTH§f§l(x)HQfﬁl(onBs), (11)
where “abs” denotes the absorptive part of the matrix

element and 7 is the time ordering operator. Following [17]
we write ['}, as
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Pip = =[5 + 244,15 + 2T

v At e .
= —7 |5 + 254 (T~ T9)
1
2

l C uc
+/1—;(FL1‘§’+F§2—2F12) ) (12)
t

where the coefficients %%, a,b = u, ¢ are positive. The
heavy quark expansion (HQE) expresses Eq. (11) in terms
of matrix elements of local operators. The leading term (in
powers of Agcp/my) reads

— G (Gar(5,101B,) - GE (BQsIBL). (13
12 — 247TMBS s N S s S1Ps/]-

The two |AB| = 2 operators (B denotes the beauty quan-
tum number) are

Q= (3:bi)y_a(3;b;)y_a, (14)

Os = (5:b;)5_p(5;b;)s_p- (15)

The hadronic matrix elements, which are calculated with
nonperturbative methods like lattice QCD, are usually
expressed in term of the “bag” parameters Bg,, Bls,Bq as

- 8
<Bq|Q(/"2) ‘Bq> = gMquf%;qBBq (/"2)’

(B,105(us) B,) = s M3 f3 B (w2). (16
Here fp is the B, decay constant and u, = O(my) is the
renormalization scale at which the matrix elements are
calculated. In a lattice-QCD calculation p, is the scale of
lattice-continuum matching. In the expression for I'y, the
matrix elements of Eq. (16) are multiplied by perturbative
Wilson coefficients depending on u, as well, resulting
in a cancellation of the unphysical scale p, from I'y,.
Analogously, the dependence on the renormalization
scheme cancels between the Wilson coefficients and
B(u,), B(uy). In this paper we use the renormalization
scheme of Ref. [16].
Using the notation of Refs. [16,17,19], we decompose
G and G2 further as
Gab — Fab + Pab’ ng — _ng _ Pgb' (17)
Here F® and F¢ are the contributions from the current-
current operators O, ,, while P* and P stem from the
penguin operators O3_¢ and Og. The coefficients G*°, G4
are found by applying an operator product expansion

(resulting in the HQE) to the bilocal matrix elements
(“full theory”)

abs i / d'xT0,(x)0,(0)). (18)

The HQE expresses these bilocal matrix elements in terms
of the local matrix elements (Q), (Qy) (“effective theory”),
and the coefficients of the latter are the perturbative short-
distance objects studied in this paper. This matching
calculation can be done order by order in the strong
coupling a,, with quarks instead of mesons in the external
states in Eq. (18). The NLO result of Refs. [16—19] contains
the result of Eq. (18) at the two-loop level for i, j =1, 2.
The chromomagnetic operator Og is proportional to the
strong coupling g, so that for i = 8 or j = 8 NLO accuracy
means one loop only. One further counts the small penguin
Wilson coefficients C;_g as O(a;) and considers only one-
loop diagrams for i > 3 or j > 3.

III. RESULTS FOR THE PENGUIN COEFFICIENTS
P, Ps AT ORDER 2N,

For the contributions of penguin diagrams and penguin
operators in Eq. (17) we write

Pah(z) _ Pah,(l)(Z) +Pab,(2)(z)’
P () = PV (2) + PY(2), (19)

where P?(1)(z) and sz'm(z) denote the NLO results of

Ref. [16], while P?)(z) and P (z) are the NNLO
corrections studied in this paper. Since we treat C5_g as

O(ay), P?Sb)’m (z) contain terms of order C;_sCs_,
a,CyCs_4, and a?C3. The large-N; part of P(?)(z) is
decomposed as

PNy (z) = Ny P @Nu(1,z) + Ny PN (7, 7)
+ N, P-R)NL(0, 7) (20)

with an analogous formula for Pgb’m(z). Here, Ny =1,
Ny = 1 and N; = 3 denote the number of heavy (b-quark),
intermediate-mass (c-quark) and light (u, d, s) quark fla-
vors, with the total number of quark flavors N, = Ny +
Ny + N; = 5. In the penguin contributions, as well as in
charm loops, we keep the charm mass nonzero, i.e., equal
to its physical value. This improves our results over those in
Ref. [21], where the charm mass on all lines touching O,
was set to zero. This affects all loops in the diagrams in
Fig. 1 (see also Fig. 1 of [21]). The diagrams P,_, are not
only needed for the contributions involving C;_¢ g, but also
appear in counterterm contributions to D;;_;3, in which the
charm mass must be treated in the same way as in the
diagrams which they renormalize.

We introduce the abbreviation z; = m?/ m,z, where m;
denotes the quark in all closed fermion loops, in which all
Ny =5 quarks canrun. Thus z; =1, z; = m?/m2,orz; =0
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I ol K

FIG. 1.
diagrams with one insertion of a penguin operator Os, ..

shown as a single circle with a cross. P5 denotes a One—loop diagram with two insertions of penguin operators Os, ...,

Diagrams for the penguin contribution at O(aZN f) The small Wilson coefficients C;_g are counted as O(ay). P, P, are
., Og, depicted as two circles with crosses, and one insertion of O3 or O,

06' Dll’ D12 and

D5 are diagrams with insertions of operators 05 or Og. (The notation follows Ref. [21].)

in Pab,(2),NH (Zi’ Z), Pah,(Z),NV (Zi’ Z), or Pah.(Z),NL (Ziv Z),
respectively. The second argument z = m2/m? of the loop
functions involves the charm mass originating from O, ,
operators.

Our results are

cc ag(\H cc,
peen(1,2) = S GO (1, )0 )
2
oy cc.(2).
FEE GG, @)
P (1, 2) = SV g e % (1 2ty )
a5 (#1) g e Ny
~ T 807G ). (22)

P () = T (1= )My

PSRN (2 2) = /T = dz,(1 + 22,) (M () -M)y (1))
as(:u ) ce,(1),Ny
~ RG22 )My ()
_ag(ﬂl)chc,(Z),Nv(Z' z)Cz(,u ) (24)
(47:)2 P v 2L/

with

G (1 ) = -5 <6log< h) —3v3r + 17)
xV1—-4z(2z+1), (25)

GO (1, ) = - <6log< b>—3ﬁn+17>

1
+5 (1= 42)My (i) + 3z,-Mg(m)> x V1 —4z(2z+1) [210g< b) +§
+ asigl) Gy ™M (2, )Ml (y) +4z —log(z) + V1 —4z(2z + 1) log(o)
o2 3Cs(m1)
H GO G, (23) ) 20
|
G (7 2) = —514 [\/1 —4z;(1+2z) (6 log (ﬂ> —3log(z) + 2+ 12z>
mp
+ VT —4z(1 +22) <6log<ﬂ> —3log(z;) + 5 + 12z >
my
+3v1 —4z(1 +2z2)y/1 —4z;(1 4+ 2z;)(log(c) + log(s;))
9Cs(u1) A ‘
ey VI 200 .
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Gy (7,,2) = {2\/1— 2z + 1)y/1 = 4z;(2z; + 1)(log(o )+log(a,-))<6log< >+12Z—310g() >
my
+§\/1—4z(2z+1)<610g<

) + 5+ 12z; = 3log(z ))
m,

<6log< b) +2 4+ 12z = 3log(z) +3v1 - 4z(2z + 1)10g(o)>
+§\/1——41,~(2zi+1){<6log< b) +2+ 127 - 3log(z))?

+9(1 —4z)(2z + 1)*(21og(o) log(s;) + log*(c) — nﬂ}

+ 6(28&”11)) [M(Zz +1) (6 log (Zl_lb) —3log(z;) +5+ 121,)

1 —4z,(2z; + 1)<6log< > +2+12z-3log(z )>
mp

+3v1=4z(22 4 1)/1 - 42,(2z; + 1)(log(0) + log(e7)) + ggsggg V=422 + 1)} } (28)
2\M1

where we have defined

M’ = 3C3 +2C5C4 + 3C5 4 2C5Ce, pre2):Na (z1,2) = ch'(z)’NA (zi2) + PEC’Q)’NA (z:,0)
s %)=
=C}+C2, 2
— 8APHC2)Na (32)
M’ =2(3C5C5 + C3C¢ + C4Cs + C4Cg).
M), = 2(CyCy + C,Cs), (29)
where
and
1-+v1-4z
-~ 30 ‘ az 1—\/1—4z1+22
while o; is defined by replacing z with z; in (30). Then I
puis(2).N, (2:,0) = peci(2).N, (z;,,0) (with A = H, V, L) and <6 log <m—b> —3\V3x + 17>
g,y P2 2) + PO, 0) lloa(2) = VT 43(1 +22) log(o) 4],
2 (33)
+ APue-2)Na, (31)
|
APIC2Ny — (4(:)12) 2 (1 )162{(1 _VT=a2(1+22)) {3 T=45,(1 4+ 22)[22(1 = VT =4z2(1 + 22))

+ (V1 =4z(1 4+ 2z) + 1)log*(6) + 2(4z — log(z)) log(o)]
—2(log(z) = V1 —4z(1 4+ 2z) log(c) — )<6log< ) +3y/1 =4z;(1 + 2z;) log(o;)

+ 12z; — 3log(z; )}—3\/1—42 1+ 2z;)(16z?
1 (log(2) ~ log(s))(l0g(z) ~ log(o) — 8z>>}. (34)
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P 2)NL(0,7) can be obtained from the expressions
presented above by setting z; to 0, ie.,
Ppab.(2).N, (0, Z) — pab.(2).Ny (0’ Z).

Taking the limit z — O in the results presented in this
section (with the replacement z; — z) reproduces the
results in Egs. (4.15)—(4.22) of Ref. [21].

IV. PHENOMENOLOGY OF AI'; AND al

In this section we first show the impact of a nonzero
charm quark mass in the aZN ¢ corrections to Al'y and af,
which is the novel analytic result of this paper. Sub-
sequently we present updated predictions for AI';/AM,,
and af, reflecting the progress in the determination of
hadronic parameters, quark masses, CKM elements, and
other parameters entering these quantities.

We may express Al', and al in terms of m, and
z=m2/mj. As shown in Ref. [24], trading z for 7 =
(i, (my)/m,(my))? (with the appropriate changes in the
expressions for the radiative corrections) resums the zlog z
terms to all orders; i.e., there are no Zlog?Zz terms. In the
numerics presented below we will always use z. This still
leaves (at least) two natural possibilities to define m,,, two

TABLE L.

powers of which appear in the prefactor of Al'y and af,

namely the MS mass 7, (i7,) and the pole mass m?”®. In

our numerics we use m,(m,) = (4.18 +£0.03) GeV as
input in both schemes and calculate m?* = (4.58 +

0.03) GeV at NLO and mZOle = (4.84 £0.03) GeV
at NNLO.

In our partial NNLO results we further use the complete
NNLO AB = 1 Wilson coefficients C;, C, [25,26] and the
complete NLO expressions for C5_g, Cg (see Ref. [21] for
details). From the values of sin(2/) and R, listed in Table I
we obtain

d
A _

Fram

(0.0122 + 0.0097) — (0.4203 & 0.0090)i,  (35)

ﬂS
/1—:‘, = —(0.00865 £ 0.00042) + (0.01832 £ 0.00039)i.
t

(36)

For all central values quoted in the following we took

py = mP and p, = i, for the pole and MS schemes,
respectively. For the contribution to the width differences

Input parameters used in Sec. IV. i (/) is calculated from (2 GeV) = 0.09344 £ 0.00068 GeV [27]. The listed values

pow

for By and E’Sinq are found by rescaling the numbers in Table V of Ref. [28] by 8/3 and 3, respectively [see Eq. (16)]. m}™ is a

redundant parameter calibrating the overall size of the hadronic parameters B which quantify the matrix elements at order Agcp/ .
By, is calculated from (B,|Ro|B,) = —(0.66 +0.27) GeV* and (By|Ro|B,) = —(0.36 +0.20) GeV* [28] (with (R,) defined as in
Refs. [19,20]) with the central values of f and the quark and meson masses listed above, so that the error quoted for BZ,O correctly
reflects the error of only the matrix element (and not the uncertainty of the artificial conversion factor from matrix elements to bag
parameters). In the same way By, is calculated from (B,|R,|B,) = (0.28 £ 0.11) GeV* and (B,|R;|B,) = (0.44 4 0.15) GeV* [29].
The expressions for B%z and B;I33 hold up to Agcp/m,, corrections. Bq1 = 15and B;I-e] = 1.2 [29] are phenomenologically irrelevant. The

charm and bottom masses imply z = m2(m.)/m3(m;,) = 0.096 leading to z = m2(my,)/m3(m,) = 0.052 £ 0.002 at NLO and we use
the same value at NNLO.

iy (my) = (4.18 £ 0.03) GeV [30] me(m,) = (1.2982 £ 0.0013,, + 0.0120,,) GeV [31-33]
ing(my) = (0.0786 & 0.0006) GeV [27] i, (m;) = (165.26 + 0.1, & 0.304,5) GeV [33]
m™ = 4.7 GeV [19] ay (Mz) =0.1181(11) [34]
My = 5366.88 MeV [34] Mp, = 5279.64 MeV [34]
Bg = 0.813 +£0.034 [28] Bp, = 0.806 £ 0.041 [28]
By =131£0.09 (28] By, =1.20+0.09 (28]
By, =1.27+0.52 (28] B =1.02+0.55 (28]
B}, =0.89+0.35 [29] B4 =By,

B}, =1.14+039 [29] 3%3 =B,

B, = —B} [20] By, =3By +3B% [20]
f5 = (0.2307 £0.0013) GeV [35] f5, = (0.1905 +0.0013) GeV [20]
sin(2f8) = 0.70837 99127 (33] R, = 0.91247 000 [33]
V| = 022483000002 (33]
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AT’ that originates from the penguin sector and is propor-
tional to a2N ¢ (neglecting 4, part) we find

SATPNP (2

— = 1.14. 37
5AFE2),N/.1J (0) ( )
Equation (37) shows that the effect of a nonzero charm
quark mass on the lines touching O, are important for the
penguin contribution, leading to an about 14% increase of
the a%Nf contribution to the latter in comparison to the case
in which the charm quark mass on all lines touching O, is
set to zero.
The penguin contribution at order a, [16] evaluates to

(1).p
SATs " (z)
WO(Z) =—-14.5% (pOle),
(1).p
SAT " (z) _
—a— =—112% (MS), 38
AFIS\ILO(Z) 0 ( ) ( )
and the new a?Nf corrections are
(2),Ns,p
SAT s (2)
TAro) A% (ko)
(2).Ny.p
SAT (2) —
———— = 1.8% (MS), 39
AF?ILO(Z) 0 ( ) ( )

where SAT'{)” (z) denotes the contribution to AT’y from the

. 2).N,, .
penguin sector at order «, and SATNrP (z) is the
corresponding contribution at order a?N -

The analogous contributions to the CP asymmetries at
NLO [17] are

5 __ —30%

(pole),

s 279

(MS), (40)

% _12% (pole),

Ay

(MS). (41)

Judging from the numbers presented above, we see that the
penguin contributions at order N, have opposite sign
compared to the O(a,) penguin corrections and decrease
the latter by approximately 37%. This nurtures the

expectation that the full a corrections may also be large
and a reliable assessment of the penguin contribution calls
for a complete NNLO calculation. For the SM contribution
considered here the overall contributions to AI', and a?s is
small [see Eqgs. (39) and (41)], but in beyond-SM models
[36,37] with enhanced penguin coefficients these correc-
tions are relevant to constrain these coefficients from
the data.

Until the full NNLO calculation is available, we rec-
ommend to use the following updated NLO SM values for
ATy /AM ;:

AT,
AM, = (4.33 £0.83,4c = 0.1155 + 0'94AQCD/mb)

x 1072 (pole),
AT,
AM, = (497 £0.62yc £ 0.135 3, £ O'SOAQCD/mh)

x 107 (MS), (42)
AT,
A = (48 0820 £.0.12, 5, % 086r,,1,)

x 1073 (pole),
AT,
Api = (0706 01455, %0730 1,)

x 1073 (MS) (43)
and af:

a, = (207 4 0.08, +0.025 5 +0.05, . 1
4+ 0.04ckm) X 107 (pole),

a5, = (2.04 + 009y + 0.025 5 +0.04p, /s
+0.04cga) X 1075 (M), (44)

a?s = —(4.71 £0.1844 = 0.045 5, £ 0.11A ;0 /m,
+0.10ckm) X 1074 (pole),

aé = —(4.64 £ 021y t 0.045 3, £ 0.094 0 /m,
+0.100ky) X 1074 (MS). (45)

The error indicated with “Agcp/m;,” comprises the uncer-
tainty from the bag factors of Refs. [28,29]. The new lattice
results for the bag parameters of the Agcp/m, corrections
have errors comparable to those assumed in Ref. [21], but
the central value of By has shifted upward by more than a
factor of 2. Furthermore, B ./ Bp, decreased by 12%,
which also lowered the y; dependence. Adding the indi-
vidual errors quoted in Egs. (42)—(45) in quadrature yields
the values quoted in the abstract.

With the input values of Table I we reproduce the
measured AM, in an excellent way. It makes therefore
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no difference, whether we use the experimental or theo-
retical value to calculate AI'y from the ratios in Eq. (42).
The central values for AI'y in Ref. [21] are proportional to
Bpg , and the value used in that analysis was larger than the
one in Table I by 16%, explaining why the AT’y values in
Ref. [21] were larger by roughly the same amount
compared to

AT = (0.077 £ 0.022) ps~',
ATMS = (0.088 + 0.018) ps~! (46)

inferred from Eq. (42) with AMS™® = (17.75740.021) ps~'.

In af, however, the lattice results for the Agcep/my, bag
parameters already have an impact on reducing the uncer-
tainty, because unlike AI';/AM , the CP asymmetry af is
very sensitive to B“Lg, whose uncertainty of +0.39 is below

the +0.5 assumed in older analyses done without the
lattice input.

The scale dependence is calculated by varying u,
between m,; /2 and 2m,. Both this scale dependence and
the sizable scheme dependence indicate that the missing
perturbative higher-order corrections in AI'y/AM, are not
small. However, the u; dependence might well under-
estimate this error in the case of af.

The central values of all our MS scheme results are in
excellent agreement with Ref. [38]. Our error estimate of
the Agcp/my, corrections is conservative, as we add the
errors of individual bag parameters linearly, leading to
overall uncertainties in Al';/AM, which are larger by
roughly a factor of 1.5 compared to those of AI'; in
Ref. [38]. Our uncertainties for a?s, though, are smaller
compared to Ref. [38], as we find a smaller x; dependence
and assume a smaller error on m,.. (Recall that a. o< m2.) In
our error budget the 0.9% error in m,. quoted in Table I
would contribute another 3% uncertainty to ag..

V. CONCLUSIONS

We have calculated the penguin contributions of order
afo to the width difference AI'; and the CP asymmetry in
flavor-specific decays of B, mesons, al. These and the
mass difference AM , are fundamental quantities character-
izing the B,— B, mixing complex. The calculation
improves over Ref. [21] by taking into account the full
dependence on the charm quark mass. In line with the
general findings of Ref. [24] we find no enhancement
proportional to log(m?/m?2) in the new terms of order
a;NymZ/m;, but we discover a largish coefficient of this
term and conclude that the future full NNLO calculation of
the penguin pieces should incorporate the full m, depend-
ence. In both AI';, and al the a’N ¢ terms have signs
opposite to the NLO corrections. The calculated partial
NNLO corrections are smaller than the corresponding NLO

terms by factors of roughly 6 and 3 for ATy and af,
respectively, indicating a good convergence of the pertur-
bative series.

In response to the recent progress in the lattice calcu-
lations of the nonperturbative matrix elements [28,29] we
have further presented updated NLO values for A", and af,
in Eqgs. (42)—(46).
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APPENDIX: FULL-THEORY MATRIX
ELEMENTS

In this section we collect the needed unrenormalized LO
and NLO matrix elements to order ¢ and e, respectively,
where ¢ = (4 — D)/2 appears in the ultraviolet poles in
dimensional regularization. We decompose the matrix
element as

M=M,+M (A1)

peng’
where the first term denotes the contribution with two
insertions of the current-current operators O;, and the
second term comprises the diagrams with at least one
penguin operator. Recall that we count C;_g as order a,
so that one loop less is needed for M ,.,, compared to M.
ab,(1)

" b.(0 X .
We expand Mpé’ng = Mfiené) + e Mpeng + -+

1. Penguin operators
Here and in the following (---)(*) denotes tree-level

matrix element and C? =3 ;C;Zj; are bare Wilson

coefficients [see Eq. (3.10) of [21]].
We decompose the NLO penguin diagrams according to
the diagrams in Fig. 1 as

Gym3
127
e (2M " MY+ M)

12 12

M[()!cglg = -

12

[,1% (Mif]’](l) + Mg“’)

uu,(1 u,(1
+l[2£(MD”( ) +MD( ))i|’

12
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where
Mo _5<Q>‘°) c . (\/1 — 4z, (1 +2z) + \/1—“— 42,(1 4 22,)
1
1-— 4zz( 2z +1 <4log< ) log(z;) —log(1 — 4z2)> +271(2z, + 1) + 3 (720 + 2)>

1
+ 1 —4Z1 ( 2Z1 ‘l‘ <410g (::l] ) log 1 - 4Z1) log(22)> + 2(2Z] + 1)Z2 ‘l‘g

1 =4z, (22 + D1 =45,(22, + 1) log0'1)+log(o-2))—|—€(,/71_4zl<<

<4 log( ) —log(1 —4z;) — log(zz)> +%(1 + 2z1)<<4 log (;—L) —log(1 —4z;) - log(zz)>2 —%2>
1
t3

2+7
(402125 + 172; + 142, + 5)> +1 —422<< 3 © 4 2(1+ 222)21> <4log<":;1>
b

:;) —log(1 —4z,) - log(zl)>2 - 7;2>

1
(402125 + 1725 + 142, +5) ) + /1 —4z;\/1 -4z <§ (202125 + 7(z1 + 22) + 2)(log(oy) + log(e,))

(721 "1‘2))
2+721

+ 2(1 + 2Z1)Z2>

—log(1 —4z,) — log(zl)> + % (1+2z,) <<4log<

L)Jl»—a

-2z + D)2z + 1) <—%(log(al) + log(o,)) % (4log (Z—L) —log(1 —4z;) —log(1 — 4z2)>

”2
L) + Lisies) 4 (loglon) + log(en)) + 5 ) ) ). (42)
My = 2 (5(0) + 8(05) V) ChCY
2(1 + 5zy) M
/1 =4z <1 + 2z +€<f+ (14 2Z1)(2logm—b—log(1 —4z1)>>>. (A3)

g, and g, represent either ¢ or u quark; and z; and z, are equal to m2/ mi when originating from the operator O, or equal to
zero when related to a u quark associated with operator O%.

For the matrix elements with one QCD penguin operator we write

I

e = = o S M5 (2) + 22 (M (2) + M1 (0)) + M 0)], (A4)

As usual we expand M j; as M, = Mﬁg) +M 5,1() + - --. The unrenormalized LO and NLO matrix elements necessary for

the renormalization of the penguin diagrams D, and D, are the following:

MY () =208ctTy, MY (2) = 2C5ChT,,
( )(

0 0
MY (@) =205CiTs. MY(2) = 205C0Ts, (45)

M) (2) = 2CECH(N LT, + NyToy + N, Th), M (z) = 2C5CE(N LTy + NyT, + N.Th), (A6)

where
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T, = —é(S(QS)(()) + 5(Q>(0>)M[1 ;€2z + 1 +644Z +% <4log<ﬂ> —log(1 —4z) — \/375)
my

velta 420 ( (410g(HL) —tog(1 —42)) +2f 1°g() —4log( 1) +10g(1 - 42)
4 n, m,

~3i(Lip(§ (3 - iV3)) — Lip(§ (3+le)))>> +19—244z <41 g< ) 10g(1—42)>

N&Y 57 + 1581)]

- (3+38z7) + G (A7)

Ty = =5 (8109 + 5(0)0) | EUE 2D VRO TG 420 T 14 22

2e
1
x (log(c) + log(s;)) + g 1 -4z, (7 +20z; + 3(1 4+ 2z;) <4z +4log <Z—Ib> —log(z) —log(1 — 4zi)>>

1
+oVI-4& <7 +20z + 3(1 + 22) <4z,~ +4log <%> —log(z;) — log(1 — 4z)>>
b

1
tes (\/1 — 4z (2(17 + 40z + 54z; + 104zz;) + 2(7 + 122 + 20z; + 24zz;) - (4 log (%) —log(z)
b

ﬂ) —log(z) — log(1 - 4Zi)>2 At 2Zi))>

my,

—log(1 —4z;))+3(1+ 2zi)<<4log<
+V1- ( (17 +40z; + 54z + 104zz;) + 2(7 + 12z; + 20z + 24zz;) - <4 log <:1—1) —log(z;) —log(1 — 4z)>
b

+3(1+ 2z)<<4 log (Z—Z) — log(z;) — log(1 — 4z))2 —22(1+ 2z))>

+ VI —dz,/1 —4z,< (1422)(1 +2z)<6(10g(0) +1og(a,-))<4log<”—‘

my

> —log(1 —4z) —log(1 — 4z,»))

+ 12Li5 (o) 4 12Liy(0;) + 3log?(e) + 3log?(o;) + 87r2> +2(7 4 20z + 20z; + 52zz;)(log(o) + log(al-))> )] ,

(A8)

and

T, = 1—4z[<Q>( 1—4z( (+210g<mb) 10g(1—4z)>
e ((2ron(2) -t -0 (2 g (1) - o -9) -2+ 2))

— (00 <1—|—2Z—|—e(§(1+5z)+(1+2z)<2log< b) log(1 —4z) <§(1+5z)

y (210g<:l—1b) ~log(1 —4z)> +1+22Z <<21 g<mb> log(1 —4@)2—%2) + 134;5&))}, (A9)

N——
\_/+
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247z

+(l-2) <210g(
> —log(1 — 4z)>

T, = M[@)@ <1 -z4 €<
Hi

2
+€? <ﬁ <2 log(
3 m

1-z
+—=

b

Hi

my

(e

)

”1) — log(1 —4z)>2

7[2

2

13+ 2z
9

b

)+55%)

+{0s5) (1 +2at e<@+ (1+22) (210g(:1—]b> ~tog(1 - 4z)>> 4 (@
(o) - 5 () ) D) 2
Ts = (0)93zv1 -4z [1 +€<210g(:11h) —log(1 — 4z) + 1)
(o) o) o) n-s0) 3] wn

where z = m?/m3, contains the charm mass on lines attached to O, and z; = m?/m3 contains the charm mass from the
closed fermion loop. T is obtained from 7', by setting z; to zero. For the matrix elements with two QCD penguin operators

we refer to Egs. (A.15)—(A.18) in Ref. [21].
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