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Abstract We will have a look at the principles predictability, stability, and
computability in the field of support vector machines. Support vector machines
(SVMs), well-known in machine learning, play a successful role in classification
and regression in many areas of science. In the past three decades, much
research has been conducted on the statistical and computational properties
of support vector machines and related kernel methods. On the one hand,
consistency (predictability) and robustness (stability) of the method are of
interest. On the other hand, from an applied point of view, there is interest in a
method that can deal with many observations and many features (computability).
Since SVMs require a lot of computing power and storage capacity, various
possibilities for processing large data sets have been proposed. One of them is
called regionalization. It divides the space of declaring variables into possibly
overlapping domains in a data driven way and defines the function to predict
the output by the formation of locally learnt support vector machines. Another
advantage of regionalization should be mentioned.
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2 Florian Dumpert

If the generating distribution in different regions of the input space has different
characteristics, learning only one “global” SVM may lead to an imprecise
estimate. Locally trained predictors can overcome this problem. It is possible to
show that a locally learnt predictor is consistent and robust under assumptions
that can be checked by the user of this method.

1 Introduction

In various talks (for instance during the German Probability and Statistics Days
2018 in Freiburg) and publications Bin Yu (University of California, Berkeley)
states and discusses three principles of data science: Predictability, stability,
and computability (Yu and Kumbier, 2020). Her Bernoulli paper (Yu, 2013),
for example, focused on stability. Motivated by this, it is worth to check the
statistical method at hand whether it fulfills these three principles. Therefore,
as a first step in our context, it might be necessary to have a closer look at
support vector machines themselves and the notions of predictability, stability,
and computability. Please note that, for this paper, we usually suppress technical
details like measurability or properties of the spaces. All mentioned sets are
considered as measurable. These details can be looked up in the technical paper
Dumpert and Christmann (2018). This article embeds the topic into a bit more
applied and commented context instead and offers some numerical investigations.
Content of this paper is also included in Dumpert (2020b). Section 2 gives an
overview of the basic ideas of support vector machines which are examined
in more detail under the aspects predictability, stability, and computability in
Section 3. It turns out that, unfortunately, support vector machines are not easy
to compute. To overcome this disadvantage, Section 4 lists some approaches
and discusses the concept of regionalization in a more detailed way. Section 5
summarizes the paper at hand.

2 Support Vector Machines

Support vector machines (SVMs), initially introduced by Boser et al. (1992)
and Cortes and Vapnik (1995), are a well-known and highly accepted machine
learning method nowadays. Although there is the so-called no free lunch theorem,
see Devroye (1982), and, therefore, of course counterexamples for the success
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of SVMs, they are very successful in practice, see e. g. Bennett and Campbell
(2000), Caruana and Niculescu-Mizil (2006), Kotsiantis (2007), Caruana et al.
(2008), Fernandez-Delgado et al. (2014), and Wainberg et al. (2016). They
became popular in a lot of fields of science, see e.g. Ma and Guo (2014).
Support vector machines for classification are also known as maximum margin
classifiers, a name which has its origin in the optimization problem solved by an
SVM. Originally, the idea was to separate the data points in a two class problem
in a linear way, i.e. by a line, a plane or a hyperplane in higher dimensions.
If there is more than one possible linear discriminant the one with the largest
distance to the data points of the two classes would be chosen. The data points
which are constitutive for the separating hyperplane are called support vectors.
Extensions have been made for the case that the two classes are not linearly
separable (soft margin separating hyperplanes) and, of course, towards the
concept to find the linear discriminant in higher dimensions (i. e. in the so-called
feature space by using the kernel trick).

Other approaches to support vector machines have a more statistical view.
The goal of support vector machines in our context, i.e. in classification (or
regression), is to discover the influence of a (generally multivariate) input (or
explanatory) variable X (with values in X) on a univariate output (or response)
variable Y (with values in V). X, the so-called input space, is usually assumed
as a separable metric space. This could be a set of R? for a fixed d € N which
is, in this situation, the number of features considered in training the SVM. The
output space Y is assumed to be a closed subset of the real line R. If Y is finite,
the goal of supervised learning is classification, otherwise it is a regression. Of
course, there are generalizations, see for example Micchelli and Pontil (2005)
or Caponnetto and De Vito (2007). In this set-up, we are interested in finding
a “good” prediction f(x) of y given a certain realization x of X. A deeper
discussion to this point can be found in Section 3.1. Find more details in the
textbooks by Cristianini and Shawe-Taylor (2000), Scholkopf and Smola (2001),
and Steinwart and Christmann (2008).

The approach via the approximation of the decision boundary (the discrimi-
nant) given only the data points is also valid. From this point of view, there is
a priori no need for a stochastic component in the analysis of the data. There
are, e. g., Wendland (2005) and Cucker and Zhou (2007) for a more detailed
look at this approach.
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3 Predictability, Stability, and Computability

3.1 Predictability

A statistical method, particularly in the field of machine learning, should be able
to make good predictions, i.e., in the case of supervised learning, to predict
the right class if the output variable is categorical, or (at least almost) the right
value if there is a continuous output variable. Yu and Kumbier (2020, p. 3922)
define predictability in the following way:

“ Predictive accuracy is a simple, quantitative metric to evaluate how well a model
represents relationships in [given data] D. It is well defined relative to a prediction
function, testing data, and an evaluation metric. ”

While Yu and Kumbier (2020) refer to predictability as a reality check (i.e. as
a form of empirical validation), we also focus on theoretical investigations on
predictability for localized SVMs. This means that we are interested in finding
a good approximation of the true discriminant function between the classes
or of the true output value producing function, respectively. In the first case,
the problem belongs to the field of classification, in the second one to the field
of regression. Of course, there are different ways to measure how good the
prediction works. Quite common, and also used by Yu and Kumbier (2020), is
the approach of minimizing so-called loss functions. The smaller the (expected)
loss, the higher is the predictability of the learnt prediction function. As the
focus of this paper is on support vector machines we will recall some common
loss functions used in this field for classification and regression. Formally, a
loss function in the supervised situation is defined as a (for technical reasons)
measurable function L : Y X R — [0, oo].

For binary classification (¥ = {1, 1}) there are for example
(@) Lrs(y, f(x)) = (1= yf(x))?

(b) Lhinge(y, f(x)) = max{0,1 - yf(x)},

and for (quantile) regression (Y = R) for example

© Lrs(y, f(x) = (y - f(x)2,
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(d) Le-ins(y, f(x)) = max{0, |y — f(x)| - €},

50— f())? Jfly— ) <
— )2
(©) La-huber (y, f(x)) = a|y _ f(x)| _ %2 otherwise ,a > 0.
| @D @) ity - f() <0
(H) LT—pmball(yy fx)) = (v - f(x), otherwise , T €]0,1[.

The choice of the loss function depends on the problem at hand. We are also
interested in the so-called shifted version L* of a loss function L, defined by
L*: YxXR - R, L*(y,t) := L(y,t) — L(y,0). Note that the shifted loss
function is only needed for theoretical investigations; in particular: no new
algorithms or implementations are needed. If a prediction is exact, we usually
expect the loss function L to be 0, i.e. L(y,y) = 0 for all y € Y. The loss
functions (a) to (f) fulfill this property.

A short overview of these loss functions summarized in Table 1 shows their
properties needed in the remainder. Please note that the properties only consider
the second argument of the loss function L(, -), i. e. these are in fact properties
of L(y,-) forall y € Y. All of the following loss functions are convex (at least
with respect to their second argument).

Table 1: Properties of supervised loss functions.

Lipschitz twice resulting
application loss function continuous Fréchet- optimization
differentiable problem*
(a) classification Lis no yes LP
(b) classification Lpinge yes no boxed QP
(c) regression Lis no yes LP
(d) regression Lo_ins yes no boxed QP
(e) regression Lo_nuber yes no boxed QP
(f)  regression Lo pinbaill yes no boxed QP

¥ where LP stands for a linear program and boxed QP for a quadratic program with box constraints
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Obviously, there is no jack of all trades device, i.e. no “best” loss function
for classification or regression. Beyond these, other loss functions have been
considered in the literature, in particular:

1. The Lipschitz-continuous and twice Fréchet-differentiable logistic loss
. y=f (%) .
function L, _ogistic(y, f(x)) = —1n ((lﬁz_w) for regression. For
its genesis see Dekel et al. (2005). Hable (2012) used the logistic loss
for numerical experiments in the context of the asymptotic normality of

SVMs.

2. Le_jogistic(y, f(x)) =In(1+ e~/ () for classification. It was already
used by Vapnik (1995) with a convex program as resulting optimization
problem.

Further discussions of loss functions are for example given by Rosasco et al.
(2004) and Steinwart (2007). From a mathematical point of view, the goal is
to find a minimizer of the average loss (over all possible inputs and outputs
with respect to the unknown underlying distribution P of the input and output
variables). Other approaches measure the difference between the predictors
(which are functions) and the true or the best approximating function. The
average loss is called the risk over X of a measurable predictor f* with respect to
the chosen loss function L (with shifted version L*) and the unknown underlying
distribution P.

It is formally defined by
Rx.L-.p:{f: X = R| f measurable} — R, (1)
Rewp(f)i= [ L0of@) dPey). @

XxY

Naturally, we want to compare our result to the best, i. e. to the minimal risk
which we can reach by using a measurable predictor. The best risk is

R r- p = inf {Rx..-.p(f) | f: X > R measurable} , 3)

which is called the Bayes risk on X with respect to L (with shifted version L")
and P. Inspired by the law of large numbers, we use the information contained in
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the (finite and i. i. d.) sample at hand (x;, y;)i=1,...n € (X X Y)" to approximate
the above-mentioned risks. Let

1 n
D, = - El O (xi,y1) “4)
i=

be the empirical distribution based on the data points in the sample where 6y, y,)
is the Dirac measure at a point (x;,y;) € X X Y. Of course, this empirical
distribution is random because the sample is a realization of random variables.
Now, we can define the empirical risk as

1 n
Rx.1-.0, (f) =~ 3 L (v f(x0)). 5)
i=1

As we usually allow f to be chosen from a very rich class of functions (in
order to approximate the true relationship), we have to control the complexity
of the predictor to avoid overfitting. Obviously, no one could be interested
in interpolating all the data by a polynomial of an extraordinary high degree.
Therefore we add a regularization term A|| f ||%1 that punishes complex functions.
The hyperparameter A4 > 0 stands for the influence of the regularization term
compared to the risk. Note that A should depend on the number of observations
n: The more data points are given the more complex the function f is allowed
to be. H is a so-called reproducing kernel Hilbert space (RKHS; Aronszajn
(1950), Berlinet and Thomas-Agnan (2004), Paulsen and Raghupathi (2016)) of
measurable functions.

This type of function spaces can be very rich in the sense that they contain
enough functions for a very good approximation of any functional relationship
between X and Y. On the other hand, these in our context principally infinite
dimensional RKHSs allow to solve optimization problems over them by applying
numeric methods on finite dimensional (nonlinear) programs. By choosing a
suitable kernel one determines which functions are contained in an RKHS. This
raises the question which kernel the user should choose. As its RKHS contains
enough functions to approximate every measurable function in probability, see
Christmann et al. (2016), a default choice can be the Gaussian RBF kernel for

some y > 0, ky, (x,x") := exp (—y‘2||x —x’||f\,), x,x" € X, where || - ||x is a
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d 1/2
suitable norm on X (e. g., for X = R<, the Euclidian norm ||x||5 := ( > x?)
i=1

forx = (x1,...,xq)7 € RY).

The data influences the kernel only via the norm of differences in a bell shaped
function which motivates the denomination Gaussian radial basis function
(RBF) kernel. But, of course, there are other kernels with special properties a
user can choose, see in particular Wendland (1995), Wu (1995), and Wendland
(2005). Summarizing these prerequisites, we want to

. 15 .
minimize Rx.1-.0,.0,(f) =~ > L' ve f@) + Lallflly; ()
i=1

over a reproducing kernel Hilbert space of functions (for instance over a
suitable subset of continuous or P-integrable functions) based on a sample of
observations (x;, y;)i=1,....» created by P. Hence, we want to find the empirical
support vector machine

R R
fL*,Dn,/ln = arg inf — Z L’ (yi, f(xz)) + /lan”%-I (7)
feH i

It is well known that support vector machines exist, are unique and are universal
consistent in the i.1. d. case, i. e.

Rx.r.p(fL.p,.1,) — R’.r+p inprobability w.rt. P (8)

if the loss function is convex and Lipschitz-continuous (in this situation, the
shifted version is convex and Lipschitz-continuous, too) and if we use a
bounded and measurable kernel, see Steinwart and Christmann (2008) and
Christmann et al. (2009). Universal consistency can also be shown for some
non-i. i. d. situations, see Steinwart et al. (2009), Strohriegl (2018). Therefore,
the aspect predictability is fulfilled under mild conditions the user can easily
check or even influence.
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3.2 Stability

A learnt predictor should not change “too much” if the sample contains ob-
servations with errors, an experiment is repeated, a new sample is drawn, or
the underlying distribution has changed only slightly. Ideally, a predictor is,
furthermore, not vulnerable to outliers in the sample. The following quote
highlights the view of Yu (2013) and Yu and Kumbier (2020, pp. 3923 f.) on
the notion of stability.

“ At the modeling stage, stability measures how a data result changes when the
data and/or model are perturbed [...]. Stability extends the concept of sampling
variability in statistics, which is a measure of instability relative to other data
that could be generated from the same distribution. [...] To evaluate the stability
of a data result, we measure the change in target T [the stability target T (D, 1)
corresponds to the data result or estimand of interest. It depends on input data
D and a specific model/algorithm A used to analyze the data.] that results from
a perturbation to the input data or learning algorithm. ”

In statistics, these properties are sometimes also known as robustness. Shawe-
Taylor and Cristianini (2004, p. 13) use the two terms robustness and
statistical stability:

“Robustness: [...] [A]n effective pattern analysis algorithm must address is the fact

that in real-life applications data is often corrupted by noise. By noise we mean
that the values of the features for individual data items may be affected by measure-
ment inaccuracies or even miscodings, for example through human error.
[...]1 [The algorithms] should therefore tolerate a small amount of noise in the
sense that it will not affect their output too much. [...] Statistical stability: |[...]
[T]he patterns the algorithm identifies really are genuine patterns of the data
source and not just an accidental relation occurring in the finite training set. We
can view this property as the statistical robustness of the output in the sense that
if we rerun the algorithm on a new sample from the same source it should identify
a similar pattern. Hence, the output of the algorithm should not be sensitive to
the particular dataset, just to the underlying source of the data. [...] A relation
identified by such an algorithm as a pattern of the underlying source is also
referred to as stable, significant or invariant. ”

Shawe-Taylor and Cristianini (2004, p. 13) also add that

“there is some overlap between robustness and statistical stability in that they both
measure sensitivity of the pattern function to the sampling process. The difference
is that robustness emphasise the effect of the sampling on the pattern function itself,
while statistical stability measures how reliably the particular pattern function
will process unseen examples.
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Note that, by this, there is a direct link between statistical stability and pre-
dictability. The latter one deals in the setting of Section 3.1 also with the ability
of a method to generalize from the training data to unseen examples.

There are a lot of concrete notions of stability and robustness of a statistical
method. Support vector machines fulfill some of them, in particular quantitative
robustness in terms of the maximal difference (in some metric) between two
SVMs (based on different samples from the same population or based on samples
from two slightly different populations) or in terms of the so-called influence
function. Let My (XX Y) be the set of all distributions on X X Y. If one interprets
the support vector machine as the result of a mapping S : M;(X xY) — H,
i.e. S(Dy) = fr,p,.a, is the empirical SVM, the influence function can be
thought of as a derivative of S at the point P in the direction of another measure
if it exists. Note that, in this case, there are usually stronger differentiability
properties of the loss function needed: L has to be twice Fréchet-differentiable
with bounded first and second derivative (with respect to the second argument, of
course), see Christmann et al. (2009). This assumption can be weakened by using
Bouligand-derivatives, see Christmann and Van Messem (2008), Van Messem
and Christmann (2010). Another notion of robustness also fulfilled by support
vector machines is qualitative robustness, see Hampel (1971), but we will not
consider this within this paper. Qualitative robustness is defined in terms of the
equicontinuity (uniformly with respect to the sample size n) of the distribution
of the estimator S.

For this paper, we restrict ourselves to the so-called “maxbias”. Investi-
gations on other robustness properties can be found in Christmann and Van
Messem (2008), Christmann et al. (2009), Hable and Christmann (2011),
Dumpert (2020a) and, for some non-i.i.d. situations, in Strohriegl and
Hable (2016) and Strohriegl (2018). In particular, total stability (i.e. with
respect to the underlying distribution, the sample, the regularization param-
eter and the choice of the kernel) of support vector machines in the i.i.d.
case has been proved in Christmann et al. (2018).

Formally, by using S : M;(X xY) — H, the maxbias can be defined by
observing the behaviour of S in a contamination neighbourhood N := N o(P)
of a distribution P € M1 (X x Y),i.e. in

Ne=Ng(P):={(1-£)P+£Q | Q € M (X xY)} 9)
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for £ € [0, %[. This neighbourhood N contains the original distribution P

but also distributions which are more or less P but a bit (¢) disturbed by
another distribution Q. Q can represent outliers, gross errors and so on. The
corresponding maxbias of S (i. e. of the method “SVM?”) is then defined by

maxbias(g, S, P) := sup ||S(Q) — S(P)||g

Q€N;

=sup ||l frr,0.a = fre.p.allH- (10)
Q€N

A kernel k is called bounded if ||k |0 := sup,cx vk(x,x) < co.If and only if
the reproducing kernel k of an RKHS H is bounded, every f € H is bounded.
In this situation, the inequality | f(x)| = K/, k(. x)a| < |fllzllk|le holds
true for all f € H,x € X. Particularly: || f|lc < ||f]l&lk||co- Therefore it is also
useful to have a look at

sup [|S(Q) = S(P)lle = sup || fz+,0,4 = fL*,P,alle- (1)
QeN, Q€eNg

There is an upper bound for Lipschitz-continuous loss functions and the Gaussian
RBF kernel, see Steinwart and Christmann (2008):

& &
sup |1 f2+,0,4 = fro,p.allo < SILLIKIZNQ = Pllry <25ILL - (12)
QGNE /l /l

where || - ||y is the total variation norm on M (X X YY) (which can itself get
upperbounded by 2) and |L|; the Lipschitz constant of the Lipschitz-continuous
loss function (and its shifted version).

This is a finite upper bound for the maximum difference between two SVMs
based on two slightly different samples.

Hence, we see that support vector machines fulfill the property stabil-
ity (in the sense of the maxbias) under mild assumptions the user of the
method can check.



12 Florian Dumpert

3.3 Computability

The following quote from Yu and Kumbier (2020, p. 3923) shows the importance
(and a definition) of computability.

“In a broad sense, computability is the gatekeeper of data science. If data cannot
be generated, stored, managed, and analyzed efficiently and scalably, there is no
data science.”

Another formulation of computability (computational efficience) is written down
in Shawe-Taylor and Cristianini (2004, p. 12):

“Since we are interested in practical solutions to real-world problems, pattern
analysis algorithms must be able to handle very large datasets. Hence, it is not
sufficient for an algorithm to work well on small toy examples; we require that its
performance should scale to large datasets. ”

Although there are no theoretical issues in situations with a lot of observations
(large n) and/or a lot of explanatory variables (large d), and even not for
the situation d > n, i.e. SVMs can theoretically deal with these situations,
difficulties from a practical point of view arise. To compute the predictor, i. e.
the support vector machine, the sample has to get stored, the kernel has to
be evaluated at all 2-tuples (x;,x;) for x;,x; appearing in the observations
(xi, ¥i)i=1,....n in the sample (and this kernel matrix has to get stored, too) and a
nonlinear optimization problem has to be solved. (Note that the discussion of
efficient solvers for nonlinear optimization problems is out of the scope of this
paper.) Hence, a lot of storage capacity (ideally RAM) and computational power
is needed to find an SVM given a sample of n observations. The complexity
of learning an SVM is O(n?) for time and O(n?) for memory. Some basic
discussions of this can also be found in Zhou et al. (2014) or Steinwart and
Christmann (2008, Chapter 11). Obviously, computability is a problem for
SVMs when n and/or d is large.

Among decomposition methods and feature or subset selection techniques, one
might think about other approaches to address the computational problems.
Section 4 considers these approaches.
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4 Addressing the Problem of Computability

4.1 A Short Overview

There are different approaches to address the problem of computability (or
scalability). Some of them should be mentioned in this paper. Recall that n
denotes the number of observations, and d stands for the number of features for
every observation, i. e. for the number of input variables.

1. Feature selection to reduce d. A general overview is given by Guyon and
Elisseeff (2003) and the references therein (concerning the special issue
3/2003 of the Journal of Machine Learning Research). Early approaches
for feature selection for SVMs are, among others, Hermes and Buhmann
(2000), Weston et al. (2001), and, e. g., Claeskens et al. (2008). A recent
overview and further theoretical investigations of this topic are given by
Zhang et al. (2016).

2. Low-rank approximations of the kernel matrix to reduce n and d (based
on the idea that suitable chosen parts of the sample already contain
enough information) and approximations of the kernel function. There
are a lot of different ways to do this, like single value decomposition,
CUR matrix decomposition or different Nystrom methods. Bach (2013)
or Si et al. (2017) provide (beside their own advances) overviews of the
different approaches in this field.

3. Sequential or online learning to reduce n per time unit, see e.g. Smale
and Yao (2006), Ying and Zhou (2006), Ying and Pontil (2008), and Guo
et al. (2017b). In this case, the data is not completely available or at least
not completely used at the beginning of learning but in a sequential way.
Therefore, the learnt predictor becomes updated when new data points
“arrive” or are considered.

4. Distributed learning to reduce n per processing unit (but the whole
sample can be used), see e.g. Christmann et al. (2007), Duchi et al.
(2014), Guo et al. (2017a), Miicke (2017), and Guo et al. (2017a). The
big advantage of this approach is the high scalability in the sense that
more and more processing units can be used to calculate the predictors on
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the subsamples. Nevertheless, statistical properties of the data in different
parts of the sample are probably not preserved.

5. Local learning in the specification that if one needs a prediction for a
new data point, the training data is observed only locally around the
new data point, see e.g. Zakai and Ritov (2009), Blanzieri and Bryl
(2007), Blanzieri and Melgani (2008), or Hable (2013). Of course, this
approach does not need any training time on the whole sample, but
little training time whenever a new data point needs to get a prediction.
If, for example, there are not many new data points to classify, this is
obviously very advantageous.

6. Local learning in the specification that the input space gets region-
alized in advance. If one needs a prediction for a new data point,
this only depends on the region(s) where the data point belongs to.
See Subsection 4.2 for details.

Note that the local learning versions mentioned in 5 and 6 are not identical and
offer actually two different ways to localize the learning process. Of course,
combinations or successive use of approaches are possible, too, see for example
Miicke (2019). Note that the six mentioned classes do not exploit all possibilities
to deal with the problem of computability (or scalability). Other approaches are,
e. g., gradient descent with early stopping regularization/iterative regularization,
see Guo et al. (2018) and Lin et al. (2016) and the references therein.

4.2 The Idea of Regionalization

The idea of localized statistical learning has already been thought in the beginning
of support vector machines. Bottou and Vapnik (1992) and Vapnik and Bottou
(1993) give some theoretical investigations. An early overview of different ideas
of localizing and combining can be found in Collobert et al. (2002).
A big advantage of regionalization is the parallelization of the calculations for
different regions. For numerical experiences see, e. g., Bennett and Blue (1998),
Wu et al. (1999), or Chang et al. (2010).

But there is another motivation to consider localized (particularly instead
of distributed learning) approaches. For example, there might be regions that
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require a simple function as predictor for the class or the regression value;
another region might need a more volatile function. While a global machine
learning approach has to find a global predictor (with, in the case of SVMs, only
one global regularization parameter A and only one possible kernel k), a local
approach would overcome this disadvantage.

Thus, the idea of localized learning contains, as a first step, a regionalization
method which divides the input space X into a finite number of (possibly
overlapping) regions (R1). In formulae: X = Llj Xp. Of course, there are

b=1
regionalization methods which satisfy these requirements. Among these are,

e. g., trees in the sense of Breiman et al. (1984), K-means clustering, or Voronoi
partitions, see for example Aurenhammer (1991).

The regionalization method has to guarantee that the resulting regions are
measurable and complete for all distributions (R2).

In particular, that if the sample gets larger and larger, every region contains
more and more data points, i. e.,

lim min  |D, NXp| =00, (13)
{1,....B}

.....

where D,, = (x;, yi)i=1,....n is the sample and |M| denotes the number of data
points in a set M (R3).

Then, it is, as a second step, possible to learn local (one for each region) SVMs
fb,L*,Dn,be’ b=1,...,B,on X1 xXJV,...,Xg x VY with kernels k1, ...,kp
and corresponding reproducing kernel Hilbert spaces Hy, . .., Hp and combine
them in a weighted way to a predictor on the whole input space:

B
PO K SR SR () = > wh () fo Lo Dty (1) (14)
b=1

where D, ;, denotes the empirical measure on X X Y and the weights wy,
B

b =1,...,B,only have to fulfill }, wp(x) =1forallx € X, and wp(x) =0
b=1

forall x ¢ X, and forall b € {1,..., B}.
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4.3 Properties of Locally Learnt SVMs

In order to show that locally learnt SVMs fullfil the desired properties pre-
dictability and stability in theory and practise, we cite and specialize two results
from Dumpert and Christmann (2018) where these results have been proved
rigorously and in a more general form by restricting to a special kernel, the
widely used Gaussian RBF kernel, the standard input space in practice X = R?
for a d € N, and the standard output space in practice Y = {1,...,C} for a
C e N, C > 2, (for classification) or Y/ = R (for regression).

4.3.1 Predictability

Theorem 4.1 (Universal consistency). Let L be a convex, Lipschitz-continuous
(with Lipschitz-constant |L|1 # 0) loss function and L* its shifted version. For all
b e {1,...,B} let kp, be a Gaussian RBF kernel on Xy, Let the regionalization
method fulfill the technical assumptions (R1), (R2), and (R3) from Subsection 4.2.

Then for all distributions P on X X Y and every collection of sequences
Ay 1)s -2 A(ng,B) With Ay, py — 0 and /l%

byt @ when np, — o0,
b € {1,...,B}, it holds true that

RX’L*,P(fofgI;,ln) — Rx.L-p inprobability with respect to P.
This result expresses that the average loss — over all (x,y) € R? x {1, ...,C}
(for classification) or all (x,y) € R? x R (for regression) which are distributed
according to the unknown distribution P — we can achieve by locally learnt
support vector machines (learnt based on n data points) converges for data sets
that become larger (n — o0) to the best (i. e. the minimal) possible average loss.
Note that, in this situation, there is no learning rate shown, i. e. we cannot say
how fast the average loss converges to the best loss. This might be a disadvantage
of this theorem because it is not possible to say how many observations are
needed to be sufficiently close to the Bayes risk in this situation. On the other
hand, the theorem gives universal consistency for all distributions P under
conditions the user can check: The choice of a loss function which is Lipschitz-
continuous is possible (see Subsection 3.1). It should also be possible to use a
Gaussian RBF kernel. And the user can choose the regionalization method.
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Of course, the value of the regularization parameter A, in the regions
Xp,b € {1,..., B}, which corresponds to the cost parameter C;, often used
in implementations usually via C, = (24;,)7"", has to be set carefully by the
user. No further (uncheckable) assumptions on the existence of moments, of
densities, or of symmetry aspects of the underlying distribution or the sample
have to be made. This might be very important in statistics where we usually do
not know properties of P. If more information about P is available and if the
regions are disjoint, results like Eberts (2015), Meister and Steinwart (2016),
and Thomann et al. (2017) could be of interest.

4.3.2 Stability

As a second aspect, we have to consider stability. Let M;(M) again denote
the set of probability measures on a set M, and let Pz denote the restriction
of a measure P on a set Z, i.e. P|z(A) := P(A N Z) for all sets A. For all
be{l,...,B}landgy € [0, %[leth = P(Xbxy)‘1P|,\»be ifP(XpxY) 0
and the null measure otherwise, i. e. the local distribution of (X,Y) on X, X V.
Define for a distribution P on X X Y the &,-contamination neighbourhood of P
(or Pp)on Xp X Y

Np, e, (P) := Np &, (Pp) == {(1 = &) Py + &pPp | Pp € M1(Xp x Y) } .

1

Furthermore, let & := (&1,...,e) € [0, 5[3. By using these notations,

we can define

N"P(P) == {P € My(X XY) | P, € Np s, (P) forallb e {1,...,B}}

as a composed g-contamination neighbourhood of P on X X Y.

Theorem 4.2 (Robustness). Let L be a convex, Lipschitz-continuous (with
Lipschitz-constant |L|y # 0) loss function and L* its shifted version. For all
b e {1,...,B} let kp be a Gaussian RBF kernel on Xj,. Let the regionalization
method fulfill the technical assumptions from Subsection 4.2. Then, for all
distributions P on X x Y and all A := (11, ...,4) € 0, [B, it holds that

sup ’

B
b
~ feomr = 1l < 2100 Y Il 2
PeN;""P(p) T T °° b=1 b

where || - || x, denotes the supremum norm on Xjp.
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To comment this a bit, we should have a look at the question whether we
get worse in terms of robustness when we use the regionalization approach
to gain computability. Let us, therefore, compare the shown upper bound for
the maxbias with the one without regionalization (see Subsection 3.2). It is
obvious that if we set the number of regions B to 1 (such that there is no
regionalization) the upper bounds (12) and (15) coincide. This means that we do
not lose robustness properties by using regionalization. Note that Theorem 4.1
requires Ay, ) to converge to 0 when n;, — co. Theorem 4.2, however, states
for fixed ny,...,np that the smaller A, is, b € {1, ..., B}, the higher is the
upper bound. This shows, roughly spoken, that the more precise the local SVMs
are, the less robustly they behave, and vice versa. Note that this phenomenon
already appears in the case of one global SVM (thus, it is not a disadvantage
introduced by regionalization) and can be interpreted, to some extent, as a
bias-variance-trade-off of the mapping S. This has been discussed in more detail
in Steinwart and Christmann (2008, Chapter 10) and for the notion of qualitative
robustness in Hable and Christmann (2013).

4.3.3 Computability

Investigations on computability can be done by using the R package liquidSVM,
Steinwart and Thomann (2017), R Core Team (2018), which builds its regions
by using Voronoi-diagrams, i. e. by using non-overlapping regions. Therefore,
five scenarios are shown for a short toy binary classification example to visualize
aspects considered in this paper:

1. One global SVM based on 11iquidSVM without creating regions;
2. Three local SVMs based on 1iquidSVM on manually defined regions;

3. As much as local SVMs as 11quidSVM finds by its internal regional-
ization (partition_choice=5);

4. As much as local SVMs as 11iquidSVM finds by its internal regional-
ization (partition_choice=6);

5. Local SVMs based on 11quidSVM on regions defined by a tree based on
rpart inafirststep; for rpart see Therneau and Atkinson (2018).
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The sample contains the available information on the distribution of the blue
and the red class. The true distribution of the two classes is shown in Figure 2.
This distribution can be reproduced by the R-code shown in Figure 1. x stands
for the first input dimension, y for the second input dimension. k denotes the
class (0 or 1; blue or red) a data point belongs to.

x = runif(n, 0, 1)
y = runif(n, 0, 1)
k = rep(0, n)

for (1 in 1:n)

if (x[1]1<0.1l6
&& (y[1i1-0.5)< 0.25%sin(50*x[1])-0.15)
k[i]=1

if (x[1]<0.16
&& (y[1]1-0.5)> 0.25xsin(50xx[1])+0.15)

k[i]=1

if (x[i]>=0.16
&& x[1]1<0.83
&& y[i]1<0.6
&s y[i]1>0.4)
k[i]=1

if (x[1]1>=0.83
&& y[i1]1>=0.5-20%(x[1]-0.83)"2-0.05
&& y[i]<=0.5-20%(x[1]-0.83)"2+0.05)
k[i]=1

Figure 1: R-code.

To give comparable values for computational times, parallel computing has
been switched off. We compare the five scenarios in terms of the time needed
for computations (measured by the differences in proc.time () (user)) and
accuracy (number of correct classifications divided by the length of the test set)
on a test set of the length 25 000. There have been 10 runs per scenario and
training sample length (750, 10 000, 50 000). The calculations have been done
on a Intel Xeon CPU (E5-2640 v4), 2.4 GHz, 16 GB RAM, a 64-bit Windows
7 and using R 3.5.1. In order to visualize the result of the proposed method,
Figure 3 shows for Seed 1000 the classification of 25 000 test data points based
on a model learnt on 10 000 training data points.



20 Florian Dumpert

True distribution
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Figure 2: True distribution of the two classes (red and blue).

The results are summarized by six boxplots (Figures 4, 5, and 6). Figure 4 shows
that, as long as the training sample is small, the local SVMs on manually defined
regions perform best in terms of accuracy; the other approaches have not been
able to discover the different regions of the data set. As this is, however, not the
situation which the new approach is made for, a closer look to Figures 5 and 6
is necessary. In Figure 5, we observe with respect to time the very efficient
implementation of liquidSVM as well as the fact that the regionalization that
uses a tree compares to liquidSVM. The global solution is (as it was expected)
the one that needs the most time to get learnt. While the accuracy results of
liquidSVM are comparable to the global solution, the proposed regionalization
approach achieved higher accuracy. In Figure 6, these findings are confirmed
although it is not really clear, why the global SVM (learnt by liquidSVM) can
be so fast at the scenario with 50 000 training points.

Predictions (tree + 12 local SVMs)

0.0 04 08

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Result for local SVMs on regions found by a tree based on 10 000 training points.
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Figure 6: Summarized results for 50 000 training points.
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5 Conclusion

Numerical investigations showed that the regionalization approach described
in Subsection 4.2 leads to at least the same accuracy as the global approach.
Whether there is also an advantage in time depends on how fast the tree finds
regions and how fast the training data can get regionalized. Further investigations
on these aspects have to be done in the future. Recall that this approach is not
new, the combination of tree and SVM, e. g., has already been proposed by
Chang et al. (2010). Our contribution was the theoretical investigation of this
approach, see Dumpert and Christmann (2018) for additional details, and to
show that regional aspects of the data are covered, too. However, it is not clear,
whether the approach of liquidSVM via Voronoi diagrams or the approach via
trees leads to better results.

The described regionalization approach offers the chance to reduce the time
needed to compute the SVM, it is risk-consistent and robust. Therefore, the
three principles predictability, stability, and computability are fulfilled by locally
learnt SVMs.
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