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Abstract 

The Breeding Blanket (BB) of the DEMO reactor represents a harsh system in a dangerous 

environment.  

It has to satisfy engineering requirements and constraints that are of nuclear, thermo-structural, 

material and safety kind. For these reasons, the application of advanced simulation tools, based on a 

multi-physics approach, is required for its comprehensive design. These tools have to simultaneously 

perform different kinds of analyses among which three, and namely nuclear, thermofluid-dynamic and 

thermo-mechanical, can be prioritized and considered as propaedeutic for the investigation of all the 

other issues related to the BB. 

In this dissertation, a multi-physic approach, covering the three pillars of the BB design (the 

neutronics, thermal-hydraulics and thermo-mechanics), is proposed. These analyses have to be 

conducted in a strongly integrated way, allowing a holistic assessment of volumetric heat loads, thermal 

performances of coolant and structures as well as their stress and deformation states. 

The strategy, followed for the achievement of this challenge, consists of creating a CAD-centric and 

loosely-coupled procedure for the BB concepts design adopting a sub-modelling technique, named 

Multi-physics Approach for Integrated Analysis (MAIA). The MAIA procedure bases its architecture 

on the use of validated codes and the minimisation of their number. It is articulated in 10 main steps that 

go from the decomposition of generic CAD in a format suitable for neutron/photon transport analysis to 

the nuclear analysis for the assessment of volumetric heating, from the assessment of temperature and 

velocity fields within coolant and structure to the evaluation of their displacement, deformation and 

stress fields, from the evaluation of nitrogen isotopes production rates from water oxygen activation to 

the calculation of their concentration spatial distribution taking into account the effects of passive 

convective transport. All the steps share the same geometry details and the consistency between input 

and output parameters. The new MAIA procedure differs from the conventional coupling approach for 

three key aspects. First, it does not introduce homogenisations of models and loads. Second, MAIA can 

capture local load gradients at high resolution in the three directions for all the analysis involved without 

requiring prohibitive computational efforts. And third, MAIA keeps the consistency between the three 

analyses maintaining the congruence between inputs and outputs. 

However, the computational effort required by the CAD-centric feature of MAIA procedure imposes 

the representation of BB portions and, therefore, the definition and validation of boundary conditions for 

each performed calculation.  

Regarding the nuclear analysis, it has been found that the set of reflecting and white conditions in the 

poloidal and toroidal directions, respectively, together with the presence of Vacuum Vessel (VV) and 

the definition of local neutron and photon source, produces a mismatch of -0.48 % in terms of power 

deposition between the DEMO and the local (e.g. slice) models. It has been demonstrated that the 

neutronic symmetry conditions are valid in the entire module up to the last slices nearby the caps. 

Furthermore, a sensitivity analysis on the angular distribution of local neutron and photon source has 

been performed indicating in 10 cosine bins the optimal discretisation choice in terms of compromise 

between the fidelity of the results obtained with respect to those of the reference model and the relevant 

computational effort.  

Concerning the analysis of thermal-hydraulic boundary conditions, it has been found that the 

variation on mass flow rates (comprised between the ~-1.3 % and the ~0.6 %) as well as power density 

fluctuation (up to the ~6 % in the neighbouring domains) affect the temperature distribution for less than 

±2.4 % demonstrating the applicability of poloidal symmetry conditions.  
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As far as the thermo-mechanical analyses are concerned, it has been identified the set of boundary 

conditions (radial and toroidal displacements prevented to the nodes lying in the rear of the back 

supporting structure along the toroidal and poloidal direction, symmetry at the lower cut surface and 

Generalised Plane Strain to the top one) that produce a discrepancy in terms of displacement in the 

sub-model comprised between the -6 % and the 4 % as well as a conservative assessment of membrane 

and bending stresses both for primary and secondary stresses. The impact of the temperature variation 

has also been investigated showing that the fluctuations on total deformation are comprised between 

-0.3 % and the 1.7 %, on equivalent membrane stress up to 15 % while on equivalent bending stress 

between the -7 % and the 5 %. 

As a proof-of-concept, the MAIA procedure has been then used to evaluate the impact on the BB 

design, demonstrating that some criticalities are present in the design. In particular, the fluid-dynamic 

results show a violation of the temperature requirement limits that have not been solved introducing 

proper design solutions. Furthermore, these violations of thermal-hydraulic requirements produce very 

intense values of Von Mises equivalent stresses that could jeopardize the structural integrity of the 

segment box. This demonstrates that MAIA procedure can become the reference tool for the design of 

the BB. Moreover, the MAIA procedure has proven the possibility to locally map important variables 

such as the neutron flux and the temperature as well as the primary and secondary stress that are used for 

the determination of the allowable stress and applied for compering with design criteria.  

To further demonstrate the versatility and adaptability of the MAIA procedure, the water activation 

issue occurring within the blanket Primary Heat Transfer System (PHTS) has been studied. Using 

MAIA procedure, it has been possible to take into account the effects of the flow on the nitrogen 

concentration and to provide useful information for the development of both BB design and its PHTS.  
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Sommario 

Il Breeding Blanket (BB) del reattore DEMO rappresenta un sistema complesso in un ambiente 

pericoloso. Infatti, deve soddisfare diversi requisiti e vincoli ingegneristici sia di tipo nucleare, 

termo-strutturale che di sicurezza. Per questi motivi, è necessaria una progettazione omnicomprensiva 

che preveda l'applicazione di strumenti avanzati di simulazione basati su approcci multi-fisici. Questi 

strumenti devono eseguire simultaneamente diversi tipi di analisi. Tre di esse possono essere considerate 

prioritarie e propedeutiche per lo studio di tutti gli altri fenomeni riguardanti il BB, vale a dire l´analisi 

nucleare, termo-fluidodinamica e strutturale. 

In questa tesi, è proposto un innovativo approccio multi-fisico che copre i tre pilastri principali su cui 

è basato il progetto del BB (la neutronica, la termoidraulica e la termo-meccanica). Queste analisi 

devono essere condotte in maniera integrata, consentendo una valutazione olistica dei carichi 

volumetrici di potenza, delle prestazioni termiche sia del fluido di raffreddamento che delle strutture, 

nonché dei campi di tensione e deformazione. 

La strategia seguita per il conseguimento di questa sfida consiste nella creazione di una procedura 

“CAD-centric” e “loosely-coupled” (debolmente accoppiata) per la progettazione dei concetti di BB 

utilizzando una tecnica di analisi basata su sotto-modelli. Questa procedura prende il nome di 

Multi-physics Approach for Integrated Analysis (MAIA). La sua architettura si basa sull'uso di codici 

validati e sulla minimizzazione del loro numero. In particolare, MAIA è articolata in 10 fasi principali 

che vanno dalla creazione di un modello per le analisi nucleari, generato dalla decomposizione in 

geometrie semplici di un generico CAD, alla valutazione della potenza volumetrica, dal calcolo dei 

campi di temperatura e velocità nella struttura e nel refrigerante alla valutazione dei campi di 

spostamento, deformazione e stress, dalla stima dei tassi di produzione degli isotopi dell´azoto prodotti 

dall'attivazione dell'ossigeno presente nell'acqua al calcolo della loro distribuzione spaziale di 

concentrazione tenendo conto degli effetti del trasporto convettivo. Tutti i vari passaggi condividono gli 

stessi dettagli geometrici.  

In particolare, MAIA differisce dagli approcci convenzionali usati nell´accoppiamento multi-fisico 

su tre aspetti chiave. Innanzitutto, non introduce omogeneizzazioni/semplificazioni dei modelli e dei 

carichi. In secondo luogo, MAIA permette di determinare, con un’alta risoluzione spaziale, i gradienti 

dei carichi per tutte le analisi coinvolte senza richiedere sforzi computazionali proibitivi. In terzo luogo, 

MAIA permette di mantenere la coerenza tra le tre analisi garantendo la congruenza tra gli input e gli 

output. 

Tuttavia, l´onere computazionale richiesto dall´approccio CAD-centric, su cui si basa la procedura 

MAIA, non permette di rappresentare il BB nel suo complesso ma solo alcune sue porzioni (una slice, 

per esempio). Ciò impone la definizione e, conseguentemente, la validazione di opportune condizioni al 

contorno per ogni sotto-modello utilizzato e per ogni analisi eseguita. 

A tal proposito, per quanto riguarda le analisi nucleari, le condizioni al contorno utilizzate nel 

modello locale della slice sono: definizione di una sorgente locale neutronica/fotonica per tener in conto 

l´effetto albedo dell´intero reattore, rappresentazione del Vacuum Vessel (VV) per simulare il back 

scattering verso il BB, e l´applicazione di condizioni di riflessione (“mirror”, specchio/simmetria, nella 

direzione poloidale e “white”, riflessione isotropica, in quella toroidale) per simulare la presenza delle 

slice adiacenti a quella analizzata.  

I risultati ottenuti mostrano una variazione della potenza depositata del -0.48 % tra il modello di 

riferimento DEMO e quello locale (slice) usato in MAIA. Inoltre, è stata eseguita un'analisi di sensibilità 

sulla distribuzione angolare della sorgente neutronica/fotonica locale determinando una discretizzazione 
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ottimale in 10 suddivisioni poloidali in coseno. Questa suddivisione rappresenta un buon compromesso 

sia in termini di fedeltà dei risultati ottenuti nel modello locale rispetto a quelli del modello di 

riferimento (DEMO), che di minimizzazione dell´onere computazionale. 

Per quanto riguarda l'analisi delle condizioni al contorno termo-idrauliche usate nel modello locale 

della slice, è stata applicata una condizione di simmetria termica poloidale. Assumendo una variazione 

delle portate comprese tra ~ -1.3% e ~ 0.6% e una fluttuazione della densità di potenza fino a ~ 6% tra 

slice adiacenti, è stata ottenuta una variazione della distribuzione delle temperature solo del ± 2.4% 

dimostrando, quindi, l'applicabilità di tali condizioni. 

Per quanto riguarda le analisi termo-meccaniche, le condizioni al contorno identificate per il modello 

locale della slice sono: simmetria sul piano inferiore della slice, Generalised Plane Strain su quello 

superiore e spostamenti radiali e toroidali impediti ai nodi che giacciono nella parte posteriore della 

Back Supporting Structure del BB lungo la direzione toroidale e poloidale. Queste condizioni, applicate 

al sotto-modello, producono una variazione compresa tra il -6% e il 4% tra gli spostamenti calcolati in 

MAIA nella slice e quelli nel modello di riferimento DEMO, nonché una stima conservativa delle 

tensioni primarie e secondarie sia di membrana che di flessione. Inoltre, è stato anche studiato l'impatto 

della variazione (± 2.4%) di temperatura dimostrando che le fluttuazioni sulle deformazioni totale sono 

comprese tra il -0.3% e l’1.7%, fino a un massimo del 15% sulle tensioni equivalenti di membrana e tra 

il -7% e il 5% su quelle di flessione. 

Infine, la procedura MAIA è stata utilizzata per valutare l'impatto sul design del BB. La sua 

applicazione ha dimostrato la presenza di alcune criticità nel progetto. In particolare, i risultati 

fluidodinamici mostrano una violazione dei limiti di temperatura che non sono stati risolti introducendo 

soluzioni progettuali adeguate. Inoltre, queste violazioni producono, a loro volta, valori molto intensi 

delle tensioni equivalenti di Von Mises che potrebbero indicare un pericolo per l'integrità strutturale del 

BB.  

L´applicazione di MAIA al design del BB ha permesso di dimostrare il valore aggiunto di questa 

procedura la quale potrebbe diventare uno strumento fondamentale e di riferimento per la progettazione 

del BB.  

Inoltre, la procedura MAIA ha permesso di mappare localmente variabili importanti come flussi 

neutronici e temperature, nonché le tensioni primarie e secondarie che sono utilizzate per la 

determinazione delle tensioni ammissibili applicate per la verifica dei criteri di progettazione. 

Al fine di dimostrare ulteriormente la versatilità e l'adattabilità della procedura MAIA, è stato 

studiato il problema dell’attivazione dell'acqua del sistema di trasferimento di calore primario (Primary 

Heat Transfer System, PHTS). Utilizzando la procedura MAIA, è stato possibile prendere in 

considerazione gli effetti dell´efflusso sulla concentrazione degli isotopi dell´azoto e fornire 

informazioni utili per lo sviluppo sia del design del BB che del suo PHTS. 
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Kurzfassung 

Das Brut-Blanket (BB) des DEMO-Reaktors ist ein anspruchsvolles System in gefährlicher 

Umgebung. Es unterliegt nukleartechnischen, thermisch-strukturellen sowie material- und 

sicherheitsrelevanten Anforderungen und Voraussetzungen, und seine komplexe Auslegung bedingt 

den Einsatz hochentwickelter multiphysikalischer Simulationstools. Diese Tools müssen die 

gleichzeitige Durchführung verschiedener Analysen erlauben. Drei dieser Analyseverfahren, nämlich 

das nukleare, das thermofluiddynamische und das thermomechanische Verfahren, können priorisiert 

und als vorbereitend für die Untersuchung aller weiteren Fragen im Zusammenhang mit dem 

Brut-Blanket betrachtet werden.   

Diese Dissertation schlägt einen die drei Säulen der Brut-Blanket-Auslegung (Neutronik, 

Thermohydraulik und Thermomechanik) umfassenden multiphysikalischen Ansatz vor. Zur 

Gewährleistung einer gesamtheitlichen Beurteilung der volumetrischen Wärmelasten, der thermischen 

Leistungen von Kühlmittel und Strukturmaterial sowie der Spannungs- und Verformungszustände 

müssen die entsprechenden Analysen im Verbund durchgeführt werden.  

Die Strategie zur Bewältigung dieser Herausforderung besteht in der Entwicklung eines 

CAD-zentrierten und lose gekoppelten Verfahrens für die Auslegung des Brut-Blankets mit Hilfe der 

Teilmodellierungstechnik MAIA (Multi-physics Approach for Integrated Analysis). Die Architektur 

von MAIA basiert auf der Verwendung validierter Codes und der Minimierung der Anzahl dieser 

Codes. Das Verfahren gliedert sich in zehn Hauptschritte, angefangen mit der Umwandlung des 

generischen CAD-Modells in ein für die Neutronen-/Photonentransportanalyse geeignetes Format, der 

kerntechnischen Analyse zur Beurteilung der volumetrischen Erwärmung und der Beurteilung der 

Temperatur- und Geschwindigkeitsfelder innerhalb von Kühlmittel und Strukturmaterial über die 

Bewertung der Verschiebungs-, Verformungs- und Spannungsfelder, die quantitative Bewertung der 

Erzeugung von Stickstoffisotopen durch Sauerstoffaktivierung des Wasser bis hin zur Berechnung der 

Konzentrationsverteilung unter Berücksichtigung der Auswirkungen des passiven konvektiven 

Transports. Allen Schritten gemeinsam sind die geometrischen Details und die Übereinstimmung 

zwischen Input- und Output-Parametern. Das neue MAIA-Verfahren unterscheidet sich vom 

konventionellen Kopplungsansatz in drei wesentlichen Aspekten: 1. Modelle und Lasten werden nicht 

homogenisiert. 2. Lastgradienten können mit hoher Auflösung in drei Richtungen für alle relevanten 

Analysen ohne übermäßigen Rechenaufwand erfasst werden. 3. Die Übereinstimmung zwischen den 

drei Analyseverfahren und die Kongruenz zwischen Inputs und Outputs wird gewährleistet.  

Der durch die CAD-zentrierte Funktion des MAIA-Verfahrens erforderliche Rechenaufwand 

bedingt allerdings die Darstellung von Teilen des Brut-Blankets und damit die Definition und 

Validierung von Randbedingungen für jede durchgeführte Berechnung. In Bezug auf die kerntechnische 

Analyse hat sich gezeigt, dass die relevanten Reflexions- und Weißzustände  in poloidaler bzw. 

toroidaler Richtung zusammen mit dem Vorhandensein des Vakuumbehälters und der Definition lokaler 

Neutronen- und Photonenquellen zu einer Diskrepanz von -0,48 % in Bezug auf die aufgenommene 

Leistung zwischen DEMO-Reaktor und lokalen (z.B. Scheiben-)Modellen führen. Die 

neutronenphysikalischen Symmetriebedingungen gelten für das gesamte Modul einschließlich der 

Scheiben in der Nähe der Caps. Es wurde eine Sensitivitätsanalyse im Hinblick auf die 

Winkelverteilung der lokalen Neutronen- und Photonenquelle durchgeführt, die in 10 Cosinus-Bins die 

optimale Diskretisierung in Bezug auf den Kompromiss zwischen der Genauigkeit der erhaltenen 

Ergebnisse und den Ergebnissen des Referenzmodells und dem entsprechenden Rechenaufwand angibt.  

Bei der Analyse der thermohydraulischen Randbedingungen wurde festgestellt, dass die 
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Beeinflussung der Temperaturverteilung durch die Abweichung der Massenströme (zwischen ~-1,3 % 

und ~0,6 %) und die Leistungsdichteschwankungen (bis zu ~6 % in den benachbarten Bereichen) 

weniger als ±2,4 % beträgt. Dies belegt die Anwendbarkeit der poloidalen Symmetriebedingungen.   

Im Verlauf der thermomechanischen Analysen wurden die Randbedingungen (d.h. radiale und 

toroidale Verschiebungen, die an den Knoten auf der Rückseite der hinteren Stützstruktur in toroidaler 

und poloidaler Richtung verhindert werden, Symmetrie an der unteren sowie generalisierter ebener 

Verformungszustand an der oberen Schnittfläche) bestimmt, die zu einer Diskrepanz in Bezug auf die 

Verschiebung im Teilmodell zwischen -6 % und 4 % und einer konservativen Bewertung der primären 

und sekundären Membran- und Biegespannungen führen. Darüber hinaus wurden die Auswirkungen der 

Temperaturschwankungen untersucht.Dabei zeigten sich Schwankungen der Gesamtverformung 

zwischen -0,3 % und 1,7 %, Schwankungen der äquivalenten Membranspannung von bis zu 15 % und 

Schwankungen der äquivalenten Biegespannung zwischen -7 % und 5 %. 

Das MAIA-Verfahren wurde anschließend zur Bewertung diverser Auswirkungen auf die Auslegung 

des Brut-Blankets herangezogen. Dabei wurden einige Kritikpunkte offenbar. Insbesondere zeigen die 

strömungsdynamischen Ergebnisse Überschreitungen der Grenztemperatur. Hierfür konnten keine 

geeigneten Konstruktionslösungen gefunden werden. Diese Nichteinhaltung der thermohydraulischen 

Anforderungen führt darüber hinaus zu sehr hohen, die Segmentstabilität möglicherweise gefährdenden 

Werten der von-Mises-Vergleichsspannungen. Im Hinblick auf das oben Gesagte kann das 

MAIA-Verfahren als Referenztool für die Auslegung des Brut-Blankets verwendet werden. Darüber 

hinaus hat das Verfahren die Möglichkeit aufgezeigt, sowohl wichtige zur Bestimmung der zulässigen 

Spannung und zur Erfüllung der Auslegungskriterien erforderliche Variablen wie den Neutronenfluss 

und die Temperatur als auch Primär- und Sekundärspannungen lokal abzubilden.  

Zur weiteren Veranschaulichung der Vielseitigkeit und Anpassungsfähigkeit des MAIA-Verfahrens 

wurde das Problem der Wasseraktivierung innerhalb des Blanket Primary Heat Transfer Systems 

(PHTS) untersucht. Mit MAIA konnten die Auswirkungen der Strömung auf die 

Stickstoffkonzentration berücksichtigt und nützliche Informationen für die Entwicklung der 

Brut-Blanket-Auslegung und des PHTS geliefert werden. 
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1 Introduction 

Nowadays, in an era where the link between the human activities and the climatic changes is becoming 

increasingly clear, it is imperative to achieve a sustainable growth able to satisfy the welfare request of 

population preserving, at the same time, the environment for the next generations.  

The world energy consumption in the past years displays a constant growth mainly driven by emerging 

countries like India and China (more than 40% of the whole increment in 2017 [1]). A direct consequence is 

the increase of carbon dioxide (CO2) emissions due mostly to fossil fuels (72% for 2017) since only a 

minority energy share comes from renewables and nuclear [1]. For the future, the world situation could be 

even worse than the current state. Indeed, the combined increase in income and population (increment of 

1.7 billion people to 2040 [2]) will blow up the global energy consumption by more than 25% in 20 years 

changing completely the equilibria between west and east in favour of the latter [2, 3]. These themes are 

attracting more and more the attention of people who started to change their behaviour with respect to the 

environment. In particular, it is chronicle in these days, the creation of people movements to protest against 

the lack of action of governments on the climate change crisis (e.g. “Fridays For Future” movement [4]).  

In this framework, policies at the international level have already developed new strategies in order to 

create a competitive and decarbonized energy system able to sustain the energy demand. Europe is a 

fundamental actor in the realisation of a low-carbon economy. As stated in the European energy roadmap 

2050 [5], the European Union (EU) policies and measures are devoted to achieve a greenhouse gas 

emission reduction to 80-95% below 1990 levels by 2050 [5].  

This goal, besides being ambitious, poses also an important challenge in the renewal of electricity 

production and opens up to the role of nuclear fusion in the mix of carbon-free energy resources. Indeed, 

from the interim evaluation of the 2014-2018 Euratom programme, the development of fusion technology 

has emerged as a relevant activity for the EU [6]. In order to make fusion a credible option, the EU has 

stated its own strategy within the “European Research Roadmap to the realisation of fusion energy” [7]. Its 

achievement is articulated in three main steps [7]:  

i) to demonstrate the scientific and technological feasibility of fusion as energy source by means 

of the international ITER tokamak reactor,  

ii) to realise a neutron source facility for materials development and qualification 

(IFMIF-DONES) and  

iii) to realise a fusion power plant which will deliver electricity to the grid and will operate with a 

closed self-sufficient fuel-cycle.  

These steps are organised in three main stages that cover until the 2050 [7] ensuring a long-term research 

strategy in which all the European research centres will be strongly involved. In particular, this work will 

deal with the third pillar of the fusion roadmap.  

The research on a fusion reactor to produce electricity has already started in the eighties demonstrating 

the feasibility of the fusion reaction without gaining net energy from it. For instance, the JET reactor, which 

is the largest tokamak currently operated in Europe, has produced a peak fusion power that is the 60% of the 

heating necessary to initiate and sustain the plasma using deuterium-tritium mixture [8]. Other machines, 

like ITER, should demonstrate the self-heating of the plasma producing 10 times more fusion power [9] but 

it will not have a self-sufficient fuel cycle as well as electricity production. For these reasons, in the 

European Roadmap [7], it has been foreseen another advancement, the so-called DEMOstration (DEMO) 

reactor. In DEMO reactor, one of the main components is the Breeding Blanket (BB) that has several 

functions and will be also the main subject of this dissertation. The main role of BB is to produce a fuel 

surplus, in order to allow successor power plants to start up. The BB has also the function to extract power 
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at high temperature and transfer it to the power conversion system for electricity production. However, the 

BB has to achieve these functions in a vacuum environment subjected to high neutron and thermal fluxes as 

well as strong magnetic fields. In order to consider all these characteristics and to avoid neglecting 

important issues mantaining the consistency within the project, the design of the BB has to investigate all 

these aspects at the same time using a holistic approach. Starting from these considerations, a multi-physics 

approach for the design of the BB based on the sub-modelling techniques and on the coupling of neutronic, 

thermal-hydraulic and structural analysis is proposed and critically discussed in this dissertation. 

1.1 Notes on Nuclear Fusion 

The nuclear fusion is the exergonic reaction in which the nuclei of two light elements, interacting, 

produce energy and a stable nucleus heavier than either one. The resulting nucleus is more bounded 

compared to the reacting nuclei due to the increasing forces per nucleon. Looking to the average binding 

energy per nucleon (Figure 1.1), the light nuclides are less tied, therefore, thermodynamically less stable. 

This means that, with “appropriate” conditions, they will transit into the more stable central zone by means 

of the fusion reaction. The fusion reaction is thermodynamically, but not kinetically favoured unless the 

kinetic energy of the reactions impacting nuclei is huge. Despite this, due to the quantum tunneling effect, 

the cross-section, even at low energies, is different from zero and the fusion reaction can occur [10]. 

 

Figure 1.1. Binding energy per nucleon of common isotopes. The stability of a given isotope is evaluated dividing the 

binding energy by the number of nucleons. The range of higher stability is between the mass number A=10 and A=120 

with a peak for 62Ni and 56Fe that are the most tightly bound nucleus. Indeed below A=10, the fusion reaction is 

favoured while, for A greater than 120, the fission one. Figure reproduced according to [11] (Public Domain). 

Considering that, during a fusion reaction, the mass after the reaction is slightly lower than before, it is 

possible to define the fusion reaction Q-value that express the energy associated to the mass difference [10] 

   2

ab ab
Q m c  . (1.1) 

Eq. (1.1) shows that the excess mass m is converted into kinetic energy of the produced nucleon. 

Numerous types of fusion reaction for which Qab > 0 (exothermic reaction) have been identified (eq. (1.2) - 

(1.5)) and their occurrence probability, of some of those, is reported in Figure 1.2. All most favourable 

fusion reactions involve isotopies of hydrogen (deuterium, D, and tritium, T), since this minimizes the 

Coulomb repulsive force, which prevents fusion. Among all the fusion reactions, the D-T reaction (1.4) is 

more promising because it has a larger cross-section (Figure 1.2) with respect to the other. The energy 

produced in D-T fusion reaction (1.4) is partitioned among the reaction products in an inversely 
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proportional manner to their mass (En = 14.1 MeV to the neutron and E = 3.5 MeV to the alpha particle) 

[10]. This reaction is the first to be used for power generation purposes and, for this reason, taken as 

reference in this dissertation. 

 

Figure 1.2. Cross-section of main 

thermonuclear fusion reactions as a function of 

the incident nucleus energy. Figure reproduced 

according to [12]. 
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The exploitation of D-T reaction depends on accessibility of reactants but, while deuterium is widely 

available in the water of sea and rivers (0.0153 at.% in sea-water [13]), there are no natural resources for 

tritium that undergoes beta decay with a half-life of 12.3 yr. The only way to make use of this reagent is to 

breed it inside the reactor, thanks to the reaction between lithium isotopes (e.g. 6Li and 7Li) and fusion 

neutrons (eq. (1.6) and (1.7) [10]) 

 1 6 3 4

0 3 1 2  n Li T He  ( 4.78 )nLiQ MeV , (1.6) 

 1 7 3 4 1 '

0 3 1 2 0   n Li T He n  ( 2.47 )nLiQ MeV  . 
(1.7) 

In order to make the reaction between lithium and neutrons happen, it is necessary that both reactants are 

available in the same place, in other words within the BB where the breeding occurs. However, for each 

neutron produced by D-T reaction a n-Li interaction has to occur if a closed self-sufficient fuel-cycle has to 

be maintained. For this reason, a neutron multiplier (e.g. Beryllium, Be, or Lead, Pb) is employed in order 

to increase the neutronic population inside the reactor by means of (n, 2n) reactions that compensate the 

parasitic losses in all materials different that those used for T-breeding, as well as losses due to neutron 

leaking and streaming. On the other side, to create the plasma, it is necessary to heat a gas of deuterium and 

tritium at high temperature (about 108 K) so that, by atomic collisions, the atoms completely ionize. From a 

technological point of view, in order to obtain a sufficiently high energy density, it is essential to have 

kinetic energy for the reactant nuclei higher than the Coulomb barrier (370 keV for D-T reaction [10]), and 

these conditions must be sustained in a specified reactor domain for a sufficiently long time. For these 

reasons, several confinement methods have been investigated. Some of them [13] such as the gravitational 
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and electrostatic confinements are not so plausible due to the material temperature limits as well as 

gravitational pressure required. Some others as the inertial and magnetic confinement methods are most 

effective from a technological point of view [13]. 

The magnetic confinement is the method on which the scientific efforts have been most focused. It is 

based on the bordering of plasma charged particles using a special configuration of magnetic fields. 

Indeed, in case of a solenoidal magnetic field B, the charged particle moves along a helical path in the 

direction of the field with a pitch that depends on the ratio of the parallel and orthogonal components of its 

velocity with respect to B. In this way, the particle is confined in two dimensions perpendicular to the 

magnetic field but not in the parallel one. One of the drawbacks of this method is the loss of particles in the 

direction of the field. In order to solve this problem, two solutions have been proposed. One is to use 

magnetic mirrors to reflect the particle and bring them back, the other is to use a closed-field geometry in 

which the particle can move indefinitely [10]. In particular, in the second case, the highly developed form 

of field is a torus, which is produced by passing a current through a solenoid closed on itself. Theoretically, 

a particle trapped in a toroidal field can travel indefinitely but, practically, a toroidal magnetic field is never 

uniform and it becomes increasingly feeble for large radii. Two configurations have been found for 

correcting the orbit with a second poloidal field: stellarator [14] and tokamak [15]. 

The fusion reactors under development are based mainly on the tokamak concept (JET in Europe, TFTR 

in USA and JT-60 in Japan). The same configuration will be applied to the next machines (ITER and 

DEMO). This thesis will focus on the tokamak fusion reactor and, more specifically, to European DEMO 

reactor unless differently specified. 

1.2 The Demonstration Fusion Reactor DEMO and the Breeding Blanket 

Systems 

Currently, the ongoing research on fusion reactors has demonstrated the feasibility of the fusion reaction 

without gaining net energy from it and without producing electricity [8, 9]. The main efforts are currently 

dedicated to the construction of the first fusion reactor, namely ITER, that will demonstrate the scientific 

and, above all, technological feasibility and controllability of fusion energy and will be used also as test 

machine for the technologies to be used in further demonstration fusion power plant [16]. Therefore, in the 

European Roadmap [5], DEMO reactor has been foreseen as ITER´s successor for demonstrating the 

commercial practicality of fusion power and the transition of fusion research to industry and 

technology-drive programme. The DEMO top-level functions are [9, 17-19]:  

(i) to demonstrate power extraction at high temperature delivering a net electrical output to the grid 

(~300-500 MWe [16]);  

(ii) to demonstrate a tritium self-sufficiency and a closed tritium fuel cycle producing more tritium 

than the one consumed (e.g. the number of tritium atoms produced per fusion neutron also 

known as tritium breeding ratio (TBR) has to be greater than 1 with a design value of 1.05);  

(iii) to demonstrate attractive safety and low environmental impact minimising the worker exposure 

and the radioactive wastes with no need of long-term storage; and  

(iv) to demonstrate acceptable Reliability/Maintainability/Availability/Inspectability (RAMI) using 

remote maintenance and minimising the number of unscheduled shutdown. 

Together with these challenging functions, several outstanding technology and integration issues must 

be solved and some of them present very strong interdependencies that impose a holistic design view since 

the early phases. They may include the selection of BB concept and the relative balance of plant (BoP), the 

divertor (i.e. plasma facing component representing a major interface with the charged particles escaping 

the confinement region) layout and configuration, the design and integration of first-wall (FW, i.e. the 
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actively cooled plate of the BB facing the plasma) to the BB taking into account the high heat loads and the 

consequent mechanical and hydraulic issues, the selection of remote maintenance scheme and the Heating 

and Current Drive (H&CD, i.e. system used to provide external heating source in order to compensate the 

unavoidable plasma energy losses due to advective and conductive transport and electromagnetic radiation 

mechanisms) mix to be used according to the compatible plasma scenario [9]. 

For these reason, so far, several DEMO plant concepts have been investigated with the aim to find an 

optimum configuration by means of fusion system codes like PROCESS [20], SYCOMORE [21] and, the 

more recent, MIRA [22], which rely on a reduced physics but couple several physics frames in an integrated 

way to enable a holistic view as well as to identify essential design sensitivities. 

The fundamental reference in this work is the EU-DEMO design baseline 2015 (DEMO2015) [23], with 

a fusion power of 2037 MW. With reference to Figure 1.3, it consists of the following main systems [17]:  

 A Cryostat, housing the magnet system; 

 Toroidal, poloidal field coils and central solenoid, which provide the magnetic field required to 

shape and confine the plasma, to drive its current and to define its poloidal structure; 

 A Vacuum Vessel (VV) serving the primary vacuum and shielding the magnet system from 

neutrons. It is a torus-shaped double-walled pressure vessel composed of three nested shells; 

 Upper, lower and equatorial ports that provide the access to the In-Vessel components like the 

BB and the divertor; 

 A thermal shield which shields the cryogenic magnet system from radiation heat coming from 

the VV. It is a shell-like structure that encloses the VV and the ports; 

 Divertor, which is a high heat flux component, and collects most of the particles and energy 

exhausted by the plasma. The magnetic topology is chosen in order to intersect the divertor with 

the last closed magnetic flux surface. 

 Breeding blanket which surrounds the plasma removing the thermal power released by neutrons 

and alpha-particles, produces tritium and shields the VV and coils. 

Axisymmetric objects like tokamaks are regularly illustrated using a global radial/poloidal/toroidal 

coordinate system (x, y, z), as shown in Figure 1.3. DEMO2015 consists of 18 sectors of 20° in the toroidal 

direction subdivided according to the number of coils. In each sector, there are, going in radial direction, 5 

BB segments, 2 in inboard (IB) and 3 in outboard (OB).  

 

Figure 1.3. DEMO2015 baseline configuration. Left (a) and centre (b): 3D EU-DEMO 2015 configuration with details of the main 
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systems inside the Cryostat. Right (c): 2D scheme of EU-DEMO2015 with main dimension in radial (x) and poloidal (y) dimension. 

Figure a) and b) reproduced according to [24], figure c) reproduced according to [25]. 

DEMO2015 uses a water cooled divertor with Plasma Facing Components (PFC) covered with tungsten 

[9]. Since a tokamak is intrinsically a pulsed reactor, the operation is divided in a power producing time 

period called “pulse” followed by a sequence to restore magnetic energy named as “dwell time”. 

The duration of the foreseen plasma pulse is 2 hours with a dwell time between 10 min and 30 min [9]. 

The structural material used for the BB is the reduced activation ferritic-martensitic steel Eurofer 97 [26] 

with imposed dpa ceiling limit for the “starter” blanket of 20 dpa throughout its lifetime. AISI 

ITER-grade316 has been selected for the VV [9]. In order to cover the wide spectrum of breeder and 

multiplier as well as coolant solutions that have been investigated, the helium-cooled pebble beds (HCPB) 

and the water-cooled lithium-lead (WCLL) BBs have been adopted as reference technologies. 

Independently of the selected BB concept, the blanket represents a key system for a fusion reactor and 

its design has to accomplish, at least, with 3 basic functions that are strictly connected to the stakeholder 

goals of DEMO. Indeed, the BB must (i) breed tritium in order to achieve the self-sufficiency, (ii) transfer 

the thermal power released by neutrons and photons and plasma charged particles to the BOP with 

thermal-hydraulic conditions suitable for electricity production and (iii) contribute to shield the VV and the 

superconducting magnets against the neutron radiation [27]. 

1.2.1 Helium-Cooled Pebble Beds Design Configuration 

The HCPB, investigated within the EUROfusion consortium [27], uses a ternary Li-ceramic compound 

(Li4SiO4) enriched in 6Li as breeder, while the multiplier is metallic beryllium (Be). Both are in the form of 

pebbles distributed on beds. [26]. Helium is used in a high pressured form as coolant and at low pressure 

flow as purge gas through the pebble beds to extract the tritium from the tritium breeder materials and 

transport it to the tritium plant. 

Considering the DEMO baseline 2015 and with reference to Figure 1.4 [26], each HCPB segment (IB 

and OB) is divided into 7 modules (Figure 1.4 - a). The breeder zone (BZ) (highlighted in yellow in Figure 

1.4 - b) is housed behind a U-shape FW with the two remaining sides closed by caps, forming a structural 

box/module that is attached to the back supporting structure (BSS). Within the BZ the pebble beds of 

Li4SiO4 and Be are alternating by arranged beds separated by helium cooled cooling plates (CPs). Within 

the CP, 32 cooling channels are routed in the toroidal direction for cooling down the structure using a 

counter-current flow scheme. In-between these “functional” cooling channels, the so-called “dummy” 

channels are implemented so as to minimize the steel volume fraction in the BZ, thus reducing the parasitic 

neutron absorption in the BZ and maximizing the T breeding [28]. The half of the pebbles beds and one 

cooling plate form the elementary cell that is repeated in the poloidal direction. In this thesis, the term 

“slice” will be used to indicate this elementary unit (Figure 1.4 – c). The FW is covered with a W-armour 

layer and it shall tolerate the high heat flux coming from the plasma and sufficient neutron transport to fulfil 

tritium breeding function. The BSS has a structural function in the poloidal direction to support all the 

blanket modules at the right position. Within the BSS, the manifolds for coolant and purge gas are routed to 

distribute through the Manifold Purge (MP) and collect He in the various blanket modules. 

The coolant pressure and inlet temperature are assumed to be 8 MPa and 300 °C, respectively. The 

coolant outlet temperature is set to 500 °C, as the Eurofer creep strength is greatly reduced at temperatures 

above ~550 °C. The cooling scheme, within the modules, is articulated in two parallel circuits that take the 

50% of coolant, therein a counter-current flow scheme in the FW and BZ is realised for safety reasons 

(Figure 1.4-d). Beginning from the BSS at 300 °C, the first cooling loop (namely, loop1) cools the 50% of 

the FW and then of the CPs, exiting the BZ and entering again the BSS, where the flow at about 500°C is 

routed out of the VV. At the same time, the second cooling loop (namely, loop2) covers the other 50% in 

the opposite direction ensuring a fully counter-flow of FW and CPs. 
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Figure 1.4. HCPB BB concept segmentation and module details in the EU DEMO2015 tokamak complex. Left (a): BB module 

labelling and piping routing. Centre (b): an example of the equatorial OB blanket module. Right (c): detail of the OB4 BB module 

and principal dimensions of the FW, CP and bed thicknesses. Bottom (d): coolant flow scheme with symmetric 50% + 50% coolant 

distribution arrangement in the BZ Figure reproduced according to [26] and [28]. 

The purge gas is helium with an addition of 0.1%vol. H2. Its pressure is set to 0.2 MPa and it exits the 

BSS at about ~450 °C. The inlet coolant manifolds enter from the bottom part of the segment while the 

outlet coolant manifolds are routed at the upper part (Figure 1.4-a) [26]. In Table 1.1, the main design 

features adopted for the HCPB BB in the EU-DEMO2015 baseline are summarised. 

Table 1.1. HCPB blanket design features adopted for the EU-DEMO 2015 baseline [28]. 

Region IB OB 

Segments per sector 2 3 

Breeder/multiplier Li4SiO4/Be 

Coolant Helium 

Inlet/outlet coolant temperature 300/500 °C 

Coolant pressure 8 MPa 

Structural material Eurofer 

6Li enrichment 60 % 

Purge gas (Tritium carrier) pressure 0.2 MPa 

Inlet/outlet tritium carrier temperature 450 °C 

Armour 2 mm 

FW 25 mm 

BZ 230 mm 520 mm 

BP 85 mm 85 mm 

BSS1 460 mm 620 mm 

                                                      
1 The radial dimension of the BSS in general varies along the radial direction, as shown in the radial-poloidal cross section 

highlighted in violet in Figure 1.4-a. For this reason, the thickness values reported in Table 1.1 represents a mean value along the 

poloidal direction. 
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1.2.2 Water-Cooled Lithium-Lead Design Configuration 

The WCLL, within the EUROfusion consortium [27], uses water as coolant while the breeder and the 

multiplier are mixed in a liquid metal alloy (Pb83Li17) Lithium-Lead (LiPb) enriched at 90% in 6Li.  

In the WCLL, water at Pressurized Water Reactor (PWR) conditions (pressure 15.5 MPa, inlet 

temperature 295 °C and outlet temperature 328 °C) is used [29].  

Considering the DEMO baseline 2015 and with reference to Figure 1.5 [30], each WCLL segment (IB 

and OB) is divided into 7 modules (the OB segment is shown in Figure 1.5-a).  

Like for the HCPB, the BZ is housed by U-shape FW, caps and back plate (highlighted in yellow in 

Figure 1.5-b).  

The BZ is divided into elementary cells that are repeated in the poloidal direction to which, in the 

following, it will refer as breeder unit (BU) (Figure 1.5-c).  

Within the BU the Eurofer steel stiffeners are placed in radial-toroidal and radial-poloidal plane and the 

cooling water flows through 22 C-shape double wall tubes routed in the radial-toroidal plane. The LiPb 

flows in the radial-poloidal direction between each BU at relatively low velocity exiting from the BSS with 

a temperature of 326 °C (Figure 1.5-c).  

The cooling circuits of the FW and BZ are separated although they have the same thermal-hydraulic 

conditions allowing different regulation of FW and BZ flow rates (Figure 1.5-d).  

The inlet manifold (both for FW and BZ) enters from the bottom part of the segment while the outlet 

manifold is routed at the upper part (Figure 1.5-a).  

In Table 1.2, the main design features adopted for the WCLL BB in the EU-DEMO2015 baseline are 

summarised. 

 

Figure 1.5. WCLL BB concept segmentation and module details in the EU DEMO2015 tokamak complex. Left (a): BB module 

labelling and piping routing. Centre (b): example of the equatorial OB blanket module. Right (c): detail of the OB4 BB module and 

principal dimensions. Bottom (d): coolant flow scheme arrangement in the BZ Figure a) reproduced according to [31], figures b), c) 

and d) reproduced according to [32]. 
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Table 1.2. HCPB blanket design features adopted for the EU-DEMO 2015 baseline [32]. 

Region IB OB 

Segments per sector 2 3 

Breeder/multiplier LiPb 

Coolant Water 

Inlet/outlet coolant temperature 295/328 °C 

Coolant pressure 15.5 MPa 

Structural material Eurofer 

6Li enrichment 90 % 

PbLi (Tritium carrier) pressure 4.5 MPa 

Inlet/outlet tritium carrier temperature 326 °C 

Armour 2 mm 

FW 25 mm 

BZ 470 mm 800 mm 

BP 75 mm 75 mm 

BSS2 208 mm 398 mm 

1.3 Blanket Challenges and State-of-the-Art of Coupling Analyses  

As discussed in the previous paragraphs, the BB is a key nuclear component for fusion reactor and 

several challenges have to be overcome for its design, construction and operation. 

It is possible to highlight for each concept the main technical issues that need to be solved.  

For instance, the HCPB suffers from an important issue related to the large number of very small coolant 

channels in the large number of CPs. This issue causes high pressure drop necessitating high pumping 

power and therefore impacting the reactor efficiency. Additionally, due to the large number of 

sub-components and welds low reliability is evaluated [19]. Other difficulties are related to the estimation 

over the time of effective thermal conductivity and interface conductance between pebble beds and the 

structure [19]. This issue is compounded by radiation damage (i.e. swelling) over the life time of the reactor 

that changes the thermal-physical properties of pebble beds jeopardising the heat transfer and, so, the BB 

structural integrity. Other problems are related to the control of tritium releases and inventories [19].  

Considering the WCLL, instead, it is possible to underline the issues related to the LiPb corrosion or the 

dangerous creation of He pockets within the BB box that may impede the correct LiPb flow compromising 

locally the heat exchange as well as increasing the tritium permeation through the structure [19]. Other 

issues are related to the water activation that poses safety constraints to the active operating systems (e.g. 

valves) and to the human activities. 

However, more in general, the BB, independently of the concept considered, is a complex and unique 

system that has to operate in a harsh environment satisfying simultaneously several key functions for the 

correct operation of DEMO reactor. Indeed, the BB is subjected at the same time to high neutron and 

particle fluxes, to surface and bulk heating, to strong magnetic field varying in space and time, to 

mechanical and electromagnetic forces, to radiation damage, etc. All these loads make the realisation of a 

design a real challenge for the scientific community. The design of the BB requires several analyses to be 

performed (e.g. neutronic, thermal-hydraulic, structural, tritium permeation, magneto-hydrodynamic, etc.) 

                                                      
2 The radial dimension of the BSS in general varies along the radial direction, as shown in the radial-poloidal cross section 

highlighted in violet in Figure 1.5-a. For this reason, the thickness values reported in Table 1.2 represents a mean value along the 

poloidal direction. 
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and most of them have to be conducted simultaneously in order to better understand the overall behaviour. 

However, looking in more detail, three of them represent the basic investigations from which all the other 

studies derive. These are the neutronic, thermal-hydraulic and thermo-mechanical calculations that will be 

also the main subjects addressed in this work. 

As stated in [19], the main characteristic of a multi-physics field is the presence of strong gradients in 

the various loads and responses that have to be considered synergistically if new phenomena have to be 

discovered. Therefore, it becomes more important to use coupling procedures among each analysis field in 

order to study the synergistic interactions and effects as well as to avoid excessive simplifications in the 

geometry and load representation that could hide driving design gradients. 

Furthermore, nuclear engineering is probably one of the fields most strongly linked to the numerical 

processes simulation due to the difficulty in the definition of lab experiments for depicting all the occurring 

phenomena for safety checks [33]. The level of performance achieved over the years by the tools supporting 

the design of nuclear systems, in particular fission ones, is such that it has slowed the development and 

innovation of the used calculation procedures. Only recently, the exponential growth of computing capacity 

has motivated a radical change in the field of nuclear coding. These new possibilities have also led to the 

conception of multi-physical instruments, capable of simultaneously dealing with multiple fields like 

neutronics, thermal-hydraulics and thermo-mechanics, with an incredible level of geometric detail [34].  

This holistic approach is already well developed in fission technology, where the direct coupling 

between the neutronic calculations and the computational fluid dynamics (CFD) has become a must for the 

estimation of the nuclear cross sections, the local temperature distribution which acts on structures 

(expanding them) and the fluid temperature (density changes and, therefore, alters the moderation of 

neutrons) both translate to reactivity changes and different power distribution [35].  

Another interesting coupling example between neutronic and thermal-hydraulic analysis is reported in 

[36]. In this work, the author improved a multi-physics and multi-scale methodology for the study of PWR 

and their safety investigation. Indeed, coupling to a 3D neutronic model of the reactor core a 3D 

thermal-hydraulic model, the following was investigated: local safety parameters related to the nuclear 

boiling, the minimum critical power ratio, the maximum cladding and the fuel temperature, relaxing the 

conservative assumptions that before was based on hot channel factors [36]. 

In [37], P. J. Turinsky describes a complete coupling between the neutronic, fluid-dynamic and 

structural analyses applied to nuclear reactors. He underlines the benefit from the use of high performance 

computing for nuclear power plant applications in terms of improvements for the design and of a 

heightened assurance of nuclear safety. Other examples of multi-physics coupling application can be found 

in the latest generation nuclear power plants, and for instance, in the studies related to the development of 

generation IV reactors that use molten salt [38]. 

An interesting application of coupling analysis based on the use of a mesh-oriented database MOAB 

library [39] is reported in [40]. The authors use a bottom-up methodology to multi-physics simulations 

based on the mixture of loosely-coupled approach, in which the codes are run in sequence, and 

“monolithic” approach, in which the physics models are combined within an ad-hoc infrastructure. This 

work represents also a sort of bridge between fission and fusion. Indeed, the approach has been applied also 

for the study of the neutron transport in the Fusion Development Facility (FDF) [41] but detailed 

explanations on the methodology or further applications have not been found. 

It is important to underline that not all the coupling procedures, developed for fission applications, can 

be directly transferred to fusion. Indeed, the geometries (e.g. complex structures with thousands of 

components), the dimensions (e.g. huge components like the BB, VV, etc.) and, in some cases, the physics 

(e.g. high-energy and high-intensity neutron fluxes [42]) of fusion machine are different and, for this 

reason, the coupling strategies used for fission as well as the assumptions made are not valid for the direct 
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transfer to fusion applications. 

For this reason, since the beginning, the international fusion community has sought to create high 

detailed computational models to be used for multi-field analyses. The main efforts have been devoted to 

the realisation of high-fidelity 3-D neutronic models, for the assessment of heating, radiation damage and 

helium production profile [43], or to the development of tools for studying the tritium permeation, the fluid 

dynamic and the structure mechanic behaviour [44]. However, these attempts have been conducted as 

standalone activities without pursuing a real integration in a unique approach able to keep the consistency 

between the input/output flow of data (geometry, loads, etc.). Only some studies have been made for the 

development of neutronic – thermal-hydraulic – mechanic coupled platform [45, 46]. For instance, in [45], 

the BB is designed using an iterative process for optimising its structure but with several simplifications: 

the neutronic model is a 1-D cylinder where the materials are homogenised in the radial direction and the 

thermal-hydraulic model is based on a 2-D approximation in the radial-poloidal direction.  

Q. Yuefeng in [46] reports a multi-physics approach integrated into SALOME simulation platform [47] 

based on advanced Monte Carlo (MC) modelling and CFD calculations. This study represents a valuable 

progress in the development of coupled multi-physics approach but with some limitations. Indeed, the 

definition of neutronic and photonic local sources as well as the boundary conditions for the neutronic 

calculation have not been investigated. Moreover, additional tools are employed conditioning their use to a 

prior verification and validation if used for the licensing of the breeding blanket.  

Y. Huang et al. in [48] use a multi-physics framework to assess the loading conditions for a multiscale 

design, extending the criteria to progressively incorporate continuum plasticity models and 

microstructure-based representation of deformation and fracture. In the same study advanced fracture 

mechanics concepts based on a Materials-Specific Failure Assessment Diagram (MS-FAD) is also 

integrated. However, the neutronic part is not at all considered and the fluid-dynamic is approximated using 

a 1-D representation.  

J. Shimwell et al. in [49] reports a novel blanket design tool which automates the creation of 

heterogeneous 3D neutronic models for each BB concept. In this work, although the neutronic analysis is 

versatile and allows the investigation of a wide solution spectrum, the thermal hydraulic part is still 

simplified and based on empirical correlations like the ones used in systems codes. The thermo-mechanical 

analysis, instead, is completely missing in the proposed coupling approach. 

Furthermore, these tools and approaches are poorly applied to drive the BB design in the EUROfusion 

consortium. Indeed, currently in the Work Package BB (WPBB), the coupling among the design analyses is 

done manually and involves several teams. Moreover, the models used for the simulations are often 

inconsistent due to the nature of modelling approach. For instance, the neutronic calculation is usually 

based on homogenised or simplified geometry representation because its aim is to provide integral 

information on the whole reactor at the expense of geometric detail. These simplifications are in contrast 

with the detailed geometry representation required by CFD and mechanical simulations and the coupling 

procedure can take several months before to close the loop involving team with different expertise and 

needs. This procedure opens easily the way to the error propagation and to the difficulties in keeping the 

input/output data consistency.  

1.4 Objectives of a New Multi-Physics Approach for Integrated Analysis 

Considering the weaknesses highlighted in the conventional coupling approach currently used in fusion 

community, the development of the fusion technology reliability involves, among other issues, the 

improvement of simulation tools to be used for the design of reactor key components, such as the BB, 

where the engineering requirements and constraints are of nuclear, material and safety kind.  

For this reason, advanced simulation tools are needed. In the European DEMO project, the research is 
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currently focused on the development of an integrated simulation-design tool able to carry out a range of 

analysis using a multi-physics approach. As anticipated, the BB is a complex system that requires a 

complex set of analyses that have to be studied simultaneously. However, it is possible to prioritize three of 

them that are used as basement for the investigation of all the other issues related to the BB. 

The multi-physics approach, herewith proposed, has to cover these three pillars of the BB design: the 

neutronic, thermal-hydraulic and thermo-mechanic. Neutronics analyses calculate volumetric thermal load 

and neutron flux (in case of BB also the tritium production distribution or the production rate of activated 

isotopes), thermal-hydraulic analysis defines thermal limits of structures and coolant and, the structural 

analyses evaluate stresses and deformations comparing them with allowable design limits.  

These analyses have to be conducted in a strong integrated way. Therefore, the need of the scientific 

community to adopt a numerical tool that can integrate various computational codes in a multi-physics 

approach is clear.  

Commonly, the codes used for the neutronic analysis are based on the deterministic or stochastic 

approaches while the thermal-hydraulic and thermo-mechanical analyses are based on the Finite Volume 

and Finite Element Methods. In particular, it is widely used the Monte Carlo N-particles transport method 

for neutron and photon transport calculations using codes such as MCNP and TRIPOLI, and multi-physics 

codes such as ANSYS and ABAQUS/CAE for the thermal-hydraulical and thermo-mechanical ones. These 

softwares, although powerful means of calculus, extensively verified and validated, are used separately and 

the coupling among them is user demanded.  

The main goal of this PhD research activity is to cover this gap proposing a novel approach to the BB 

design where the neutronic, thermal-hydraulic and structural analyses are fully integrated and based on the 

same geometrical detail overcoming the criticisms highlighted in the previous paragraph.  

The work has been aimed to develop and validate the Multi-physics Approach for Integrated Analysis 

named “MAIA procedure” with the main objectives: 

1. to propose a complementary methodology for BB design; 

2. to outline a procedure for the coupling of neutronic, thermal-hydraulic and structural analysis based 

on the sub-modelling methodology. 

3. To create an integrated approach for BB design that is: a) flexible, b) accurate and c) “quick”. 

Regarding the first objective, MAIA procedure may complement and support the different approaches 

currently used to drive the BB design. The second objective aims at creating a solid base for the integration 

of the three pillar analyses from which it is possible to spread into new fields of investigation. Concerning 

the last point, MAIA has to adapt to the specific designer´s requests giving reliable results in a certain limit 

of application and it has to speed up the computational process for investigating a wide range of solution. 

The main characteristics of MAIA procedure can be summarized in the following points: 

 use of refined local models (i.e. slice or BU) just of the area of interest (sub-modelling); 

 use of the same geometric details for all the analyses involved; 

 input/output consistency. 

The method, herewith presented, uses a loosely-coupled approach based on the sub-modelling 

technique. The CAD-based solid model represents the common element across physical disciplines and 

helps in maintaining the consistency in the geometric representation among the analysis codes. 

In order to accomplish the achievement of the objectives, MAIA procedure has been tested on HCPB 

and WCLL BB concepts that together cover the whole spectrum of breeder/multiplier and coolant BB 

solutions in the current reference EU DEMO and ITER’s EU TBM. In particular, after the consolidation of 

the three pillars, mentioned above, on the HCPB BB, the enhancement of MAIA procedure has been 

pursued studying the water activation in WCLL BB.  
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1.5 Organization of the Thesis 

This thesis consists of seven main chapters, hereafter briefly summarised. 

This introduction. The theoretical background behind the MAIA procedure is described with particular 

focus to the basic laws and numerical methods used for the characterization of the three analysis field in 

Chapter 2. 

The description of the MAIA procedure, the details about the logical connection and the implementation 

are reported in Chapter 3.  

In Chapter 4, the verification of boundary conditions consistency to be used for the sub-models in each 

analysis is described. Particular efforts have been spent to identify the limits of applicability of MAIA 

procedure. 

In Chapter 5, the MAIA procedure has been applied to the HCPB BB demonstrating the benefits that 

may come from detailed representation. Some effects that are not visible with the common coupling 

approach are also highlighted and critically discussed. 

Once the basement has been substantiated in the previous chapters, an enhanced application of MAIA 

procedure is reported in Chapter 6 for the water activation study in the WCLL concept. The aim of this 

chapter is to demonstrate the flexibility of MAIA procedure that allows the investigation of further issues 

starting from the consolidated results of three pillar analyses. 

Finally, the main conclusions and outlooks for the future activities for the improvement of MAIA 

procedure are summarised in Chapter 7. Additional details and information are reported in the Appendix. 
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2 Theories and Mathematical Models of Coupling 

In this Chapter, a brief overview of the three main pillars of the coupling is reported. The basic theories 

and the mathematical models of neutronics, thermal-hydraulics and thermo-mechanics are described with 

particular attention to their numerical implementation. 

2.1 Neutronic Model 

The term “transport theory” is usually referred to as the mathematical description of particle transport 

through a medium. For instance, using this theory, it is possible to describe the interactions of neutrons and 

photons with the BB and to estimate the energy that they release. 

The transported neutrons can come directly from the plasma (i.e. direct neutrons), due to the D-T fusion 

reaction, or they can be generated by reactions of direct neutrons with the surrounding matter. While the 

photons, in a fusion reactor, are X-rays and bremsstrahlung radiation or secondary products of neutron 

interactions. For the D-T reaction, producing He and a neutron, 80% of fusion energy is carried by the 

kinetic energy of the resulting neutrons and their interaction with their surroundings. These interactions 

transforms part of their kinetic energy into heat by scattering or nuclear reactions with other elements, 

which in turn are the source of radiation damage into structural materials. For this reason, it is necessary to 

adopt neutron and photon transport models. 

2.1.1 Neutron and Photon Transport 

The random nature of neutron and photon interaction events leads to unpredictability with the certainty 

of the exact number of particles in a certain region in a given time. For this reason, in the transport theory, 

the field of probability densities or distribution functions is introduced. From it can be derived that only 

expected or average particles density N(r,t) can be calculated. Indeed, assuming that the motion of a particle 

(neutron or photon) is free between two subsequent interactions (no influence of polarisation or spin 

effects) and defining the expected number of particles in a volume about r with velocity in the phase space 

about v at time t as the phase space density n(r,v,t), the particle density is given by eq. (2.1) [50] 

     3, , ,N t n t d v r r v . (2.1) 

The function n(r,v,t) represents the expected number of particles in a volume about r with velocity in the 

phase space about v at time t. Using the kinetic theory, the probability density or distribution function 

f(r,v,t) can be calculated normalising n(r,v,t) by dividing through the particle density N(r,t) 
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Usually, it is convenient to decompose the velocity vector v in the kinetic energy and in the direction of 

the motion. The kinetic energy is defined as 
21

2
mvkE   while, for the direction of particle motion, a unit 

vector  in the direction of the velocity vector v is introduced (2.3) [51] 
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Using (2.3) and the kinetic energy definition, it is possible to define the phase space density in terms of 

the new variables E and  as, 

   3, , ,n E t d rdEdr Ω Ω , (2.4) 

that represents the expected number of particles in a volume d3r about r with kinetic energy Ek in dE 

moving in a direction  in solid angle d The average particles density can be re-written integrating the 
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(2.4) equation over the velocity space variables (eq. (2.5)) [50], 

    
0

, , , ,N t dE n E t d


  r r Ω Ω . (2.5) 

Another concept that is necessary to define for the derivation of the transport equation is the phase space 

current density function or the angular current density j(r,v,t) that is defined as 

    3 3, , , ,t d d v n t d d v  j r v S v r v S , (2.6) 

which represents the expected number of particles that cross a specific area dS per second with a velocity v 

in the velocity space d3v at time t. Integrating this quantity over particle velocities, it is possible to 

determine the particle current density J(r,t) as  

     3, , ,t t d v J r j r v . (2.7) 

From (2.7), it is possible to derive the partial current density  ,J t r , which defines the rate of 

particles flowing through an area in a given direction (2.8) [52] 

     3, , ,J t t d v


  r n j r v , (2.8) 

where n is the unit vector normal to the surface dS and the particle velocity space is taken over the selected 

positive or negative direction. From the definition of the partial current density, it is possible to define the 

net current density on a given surface as 

      , , ,t J t J t   n J r r r . (2.9) 

The transport equation is given by simply balancing all the mechanisms of gaining or losing particles 

from a generic volume of material. Therefore, looking to the Figure 2.1, considering an arbitrary volume V 

of the Euclidean space R3 in which the infinitesimal volume d3r is identified, it is possible to calculate the 

time rate of change of particles, having velocities v in d3v, in the given volume.  

 

Figure 2.1. A schematic diagram of arbitrary volume V. S represents the surface area, r the position vector, v the velocity vector, d3r 

the infinitesimal volume, dS is the elementary surface vector (it is equal to dSn) and RS is the position vector of surface dS. 

Neglecting macroscopic forces (free motion between two subsequent interactions), the only differences 
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particles and source in V. The mathematical balance in these conditions is 
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where s(r,v,t) is a source density function and 
coll

n

t

 
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is the time rate of change due to collisions. 

Selecting an arbitrary volume that is not dependent on time and using the Gauss law for writing the 

surface integral of leakage contribution as a volume integral 
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Considering that V is an arbitrary volume, equation (2.11) will be satisfied for each V, so it is possible to 

write the general form of transport equation as reported in (2.12) [50] 

 
   , , , ,

coll

n n
n t s t

t t

  
    

  
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The analytical description of the particle transport requires also the definition of initial (n(r,v,0)) and 

boundary conditions. The latter depends on the problem analysed, for this reason, several specifications are 

possible: 

 Free surface. The particle can only escape through the boundary surface, so 

 , , 0;n t SR v  

 Reflecting boundary. The particles are reflected at the boundary with the reflection angle equal 

to the incident one, consequently 

   , , , , ;n t n tS S rR v R v  

where vr is the reflecting velocity such that   rv n v n .  

 Albedo boundary. It is a variation of reflecting boundary in which the incoming density is 

reduced by factor , then 

   , , , , ;n t n tS S rR v R v  

 Periodic boundary. The particles outgoing in a certain boundary is equated with the incoming 

particle on another boundary. 

Integrating (2.12), the product vn(r,v,t) is commonly obtained that, in the transport theory, is known as 

the angular flux or phase space flux φ(r,v,t). From this, the velocity integrated flux is defined as follows 

[50] 

      3 3, , , , ,t t d v vn t d v  r r v r v  . (2.13) 

The collision term 
coll

n

t

 
 
 

 can be made clear through the (2.14) [51]. 
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where: 

 , '
r v v  represents the collision kernel. It defines the probability per unit distance that an incident 
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particle with velocity vˈ interacts producing a secondary particle with a velocity v; 

 , r v  is the macroscopic cross section. It is related to the microscopic cross section  through the 

background medium number density NB(r). Indeed,      , BN  r v r v . 

Using (2.3), (2.13), (2.14) and the kinetic energy definition, the Boltzmann transport equation (2.12) can 

be rewritten in terms of angular flux  , , ,E t r Ω  as follows [52]: 
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. (2.15) 

Eq. (2.15) is commonly used to describe the transport of neutrons and photons through a medium.  

2.1.2 Monte Carlo Method and MCNP for Transport Modes 

The Boltzmann equation (2.15) provides a mathematical representation of the physical transport 

problem but its analytical resolution is limited to few specific cases with many simplifications. For this 

reason, computational codes based on deterministic or Monte Carlo methods are used to assess the neutron 

and photon transport through a medium [53].  

The Monte Carlo method simulates the average behaviour of individual particles recording some aspects 

(tallies). It does not solve analytically the transport equation but it solves a transport problem by simulating 

particle histories.  

Practically, the particle is followed from a source through its life until its death (absorption, escape, etc.) 

and the probability distribution governing these events are randomly sampled using the transport data to 

describe the total phenomenon [53]. 

One of the most used codes, based on Monte Carlo method, is the Monte Carlo N-Particle (MCNP). It is 

a “general-purpose, continuous-energy, generalized-geometry, time-dependent, coupled 

neutron/photon/electron Monte Carlo transport code” [53]. It can transport several particles like neutron, 

photon, electron and some of their combinations covering a vast regime of energies (from 10-11 to 20 MeV 

for neutrons, from 1 keV to 100 GeV for photons and from 1keV to 1 GeV for electrons). The user defines 

an input file, which then is read by MCNP, containing information about the problem in terms of geometry 

specification, material composition and cross sections, location and features of neutron or photon source 

and type of tallies desired as output [53]. 

The fundamental unit of an MCNP solid model is a cell where the geometry can be defined by means of 

two representations: the Constructive Solid Geometry (CSG) and the Hybrid. The CSG solid models are 

defined by means of Boolean operations between surfaces of 1st and 2nd degree and elliptical tori of 4th 

degree [53]. In the Hybrid representation, a geometry mesh (structure or unstructured) from an external file 

can be embedded into cells of a CSG model using the "universe" construct [54]. 

Physical quantities of interest, both for CSG and Hybrid representation, can be evaluated by MCNP 

using tallies. It provides seven standard tally types normalised per starting particle that can be modified by 

the user in many ways.  

In this dissertation, due to the investigated phenomena, only some of them are used, in particular: the 

surface current tally (type F1), the average surface flux tally (type F2), the average cell flux tally (type F4) 

and the energy deposition averaged over a cell tally (type F6) [53]. 

The F1 tally counts the number of particles crossing a surface in specified bins. Remembering the 

definition of angular current density reported in eq. (2.6) and expressing it in terms of energy and angular 

distribution, assuming that ( , , , ) ( , , , )E t E tS Sj R Ω Ω R Ω , the F1 tally would measure 
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The energy (Ei) and angle/cosine (Ωk/) bins are controlled through the E and C cards in MCNP [53].  

The F2 tally evaluates the average surface flux over a surface assuming that ( , , , )E t SR Ω  is the energy 

and angular distribution of the fluence as function of position (eq. (2.17)) [53] 
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The F4 tally is used to estimate the track length of cell flux according to the (2.18) [53] 
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The F6 tally estimates the track length of energy deposition. It counts for the total energy deposition in a 

cell (i.e. the deposited heating) as follows 
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where a  is the atom density, m is the cell mass and H(E) is heating number that depends on the particle 

considered (neutrons or photons) and counts the average energy released for all reactions at the incident 

particle energy [53]. 

In addition to the standard tallies, MCNP provides also a superimposed mesh tally (FMESH) of type 4 

that can be modified through the tally flux multiplier (FM) card to obtain other quantities like heating 

deposition and isotope production rate.  

The tallies, so far defined, are applicable both to the CSG and Hybrid representations but for the latter 

additional cards are used to obtain the results in each element/voxel (e.g. cards EMBEE, EMBEB) [54]. 

Another important concept equal in stature to the tally is the statistical error associated with the results. 

Indeed, in a Monte Carlo simulation, each particle is followed during its life and it contributes a score xi to 

the tally.  

The probability that a history contributes a score between x and x+dx is given by p(x)dx where p(x) is the 

probability distribution function. As stated before, in Monte Carlo calculations, the searched answer is 

given by the mean value x  that in MCNP simulation is approximated according to (2.20) [53]: 

 

1

1 N

i

i

x x
N 

  , (2.20) 

where N is the number of problem histories and xi is the value of x selected from p(x). 

The variance of the population of x values measures the spread in these values as stated in (2.21) [53]  
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where 2 2

1
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i
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x x
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   and then the approximated variance of the average x  is 
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Using (2.20) and (2.22), in an MCNP simulation, the uncertainty associated with the result is evaluated 
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through the relative error R of the average x  of the N particles sores [53] 

 
x

S
R

x
 . (2.23) 

The relative error R is a useful parameter to estimate the goodness of the results: lower than 5% the 

results are assumed reliable, between the 5-10% reliable except for point detector, between 10-20% 

questionable and above the latter limit as factor of a few or not reliable at all [53]. Besides R, MCNP 

produces other 9 statistical tests to verify the "convergence" of the given calculation. 

Regarding to the boundary conditions introduced in paragraph 2.1.1, reflecting, white and periodic 

boundaries can be defined in MCNP.  

When reflecting boundaries are used, any particle hitting this surface is specularly reflected as a mirror. 

This condition is used in case of geometry symmetries for reducing the calculation domain. 

The white surfaces are used to approximate an infinite scatterer. Particles hitting a white boundary are 

reflected, with respect to the surface normal, with a cosine distribution (  p   ), where    and ξ 

is a random number. While periodic boundary conditions are used to simulate an infinite lattice pairing the 

planes. 

2.2 Thermal-Hydraulic Model 

The nuclear analysis for given configuration geometry/materials provides loads (e.g. volumetric thermal 

heat) that are used as inputs for thermal-hydraulic and thermo-mechanical ones.  

In fluid dynamics, the behaviour of a fluid from a macroscopic point of view is described by 

Navier-Stokes equations [55]. They are a system of non-linear partial differential equations based on the 

hypothesis that the fluid can be modelled as a deformable continuum. Therefore, they suppose the 

continuity of the fluid under examination.  

The system of equations involves five differential scalar equations to the partial derivatives and 20 

variables (1 for the density, 3 for the velocity vector, 1 for the pressure, 9 for the viscous stress tensor, 3 for 

the convective acceleration vector, 1 for the internal energy and 2 for the thermal conductivity and 

temperature). The balance between equations and unknowns is achieved (as described later) with the 

definition of the fluid properties. The equations can only be solved if boundary and initial conditions or the 

state equation in the case of a gas mixture are provided, otherwise the amount of solution is infinite. 

Moreover, due to their non-linearity, the Navier-Stokes equations almost never admit an analytical solution 

but exclusively numerical (section 2.2.2).  

Setting the condition of deformable continuum, the Navier-Stokes equations are the mathematical 

formalization of three physical principles to which the fluids respond: principle of mass conservation 

(continuity equation), second principle of dynamics (balance of momentum) and first principle of 

thermodynamics (energy conservation). For this reason, they are termed as balance equations [56]. 

2.2.1 Thermal-Hydraulic General Conservation Laws 

For the derivation of the general conservation laws, a control volume for the fluid as reported in Figure 

2.2 is assumed. The material volume Vt is assumed variable in time and enclosed by a surface t tS V   

such that every point of it and every point inside it moves at the same speed of the external motion field 

(Lagrangian point of view). Accordingly, the flow through the surface St is assumed null because the 

relative velocity between the external field of motion and the surface itself is zero at any point of St.  

Therefore, the volume Vt is a closed system, in the sense that the mass inside it does not change, but there 

may be external forces acting on the system and there may be energy passing (heat and/or work of external 

forces) across the surface St.  
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The three fundamental laws that must to be necessarily verified are [56]: 

1. Conservation of mass: const . 0t

t

V

V

dM
M

dt
   ; 

2. Conservation of momentum (Newton's 2nd law): 
d

dt


p
F ; 

3. Conservation of energy (first law of thermodynamics): 
dE dQ dW

dt dt dt
  , 

where 
tVM  is the system total mass contained in the volume Vt at time t, p is the system momentum, F is 

the result of external forces acting on the system, E is the system total energy, Q is the heat supplied to the 

system and W is the work performed by the system. 

  

Figure 2.2. A schematic view of arbitrary fluid volume Vt. St represents the surface area, uf the velocity fluid vector, dV the 

infinitesimal fluid volume, dS is the elementary surface and n is the normal unit vector. 

In the case of a system consisting of a fluid in motion, total energy E is intended as the sum of the 

internal energy U and kinetic energy К. If  indicates the density of the fluid, uf its velocity, e the energy 

density and etot the total energy density, the sum of the densities (per unit of mass) of internal and kinetic 

energy is 

 2

2

f

tote e 
u

, (2.24) 

then, it is possible to write [57]  
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(2.26) 
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The expression (2.25) expresses the conservation of mass in an integral form. It has to be noted that the 

choice of the volume of control Vt is absolutely arbitrary while the relation (2.25) imposes the equality for 
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any choice of Vt. The only possibility for this to happen is that the integral function is zero, consequently 
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Eq. (2.28) is the equation of conservation of mass in differential form and represents the first equation of 

Navier-Stokes system. As for Newton's second law (eq. (2.26)), the sum of the forces F acting on the 

volume is due both to the volume and surface forces. The latter is the result of the integral of the stresses on 

the surface St. Considering the i-th component of F, it possible to write [57]  

    
t t

f

i i ij j
V S

F g dV n dS , (2.29) 

where gi is a volumetric force per unit mass in the direction xi, practically an acceleration, and  f

ij
 is the 

fluid stress tensor. The stress tensor is composed of two terms: one static ( ijp ) due to normal stresses, 

usually of compression, of equal intensity in the three directions (i.e. pressure), and one dynamic ( ijd ) due 

to the fluid motion. For a Newtonian fluid, the dynamic term ( ijd ) is expressed through (2.30) [57]: 
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where μf is the fluid viscosity and ij  is the Kronecker delta. Therefore the fluid stress tensor  f

ij
 is 

defined as follows [57]: 
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Applying to (2.29) the theorem of divergence and substituting the definition of stress tensor (2.31) as 

well as the (2.30), it is possible to write [57] 
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Substituting the expression (2.32) in (2.26) and considering that it has to be satisfied for any volume Vt, 

the momentum equations for the Navier-Stokes system can be written as follows [57]: 
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As far as the energy equation (2.27) is concerned, two main contributions have to be considered: (i) the 

volumetric heating due to the adsorption/emission of radiation and (ii) the heat transfer across the volume 

surface generated by the temperature gradients. 

Regarding the first contribution, the volumetric heat addition per unit mass, 𝑞̇ , is derived by the 

neutron/photon transport analysis and represents the average power released for all the reaction between the 

incident particles and the BB materials (the numerical approximation of 𝑞̇ is given by F6 tally of eq. 

(2.19)). Considering that the mass of moving fluid element is ρdV, the volumetric heating of a fluid volume 

is ρqdV̇ . In the next, the product ρq̇ will be indicated as volumetric density of heat power '"

gq .  

Concerning the second contribution, it is fundamental to define the state of a thermodynamic system as 

a system in which its conditions are in thermodynamic equilibrium. It is said that a system is in 

thermodynamic equilibrium if its thermodynamic variables (typically pressure, volume and temperature) 

are well defined and do not vary over time. Clearly, a fluid in motion, which exchanges heat, cannot be in 
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global thermodynamic equilibrium since the thermodynamic variables change both in space and in time. 

However, it is possible to think that the thermodynamic variables vary slowly both in time and in space in 

the neighbourhood of a fluid point. This means that the fluid can be assumed in a local thermodynamic 

equilibrium on a small scale [56]. This local thermodynamic assumption is a crucial pre-requisite, indeed 

assuming that is valid, all perturbations propagating in a time scale in dimensions of the order of the 

problem cannot be treated. Under this fundamental hypothesis of local thermodynamic equilibrium, it is 

assumed that the thermal power is transmitted only by conduction within fluid according to the Fourier´s 

law: 

 "q k T   , (2.34) 

where 
"q  is the heat flux, k  is the thermal conductivity tensor and T  is the temperature gradient. 

Under the hypothesis of isotropic fluid (its physical properties do not depend on the particular spatial 

direction), the thermal conductivity is a scalar (namely, kI where I is the unit matrix). From (2.34) for 

isotropic fluid, it is possible to define the incoming thermal power through the surface St as [57] 
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Regarding the force power acting on the material volume Vt and remembering that the mechanical power 

is the scalar product between the agent force and the speed of displacement, it is possible to write 
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where the first term on the right side is the volumetric forces while the second term the surface ones. 

Using the divergence theorem for (2.35) and (2.36), substituting (2.31), (2.35) and (2.36) in (2.27) and 

remembering the expression must be verified for any Vt, the first principle of Thermodynamics for a fluid in 

motion written in tensorial form becomes [57] 
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(2.37) 

The expression (2.37) represents the energy balance equation of Navier-Stokes system. It is composed 

of 5 equations: one for the mass conservation (2.28), three for the momentum balance (2.33) and one for the 

energy balance (2.37). The unknowns are seven (the fluid density , the fluid pressure p, the internal energy 

of the fluid e and the three velocities u1, u2 and u3) so the problem seems apparently not well defined. 

Adding the fluid state equation  , , 0F p T  , which links the three variables of state (density, pressure 

and temperature), and the dependence of the internal energy e and the thermodynamic state of the system, it 

is possible to close the problem. Therefore, if the thermodynamic state of the system is expressed through 

pressure and temperature (two thermodynamic variables), it is possible to write two equations (2.38) that 

complete the system of equations pairing the number of unknowns [56], 

    , ,T p and e e T p   . (2.38) 

Several boundary and initial conditions can be defined according to the phenomenon under study. 

Usually it is necessary to satisfy, at least, the no-slip condition (perfect adhesion of the fluid to solid 

surfaces) as boundary condition. In general, the analysis of boundary conditions for the Navier-Stokes 

equations is a rather complex matter and a mathematical demonstration of existence and uniqueness of the 
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solution does not exist except for very schematic cases and simplified situations. For these reasons, it will 

not be treated in this dissertation. 

2.2.2 Computational Fluid Dynamics Model 

The Navier-Stokes equations are differential equations that describe flows and related phenomena but 

cannot be solved analytically except for special cases. An approximated numerical solution can be obtained 

using a discretisation method for approximating the differential equations with algebraic ones which can be 

solved on a computer. The branch of science that uses numerical analysis for studding problems, where a 

fluid is involved, is called CFD. It is composed of the following ingredients [58]: 

 Mathematical model. According to the target application, in a numerical simulation, it has been 

selected the appropriate physical model (e.g. incompressible, turbulent, two or three 

dimensional, etc.) able to approximate the real phenomenon. The derived equations (based on 

physical models) are then the mathematical model. The mathematical models usually include 

approximation of the conservation laws found in section 2.2.1. 

 Discretisation model. The method has to be selected to approximate the differential equation 

using a system of algebraic equations for the variables at some set of discrete locations in space 

and time. Several methods are used for the discretisation: Finite Difference Method (FDM), 

Finite Volume Method (FVM) and Finite Element Method (FEM). The FDM uses the 

conservation equations in differential form that are approximated replacing the partial 

derivatives by expressions of the nodal values of the functions. The FVM uses the integral form 

of conservation equations that are solved in a finite number of Control Volumes (CVs). The 

FEM is very similar to the FVM except that the equations are multiplied by a weight function 

before to be integrated over the domain. In FEM, the solution is approximated by a shape 

function within the element that allows the continuity of the solution across the element 

boundaries. 

 Numerical grid (or mesh). The grid is the discrete representation of the geometric domain where 

the variables are to be calculated according with the mathematical and discretisation model. The 

grid can be structured, unstructured or block-structured. The structured mesh consists in 

families of grid lines that do not cross each other allowing a consecutively numbering. The 

unstructured mesh is the most flexible type of grid that can be adapted to complex geometries. 

The elements can have any shape and there are not restrictions on the number of neighbour 

elements or nodes. In the block-structured mesh, there are several levels of subdivision of 

solution domain that can be irregular (unstructured) and regular (structured). 

 Solution method. The selection of the solution method depends on the problem and of the 

discretisation model selected as well as on the grid. Usually, the solution methods use 

successive linearization scheme of the equations and then the resulting linear system is solved 

by iterative techniques. 

The CFD analysis is strongly applied for assessing temperature and velocity fields in the structure 

material and in the fluid. For this reason, this analysis is used to drive the design of HCPB and WCLL BBs 

by means of commercial code ANSYS CFX [59] (it will be also used in the following for testing the MAIA 

procedure). ANSYS CFX uses an element-based finite volume method.  

The spatial domain is meshed to construct finite volumes (or CVs) where relevant quantities such as 

mass, momentum, and energy are estimated. The conservation equations ((2.28), (2.33) and (2.37)), used in 

ANSYS CFX, are discretised over the volume and surface elements. Volume integrals are solved within 

each CV, while surface integrals at the integration points (ipn) (the centre of each surface element) and then 

distributed to the neighbour CVs [59].  
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2.3 Thermo-Mechanic Model 

2.3.1 Elements of Structural-Mechanics  

The aim of the thermo-mechanical investigation for a complex 3D system, such as the DEMO BB, 

consists in the assessment of displacement, stress, thermal and strain fields that originate within the 

geometry due to the application of boundary conditions and thermal and mechanical loads selected for 

representing the problem under study. 

Regarding the thermal field, it is a scalar depending on the spatial and temporal variables, as follows 

  , , ,T T x y z t . (2.39) 

The temperature field that originates within a 3D body is a consequence of the internal and external 

thermal loads.  

In the case of the BB, the thermal loads are mainly due to the heat generation within the body due to the 

heat flux coming from the plasma and to the interactions between photons/neutrons and the BB materials.  

It is possible to write the pure conduction equation obtained as a special case of thermal balance 

equation applied to solid bodies [60] 

 '''

p g

T
c q div

t


    

"
q , (2.40) 

where '" '" ( , , , )g gq q x y z t  is the volumetric density of heat power generated within the body (source term) 

and 
" ( , , , )q x y z t"

q  represents the thermal heat flux, determined by the Fourier’s law according to (2.34).  

Considering a uniform, homogeneous and isotropic body, the thermal conductivity can be represented 

by the product of a scalar for the unit matrix and it can depend, at most, only on the temperature like the 

other physical quantities.  

Combining equations (2.40) and (2.34) and imposing a set of thermal boundary conditions aimed to 

represent, under the thermal standpoint, the physical reality at the boundaries of the investigated domain, it 

is possible to integrate the resolving equation in order to obtain the thermal field function  , , ,T x y z t [60].  

The obtainment of an analytical solution is difficult unless the system under study is characterised by 

high geometric and physical property regularity that can be represented by simplified hypotheses.  

However, this is not the case of DEMO BB where the geometric and physical features are characterised 

by a high degree of complexity that makes practically impossible to obtain an analytical resolution of the 

thermal problem.  

For this reason, numerical methods are used for approximating the solutions. 

Concerning the stress field, it is a tensor of the second order and function of the spatial and temporal 

variables, 

 

 , , ,

  

   

  



xx xy xz

yx yy yz

zx zy zz

x y z t , (2.41) 

where  , , ,ij ij x y z t  , with i and j variables in x, y and z, is the stress tensor component in the j 

direction for the stress acting on the plane with i as normal [61]. In particular, the normal stresses are 

defined as  , , ,ii ii x y z t   while the shear stresses as  , , ,ij ij x y z t  , with i j , and are also 

designated as  , , ,ij ij x y z t  [61]. 

Regarding the strain field, it is a tensor of the second order and function of the spatial and temporal 

variables, 
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xx xy xz

yx yy yz

zx zy zz

x y z t

  

   

  

 , (2.42) 

where  , , ,ij ij x y z t  , with i and j variables in x, y and z, is the strain tensor component in the j direction 

for the strain acting on the elementary fibres with i as normal. In particular, the normal strains are defined as 

 , , ,ii ii x y z t   while the shear strains as  , , ,ij ij x y z t  , with i j  [61]. 

The displacement field, instead, is a vector function of spatial and temporal variables, 

 

 , , ,

u

x y z t v

w

u . (2.43) 

Applying the Theory of Elasticity and under the hypothesis of small strains, it is possible to obtain the 

solution of the thermo-mechanical problem solving the system of equations composed by indefinite 

equilibrium equations, the strain-displacement equations and the constitutive equations [61].  

The indefinite equilibrium equations express the elemental volume equilibrium condition (both 

translation and rotation) of a continuum 3D elastic body, under steady-state conditions. They are 

represented by a system of 6 partial differential equations where the 9 stress field functions are the 

unknowns [62] 
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, (2.44) 

where X, Y and Z are the components of external loads acting on the domain along the three directions and, 

therefore, the  and  represents the tensions that arise in contrast to these loads. 

The strain-displacement equations express the functional dependence between the strain and 

displacement function components.  

This interdependency between strains and displacements ensures the respect of the body continuity 

without experiencing self-penetrations as well as separations of the fibres. They are represented by a system 

of 9 partial differential equations where the 9 strain field functions together with the 3 displacements field 

functions are the unknowns [62] 
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. (2.45) 

The constitutive equations express the functional dependence between the stress and strain field 

components describing the reactions of a body subjected to the application of thermo-mechanical loads. 

Assuming that the body is homogeneous, isotropic and linear-elastic, they are represented by a system of 

6 algebraic equations where the stress and strain fields are the unknowns [62] 
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, (2.46) 

where E, G and  represent the Young’s Modulus, the shear Modulus and the Poisson’s Modulus 

respectively while  , ,x y z  represents the relative thermal field function given by the difference between 

the local temperature  , ,T x y z  and the reference temperature, namely that temperature at which the body 

does not show any thermal induced stress or strain [62]. 

Composing together in a system the indefinite equilibrium, congruence and constitutive equations, this 

leads to a system of 21 linearly independent algebraic and partial differential equations with 21 unknowns 

composed of the 9 stress field functions, the 9 strain field functions and the 3 displacement field functions. 

The system can be reduced to 3 second order partial differential equations, complete and coupled, with 

non-constant coefficients where the 3 displacement field functions are the unknowns [62] 
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, (2.47) 

where the u,v and w are the Laplacian of the displacements along the three directions. 

The system (2.47) can be integrated assuming adequate boundary conditions and the 3 displacement 

field functions can be calculated. Once the displacement field is obtained, it is possible to assess the strain 

field by means of the strain-displacement equations (2.45) and, consequently, the stress field function by 

the constitutive equations (2.46). In this way, the solution of the thermo-mechanical problem for a given 3D 

body is achieved.  

Actually the resolution of the system (2.47) is so complex that an analytical solution cannot be found 

unless for an extremely regular geometric and physic body and, thus, not feasible for complex 3D systems 

such as the DEMO BB, for which theoretical-numerical methods are necessary.  

Several boundary conditions can be defined according to the phenomena that are investigated. The most 

interesting and general ones are [63] [64]:  

(i) Plane Strain (PS) that assumes a plane and parallel deformation of fibres;  

(ii) Generalised Plane Strain (GPS) that assumes uniform through-the-thickness extensional strain 

in the thickness direction (i.e a plane deformation of the fibres); and  

(iii) Plane Stress (PSr) that assumes a stress state where non-zero stress components act in one plane 

only. 

Regarding the PS, the strain and stress tensors are written as [63] 
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In this case the strain components 0xz yz   , zz  has to be independent of x and y, 0 zz  and 
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equal to [63] 
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In the GPS case the strain component zz  varies linearly on x and y as shown in eq. (2.50): 
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Concerning the PSr, the stress and strain tensors assume the following form [63]: 

 

   

0 0

, , , 0 ; , , , 0

0 0 0 0 0

   

     



 

xx xy xx xy

yx yy yx yy

zz

x y z t x y z t . (2.51) 

In this case the strain components 0    xz yz zz  but 0 zz  and equal to [63]: 
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E
. (2.52) 

Generally, for the analysis of the BB, the PS and GPS are applied when sub-models are used. 

2.3.2 Finite Element Method 

As said, for complex systems like the BB having specific geometric and physical features, it is 

extremely difficult to solve the system of equations governing the thermo-mechanical problem obtaining an 

exact solution. For this reason, numerical methods are commonly used for the solution approximation of the 

thermo-mechanical problem in 3D systems characterised by high degree of structural and physics 

complexity.  

One of the most used numerical methods used for the resolution of the thermo-mechanical problem is 

the Finite Element Method (FEM) that has been introduced since the 1950s [65]. 

The FEM is based on finite elements used to model a continuum body as an ensemble of regions formed 

by volumes with simple shape that are juxtaposed each other. The elements are characterised by a number 

of vertexes known as nodes that are connected with the nodes of the adjacent elements.  

In this way, a continuum body is topologically approximated by means of simple domains that allow 

also a simplification of the resolution of the thermo-mechanical governing equations. 

The fundamental hypothesis, on which the FEM is based, is that the field function values at a generic 

element depend on the values of the nodes through some shape functions. These analytical expressions 

depend on the type of selected element [65]. 

In each node, a number of degree of freedom, related to the physical variables like temperature, stress, 

displacement and pressure, is defined. The number of degrees of freedom depends on the type of selected 

element (linear, quadratic etc.) and determines the degree of approximation of the field function trend 

characterising also the element behaviour. 

The nodalisation and the solving procedure by means of FEM are articulated in the following steps [65]: 

1) Continuum discretisation. The continuum domain is split, by means of subsequent divisions, in 

finite elements. This process, known as meshing, consists in the creations of several arrays 

where the node coordinates and element connections are reported. According to the element 

selected and to the investigated problem, the nodal variables are assigned. 

2) Interpolation functions of governing equations. The governing equations of the continuous field 
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variables are reduced to algebraic equations and interpolated, according to the shape function, 

over the elements. 

3) Assembly of finite element equations. As the elements, connected through the nodes, are 

assembled to discretise continuous system body, in the same manner, the finite element 

governing equations are connected to form a matrix of equations that relates the unknown 

values of the nodes to other parameters. Different approaches like variational approach or the 

Galerkin method are used for this task.  

4) Selection of boundary conditions. According to the physical problem that is studied, a set of 

boundary conditions is selected and imposed modifying the structure of the original matrix of 

discretised field equations.  

5) Solve the global matrix of equations. The finite element global system of equation, typically 

sparse, symmetric and positive definite, is solved through the adoption of direct and iterative 

numerical methods. 

6) Evaluation of results. After the solution of displacement field with the global system of 

equations, additional parameters, for instance strain and stress, are assessed starting from the 

calculated independent nodal variables. 

The FEM always follows the 6 steps reported above for the formulations and the resolutions of physical 

problems. This method is also applied in several FEM codes like ANSYS Mechanical [66] that will be used 

in the following for the thermo-mechanical calculations. 
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3 Description of Multi-Physics Approach for Integrated 

Analysis (MAIA) 

In this Chapter, the functional description of the multi-physics approach for integrated analysis, namely 

MAIA, is reported. The aim of this Chapter is to give an overall overview about all the steps to be followed 

for the application of the MAIA procedure without focusing on the particular results obtained for each 

analysis. For these reasons, the reported figures have only the scope to illustrate and make clear the data 

transfer and the consistency maintained among all analyses involved. 

3.1 Structure of the MAIA Coupling Procedure 

MAIA is a CAD-centric and a loosely-coupled procedure for the design of the BB concepts based on the 

coupling of the three main pillar analyses (i.e. neutronic, thermal-hydraulic and thermo-mechanic 

calculations) adopting sub-modelling techniques. 

The CAD-centric feature is strictly linked to the sub-modelling technique. Therefore, in all the three 

calculations currently considered, the geometric characteristics of the computational models have the same 

degree of detail avoiding the introduction of simplifications as well as homogenisation. This feature is 

crucial if local phenomena have to be discovered and described. Indeed, the investigation of local effects 

depends mainly on the tool resolution and geometry detail representation. Furthermore, this characteristic 

allows keeping the consistency during the transfer of data from one analysis to another also when different 

meshes are used to respect the computational requirements of each analysis field. Moreover, it allows to 

investigate local integration issues taking into account all the step gradient that would be created by 

geometry discontinuities. 

However, according to the computational effort, the CAD-centric feature imposes the nodalisation of 

portions of BB domain if a high geometric detail has to be maintained. Therefore, the models are limited to 

the geometric unit like the HCPB slice or the WCLL BU already described in paragraph 1.2. For this 

reason, a set of boundary condition has to be defined for each analysis in order to simulate the interactions 

between the investigated domain and its environment.  

The verification of the local boundary conditions consistency is postponed to Chapter 4. 

The loosely-coupled feature, instead, is strictly linked to the three fields of calculation. 

The neutronic, thermal-hydraulic and thermo-mechanic analyses have different requirements in term of 

nodalisation, mathematical models and solving methods. They require also different resources and it is 

difficult to optimise the performances of all the three analyses when, in particular, they are coupled in a 

“monolithic” approach. For these reasons, according also to the work done in [44], three different optimised 

codes, which are run in sequence, have been used and specific in-house scripts have been created when 

needed in order to speed up the coupling and limit errors linked to the human activity. 

The selection of the three codes has followed two main criteria:  

(i) validated codes to be used in front of the Notified Body (e.g. MAIA procedure might be used for 

the BB design and optimisation so it is important that the codes are verified and validated 

according to the Code&Standard (C&S));  

(ii) minimise the number of codes involved in the coupling process.  

Applying these criteria, the codes that have been selected are: MCNP5/6 [53, 54] for neutronic/photonic 

transport calculations, ANSYS CFX [59] for the fluid-dynamic and heat transfer analyses, and ANSYS 

Mechanical [66] for the structural assessment. These codes are largely applied for the design of fission and 

fusion nuclear reactors and they have faced strong verification and validation campaign [67]. Furthermore, 

they are currently used for the BB design. Therefore, for these reasons and for ensuring a wide application 
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of the MAIA procedure, they have been selected and used in this work.  

It is also important to notice that the principles, on which the MAIA procedure is based, could be also 

applied to other verified and validated codes without compromising the validity of the achieved results. 

The MAIA procedure is articulated in 8 steps as reported in the functional flow diagram in Figure 3.1. 

Each step has to be executed in sequence and the user has to evaluate the results according to the BB 

requirements and design criteria. 

 

Figure 3.1. MAIA procedure functional flow diagram. Figure reproduced according to [68]. 
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With reference to Figure 3.1, a generic CAD model representing the reference geometry (e.g. slice or 

breeder unit) is imported within ANSYS DesignModeler [69] (a). Then, the model is prepared for 

conversion (b) in a format suitable for neutronic analysis to be performed with MCNP. Two different 

methodologies can be used for the direct creation of the MCNP neutronic input by means of ANSYS, one 

based on Constructive Solid Geometry (CSG) representation [53] and the second based on the hybrid 

geometry definition where the Unstructured Mesh (UM) is embedded into the CSG model [54]. Then, the 

neutronic model, created using ANSYS, is checked by means of the stochastic volume estimation and the 

neutronic analysis (c) is performed by means of MCNP. Adopting a set of neutron/photon source and of 

boundary conditions, the 3D profile of the power density is calculated and mapped (d) into Finite Volume 

Method (FMV) code like CFX [59]. At this point, the fluid-dynamic calculation is carried out (e). Once the 

thermal-hydraulic requirements are checked and satisfied, the temperature field is mapped (f) into Finite 

Element Method (FEM) tool like ANSYS Mechanical [66] and a structural analysis is performed (g). If the 

pressure drop and temperature limits, the deformation field as well as the compliance with the design 

criteria and requirements imposed by Stakeholder are not respected, the geometry is modified and the 

procedure restarted from (a), otherwise, if all the limits are respected after these steps, the convergence to 

final design solution is obtained (h). In the following paragraphs, each step of the MAIA procedure is 

described in more detail. The attention will be placed more on the blue path of Figure 3.1 than on the red 

one because the latter represents a mere application of the MAIA procedure using a slightly different 

geometry. 

3.2 Geometry Decomposition and Conversion in MAIA Procedure 

Commonly, the CAD engineering models contain geometry details that are not represented in the 

neutronic input because their representation would require big efforts for the creation of the model as well 

as excessive computational power. As proved in [19], the omission of details hides local gradients that 

could jeopardise the structural integrity of BB design. For this reason, a detailed geometry representation 

has to be pursued. 

For the automatic generation of a neutronic input by means of ANSYS [68] (Figure 3.1 step (b) of the 

MAIA procedure), two different methodologies have been investigated.  

The first one is based on the representation of geometrical regions by means of first and/or second order 

surfaces, known as CSG representation [53]. The second one, instead, is based on the hybrid representation 

where the UM is embedded in the legacy CSG [54]. These two representations will be indicated in the 

following as CSG Modelling and Hybrid Modelling. These two methodologies have been applied to HCPB 

slice and WCLL BU.  

3.2.1 CSG Modelling  

The CAD-MCNP conversion, using the CSG Modelling, is made with DesignModeler [69] that requires 

few manual decompositions before translating the geometry Boundary Representation (BRep) into an 

MCNP model. These manual modifications are mainly due to the limitation of MCNP that, indeed, does not 

support the representation of spline boundary surfaces but only first and second order analytic surfaces or 

tori. Before using the DesignModeler capability to generate an input for MCNP, tiny geometry surfaces 

with small areas or overlaps have to be checked. ANSYS DesignModeler provides functions for the 

detection of small features (small faces, edges and steps) and for their removal. After this control procedure, 

the complex solid must be decomposed into a combination of simple convey solids such as boxes, 

cylinders, spheres, etc. This is realised slicing the geometry into simpler configurations easily definable by 

one and two-dimensional surfaces [70]. However, even if ANSYS DesignModeler already provides the 

decomposition function, for some structure, a manual intervention is required. According to the different 

materials of the components, the decomposed solids are grouped into several groups and a material number 
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and a density can be associated to each body as required by MCNP card definition [53]. The nuclear 

definition of material isotopes is then performed using an ad-hoc script and subsequently added to the 

neutronic input by the user. 

As shown in Figure 3.2, the CSG Modelling procedure has been applied to the HCPB slice and cap. On 

the left (Figure 3.2 a and c), the CAD models of HCPB slice and cap before the conversion are reported. On 

the right (Figure 3.2 b and d), the neutronic models are shown. The geometry details of the CAD models are 

faithfully reproduced in the neutronic models. All the details in terms of cooling and dummy channels, CP 

features, manifolds layout as well as material definition have been nodalised in the MCNP model keeping 

the consistency between the BRep and the CSG representation. In order to verify the correct definition of 

the cells in the neutronic model and the conservation of the volumes, a stochastic volume estimation based 

on the ray tracing technique has been carried out [53].  

For the estimation of the volume of the neutronic model to be compared with the reference CAD 

geometry, a particle tracing calculation, using empty materials and a cell flux tally, has been performed 

[53]. The results show that the maximum volume deviation between the BRep CAD geometric model and 

the neutronic one is +0.81%/-0.73% for the HCPB slice [70] and +1.91%/-3.87% for the HCPB cap, 

respectively. The overall volume variation for the two components is 0.01% and -0.002% for the slice and 

cap, respectively. The detailed comparison cell by cell is reported in Appendix 9.1, Table A.1 and Table 

A.2. The variations are limited to few percent indicating that the CAD and the neutronic models are in good 

agreement and represent the same geometry.  

The highest variations encountered in the cap neutronic model occur in very small volume where the 

particle tracing calculation is not efficient (e.g. the -3.87% is related to a volume of 5.72E-04 cm3, Table 

A.3). However, these deviations do not affect the overall volume estimation that is well below the 1% for 

both models. 

 

Figure 3.2. CAD and CSG neutronic models of HCPB slice and cap. Top (a): radial-poloidal cut detail of the HCPB slice CAD 

(left) and CSG (right) model. Centre (b): radial-toroidal cut of HCPB slice CAD (left) and CSG (right) model at lithium 

Orthosilicate and CP level. Bottom (c): radial-poloidal cut of HCPB cap CAD (left) and CSG (right) model. Note: in the CAD 

model of the CP (a and b left), the purge gas as well as the dummy channels and the helium manifold in the BSS are not highlighted 

in yellow because they are empty while in the neutronic they are present. 

a)

b)

c)

Li4SiO4 Be HeEurofer Tungsten

CAD CSG

1 m 1 m

32.75 mm

0.4 m 0.4 m

y (pol.)

x (rad.)
z (tor.)

y (pol.)

x (rad.)
z (tor.)

x (rad.)

z (tor.)
y (pol.)



 

 
35 

3.2.2 Hybrid Modelling  

The possibility to import in MCNP6 the unstructured mesh geometry descriptions generated by a 

Computer-Aided Engineering (CAE) alongside its legacy CSG description [54] has been already 

developed. However, limited applications have been found in literature to effectively couple MCNP and the 

multi-physics codes such as ANSYS. The UMs, such as those created by the Finite Element code 

ABAQUS/CAE, can be directly imported into MCNP6 allowing a more precise representation of the 

geometry in the neutronic model. Different kind of elements can be used for the geometry nodalisation. 

Indeed, element of the first and/or second order can be selected to obtain a good agreement between the real 

geometry and its approximation/appearance through the mesh. The selection of the element to be used is 

demanded to the user that should find a compromise between the geometry representation and the limitation 

on the number of elements for each part due to the increasing of the run time when more than 5E04 

elements are accommodated in a part [54]. 

The first step for using the Hybrid modelling is to create parts composed by UMs. These UMs/parts in 

MAIA procedure are created using ANSYS Mesh [59, 66]. Each part consists of a single homogeneous 

material and of a single type of element.  

The generation of the UM model to be used in MCNP6 is performed using ANSYS Finite Element 

Modeler. It allows the translation of the UM in ABAQUS/CAE format that is subsequently accepted as 

input file by MCNP6 [54]. Each part defines also the pseudocells that are used as universe to fill the so 

called “fill-cells”. With “fill-cell” is intended the traditional MCNP card, defined using the CSG 

representation, that contains the universe (i.e. the “fill” parameter) [54]. In this way, the UM is embedded in 

the legacy CSG model that is created by means of ANSYS DesignModeler.  

Therefore, the Hybrid Modelling allows the geometry nodalisation using both the CSG and the UM. 

This representation is versatile and can be adapted to each layout. The user can also decide which 

geometric parts have to be nodalised with the CSG representation and which parts with the UM providing, 

in this way, an important flexibility according to the investigation needs. 

On this regard, in Figure 3.3, two examples of Hybrid Modelling are reported. One model has been 

realised using a CSG box that is completely filled with UM (Figure 3.3 a and b). In other words, all the 

components like stiffening plates, FW, cooling channels, tubes, PbLi region, are modelled by means of the 

UM. This model reproduces the WCLL BU with 12 serpentine tubes routed in radial-toroidal direction 

already shown in [68]. The serpentine tubes could not be represented by means of CSG because they would 

require complex intersection between torus and cylinder while, using the UM, they can be nodalised 

without particular issues. 

In the second model (Figure 3.3 c and d), the UM is, instead, used only for the water representation 

within the FW and the BZ while all the other parts are represented using the CSG Modelling. This model 

reproduces the WCLL BU already described in paragraph 1.2.2 and it will be used for the water activation 

analysis reported in paragraph 6.3.2.  

Therefore, in Figure 3.3 left, the CAD models of the two WCLL configurations are shown while the 

corresponding Hybrid neutronic model are reported in Figure 3.3 right, respectively. As it is possible to 

observe, the CAD and neutronic models reproduce the same geometric detail avoiding any simplification as 

well as homogenisation of the materials. 

For the WCLL with serpentine tubes, 18 parts or pseudo-cells have been created with an overall amount 

of ~9.28E +05 elements [68] while 36 parts and ~1.18E+06 for the WCLL BU with radial-toroidal tubes. 

As done for the CSG Modelling of HCPB slice, the geometry verification has been pursued also for the 

Hybrid modelling on the two WCLL configurations.  

Regarding the WCLL BU with serpentine tubes, the maximum volume variation for each cell and 

pseudo cell is comprised between +0.0021%/-0.0068% with an overall volume deviation of -0.0005% [68]. 
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Concerning the WCLL BU with radial-toroidal tubes, the volume range variation is comprised between 

+0.15%/-0.43% with an overall volume deviation of -0.27%. The detailed comparison cell by cell is 

reported in Appendix 9.1, Table A.3 and Table A.4. 

As for the CSG Modelling, the variation in the volume estimation of the Hybrid representation with 

respect to the BRep reference models are limited to less than 1% both for a complete UM and UM+CSG 

neutronic models. Furthermore, tuning the number and type of elements and area of application, the Hybrid 

Modelling allows a higher flexibility in terms of layout nodalisation as well as degree of detail 

representation. Moreover, it is also possible to change parts of the geometry without to affect the definition 

of the other parts. This feature is particularly suitable for scoping and design optimisation analyses. 

 

Figure 3.3. CAD and Hybrid neutronic models of WCLL BU with different BZ tube layout: serpentine (a and b) and radial-toroidal 

(c and d) configurations. Top (a): radial-poloidal cut detail of the WCLL BU CAD and Hybrid models with serpentine tubes. Centre 

(b): radial-toroidal cut of WCLL BU CAD and Hybrid models with serpentine tubes at PbLi and at BZ tubes level. Centre (c): 

radial-poloidal cut detail of the WCLL BU CAD and Hybrid models with radial-toroidal tubes. Bottom (c): radial-toroidal cut of 

WCLL BU CAD and Hybrid models with radial-toroidal tubes at PbLi and at BZ tube level. 

3.3 Neutronic Analysis in MAIA Procedure 

After the preparation of the neutronic model using the CSG and Hybrid Modelling, the next step of the 

MAIA procedure is to perform a neutronic/photonic calculation (step (c) of Figure 3.1). 

For the neutron/photon radiation transport analysis, it is suggested in [71] to use the Fusion-Evaluated 
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Data Library (FENDL) [72]. This library has been used for all the neutron/photon transport analysis 

reported in this dissertation. 

Considering that the detailed neutronic models represent only a portion of DEMO reactor, particular 

attention has been given to the definition of a local neutron and photon source as well as to the 

implementation of boundary conditions in order to correctly investigate the interactions between the 

sub-models under study and the universe around them. Indeed, the neutrons and photons can enter in the 

sub-model directly from the plasma or due to the interactions with other modules into the reactor and, then, 

by means of subsequently scattering, interact again with the sub-model. This second effect is also known as 

albedo effect [73, 74].  

Therefore, it is possible to identify two ways of interaction of neutron and photons with the sub-model.  

One is due to the direct or scattered neutrons/photons that enter the sub-model from the FW (this 

contribution is accounted by means of the neutron and photon local source definition, paragraph 3.3.1). 

This contribution has been assessed taken inspiration from the “tally source” method reported in [75]. 

The second one is due to the neutrons and photons that after interaction enter the sub-model from its 

boundaries (this contribution is taken into account by means of boundary conditions, paragraph 3.3.2). 

3.3.1 Neutron and Photon Local Source Definition 

In order to estimate the neutrons and photons that enter the sub-model from the FW and to sample both 

of them for the local source definition, the surface neutron and photon currents (i.e. F1:N and F1:P tallies, 

see paragraph 2.1.2) are calculated in the DEMO global neutronic model [76, 77]. 

Using a dedicated global neutron source model to simulate the actual neutron volumetric source of 

DEMO reactor, a surface ( TALLYA ) is identified for biasing neutrons and photons in cosine and energy (in 

Figure 3.4 is reported a possible location of the surface TALLYA  for the equatorial region of the OB 

segment). The cosine (μ) distribution is ranged in 10 subdivisions from 0 to 1 .  

According to the Vitamin J+ energy data structures [78] and for the relevance energy range of a fusion 

reactor, the neutron energy bins are sampled from 0.111 MeV to 14.2 MeV subdivided in 98 energy bins, 

whilst the photon energy bins are sampled from 0.001 MeV to 50 MeV subdivided in 43 energy bins.  

The calculated data sets for local models, thus, includes 990 tally values each for neutronic surface flux 

and 430 tally values each for photonic surface flux.  

In general, the probability ijp  that a particle starts from surface ATALLY with a cosine comprised between 

 1,i i    and between the energy bin 1,j jE E 
   , 1,..., , 1,...,i I j J   is given by: 
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where n is the unit vector of source surface ATALLY,  is the cosine and is equal to Ω·n and  , ,E sR  is 

the particle flux.  

The probability ijp  is calculated starting from results of a dedicated neutron and photon transport 

analysis. The results of this analysis are herein indicated with ,i jS , with i representing the cosine bin and 

ranging from 1 to 10 and j representing the energy bin and ranging from 1 to 99 for neutronic surface flux 

and from 1 to 43 for photonic surface flux.  

In order to estimate the probability and, so, to calculate the ,i jS , the same procedure is used both for the 

neutronic and photonic source definition taking care to change the number of considered energy bins that 



 

 
38 

are herewith indicated with EB. The tally score per cosine bin iR  can be calculated as: 
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Furthermore, the net surface flux entering the surface from the plasma is 
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Therefore, the cosine emission probability iC  and the energy emission probability 
,i jE  for each cosine 

bin can be calculated as follows: 
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The obtained iC  and 
,i jE  values are used to define the local neutron and photon source for the nuclear 

investigation of the neutronic sub models. In this way, the definition of the local source takes into account 

not only the direct neutrons coming from the plasma but, also, the neutrons and photons subjected to the 

albedo effect and entering the sub-model from the FW. 

 

Figure 3.4. Local source sampling in the global neutronic model of DEMO 2015 [79] with HCPB BB and local source definition in 

the neutronic sub-model. Left (a): example of ATALLY surface in the overall reactor. Left-top (a): vertical cut with radial-poloidal 

view of the OB4 module in which is highlighted in red the ATALLY surface. Left-bottom (a): horizontal cut with radial-toroidal view 

of the OB4 module in which is highlighted in red the ATALLY surface. Right-top (b): radial/poloidal view of the local source 

definition. Right-bottom (b): radial/toroidal view of local source definition. Figure (a) reproduced according to [79]. Figure (b) 

reproduced according to [70]. 

3.3.2 Boundary Conditions for Local Neutronic Models 

As introduced before, the neutrons and photon entering in the sub-model are not only coming from the 

surfaces exposed to the plasma but, also, from the interactions with the adjacent materials.  

Two different contributions could be identified:  

(i) the neutrons and photons produced/scattered in the neighbouring zones and entering the 

investigated domain from the poloidal and toroidal direction;  
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(ii) the neutrons and photons that interacting with the VV are back-scattered within the sub-model.  

The first contribution can be taken into account by a set of reflecting (e.g. mirror or albedo) boundary 

conditions under the assumptions that: the neutrons generated within the plasma are slowed down without 

deeply penetrate in the BB (i.e high scattering medium) and the neighbouring zones have a similar 

behaviour to the area under study. 

The second contribution, although not significant, can be taken into account nodalising simply the VV in 

the neutronic model. 

With reference to Figure 3.5 (a), the locations of the reflecting boundary condition in the poloidal and 

toroidal direction as well as the VV neutronic model are reported. 

As explained in paragraph 2.1.2, the reflecting conditions can act as a mirror (Figure 3.5-b) or as a 

boundary with an infinite scatter (white condition, Figure 3.5-c). These two conditions can be applied in the 

toroidal and poloidal directions. The selection as well as the consistency verification of these conditions is 

reported in paragraph 4.1.1. 

 

Figure 3.5. Boundary condition for the local neutronic model. Left (a): location of reflecting (e.g. mirroring or white)) boundary 

conditions as well as of VV for back scattering. Centre (b): mirroring neutronic boundary condition. Right (c): MCNP white 

condition for taking into account the albedo effect. Note: the number in the figures b) and c) as well as the +/* signs refer to MCNP 

CSG language reported in [53]. Figure (a) is reproduced according to [70]. Figures (b) and (c) reproduced according to [53].  

3.4 CFD Analysis in MAIA Procedure 

From the neutron/photon radiation transport analysis, by means of tallies F6, modified FMESH or 

EMBEE (see paragraph 2.1.2), the power deposition in the corresponding sub-models is calculated. 

Using ad-hoc scripts, the energy deposition per unit source emitted particle is converted to the deposited 

power required by thermal-hydraulic calculation (Figure 3.1 step (e) of the MAIA procedure).  

For rescaling the local data according to the overall source, first of all, the DEMO neutron yield YDEMO is 

calculated as follows: 
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where Pfus is the fusion power (e.g. 2037 MW), Efus is the energy associated to the neutrons emitted for each 

fusion reaction that is equal to 17.6 MeV and, C0 is an energy unit conversion constant equal to 1.602·10-13 
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J/MeV. The neutron yield for DEMO2015 is 7.2238E+20 neutron/s. 

Knowing the DEMO neutron yield, it is possible to estimate the local yield for neutron and photon 

sources defined for the sub-models.  

Remembering that the F1 tally is the surface particle flux normalised per starting source particle (i.e. F1 

measure the number of particles crossing the tallied area in DEMO per starting neutron), it is possible to 

multiply the DEMO neutron yield for the number of particles coming from the plasma side and used to 

define the local neutron and photon source.  

It can occur that the tallied surface and the local source area are slightly different, in this case a scaling 

factor equal to the ratio between the source area and the tallied area has to be used. In conclusion, the local 

neutron or photon yield can be calculated as follows: 
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where the ASOURCE and ATALLY are the local source and tally surfaces, respectively, while the F1NET represents 

the neutron or photon net surface flux. 

Indicating with Ht’ the total energy deposition for each cell per unit source emitted particle calculated by 

means of F6, modified FMESH or EMBEE cards, the power deposited for each cell is calculated as follows: 

 
0 LOCAL 'dep tQ C Y H . (3.7) 

The Qdep can be decomposed into two different contributes Qnp and Qp,albedo according to the neutron and 

photon sample source. Indeed, Qnp represents the power deposited per cell by neutrons generated in the 

plasma, neutrons scattered from other modules and neutron and photons produced in the sub-model due to 

the neutronic interaction with the materials. Furthermore, Qp,albedo represents the power deposited by 

photons produced due to neutronic interactions and scattered into the sub-model. 

These two contributions are calculated separately in dedicated neutronic and photonic transport analysis 

and then, using the superposition, they are summed for obtaining the total deposited power. 

3.4.1 Mapping of Heat Generation 

Once the neutron and photon transport analyses are performed, the calculated distributions of power 

densities are mapped into ANSYS CFX (Figure 3.1 step (d) of the MAIA procedure). 

From MCNP, with ad-hoc scripts, a file is produced containing the data in the profile data format (X, Y, 

and Z coordinates and the power density associated with them) [59]. It can then be imported in Profile 

Boundary Conditions [59] using a three dimensional interpolation function.  

This function is created by interpolating values from a “cloud of points” using a distance weighted 

average based on the closest three points.  

The system of coordinates and values is interpreted by CFX-Pre in the local coordinate frame and they 

are interpolated using a trilinear interpolation method.  

In other words, a multivariate interpolation is used on a 3D grid by means of polynomials of first order. 

This provides an accuracy of the second order and requires 8 adjacent values surrounding the interpolation 

point. However, in case 8 neighbouring values are not available, the accuracy collapses to a bilinear one 

which is only 1st order and problematic at positions with large gradients. This issue is solved increasing the 

mesh nearby step gradient positions.  

As examples, the mapping of the power densities for HCPB slice and WCLL BU are reported in Figure 

3.6 and Figure 3.7, respectively. 

The 3D power density profiles, reproduced within ANSYS CFX-Pre, are in good agreement with the 

outcomes of neutron and photon transport analysis. Furthermore, the interpolated integral data match with 

the original neutronic one ensuring power/energy conservation.  

Indeed, considering that the neutronic and the CFD models are identical from a geometric point of view, 



 

 
41 

the only error associated to the heating interpolation is due to the different meshes. The necessity to use 

different meshes derives from the specific calculation requirements. For instance, a very fine mesh cannot 

be used for neutronic analysis because it would require a huge computational effort for obtaining a good 

statistics in each mesh element. On the other side, for instance for thermal-hydraulic calculations, some 

requirements in terms of inflation layer or mesh conformity are unavoidable. 

  

Figure 3.6. Mapping of 3D power density profile in ANSYS CFX. Left (a): outcome of HCPB slice neutronic and photonic 

calculations in terms of power density. Right (b): neutronic plus photonic power density mapped into ANSYS CFX. 

  

Figure 3.7. Mapping of 3D power density profile in ANSYS CFX. Left (a): outcome of WCLL BU neutronic calculation in terms of 

power density. Right (b): neutronic + photonic power density mapped into ANSYS CFX. 

3.4.2 Thermal-hydraulic Boundary Conditions for Local Models 

The thermal-hydraulic calculation is performed implementing the material properties by means of CFX 

Expression Language (CEL) functions [59] and a set of boundary conditions like the heat flux and the 

deposited power, the temperature and mass flow rate of the working fluid, and specific conditions (e.g. 

symmetry and adiabatic surfaces) for simulating the interaction with the universe around the sub-model. As 

explained, the power density is calculated and mapped in CFX in order to have a 3D distribution.  

Regarding the heat flux coming from the plasma, the FW surface is subjected to a power deposition due 

to particles and radiations arising from plasma. This is modelled with a non-uniform heat flux imposed on 

the external surface. Each element of the FW surface has a normal heat flux calculated by multiplying the 

nominal heat flux value of 0.5 MW/m2 [26, 30] for the cosine of the angle between the radial and the surface 

normal directions. In this way, the reduction of heat flux on the FW bends is taken into account. 

From the power balance and according to the pressure and inlet temperature requirements (see 

paragraphs 1.2.1 and 1.2.2), the mass flow rate, the operating pressure and the temperature are applied to 

the inlet of the sub-models. Symmetry boundary conditions are imposed on the radial-toroidal surfaces in 

order to take into account the rest of the blanket that is not simulated with the sub-model [26, 30]. The 
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consistency verification of these symmetry conditions is reported in paragraph 4.2. Moreover, adiabatic 

conditions are set to the lateral surfaces of the FW and BSS (where, as conservative assumption, the 

radiation Towards the VV is neglected) of the sub-models with the exception of the FW plasma side. 

For the thermal contact conductance (TCC) between the EUROFER97 steel structures and both Li4SiO4 

and Be, the expression derived from the Yagi and Kunii model [80] applying the constants of Reimann et al. 

[81] are used. 

3.5 Thermo-Mechanical Analysis in MAIA Procedure 

From the CFD calculation (Figure 3.1 step (e) of the MAIA procedure), the temperature field T(x,y,z) is 

calculated and, then, used to assess the stress, strain and displacement spatial fields (Figure 3.1 step (g) of 

the MAIA procedure). At this point, the application of the MAIA procedure is straightforward. If all the 

thermal-hydraulic limits (pressure drop, maximum structural temperature, etc.) are within the limits, it is 

possible to proceed with the mapping of the temperature field and, then, with the structural analysis to 

verify the compliance with C&S like SDC-IC [37] and RCC-MRx [82]. For this analysis, boundary 

conditions are used for simulating the mechanical actions of the rest of the BB. 

3.5.1 Mapping of Temperature Field 

The mapping of the temperature field obtained with CFD calculation is performed directly within 

ANSYS Workbench using the profile preserving option. Using this option, the profile of the variable (for 

example, temperature) on the CFD mesh is mapped into the structural mesh. When a profile preserving 

mapping is used, each target/receiver node is mapped onto an element on the source/sender side. Weights 

for each source node are calculated and assigned based on the location of the target node and the shape 

function of the element [66]. The interpolation algorithm is based on the Distance Based Average that, after 

finding the closest points contributing to the map of each target point, triangulates the data creating 

temporary elements (4-node tetrahedrons for 3D meshes) and iterates over all possible combinations of the 

source points [66]. An example of temperature data transfer is reported in Figure 3.8. 

  
Figure 3.8. Mapping of 3D temperature field profile in ANSYS Mechanical. Left (a): outcome of HCPB slice CFD calculation 

in terms of structure temperature. Right (b): temperature field mapped in ANSYS Mechanical for thermo-mechanical calculation. 

3.5.2 Boundary Conditions for Local Models 

Regarding the mechanical restraints, a symmetry condition is applied at the lower cut surface of the 

model allowing here only displacements on the radial-toroidal plane (Figure 3.9-a). As for the upper cut 

surface boundary condition, there are 2 possible options [28]: 

a. Plane Strain (PS). Poloidal coordinate coupling of the nodes, i.e. nodes at this boundary can move to 

allow the thermal expansion of the slice, but in parallel to the cut surface (see schematic drawing in 

the top detail 1 in Figure 3.9-a); 

b. Generalised Plane Strain (GPS). Plane constraining of the nodes, i.e. nodes at this boundary can 

Temperature [ C] Temperature [ C]

a) b)1 m 1 m

x (rad.)

z (tor.)
y (pol.)



 

 
43 

move to allow the thermal expansion of the slice model, but only contained in a plane (see schematic 

drawing in the top detail 2 in Figure 3.9-a). 

The implementation in ANSYS Mechanical [66] of PS and GPS conditions is reported in Appendix 9.2. 

  

Figure 3.9. Mechanical restraints for thermo-mechanical analysis on a submodel. Left (a): poloidal boundary conditions applied to 

the sub-model. Right: node restraints applied to the sub-model for realistically simulate the mechanical action of the attachment 

system. 

In order to realistically simulate the mechanical action of the attachment system on the module BSS and 

devoted to connect the module to the vacuum vessel, the following set of boundary conditions is assumed. 

Displacement along the radial direction is prevented to the nodes lying on the toroidal direction shown in 

Figure 3.9-b, as well as toroidal displacements are prevented to nodes lying along poloidal direction [83, 

84]. The consistency verification of this set of boundary conditions is reported in paragraph 4.3. 

  

Nodes 

coupled in 

poloidal

direction

Poloidal

symmetry

(bottom face)

Coupled poloidal

direction nodes

poloidal

radial

toroidal

(bottom cut face) 

poloidal symmetry

a)

b)

Toroidal

displacement

prevented

Radial 

displacement

prevented

a) b)1)

2)

y (pol.)

x (rad.)z (tor.)

y (pol.)

x (rad.)

z (tor.)



 

 
44 



 

 
45 

4 Validation of MAIA Procedure Applied to the Breeding 

Blanket and Sensitivity Analysis 

In this Chapter, the consistency verification of the three main pillars of the coupling is reported. The 

consistency of boundary conditions and the loads used for the neutronic, thermal-hydraulic and 

thermo-mechanical analyses is verified against the reference model identifying the strength and the 

weakness points of their application. 

For the sake of brevity and clearness, all the consistency studies, herewith reported, are performed on the 

HCPB slice but the outcomes are valid also for the WCLL BU. Furthermore, regarding the neutronic model, 

the consistency check has been performed using the CSG representation that results more suitable for the 

integration in the reference DEMO neutronic model currently used for the design of the BB. Moreover, the 

outcomes are still valid for the Hybrid representation and do not affect the goodness of the approach. 

4.1 Consistency Check of Local Source and Boundary Conditions for 

Neutronic Analysis 

For the consistency check of the local model and, in particular, of the local source and boundary 

conditions used in MAIA procedure for neutron/photon transport analysis, three neutronic models have 

been created: (i) the HCPB slice, (ii) the HCPB module and (iii) the HCPB DEMO models [85]. In 

particular, the first two local neutronic models have been used to demonstrate the consistency of the MAIA 

results versus the latter that has been selected as reference. 

The HCPB slice together with the cap model (already introduced and described in paragraph 3.2.1) have 

been used to create the CSG full heterogeneous model of the OB4 HCPB module (Figure 1.4 – a) using the 

repeated structures capabilities of MCNP5 [53]. It has been decided to focus on OB4 because, having the 

highest Neutron Wall Load (NWL) [86-88], it is usually taken as reference by the designers. 

The HCPB module has been then implemented in a full DEMO HCPB neutronic model realised at KIT 

[79] and it has been used as reference for results comparison. 

The DEMO HCPB neutronic model represents a 10° torus sector model that includes the plasma 

chamber, one full inboard and one and half outboard blanket modules, divertor, VV and ports, thermal 

shield, toroidal and poloidal magnetic field coils.  

The VV structural elements are in stainless steel SS316 and the interior is filled with a mixture of 

homogenised material composed of 60% SS316 and 40% water.  

This model, used as reference for the design analysis of HCPB, is filled with slice units of two beds of 

Be and Li4SiO4 enclosing a CP [79].  

For taking into account the cooling channels within the FW, CP and Caps as well as the helium 

manifolds in the BSS, an effective Eurofer density has been set (i.e. 4.49 g/cm3 for the CP and 1.89 g/cm3 

for the Caps [79]). The original HCPB Demo model is shown in Figure 4.1. 

With the aim to verify the consistency the MAIA procedure, the HCPB module and DEMO HCPB 

models have been joined together. The HCPB DEMO model, equipped with the full heterogeneous OB4 

module and with the plasma neutron source representative of plasma emission conditions in DEMO, has 

been employed for the definition of the local neutronic and photonic sources to be used for the local HCPB 

module and slice models according to the approach described in paragraph 3.3.1.  

In Figure 4.2, the three models are reported and they will be recalled in the following for the consistency 

verification of the neutron and photon transport analysis of MAIA procedure. 

In Figure 4.2 b) and c), the computing domains corresponding to the equatorial slice of the OB4 module 

are highlighted. On these domains, the preliminary studies are focused and, in the following, the results on 

module and DEMO will refer unless differently specified. 
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Figure 4.1. Reference DEMO HCPB neutronic model used for the design analysis. This figure is reproduced according to [86]. 

 

Figure 4.2. Neutronic models used for the consistency verification of the boundary conditions. Left (a): local neutronic models of 

HCPB slice with VV. Centre (b): local neutronic model of HCPB module representing the full heterogeneous OB4. Right (c): 

reference neutronic model of HCPB DEMO equipped with full heterogeneous OB4. Figure b) and c) are reproduced according to 

[85]. 

4.1.1 Boundary Conditions Consistency Verification 

Once the two local models, on which the MAIA procedure has been applied, and the reference DEMO 

HCPB model have been set up, analyses have been performed in order to identify the correct set of 

boundary conditions and to validate the results in terms of deposited power on the sub-models.  

The MAIA procedure step c) (Figure 3.1) has been followed for the sampling of local neutron and 

photon source to be used with HCPB slice and module sub-models. The neutron and photon source 

intensity parameters are reported in Table 4.1. 

Several combinations of reflecting and white conditions applied to the toroidal and poloidal boundary 

surfaces have been studied according to the case study matrix reported in Appendix 9.3, Table A.5. 

Eight analyses (4, number of combinations of boundary conditions, multiplied by 2, number of particles 

type, n and p) both for the HCPB slice and module local models (numbered from 3A-3A to 3D-4D) have 

been carried out with a relevant number of particle histories (i.e. all tally results relative errors have been 
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maintained below 5%). Using the above-mentioned models, boundary conditions and local neutron source, 

the total neutron fluxes for the two local models and for the DEMO reference model have been evaluated 

and compared as reported in Figure 4.3 and Figure 4.4. In particular, in Figure 4.3 for the case 3A-4A 

(mirroring conditions in both poloidal and toroidal directions), it is possible to see that the neutron fluxes 

calculated in the local models are in good agreement in the first centimetres but, then, the deviation with 

respect to the reference DEMO model diverge up to ~17% for the module and ~42% for the slice. In 

general, the module local model approximates better the behaviour of the reference DEMO model. 

However, the deviations obtained in the BSS result to be too high and clearly indicate that the set of 

boundary conditions do not represent adequately the physics of the problem. Practically, the mirror 

conditions in the toroidal direction increase the neutron fluxes in the BSS. 

  

Figure 4.3. Radial neutron flux profile and deviations for the reference DEMO model and for the two (module and slice) local 

models for the case 3A-4A. 

For the case 3D-4D (mirroring and white conditions in poloidal and toroidal directions, respectively), 

instead, it is possible to note that the two local models approximate better the total neutron flux calculated in 

the reference DEMO one. Indeed, the maximum deviations are ~4% for the module and ~20% for the slice 

(Figure 4.4). In particular, the neutron fluxes calculated in the DEMO and module models are practically 

overlapping, while for the slice one a larger deviation is found. This effect can be explained considering the 

poorer statistics (although with a relative error below of 5%) that is obtained in the bigger models (e.g. 

DEMO and module) at the deeper radial direction. However, with respect to the case 3A-4A, the deviations 

in the local models have been reduced by a factor of two for the case 3D-4D providing, already, an 

important indication on the set of boundary conditions to be applied in the local models. Therefore, in order 

to better evaluate the impact of the boundary conditions on the local models and their consistency with 

respect to the reference model, it has been decided to investigate the deviations occurring in the deposited 

power. For this reason, using the above-mentioned models, boundary conditions and local neutron source, 

the power released Qdep has been estimated (see eq. (3.7)) and the results, in terms of error with respect to 

the HCPB DEMO reference model (Qdep equal to 7.5526E+04 W), are summarised in Table 4.2. The 

detailed data of the power released in each cell are reported in Appendix 9.3, from Table A.6 to Table A.9. 

W+FW
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Figure 4.4. Radial neutron flux profile and deviations for the reference DEMO model and for the two (module and slice) local 

models for the case 3D-4D. 

Table 4.1. Neutron and photon source parameters for the normalization of the HCPB equatorial outboard 

slice and module. 

 HCPB OB4 slice HCPB OB4 module 

 Neutron source Photon source Neutron source Photon source 

P [W] 2.03700E+09 

Ef [J] 2.81827E-12 

YDEMO [part/s] 7.22784E+20 

F1 2.96784E-04 4.97275E-05 6.41637E-03 1.08446E-03 

ASOURCE [cm2] 1.39268E+03 3.03025E+04 

ATALLY [cm2] 4.64292E+02 3.03215E+04 

YLOCAL [part/s] 1.1451E+04 1.91873E+03 7.42157E+05 1.25435E+05 

From the acquired data emerges a congruence between the local models and the HCPB DEMO reference 

model when reflecting conditions are applied both on the poloidal and toroidal direction (case 3A-4A) or 

when reflecting condition are applied in the poloidal direction and white condition in the toroidal one (case 

3D-4D). In particular, concerning the case 3A-4A, it is possible to note that both the local models predict a 

deposited power slightly overestimated with respect to the one calculated in HCPB DEMO. This could 

represent an advantage, from an engineering point of view, since the load conditions calculated with local 

models are more severe. Practically, with the sub-models, highest safety factors are assumed which 

advantage the safety of innovative design like BB where the uncertainties on loads could be very high. 

It is important to note that a better power deposition estimation has been obtained in the module for the 

case 3A-4A. This effect can be explained considering the nature of the slice model which reproduces a 

reduced poloidal extension with respect to the HCPB module model.  

Looking to the case 3D-4D, it is possible to note the beneficial effect of the white condition on the 

toroidal boundaries if compared with the results of case 3A-4A (i.e. the deviation is reduced from -3.4 % to 
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the -0.48%, for instance). Therefore, the white conditions in the toroidal direction provide a better 

approximation of the deposited power with respect to the mirroring one. This result can be explained taking 

into account the influence of the adjacent components that are not completely symmetric with respect to the 

single segment. Just thinking to the presence of the equatorial ports (same region of investigation) as well as 

to the poloidal variation of the BB toroidal thickness, it is possible to explain the better response of white 

conditions that, as explained in paragraphs 2.1.2 and 3.3.2, approximate an infinite scatterer surface with a 

cosine distribution. Different conclusions can be derived, instead, from case 3B-4B and 3C-4C where white 

conditions are applied in the poloidal direction. Indeed, it is possible to note two outcomes: (i) the slice 

model underestimates considerably the power deposited, (ii) there is a big discrepancy between the two 

local models (slice and module). Naturally, these two effects are linked together but it is possible to provide 

a separated explanation. 

For the first effect, the underestimation is due to the random cosine distribution applied when the white 

conditions are used. Indeed, a big fraction of the neutrons and photons are sent back in the direction of the 

local source and, then, they are lost. This produces an underestimation of about 35% of power deposited in 

Beryllium, Orthosilicate and CP arriving to over the 90% in the BSS and an over estimation in the FW of 

about 6% because it is subjected to an additional flux from these back scattered neutrons (Table A.7 and 

Table A.8 in Appendix 9.3).  

The second effect is, instead, due to the presence of the other slices in the HCPB module model that 

mitigate up to cancel the effect of the white boundary conditions on the equatorial slice. This allows to 

derive other two conclusions:  

(i) the effect of boundary conditions is reduced increasing the size of the model under 

investigation; 

(ii) symmetry conditions are envisaged in the poloidal direction. 

Table 4.2. Variation of power deposited for each case study with respect to the HCPB DEMO reference 

model. 

Cases 
Boundary  

Condition 

Comparison  

DEMO vs Slice 

Comparison  

DEMO vs MOdule 

Qdep [%] Qdep [%] 

3A-4A Reflect. (pol.-tor. dir.) -3.40% -1.61% 

3B-4B White (pol.-tor. dir.) 31.84% 0.23% 

3C-4C Reflect. (tor. dir.) – White (pol. dir.) 31.33% -1.60% 

3D-4D Reflect. (pol. dir.) – White (tor. dir.) -0.48% 0.23% 

From this study on the deposited power, the case 3D-4D with reflecting and white conditions in poloidal 

and toroidal directions, respectively, is assumed as reference for the investigation of the BB sub-models in 

MAIA procedure. However, this calculation provides only indications on the overall power released and 

says nothing on its distribution. As introduced in paragraph 1.3, it is important for the design to determine 

correctly the gradients. This represents also one of the goals of MAIA procedure to use the sub-modelling 

techniques for simulating the real geometry. It is also important in a multi-physics design cycle to obtain a 

power density distribution to be used for thermal-hydraulic and thermo-mechanical calculations. 

As introduced in paragraph 2.1.2, MCNP provides the possibility to map a physical quantity like the 

power density by means of a mesh tally (i.e UM or FMESH). For the comparison of power distribution on 

the three models, a three-dimensional Cartesian mesh has been superimposed on the HCPB slice, module 

and DEMO space of interest using an identical mesh in terms of boundaries and sizing. In particular, for the 

HCPB module and DEMO, it has been applied to the 31st slice counting from top to bottom in the BZ stack 

corresponding to the equatorial slice of OB4. 



 

 
50 

The mesh size has been defined imposing number of divisions in the direction x,y and z, 
ijdivn , as 

summarised in Table 4.3 while it is shown in Figure 4.5. 

  

Figure 4.5. FMESH visualization on HCPB DEMO MCNP model;. Left (a): radial-toroidal view. Right (b): radial-poloidal view. 

The mesh sizing has been chosen following a trade-off between two counteracting criteria. The small 

size of mesh element/voxel avoids extensive averaging of the release power over different materials. On the 

other hand, a fine mesh increases the computational time and makes difficult to obtain a good statistical 

behaviour. For these reasons, the selected mesh allows having a finer resolution (3 mm in toroidal 

direction) in the side wall where the geometry presents more features that, otherwise, would be hidden if 

biggest sizing is applied. 

Table 4.3. FMESH card parameters. 

FMESH variable 
x  

(radial) 

y1 y2 y3 z1  z2 z3 

(poloidal) (toroidal) 

Origin (x0,y0,z0) [cm] -43.100 -99.025 -85.000 

Mesh limit [cm] 83.650 -98.250 -97.750 -95.750 -55.000 55.000 85.000 

ijdivn  [cm] 127 1 1 1 100 10 100 

Size [cm] 0.998 0.775 0.500 2.000 0.300 11.000 0.300 

The power density distribution is calculated combining the F4 tally (i.e. FMESH), introduced in 

paragraph 2.1.2, eq. (2.18), with the FM card for the neutrons and photons energy release. In general, the 

FM card multiplies the tallied quantities for a given constant C and the continuous-energy reaction cross 

section ( ) ( ) ( ) tR E E H E .  

From the previous calculations, it emerged again that the case 3D-4D better approximate the overall 

power deposition. For this reason, it has been used for the calculation and comparison of the power density 

distribution among the three models as reported in Figure 4.6. 

The results are in good agreement between the three models concerning the local power density 

deposition. In particular, a good agreement in the 3D distributions has been acknowledged in all the 

regions. In order to better evaluate the discrepancies between the reference results of HCPB DEMO model 

and the two sub-models a statistical distribution of the error associated to the power density has been 

evaluated as reported in Figure 4.7. 

In Figure 4.7-a), the comparison between the power density distribution calculated in the reference 

HCPB DEMO model and in the module one is reported.  
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Figure 4.6. Spatial distribution of nuclear power density in the equatorial region of OB4 (see computing domain in Figure 4.2 ) for 

the case 3D-4D. Left (a): HCPB DEMO reference power density. Centre (b): HCPB module. Right (c): HCPB slice. 

Considering the relative difference between the DEMO full scale model and the local ones, the mean 

value of the power density deviation error is 5.17 % with a standard deviation of 14.74 % and a median of 

6.75%. In Figure 4.7-b), the comparison between the power density distribution calculated in the reference 

HCPB DEMO model and in the slice one is reported. 

The mean value of the power density error is -3.97 % with a standard deviation of 18.71 % and a median 

of -1.60%. From a post-processing of the obtained results, it has been possible to note that the biggest 

variations occur when the power density values are small (e.g. helium channels and BSS) and far from the 

local source (e.g. back of BSS).  

  

Figure 4.7. Statistical distribution of the error on power density for the case 3D-4D. Left (a): histogram of power density error 

between the DEMO and module models and cumulative curve. Right (b): histogram of power density error between the DEMO and 

slice models and cumulative curve. 

This behaviour can be appreciated in Figure 4.8 where it is reported the 3D contour map power density 

error for the HCPB slice with respect to the HCPB DEMO model for the case 3D-4D. As it is possible to see 

in Figure 4.8-a), the most of the error (about the 45%) is comprised between ±4 % in the central part where 

the mesh elements are big and the statistical behaviour is good in both HCPB slice and DEMO models. In 

the range ±10 % would account for about the 75 % of the total. It is interesting to note the highest 

discrepancies between the slice and DEMO are encountered in the BSS near the equatorial port and in the 

sidewall near the manifolds for coolant and purge gas, as highlighted in Figure 4.6-a). 
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Figure 4.8. Computed 3D power density deviation between HCPB slice model and DEMO and details of FMESH. Left (a): contour 

map of power density error distribution in the range of ±0.2. Right-top (b): BSS mesh with detail of the VV equatorial port. 

Right-bottom (c): detail of mesh in side wall and manifold region. 

Regarding the first spot (Figure 4.8-b), it is possible to note that the big error is mainly due to the 

coaction of a fine mesh and the missing back scattering due to the presence of the equatorial port. Indeed, in 

the HCPB slice as well as in the HCPB module, the presence of the VV equatorial port has not been taken 

into account and the VV is continuous for all the toroidal direction following the BSS extension.  

The second spot occurs in the sidewalls where the finer mesh encounters the purge gas and coolant 

manifolds. The presence of He means few interaction due to his low density and a finer mesh means an 

extremely low statistic in the big models like HCPB DEMO.  

However, although the presence of these localised zones, if the Figure 4.8 is read together with Figure 

4.6-a, it is immediately clear that the highest errors are related to low power density values (between 0.002 

and 0.1 W/cm-3).  

The same considerations have been found also for the comparison between the HCPB module and 

DEMO. So it is possible to conclude that the set of boundary conditions selected (white and reflecting in 

toroidal and poloidal direction, respectively) for the local models reproduce the environment around them 

providing a satisfactory estimation both on the deposited power and its distribution.  

A better local estimation of the released power in the aforementioned zones and a more reliable 

assessment of relative differences among the models could be achieved using variance reduction techniques 

and increasing the number of particle histories in the reference model.  

The consistency verification of the boundary conditions has been continued with particular reference to 

the reflecting conditions applied in the poloidal direction of the local models.  

Indeed, in order to better evaluate the contribution of neutrons and photons that are scattered in the 

neighbouring zones and are entering the investigated domain from the poloidal surfaces, two different 

studies have been carried out.  

The first one has been aimed to the verification that the neighbouring zones (i.e. the adjacent slices) have 

a similar behaviours to the area of study. This study allows checking the poloidal symmetry in terms of 

power deposition and so the consistency of poloidal reflecting conditions.  

The second study is devoted to demonstrate that the neutrons are mostly scattered in the poloidal 

direction and the contribution of neutrons emitted directly from the plasma is negligible after few 
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centimetres of BB.  

Regarding the first point, a dedicated power deposition calculation on different levels of the full 

heterogeneous OB4 module of the HCPB DEMO reference model has been carried out in order to verify the 

consistency in the entire module and near the discontinuities (e.g. caps).  

However, a first demonstration of the correct definition of symmetry conditions has been already 

envisaged in the previous calculation on reflecting and white condition reported in Table 4.2. Indeed, the 

results on the equatorial region of the HCPB module have already shown a similar behaviour of 

neighbouring slices independently of the poloidal condition applied.  

For verifying the subsistence of symmetry conditions in all the modules, eleven slices have been 

identified (four near the cap on the top, three in the middle area of the module and four near the cap on the 

bottom, Figure 4.9) and the power deposition for each cell of the slices has been calculated following the 

approach already described at the beginning of this paragraph.  

The detailed results for each slice and for each cell are reported in Appendix 9.3, from Table A.10 to 

Table A.12. In this way, it has been possible to calculate the variation of the deposited power cell by cell 

between a i-th slice and the i-th±1 slice as reported in Table 4.4 for the equatorial slice and Table 4.5 for the 

slices near the top and bottom caps. The up and down variation are defined with respect to the i-th slice. 

  

Figure 4.9. Slices zone identification in the full heterogeneous OB4 module of the HCPB DEMO reference model. Left (a): full 

heterogeneous OB4 module with evidence of the three zones of investigation. Right-top (b): slices identified near the top cap. 

Right-centre (c): slices identified in the OB4 middle area. Right-bottom (c): slices identified near the bottom cap. Figures a), b) and 

c) are reproduced according to [85]. 

As it is possible to note, in the equatorial region (Table 4.4) the variation in the power deposition for 

each cell are very low and the overall mismatch is at most the -0.11%.  

These results are in agreement with the one encountered during the previous calculation and 

demonstrate that the neighbouring slices have the same behaviour as the one under study and therefore, also 

the applicability of the reflecting conditions in the poloidal direction is recommended.  

Looking to Table 4.5, the same trend is found up to the third to last slice both near the top and bottom 

cap. Therefore, small variations occur and the effect of the discontinuities (i.e. the caps) does not produce 

any effect except for the last near slice.  
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Table 4.4. Power deposition variation of the middle slice with respect to the adjacent ones. 

Region 

DEMO  

Equatorial (2nd slice) 

Up (1st slice) Down (3rd slice) 

Armour -0.36% -0.44% 

Be Bed -0.07% -0.22% 

BSS -0.23% -0.28% 

CP -0.07% -0.14% 

FW -0.08% -0.17% 

He BSS -0.11% -0.06% 

He CP -0.12% -0.22% 

He Dummy Channels -0.07% -0.24% 

He FW -0.19% -0.33% 

He Manifold -0.15% -0.05% 

He Purge BSS -0.01% -0.34% 

Li4SiO4 Bed 0.09% 0.00% 

Manifold -0.45% -0.26% 

Grand Total -0.01% -0.11% 

Indeed, it is possible to observe in Table 4.5 that the biggest variation on the power deposition is located 

in the last Li4SiO4 beds (-11.84% near the top cap and -11.34% near the bottom cap, respectively). 

This produces an overall power production variation of -5.95% and -5.63% (Table 4.5). The highest 

power released in the Orthosilicate is due to the highest neutron multiplication that occurs in the cap which 

are filled with Be. This asymmetry produced by the caps is already attenuated after the first slice and 

demonstrates the applicability of reflecting conditions except for the last slice. 

Table 4.5. Power deposition variation of i-th slice near the top and bottom caps with respect to the adjacent 

ones. 

Region 

DEMO  

2nd Top 

DEMO  

3rd Top 

DEMO  

3rd Bottom 

DEMO  

2nd Bottom 

Up  

(1st) 

Down  

(3rd) 

Up  

(2nd) 

Down  

(4th) 

Up  

(4th) 

Down  

(2nd) 

Up  

(3rd) 

Down  

(1st) 

Armour 0.00% 0.02% -0.02% 0.11% 0.44% -0.58% 0.57% -0.42% 

Be Bed 0.11% -0.90% 0.89% -0.14% -0.27% 0.90% -0.90% 0.29% 

BSS -2.19% 1.36% -1.38% 0.62% 0.65% -0.99% 0.98% -1.95% 

CP -0.78% 0.25% -0.25% 0.15% 0.11% -0.33% 0.33% -0.76% 

FW -0.13% -0.64% 0.63% 0.12% 1.26% -0.54% 0.53% -0.25% 

He BSS 1.11% -0.79% 0.78% -1.16% -1.53% 1.32% -1.34% 1.81% 

He CP 0.31% -0.57% 0.57% -0.36% -0.59% 0.58% -0.59% 0.60% 

He Dummy Channels 1.07% -0.64% 0.63% -1.10% -1.27% 0.82% -0.83% 1.47% 

He FW 0.04% 0.06% -0.06% -0.25% 0.09% -0.19% 0.19% -0.20% 

He Manifold 0.45% -0.43% 0.42% -0.53% -0.82% 0.87% -0.88% 0.81% 

He Purge BSS 0.18% -0.92% 0.91% -0.71% -0.86% 1.22% -1.23% 0.46% 

Li4SiO4 Bed -11.84% 1.61% -1.63% 2.91% 2.53% -1.54% 1.52% -11.34% 

Manifold 0.01% 0.53% -0.53% 0.06% 0.45% -0.49% 0.49% 0.22% 

Grand Total -5.95% 0.56% -0.56% 1.43% 1.33% -0.65% 0.64% -5.63% 

Therefore, the set of boundary conditions used in MAIA and the applicability of the procedure itself can 



 

 
55 

be spread for the entire module with the exception of the cap regions. Further investigations would have to 

be performed for the application of MAIA procedure where geometry discontinuities appear. 

Moreover, the power deposition variations reported in Table 4.4 and Table 4.5 represent a range of 

investigation for the consistency verification of thermal-hydraulic as well as thermo-mechanical conditions 

in order to evaluate the impact on temperature and stress fields. 

As anticipated, a second study has been also carried out in order to verify that only scattered neutrons 

pass through the poloidal reflecting boundary conditions.  

Indeed, it is possible that neutrons emitted by plasma go through the adjacent slices without scattering 

and then they interact with the domain under study. These neutrons, which have not collided before and 

have crossed the blanket in the poloidal direction, represent a neutron flux term that is not accounted both 

by local neutron source and by boundary conditions. In particular, in Figure 4.10, the schematic view of this 

case for three slices is reported.  

As verified before, the neighbouring slices have similar power deposition and then they experience 

similar neutron fluxes. This characteristic is schematically expressed by the green arrows that represent the 

neutron flux passing through the surface tally (orange dashed line) and sampled in the local source.  

The sampled neutron flux is similar in the neighbouring slices and, for this reason, the use of reflecting 

boundary condition (red dashed line) allows the simulation of the environment around the local model 

under investigation. However, some neutrons could neither cross the source surface tally nor interact with 

adjacent slices (blue arrows).  

  

Figure 4.10. Schematic view of neutron interactions with the investigated domain. Details on collided neutron flux taken into 

account with local source and boundary conditions and contribution of external uncollided neutron flux. 

This external uncollided neutron flux  , , ,
UNEX E tSR Ω  (the term “uncollided” is here used for 

specifying the neutrons that come from the plasma and have not scattered before to reach the slice under 

study) could pass through the neighbouring slices, cross the boundaries and interact for the first time with 

the investigated domain.  

It is immediately clear that this contribution can have an impact on the correctness of the results obtained 

when sub-models are used. In order to take into account this contribution in the OB4 and successively in all 

the other modules, it has been identified a figure of merit (FoM) η defined as the ratio between the number 

of neutrons crossing the boundary poloidal surface coming directly from the plasma and the number of the 

overall neutrons crossing the same radial-toroidal surface S as reported in eq. (4.1) 
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This FoM is calculated starting from the full heterogeneous OB4 module inserted in HCPB DEMO 

reference model on which previous analyses demonstrated a poloidal symmetry behaviour.  

In order to evaluate correctly the  , , ,
UNEX E tSR Ω , it is necessary to identify the energy bin associated 

with “uncollided” neutrons. As reported in [89-91], the D-T energy spectrum can be represented by a 

Gaussian energy distribution strongly peaked around 14.1 MeV with an isotropic angular distribution [92, 

93]. According to the energy neutron spectrum measurements reported in [94], it has been assumed that all 

the neutrons in the region of interest (Eth > 13.2 MeV) come directly from the plasma inducing the external 

“uncollided” flux.  

This assumption is not completely true for one main reason: some neutrons, after a scatter, could lose 

only a small fraction of energy falling again within the range considered. However, as preliminary 

investigation, this effect has been assumed negligible.  

On the other side, the wide energy range selected for the external uncollided flux estimation represents a 

conservative assumption as shown in the following.  

For determining η, a dedicated analysis has been performed on the reference DEMO HCPB model 

equipped with the full heterogeneous OB4 module.  

Three radial-toroidal surfaces have been identified in the equatorial zone (Figure 4.11-a, red line) and 

near the top and bottom cap (Figure 4.11-a, green lines) subdivided in the radial direction according to the 

incremental dimensions reported Figure 4.11-a.  

On these regions, the FoM η for “uncollided” neutron with energy above 13.2 MeV (Figure 4.11-b) and 

above 13.95 MeV (Figure 4.11-c) has been evaluated. This second value has been selected to narrowing the 

energy bin assumed for the external “uncollided” flux 
UNEX . 

It is possible to note that, for both cases, the FoM η reduces strongly with the radial direction (less than 

5 % after the FW) and no appreciable differences are encountered between the equatorial zone and the 

regions near the caps. This represents another confirmation of the poloidal symmetry and means that the 

middle zone is, from a neutronic point of view, representative of the entire module. 

The main values of η are localised in Armour and FW regions, as expected. The external “uncollided” 

flux counted in these two regions is composed both of the uncollided flux perpendicular to the tally area and 

of uncollided flux passing through the sampling source surface that cannot be neglected due to the angle of 

incidence of neutrons coming from plasma. 

However, considering that the FoM η, estimated on the OB4, is also used as reference and the same 

overestimation on uncollided flux in the first centimetres of the BB is encountered also in the other 

modules, it does not affect the conclusion of the study.  

The same approach, for the calculation of FoM η, has been followed for the other modules on which an 

equatorial radial-toroidal surface for 7 selected modules between the IB and OB has been identified (Figure 

4.11-a, red lines). 

The results are shown in Figure 4.12. It is possible to note that the results and trends calculated for the 

OB4 are similarly obtained in all the analysed modules with a small exception for the OB7 where a higher 

η, with respect to the one assessed in OB4, is found (Figure 4.12 – a).  

Indeed, this module, due to the D-shape of the plasma, is more exposed to a direct poloidal flux in 

particular in the Armour and FW zones. However, this does not affect the behaviour found in the other 

module and, more specifically, in the OB4 used as reference in this evaluation.  

In conclusion, starting from the consistency verification of boundary conditions mainly performed on 

OB4 module and using a FoM for weighting the effect of external uncollided flux with respect to the total 

flux, it has been possible to extrapolate the considerations done on the equatorial outboard region to all the 

BB modules. This provides a preliminary indication about the applicability of MAIA procedure to all the 

modules both for IB and OB. 
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Figure 4.11. Schematic view of DEMO model with identification of sampled surfaces and estimation of external uncollided flux at 

different levels for the OB4 module. Left (a): sampled surfaces for the IB and OB modules and incremental radial subdivision. 

Right-top (b): estimation of FoM η at different radial position considering energy of “uncollided” neutrons above 13.2 MeV. 

Right-bottom (c): estimation of FoM η at different radial position considering energy range of “uncollided” neutrons above 13.95 

MeV. Figure (a) reproduced according to [26]. 

  

Figure 4.12. Estimation of FoM η for different modules at the blanket modules equatorial zone. Top (a): FoM η for OB. Bottom (b): 

FoM η for IB. 
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4.1.2 Local Source Representation and Sensitivity Analysis 

Once the consistency of the boundary conditions has been demonstrated, the last step is to investigate 

the impact of local neutron and photon sources on the results in order to assess the best representative 

cosine bin discretisation. 

In Figure 4.13, whit reference to the OB4 module of HCPB DEMO model, it is shown for each cosine 

bin (cosine defined with respect to the normal to the source surface ATALLY, see Figure 3.4), the energy 

probability for the neutrons passing through the source surface tally. Similar graph with different 

probability distributions can be obtained for the photon local source.  

Two contributions can be easily identified: (i) one due to the neutrons at high energies emitted by the 

plasma; and (ii) another due to the neutrons that have interacted with the materials present within the VV 

(e.g. blanket and divertor) and are scattered towards the domain of investigation. 

  

Figure 4.13. Neutron energy probability function for each cosine bin sampled in front of the equatorial slice of HCPB DEMO OB4 

module. 

As already explained, the definition of local source depends on the energy and cosine bin selected that 

are strictly connected on the computational effort. Indeed, narrow bins require long calculation using the 

global model in order to minimise statistical errors. On the other side, large bins average the distributions 

impacting on the results of the local models. 

Regarding the selection of the energy bins, as said, the energy data structure of Vitamin J+ [78] have 

been used. These data are applied for the definition of nuclear libraries used in neutron and photon transport 

calculations and represent a fine and broad group energy structures. In particular, the use of the same energy 

bins applied for the creation of nuclear libraries does not introduce any approximation. For these reasons, 

the sensitivity analysis has been focused only on the cosine subdivision. 

Furthermore, a first investigation has been carried out comparing the distribution obtained when an 

identical number of angle or cosine subdivision is used for the sampling of the local source in the global 

model. Therefore, using the methodology described in paragraph 3.3.1, two source sampling analysis on 

surface ATALLY (see Figure 3.4) with 10 angles subdivisions in the range from 0° to 90° and 10 cosine 

subdivisions in the range from 1 to 0 have been performed.  

The results for two energy bins at 13.8-14.2 MeV and 0-0.111 MeV are reported in Figure 4.14. 
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It is interesting to note that, for the same number of bins, the cosine and angle distributions present 

discrepancies that can reach 20% in particular for the energy bin at 13.8-14.2 MeV (Figure 4.14-a). 

This is due to (i) the cosine distribution that is sparser for small angles and more concentrated at angles 

around 90° while the angle distribution results equally spaced for all the angles and (ii) to the poor statistics 

at large angles. 

  

Figure 4.14. Neutron cosine and angle probability distribution considering 10 subdivisions and for given energy bins at 13.8-14.2 

MeV and 0-0.111 MeV. Left (a): neutron cosine and angle probability at 14.2 MeV and error among them. Right (b): neutron cosine 

and angle probability at 14.2 MeV and error among them. 

In order to minimise the error between the angle and cosine distributions, it is necessary to reach a 

number of divisions equal to 30. In Figure 4.15, it is possible to note that the two probabilities function 

approximate each other better and the error is limited between -13% and 7% for the energy bin 13.8-14.2 

MeV and between the -0.3% and 1.9% for the energy bin 0-0.111 MeV. 

  

Figure 4.15. Neutron cosine and angle probability distribution considering 30 subdivisions and for given energy bins at 13.8-14.2 

MeV and 0-0.111 MeV. Left (a): neutron cosine and angle probability at 14.2 MeV and error among them. Right (b): neutron cosine 

and angle probability at 14.2 MeV and error among them. 

The study so far conducted, demonstrates as expected that a finer subdivision reduces the differences 

between an angle and cosine distribution, but does not indicate the best cosine bin discretisation to be used. 

For these reason, dedicated analysis have been carried out using a bin subdivision from 0 to 30 ranged 

according to the Table 4.6.  

The derived neutron and photon local sources have been then used on the HCPB slice model for 

evaluating the deposited power. Furthermore, the results have been compared with the power deposition 

calculated in HCPB DEMO reference model. 

As it is possible to see in Table 4.6 and in Figure 4.16, the released power depends on the number of 

cosine or angle bins selected. For instance, for a single bin the difference between the power in HCPB 

DEMO reference model and HCPB slice can reach ~20% with a strong underestimation of the local model.  

Increasing the number of bin divisions, the error reduces considerably reaching a flat to at 10 

subdivisions. Practically, after 10 bins, no differences can be appreciated between the angle and cosine 
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distributions. This is a clear indication that the subdivision in 10 cosine bins, already used in the previous 

analyses, represents a good choice in terms of discretisation, fidelity of the results obtained for the reference 

model and computational effort. Indeed, although with 20 or 30 bin division, the error slightly reduces, the 

calculation time of the source sample increases considerably.  

Table 4.6. Power deposition on HCPB slice and error with respect to the OB4 HCPB DEMO reference 

model as function of angle and cosine bin discretisation. 

Bin 

N° 

HCPB 

DEMO 

Power [W] 

Cos. 

Distribution 

Power [W] 

Ang. 

Distribution 

Power [W] 

Cos. Distribution  

Error 

Ang. Distribution 

Error 

1 

75526.10 

63022.8 -19.84% 

2 73503.68 71769.7 -2.68% -4.97% 

5 74929.07 74712.73 -0.79% -1.08% 

10 75157.27 75101.38 -0.49% -0.56% 

20 75211.71 75189.52 -0.42% -0.45% 

30 75221.30 75219.13 -0.40% -0.41% 

  

Figure 4.16. Power deposition on HCPB slice as function of angle and cosine bin discretisation. 

4.2 Consistency Verification of MAIA Thermal-Hydraulic Model 

After the consistency verification of the neutronic boundary conditions and local sources of MAIA 

procedure, the attention has been focused to thermal symmetry conditions used in thermal-hydraulic 

calculations. 
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(ii) asymmetries in the power deposition nearby; and  

(iii) anomalous mass flow rate distributions due to the asymmetries in the released power or due to 

not optimised thermal-hydraulic circuit. 

The first contribution can be neglected by design. Indeed, each unit (e.g. slice, BU) within a module is 
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The second contribution has been already estimated in the previous paragraph and the power deposition 

variation can be found in Table 4.4 for the equatorial slice and Table 4.5 for the slices near the top and 

bottom caps. 

The third contribution can be assessed considering two aspects:  

(i) if an optimised design is already achieved, the mass flow rates in the neighbouring slices follow 

the variations related to the deposited power. In general, marginal power differences could also 

lead to different gas/fluid expansions and, hence, modify the flow distribution among the 

channels. However, this last effect can be neglected and assume integrated in the variations 

related to the deposited power;  

(ii) if the design has not been optimised, the mass flow rate distributions are those assessed by 

isothermal hydraulic analyses and related to the thermal hydraulic resistances of the circuits. 

This last aspect has not been assessed as far and, for this reason, it will be addressed in the following. 

The approach, used for the determination of the mass flow rate distribution due to the hydraulic 

resistances, takes inspirations from the methodology used to perform thermal-hydraulic analysis in fission 

reactors with the use of System Code such as RELAP [95].  

Indeed, it is common for the system analysis of fission reactors to nodalise part of the circuit with few 

control volumes on which an ad-hoc thermal-hydraulic characteristic is applied for simulating the 

behaviour of more complex components and for saving calculation time.  

Practically, by means of a function (usually referred to the pressure drop vs mass flow rate), the average 

behaviour of a complex component is taken into account and the overall system can be studied in a 

simplified and reliable way. Therefore, for estimating the mass flow rate distribution in a HCPB BB 

segment, the following steps have been performed: 

1. Investigation of the characteristic function p(G) of the HCPB slice coolant circuit which 

expresses the functional dependence of the pressure drop across the circuit, p, from the flow 

rate G that crosses it. 

2. Study of mass flow rate distribution in a full segment of HCPB using the real model of inlet and 

outlet manifolds as well as a porous media model for simulating each HCPB slice in which the 

hydraulic characteristic function is applied [96]. 

For the first step, the following procedure is adopted: 

a) The thermodynamic conditions of the component's incoming coolant inp  and 
inT  are set (the 

inT  used in this analysis corresponds to the mean of the HCPB operational temperatures, 

namely 400 °C).  

b) A series of outlet pressures is defined, out
ip  with 1...i N , such that   1..  out in

ip p i N . 

c) The total mass flow iG , induced by the pressure difference considered, is determined by 

means of suitable theoretical and computational analyses,   1..    in out
i ip p p i N . 

d) The characteristic function  p G  is deduced, by means of the numerical interpolation of the 

obtained N pairs  ,i iG p . 

e) The pressure resistance loss coefficient  K v  calculated as a function of the velocity (v) is, 

then, deduced by means of numerical interpolation of the obtained N pairs  ,i iv K . 

The characteristic curves are approximated by means of the following functional expression 
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    bp G aG , (4.2) 

where a and b are coefficients determined according to the fourth step d). 

From (4.2) the linear resistance loss coefficient is easily obtained as follows: 

 2 22 


bK A aG

L L
, (4.3) 

where  is the fluid density, A is the area on which the variables are evaluated and L is the characteristic 

length of circuit on which the thermal-hydraulic characteristic  p G  is calculated. 

Eq. (4.3), with few passages, can be written as 

 


K
v

L
, (4.4) 

where  and  are the coefficients determined according to the fifth step e) and equal to 
12 b ba A

L


 and 

2  b , respectively. 

In order to perform the first step for the determination of the thermal-hydraulic characteristics reported 

in eq. (4.2) and eq. (4.4), a dedicated model of HCPB slice cooling circuit has been set up (Figure 4.17 - a).  

Tetrahedral elements are adopted taking into account the geometrical features of the domains to be 

meshed and the required optimization of the number of nodes and mesh quality. The mesh is composed of 

~17.1E+06 nodes linked in ~7.5E+06 elements with an orthogonal quality average of 0.643 and skewness 

average of 0.356. A number of 10 inflation layers has been used with first layer height of 5.5E-05 m and a 

growth rate of 1.2. The mesh is shown in Figure 4.17 - a. For the calculation of hydraulic characteristic, an 

average temperature of 400 °C has been assumed and the mass flow rate has been ranged from 0.01 kg/s to 

0.1 kg/s subdivided in 10 bins (the nominal mass flow rate for each HCPB slice loop is 0.046072 kg/s [28]). 

The surfaces on which the pressure drops have been calculated are shown in Figure 4.17 – b and c, while the 

characteristic functions  p G  and  K v  are reported in Figure 4.18 and Figure 4.19. 

  

Figure 4.17. HCPB slice cooling circuit with detail of mesh and planes for the determination of pressure drops. Left (a): HCPB slice 

cooling circuit and detail of mesh inflation layers. Right-top (b): inlet FW circuit plane. Right-bottom (c): outlet CP circuit plane. 
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After the assessment of thermal-hydraulic characteristic on the HCPB slice cooling circuit, the second 

step has been aimed to the calculation of the mass flow rates in each CP. For investigating the variation that 

occurs between neighbouring slices, it has been decided to study the overall behaviour of the HCPB OB 

segment loop as shown in Figure 4.20. 

  

Figure 4.18. p(G) characteristic function and interpolation equation. 

  

Figure 4.19. (v) characteristic function and interpolation equation. 

The model consists of the inlet and outlet manifold fluid domains (details 1-b and 1-c of Figure 4.20) 

and the porous model representing the slices of each OB module (details 1-a, 2-a and 3-a of Figure 4.20). 

Practically, the C-shaped porous domain is a simplification of the CP cooling circuit shown Figure 1.4 – d 

on which the K(v) characteristic function has been applied for reproducing the hydraulic behaviour of a 

complete slice (FW + CPs). The dependency of the resistance loss coefficient allows to estimate the 

pressure drop according to the local velocity field and taking into account the effect of the adjacent slices. 

Using this technique, the overall OB segment can be studied as a unique cooling circuit considering the 

impact of the 419 slices. A mesh independency analysis has been performed for the finite volume model to 

select optimized spatial discretization allowing accurate results and saving calculation time. Three meshes 

with 30, 60 and 90 millions of elements have been set-up. The conditions to assess the achievement of 

convergence, which allows to interrupt the steady state calculation, are three: 

 residual RMS error values are below an acceptable value, i.e. 10-5; 

 monitor points for selected parameters of interest (e.g. pressure drop, channel mass flow 
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distributions) achieve steady solutions; 

 mass, momentum and energy imbalances are less than 1% in the entire domain. 

  

Figure 4.20. Model of a parallel coolant loop of the HCPB BSS manifold piping with the entire CP represented by means of the 

porous model. Left (a): inlet and outlet manifold with porous model simulating the FW and CP channels. Left-top (1-a, 2-a and 3-a): 

details of the porous domain. Centre (b): inlet manifold domain. Centre-top (1-b): detail of the inlet manifold and FW inlet 

channels. Right (c): outlet manifold domain. Right-bottom (1-c): detail of CP outlet manifold. 

The pressure drop has been used as parameter for the mesh independence grid. The pressure drop 

reduces going from 30 to 90 million of elements reaching a minimum variation of 2.3% when the number is 

increased from 60 to 90 million. In order to better estimate the pressure drop, the latter has been selected. In 

particular, tetrahedral elements are adopted taking into account the geometrical features of the domains to 

be meshed and the required optimization of the number of nodes and mesh quality. A conformal mesh (i.e. 

each node on the interface side matches with the nodes on the other side) between the different domains has 

been set-up. The mesh is composed of 32.7E+06 nodes linked in 91.9E+06 elements with an orthogonal 

quality average of 0.701 and skewness average of 0.287. A number of 8 inflation layers has been used with 

first layer height of 2.0E-05 m and a growth rate of 1.6. The mesh is shown in Figure 4.21. 

  

Figure 4.21. Mesh of a parallel coolant loop of the HCPB BSS manifold piping with all the CP represented by means of the porous 

model. 
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The coolant flow has been simulated as an isothermal fluid domain with a reference pressure of 8 MPa 

and a domain temperature of 400 °C. At the inlet boundary of this fluid domain (Figure 4.20), which 

corresponds to the DN250 OB segment inlet pipe, a relative pressure of 0 Pa has been set. At the outlet, a 

total mass flow of 17.6 kg/s, corresponding to the half of the total OB segment mass flow has been set [28].  

The resistance loss coefficient function has been applied to the porous domain and He gas properties 

have been given to the fluid domain. The mass flow rate distribution is shown in Figure 4.22. The maximum 

mass flow rate (0.04242 kg/s) is reached in the first slice of OB3 (the numeration of slices goes from the top 

to the bottom). While the minimum mass flow rate (0.04105 kg/s) is obtained in slice 52 and 53 of OB7.  

The maximum and minimum variation of the mass flow rate of adjacent slices has been calculated as the 

error between the mass flow rate in a slice and the next one. It has been found a variation ranged between 

-1.295 % and the 0.553 %. An overall pressure drop of 1.58 bar has been also evaluated. 

  

Figure 4.22. Mass flow rate distribution for each module of the OB segment. 

The calculated mass flow distribution variation together with the deposited power ones are used for the 

adequateness verification of the symmetry conditions as discussed in the following. 

4.2.1 Adequateness of Boundary Conditions 

The variations, encountered on the power deposition as well as on the mass flow rate distribution, define 

the ranges that a slice within the HCPB BB may face with respect to the neighbouring ones. Therefore, they 

can be used to define study cases for the consistency verification of the symmetry conditions. For this 

reason, two CFD models have been set-up. One composed of three adjacent HCPB slices entirely 

simulated, and one composed of only one HCPB slice where the symmetry conditions are applied on the 

radial-toroidal surfaces located to the top and bottom of the domain. The scope is to test that the temperature 

field calculated on the central domain of the 3-slices model is similar to the one calculated in the more 

simplified model, verifying the applicability of the symmetry conditions (Figure 4.23).  

For the model with 3-slices, hexahedral and tetrahedral elements are adopted taking into account the 

geometrical features of the domains to be meshed and the required optimization of the number of nodes and 

mesh quality. A conformal mesh between the different domains has been set-up. The mesh is composed of 

16.3E+06 nodes linked in 56.7E+06 of elements with an orthogonal quality average of 0.711 and skewness 

average of 0.281. A number of 8 inflation layers has been used with first layer height of 2.0E-05 m and a 

growth rate of 1.2. The mesh is shown in Figure 4.23.  

The 1-slice model on which symmetry conditions are applied has the same mesh of the central slice 

(5.4E+06 of nodes and 18.6E+06 of element) in order to allow a comparison node-by-node of the 

temperature field between the two models. 
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From the power deposition variation reported in Table 4.4 and Table 4.5 and from the mass flow rate 

distribution fluctuation calculated on the HCPB segment, 7 cases have been identified for the verification of 

symmetry conditions: 

 Case 0. The three slices experience the same nominal power density and mass flow rates; 

 Case 1. It is assumed that the 3 slices are located in the equatorial region of the OB4, therefore 

the fluctuations reported in Table 4.4 are applied to the up and down slice with respect to the 

central one where nominal power density is assumed. The mass flow rate in each slice, imposed 

as an outlet flow, is derived by the local power balance. 

 Case 2. Same fluctuations on nuclear heating of Case 1. Minimum variation (-1.295 %) of mass 

flow rate applied to the up-slice and maximum (0.553 %) on the down-slice. 

 Case 3. Same fluctuations on nuclear heating of Case 1. Minimum variation (-1.295 %) of mass 

flow rate applied to the down-slice and maximum (0.553 %) on the up-slice. 

 Case 4. It is assumed that the 3 slices are located near the cap of the OB4, therefore the 

fluctuations reported in Table 4.5 are applied to the up and down slice with respect to the central 

one where nominal power density is assumed. The mass flow rate in each slice, imposed as an 

outlet flow, is derived by the local power balance. 

 Case 5. Same fluctuations on nuclear heating of Case 3. Minimum variation (-1.295 %) of mass 

flow rate applied to the up-slice and maximum (0.553 %) on the down-slice. 

 Case 6. Same fluctuations on nuclear heating of Case 3. Minimum variation (-1.295 %) of mass 

flow rate applied to the down-slice and maximum (0.553 %) on the up-slice. 

According to the identified cases, a uniform average power density, calculated from neutronic 

calculations (paragraph 4.1), has been set-up for each slice region as reported in Appendix 9.4. 

  

Figure 4.23. Geometry and mesh details of the 3-slice HCPB model and of the 1-slice HCPB used for the consistency verification of 

symmetry boundary conditions. Central (a): 3-slice HCPB model. Bottom (1-a): mesh detail of the BSS and FW side wall. Top 

(2-a): mesh detail of the BSS and inlet/outlet channels. Top (3-a): conformal mesh detail between inlet FW channel and BSS 

structure. Central (b): 1-slice HCPB model. Bottom (1-b): mesh detail of the BSS and FW side wall for 1-slice HCPB model.  
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A normal heat flux calculated by multiplying the nominal heat flux value of 0.5 MW/m2 [26, 30] for the 

cosine of the angle between the radial and the surface normal directions for the OB4 has been also applied. 

The 7 cases have been compared with the 1-slice model with symmetry conditions where the nominal 

power density and mass flow rate is set-up.  

The first comparison has been conducted with the Case 0 (Figure 4.24). The deviation in the temperature 

field between the central slice of the 3-slice model and the 1-slice model with thermal symmetry conditions 

has been calculated.  

The node-by-node error temperature is limited between ±1.2 % with a peak around 0. As expected, this 

is a demonstration that the symmetry conditions work properly when a symmetric load is applied nearby the 

domain of investigation. More in general, this outcome provides a reference for the comparison of the other 

6 cases. 

Indeed, analysing all the results, the cases 4 and 5 have shown the maximum error on temperature fields 

as reported in Figure 4.25. Even if the variation of the local power density can reach the ~11% (in the 

Li4SiO4 according to the Table 4.5), the maximum temperature error between the single slice with 

symmetry conditions and the cases 4 and 5 does not exceed the 2.4 % and the 2.0 %, respectively.  

Case 4, although the mass flow rate from the local power balance is applied, shows a biggest deviation 

spread with with respect to the reference case 0 as confirmed by the different slope of the cumulative curves 

(in blue for the Case 0 and green for the Case 4, Figure 4.25). This effect is due to the maximisation of heat 

flux toward the coolant that produces biggest gradients as it is possible to see in the left tail of the green 

probability distribution reported in Figure 4.25.  

In the case 5, the highest power deposition (up-slice with 5.95% higher power than the central one, 

Table 4.5) together with the minim variation of the mass flow rate (-1.295 %) produce an asymmetric error 

with the tail of the distribution shifted towards the 2 %. 

In conclusion, the results show a limited variation to few percent of the temperature field when variation 

on power and mass flow rate are considered.  

From a thermal-hydraulic point of view, these fluctuations seem to be acceptable and the applicability of 

symmetry condition guaranteed also when an overall power deposition variation of 5.95 % is assumed. 

However, from a thermo-mechanical point of view, the temperature fluctuation could produce the creation 

of secondary stresses. For this reason, the conclusions on the impact of these variations are postponed to the 

mechanical analysis. 

  

Figure 4.24. Statistical distribution of the error on temperature field between the Case 0 and the slice with symmetry boundary 

conditions. 
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Figure 4.25. Statistical distribution of the errors on temperature fields between the Case 0, 4 and 5 in comparison to the single slice 

with symmetry boundary conditions. 

4.2.2 Sensitivity Analysis of Symmetry Conditions 

Once the adequateness of symmetry conditions have been demonstrated from a thermal-hydraulic point 

of view, some efforts have been dedicated to the sensitivity analysis of symmetry conditions due to 

statistical variation of power density and mass flow rate. 

The scope is to investigate the maximum statistical variation of volumetric heating and mass flow rate 

such that the null hypothesis of null heat flux to the boundaries (i.e. symmetry) is respected. Indeed, the 

significance of an input parameter with respect to the output one can be determined by means of statistical 

hypothesis test.  

In this test, it is assumed a null hypothesis of insignificance and it is verified whether, from a statistical 

point of view, it is true with respect to significance level selected by the user. In order to perform this 

hypothesis test, a probability value (p-value) has to be calculated and compared with the significance level. 

If it is greater than the significance level, it means that the null hypothesis is true and the input and output 

parameters are insignificant to each other. 

In order to perform this study, the CFD model with 3 adjacent slices has been used (Figure 4.26 - a). 

On this thermal fluid dynamic system composed of three slices, different mass flow rates and power 

densities have been applied.  

In particular, the nominal volumetric heating and mass flow rate have been applied to the central slice. 

While, on the neighbouring up and down slices, four coefficients (aUP, bDOWN, cUP and dDOWN), distributed 

following a normal distribution with a standard deviation of 0.06 (Figure 4.26 - b) have been multiplied to 

the nominal power density and mass flow (Figure 4.26). In this way, it has been possible to variate 

independently according to a normal distribution all the main parameters that affect the thermal symmetry 

condition. The value of the standard deviation has been selected in accordance to the overall power 

deposition variation calculated in Table 4.5 with the aim to test the null hypothesis on the heat flux through 

the boundary conditions. The coefficients aUP, bDOWN, cUP and dDOWN have been introduced in ANSYS CFX 

as parameters [59] and their distribution ranged in 201 bins.  

Variating these coefficients according to their distribution, a probabilistic analysis by means of Design 

of Experiments (DoE) has been carried out for each stochastic input to obtain a set of design points used for 

building a response surface.  

This probabilistic approach replaces the finite volume model and allows the estimation of user defined 

outcomes using an appropriate response function. 
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Figure 4.26. Normal distribution applied to the coefficients multiplying the nominal values for the up and down slices. Left (a): 

schematic view of three adjacent slices and loads applied. Right (b): normal distribution of multiplying coefficients. 

In this way, it has been possible to assess the statistical distributions of the heat flux at the boundaries of 

the central slice according to the variations imposed to the neighbouring slices. The probabilistic functions 

of the heat fluxes in different regions of the central slice boundaries are reported in Appendix 9.5. 

It has to be noted that the use of different coefficients both for the power densities and mass flow rates 

and both for the up and down slices represent a more stringent condition because of the magnitude of the 

variation and the contingency of their application that could occur in with different combinations. 

In order to verify that the symmetry conditions are valid for variation of volumetric heating and mass 

flow rates following a normal distribution with a standard deviation of 0.06, it has been decided to apply the 

t-test for one sample. The t-test is used here to compare the mean of sample data with a known value in 

order to verify if the mean is significantly different or not from a hypothesized value [97, 98], which in this 

case is 0, meaning that the sample data is hypothesized (so-called null hypothesis) to belong to an original 

population of mean 0 and standard deviation 0.06. In this way, if the p-value of the t-test is statistically 

not-significant, it will be inferred that the symmetry conditions are valid. This procedure works for spaces 

(e.g., in our case, power and mass flow rate), which have steady, differentiable and smooth solutions, 

containing no bifurcations or instability. The matching of t-test confirms that there is not any response 

amplification showing the robustness of the hypothesis. 

The application of the t-test involves four steps: 

1. Definition of null (0) and alternative (a) hypotheses; 

2. Calculation of the t-value according to the following formula: 
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, (4.5) 

where x  is the mean value of the sample, σ  is the sample standard deviation and n is the size 

of the samples. 

3. Identification of the p-value for given confidence and degree of freedom (DOF). The DOF are 

defined as n-1; 

4. Comparison between the t-value and p-value for the accepting (-p < t < p) or rejecting (t < -p or 

t > p) the null hypothesis. 

Concerning the first step, for the symmetry conditions, the null hypothesis correspond to the null heat 

flux at the boundaries, so q’’ = 0 and then 0 = 0. Regarding the second step, the sample mean and standard 

deviation have been calculated as reported in Appendix 9.5 while the size of samples corresponds to the 

number of design points (real CFD calculations) used to build the response surface and it is equal to 15. For 

a selected confidence level of 95 % and DOF of 14, the corresponded p-value is 2.145 according to [99]. 

Therefore, the results of the t-test application can be found in Table 4.7 
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Table 4.7. T-test for symmetry condition sensitivity analysis. 

Output Parameters Mean 
Standard  

Deviation 

Null  

Hypothesis 
T-Value T-Test 

P23 - Flux BSS DOWN [W m-2] -1.27E+00 4.84E+02 0 -0.01 TRUE 

P24 - Flux BSS UP [W m-2] 7.82E-01 4.66E+02 0 0.01 TRUE 

P25 - Flux Be [W m-2] 1.50E-08 8.50E-08 0 0.66 TRUE 

P26 - Flux FW DOWN [W m-2] 1.26E+03 3.70E+03 0 1.27 TRUE 

P27 - Flux FW UP [W m-2] 7.11E+01 3.36E+03 0 0.08 TRUE 

P28 - Flux Li [W m-2] 5.72E-08 1.02E-07 0 2.10 TRUE 

P29 - Flux W DOWN [W m-2] -3.55E+03 1.84E+04 0 -0.72 TRUE 

P30 - Flux W UP [W m-2] 1.38E+03 1.82E+04 0 0.28 TRUE 

The results of the t-test reveal that symmetry conditions, for applied loads on the adjacent slices with a 

standard variation of 6 %, are substantially valid on a confidence level of 95%.  

4.3 Consistency Verification of MAIA Thermo-Mechanical Model 

The last consistency verification carried out regards to the MAIA thermo-mechanical boundary 

conditions to be applied in the local models for the simulation of the missing BB parts.  

The aim is to find a set of boundary conditions that well approximate the mechanical behaviour of a BB 

segment and that are able to provide a sufficiently correct estimation of the displacements as well as of 

stresses. For these reasons, two main methodologies have been followed. The first aimed to the 

determination of the correct poloidal condition (Plane Strain, PS, or Generalised Plane Strain, GPS) taking 

into account different domain nodalisations (uniform or castellated tungsten) as well as different 

temperature fields (uniform or radial gradient temperature). The detailed explanation can be found in 

paragraph 4.3.1. The second aimed to the investigation of the sensitivity to variations of temperature fields. 

This last step continues the study of the propagation of uncertainties on power densities and mass flow rates 

calculated in the preceding paragraphs. The detailed explanation is reported in paragraph 4.3.2. 

4.3.1 Consistency Check of Boundary Conditions 

In order to perform the consistency verification of boundary conditions described in paragraphs 2.3.1 

and 3.5.2, two models have been created. One represents the entire module of the HCPB BB and it is 

assumed as reference model for comparison. The second one is the local model of an equatorial slice on 

which the boundary conditions are applied. In Figure 4.27, the two models used in this consistency check 

are shown. 

The module of HCPB has been selected as reference for two main reasons:  

(i) in the multi-module approach, it represents a mechanical unit repeated to form a segment, and 

(ii) it minimises the computational effort maintaining a quasi-heterogeneous nodalisation.  

Regarding the second aspect, the selection of HCPB module as reference allows to have a full model 

where the main characteristics such as the FW and armour structure (their feature have been maintained 

except for the channel within the FW), the 62 CPs [28] (the cooling and purge gas channels have been 

homogenised within the each CP) and the real structure of caps (Figure 4.27-a), BP and BSS are 

represented. In this way, the main features of the HCPB module have been nodalised without increasing 

excessively the computational effort. The tungsten armour has been also included in the models because of 

the stress that can arise due to the different thermal expansion with respect to the Eurofer. The materials 

have been considered homogeneous, uniform and isotropic and their thermo-mechanical properties have 

been assumed to depend uniquely on the temperature as indicated in [100, 101]. 
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Figure 4.27. HCPB module and slice thermo-mechanical models. Centre (a): thermo-mechanical reference model of HCPB OB4 

module. Left-top (1-a): internal Cap mesh detail. Left-centre (2-a): CAP mesh detail. Left-bottom (3-a): FW mesh detail. Centre 

(b): thermo-mechanical local model of HCPB slice used for consistency check of boundary conditions. Right-top (1-b): BP and 

BSS mesh detail. Right-bottom (2-b): FW mesh detail. Right-centre (3-b): CPs mesh detail. 

Due to the geometrical features of the domains to be meshed, in order to optimise number of nodes and 

mesh quality, both tetrahedral (for the cap regions) and hexahedral elements have been adopted and, in 

particular, as to HCPB module model (Figure 4.27-a), a mesh composed of ~24.6E+06 nodes connected in 

~6.7E+06 elements has been selected, while, concerning the HCPB slice model (Figure 4.27-b), a mesh 

composed of ~2.5E+06 nodes connected in ~5.4E+05 elements has been taken into account. 

In order to simulate the mechanical action of the attachment system of both models, the displacements in 

the radial and toroidal direction have been constrained for those nodes lying on the B-C and A-D edges of 

Figure 4.28, respectively.  

A symmetry condition is applied at the lower cut surface of both models allowing here only 

displacements on the radial-toroidal plane (Figure 4.28). In the upper cut surface, for the HCPB reference 

module model, a PS has been imposed on the BSS (red surface of Figure 4.28-a) in order to simulate the rest 

of segment that has not been simulated.  

The PS condition can be applied to the HCPB module because of the uniform temperature and, thus, 

uniform plane deformation to which the BSS is subjected according to the design calculations [26, 28]. For 

the HCPB slice, the application of PS or GPS has been investigated (yellow surface of Figure 4.28-b). In 

order to better understand the impact on the displacements, a uniform temperature of 550 °C has been 

assumed as first approximation.  

In this way, it has been possible to simplify the problem considering a thermal expansion mainly driven 

by the thermo-physical properties of materials as well as of geometric characteristics. In the second set of 

analysis, this assumption has been changed and a radial profile of temperature has been used as described in 

the following. 

Once the reference model has been set up, several combinations of boundary conditions have been 

investigated. In particular, for the first set of analyses, it has been assumed: 

 uniform armour plate for the reference HCPB module model (i.e. armour is not castellated); 

 uniform temperature of 550 °C for both HCPB module and slice; 
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 PS applied to the structure and armour (Figure 4.29-a) and only to the structure (Figure 4.29-b); 

 GPS applied to the structure and armour (Figure 4.29-c) and two different for structure and 

armour (Figure 4.29-d); 

  

Figure 4.28. Thermo-mechanical boundary conditions for the HCPB module and slice. Left (a): HCPB reference module model 

with conditions on nodes lying on the BSS and on the top and bottom surfaces. Right (b): HCPB slice model with conditions on 

poloidal and toroidal nodes of the BSS and in the bottom and up surfaces. 

It has to be noted that two PS condition cannot be applied on the same nodes, and, for this reason, the 

armour of Figure 4.29-b) is without boundary conditions and free to expand according to its 

thermo-physical properties. 

Using the conditions introduced above and for the cases identified, the effects of PS and GPS on the 

displacements of the local model (i.e. HCPB slice) have been investigated and compared with the ones 

calculated in the reference model (i.e. HCPB module).  

The variables investigated are the deformations that allow an "immediate" feedback on the response to 

the different constraints. The results for each case, in terms of percentage deviation of the local model with 

respect to the reference one, are collected in the histograms shown in Figure 4.30 and Figure 4.31.  

  

Figure 4.29. Boundary conditions applied to the local model of HCPB slice. Left-top (a): PS on the whole structure and armour. 

Right-top (b): PS on the structure. Left-bottom (c): GPS condition on structure and armour. Right-bottom (d): different GPS for 

structure and armour. 
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Looking to the deviations on radial and toroidal directions (i.e. X and Z, respectively) (Figure 4.30), it 

seems that no particular differences can be highlighted between the four cases. Indeed, concerning the two 

cases with PS conditions, the errors are mostly concentrated between ±3 % while for the two cases with 

GPS condition between ±2 %. For all the cases, only a minority (less than 5% of the total number of nodes) 

shows errors up to -10%. This effect is localised in the BSS nearby the restraint conditions on the nodes. In 

this zone, indeed, the displacements are very low (approaching to zero), due to the prevention of the 

movements in the radial and toroidal direction, and so the errors are higher. 

  

Figure 4.30. Error density distribution and cumulative curve for the displacement along the radial (X) and toroidal (Z) directions for 

the four local models with different PS and GPS conditions. 

However, analysing the errors obtained along the poloidal (Y) direction (Figure 4.31), it is possible to 

observe that the PS conditions produce errors higher than 10% (Figure 4.31-a and b), while the two cases 

with GPS embed the errors between the -6 % and the 4 % (Figure 4.31-c and d). In Figure 4.32, the contour 

map of the error on the poloidal displacement, for the four cases analysed, is reported.  

From Figure 4.32 – a) and b), it is possible to note that the PS produces high errors in the FW zone. This 

is due to the presence of tungsten that imposes to the first centimetres of FW a different displacement driven 

by its thermal expansion.  

In other words, the PS conditions do not reproduce correctly the displacements given by the differential 

thermal expansion between Eurofer and tungsten. Indeed, due to the uniform temperature, the most massive 

BSS drives the dilatation of the entire module and the applicability of PS conditions on the local HCPB 

slice model seems controversial. On the other side, the GPS conditions allow a better estimation of the 

poloidal displacement in the local models with respect to the reference one (Figure 4.32 – c and d). 

Moreover, the error on the poloidal displacement is almost completely enveloped between ±5 % 

demonstrating the better applicability of GPS with respect to the PS conditions. 
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Figure 4.31. Error density distribution and cumulative curve for the displacement along the poloidal (Y) direction for the four local 

models with different PS and GPS conditions. 

  

Figure 4.32. Error contour map of the errors on the poloidal displacements for the four cases with different PS and GPS conditions.  
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In general, this first set of analysis demonstrate also that the presence of tungsten in the 

thermo-mechanical model produce local effects on the displacements that could affect the correctness of 

results according to the boundary conditions applied. For this reason, it has been decided to further 

investigate the answer of the local model on which a GPS is applied with respect to reference HCPB 

module model with castellated armour.  

The assumption of castellated tungsten is justified by the inherent unstable nature of armour surface that, 

for the temperatures and loads faced under operation, goes to deep cracking (i.e. due to the brittle nature of 

tungsten is unlikely to have a unique mono-block layer and for this reason a castellation is also taken in 

account in the design of BB) [102].  

A dedicated model has been created to take into account a castellated armour surface (Figure 4.33-a). In 

this model, the tungsten has not been bonded in the poloidal direction as shown in Figure 4.33-b.  

In the local model, the GPS condition has been applied only to the structure as reported in Figure 4.33-c. 

 

Figure 4.33. HCPB reference module model with castellated tungsten and schematic representation of the reference and local 

model. Left (a): poloidal castellation of the reference model. Right (b): schematic view of reference HCPB module model with 

tungsten not bonded in the poloidal direction. Right (c): local HCPB slice model with GPS applied on the structure. 

Using the model reported in Figure 4.33-b and c, a comparison between the local model with GPS on the 

structure and the reference model with castellated tungsten has been carried out. 

The results, shown in Figure 4.34, demonstrate that also in this configuration the boundary conditions 

applied on the local model reproduce faithfully the displacement encountered in the reference module 

model. It is interesting to note that errors higher than 10 % (Figure 4.34-b) are met at the nodes between the 

tungsten and Eurofer where a discontinuity in the boundary conditions as well as in the thermal expansions 

occurs (Figure 4.34-d).  

However, these variations are negligible and localised to the interfacing nodes between the tungsten and 

Eurofer. Therefore, it is possible to conclude that a good agreement in terms of displacements is achieved 

when the GPS condition is applied to the local models also in case of castellated tungsten of the armour 

surface. 
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Figure 4.34. Error density distributions and cumulative curves of displacement in X, Y and Z directions. Left-top (a): error 

histogram of local model with respect to the reference one with castellated tungsten for X and Z directions. Right-top (b): error 

distribution of local model with respect to the reference one with castellated tungsten for Y direction. Left-bottom (c): poloidal 

relative displacement in the reference HCPB module model with castellated tungsten. Right-bottom (d): contour map of the 

poloidal displacement error between the local model with GPS condition on structure and reference model. 

Until now, all the investigations have considered a uniform temperature distribution both for the 

reference and local models and the GPS have been selected as the best condition for approximating the 

behaviour of reference model with a local one. However, the BB, during its operation, experiences 

temperature gradients that, as first assumption, are mainly distributed along the radial direction.  

For this reason, the applicability of the GPS condition has been also tested when a radial temperature 

distribution is applied both in the reference and local models. 

Therefore, a castellated module model with linear temperature profile that from the FW at 550 °C goes 

down to 300 °C at the BP and remains constant at 300 °C in the BSS has been set-up. The same temperature 

distribution has been applied to the HCPB slice model with GPS only on the structure. This profile has been 

selected in accordance to the design calculations reported in [26, 28] that show a BSS at the uniform 

temperature of 300 °C and almost linear increment up to 550 °C at the FW. 

The displacement error results are reported in Figure 4.35. It is possible to note that, when a temperature 

profile is applied, the errors on the local model near the node restraints increase up to ±20 % in the radial 

direction (Figure 4.35 – a and d). Indeed, the displacements of the nodes on the BSS lying in the toroidal 

direction are prevented with respect to the radial direction. This means that the neighbouring nodes are 

strongly affected by the costraints and the displacements are very small. This produces big oscillation 

around zero and so highest errors. In general, it is possible to see that the errors in the entire slice are 

comprised between ±5 % (Figure 4.35 – d). Regarding the toroidal direction, the displacements are 

completely enveloped between ±4 % with tails up to ±12 % in the middle where the displacements 

approach to zero (Figure 4.35 – a). Concerning the poloidal displacements, the variation between the 

reference and local model are comprised between -16% and 20 % (Figure 4.35 – b). The highest errors are 

near the FW bends and in the centre-back of the BSS where the restraints are applied.  
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In general, also when a temperature profile is considered, the GPS condition is able to approximate the 

behaviour of the reference model in terms of displacement although largest variations are encountered.  

 

Figure 4.35. Displacement error comparison when a temperature profile is applied. Left-top (a): error density and cumulative curve 

for displacements along X and Z directions. Right-top (b): error density and cumulative curve for displacement along Y direction. 

Left-centre (c): reference displacements along X direction. Right-centre (d): contour map of the error along X direction. 

Left-bottom (e): reference displacements along Y direction. Right-bottom (f): contour map of the error along Y direction.  

Until now, all the studies have been devoted to the verification of displacements comparing the results of 

the local model with the ones of the reference model. This approach has been justified also by the selection 

of the boundary conditions under investigation that, practically, act directly on the displacements of the 

nodes on the boundaries. 

However, in thermo-mechanical analysis, in addition to the displacements, the stresses are also 

calculated and they are, then, compared with the design criteria of C&S. 

Furthermore, it is possible to identify two “classes” of stress, namely primary and secondary.  

Primary stresses (indicated with P) arise from the application of mechanical loads (e.g. pressure) and 

satisfy the force and moment equilibrium. They are not self-limiting and usually are also defined as load 

controlled stresses because, for an increasing mechanical load, they will continue to increase in direct 

proportion to the applied mechanical load until the failure of the component. Secondary stresses (indicated 

with Q) arise from geometric discontinuities due to the application of thermal loads (e.g. temperature) or, 

more in general, due to loads inducing volumetric deformations (e.g. swelling). They are also defined as 
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self-limiting stresses, because, once the yield point is reached locally, there is not anymore a direct 

relationship between the load and the stress [103]. 

For both primary and secondary stress, it is possible to evaluate a stress tensor as function of space and 

time (see eq. (2.41)) and define the normal and shear stresses. 

In the next, the discussion will focus on the secondary stress because, so far, only thermal loads in terms 

of temperatures have been taken into account for the consistency check of MAIA thermo-mechanical 

boundary conditions. Later on, the primary stress will be also investigated. 

Using the castellated reference model with a radial temperature profile of the HCPB module and the 

local model of the HCPB slice with GPS on the structure, it has been calculated the unaveraged (i.e. 

assessed on ipn without to apply any interpolation as well as shape function) stress field for each normal 

and shear tensor component for both models. These have then been compared one-by-one with the stress 

tensor component evaluated on the reference HCPB module and the results, in terms of errors, have been 

reported on histograms of Figure 4.36.  

It has to be noted that each stress tensor component presents a wide number of nodes where the values 

approach to zero (see Appendix 9.6, from Figure A.10 to Figure A.12). This produces big variation on small 

values hiding the errors related to the biggest stress value that, of course, are of highest interest. 

For this reason, in order to minimise the background noise given by big variation on small values, it has 

been decided to neglect the stresses comprised between ±10 MPa.  

The results, shown in Figure 4.36 for error of normal and shear stress tensor component, demonstrate a 

general agreement between the local and reference model with peaks almost comprised between ± 20%. 

However, looking better to the cumulative curve, it is possible to see that a not negligible fraction of 

variation reach higher errors. 

 

Figure 4.36. Error densities of normal and shear stress tensor components and cumulative curves. Left (a): histograms and 

cumulative curves of normal stress tensor. Right (b): histograms and cumulative curves of shear stress tensor. 

This aspect seems in contrast with the most promising results obtained on the displacements (see Figure 

4.35). However, two main arguments can be carried on for the understanding of these results:  

(i) the GPS conditions act directly on the displacements of the nodes lying on the boundaries; and  

(ii) the variation on the displacements along the three directions, although small, are summed 

through the strain-displacement equations (see (2.45)) and averaged through the Poisson 

module (see eq. (2.46) and (2.47)) producing a propagation of the error and, consequently, high 

errors on the stresses.  

For these reason, the histograms and contour map of the stress component errors provide only a rough 

estimation of the adequateness of the GPS conditions as well as of the conservatism of the obtained results 

with the local model. In order to exit from the impasse, it has been decided to use the procedure of stress 
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verification reported in C&S like RCC-MRx [104] and SDC-IC [105] currently used for the design of BB 

[106, 107].  

Indeed, the data obtained from the resolution of the thermo-mechanical problem cannot be directly used 

for the verification or design of the various components, due to the triaxial tension state that is established. 

To overcome this problem, the various regulations have used the so-called equivalent stress, determined by 

means of a resistance criterion (e.g. Von Mises, Tresca), and a procedure for classifying the stresses. The 

Von Mises formula for calculating the equivalent stress eq is reported in eq. (4.6) [104, 105] as follows 
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2 2 2 2 2 26
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xx yy yy zz zz xx xy yz zx

eq . 
(4.6) 

Moreover, regarding the stress classification, the C&S subdivides the primary and secondary stresses as 

follows [104, 105]: 

 General Membrane stress (Pm or Qm). They represent the average value in the stress section 

caused by loads in areas distant from discontinuity.  

 Local Membrane stress (PL of QL). They represent the average value in the section of the 

stresses always caused by external loads, but in correspondence with a discontinuity of the 

structure. 

 Bending stress (Pb or Qb). They are the variable component, in the section, of the stresses caused 

by external loads in areas far from discontinuities. 

 Peak stress (F). They are additional to the primary and secondary stresses and represent the 

stress concentration due to local discontinuities or localized thermal gradients. They do not 

cause significant structure distortions but are the most likely cause of fatigue failure. 

In order to calculate the above mentioned stresses, a line integration through the thickness of the single 

layer homogeneous structure is used. This line is defined as supporting line segment and it is perpendicular 

to the mid-surface of the structure and the length equals to the wall thickness (l).  

In Figure 4.37, the five supporting lines (i.e. paths), for the determination of the membrane and bending 

equivalent stresses, are shown.  

 

Figure 4.37. Supporting lines of paths identified for the determination of membrane and bending equivalent stresses in the reference 

and local models. 
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On those paths, the components of membrane and bending stress tensor have been calculated.  

The components of the membrane stress tensor,   ij m
, are defined as the mean value of the ij stresses, 

introduced in (2.41), along the path (l) considered [105] 

 

 
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2
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 



 

l

ij ijm
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dx
l

. (4.7) 

The components of the bending stress tensor,   ij b
, are defined as components varying linearly along 

the path and having the same bending moment of the stress tensor ij [105] 
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Using the path identified in Figure 4.37 and the definition of membrane and bending stresses reported in 

eq. (4.7) and (4.8), it has been possible to estimate the general membrane and bending secondary stress both 

for the reference HCPB module and for the local HCPB slice models.  

The membrane and bending component values for each path are reported in Appendix 9.6, from Table 

A.15 to Table A.19. In Table 4.8, the equivalent membrane and bending stresses, calculated according to 

eq. (4.6) for each path of HCPB module and slice, are shown. 

The equivalent membrane and bending stress calculated on the local model are over conservative except 

for the path4 where the stresses are slightly below the one calculated in the reference model. It is important 

to underline that, where the stress are very high (e.g. path1 and path2) the local model with GPS boundary 

conditions is always conservative with respect to the reference one.  

Furthermore, the equivalent stresses calculated in the BSS (path5) are several times higher in the HCPB 

slice with respect to the module. This is due to the proximity of boundary conditions in the back (restrained 

nodes) and in the bottom and top surface of the BSS (symmetry and GPS conditions).  

Moreover, it is important to note that the trends, in terms of variation from one path to another, are 

coherently reproduced in the local model. This means that MAIA can be used as a preliminary 

thermo-mechanical design tool because it allows to find the differences, in a reliable way, between different 

layouts and/or different load scenarios and, therefore, to be able to choose some solutions over others. 

In general, considering that the equivalent stresses are used for the verification of the design criteria 

reported in C&S, it is important to demonstrate that the results obtained with local model are conservative 

and the verification, then, of the local model ensure the verification of biggest models. 

The Table 4.8 provides also a first estimation of the accuracy on secondary equivalent membrane and 

bending stresses calculated in local models. 

Table 4.8. Equivalent membrane and bending secondary stress for each path of HCPB module and slice. 

Equiv. Stress  

(Von Mises) 

Module_Slice Slice_GPS_EU 
Membrane 

Error 

Bending 

Error 
Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Path1 286.93 48.65 382.23 50.06 -33.21% -2.90% 

Path2 305.16 49.32 363.59 49.93 -19.15% -1.24% 

Path3 78.28 9.98 116.39 13.05 -48.69% -30.82% 

Path4 66.31 4.75 59.88 4.57 9.69% 3.84% 

Path5 16.38 13.26 97.15 17.78 -493.08% -34.05% 
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The consistency verification, until now discussed, has demonstrated that the use of local model with the 

set of boundary conditions is conservative in terms of secondary equivalent stresses.  

The last step, for completing a consistency check of the thermo-mechanical boundary conditions and for 

providing a complete overview of all the aspects, involves the primary stresses. 

For the determination of this last contribution, a dedicated analysis has been carried out considering the 

over pressurisation load case [26]. In this load combination, it is assumed that, as a consequence of In-box 

LOCA (Loss Of Coolant Accident), the module BZ, where usually there is the purge gas at low pressure, is 

pressurised at 8 MPa. The decision to investigate this case is based on two considerations:  

(i) the module used until now as reference has homogenised CP so it is not possible to consider the 

internal pressure during a normal operation scenario; and  

(ii) the In-box LOCA represents one of the design driving load case currently used for the 

conception of BB. 

A dedicated reference model has been created imposing the boundary condition already used in the 

previous calculation and a pressure of 8 MPa for all the internal surfaces of the box (Figure 4.38-a). 

Regarding the local HCPB slice model, it has been used the set of boundary condition already verified 

for the secondary stresses (GPS on the up structure surface, symmetry on the bottom surface and node 

restraints at BSS) with the addition of two pressure load contributions.  

One pressure load (highlighted in red in Figure 4.38-b) is intended for simulating the In-box pressure 

that directly acts on the internal surfaces of the slices.  

The second one (highlighted in green in Figure 4.38-b) is applied in order to take into account the 

presence of closed surfaces in the caps region that produce a normal component on the equatorial slice. 

Indeed, considering that the sub-model cut in the middle two beds, it is missing a force component in the 

poloidal direction derived by the closure of these surfaces and by the application of the pressure. This 

contribution can be considered imposing a pressure load of ~51 MPa on the resistant section (Sres) 

highlighted in green in Figure 4.38-b. It has been calculated multiplying the in-box pressure of 8 MPa for 

the ratio between the internal surface of cap, Scap, and the resistant section surface (6.33E+05 mm2 for Scap 

and 9.90E+04 mm2 for Sres). This load has to be applied as two tensile pressure acting in the opposite 

direction on the two resistant sections (Figure 4.38-b).  

 

Figure 4.38. HCPB reference module and slice models for the over pressurisation scenario with details of pressure loads. Left (a): 

pressure load of 8 MPa applied to the internal surfaces of the HCPB module. Right (b): pressure loads due to the internal 

pressurisation and closed cap surfaces. 
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Therefore, the primary stress tensor for both reference and local models has been calculated and a 

comparison component by component has been performed. As done for the secondary stresses tensor 

components, the stresses comprised between ± 10 MPa have been neglected in order to improve the 

readability of the histograms removing the background noise due to big variations on small values. 

Furthermore, filtering the data considering a threshold of ± 30 MPa, the peaks on the tail disappear 

completely and the errors concentrate around zero. 

The results are shown in Figure 4.39 while the reference values for each tensor component and the error 

contour maps are reported in Appendix 9.6 from Table A.25 to Table A.29. 

 

Figure 4.39. Error densities of normal and shear primary stress tensor components and cumulative curves. Left (a): histograms and 

cumulative curves of normal primary stress tensor. Right (b): histograms and cumulative curves of shear primary stress tensor. 

It is possible to see that the variations are very big also for the primary stresses due to the big scatter of 

relatively small values. As for the secondary stress, the histograms and contour maps of the stress 

component errors cannot be used for fine assessment of the result quality of the local model. For this reason, 

the stress linearization has been performed following the procedure already explained for the secondary 

stress. The results are reported in Table 4.9. The membrane and bending component values for each path 

are reported in Appendix 9.6, from Table A.20 to Table A.24.  

Table 4.9. Equivalent membrane and bending primary stress for each path of HCPB module and slice. 

Equiv. Stress 

(Von Mises) 

Module_Slice Slice_GPS_EU 
Membrane 

Error 

Bending 

Error 
Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Path1 51.06 1.70 51.42 1.39 -0.71% 18.14% 

Path2 43.71 4.43 41.68 4.74 4.64% -6.80% 

Path3 12.66 1.90 19.77 1.55 -56.09% 18.32% 

Path4 47.63 4.93 49.35 4.94 -3.62% -0.33% 

Path5 8.42 49.71 14.00 49.31 -66.38% 0.81% 

The analysis of Table 4.9 shows that also for the primary equivalent stresses, the local model is almost 

always over conservative with respect to the reference HCPB module model. Only few equivalent stress 

results are lower in the HCPB slice. Namely, the membrane stress on path2 that is 41.68 MPa compared to 

43.71 MPa of the module and bending stresses of path1, 3 and 5 that are 1.39, 1.55 and 49.31 MPa 

compared to 1.70, 1.90 and 49.71 MPa of reference model. These variations are limited and negligible, 

therefore it is possible to conclude that regarding the primary stresses the local model imposing the chosen 

boundary conditions approximates the reference model with credible reliability. 

In conclusion, the set of boundary conditions (GPS on the up structure surface, symmetry on the bottom 
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surface and node restraints at BSS), defined for the thermo-mechanical analysis of local model, reproduce 

faithfully the behaviour of reference model in terms of displacements and, albeit to a lesser extent, stresses. 

Furthermore, the local models result more conservative than reference one providing a highest safety 

factor for the designers.  

4.3.2 Sensitivity Analysis of Deformation and Stress Fields 

In the paragraph 4.2.1, it was analysed the variation of temperature field fluctuations on power densities 

and mass flow rates in the adjacent slices. Using a power density variation comprised between 0.01 % and 

0.11 % for the equatorial slice and between -5.95 % and 0.56 % for the slice near the cap (Table 4.4 and 

Table 4.5) and considering the mass flow rate distribution fluctuation (-1.295 % and 0.553 %) calculated on 

the HCPB segment, 7 cases have been identified (paragraph 4.2.1). They have been then compared with the 

1-slice model with symmetry conditions where the nominal power density and mass flow rate have been 

set-up. Therefore, considering the highest temperature fluctuations, four temperature fields have been 

derived: one from the 1-slice model with symmetry conditions, one for the Case 0 that represent the 

reference for the other 6 cases, and two for Case 4 and 5, respectively, where the biggest temperature 

variations occur.  

These four temperature fields have been used as thermal load for sensitivity analysis on deformation and 

stress fields. The model used for performing this study represents the real geometry of HCPB slice. 

Due to the geometrical features of the domains to be meshed, in order to optimise number of nodes and 

mesh quality tetrahedral elements have been adopted and, in particular, as to HCPB slice model, a mesh 

composed of ~7.1E+06 nodes connected in ~4.4E+06 elements has been selected. 

In order to simulate the mechanical action of the attachment system, the displacements along the radial 

direction are prevented to the nodes lying on the toroidal direction as well as toroidal displacements are 

prevented to nodes lying along poloidal direction (Figure 4.28). A symmetry condition is applied at the 

lower cut surface of both models allowing here only displacements on the radial-toroidal plane (Figure 

4.28). In the upper cut surface, a GPS has been imposed as discussed in the previous paragraphs. 

Four different thermal analyses have been performed and the results both in terms of total displacements 

and equivalent stresses have been calculated and compared. The results are shown in Figure 4.40. 

 

Figure 4.40. Error densities of total deformation and equivalent Von Mises secondary stress tensor and cumulative curves. Left (a): 

histograms and cumulative curves of total deformation vector. Right (b): histograms and cumulative curves of equivalent Von 

Mises secondary stress tensor. 

The small variations on temperature field, like found in Figure 4.25, produce relatively low variations on 

total deformation. Indeed for the reference scenario (Case 0), on which the deformation derived from the 

temperature field of 1-slice model is compared with the deformation obtained applying the temperature 

field of Case 0, it is possible to see that the total variation on the deformation are comprised between -0.3 % 

and 0.6 % (blue histogram of Figure 4.40-a). It is interesting to note that the Case 4, in addition to have 
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larger variations (from the -0.3 % to the 1.7 %, green histogram of Figure 4.40-a), presents a second peak at 

0.6 % that is fully in agreement with the temperature peak shown in Figure 4.25. 

As expected the temperature fluctuation are directly proportional to the deformation.  

Looking to the equivalent stress variations reported in Figure 4.40 – b, it is possible to observe that in 

90% of the cases the error associated is comprised between -3 % and 7 % with a small protruding tail for the 

Case 4.  

As done previously and with reference to the Figure 4.37, the stress linearization has been applied also to 

this sensitivity study.  

In Table 4.10, the comparison of equivalent membrane and bending stresses for each identified path is 

reported.  

Table 4.10. Equivalent membrane and bending stress for each case study. 

Equiv. Stress 

(Von Mises) 

Case0 Case4 Case5 

Membrane  

Error 

Bending  

Error 

Membrane  

Error 

Bending  

Error 

Membrane  

Error 

Bending  

Error 

Path1 -10.71% 4.89% -15.15% 4.62% -11.86% 4.62% 

Path2 -2.20% 4.54% -2.44% 4.20% -2.83% 4.27% 

Path3 -1.81% -1.42% -5.00% -3.93% -3.47% -2.64% 

Path4 -1.90% -2.14% -3.81% -2.93% -2.47% -2.80% 

Path5 -0.43% -2.70% -1.23% -7.00% -0.90% -4.69% 

The Case 0 represents the comparison between the stress field derived by the 1-slice model with 

symmetry conditions where the nominal power density and mass flow rate is set-up and the one obtained 

when three slices experience the same nominal power density and mass flow rates. 

This case indicates that the application of thermal-symmetry conditions produce variations on 

equivalent membrane secondary stress up to -10.71% of the FW where the highest fluctuation occur. 

Regarding the equivalent bending secondary stress the maximum error is 4.89 %. For the Case 0, 

relatively small variations are encountered in all the other paths. 

The Case 0 can be used as reference scenario for comparing the Case 4 and 5 (these cases take into 

account the power fluctuation calculated in the neutronic analysis and mass flow rate variation on the BSS). 

It is possible to note that the equivalent membrane stresses increase lightly with a maximum increment 

of ~4.5 % with respect to the Case 0 (membrane error of Case 4 path1, Table 4.10). For all the other paths of 

Case 4 and 5, very limited fluctuations have been found. 

In conclusion, from the sensitivity analysis, it is possible to argue that the variation of the temperature 

fields produces fluctuations on total deformation comprised between -0.3 % and the 1.7 %, on equivalent 

membrane stress up to 15 % while on equivalent bending stress between the -7 % and the 5 %. These 

deviations, if compared to the ones calculated on the primary and secondary stresses, put an additional 

factor of ~10%, which is marginal. 
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5 Application of the MAIA Procedure for the HCPB 

Breeding Blanket Test Case 

In this Chapter, the application of MAIA procedure to the HCPB slice is reported. The three main pillar 

analyses have been conducted according to the procedure described in Chapter 3 applying the boundary 

conditions already validated in Chapter 4. The aim of this Chapter is to demonstrate the applicability of 

MAIA procedure as well as to show the impact on the design when CAD-centric models are used and the 

high resolution loosely-coupling analyses are performed. For the sake of brevity and clearness, the 

application of the MAIA is limited to the HCPB slice. The geometric features have been already introduced 

in paragraph 1.2.1, but, when more detailed information is needed, it is reported within the text. 

5.1 Neutronic Analysis HCPB Breeding Blanket Slice Test Case 

In this section, the first three steps of the MAIA procedure are applied to the HCPB concept. Starting 

from a generic CAD of the HCPB slice (Figure 3.1 step (a)), a model suitable for MCNP is created (Figure 

3.1 step (b)) and the neutron and photon transport analyses are carried out (Figure 3.1 step (c)).  

5.1.1 Neutron/Photon Radiation Transport Model Setup  

The neutronic analyses on the HCPB have been carried out in order to assess the nuclear response, 

focusing the attention on such quantities as neutron flux, the deposited nuclear power and the spatial 

distribution of its volumetric density. To this purpose, it has been used the completely heterogeneous HCPB 

slice CSG model (Figure 5.1 – a and b), described in paragraph 3.2.1, along with FENDL3.1 [72] neutron 

cross section library and MCLIB04 [108] photon cross section library. The neutronic analyses of the HCPB 

slice comprise the assessment of main nuclear performances such as nuclear power generation and its 

distribution. The calculations have been carried out using the completely heterogeneous CSG HCPB slice 

model (Figure 5.1 – a and b), described in paragraph 3.2.1, with the use of nuclear data from FENDL [72]. 

 

Figure 5.1. The MCNP model of HCPB slice. Left (a): to view of the entire CSG neutronic model. Right-top (b): detail of the CP 

neutronic model. Right-centre (c): radial-toroidal view of the HCPB slice with superimposed Cartesian mesh. Bottom (d): 

radial-poloidal view of the superimposed mesh on HCPB slice neutronic model. 

a)
b)

c)

d)

SS-316L 60% - H2O 40%Li4SiO4 Be HeEurofer Tungsten SS-316L

1 m

32.75 mm

y (pol.)

x (rad.)
z (tor.)

y (pol.)

x (rad.)
z (tor.)



 

 
86 

The neutron and photon sources, used for the analysis of the sub-model, are simulated according to the 

methodology reported in paragraph 3.3.1 and validated in paragraph 4.1.2. 

Reflecting and white boundary conditions have been applied in the poloidal and toroidal directions as 

validated in paragraph 4.1.1.  

About 270 heterogeneous cells have been identified for the discretisation of the domain on which a 

Cartesian mesh (namely FMESH) of ~2.4 E+06 elements/voxels has been superimposed. The resolution of 

the mesh is: ~3 mm in x-direction, ~3.3 mm in y-direction and ~3 mm in z-direction. Some details of the 

FMESH are reported in Figure 5.1 – c and d. 

For the normalisation of the results described in the following paragraphs, the neutron and photon 

source intensity parameters reported in Table 4.1 have been used. 

5.1.2 Nuclear Heating  

Using the above mentioned setup, boundary conditions and local neutron source, the power deposited 

per cell by neutrons and photons Qnp and the power deposited by photons produced due to neutronic 

interaction outside the domain of interest and scattered into the sub-model Qp,albedo (see eq. (3.7)) have been 

calculated and reported in Table 5.1. The highest power deposition occurs in the Li4SiO4 (~46%) where the 

tritium production reactions happen (due to the enrichment of 60% in 6Li, the exothermic reaction (1.6) 

prevails on the endothermic reaction (1.7)). About the 28% of the power is released in the Be bed while 

about the ~22% on the Eurofer present in the FW, CP, BSS and manifolds. 

Table 5.1. Computed power deposition in each OB4 HCPB slice region for DEMO 2015. 

HCPB Slice 

Regions 

Volume 

[cm3] 

Qnp  

[W] 

Qp,albedo  

[W] 

Qdep  

[W] 

Percentage 

deposited power 

Armour 1.0888E+02 1.4982E+03 7.9606E+02 2.2942E+03 3.023% 

Be Bed 1.3595E+04 2.1183E+04 3.7581E+02 2.1559E+04 28.409% 

BSS 8.0780E+03 1.9339E+03 4.3325E+01 1.9772E+03 2.605% 

CP 2.6998E+03 6.6674E+03 5.6457E+02 7.2319E+03 9.530% 

FW 1.3058E+03 6.4280E+03 9.7320E+02 7.4011E+03 9.753% 

He BSS 9.8587E+02 2.1918E+00 5.2575E-03 2.1971E+00 0.003% 

He CP 1.1551E+03 2.7346E+01 1.9026E-01 2.7537E+01 0.036% 

He Dummy Channels 7.3723E+02 1.0397E+01 6.5727E-02 1.0463E+01 0.014% 

He FW 8.2504E+02 3.2855E+01 4.3099E-01 3.3286E+01 0.044% 

He Manifold 1.1167E+04 1.2822E+01 1.3680E-02 1.2835E+01 0.017% 

He Purge BSS 1.8858E+03 6.8594E+00 3.3448E-02 6.8929E+00 0.009% 

Li4SiO4 Bed 5.5335E+03 3.4929E+04 2.1802E+02 3.5147E+04 46.316% 

Manifold 1.0847E+03 1.8054E+02 2.0903E+00 1.8263E+02 0.241% 

Grand Total 4.9162E+04 7.2912E+04 2.9738E+03 7.5886E+04 - 

However, this calculation provides only indications on the overall power released that are used for the 

estimation of mass flow rate but it does not provide information on power distribution. As already stated in 

the previous paragraphs, the determination of the gradients represents one of the main goals of MAIA 

procedure. Furthermore, the power density distribution is an important input for the thermal-hydraulic and 

thermo-mechanical calculations. 

Using the FMESH already introduced in paragraph 4.1.1, the power density distribution has been 

calculated. The spatial distributions of the nuclear power volumetric density together with the related 

statistic errors are reported in the following figures. In particular, Figure 5.2 and Figure 5.3 show the 

nuclear heating due to neutrons and related photons respectively, Figure 5.4 that due to albedo photons and 

Figure 5.5 shows the total power density spatial distribution. 
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Figure 5.2. Neutron power density deposited in neutron/photon transport analysis. Top (a): volumetric heating distribution in 

Li4SiO4, Be and CP. Bottom (b): relative error counter map (left) voxel relative error distribution and cumulative curve (right). 

 

Figure 5.3. Photon power density deposited in neutron/photon transport analysis. Top (a): volumetric heating distribution in 

Li4SiO4, Be and CP. Bottom (b): relative error counter map (left) voxel relative error distribution and cumulative curve (right). 
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Figure 5.4. Albedo photons power density deposited in photon transport analysis. Top (a): volumetric heating distribution in 

Li4SiO4, Be and CP. Bottom (b): relative error counter map (left) voxel relative error distribution and cumulative curve (right). 

As it is possible to note, the maximum value for the three contributions does not occur in the same 

regions. Indeed, regarding the power deposited by neutrons, the maximum volumetric heating of ~11.1 W 

cm-3 is reached in the Li4SiO4 (Figure 5.2 – a).  

Concerning the photon power density, the maximum (~12.3 W cm-3) is obtained on the Eurofer of FW 

where the interactions of incident neutrons with material and, then, the related photon production start to 

play an important role (Figure 5.3 –a).  

As expected, the maximum contribution (~6.7 W cm-3) of the albedo effect is reached on the armour 

material where the photons release big part of their energy (Figure 5.4 –a).  

These results show the presence of a pronounced radial gradient of the power density but also the 

presence of not negligible gradients along the toroidal and poloidal directions. This aspect is really 

important considering that, in the actual analysis for the design of the BB, a pure radial profile of the nuclear 

heating [26, 30] is usually assumed.  

Looking in detail to the power released by neutrons (Figure 5.2 – a), it is possible to note that the 

volumetric heating drops down of about four orders of magnitude going from the FW to the back of the 

BSS. Moreover, the presence of He channels produce local alternating power density as it is possible to see 

in the radial-poloidal cross section of the HCPB neutronic power density (Figure 5.2 – a). This effect is 

better highlighted in the following when a pure radial profile is calculated. 

It is interesting to note that the use of sub-models allows a detailed estimation of the released power with 

good statistic as demonstrated by the relative error distribution reported in Figure 5.2 – b. Indeed, only the 

0.075% of the voxels has a relative error higher of 0.05 and they are located on the side walls of the BSS at 

the interface between the Eurofer and void.  

The probabilities reported in Figure 5.2 – b demonstrate that the relative errors associated with the 

neutronic power density are well below the statistical limit of 0.05 (see paragraph 2.1.2). 
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The same behaviour, in terms of reliability of results, is encountered for the photon power density 

(Figure 5.3 –b). Indeed, only 0.045% of voxels shows a relative error higher than 0.05. 

Different discussion has to be done for the photon power density due to the albedo effect. First of all, it 

is possible to see that its contribution is negligible in the BSS (e.g. power density lower than 0.005 W cm-3, 

Figure 5.4). It means that the photons, born from the interaction of neutrons in other reactor locations, 

penetrate the BB just up to the BP. This behaviour produces a good statistical error in the first 80 cm of 

HCPB slice and a consequently increase over the 0.05 in the remaining part (Figure 5.4 –b). Indeed, 

14.306% of voxels show a relative error higher than 0.05. 

Summing the three contributions, the total power density distribution is obtained as shown in Figure 5.5. 

The maximum power density is reached at the armour (~18.7 W cm-3) while a value of ~12 W cm-3 is 

obtained in the Li4SiO4 and ~8.5 W cm-3 in the Be.  

The analysis of the data shows that the power density deposited on the side walls of the HCPB slice is 

higher, due to the neutron streaming effect, with respect to the centre that is shielded by the surrounding 

material. The neutron streaming issues are well known in fusion community but their investigation is 

usually limited to the VV as described in [109]. However, a precise estimation of this effect could provide 

important feedback on the BB design (e.g. modification of the cooling circuit near the side walls as well as 

identification of hot spot hidden when an average radial profile is used). Other improvements could be 

achieved in the evaluation of the Eurofer damage (e.g. assessment of displacement per atom (dpa) along the 

sides) that has a direct effect on the Ductile-Brittle Transition Temperature (DBTT) [110].  

 

Figure 5.5. Total power density deposited in Orthosilicate, CP, Be bed and on radial-poloidal cross section of HCPB slice. 

In addition to the 3D power density distribution calculations, it has been performed also the assessment 

of its radial profiles for Eurofer, Orthosilicate and Beryllium averaging the volumetric heating along the 

poloidal and toroidal direction. The results are shown in Figure 5.6.  

From the acquired data, it is possible to observe that the geometry heterogeneities (i.e. presence of He 

cooling and purge gas channels) produce oscillations (see detail on radial power density reported in Figure 

5.6) in the Eurofer nuclear heating both in the FW and CP.  

Moreover, looking to the detail on the Li4SiO4 radial profile of the power density reported in Figure 5.6, 

it is possible to note small peak at around 7 cm from the plasma facing surface. This effect is probably due 

to the neutron multiplication that occurs in the Be bed that, after few centimetres, becomes predominant 

producing the increment of the power density in Orthosilicate. In that area the neutron flux is still very hard 

and, therefore, the multiplication rate has a maximum. It must also be said that Be bed acts as a sort of 
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diffuse reflector that spreads the interacting neutrons in all the directions. 

In Figure 5.7, the radial profile of the total neutron flux is reported. The neutron flux varies slightly, less 

than one order of magnitude, in the FW and BZ. A greater variation is reached in the BSS where more 

massive Eurofer is present. However, the highest reduction of the neutron flux is deployed entirely within 

the VV where the presence of water and stain steel 316L moderates and shields the neutrons, respectively. 

Two features can be underlined: (i) at ~55 cm, the neutron flux changes its derivative according to the small 

peak visible in radial profile of the power density (in that region there is the crossing from the beds to the 

BP) and (ii) from ~58 cm to ~63 (corresponding to the purge gas manifold behind the BP), the neutron flux 

is flat according to the zero power density shown in Figure 5.6 (cross section of He is small, therefore no 

power is released and the neutrons propagate unmoderated).  

 

Figure 5.6. Radial power density profiles in different materials of HCPB slice homogenised in the poloidal and toroidal directions. 

 

Figure 5.7. Radial neutron flux profile for the HCPB slice. 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 10 20 30 40 50 60 70 80 90 100 110 120 130

P
o

w
er

 D
en

si
ty

 [
W

 c
m

-3
]

Radial Distance from the FW [cm]

TOTAL_Heating_EUR

TOTAL_Heating_Li4SiO4

TOTAL_Heating_Be

W+FW

BZ

BSS
10.5

10.8

11.1

11.4

11.7

12.0

3 8 13

1.5

2.5

3.5

4.5

4 11 18



 

 
91 

5.2 Computational Fluid Dynamics Analysis of HCPB Breeding Blanket Slice 

Test Case 

In this section, the steps (d) and (e) of the MAIA procedure (see paragraph 3.1) are applied to the HCPB 

slice. Indeed, the power density calculated in neutronic analysis is mapped in ANSYS CFX (Figure 3.1 step 

(d)) and a thermal fluid dynamic analysis is carried out (Figure 3.1 step (e)).  

5.2.1 Computational Domain 

In order to perform the thermal-hydraulic analysis on HCPB slice, a fluid-dynamic computational 

domain has been set up.  

Hexahedral and tetrahedral elements have been adopted taking into account the geometrical features of 

the domains to be meshed and the required optimization of the number of nodes and mesh quality. A 

conformal mesh between the different domains has been set-up.  

The mesh, both on the fluid and on the structure, is composed of 5.4E+06 nodes linked in 18.6E+06 

elements with an orthogonal quality average of 0.710 and skewness average of 0.253. 8 inflation layers 

have been used with first layer height of 2.0E-05 m and a growth rate of 1.2. The mesh is shown in Figure 

5.8. 

 

Figure 5.8. HCPB slice thermal-hydraulic model setup. Left (a): mesh detail of FW Inlet He channel. Top (b): mesh detail of FW 

Inlet He channel and BSS. Right (c): mesh detail of Li4SiO4 and FW with W. Bottom (d): mesh detail of He CP cooling circuit. 

Bottom (e): mesh detail of FW side wall, BP and He CP Inlet channel. 

Symmetry conditions have been set to the top and bottom surfaces of the unit slice and adiabatic 

conditions have been set to the lateral surfaces of the slice with the exception of the FW plasma side. A 

normal heat flux calculated by multiplying the nominal heat flux value of 0.5 MW/m2 [26, 30] for the 

cosine of the angle between the radial and the surface normal directions has been also applied. 

The power density calculated in neutron and photon transport analysis and reported in Figure 5.9 has 

been mapped into CFX and used for the thermal-hydraulic calculation. 

Due to the fact that such a slice model cannot model the transversal flow in the BSS inlet manifold, a 

heat transfer coefficient (HTC) of ~1200 W/m²K has been set to the wetted surfaces of the BSS inlet 

manifold. It has been estimated calculating the Nusselt number by means of Gnielinski correlation and 
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assuming an average cumulative mass flow at the point of the unit slice of 10.3 kg/s (total OB segment mass 

flow minus flow diverted to OB7, OB6 and OB5), a fluid temperature of 300 °C at a pressure of 8 MPa [28].  

The application of Gnielinski correlation represents a very conservative assumption since it is used for 

full thermal and hydraulic developed flows which are not present at the BSS inlet where turbulence 

phenomena are predominant. Therefore, the estimated HTC is lower with respect to the real one and, 

consequently, the calculated temperatures will be higher. 

 

Figure 5.9. 3D power density profile on Orthosilicate (left) and Be (right) side calculated in neutronic analysis and mapped in 

ANSYS CFX. 

As a conservative assumption for the cooling in the BZ at the rear side of the BB, adiabatic surfaces have 

been considered at the purge gas chambers. This assumption is justified by low velocity of the purge gas 

flow that results in a negligible HTC. A mass flow rate of 0.046072 kg/s has been derived by the power 

balance assuming a T of 200°C according to the operational performances of HCPB BB. It has been 

applied at the inlet of the parallel cooling loops while a relative pressure of 0 Pa has been imposed to the 

outlets. The material properties have been implemented by means of CEL functions [59]. The TCC between 

the EUROFER97 steel structures and both Li4SiO4 and Be, are derived from the Yagi and Kunii model [80] 

applying the constants of Reimann et al. [81]. 

5.2.2 Thermal-Hydraulic Analysis 

Using the above mentioned setup, boundary conditions and power density distribution, a 

thermal-hydraulic analysis has been performed and the temperature limits verified.  

It is important to remember that the temperature design limit window established for the EUROFER97 

is from 300 °C to 550 °C. The lower design temperature limit is dictated by the shift of the DBTT under 

neutron irradiation and the subsequent risk of embrittlement and fast fracture of the components for 

irradiation temperatures lower than 300 °C. The upper design temperature limit is given by the abrupt loss 

of creep strength at temperatures higher than 550 °C [111]. The commonly accepted temperature restriction 

for the ternary ceramic breeder compound Li4SiO4 is <920 °C and it is selected for having a certain margin 

before the phase change takes place. The temperature limit for the metallic beryllium is 650 °C due to 

swelling, material properties degradation at higher temperatures under neutron irradiation and safety 

considerations (steam reaction with Be giving H2 in case of water ingress to the blanket, e.g. due to a 

breakage of the BB together with the water-cooled divertor) [111]. 

The main thermal-hydraulic results obtained on HCPB slice using the MAIA procedure are summarised 

in Table 5.2. The maximum temperature (~940 °C) is reached in the Li4SiO4 domain and it is over the 

acceptable temperature limit. The Be maximum temperature is ~760 °C and it represents another violation 

of the temperature limit selected for the material. Also the Eurofer temperature exceeds the limit of 550 °C 

in the CP domain while it is below in the FW and BSS.  
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The maximum He temperature reaches ~600 °C in the same zone (CP centre) where the maximum 

Eurofer temperature (~630 °C) is achieved. This means that the coolant heats up part of the structure if a 

temperature of 500 °C is reached at the outlet demonstrating a not-optimal configuration of the cooling 

circuit with respect to the power density distribution considered. 

Regarding the pressure drop within the two parallel cooling loops, a value of 1.49 bar and 1.45 bar is 

obtained for the loop1 and 2, respectively. This light asymmetry is indicative of not completely optimised 

cooling layout. 

Table 5.2. Thermal-hydraulic results for each HCPB slice region. 

Regions 
Mean Temp. 

[°C] 

Min Temp. 

[°C] 

Max Temp. 

[°C] 
p  

[bar] 

Armour 495.60 344.30 554.10 

n.a 

FW 396.70 308.60 547.00 

CP 478.80 358.80 632.80 

BSS 353.40 300.20 497.40 

Be 531.10 349.10 757.90 

Li4SiO4 614.70 314.60 942.00 

He_Loop1 395.10 299.40 596.90 1.49 

He_Loop2 392.50 299.50 598.30 1.45 

The temperature distributions for each domain are reported in Figure 5.10 and Figure 5.11. 

The maximum temperature in the CP is reached to the centre near the FW (Figure 5.10 – c) where both 

the maximum of Be and Li4SiO4 occur (Figure 5.11 – a and b). This means that cooling layout has to be 

optimised in that area in order to reduce the temperature of Eurofer. It is important to note that the CP sides 

are strongly cooled down by the radial He distributors producing high temperature gradients in the toroidal 

direction. On the BSS ((Figure 5.10 – d), it is possible to observe that the highest temperature occurs in the 

BP nearby the purge gas manifolds where adiabatic conditions are considered. On the BSS back a 

temperature of ~360 °C is obtained. Usually the design calculations [26, 28] show a uniform BSS 

temperature of 300 °C that is mainly driven by the low power density and by the heat sink represented by 

the manifolds. These differences are due to the geometry and load homogenisations introduced in the 

neutronic calculations that strongly reduce the power released in the BSS producing a not realistic load 

scenario. 

The effect of the CP He radial distributors as well as of the FW inlet is also visible on the Be bed where 

the temperature drops down to ~350 °C (Figure 5.11 – a) and on the Orthosilicate bed where the minimum 

temperature is ~300 °C. 

The application of MAIA procedure has highlighted some warning on the HCPB BB that have not been 

discovered using the conventional coupling process based on the simplification of geometry features and 

loads [26, 28]. Moreover, the results show a violation of the thermal hydraulic requirement limits that have 

not been solved introducing design solutions.  

Indeed, the outcomes of the thermal-hydraulic analysis suggest a modification of the cooling layout in 

order to reduce the temperature in structural and functional materials.  

According to the MAIA procedure reported in paragraph 3.1, Figure 3.1, when the thermal-hydraulic 

requirements are not respected, it is necessary to introduce a design modification and to restart the process. 

However, it is important to underline that the optimisation of the design is not the objective of this work. 

For this reason, it has been decided to prosecute with thermo-mechanical analysis and with the application 

of the MAIA procedure in order to highlight the effects of 3D detailed investigations on the final evaluation 

when integrated multi-physics calculations are carried out. 



 

 
94 

#  

Figure 5.10. Temperature field on structural material of HCPB slice. Left-top (a): overall temperature distribution in Eurofer. 

Right-top (b): FW temperature field. Left-bottom (c): CP temperature field. Right-bottom (d): BSS temperature field.  

 

Figure 5.11. Temperature field on functional material of HCPB slice. Left (a): Be bed temperature field. Right (b): Li4SiO4 

temperature field. 

5.3 Structural Assessment of HCPB Breeding Blanket Slice Test Case 

In this paragraph, the steps (f) and (g) of the MAIA procedure (see paragraph 3.1) are applied to the 

HCPB slice. Once the thermal-hydraulic analysis is performed, the temperature field is mapped (Figure 3.1 

step (f)) into Finite Element Method (FEM) tool like ANSYS Mechanical [66] and a structural analysis is 

performed (Figure 3.1 step (g)). 

5.3.1 Finite Element Model 

In order to perform the thermo-mechanic analysis on HCPB slice, an FEM computational domain has 

been set up.  

The materials have been considered homogeneous, uniform and isotropic and their thermo-mechanical 

properties have been assumed to depend uniquely on the temperature as indicated in [100, 101].  

Due to the geometrical features of the domains to be meshed, in order to optimise number of nodes and 
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mesh quality both tetrahedral elements have been adopted and, in particular, as to HCPB slice model 

(Figure 5.12), a mesh composed of ~7.1E+06 nodes connected in ~4.4E+06 elements has been selected. 

Helium coolant mechanical interaction with the module has been simulated according to the 

investigated scenario. In particular, under normal operation scenario, it has been modelled imposing 8 MPa 

pressure to cooling channels walls as well as to rear manifolds and back-plates internal surfaces. 

Breeder pebble bed mechanical interactions with module internal walls as well as the purge gas pressure 

have not been taken into account and, for this reason, no pressure has been imposed along the internal 

surfaces of each breeder cell. This assumption is conservative because it maximises the pressure gradient 

between the cooling channels and the BZ. Finally, the non-uniformly distributed temperature field, 

calculated by the previous thermal-hydraulic analysis, has been applied. 

The temperature field produces a non-uniformly distributed thermal deformation field, arising within 

the slice as a consequence of both its thermal field and its isotropic thermal expansion tensor, and it is 

applied as an equivalent mechanical load. 

 

Figure 5.12. HCPB slice thermo-mechanical model. Top-left (a): mesh detail of the BSS. Top-right (b): mesh detail of the FW bend 

and CP. Bottom-right (c): mesh detail of FW and CP at the front. Bottom-left (d): mesh detail of FW side wall and BP. 

Concerning mechanical constraints, poloidal symmetry has been imposed to nodes lying on the bottom 

of the toroidal-radial boundary surface of the model, while nodes lying on the top toroidal-radial surface 

have been assumed to undergo poloidal generalised plane strain. Moreover, displacements along the radial 

direction are prevented to the nodes lying on the toroidal direction, as well as toroidal displacements are 

prevented to nodes lying along poloidal direction (Figure 3.9-b) [83, 84]. 

5.3.2 Structural Analysis 

Thermo-mechanical steady state analyses have been carried out to assess the potential aptitude of the 

HCPB slice to safely withstand the loads it undergoes under flat-top plasma operational state without 

incurring in significant deformations or yielding-induced structural crisis. Normal operation scenario arises 

when the module undergoes both thermal deformations due to the thermal field distribution typical of 

flat-top plasma operational state and 8 MPa Helium coolant pressure on its cooling channel walls. 

As to the nominal operation loading scenario, on the basis of the thermal field distribution obtained, a 

specific steady state mechanical analysis has been performed to assess the spatial distribution of total 

stresses by means of ANSYS Mechanical [66].  

Furthermore, a separate steady state mechanical analysis has been carried out, considering uniquely 

thermal loads, in order to directly assess secondary stress distribution. Finally, primary stress spatial 

distribution has been derived as the difference between those already obtained with regard to total and 
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secondary stresses. In Figure 5.13, the total deformation and the equivalent Von Mises stress field for the 

radial toroidal section are reported. With respect to the displacement field (Figure 5.13 – a), attention has 

been paid to radial, poloidal and toroidal displacements (respectively ux, uy and uz) within the model, in 

order to check that no excessive displacements take place during flat-top operation plasma state.  

 

Figure 5.13. Thermo-mechanical results on HCPB slice model. Left (a): total deformation. Right (b): Von Mises stress field. 

The obtained results indicate that displacements predicted within FW, CP, PB and BSS are acceptable 

from a qualitative point of view even if physically meaningful. In particular, the highest displacement value 

in radial direction for these components is about 5.9 mm, maximum displacement in poloidal direction is 

about 0.5 mm, while in the toroidal direction it is about 3.8 mm.  

A summary of the most significant results in terms of displacements obtained is reported in Table 5.3. 

With respect to the thermal behaviour predicted under the Normal operation scenario for the HCPB 

slice, results obtained (Figure 5.13 – b) indicate that a significant stress is localised:  

(i) at the junction with the armour,  

(ii) in the caps of the CP Helium distributors and  

(iii) at the connection between the BP and the CP. 

The very intense values of Von Mises equivalent stress (~2000 MPa) obtained at the boundary between 

the Eurofer and tungsten are probably due to the combined effect of particular high temperature predicted in 

these areas, where hot spots higher than 500 °C have been estimated, and the different thermal expansion of 

the two materials. This is an important outcome of this analysis and demonstrates the huge effect on local 

stress created by the presence of tungsten. Also in the caps of the CP distributors, intense Von Mises 

stresses are obtained (~1900 MPa). This is due to the combined action of high temperatures and small 

thickness. Analogous behaviour has been encountered at the bound between the BP and BSS. 

Moreover, as far as the HCPB slice system is concerned, it may be observed (Figure 5.13 – b) that the 

Von Mises equivalent stress field is somehow lower than 400 MPa reaching maximum values in very small 

regions located where dedicated design actions should be taken. 

Table 5.3. Summary of computed displacements for each region for DEMO2015 at normal operation 

conditions. 

Region 
Displacements [mm] 

ux Max ux Min uy Max uy Min uz Max uz Min 

FW 5.948 2.101 0.279 0.000 3.765 -3.799 

CP 5.737 2.534 0.510 -0.226 3.665 -3.699 

PB 2.860 2.450 0.267 0.000 3.658 -3.696 

BSS 2.691 0.000 0.266 0.000 3.384 -3.389 
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According to the methodology for stress linearization reported in paragraph 4.3.1 and with reference to 

the paths on the FW, BP and BSS identified in Figure 4.37, the equivalent Von Mises stresses, induced by 

primary and secondary loads, have been calculated and are reported in Table 5.4.  

The membrane and bending component values for each path are reported in Appendix 9.7, from Table 

A.30 to Table A.34. 

Table 5.4. Computed equivalent membrane and bending for primary and secondary stress of HCPB slice for 

DEMO2015 at normal operation conditions. 

Equiv. Stress  

(Von Mises) 

Primary Stresses Secondary Stresses 

Membrane  

[MPa] 

Bending  

[MPa] 

Membrane  

[MPa] 

Bending  

[MPa] 

Path1 22.43 5.55 115.63 95.60 

Path2 17.17 5.20 92.58 81.27 

Path3 3.07 1.39 212.34 40.09 

Path4 30.51 8.48 171.17 51.55 

Path5 6.31 64.49 64.61 95.16 

The combination of primary and secondary stresses in terms of membrane and bending can be used to 

verify the design criteria reported in C&S such as RCC-MRx [104] and SDC-IC [105] although this 

comparison, for this specific case, is meaningless due to the thermal failure of the requirements for the 

structure, Orthosilicate and Beryllium beds. 
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6 Application of MAIA Procedure for Nuclear Safety 

Assessment  

In this Chapter, the enhancement of MAIA procedure for application on particular problems connected 

to safety analysis is described. 

The first aim of this Chapter is to describe the use of MAIA procedure for the study of water activation 

in WCLL BB providing indications about the methodology used and the outcomes that can be obtained. 

Second aim of this Chapter is also to provide a demonstration of the versatility and adaptability of the 

MAIA procedure for the investigation of specific phenomena. 

6.1 General Introduction to Nuclear Safety Analysis for Fusion 

In a fusion reactor, or more general in a Nuclear Power Plant (NPP), the technological development is 

strictly linked to the safety one. For this reason, it is nowadays a common practice to take into account, 

since the early design phase, all the aspects related to the safety. They are, thus, developed according to the 

maturity of the conception driving the design itself. 

In particular, for a fusion reactor, the main safety issues are related to the confinement of tritium and 

activated material [112]. 

Therefore, the tritium, used as fuel and produced in the BB, is a β- emitter that can easily permeate 

through the confinement jeopardising the workers and the population in case of any release. 

Concerning the activated materials, they are produced due to the interaction of functional and structural 

materials and high energy neutrons. They can be subdivided in mobilised and immobilised materials.  

In the first group, there are all the activated dust and gases, water activation products and activated 

corrosion products (ACPs) that can escape during an accident and contaminate the environment for a long 

period. In the second group there are all the structural and functional materials that, for their physical state, 

cannot be released in case of an accident and their treatment is more a concern for the waste management. 

A particular safety issue, not only during an accidental scenario but also during normal operation, is 

related to the activated products (e.g. 3H, 19O, 16N and 17N) in water coolant of DEMO reactor when 

equipped with WCLL BB. Indeed, the activated water represents a distributed radiation photon and neutron 

source that can jeopardise the sensible equipment (e.g. valves) to which a safety function is associated. It 

also limits the human intervention. The water activation poses also issues to the design of the PHTS that has 

to be properly shielded and carefully routed within the confinement. 

The major contribution is given by nitrogen isotopes produced by neutron-induced reactions with the 

oxygen isotopes present in the water. They emit gamma rays (e.g. 16N) and neutrons (e.g. 17N produces 

delayed neutrons) and, flowing together with the water in the piping, affect the dose sustained by the PHTS 

components compromising their structural integrity. 

In the following paragraphs, the enhancement of MAIA procedure for the study of this particular 

phenomenon is described. 

6.2 Water Activation in Fusion Nuclear Reactors 

In DEMO reactor, the neutrons coming from plasma with high energy produce several nuclear reactions 

with the hydrogen and oxygen isotopes of water. 

The main water isotopes composition, reported as relative percentage abundance of isotopes, of nuclear 

reactor is: 99.985% of 1H; 0.015%; of 2H, 99.762% of 16O; 0.038% of 17O and 0.200% of 18O [113].  

These isotopes, for neutron energy lower than 15 MeV, produce radioisotopes like 3H, 14C, 15C, 16N, 17N, 
18N, 19O. In Table 6.1, the main reactions and radioisotopes decay modes are reported [113]. Some isotopes 
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like 15C, 18N, and 19O are not produced in abundance due to the limited presence of the parent isotope 18O. 

The tritium production in water is negligible with respect to the one that diffuses from the BZ [113]. 

Considering the big half-life, some concerns in terms of waste treatment could be represented by 14C but, 

taking into account that it is a -emitter and is confined within the primary circuit, it does not produce any 

issue to the equipment and workers (the -rays are shielded by water itself and by the structure) unless an 

accident with loosing of confinement function occurs. The main contributions are given by 16N and 17N 

produced by reactions with 16O and 17O, respectively. These radionuclides produce gamma ray and, in case 

of 17N, delayed neutrons that can induce the activation of the main PHTS components. 

Table 6.1. Reactions of pure water isotopes with neutrons having energies lower than 15 MeV and 

radioactivities induced by these interactions [113]. 

Nuclide Reaction Q-value [MeV] Decay Half-life Gamma rays [MeV] 
3H 2H(n,γ)3H 6.257 β- 12.33 y Not applicable 

17O(n,t)15N -7.789    

18O(n,t)16N -13.343    

14C 17O(n,)14C 1.818 β- 5730 y None 

18O(n,n)14C -6.226    

15C 18O(n,)15C -5.008 β- 2.449 s 5.298 

16N 16O(n,p)16N -9.637 β- 7.13 s 6.129, 7.115 

17O(n,np+d)16N -11.556, -13.780    

18O(n,t)16N -13.343    

17N 17O(n,p)17N -7.898 β- + n** 4.173 s 0.871 

18N 18O(n,p)18N -13.117 β- +  + n** 0.630 s 0.535, 0.822 

1.651, 1.938 

1.981, 2.425 

2.429, 2.473 

2.673, 3.548 

5.788, 6.197 

7.128 
19O 18O(n,γ)19O 3.957 β- 26.91 s 0.110, 0.197 

1.357, 1.444 

1.554 

The threshold energies for the 16N and 17N production reactions are 10.24 MeV and 8.55 MeV [72], 

respectively. With reference to their cross sections reported in Figure 6.1, it is possible to observe that the 
16N exhibits a peak at 11.65 MeV while the maximum value for the 17N is at 14.00 MeV [72]. 

16N is a -emitter and it decays back to 16O with a half-life of 7.13 s and a branching ratio of 99.99%. The 
16O is produced in excited state that undergoes to the ground state emitting prompt energetic  rays. 

17N is a -emitter and it decays back to 16O followed by delayed neutron emission with a half-life of 4.17 

s and a branching ratio of 94.99%. The delayed neutrons could activate the structural material of the piping 

lines outside the VV and produce a further distributed photonic source. 

The emission probabilities for each γ ray line emitted by 16N decay and for each delayed neutrons energy 

are reported in Table 6.2. For the 16N, the most relevant energy of -rays is 6.129 and 7.115 MeV that 

represent ~74% of emission probability. These rays contribute mostly to the dose rate calculations to the 

workers and equipment due to their high energy and intensity. They are also responsible of the main 

radiation damages to the components. For the 17N, the most relevant delayed neutron energies are 1.171, 

0.383 and 1.700 MeV that represent the ~94.63% of emission probability. 
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In general, the impact of 16N is higher with respect to the one of 17N because of (i) the large amount of 
16O in comparison with 17O, (ii) higher cross section and (iii) higher energy associated to the emitted 

particle. However, the 17N contribution cannot be neglected because it produces further material activation. 

 

Figure 6.1. Cross section for 16O(n,p)16N and 17O(n,p)17N reactions as function of the incident neutron energy from NEA / Incident 

neutron data / FENDL-3.1b data libraries [72]. 

Table 6.2. Energy and emission probabilities of delayed γ rays and neutrons following  - decay of 16N and 
17N isotopes [114]. 

16N 17N 

 energy [MeV] Emission Probability [%] Neutron energy [MeV] Emission Probability [%] 

6.129 68.800 1.171 52.781 

7.115 4.999 0.383 34.807 

2.742 0.839 1.700 7.037 

1.755 0.139 0.884 0.571 

8.869 0.079 - - 

1.955 0.039 - - 

6.916 0.039 - - 

6.048 0.013 - - 

0.987 0.004 - - 

2.823 0.001 - - 

In order to compute the concentration of 16N and 17N in the WCLL cooling system, it is necessary to 

solve a coupled neutronic/fluid-dynamic problem. Indeed, for a given control volume, it has to be 

considered the balance between the production of nitrogen isotopes generated by neutron interaction or the 

nitrogen that enters the volume, and the reduction due to isotopes decay and to the isotope flow exiting from 

the same volume. This problem can be represented by means of a differential transport equation of a passive 
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scalar nitrogen (16N or 17N) volumetric density variable nN, as reported in eq. (6.1) 

 2

2

NN N N
i N

i i sources

advection diffutiontime dependent

n n n
u R n

t x x

  
   

  
 , 

(6.1) 

where ui is the flow velocity,  is the nitrogen isotope scalar diffusivity, NR  is the volumetric production 

rate and  is the nitrogen isotope decay constant. 

Eq. (6.1) takes into account the time variation and the advection and diffusion nitrogen transport (left 

hand side of the equation), the nitrogen production and decay losses (right hand side of the equation). 

In other words, eq. (6.1) couples (i) the neutronic calculation of the nitrogen production rate with (ii) the 

fluid-dynamic transport of a passive scalar represented by nitrogen concentration.  

The resolution of the flow velocity field has been already introduced by means of the mass balance and 

Navier-Stokes equation reported in paragraph 2.2 equations (2.28) and (2.33), respectively. 

Concerning the source term, the volumetric density of nitrogen production rate can be calculated as 

follows: 

 

0 4 ( , )
( , ) ( , ) ( , , , )

kO
N

i i i i i
n p

R x t x E x E t d dE





     , (6.2) 

where 
( , )

kO

n p is the macroscopic cross section for the (n,p) reaction, is neutron flux angular energy 

density as a function of the space xi, energy E, neutron motion direction i and time t. 

The coupling resolution of the nitrogen isotope production and transport has been achieved within 

MAIA procedure demonstrating also the flexibility of the approach. 

6.3 Enhanced Use of MAIA Procedure for Water Activation Analysis on 

WCLL BB 

As demonstrated in the previous sections, MAIA provides a powerful means for the analysis and design 

of the BB. Furthermore, the MAIA procedure can also be adapted to the study of particular phenomena, like 

the water activation, demonstrating also its flexibility to satisfy the needs of designers.  

In this paragraph, the enhancement use of MAIA procedure for the water activation analysis is 

described. 

6.3.1 Adaptation of MAIA Procedure for Water Activation Studies on WCLL BB  

The basic structure of MAIA procedure is articulated in 8 steps, as shown in paragraph 3.1 and Figure 

3.1, that are executed in sequence. Starting from this logical structure and in particular from neutronic 

calculations, it is possible to spread the BB investigation in two flow paths. One path, represented by steps 

from d to g of Figure 6.2, is used for the transport of the scalar power density used as a load for the 

estimation of the temperature, stress and strain fields.  

The other path (steps i and l of Figure 6.2) is used for the transport of the scalar nitrogen concentration 

applying the 16N and 17N production rate as loads. Once again, the neutronic calculation demonstrates its 

centrality in the design of the BB. Indeed, the main forcing loads, which are afterwards used in the other 

calculations, derive from the interaction between the neutron and the BB materials. For this reason, it is 

even more important to have a detailed discretisation of the geometry in the neutron/photon transport model 

in order to calculate the magnitude and the spatial distribution of the quantity under study like, for instance, 

the nitrogen production. In particular, the second point assumes a considerable importance because, as it is 

shown in the following paragraphs, the production of the 16N and 17N has an energy threshold that triggers a 

particular spatial distribution in the first centimetres of the BB. In other words, the oxygen activation does 

not involve all the water present in the BB but only a portion according to the neutrons slow-down. 
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For these reasons, the water activation studies are performed calculating the 3D profile of the nitrogen 

production using a complete heterogeneous neutronic model with a neutron source and of boundary 

conditions (c), mapping it into an FVM code like CFX (i) and calculating the concentration by means of a 

set of equations for the transport of passive scalar (l). 

 

Figure 6.2. Enhanced MAIA procedure flow diagram for water activation studies. 

The neutronic calculation (step c of Figure 6.2), for the water activation studies in MAIA procedure, is 

conducted in accordance to the local neutron source and boundary condition defined in paragraph 3.3 and 

validated in paragraph 4.1. The nitrogen production rate is calculated combining the F4 tally, introduced in 

paragraph 2.1.2, eq. (2.18), with the FM card for the 16N and 17N. The modification of the standard tally can 

be applied also to the EMBEE cards in case the hybrid representation is used, following the instructions 

reported in MCNP6 manual [54]. In general, the FM card multiplies the tallied quantities for a given 

constant C and the continuous-energy reaction cross section, 

    C E R E dE , (6.3) 
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where  E  is the energy-dependent fluence and  R E  is the energy dependent reaction cross section. 

In case of water activation, C is obtained by means of 16O and 17O atomic density and neutron source 

intensity, and R(E) is the cross section of (n,p) oxygen isotopes reaction. Once the neutron transport 

analysis is performed, the calculated distributions of nitrogen production rates are mapped into ANSYS 

CFX (Figure 6.2 step (i) of the MAIA procedure) according to the procedure already described in paragraph 

3.4.1. The nitrogen transport is then solved (Figure 6.2 step (l) of the MAIA procedure) implementing the 

eq. (6.1) in ANSYS CFX [59]. The following boundary condition at the inlet channels is applied: 

 
, ,


 k t

N Inlet N Outletn n e , (6.4) 

where ,N Inletn  and ,N Outletn  are the 16N and 17N concentrations at inlet and outlet of the BB domain, k 

represents the nitrogen isotope decay constant for 16N or 17N and t  is the transit time of water outside the 

BB in the PHTS cooling circuit.  

Using this boundary condition, it is possible to simulate the residence time of water outside the reactor 

and, then, to calculate the amount of nitrogen that decays within the PHTS circuit and comes back to the 

BB. The validation of the enhanced MAIA procedure for a simplified model is reported in Appendix 9.8. 

6.3.2 16N and 17N Volumetric Density Distributions of WCLL Breeder Unit 

The application of the enhanced MAIA procedure has been pursued on the WCLL BU already described 

in paragraph 1.2.2. Its neutronic input has been created using the Hybrid representation (see paragraph 

3.2.2) where the water within the channels and tube is represented by means of UM while all the other 

geometric features are reproduced using the CSG representation. This strategy allows:  

(i) to perform less onerous neutronic analyses from a computational point of view;  

(ii) to have, in the domain of interest, more precise results in terms of source distribution. In this 

way, it is possible to have a precise spatial definition of nitrogen production rate.  

In Figure 6.3, a detail of the UM used for the neutronic model is reported. The resulting neutronic model 

has been already described in paragraph 3.2.2 and it is shown in Figure 3.3 – d.  

 

Figure 6.3. UM of WCLL BU. Left (a): FW and BZ coolant water in the BU of WCLL2015. Right-top (b): detail of the UM for the 

BZ coolant water. Right-bottom (c): detail of the UM for the FW coolant water. 
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The definition of boundary conditions (reflecting condition in the poloidal direction and white in the 

toroidal direction) as well as local neutron source (cosine and energy distribution) has followed the 

procedures already described in paragraph 3.3 and validated in paragraph 4.1. In particular, for the 

sampling of the local source particle, the MCNP DEMO global model of WCLL 2015 has been used [77]. 

The chemical composition of water as well as the main thermo-physical properties, used in the neutron 

transport analysis, have been selected in accordance with the expected WCLL coolant conditions and are 

reported in Table 6.3.  

For the density assessment, the average temperature of 311.5°C has been selected. Indeed, considering 

that between 295°C and 328°C the water density variation is about 10%, the average density minimises the 

deviations in the hot and cold water channels.  

Nevertheless, the influence of temperature on volumetric distribution of nitrogen isotopes might be 

further investigated in future works. 

Table 6.3. Chemical composition and thermo-physical properties of coolant water. 

Isotope Isotopic fraction [%] Physical properties Value 
1H 66.6567 Pressure [MPa] 15.5 

2H 0.01000 Temperature [°C] 311.5 

16O 33.2540 Density [kg m-3] 701.28 

17O 0.01267 - - 

18O 0.06667 - - 

In order to minimise the statistical errors on the results, a statistical relevant number of particle histories 

has been run (i.e. 2.0E+9).  

As described in paragraph 3.4, the results have been normalised to the total neutron source intensity (see 

eq. (3.6)) using the parameters reported in Table 6.4 and assuming that the WCLL BU was positioned at the 

equatorial outboard segment. Indeed, the outboard equatorial module is usually used as reference because it 

is the one with the highest peak values in terms of neutron wall loading. For the same reason it has been 

selected for these studies. 

Table 6.4. Neutron source parameters for the normalization of the WCLL equatorial outboard BU. 

WCLL OB BU 

Neutron source 

P [W] 2.037000E+09 

Ef [J] 2.818270E-12 

YDEMO [part/s] 7.227839E+20 

F1N
 3.869127E-04 

ASOURCE [cm2] 2.060800E+03 

ATALLY [cm2] 1.576580E+03 

YLOCAL [part/s] 5.057464E-04 

Using the above mentioned models, boundary conditions and local neutron source, it has been carried 

out the neutronic analysis for the evaluation of 16N and 17N production rate using the reaction (n,p) 

identified by reaction rate 103 in MCNP input [53].  

In Figure 6.4 and Figure 6.5, the concentration production rates for 16N and 17N, the relative errors and 

the radial profile of neutron flux above 10 MeV and 8 MeV, on the ten FW cooling channels and on the 21 

BZ cooling tubes of the WCLL BU, are reported.  
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Figure 6.4. 16N production rate 3D distribution of WCLL BU with detail of radial neutron flux above 10 MeV. Top: UM relative 

error of 16N production rate 3D distribution. Centre: 3D 16N production rate. Bottom: radial neutron flux, averaged in toroidal and 

poloidal directions, above 10 MeV. 
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Figure 6.5. 17N production rate 3D distribution of WCLL BU with detail of radial neutron flux above 8 MeV. Top: UM relative 

error of 17N production rate 3D distribution. Centre: 3D 17N production rate. Bottom: radial neutron flux, averaged in toroidal and 

poloidal directions, above 8 MeV. 
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With reference to Figure 6.4, it is possible to observe that a significant production of 16N occurs in the 

first 40 cm from the plasma facing area. After this distance, the production rate falls down by more than two 

orders of magnitude going rapidly to zero at the BSS (Figure 6.4- Centre). This behaviour is in line with the 

radial profile of the neutron flux above 10 MeV. Indeed, as mentioned in paragraph 6.2, the (n,p) reaction of 
16O to produce 16N occurs only with neutron that have an energy higher than 10.24 MeV. Therefore, all the 

neutrons with energy lower than this threshold are not able to induce any activation reaction with 16O except 

tunnel phenomena occur. 

Moreover, due to the presence of water as well as the light elements used in the WCLL BB for tritium 

production, the high energy neutrons are rapidly slowed down and the neutron flux above 10 MeV 

approaches zero practically after 40 cm in accordance with the nitrogen production. 

This phenomenon is also highlighted by the special distribution of production rate relative error (Figure 

6.4- Top). Furthermore, around the same radial coordinate, the relative error increases to values greater than 

10% that, in accordance to the guidelines for the estimation of result goodness, can be questionable or even 

meaningless. 

With reference to Figure 6.5, the same consideration done for the 16N concentration production can be 

made for the 17N. Indeed, also in this case the 17O (n,p) 17N reaction is subjected to an energy threshold of 

about 8.55 MeV. The 17N concentration production rate is four orders of magnitude lower than 16N one. 

This is due mainly to the different concentration between the 16O and 17O (about three orders of magnitude, 

see Table 6.3) and to the lower cross section of the latter (about one order of magnitude, see Figure 6.1). 

The neutron flux above 8 MeV goes rapidly down after also ~40 cm producing a drop of 17N production 

with the consequent increase of the relative error at the same distance (Figure 6.5 - Top and Bottom) as seen 

for the 16N. Both analyses show a strong dependence of the nitrogen production by the position. Indeed, 

only the first 40 cm considerably contribute to the final concentration while the rest of the volume dilutes 

the produced nitrogen.  Dedicated studies have been performed in order to assess the impact of 

homogenisation on the concentration production estimation. It has been found that the FW homogenisation 

produces an underestimation of the final nitrogen production rate of about 14% with respect to the complete 

heterogeneous model. This is mainly due to the modification of the water atom distribution in the first 

centimetres of the FW that cause a modification of the high neutron fluxes reducing the number of 

reactions. In other words, when the FW is homogenised, the high energy neutrons are slowed down before 

to interact with water producing a considerable reduction of the nitrogen concentration production rate. 

As it was expected, the fully heterogeneous 3D representation of the neutronic domain allows a better 

calculation of nitrogen production. A comparison between the nitrogen production rate calculated on the 

pseudo-cells by means of conventional tally F4, modified by FM cards, and the EMBEE card used for the 

UM is reported in Appendix 9.9. 

6.3.3 Fluid-Dynamic Analysis of WCLL Breeder Unit 16N and 17N Concentrations  

Once the neutronic transport calculations are performed, the nitrogen concentration production rate is 

mapped in ANSYS CFX [59] following the same procedure described in paragraph 3.4.1 for the power 

density. 

A numerical model is created for the transport of nitrogen produced within the WCLL coolant and for 

assessing the final concentration within the BB. Following a 3D FVM for the nitrogen concentration 

transport, a steady state analysis has been performed for solving the eq. (6.1) together with the boundary 

conditions (6.4). Dedicated studies have been performed on the effect of diffusion term of eq. (6.1). Indeed, 

its effect is negligible with respect to the convective and source terms and affects slightly only the 

concentration distribution on the flow path cross section when a huge diffusive coefficient is used. For this 

reason, the diffusive term can be neglected from the resolution without losing any information or to 

compromise the final nitrogen concentration assessment. 
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The FW and BZ cooling channel fluid domains have been meshed applying a set of local control like 

sizing, sweep method and inflation layer. 

For the FW channel an element size of 2 mm has been used while 4 mm for the BZ cooling tubes. 

Inflation with 8 layers and a growth rate of 1.15 has been used both for the FW and BZ cooling channels. 

Elements of the second order like 10-noded tetrahedral (Tet10), 20-noded hexahedral (Hex20) or 15-noded 

prism (Wed15) elements have been used. An overall amount of about 24E+06 nodes linked to form about 

7.7E+06 elements has been used. Some details on the mesh are reported in Figure 6.6.  

  

Figure 6.6. FW and BZ coolant water mesh. Top-left (a): details of FW mesh. Top-centre (b):mesh detail of FW inlet channels. 

Bottom (c): details of BZ mesh. 

An isothermal analysis with a reference pressure of 155 bar and an average temperature of 311.5 °C has 

been carried out. The mass flow rates, 0.38 kg/s for FW and 1.19 kg/s for the BZ, have been derived by the 

power balance taking into account the operational temperature variation of 33 °C [30, 32]. It is important to 

underline the importance of the mass flow rate in concentration transport calculations. Indeed, the residence 

time of water and consequently the amount of oxygen that is activated is strongly depended of the mass 

flow rate/velocity considered.  

Taking into account that one of the main functions of the BB is to transfer the thermal power to the 

PHTS in thermal-hydraulic condition suitable for the electricity generation, it is clear that the mass flow 

rate, to be used in the analyses, has to be derived by the local power balance. For this reason, the average 

heat flux on the FW has been taken into account and not the design value of 0.5 MW/m2.  

For the implementation of the boundary condition expressed by eq. (6.4), it is necessary to define as 

input the transit time t  of water outside the BB in the PHTS cooling circuit.  

According to [115, 116], taking into account the lengths of piping systems and components, and the 

average velocity of water coolant, the transit time outside the VV has been estimated to be 33.336 s for FW 

and BZ cooling circuits. Naturally, this is a rough estimation that could be refined when the PHTS cooling 

circuit design will be more developed and precise. Using the numerical model and the boundary conditions 

introduced above, the concentration transport calculation both for 16N and 17N have been carried out. The 

results in terms of 16N and 17N concentration are shown in Figure 6.7. In Figure 6.8, the FW and BZ outlet 

channels are identified and in Table 6.5 the outlet nitrogen concentrations for both FW and BZ are reported. 
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Figure 6.7. 16N and 17N concentrations for the FW and BZ water cooling channel for the OB4 of DEMO 2015. 

 

  

Figure 6.8. Outlet FW channels and BZ tubes. Top (a): 21 outlet 

cooling tubes of WCLL BZ. Bottom (b): 10 outlet cooling channels of 

WCLL FW. 

Table 6.5. Outlet nitrogen concentration. 

Region 16N Conc. [cm-3] 17N Conc. [cm-3] 

BZ_1 2.846E+10 2.694E+06 

BZ_2 3.126E+10 2.965E+06 

BZ_3 3.128E+10 2.967E+06 

BZ_4 2.849E+10 2.697E+06 

BZ_5 1.782E+10 1.674E+06 

BZ_6 1.784E+10 1.676E+06 

BZ_7 1.123E+10 1.044E+06 

BZ_8 1.186E+10 1.105E+06 

BZ_9 1.187E+10 1.106E+06 

BZ_10 1.123E+10 1.044E+06 

BZ_11 7.118E+09 6.504E+05 

BZ_12 7.114E+09 6.505E+05 

BZ_13 4.630E+09 4.126E+05 

BZ_14 4.621E+09 4.122E+05 

BZ_15 1.922E+09 1.540E+05 

BZ_16 1.922E+09 1.542E+05 

BZ_17 7.820E+08 4.465E+04 

BZ_18 7.820E+08 4.473E+04 

BZ_19 4.087E+08 8.324E+03 

BZ_20 3.651E+08 3.264E+03 

BZ_21 3.655E+08 3.274E+03 

BZ_Ave 1.102E+10 1.024E+06 

FW_1 9.259E+10 8.221E+06 

FW_2 9.726E+10 8.651E+06 

FW_3 9.533E+10 8.472E+06 

FW_4 9.416E+10 8.366E+06 

FW_5 9.357E+10 8.311E+06 

FW_6 9.363E+10 8.315E+06 

FW_7 9.421E+10 8.372E+06 

FW_8 9.536E+10 8.476E+06 

FW_9 9.719E+10 8.645E+06 

FW_10 9.257E+10 8.217E+06 

FW_Ave 9.459E+10 8.405E+06 
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With reference to Figure 6.7, it is important to highlight that the maximum peak in term of 16N and 17N is 

reached just after the bends in the FW and in the BZ. This effect is due mainly to two factors:  

(i) the source term (i.e. the nitrogen concentration production rate) decreases rapidly after the first 

centimetres;  

(ii) the decay of nitrogen starts to play a role in the isotope balance.  

In particular, the maximum 16N concentration achieved in the FW is 1.05E+11 cm-3 and 3.28E+10 in the 

BZ tubes. With reference to Table 6.5, the average value at the FW outlet is, instead, 9.46E+10 cm-3 and 

1.10E+10 cm-3 for the FW and BZ, respectively. Regarding the 17N, the maximum concentration achieved 

is 1.00E+07 cm-3 in the FW and 3.22E+06 cm-3 in the BZ. The average value at the FW outlet is, instead, 

8.41E+6 cm-3 and 1.02E+6 cm-3 for the FW and BZ, respectively. 

In terms of specific activity, the average nitrogen isotopes concentrations correspond to 9.195E+03 

MBq cm-3 and 1.071E+03 MBq cm-3 for the 16N, and 1.397E+00 MBq cm-3 and 1.703E-01 MBq cm-3 for 

the 17N at the outlet of FW and BZ, respectively. 

From the peak values in the FW, it is possible to argue that the variation with respect to the average 

concentration at the outlet is about -11% and -19% for 16N and 17N, respectively. This difference is strictly 

linked and in accordance to the dissimilar half-life of the two isotopes. 

Different situation is registered in the BZ. Therefore, the variations of the averages values for 16N and 
17N are about three times lower than the maximum one and this effect cannot be explained only with the 

half-life of the isotopes analysing the spatial distribution of the nitrogen production rate. Actually, the tubes 

located in the rear of the BZ do not experience a big production of activated isotopes and, then, their outlet 

concentrations is two or three orders of magnitude lower with respect to the other tubes (see 16N and 17N 

concentrations for the tubes from 17 to 21 in Table 6.5). Practically, they act as dilutors towards the other 

tubes with higher concentration. 

These effects have been discovered by means of MAIA procedure and, in particular, of the possibility to 

use a heterogeneous neutronic model as well as a fully 3D transport analysis. 

The MAIA procedure takes into account in a "precise" manner the effects of the flow. Indeed, the higher 

the water velocity is, the less irradiated it becomes and, thus, the lower the production of nitrogen is. This 

results then in a lower outlet concentration. It should also be pointed out that outside the effective flow zone 

a smaller flow (e.g. enlarging the outlet WCLL manifold) is more convenient because the transit time and, 

therefore, the nitrogen decay increase. 

The outcomes of MAIA procedure for water activation analysis, in terms of 16N and 17N outlet 

concentration, can be used as input for safety analysis or dose rate estimation to the PHTS equipment. 
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7 Summary and Outlook 

7.1 Summary 

The objective of this work is the creation of multi-physics design approach aimed to the coupling of the 

three main pillar analyses used for the BB design, namely the neutron and photon transport analysis, the 

thermal fluid-dynamic calculation and the structural stress exploration. Moreover, such an approach has 

also to supply to the designers an adequate accurateness and flexibility guaranteeing a relatively short 

computational time. 

The strategy, followed for the achievement of this challenge, consists of creating a CAD-centric and 

loosely-coupled procedure for the design of the BB concepts based on the coupling of the neutronic, 

thermal-hydraulic and thermo-mechanic calculations adopting a sub-modelling technique, named MAIA. 

The MAIA procedure bases its architecture on the use of validated codes and on the minimisation of their 

number. It is articulated in 10 main steps that go from the decomposition of generic CAD in a format 

suitable for neutron/photon transport analysis to the nuclear analysis for the assessment of volumetric 

heating, from the assessment of temperature and velocity fields to the evaluation of deformation and stress 

field, from the evaluation of nitrogen isotopes production rates to the calculation of the nitrogen 

concentration taking into account the effects of the flow. All the steps share the same geometry details and 

the consistency between the input and output parameters. The new MAIA procedure differs from the 

conventional coupling approach with respect to three key aspects.  

First, it does not introduce homogenisations of models and loads. Indeed, the computational needs and 

the scope of some analyses (e.g. neutronic calculation), conventionally performed for the design of the BB, 

are more related to the investigation of the overall reactor performances with the aim to have an integral 

overview of the main design parameters of DEMO reactor like TBR, shielding performances, dpa 

assessment, etc. From these investigations, some inputs are usually derived for driving the BB design (e.g. 

power density). However, this approach brings to the introduction of some simplification both in the model 

nodalisation and in the calculated loads that might hide specific design issue created by strong gradients in 

the loads and responses. These issues are solved in MAIA by means of detailed nodalisation of geometry 

features using both CSG and Hybrid representations for what concerns the neutronic input. These 

methodologies allow a representation of the geometry that deviates from the real CAD for less than 0.01 % 

in terms of volume. 

Second, MAIA can capture load gradients at high resolution in the three directions for all the analysis 

involved without to require prohibitive computational performances. Indeed, usually in the conventional 

coupling approach, the resolution, used among the neutronic, thermal-hydraulic and thermo-mechanic 

calculations, differs according to the analysis that is carried out.  

And third, MAIA keeps the consistency between the three analyses maintaining the congruence between 

the inputs and outputs. Usually, the conventional coupling approach is shared among several teams and the 

transfer of data is not always coherent because of different level of model developments or sensibility 

shown by designers. 

However, the computational effort required by the CAD-centric feature of MAIA procedure imposes the 

representation of BB portions if a high geometric detail has to be maintained. For this reason, a research 

campaign has been dedicated for the definition and validation of a set of boundary conditions for each 

performed calculation. As far as the neutron and photon radiation transport analyses are concerned, it has 

been found that the set of reflecting and white conditions in the poloidal toroidal directions, together with 
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the presence of VV and the definition of local neutron and photon source, produces a mismatch of 0.23 % 

and -0.48 % in terms of power deposition between the DEMO and the local (e.g. module and slice) models 

with a mean value of the power density error of 5.17 % and -3.97 %, respectively. These errors, although 

negligible and driven by the presence of localised zones where small power density values are assessed, 

represent confidence interval when neutron/photon transport analysis are carried out using MAIA 

procedure. On the other side, it has been demonstrated that the neutronic symmetry conditions are valid in 

the entire module up to the last slices nearby the caps. Therefore, the set of boundary conditions used in 

MAIA and the applicability of the procedure itself can be spread for the entire module with the exception of 

the cap regions. Furthermore, a sensitivity analysis on cosine subdivision of local neutron and photon 

source has been performed indicating in 10 bins the best subdivision number in terms of discretisation, 

fidelity of the results obtained with respect to the reference model and computational effort.  

Concerning the analysis of thermal-hydraulic boundary conditions, it has been found that the variation 

on mass flow rates (comprised between ~-1.3 % and ~0.6 %) as well as power density fluctuation (up to ~6 

% in the neighbouring domains) affect the temperature distribution for less than ±2.4 % demonstrating the 

applicability of poloidal symmetry conditions. This has also been verified using a statistical check (t-test) 

showing that symmetry conditions, for applied loads on the adjacent slices with a standard deviation of 6 %, 

can be considered valid at a 95% confidence level.  

Furthermore, it has to be highlighted that, for the validation of the thermal-hydraulic boundary 

conditions, a well-known procedure for fission applications has been newly introduced in the design cycle 

of breeding blankets in fusion, which is based on the use of porous media and thermal-hydraulic 

characteristic of local circuits. This represents an additional and positive side-effect contribution to the 

methodologies that can be applied to the BB design. Indeed, this new application of porous media model is 

used for the investigation of mass flow rate distribution as well as for the estimation of the overall segment 

pressure drop but also for the optimisation of the segment hydraulic layout without requiring huge 

computational efforts. 

As far as the thermo-mechanical analyses are concerned, it has been identified the set of boundary 

conditions (e.g. radial and toroidal displacements prevented to the nodes lying along the toroidal and 

poloidal direction, symmetry at the lower cut surface and GPS to the top one) that produce a discrepancy in 

terms of displacement in the sub-model comprised between the -6 % and the 4 % and conservative 

assessment of membrane and bending stresses both for primary and secondary stresses. The impact of the 

temperature variation has also been investigated showing that the fluctuations on total deformation are 

comprised between -0.3 % and the 1.7 %, on equivalent membrane stress up to 15 % while on equivalent 

bending stress between the -7 % and the 5 %. 

As a proof-of-concept, the MAIA procedure and the consistency verification of the boundary conditions 

have then been used to discern and evaluate the impact on the BB design. So, it has been demonstrated that 

some criticalities are present in the design. Indeed, the application of MAIA procedure has highlighted 

problematic regions on the HCPB BB that have not been discovered using the conventional coupling 

process based on the simplification of geometry features and loads. In particular, the fluid-dynamic results 

show a violation of the temperature requirement limits that have not been solved introducing design 

solutions. Furthermore, these violations of thermal-hydraulic requirements produce very intense values of 

Von Mises stresses at the junction with the armour, in the caps of the CP Helium distributors and at the 

connections between the BP and the CP. In this way, the benefits that can be derived from the use of 

coupling procedures, based on CAD-centric and adopting sub-modelling techniques have been 

demonstrated among each analysis field. It has also been demonstrated the positive effect of the synergistic 

interactions study that, avoiding excessive simplifications in the geometry and load representation, show 

the presence of driving design gradients. 
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In order to further demonstrate the versatility and adaptability of the MAIA procedure to the 

investigation of specific phenomena, the safety related issue of water activation in fusion reactors has been 

also approached. The activated water represents a distributed radiation photon and neutron source that can 

jeopardise the sensible equipment (e.g. valves) to which a safety function is associated and limit the human 

intervention. Using MAIA procedure, it has been possible to take into account the effects of the flow on the 

nitrogen concentration and to provide useful information for the development of WCLL design and its 

PHTS. Indeed, the lower the water velocity in not-irradiated zones (e.g. BSS), the highest is the decay and, 

consequently, lower the radioactivity of Nitrogen isotopes. This allowed providing indication on the WCLL 

design for the minimisation of water activation as well as on the 16N and 17N concentration that can be used 

as input for safety analysis or dose rate estimation to the PHTS equipment. 

However, the applicability of MAIA procedure is currently limited to the BB and cannot be directly 

exported to other In-Vessel components without a revalidation of the boundary conditions. Additionally, a 

more stringent uncertainty analysis has to be carried out on thermo-mechanical boundary conditions if 

MAIA procedure has to be used for more advanced design phase. In particular, it has to demonstrate that, 

for all the load combinations, the use of sub-models produce an over estimation of the stress and 

deformations that, in this work, has been proved only for the normal and for the over pressurisation 

scenarios.  

7.2 Outlook and Future Work 

With the positive development coupling procedure, with the consistency verification of the boundary 

conditions to be used for the study of the BB, with the demonstration of the benefit for the design and with 

the evident flexibility to adapt to the study of new phenomena, the natural continuation of the present work 

is the enhancement of MAIA procedure including the tritium transport analysis and the 

magnetohydrodynamic (MHD) calculations for liquid metal BBs. Their integration will open the door to an 

accurate and precise representation of the BB and to the holistic study of these phenomena and their impact 

of BB performances. Indeed, the tritium permeation through the BB structure represents one of the main 

safety related issues in terms of inventories and releases. It is driven mainly by the interaction of neutrons 

with breeder material and by the temperature field in structures and fluids as well as by the velocity of 

coolant. All these aspects have been already addressed in this work and the basement for the tritium 

permeation analysis has been established already. Therefore, starting from the present work, following the 

approach already used for the transport of nitrogen isotopes, it would be possible to enhance the MAIA 

procedure for the study of tritium permeation.  

Another important aspect, which could be addressed in future works, refers to the impact of MHD 

effects on heat transfer and tritium transport in liquid metal BBs. Indeed, the flow of LiPb in WCLL is 

strongly affected by magnetic field and, in particular, by the magnetic field gradients that can arise within 

the BB. Therefore, the MHD could trigger unexpected buoyancy effects on LiPb and, then, the heat transfer 

with the cooling circuit but also could have an impact on the tritium permeation that, as explained, is driven 

by temperatures and fluid velocities. It represents another coupling problem that, for its own nature, must be 

studied by a multi-physics approach. Moreover, the automatization of all the MAIA steps, using dedicated 

scripts for the creation of models and running of analyses, can be introduced with the aim to perform 

parametric studies of geometry. This improvement could provide to the designers a fully integrated tool 

able to investigate a wide range of configurations in order to find optimum and integrated solutions for all 

the three analyses. In this context, the integration with system codes like MIRA could be pursued. This will 

allow taking into account in both directions the impact of reactor parameters and of detailed BB design 

solutions.  
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9 Appendix 

9.1 Volume Comparison between ANSYS DesignModeler and CSG 

Modelling 

In this Appendix, the volume estimation of CSG and UM neutronic models are reported. For 

comparison, it is reported also the reference volume calculated on the CAD model. The error is calculated 

with respect to the reference. In Table A.1, the comparison between the reference CAD model and the 

neutronic model based on CSG Modelling for the HCPB slice is shown. In Table A.2, the comparison 

between the reference CAD model and the neutronic model based on CSG Modelling for the HCPB cap is 

summarized. In Table A.3, the comparison between the reference CAD model and the neutronic model 

based on Hybrid Modelling for the WCLL BU with serpentine tubes is stated. In Table A.4, the and 

comparison between the reference CAD model and the neutronic model based on Hybrid Modelling for the 

WCLL BU with radial-toroidal tubes is reported. 

Table A.1. Volume estimation and comparison between the reference CAD model and the neutronic model based on CSG 

Modelling for the HCPB slice. 

Cell Name 

ANSYS  

DesignModeler 
MCNP 

Error 

[%] 
Cell Name 

ANSYS  

DesignModeler 
MCNP 

Error  

[%] Volume 

[cm3] 

Volume 

[cm3] 

Volume  

[cm3] 

Volume  

[cm3] 

Be.10 2.63E+02 2.63E+02 -0.10 He_D-LS.6 8.94E+00 8.94E+00 -0.02 

Be.11 2.08E+02 2.08E+02 0.03 He_D-LS.7 9.66E+00 9.64E+00 0.25 

Be.12 1.02E+03 1.01E+03 0.25 He_D-LS.8 9.19E+00 9.19E+00 -0.06 

Be.13 1.03E+03 1.03E+03 -0.02 He_D-LS.9 9.65E+00 9.62E+00 0.26 

Be.14 1.13E+03 1.13E+03 -0.04 He_D-RS.40 4.53E+00 4.53E+00 0.10 

Be.15 1.50E+03 1.50E+03 -0.02 He_Manifold.1 3.55E+03 3.55E+03 -0.03 

Be.16 1.78E+02 1.78E+02 -0.02 He_Manifold.2 3.55E+03 3.55E+03 -0.07 

Be.17 3.58E+02 3.58E+02 0.06 He_Manifold.3 4.40E+01 4.41E+01 -0.19 

Be.18 2.86E+02 2.86E+02 0.07 He_Manifold.4 1.99E+03 1.99E+03 -0.08 

Be.19 2.74E+02 2.74E+02 0.10 He_Manifold.5 4.40E+01 4.40E+01 -0.06 

Be.2 1.03E+03 1.03E+03 0.07 He_Manifold.6 1.99E+03 1.99E+03 -0.06 

Be.20 2.70E+02 2.70E+02 0.23 Li.10 8.68E+01 8.67E+01 0.16 

Be.21 2.63E+02 2.63E+02 0.09 Li.11 1.56E+02 1.56E+02 -0.04 

Be.22 2.08E+02 2.08E+02 0.04 Li.12 7.44E+01 7.43E+01 0.17 

Be.23 1.02E+03 1.01E+03 0.25 Li.13 4.17E+02 4.17E+02 -0.01 

Be.24 2.73E+02 2.73E+02 0.05 Li.14 4.58E+02 4.58E+02 0.08 

Be.3 1.13E+03 1.13E+03 0.16 Li.15 6.06E+02 6.05E+02 0.10 

Be.4 1.50E+03 1.50E+03 0.16 Li.16 5.21E+02 5.20E+02 0.28 

Be.5 1.78E+02 1.78E+02 0.17 Li.17 1.16E+02 1.15E+02 0.21 

Be.6 3.58E+02 3.58E+02 -0.08 Li.18 1.11E+02 1.11E+02 0.20 

Be.7 2.86E+02 2.86E+02 0.06 Li.19 1.10E+02 1.10E+02 0.19 

Be.8 2.74E+02 2.74E+02 0.02 Li.2 4.17E+02 4.17E+02 -0.11 

Be.9 2.70E+02 2.70E+02 -0.08 Li.20 1.08E+02 1.08E+02 0.32 

Eu_CP.10 6.15E+01 6.14E+01 0.21 Li.21 8.68E+01 8.68E+01 -0.01 

Eu_CP.11 5.82E+01 5.82E+01 0.04 Li.22 1.56E+02 1.56E+02 0.06 

Eu_CP.12 1.29E+02 1.29E+02 0.12 Li.3 4.58E+02 4.58E+02 0.01 

Eu_CP.13 9.63E+01 9.62E+01 0.15 Li.4 6.06E+02 6.04E+02 0.20 

Eu_CP.14 1.71E+01 1.71E+01 0.01 Li.5 5.21E+02 5.20E+02 0.20 

Eu_CP.15 6.16E+00 6.16E+00 -0.03 Li.6 1.16E+02 1.16E+02 0.05 

Eu_CP.16 1.14E+01 1.15E+01 -0.13 Li.7 1.11E+02 1.11E+02 -0.08 

Eu_CP.17 5.49E+00 5.48E+00 0.04 Li.8 1.10E+02 1.10E+02 -0.07 

Eu_CP.18 2.40E+01 2.40E+01 -0.01 Li.9 1.08E+02 1.08E+02 0.08 

Eu_CP.19 1.55E+02 1.55E+02 -0.04 Be.1 2.73E+02 2.72E+02 0.20 

Eu_CP.20 1.75E+02 1.75E+02 0.15 Eu.10 1.35E+03 1.35E+03 0.03 

Eu_CP.21 2.12E+02 2.11E+02 0.23 Eu.11 8.12E+00 8.13E+00 -0.16 

Eu_CP.22 1.61E+02 1.61E+02 0.14 Eu.12 8.12E+00 8.13E+00 -0.16 

Eu_CP.23 2.37E+01 2.37E+01 0.04 Eu.13 9.47E+00 9.49E+00 -0.30 
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Eu_CP.24 3.99E+01 3.98E+01 0.19 Eu_CP.2 1.06E+01 1.06E+01 -0.13 

Eu_CP.25 4.89E+00 4.86E+00 0.51 Eu_CP.3 2.97E+01 2.97E+01 0.01 

Eu_CP.26 3.99E+00 4.02E+00 -0.69 Eu_CP.4 9.21E+00 9.22E+00 -0.14 

Eu_CP.27 2.69E+01 2.69E+01 0.00 Eu_CP.5 9.21E+00 9.19E+00 0.16 

Eu_CP.28 6.36E+01 6.35E+01 0.15 Eu_CP.6 2.97E+01 2.98E+01 -0.07 

Eu_CP.29 6.36E+01 6.38E+01 -0.23 Eu_FW.1 1.40E+02 1.39E+02 0.28 

Eu_CP.30 2.36E+01 2.36E+01 0.12 Eu_FW.2 5.73E+02 5.74E+02 -0.05 

Eu_CP.31 3.30E+01 3.29E+01 0.22 Eu_FW.3 1.40E+02 1.40E+02 -0.13 

Eu_CP.32 2.68E+01 2.68E+01 0.07 Eu_FW.4 2.46E+02 2.46E+02 -0.04 

Eu_CP.33 3.30E+01 3.30E+01 0.14 Eu_FW.5 2.46E+02 2.46E+02 -0.06 

Eu_CP.34 3.30E+01 3.30E+01 -0.03 He_BSS.1 5.39E+01 5.39E+01 0.06 

Eu_CP.35 3.99E+01 3.98E+01 0.12 He_BSS.2 1.20E+02 1.20E+02 -0.03 

Eu_CP.36 1.75E+02 1.75E+02 0.29 He_BSS.3 5.38E+01 5.37E+01 0.24 

Eu_CP.37 2.12E+02 2.12E+02 0.02 He_BSS.4 3.74E+02 3.74E+02 -0.26 

Eu_CP.38 1.61E+02 1.61E+02 0.01 He_BSS.5 3.74E+02 3.74E+02 -0.15 

Eu_CP.39 1.55E+02 1.55E+02 0.07 He_CP1.1 6.66E+01 6.65E+01 0.22 

Eu_CP.40 1.14E+01 1.14E+01 0.01 He_CP1.10 1.98E+01 1.97E+01 0.26 

Eu_CP.41 6.16E+00 6.16E+00 -0.08 He_CP1.11 1.97E+01 1.97E+01 0.04 

Eu_CP.42 7.09E+00 7.10E+00 -0.15 He_CP1.2 1.94E+01 1.93E+01 0.20 

Eu_CP.43 3.30E+01 3.30E+01 -0.13 He_CP1.3 1.96E+01 1.95E+01 0.37 

Eu_CP.44 3.30E+01 3.30E+01 -0.09 He_CP1.4 1.96E+01 1.95E+01 0.20 

Eu_CP.45 3.30E+01 3.30E+01 0.03 He_CP1.5 1.95E+01 1.94E+01 0.39 

Eu_CP.46 7.09E+00 7.10E+00 -0.24 He_CP1.6 1.95E+01 1.94E+01 0.25 

Eu_CP.47 5.49E+00 5.48E+00 0.18 He_CP1.7 1.94E+01 1.94E+01 0.24 

Eu_CP.48 4.89E+00 4.85E+00 0.78 He_CP1.8 2.00E+01 1.99E+01 0.13 

Eu_CP.49 4.01E+00 4.00E+00 0.05 He_CP1.9 1.98E+01 1.98E+01 0.20 

Eu_CP.7 9.63E+01 9.65E+01 -0.18 He_CP2.1 6.66E+01 6.66E+01 0.08 

Eu_CP.8 5.82E+01 5.82E+01 0.12 He_D-RS.1 9.68E+00 9.67E+00 0.11 

Eu_CP.9 1.71E+01 1.71E+01 0.33 He_D-RS.10 9.32E+00 9.29E+00 0.36 

Eu_Manifold.1 5.43E+02 5.43E+02 -0.16 He_D-RS.11 9.64E+00 9.65E+00 -0.07 

Eu_Manifold.2 5.43E+02 5.43E+02 -0.11 He_D-RS.12 4.84E+00 4.84E+00 0.07 

He_CP1.12 1.65E+01 1.65E+01 -0.14 He_D-RS.13 9.63E+00 9.65E+00 -0.19 

He_CP1.13 1.92E+01 1.91E+01 0.23 He_D-RS.14 9.38E+00 9.41E+00 -0.32 

He_CP1.14 1.89E+01 1.89E+01 0.04 He_D-RS.15 9.63E+00 9.63E+00 0.02 

He_CP1.15 1.84E+01 1.84E+01 0.07 He_D-RS.16 9.40E+00 9.39E+00 0.09 

He_CP1.16 1.75E+01 1.75E+01 0.12 He_D-RS.17 9.62E+00 9.58E+00 0.36 

He_CP1.17 1.67E+01 1.67E+01 0.21 He_D-RS.18 9.41E+00 9.38E+00 0.34 

He_CP1.18 6.94E+01 6.93E+01 0.13 He_D-RS.19 9.61E+00 9.61E+00 -0.01 

He_CP1.19 6.95E+01 6.94E+01 0.04 He_D-RS.2 7.90E+00 7.92E+00 -0.19 

He_CP1.20 6.78E+01 6.79E+01 -0.15 He_D-RS.20 9.42E+00 9.41E+00 0.07 

He_CP2.10 2.00E+01 2.00E+01 0.23 He_D-RS.21 9.60E+00 9.59E+00 0.19 

He_CP2.11 1.93E+01 1.93E+01 -0.28 He_D-RS.22 9.43E+00 9.40E+00 0.39 

He_CP2.12 1.70E+01 1.70E+01 0.06 He_D-RS.23 9.59E+00 9.59E+00 0.06 

He_CP2.13 1.79E+01 1.79E+01 -0.03 He_D-RS.24 9.45E+00 9.44E+00 0.03 

He_CP2.14 1.86E+01 1.85E+01 0.22 He_D-RS.25 9.59E+00 9.58E+00 0.10 

He_CP2.15 1.90E+01 1.90E+01 0.18 He_D-RS.26 9.46E+00 9.42E+00 0.43 

He_CP2.16 1.94E+01 1.94E+01 0.08 He_D-RS.27 9.58E+00 9.57E+00 0.09 

He_CP2.17 1.65E+01 1.65E+01 -0.16 He_D-RS.28 9.47E+00 9.44E+00 0.36 

He_CP2.18 6.94E+01 6.93E+01 0.14 He_D-RS.29 9.57E+00 9.56E+00 0.07 

He_CP2.19 6.95E+01 6.94E+01 0.06 He_D-RS.3 9.67E+00 9.68E+00 -0.07 

He_CP2.2 1.94E+01 1.94E+01 0.18 He_D-RS.30 9.48E+00 9.47E+00 0.15 

He_CP2.20 6.78E+01 6.78E+01 0.03 He_D-RS.31 9.56E+00 9.53E+00 0.32 

He_CP2.3 1.95E+01 1.94E+01 0.22 He_D-RS.32 9.49E+00 9.44E+00 0.55 

He_CP2.4 1.95E+01 1.94E+01 0.54 He_D-RS.33 9.56E+00 9.48E+00 0.81 

He_CP2.5 1.96E+01 1.95E+01 0.35 He_D-RS.34 9.50E+00 9.49E+00 0.15 

He_CP2.6 1.96E+01 1.96E+01 0.13 He_D-RS.35 9.54E+00 9.51E+00 0.32 

He_CP2.7 1.97E+01 1.97E+01 0.05 He_D-RS.36 9.51E+00 9.49E+00 0.29 

He_CP2.8 1.98E+01 1.98E+01 0.17 He_D-RS.37 9.54E+00 9.50E+00 0.35 

He_CP2.9 1.99E+01 1.99E+01 0.09 He_D-RS.38 9.52E+00 9.53E+00 -0.11 

He_D-LS.1 9.68E+00 9.66E+00 0.18 He_D-RS.39 9.53E+00 9.51E+00 0.23 

He_D-LS.10 9.32E+00 9.31E+00 0.14 He_D-RS.4 8.45E+00 8.45E+00 -0.02 

He_D-LS.11 9.64E+00 9.63E+00 0.08 He_D-RS.5 9.67E+00 9.66E+00 0.06 

He_D-LS.12 4.84E+00 4.82E+00 0.48 He_D-RS.6 8.94E+00 8.93E+00 0.09 

He_D-LS.13 9.63E+00 9.63E+00 0.07 He_D-RS.7 9.66E+00 9.65E+00 0.09 

He_D-LS.14 9.38E+00 9.36E+00 0.29 He_D-RS.8 9.19E+00 9.19E+00 -0.07 
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He_D-LS.15 9.63E+00 9.63E+00 -0.06 He_D-RS.9 9.65E+00 9.63E+00 0.23 

He_D-LS.16 9.40E+00 9.42E+00 -0.21 He_FW.1 1.56E+00 1.57E+00 -0.73 

He_D-LS.17 9.62E+00 9.63E+00 -0.18 He_FW.2 7.04E-01 7.04E-01 -0.07 

He_D-LS.18 9.41E+00 9.36E+00 0.50 He_FW.3 7.03E-01 7.02E-01 0.08 

He_D-LS.19 9.61E+00 9.58E+00 0.29 He_FW.4 3.71E+02 3.71E+02 -0.03 

He_D-LS.2 7.90E+00 7.88E+00 0.31 He_FW.5 4.10E+02 4.10E+02 -0.08 

He_D-LS.20 9.42E+00 9.39E+00 0.29 He_Purge.2 5.94E+02 5.93E+02 0.17 

He_D-LS.21 9.60E+00 9.58E+00 0.22 He_Purge.3 1.43E+02 1.42E+02 0.32 

He_D-LS.22 9.43E+00 9.41E+00 0.22 He_Purge.4 1.43E+02 1.43E+02 -0.41 

He_D-LS.23 9.59E+00 9.55E+00 0.41 He_Purge.5 3.22E+01 3.23E+01 -0.26 

He_D-LS.24 9.45E+00 9.41E+00 0.38 He_Purge.6 2.39E+01 2.39E+01 0.25 

He_D-LS.25 9.59E+00 9.55E+00 0.34 He_Purge.7 2.39E+01 2.40E+01 -0.12 

He_D-LS.26 9.46E+00 9.45E+00 0.11 He_Purge.8 2.29E+01 2.29E+01 -0.09 

He_D-LS.27 9.58E+00 9.58E+00 -0.02 He_Purge.9 4.50E+02 4.51E+02 -0.19 

He_D-LS.28 9.47E+00 9.43E+00 0.38 Li.1 7.44E+01 7.44E+01 0.08 

He_D-LS.29 9.57E+00 9.58E+00 -0.16 W.1 1.97E+01 1.98E+01 -0.38 

He_D-LS.3 9.67E+00 9.67E+00 -0.02 W.2 1.97E+01 1.97E+01 0.08 

He_D-LS.30 9.48E+00 9.51E+00 -0.27 W.3 6.93E+01 6.93E+01 0.00 

He_D-LS.31 9.56E+00 9.59E+00 -0.34 Eu.1 5.11E+02 5.11E+02 0.05 

He_D-LS.32 9.49E+00 9.48E+00 0.17 Eu.2 5.11E+02 5.12E+02 -0.21 

He_D-LS.33 9.56E+00 9.57E+00 -0.12 Eu.3 3.00E+03 3.00E+03 -0.02 

He_D-LS.34 9.50E+00 9.49E+00 0.10 Eu.4 3.09E+03 3.10E+03 -0.06 

He_D-LS.35 9.54E+00 9.56E+00 -0.19 Eu.5 3.10E+03 3.10E+03 0.06 

He_D-LS.36 9.51E+00 9.53E+00 -0.17 Eu.6 3.13E+03 3.13E+03 -0.04 

He_D-LS.37 9.54E+00 9.53E+00 0.09 Eu.7 3.13E+03 3.13E+03 -0.08 

He_D-LS.38 9.52E+00 9.51E+00 0.06 Eu.8 2.95E+01 2.96E+01 -0.47 

He_D-LS.39 9.53E+00 9.50E+00 0.29 Eu.9 2.95E+01 2.95E+01 -0.16 

He_D-LS.4 8.45E+00 8.46E+00 -0.11 Eu_CP.1 6.15E+01 6.15E+01 0.02 

He_D-LS.40 4.53E+00 4.51E+00 0.56 He_Purge.1 4.50E+02 4.50E+02 0.15 

He_D-LS.5 9.67E+00 9.67E+00 -0.01 TOTAL 5.89E+04 5.89E+04 0.01 

Table A.2. Volume estimation and comparison between the reference CAD model and the neutronic model based on CSG 

Modelling for the HCPB cap. 

Cell Name 

ANSYS  

DesignModeler 
MCNP 

Error 

[%] 
Cell Name 

ANSYS  

DesignModeler 
MCNP 

Error  

[%] Volume 

[cm3] 

Volume 

[cm3] 

Volume  

[cm3] 

Volume  

[cm3] 

Be_Bed.1 1.90E+02 1.90E+02 0.14 CP_Bottom_Lef

t_Outlet_He.7 

2.86E+01 2.85E+01 0.22 

Be_Bed.2 1.90E+02 1.90E+02 0.00 CP_Bottom_Lef

t_Outlet_He.8 

2.77E+01 2.77E+01 0.11 

Be_Bed.3 4.57E+04 4.57E+04 -0.02 CP_Bottom_Lef

t_Outlet_He.9 

3.20E+00 3.24E+00 -1.21 

BP.1 8.84E+01 8.85E+01 -0.06 CP_Top_Left_I

nlet_He.1 

5.77E-01 5.82E-01 -0.74 

BP.2 8.84E+01 8.86E+01 -0.23 CP_Top_Left_I

nlet_He.10 

1.09E+00 1.08E+00 0.24 

BP.3  9.04E+03 9.04E+03 0.02 CP_Top_Left_I

nlet_He.11 

2.71E+01 2.71E+01 -0.13 

BP.4 6.17E+01 6.18E+01 -0.05 CP_Top_Left_I

nlet_He.12 

3.28E+00 3.28E+00 0.07 

BP.5 4.59E+01 4.59E+01 -0.02 CP_Top_Left_I

nlet_He.13 

2.74E+01 2.74E+01 0.06 

BP.6 4.59E+01 4.60E+01 -0.06 CP_Top_Left_I

nlet_He.14 

1.33E+01 1.33E+01 -0.08 

BP.7 6.17E+01 6.18E+01 -0.12 CP_Top_Left_I

nlet_He.15 

4.68E-01 4.70E-01 -0.30 

BSS.1 3.83E+04 3.83E+04 -0.05 CP_Top_Left_I

nlet_He.16 

3.08E+01 3.07E+01 0.10 

BSS.2 3.83E+04 3.83E+04 0.00 CP_Top_Left_I

nlet_He.17 

4.03E-01 3.99E-01 0.90 

BSS.3 5.62E+03 5.62E+03 -0.01 CP_Top_Left_I

nlet_He.18 

3.27E+01 3.28E+01 -0.18 

BSS.4 1.96E+04 1.96E+04 -0.01 CP_Top_Left_I

nlet_He.19 

3.29E+01 3.29E+01 -0.06 
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BSS.5 5.62E+03 5.62E+03 -0.01 CP_Top_Left_I

nlet_He.2 

2.85E+01 2.85E+01 -0.06 

BSS.6 1.22E+04 1.22E+04 0.00 CP_Top_Left_I

nlet_He.20 

3.30E+01 3.29E+01 0.32 

BSS.7 5.75E+03 5.75E+03 0.03 CP_Top_Left_I

nlet_He.21 

3.32E+01 3.32E+01 -0.03 

BSS.8 5.72E+03 5.72E+03 0.02 CP_Top_Left_I

nlet_He.22 

3.34E+01 3.34E+01 -0.09 

BSS.9 1.21E+04 1.22E+04 -0.02 CP_Top_Left_I

nlet_He.23 

3.36E+01 3.35E+01 0.14 

BP.8 1.17E+02 1.17E+02 0.01 CP_Top_Left_I

nlet_He.24 

3.82E+01 3.83E+01 -0.04 

BP.9   1.17E+02 1.17E+02 -0.14 CP_Top_Left_I

nlet_He.25 

3.30E+01 3.30E+01 0.08 

CAP_Central.1 6.29E+02 6.29E+02 0.11 CP_Top_Left_I

nlet_He.26 

1.78E+01 1.78E+01 -0.13 

CAP_Central.10 1.77E+02 1.77E+02 0.09 CP_Top_Left_I

nlet_He.27 

1.54E+01 1.54E+01 0.27 

CAP_Central.11 1.00E+02 1.00E+02 0.22 CP_Top_Left_I

nlet_He.28 

4.00E+00 4.02E+00 -0.38 

CAP_Central.12 2.31E+02 2.31E+02 0.00 CP_Top_Left_I

nlet_He.3 

4.22E-01 4.19E-01 0.71 

CAP_Central.13 7.83E+02 7.83E+02 -0.01 CP_Top_Left_I

nlet_He.4 

3.18E+01 3.18E+01 -0.08 

CAP_Central.14 1.02E+02 1.02E+02 0.11 CP_Top_Left_I

nlet_He.5 

3.22E+01 3.22E+01 -0.08 

CAP_Central.15 8.34E+02 8.34E+02 -0.01 CP_Top_Left_I

nlet_He.6 

1.99E+02 1.99E+02 0.00 

CAP_Central.16 1.83E+02 1.83E+02 -0.16 CP_Top_Left_I

nlet_He.7 

2.85E+00 2.85E+00 0.05 

CAP_Central.17 1.78E+03 1.78E+03 0.02 CP_Top_Left_I

nlet_He.8 

4.37E+00 4.39E+00 -0.34 

CAP_Central.18 1.31E+03 1.31E+03 0.05 CP_Top_Left_I

nlet_He.9 

7.12E+00 7.16E+00 -0.56 

CAP_Central.19 1.12E+03 1.12E+03 -0.04 CP_Top_Left_O

utlet_He.1 

6.66E+02 6.66E+02 -0.01 

CAP_Central.2 6.44E+02 6.44E+02 0.03 CP_Top_Left_O

utlet_He.10 

4.48E+00 4.48E+00 0.15 

CAP_Central.20 3.08E+03 3.09E+03 -0.03 CP_Top_Left_O

utlet_He.11 

7.14E+00 7.16E+00 -0.29 

CAP_Central.21 1.81E+02 1.81E+02 -0.14 CP_Top_Left_O

utlet_He.12 

2.22E+00 2.23E+00 -0.48 

CAP_Central.22 1.01E+03 1.01E+03 0.00 CP_Top_Left_O

utlet_He.13 

6.28E+00 6.30E+00 -0.26 

CAP_Central.23 2.34E+03 2.34E+03 0.00 CP_Top_Left_O

utlet_He.14 

2.87E+01 2.87E+01 -0.02 

CAP_Central.24 6.31E+01 6.33E+01 -0.31 CP_Top_Left_O

utlet_He.15 

3.12E+00 3.15E+00 -1.07 

CAP_Central.25 2.98E+02 2.98E+02 -0.04 CP_Top_Left_O

utlet_He.16 

2.74E+01 2.75E+01 -0.11 

CAP_Central.26 6.31E+01 6.31E+01 -0.07 CP_Top_Left_O

utlet_He.17 

1.33E+01 1.33E+01 0.12 

CAP_Central.27 2.98E+02 2.98E+02 -0.05 CP_Top_Left_O

utlet_He.18 

5.72E-04 5.94E-04 -3.87 

CAP_Central.3 2.23E+02 2.23E+02 0.05 CP_Top_Left_O

utlet_He.19 

3.35E+01 3.34E+01 0.06 

CAP_Central.4 1.36E+01 1.36E+01 0.26 CP_Top_Left_O

utlet_He.2 

7.62E+00 7.61E+00 0.11 

CAP_Central.5 3.64E+02 3.64E+02 0.03 CP_Top_Left_O

utlet_He.20 

3.27E+01 3.27E+01 -0.11 

CAP_Central.6 1.03E+02 1.03E+02 -0.07 CP_Top_Left_O

utlet_He.21 

2.72E+01 2.71E+01 0.20 

CAP_Central.7 9.02E+02 9.03E+02 -0.05 CP_Top_Left_O

utlet_He.22 

3.33E+01 3.32E+01 0.27 

CAP_Central.8 1.01E+02 1.01E+02 -0.15 CP_Top_Left_O

utlet_He.23 

3.31E+01 3.30E+01 0.24 
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CAP_Central.9 6.34E+02 6.33E+02 0.03 CP_Top_Left_O

utlet_He.24 

3.30E+01 3.29E+01 0.16 

CAP_Lower_pla

te.1 

4.27E+01 4.26E+01 0.17 CP_Top_Left_O

utlet_He.25 

3.28E+01 3.27E+01 0.13 

CAP_Lower_pla

te.10 

6.26E+00 6.25E+00 0.15 CP_Top_Left_O

utlet_He.26 

4.41E+01 4.41E+01 0.02 

CAP_Lower_pla

te.11 

7.21E-01 7.17E-01 0.56 CP_Top_Left_O

utlet_He.27 

5.10E+01 5.10E+01 -0.09 

CAP_Lower_pla

te.12 

2.73E+00 2.74E+00 -0.29 CP_Top_Left_O

utlet_He.28 

5.34E+00 5.37E+00 -0.54 

CAP_Lower_pla

te.13 

6.26E+00 6.26E+00 -0.06 CP_Top_Left_O

utlet_He.29 

2.37E+01 2.37E+01 -0.03 

CAP_Lower_pla

te.14 

7.21E-01 7.22E-01 -0.23 CP_Top_Left_O

utlet_He.3 

1.09E+03 1.09E+03 -0.02 

CAP_Lower_pla

te.15 

2.73E+00 2.71E+00 0.66 CP_Top_Left_O

utlet_He.30 

2.05E+01 2.06E+01 -0.16 

CAP_Lower_pla

te.2 

8.05E+01 8.06E+01 -0.07 CP_Top_Left_O

utlet_He.4 

2.46E+01 2.46E+01 -0.08 

CAP_Lower_pla

te.3 

4.87E+03 4.87E+03 0.00 CP_Top_Left_O

utlet_He.5 

8.40E+01 8.41E+01 -0.23 

CAP_Lower_pla

te.4 

7.55E+01 7.55E+01 0.02 CP_Top_Left_O

utlet_He.6 

2.41E+01 2.40E+01 0.06 

CAP_Lower_pla

te.5 

6.11E+03 6.11E+03 0.00 CP_Top_Left_O

utlet_He.7 

2.63E+00 2.61E+00 0.50 

CAP_Lower_pla

te.6 

1.22E+02 1.21E+02 0.18 CP_Top_Left_O

utlet_He.8 

2.24E+01 2.24E+01 -0.10 

CAP_Lower_pla

te.7 

2.29E+01 2.29E+01 0.01 CP_Top_Left_O

utlet_He.9 

2.38E+00 2.38E+00 -0.21 

CAP_Lower_pla

te.8 

9.14E+01 9.12E+01 0.18 Enclosure 1.47E+07 1.47E+07 0.00 

CAP_Lower_pla

te.9 

1.58E+02 1.58E+02 0.08 FW.1 4.94E+02 4.94E+02 0.05 

CAP_Upper_pla

te.1  

6.32E+03 6.32E+03 0.01 FW.2 2.62E+02 2.61E+02 0.13 

CAP_Upper_pla

te.10 

6.19E+00 6.20E+00 -0.09 FW.3 2.62E+02 2.61E+02 0.03 

CAP_Upper_pla

te.11 

7.02E-01 7.09E-01 -1.01 FW.4 1.11E+02 1.11E+02 0.07 

CAP_Upper_pla

te.12 

3.00E+00 3.02E+00 -0.59 FW.5 1.11E+02 1.11E+02 0.11 

CAP_Upper_pla

te.13 

7.38E-01 7.36E-01 0.35 Gap 2.59E+04 2.59E+04 -0.01 

CAP_Upper_pla

te.14 

6.19E+00 6.20E+00 -0.04 BP_He 9.22E+03 9.22E+03 0.03 

CAP_Upper_pla

te.2 

5.93E+01 5.94E+01 -0.23 BSS_He.1 1.56E+00 1.55E+00 0.75 

CAP_Upper_pla

te.3 

9.35E+01 9.35E+01 0.08 BSS_He.10 1.20E+02 1.20E+02 0.02 

CAP_Upper_pla

te.4 

1.25E+02 1.25E+02 -0.01 BSS_He.2 1.56E+00 1.57E+00 -0.36 

CAP_Upper_pla

te.5 

4.64E+01 4.65E+01 -0.21 BSS_He.3 1.56E+00 1.56E+00 -0.08 

CAP_Upper_pla

te.6 

7.49E+01 7.49E+01 0.04 BSS_He.4 1.56E+00 1.57E+00 -0.17 

CAP_Upper_pla

te.7 

9.41E+01 9.43E+01 -0.20 BSS_He.5 1.56E+00 1.55E+00 0.99 

CAP_Upper_pla

te.8 

4.99E+03 4.99E+03 0.03 BSS_He.6 1.20E+02 1.20E+02 -0.01 

CAP_Upper_pla

te.9 

3.00E+00 3.01E+00 -0.17 BSS_He.7 1.20E+02 1.20E+02 -0.02 

CP_Bottom_Lef

t_Inlet_He.1 

1.99E+02 1.99E+02 0.01 BSS_He.8 1.20E+02 1.20E+02 -0.14 

CP_Bottom_Lef

t_Inlet_He.10 

7.03E+00 7.04E+00 -0.13 BSS_He.9 1.20E+02 1.20E+02 0.01 

CP_Bottom_Lef

t_Inlet_He.11 

2.47E+01 2.47E+01 -0.12 Manifolds_He.1 1.03E+02 1.03E+02 0.02 
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CP_Bottom_Lef

t_Inlet_He.12 

6.44E+00 6.43E+00 0.12 Manifolds_He.2 1.51E+04 1.51E+04 0.02 

CP_Bottom_Lef

t_Inlet_He.13 

2.91E+01 2.92E+01 -0.04 Manifolds_He.3 3.09E+02 3.09E+02 0.02 

CP_Bottom_Lef

t_Inlet_He.14 

3.23E+01 3.23E+01 -0.01 Manifolds_He.4 3.09E+02 3.09E+02 -0.05 

CP_Bottom_Lef

t_Inlet_He.15 

3.24E+01 3.25E+01 -0.28 Manifolds_He.5 1.03E+02 1.03E+02 0.03 

CP_Bottom_Lef

t_Inlet_He.16 

3.25E+01 3.26E+01 -0.07 Manifolds_He.6 1.51E+04 1.51E+04 0.02 

CP_Bottom_Lef

t_Inlet_He.17 

3.27E+01 3.27E+01 -0.09 Manifolds_He.7 2.69E+04 2.69E+04 -0.03 

CP_Bottom_Lef

t_Inlet_He.18 

3.29E+01 3.29E+01 -0.03 Manifolds_He.8 2.69E+04 2.69E+04 -0.04 

CP_Bottom_Lef

t_Inlet_He.19 

3.31E+01 3.31E+01 -0.23 CAP_He.1 1.14E+02 1.14E+02 -0.02 

CP_Bottom_Lef

t_Inlet_He.2 

2.85E+00 2.79E+00 1.91 CAP_He.10 7.38E+01 7.37E+01 0.05 

CP_Bottom_Lef

t_Inlet_He.20 

3.32E+01 3.32E+01 0.18 CAP_He.11 1.93E+03 1.93E+03 -0.07 

CP_Bottom_Lef

t_Inlet_He.21 

3.34E+01 3.33E+01 0.11 CAP_He.12 3.96E+01 3.97E+01 -0.21 

CP_Bottom_Lef

t_Inlet_He.22 

3.86E+01 3.86E+01 -0.12 CAP_He.13 1.14E+02 1.14E+02 -0.02 

CP_Bottom_Lef

t_Inlet_He.23 

1.39E+01 1.39E+01 0.27 CAP_He.14 1.15E+02 1.15E+02 0.07 

CP_Bottom_Lef

t_Inlet_He.24 

1.63E+01 1.63E+01 0.01 CAP_He.15 3.93E+01 3.92E+01 0.20 

CP_Bottom_Lef

t_Inlet_He.25 

4.02E+00 4.03E+00 -0.23 CAP_He.16 1.91E+03 1.91E+03 0.07 

CP_Bottom_Lef

t_Inlet_He.3 

7.24E+00 7.26E+00 -0.19 CAP_He.17 1.13E+02 1.13E+02 -0.06 

CP_Bottom_Lef

t_Inlet_He.4 

2.82E+01 2.82E+01 0.17 CAP_He.18 1.14E+02 1.14E+02 -0.10 

CP_Bottom_Lef

t_Inlet_He.5 

3.62E+00 3.58E+00 1.11 CAP_He.19 2.15E+03 2.15E+03 0.06 

CP_Bottom_Lef

t_Inlet_He.6 

2.77E+01 2.76E+01 0.30 CAP_He.2 2.04E+02 2.04E+02 -0.04 

CP_Bottom_Lef

t_Inlet_He.7 

3.20E+00 3.20E+00 0.02 CAP_He.20 8.91E+02 8.91E+02 0.00 

CP_Bottom_Lef

t_Inlet_He.8 

1.20E+01 1.20E+01 -0.01 CAP_He.21 1.27E+03 1.27E+03 0.13 

CP_Bottom_Lef

t_Inlet_He.9 

2.50E+01 2.50E+01 -0.14 CAP_He.22 1.97E+03 1.97E+03 0.00 

CP_Bottom_Lef

t_Outlet_He.1 

1.77E+00 1.76E+00 0.31 CAP_He.23 3.60E+01 3.61E+01 -0.15 

CP_Bottom_Lef

t_Outlet_He.10 

1.20E+01 1.20E+01 0.06 CAP_He.24 1.70E+03 1.70E+03 0.06 

CP_Bottom_Lef

t_Outlet_He.11 

3.17E+01 3.16E+01 0.03 CAP_He.25 3.99E+02 3.99E+02 -0.07 

CP_Bottom_Lef

t_Outlet_He.12 

3.22E+01 3.23E+01 -0.14 CAP_He.26 2.11E+03 2.11E+03 -0.03 

CP_Bottom_Lef

t_Outlet_He.13 

3.24E+01 3.24E+01 -0.15 CAP_He.27 4.40E+02 4.40E+02 0.06 

CP_Bottom_Lef

t_Outlet_He.14 

3.25E+01 3.25E+01 -0.03 CAP_He.3 1.14E+02 1.14E+02 -0.03 

CP_Bottom_Lef

t_Outlet_He.15 

3.26E+01 3.27E+01 -0.26 CAP_He.4 1.71E+03 1.71E+03 0.01 

CP_Bottom_Lef

t_Outlet_He.16 

3.28E+01 3.28E+01 0.13 CAP_He.5 3.94E+01 3.94E+01 0.05 

CP_Bottom_Lef

t_Outlet_He.17 

3.33E+01 3.34E+01 -0.10 CAP_He.6 3.38E+02 3.39E+02 -0.03 

CP_Bottom_Lef

t_Outlet_He.18 

3.31E+01 3.31E+01 0.09 CAP_He.7 1.18E+02 1.18E+02 0.07 

CP_Bottom_Lef

t_Outlet_He.19 

3.30E+01 3.29E+01 0.07 CAP_He.8 1.18E+02 1.18E+02 -0.03 
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CP_Bottom_Lef

t_Outlet_He.2 

6.66E+02 6.65E+02 0.11 CAP_He.9 7.38E+01 7.38E+01 -0.01 

CP_Bottom_Lef

t_Outlet_He.20 

2.73E+01 2.73E+01 -0.01 Purge_Gas_He.1 3.77E+01 3.77E+01 0.03 

CP_Bottom_Lef

t_Outlet_He.21 

2.88E+01 2.87E+01 0.27 Purge_Gas_He.2 1.70E+02 1.70E+02 -0.06 

CP_Bottom_Lef

t_Outlet_He.22   

1.63E+01 1.63E+01 0.22 Purge_Gas_He.3 2.65E+02 2.66E+02 -0.15 

CP_Bottom_Lef

t_Outlet_He.23 

1.39E+01 1.40E+01 -0.25 Purge_Gas_He.4 3.77E+01 3.77E+01 -0.10 

CP_Bottom_Lef

t_Outlet_He.24 

4.02E+00 4.05E+00 -0.73 Purge_Gas_He.5 1.70E+02 1.70E+02 0.25 

CP_Bottom_Lef

t_Outlet_He.25 

3.86E+01 3.85E+01 0.09 Purge_Gas_He.6 2.65E+02 2.65E+02 0.05 

CP_Bottom_Lef

t_Outlet_He.26 

3.34E+01 3.33E+01 0.20 Manifold.1 1.07E+03 1.07E+03 0.07 

CP_Bottom_Lef

t_Outlet_He.27 

4.50E+00 4.54E+00 -0.91 Manifold.2  1.07E+03 1.07E+03 -0.05 

CP_Bottom_Lef

t_Outlet_He.3 

8.40E+01 8.38E+01 0.20 Manifold.3 3.05E+03 3.05E+03 -0.01 

CP_Bottom_Lef

t_Outlet_He.4 

1.09E+03 1.08E+03 0.14 Manifold.4 3.05E+03 3.05E+03 -0.08 

CP_Bottom_Lef

t_Outlet_He.5 

2.63E+00 2.61E+00 0.42 TOTAL 1.51E+07 1.51E+07 -0.002 

CP_Bottom_Lef

t_Outlet_He.6 

1.32E+00 1.32E+00 -0.46     

Table A.3. Volume estimation and comparison between the reference CAD model and the neutronic model based on Hybrid 

Modelling for the WCLL BU with serpentine tubes. 

Cell Name 

ANSYS  

DesignModeler 
MCNP 

Error 

[%] Volume 

[cm3] 

Volume 

[cm3] 

Armour 4.31E+02 4.31E+02 -0.0053 

FW 8.43E+03 8.43E+03 -0.0068 

FW Coolant 1.44E+03 1.44E+03 -0.0035 

Plates N/S 1.36E+04 1.36E+04 -0.0037 

Vert. Plates 7.87E+03 7.87E+03 0.0000 

BZ Tubes 1-3 1.21E+03 1.21E+03 -0.0066 

BZ Tubes 4-6 1.21E+03 1.21E+03 -0.0066 

BZ Coolant 1-2 4.26E+02 4.26E+02 -0.0063 

BZ Coolant 3-4 4.56E+02 4.56E+02 -0.0068 

BZ Coolant 5-6 4.26E+02 4.26E+02 -0.0063 

PbLi 1 1.91E+04 1.91E+04 0.0021 

PbLi 2 2.24E+04 2.24E+04 -0.0013 

PbLi 3 2.24E+04 2.24E+04 -0.0013 

PbLi 4 2.24E+04 2.24E+04 -0.0013 

PbLi 5 2.24E+04 2.24E+04 -0.0013 

PbLi 6 1.91E+04 1.91E+04 0.0021 

BSS 4.29E+04 4.29E+04 0.0009 

BSS Coolant 5.60E+04 5.60E+04 0.0004 

Total 2.62070E+05 2.62069E+05 -0.0005 

Table A.4. Volume estimation and comparison between the reference CAD model and the neutronic model based on Hybrid 

Modelling for the WCLL BU with radial-toroidal tubes. 

Cell Name 

ANSYS  

DesignModeler 
MCNP 

Error 

[%] Volume 

[cm3] 

Volume 

[cm3] 

1_acqua_1 1.49E+02 1.49E+02 0.01 

2_acqua_2 1.49E+02 1.49E+02 0.00 

3_acqua_3 1.49E+02 1.49E+02 -0.03 

4_acqua_4 1.49E+02 1.49E+02 -0.02 

5_acqua_5 1.43E+02 1.43E+02 0.01 

6_acqua_6 1.43E+02 1.43E+02 0.01 
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7_acqua_7 1.37E+02 1.37E+02 -0.02 

8_acqua_8 1.37E+02 1.37E+02 0.02 

9_acqua_9 1.37E+02 1.37E+02 -0.01 

10_acqua_10 1.37E+02 1.37E+02 -0.01 

11_acqua_11 1.31E+02 1.31E+02 -0.02 

12_acqua_12 1.31E+02 1.31E+02 -0.02 

13_acqua_13 1.26E+02 1.26E+02 -0.03 

14_acqua_14 1.26E+02 1.26E+02 -0.03 

15_acqua_15 1.11E+02 1.11E+02 -0.03 

16_acqua_16 1.11E+02 1.11E+02 -0.05 

17_acqua_17 9.84E+01 9.84E+01 0.02 

18_acqua_18 9.84E+01 9.83E+01 0.05 

19_acqua_19 7.98E+01 7.99E+01 -0.07 

20_acqua_20 5.30E+01 5.30E+01 -0.01 

21_acqua_21 5.30E+01 5.30E+01 -0.01 

22_tubo_1 2.76E+02 2.76E+02 0.01 

23_tubo_2 2.76E+02 2.76E+02 -0.02 

24_tubo_3 2.76E+02 2.76E+02 -0.04 

25_tubo_4 2.76E+02 2.76E+02 -0.02 

26_tubo_5 2.65E+02 2.65E+02 -0.01 

27_tubo_6 2.65E+02 2.65E+02 0.01 

28_tubo_7 2.54E+02 2.54E+02 0.01 

29_tubo_8 2.54E+02 2.54E+02 0.00 

30_tubo_9 2.54E+02 2.54E+02 0.00 

31_tubo_10 2.54E+02 2.54E+02 -0.02 

32_tubo_11 2.43E+02 2.43E+02 0.00 

33_tubo_12 2.43E+02 2.43E+02 -0.01 

34_tubo_13 2.33E+02 2.33E+02 -0.02 

35_tubo_14 2.33E+02 2.33E+02 -0.04 

36_tubo_15 2.05E+02 2.05E+02 0.02 

37_tubo_16 2.05E+02 2.05E+02 -0.01 

38_tubo_17 1.82E+02 1.82E+02 0.05 

39_tubo_18 1.82E+02 1.82E+02 0.02 

40_tubo_19 1.47E+02 1.48E+02 -0.08 

41_tubo_20 9.79E+01 9.79E+01 -0.03 

42_tubo_21 9.79E+01 9.79E+01 0.00 

SP+BP_A_new_2  3.79E+04 3.79E+04 0.00 

SB_CHANNEL_1 1.59E+02 1.59E+02 0.01 

SB_CHANNEL_2 1.59E+02 1.59E+02 0.00 

SB_CHANNEL_3 1.59E+02 1.59E+02 0.02 

SB_CHANNEL_4 1.59E+02 1.59E+02 0.05 

SB_CHANNEL_5 1.59E+02 1.59E+02 0.01 

SB_CHANNEL_6 1.59E+02 1.60E+02 -0.04 

SB_CHANNEL_7 1.59E+02 1.59E+02 0.01 

SB_CHANNEL_8 1.59E+02 1.59E+02 0.02 

SB_CHANNEL_9 1.59E+02 1.60E+02 -0.03 

SB_CHANNEL_10 1.59E+02 1.60E+02 -0.03 

SB_CHANNEL_11 1.59E+02 1.60E+02 -0.01 

SB_EUROFER  1.03E+04 1.03E+04 0.00 

Pb_Li_inter  6.61E+03 6.61E+03 0.00 

PbLi_1 - tubes 1.24E+05 1.25E+05 -0.43 

Pb_Li_holes 2.79E+01 2.79E+01 0.03 

BP_B 6.16E+03 6.16E+03 0.02 

BP_B.3.1 7.24E+01 7.24E+01 0.01 

BP_B.3.2 4.19E+01 4.18E+01 0.15 

BP_B.3.3 4.19E+01 4.19E+01 0.04 

TOTAL 1.943E+05 1.948E+05 -0.27 
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9.2 PS and GPS Definition 

In this Appendix, the setup for the definition on PS and GPS condition in ANSYS Mechanical [66] is 

reported. 

The implementation of the PS condition is straightforward in ANSYS mechanical by means of Coupling 

command ( ), while procedure to implement the GPS condition is more articulated. 

Practically, the GPS is implemented allowing the poloidal translation of the plane C in Figure A.1-a and its 

rotation with respect to the x axis. Indeed, using the “Remote Displacement” command, the nodes lying on 

the surface in which the GPS has to be applied are identified. It is important to block in the “Remote 

Displacement” command all the Degree of Freedom (DOF) and to impose a “rigid” behaviour. Thanks to 

this command, in the input file, a target id (tid) and a contact id (cid) numbers are associated to these 

surfaces. These tid and cid are, then, used for the APDL command as reported below: 
 

APDL COMMAND 
 

1 - *set,tid,5 

2 - keyo,tid,4,001010 

3 - ddele,69238, rotx  

4 - ddele,69238, uy 
 

With the first line of the APDL command, the target nodes are identified (in this example the number 5 

has been assigned to the nodes lying on the surfaces that are indicated with C in Figure A.1-a). The second 

line of the command enables the KEY-OPTION 4 that allows to activate, using number 1, or to deactivate, 

using number 0, the constraints of the 6 DOF. The six digits represent ROTZ, ROTY, ROTX, UZ, UY, UX, 

respectively [66]. With the third and fourth lines, the rotation with respect to the x axis and the translation 

along the y axis is allowed.  

  
Figure A.1. Investigation and implementation of PS and GPS conditions. Top-left (a): boundary conditions applied to the simplified 

model. Top-right (b): temperature field. Bottom-Left (c): directional deformation in Y direction using PS condition on the surface 

C. Bottom-Right (d): directional deformation in Y direction using GPS condition on the surface C. 
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9.3 MAIA Neutron and Photon Transport Analysis Consistency Verification 

In this Appendix, the parametric studies on HCPB slice neutronic boundary conditions are reported. 

In Table A.5, the case studies for the HCPB slice and module are reported. In particular, eight analyses 

have been performed both for the slice and module sub-models: 4 neutron (_N_) and 4 photon (_P_ 

transport calculations. All the combination of reflecting and white conditions applied to the toroidal and 

poloidal boundary surfaces have been identified and analyzed. Some detail about the number of processes, 

histories and calculation time are also reported. 

It is possible to note that the photon calculations are always faster than neutronic ones. Indeed, in photon 

transport analysis, only the photons are transported. Consequently, the number of interactions is lower with 

respect to the neutronic calculation where, beyond the neutrons, the photons are also transported. 

It is interesting to note that the computational time necessary for the slice sub-model is about four times 

lower than the one requested for the module. This is mainly due to the model dimension that affects 

considerably the calculation performances. 

Table A.5. Case study matrix. 

Case Model Reflecting  White  Name 
N°  

processes 

N°  

Histories 

Calculation  

Time 

3A Slice_N Refl2 
 

3A_Slice_N_Refl2 448 5.0E+08 01:54:24 

3B Slice_N  White2 3B_Slice_N_White2 448 1.0E+09 01:22:52 

3C Slice_N ReflTor WhitePol 3C_Slice_N_ReflTor_WhitePol 448 1.0E+09 01:25:57 

3D Slice_N ReflPol WhiteTor 3D_Slice_N_ReflPol_WhiteTor 448 5.0E+08 02:02:20 

4A Slice_P Refl2 
 

4A_Slice_P_Refl2 448 1.0E+09 00:10:20 

4B Slice_P 
 

White2 4B_Slice_P_White2 448 1.0E+09 00:06:44 

4C Slice_P ReflTor WhitePol 4C_Slice_P_ReflTor_WhitePol 448 1.0E+09 00:06:46 

4D Slice_P ReflPol WhiteTor 4D_Slice_P_ReflPol_WhiteTor 448 1.0E+09 00:09:53 

3A Module_N Refl2 
 

3A_Module_N_Refl2 448 8.0E+08 09:13:10 

3B Module_N  White2 3B_Module_N_White2 448 7.0E+08 07:10:46 

3C Module_N ReflTor WhitePol 3C_Module_N_ReflTor_WhitePol 448 8.0E+08 08:59:27 

3D Module_N ReflPol WhiteTor 3D_Module_N_ReflPol_WhiteTor 448 5.0E+08 04:50:08 

4A Module_P Refl2 
 

4A_Module_P_Refl2 448 1.0E+09 00:41:28 

4B Module_P  White2 4B_Module_P_White2 448 1.0E+09 00:39:54 

4C Module_P ReflTor WhitePol 4C_Module_P_ReflTor_WhitePol 448 1.0E+09 00:41:44 

4D Module_P ReflPol WhiteTor 4D_Module_P_ReflPol_WhiteTor 448 1.0E+09 00:42:58 

In Table A.6, Table A.7, Table A.8 and Table A.9, the release power Qdep and the contributes Qnp and 

Qp,albedo are reported for the case studies. The Qdep of the HCPB DEMO reference model equipped with full 

heterogeneous OB4 module is reported for comparison.  
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Table A.6. Case 3A-4A power released. 

Case 3A-4A Slice Module DEMO 

Row Labels 
Qnp 

[W] 

Qp,albedo 
[W] 

Qdep 

[W] 

Qnp 

[W] 

Qp,albedo 
[W] 

Qdep 

[W] 

Qdep 

[W] 

Armour 1.47E+03 7.74E+02 2.24E+03 1.53E+03 8.08E+02 2.34E+03 2.43E+03 

Berylium Bed 2.17E+04 3.97E+02 2.21E+04 2.10E+04 3.82E+02 2.14E+04 2.03E+04 

BSS 2.27E+03 5.03E+01 2.32E+03 1.89E+03 4.07E+01 1.93E+03 1.80E+03 

CP 6.83E+03 5.96E+02 7.43E+03 6.81E+03 5.89E+02 7.40E+03 7.40E+03 

FW 6.48E+03 9.94E+02 7.47E+03 6.62E+03 1.01E+03 7.63E+03 7.71E+03 

He_BSS 2.92E+00 6.45E-03 2.93E+00 2.44E+00 5.30E-03 2.45E+00 2.20E+00 

He_CP 2.85E+01 2.05E-01 2.87E+01 2.80E+01 1.99E-01 2.82E+01 2.79E+01 

He_Dummy_Channels 1.08E+01 7.01E-02 1.09E+01 1.02E+01 6.60E-02 1.03E+01 1.01E+01 

He_FW 3.31E+01 4.38E-01 3.36E+01 3.40E+01 4.45E-01 3.45E+01 3.41E+01 

He_Manifold 1.52E+01 1.59E-02 1.52E+01 1.24E+01 1.21E-02 1.24E+01 1.06E+01 

He_Purge_BSS 7.33E+00 3.58E-02 7.37E+00 6.43E+00 3.25E-02 6.46E+00 6.03E+00 

LiSiO4_Bed 3.60E+04 2.30E+02 3.63E+04 3.55E+04 2.20E+02 3.58E+04 3.56E+04 

Manifold 2.10E+02 2.43E+00 2.13E+02 1.74E+02 1.82E+00 1.75E+02 1.59E+02 

Grand Total 7.51E+04 3.04E+03 7.81E+04 7.37E+04 3.06E+03 7.67E+04 7.55E+04 

Table A.7. Case 3B-4B power released. 

Case 3B-4B Slice Module DEMO 

Row Labels 
Qnp 

[W] 

Qp,albedo 
[W] 

Qdep 

[W] 

Qnp 

[W] 

Qp,albedo 
[W] 

Qdep 

[W] 

Qdep 

[W] 

Armour 1.71E+03 7.85E+02 2.50E+03 1.53E+03 7.98E+02 2.33E+03 2.43E+03 

Berylium Bed 1.29E+04 2.14E+02 1.31E+04 2.08E+04 3.74E+02 2.11E+04 2.03E+04 

BSS 1.68E+02 3.31E+00 1.71E+02 1.67E+03 3.81E+01 1.71E+03 1.80E+03 

CP 4.40E+03 3.33E+02 4.73E+03 6.69E+03 5.75E+02 7.26E+03 7.40E+03 

FW 7.14E+03 9.76E+02 8.11E+03 6.48E+03 9.95E+02 7.48E+03 7.71E+03 

He_BSS 1.76E-01 4.42E-04 1.77E-01 1.90E+00 4.71E-03 1.91E+00 2.20E+00 

He_CP 1.83E+01 1.14E-01 1.84E+01 2.72E+01 1.90E-01 2.74E+01 2.79E+01 

He_Dummy_Channels 4.67E+00 2.53E-02 4.70E+00 1.01E+01 6.44E-02 1.01E+01 1.01E+01 

He_FW 3.56E+01 4.46E-01 3.60E+01 3.33E+01 4.37E-01 3.37E+01 3.41E+01 

He_Manifold 6.01E-01 9.49E-04 6.02E-01 1.12E+01 1.32E-02 1.12E+01 1.06E+01 

He_Purge_BSS 2.24E+00 1.62E-02 2.26E+00 6.21E+00 3.19E-02 6.24E+00 6.03E+00 

LiSiO4_Bed 2.27E+04 1.24E+02 2.28E+04 3.50E+04 2.15E+02 3.52E+04 3.56E+04 

Manifold 1.41E+01 1.31E-01 1.42E+01 1.57E+02 1.86E+00 1.59E+02 1.59E+02 

Grand Total 4.90E+04 2.44E+03 5.15E+04 7.24E+04 3.00E+03 7.54E+04 7.55E+04 
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Table A.8. Case 3C-4C power released. 

Case 3C-4C Slice Module DEMO 

Row Labels 
Qnp 

[W] 

Qp,albedo 
[W] 

Qdep 

[W] 

Qnp 

[W] 

Qp,albedo 
[W] 

Qdep 

[W] 

Qdep 

[W] 

Armour 1.71E+03 7.88E+02 2.50E+03 1.53E+03 8.08E+02 2.34E+03 2.43E+03 

Berylium Bed 1.30E+04 2.16E+02 1.32E+04 2.10E+04 3.82E+02 2.14E+04 2.03E+04 

BSS 1.88E+02 3.53E+00 1.92E+02 1.89E+03 4.09E+01 1.93E+03 1.80E+03 

CP 4.43E+03 3.35E+02 4.77E+03 6.81E+03 5.89E+02 7.40E+03 7.40E+03 

FW 7.19E+03 9.81E+02 8.17E+03 6.62E+03 1.01E+03 7.63E+03 7.71E+03 

He_BSS 2.28E-01 5.07E-04 2.29E-01 2.45E+00 5.32E-03 2.46E+00 2.20E+00 

He_CP 1.86E+01 1.16E-01 1.87E+01 2.80E+01 1.99E-01 2.82E+01 2.79E+01 

He_Dummy_Channels 4.71E+00 2.55E-02 4.74E+00 1.02E+01 6.60E-02 1.03E+01 1.01E+01 

He_FW 3.58E+01 4.48E-01 3.63E+01 3.40E+01 4.45E-01 3.45E+01 3.41E+01 

He_Manifold 6.81E-01 1.00E-03 6.82E-01 1.27E+01 1.43E-02 1.27E+01 1.06E+01 

He_Purge_BSS 2.26E+00 1.62E-02 2.27E+00 6.44E+00 3.25E-02 6.48E+00 6.03E+00 

LiSiO4_Bed 2.28E+04 1.25E+02 2.30E+04 3.55E+04 2.20E+02 3.58E+04 3.56E+04 

Manifold 1.58E+01 1.39E-01 1.59E+01 1.76E+02 2.00E+00 1.78E+02 1.59E+02 

Grand Total 1.71E+03 7.88E+02 2.50E+03 1.53E+03 8.08E+02 2.34E+03 7.55E+04 

Table A.9. Case 3D-4D power released. 

Case 3D-4D Slice Module DEMO 

Row Labels 
Qnp 

[W] 

Qp,albedo 
[W] 

Qdep 

[W] 

Qnp 

[W] 

Qp,albedo 
[W] 

Qdep 

[W] 

Qdep 

[W] 

Armour 1.50E+03 7.96E+02 2.29E+03 1.53E+03 7.98E+02 2.33E+03 2.43E+03 

Berylium Bed 2.12E+04 3.76E+02 2.16E+04 2.08E+04 3.74E+02 2.11E+04 2.03E+04 

BSS 1.93E+03 4.33E+01 1.98E+03 1.67E+03 3.79E+01 1.71E+03 1.80E+03 

CP 6.67E+03 5.65E+02 7.23E+03 6.69E+03 5.75E+02 7.26E+03 7.40E+03 

FW 6.43E+03 9.73E+02 7.40E+03 6.48E+03 9.95E+02 7.48E+03 7.71E+03 

He_BSS 2.19E+00 5.26E-03 2.20E+00 1.90E+00 4.69E-03 1.90E+00 2.20E+00 

He_CP 2.73E+01 1.90E-01 2.75E+01 2.72E+01 1.90E-01 2.74E+01 2.79E+01 

He_Dummy_Channels 1.04E+01 6.57E-02 1.05E+01 1.01E+01 6.44E-02 1.01E+01 1.01E+01 

He_FW 3.29E+01 4.31E-01 3.33E+01 3.33E+01 4.37E-01 3.37E+01 3.41E+01 

He_Manifold 1.28E+01 1.37E-02 1.28E+01 1.09E+01 1.15E-02 1.09E+01 1.06E+01 

He_Purge_BSS 6.86E+00 3.34E-02 6.89E+00 6.19E+00 3.19E-02 6.22E+00 6.03E+00 

LiSiO4_Bed 3.49E+04 2.18E+02 3.51E+04 3.50E+04 2.15E+02 3.52E+04 3.56E+04 

Manifold 1.81E+02 2.09E+00 1.83E+02 1.55E+02 1.73E+00 1.57E+02 1.59E+02 

Grand Total 7.29E+04 2.97E+03 7.59E+04 7.24E+04 3.00E+03 7.54E+04 7.55E+04 
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In Table A.10, Table A.11 and Table A.12, the power depositions calculated at different level of full 

heterogeneous OB4 implemented in HCPB DEMO reference model are reported. 

Table A.10. Power deposition in slices adjacent to the top cap. 

 Qdep [W] 

Region DEMO Top DEMO 2nd Top DEMO 3rd Top DEMO 4th Top 

Armour 2.41E+03 2.41E+03 2.41E+03 2.41E+03 

Berylium Bed 1.89E+04 1.89E+04 1.91E+04 1.91E+04 

BSS 1.89E+03 1.85E+03 1.82E+03 1.81E+03 

CP 7.24E+03 7.18E+03 7.16E+03 7.15E+03 

FW 7.53E+03 7.52E+03 7.57E+03 7.56E+03 

He_BSS 1.98E+00 2.00E+00 2.02E+00 2.04E+00 

He_CP 2.61E+01 2.62E+01 2.63E+01 2.64E+01 

He_Dummy_Channels 9.08E+00 9.17E+00 9.23E+00 9.33E+00 

He_FW 3.29E+01 3.29E+01 3.29E+01 3.30E+01 

He_Manifold 9.71E+00 9.75E+00 9.79E+00 9.85E+00 

He_Purge_BSS 5.44E+00 5.45E+00 5.50E+00 5.54E+00 

LiSiO4_Bed 4.14E+04 3.70E+04 3.65E+04 3.54E+04 

Manifold 1.62E+02 1.62E+02 1.61E+02 1.61E+02 

Grand Total 7.96E+04 7.52E+04 7.47E+04 7.37E+04 

Table A.11. Power deposition in slices in the middle area of OB4 module. 

 Qdep [W] 

Region DEMO Top Middle DEMO Middle DEMO Bottom Middle 

Armour 2.44E+03 2.43E+03 2.45E+03 

Berylium Bed 2.03E+04 2.03E+04 2.03E+04 

BSS 1.80E+03 1.80E+03 1.80E+03 

CP 7.40E+03 7.40E+03 7.41E+03 

FW 7.72E+03 7.71E+03 7.72E+03 

He_BSS 2.20E+00 2.20E+00 2.20E+00 

He_CP 2.79E+01 2.79E+01 2.80E+01 

He_Dummy_Channels 1.01E+01 1.01E+01 1.01E+01 

He_FW 3.42E+01 3.41E+01 3.42E+01 

He_Manifold 1.06E+01 1.06E+01 1.06E+01 

He_Purge_BSS 6.03E+00 6.03E+00 6.05E+00 

LiSiO4_Bed 3.56E+04 3.56E+04 3.56E+04 

Manifold 1.59E+02 1.59E+02 1.59E+02 

Grand Total 7.55E+04 7.55E+04 7.56E+04 
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Table A.12. Power deposition in slices adjacent to the bottop cap. 

 Qdep [W] 

Region DEMO 4th Bottom DEMO 3rd Bottom DEMO 2nd Bottom DEMO Bottom 

Armour 2.43E+03 2.44E+03 2.46E+03 2.47E+03 

Berylium Bed 1.96E+04 1.95E+04 1.94E+04 1.93E+04 

BSS 1.78E+03 1.79E+03 1.80E+03 1.84E+03 

CP 7.30E+03 7.31E+03 7.33E+03 7.38E+03 

FW 7.65E+03 7.75E+03 7.79E+03 7.81E+03 

He_BSS 1.97E+00 1.94E+00 1.91E+00 1.88E+00 

He_CP 2.69E+01 2.68E+01 2.66E+01 2.64E+01 

He_Dummy_Channels 9.56E+00 9.44E+00 9.37E+00 9.23E+00 

He_FW 3.34E+01 3.34E+01 3.35E+01 3.35E+01 

He_Manifold 9.62E+00 9.54E+00 9.46E+00 9.38E+00 

He_Purge_BSS 5.61E+00 5.56E+00 5.50E+00 5.47E+00 

LiSiO4_Bed 3.58E+04 3.67E+04 3.73E+04 4.15E+04 

Manifold 1.57E+02 1.58E+02 1.59E+02 1.58E+02 

Grand Total 7.48E+04 7.58E+04 7.63E+04 8.06E+04 
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9.4 MAIA Thermal-hydraulic Symmetry Condition Consistency Verification 

In this Appendix, the case studies identified for the consistency check of thermal hydraulic symmetry 

conditions are reported. In Table A.13 and Table A.14, the combinations of power density and mass flow 

rates for the three neighbouring HCPB slice are reported. 

Table A.13. Power density and mass flow rates for the cases from 0 to 3. 

CASE 0 Regions CENTRAL UP DOWN Note 

q"' [W cm-3] 

Armour 22.361284 22.361284 22.361284 

Same power density and mass flow rates 

Berylium Bed 1.492482 1.492482 1.492482 

BSS 0.222563 0.222563 0.222563 

CP 2.739606 2.739606 2.739606 

FW 5.905332 5.905332 5.905332 

LiSiO4_Bed 6.441772 6.441772 6.441772 

G [kg s-1] 
He_Coolant_1 0.046072 0.046072 0.046072 

He_Coolant_2 0.046072 0.046072 0.046072 

CASE 1 Regions CENTRAL UP DOWN Note 

q"' [W cm-3] 

Armour 22.361284 22.442035 22.459254 

Power density calculated on equatorial SLICE with: 

 

CASE 1, mass flow rate from power balance 

 

CASE 2, mass flow rate min in UP and max in DOWN 

 

CASE 3, mass flow rate max in UP and min in DOWN 

 

Berylium Bed 1.492482 1.493466 1.495721 

BSS 0.222563 0.223070 0.223188 

CP 2.739606 2.741598 2.743442 

FW 5.905332 5.909846 5.915464 

LiSiO4_Bed 6.441772 6.436210 6.441918 

G [kg s-1] 
He_Coolant_1 0.046072 0.046067 0.046020 

He_Coolant_2 0.046072 0.046067 0.046020 

CASE 2 Regions CENTRAL UP DOWN 

q"' [W cm-3] 

Armour 22.361284 22.442035 22.459254 

Berylium Bed 1.492482 1.493466 1.495721 

BSS 0.222563 0.223070 0.223188 

CP 2.739606 2.741598 2.743442 

FW 5.905332 5.909846 5.915464 

LiSiO4_Bed 6.441772 6.436210 6.441918 

G [kg s-1] 
He_Coolant_1 0.046072 0.045476 0.046327 

He_Coolant_2 0.046072 0.045476 0.046327 

CASE 3 Regions CENTRAL UP DOWN 

q"' [W cm-3] 

Armour 22.361284 22.442035 22.459254 

Berylium Bed 1.492482 1.493466 1.495721 

BSS 0.222563 0.223070 0.223188 

CP 2.739606 2.741598 2.743442 

FW 5.905332 5.909846 5.915464 

LiSiO4_Bed 6.441772 6.436210 6.441918 

G [kg s-1] 

He_Coolant_1 0.046072 0.046327 0.045476 

He_Coolant_2 0.046072 0.046327 0.045476 

He_Coolant_2 0.046072 0.046327 0.045476 
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Table A.14. Power density and mass flow rates for the cases from 4 to 7. 

CASE 4 Regions CENTRAL UP DOWN Note 

q"' [W cm-3] 

Armour 22.36128 22.36108 22.35779 

Power density calculated near the cap with: 

 

CASE 4, mass flow rate from power balance 

 

CASE 5, mass flow rate min in UP and max in DOWN 

 

CASE 6, mass flow rate max in UP and min in DOWN 

 

Berylium Bed 1.49248 1.49083 1.50587 

BSS 0.22256 0.22745 0.21954 

CP 2.73961 2.76097 2.73267 

FW 5.90533 5.91289 5.94284 

LiSiO4_Bed 6.44177 7.20478 6.33827 

G [kg s-1] 
He_Coolant_1 0.046072 0.043330 0.046020 

He_Coolant_2 0.046072 0.043330 0.046020 

CASE 5 Regions CENTRAL UP DOWN 

q"' [W cm-3] 

Armour 22.36128 22.36108 22.35779 

Berylium Bed 1.49248 1.49083 1.50587 

BSS 0.22256 0.22745 0.21954 

CP 2.73961 2.76097 2.73267 

FW 5.90533 5.91289 5.94284 

LiSiO4_Bed 6.44177 7.20478 6.33827 

G [kg s-1] 
He_Coolant_1 0.046072 0.045476 0.046327 

He_Coolant_2 0.046072 0.045476 0.046327 

CASE 6 Regions CENTRAL UP DOWN 

q"' [W cm-3] 

Armour 22.361284 22.361077 22.357788 

Berylium Bed 1.492482 1.490828 1.505867 

BSS 0.222563 0.227447 0.219542 

CP 2.739606 2.760968 2.732668 

FW 5.905332 5.912886 5.942843 

LiSiO4_Bed 6.441772 7.204782 6.338269 

G [kg s-1] 
He_Coolant_1 0.046072 0.046327 0.045476 

He_Coolant_2 0.046072 0.046327 0.045476 
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9.5 MAIA Thermal-hydraulic Symmetry Condition Sensitivity Analysis 

In this Appendix, the probabilistic distribution of the heat fluxes calculated at the boundaries of the 

central slice due to the statistical variation of the power densities and mass flow rates in the neighboring 

slices is reported. From Figure A.2 to Figure A.9, the calculated statistical variation of the heat flux in each 

interface region is shown. 

  

Figure A.2. Statistical distribution of heat flux at the BSS DOWN boundary. 

  

Figure A.3. Statistical distribution of heat flux at the BSS UP boundary. 
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Figure A.4. Statistical distribution of heat flux at the Be bed boundary. 

 

  

Figure A.5. Statistical distribution of heat flux at the FW DOWN boundary. 

 

  

Figure A.6. Statistical distribution of heat flux at the FW UP boundary. 
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Figure A.7. Statistical distribution of heat flux at the Li4SiO4 boundary. 

 

  

Figure A.8. Statistical distribution of heat flux at the W DOWN boundary. 

  

Figure A.9. Statistical distribution of heat flux at the W UP boundary. 
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9.6 MAIA Thermo-mechanic Conditions Consistency Verification 

In this Appendix, the results on primary and secondary stresses calculated for the consistency check of 

thermo-mechanical boundary conditions are reported. 

From Figure A.10 to Figure A.12, the secondary stress tensor components for the reference HCPB 

module are shown. On the right, the contour map of the error for each stress tensor component between the 

reference model and the HCPB slice model, on which the boundary conditions are applied, is displayed. A 

radial profile of temperature has been used for these calculations. 

From Table A.15 to Table A.19, the stress linearization and the equivalent secondary stresses for five 

paths identified are reported. A comparison between the membrane and bending stress for each component 

and for the equivalent stress is also shown. 

From Figure A.13 to Figure A.15, the primary stress tensor components for the reference HCPB module 

are shown. On the right, the contour map of the error for each stress tensor component between the 

reference model and the HCPB slice model, on which the boundary conditions are applied, is displayed. An 

over pressurization scenario has been used for these calculations. 

From Table A.20 to Table A.24, the stress linearization and the equivalent primary stresses for five paths 

identified are reported. A comparison between the membrane and bending stress for each component and 

for the equivalent stress is also shown. 

From Table A.25 to Table A.29, considering the temperature variations identified during the 

thermal-hydraulic consistency check, the sensitivity of secondary stresses with respect to the temperature 

fluctuations has been investigated. The stress linearization and the equivalent primary stresses for five paths 

identified are reported. A comparison between the membrane and bending stress for each component and 

for the equivalent stress is also shown. 

 

Figure A.10. Sx and Sy secondary stress tensor components of HCPB module model and error contour map of the HCPB slice. In the 

pictures on the right, the red colour represents the values out of scale. 
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Figure A.11. Sz and Sxy secondary stress tensor components of HCPB module model and error contour map of the HCPB slice. In 

the pictures on the right, the red colour represents the values out of scale. 

 

 

Figure A.12. Syz and Sxz secondary stress tensor components of HCPB module model and error contour map of the HCPB slice. In 

the pictures on the right, the red colour represents the values out of scale. 
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Table A.15. Membrane and bending secondary stress tensor component for the reference HCPB module and slice models on Path1. 

Path1 

Module_Slice Slice_GPS_EU 
Membrane 

Error 

Bending 

Error Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Sx -2.480E+00 7.552E-01 -2.194E+00 6.615E-01 11.56% 12.40% 

Sy -3.101E+02 5.676E+01 -4.402E+02 5.821E+01 -41.94% -2.54% 

Sz -2.628E+02 2.499E+01 -2.683E+02 2.468E+01 -2.08% 1.24% 

Sxy 4.243E-02 -5.191E-02 2.123E-02 -5.450E-02 49.98% -4.99% 

Syz -2.453E-03 -1.626E-03 -2.646E-03 -2.328E-03 -7.87% -43.14% 

Sxz 2.927E-03 -8.274E-04 4.417E-04 1.272E-03 84.91% 253.70% 

Equiv. Stress 

(Von Mises) 
2.869E+02 4.865E+01 3.822E+02 5.006E+01 -33.21% -2.90% 

Table A.16. Membrane and bending secondary stress tensor component for the reference HCPB module and slice models on Path2. 

Path2 

Module_Slice Slice_GPS_EU 
Membrane 

Error 

Bending 

Error Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Sx -1.096E+01 9.471E+00 -1.078E+01 9.340E+00 1.66% 1.38% 

Sy -3.609E+02 5.950E+01 -4.305E+02 5.943E+01 -19.30% 0.11% 

Sz -2.219E+02 1.209E+01 -2.293E+02 1.069E+01 -3.34% 11.63% 

Sxy 5.029E-02 -5.448E-02 3.635E-02 -6.111E-02 27.72% -12.17% 

Syz 2.487E-02 -9.094E-04 -7.661E-02 -1.821E-02 408.09% -1902.24% 

Sxz -4.582E-01 4.243E+00 5.044E-01 4.053E+00 210.09% 4.48% 

Equiv. Stress 

(Von Mises) 
3.052E+02 4.932E+01 3.636E+02 4.993E+01 -19.15% -1.24% 

Table A.17. Membrane and bending secondary stress tensor component for the reference HCPB module and slice models on Path3. 

Path3 

Module_Slice Slice_GPS_EU 
Membrane 

Error 

Bending 

Error Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Sx -5.900E-03 -2.629E-03 1.081E-01 1.509E-02 1932.28% 673.96% 

Sy 1.590E+01 -1.150E+01 1.334E+02 -1.375E+01 -738.63% -19.56% 

Sz 8.501E+01 -5.110E+00 8.196E+01 -1.550E+00 3.58% 69.67% 

Sxy -2.916E-02 2.168E-03 -2.032E-02 1.821E-03 30.32% 15.99% 

Syz 8.660E-04 -3.435E-04 9.977E-05 -2.641E-04 88.48% 23.11% 

Sxz 9.778E-05 -1.226E-04 -7.905E-05 8.658E-05 180.85% 170.62% 

Equiv. Stress 

(Von Mises) 
7.828E+01 9.976E+00 1.164E+02 1.305E+01 -48.69% -30.82% 
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Table A.18. Membrane and bending secondary stress tensor component for the reference HCPB module and slice models on Path4. 

Path4 

Module_Slice Slice_GPS_EU 
Membrane 

Error 

Bending 

Error Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Sx -1.955E+01 -5.263E+00 -5.777E+01 -4.958E+00 -195.49% 5.79% 

Sy -7.396E+01 -1.346E+00 -6.155E+01 -9.579E-01 16.78% 28.84% 

Sz -2.483E-01 -6.303E-03 -3.604E-01 -6.275E-03 -45.19% 0.44% 

Sxy -1.200E-01 1.023E-03 -9.928E-03 3.021E-03 91.73% -195.34% 

Syz 1.531E-02 1.517E-03 4.817E-03 1.142E-03 68.53% 24.72% 

Sxz 2.201E+00 2.314E-01 4.433E+00 2.095E-01 -101.40% 9.45% 

Equiv. Stress 

(Von Mises) 
6.631E+01 4.748E+00 5.988E+01 4.566E+00 9.69% 3.84% 

Table A.19. Membrane and bending secondary stress tensor component for the reference HCPB module and slice models on Path5. 

Path5 

Module_Slice Slice_GPS_EU 
Membrane 

Error 

Bending 

Error Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Sx -1.066E-02 1.802E-04 -6.135E-03 1.337E-04 42.43% 25.80% 

Sy 1.839E+01 8.918E+00 9.934E+01 1.484E+01 -440.06% -66.40% 

Sz 1.141E+01 1.524E+01 4.569E+00 1.971E+01 59.96% -29.29% 

Sxy -1.338E-04 5.177E-05 6.746E-05 -1.299E-04 150.40% 350.95% 

Syz -2.706E-02 4.200E-04 -1.821E-05 1.351E-04 99.93% 67.83% 

Sxz 1.764E+00 2.515E-02 8.015E-01 1.454E-02 54.56% 42.20% 

Equiv. Stress 

(Von Mises) 
1.638E+01 1.326E+01 9.715E+01 1.778E+01 -493.08% -34.05% 
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Figure A.13. Sx and Sy primary stress tensor components of HCPB module model and error contour map of the HCPB slice. In the 

pictures on the right, the red colour represents the values out of scale. 

 

Figure A.14. Sz and Sxy primary stress tensor components of HCPB module model and error contour map of the HCPB slice. In the 

pictures on the right, the red colour represents the values out of scale. 

0.5 m 0.5 m

y (pol.)

x (rad.)z (tor.)

0.5 m 0.5 m

y (pol.)

x (rad.)z (tor.)
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Figure A.15. Syz and Sxz primary stress tensor components of HCPB module model and error contour map of the HCPB slice. In the 

pictures on the right, the red colour represents the values out of scale. 

Table A.20. Membrane and bending primary stress tensor component for the reference HCPB module and slice models on Path1. 

Path1 

Module_Slice3 Slice3_GPS_EU 
Membrane 

Error 

Bending 

Error Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Sx -4.726E+00 -4.430E+00 -4.716E+00 -4.433E+00 0.20% -0.07% 

Sy 5.081E+01 -5.716E+00 4.527E+01 -5.825E+00 10.91% -1.91% 

Sz 4.019E+01 -3.791E+00 4.803E+01 -4.438E+00 -19.52% -17.05% 

Sxy 9.814E-03 -1.309E-03 1.144E-03 9.597E-04 88.35% 173.33% 

Syz 5.999E-04 3.884E-04 4.322E-04 5.376E-05 27.95% 86.16% 

Sxz -3.028E-04 1.207E-05 -2.609E-04 7.774E-05 13.83% -544.19% 

Equiv. Stress 

(Von Mises) 
5.106E+01 1.698E+00 5.142E+01 1.390E+00 -0.71% 18.14% 

Table A.21. Membrane and bending primary stress tensor component for the reference HCPB module and slice models on Path2. 

Path2 

Module_Slice3 Slice3_GPS_EU 
Membrane 

Error 

Bending 

Error Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Sx -4.450E+00 -4.147E+00 -4.427E+00 -4.129E+00 0.53% 0.42% 

Sy 4.431E+01 -2.968E+00 4.028E+01 -2.875E+00 9.09% 3.13% 

Sz 3.011E+01 6.725E-01 3.245E+01 1.015E+00 -7.76% -50.97% 

Sxy 3.157E-03 1.114E-04 5.270E-04 5.357E-04 83.31% -380.77% 

Syz 8.701E-02 1.285E-03 -2.228E-03 -6.782E-05 102.56% 105.28% 

Sxz -2.795E+00 4.949E-01 -2.998E+00 5.315E-01 -7.27% -7.40% 

Equiv. Stress 

(Von Mises) 
4.371E+01 4.435E+00 4.168E+01 4.736E+00 4.64% -6.80% 

0.5 m 0.5 m

y (pol.)

x (rad.)z (tor.)
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Table A.22. Membrane and bending primary stress tensor component for the reference HCPB module and slice models on Path3. 

Path3 

Module_Slice3 Slice3_GPS_EU 
Membrane 

Error 

Bending 

Error Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Sx -4.182E+00 -4.820E+00 -4.174E+00 -4.819E+00 0.19% 0.02% 

Sy 8.287E+00 -5.603E+00 1.824E+01 -6.052E+00 -120.07% -8.00% 

Sz 8.668E+00 -3.436E+00 1.077E+01 -4.308E+00 -24.25% -25.38% 

Sxy -8.753E-03 -2.001E-03 -8.258E-04 -2.548E-03 90.57% -27.35% 

Syz 1.440E-04 1.399E-04 1.844E-04 4.602E-04 -28.08% -228.99% 

Sxz -1.102E-04 5.727E-05 -9.830E-05 7.502E-05 10.80% -31.01% 

Equiv. Stress 

(Von Mises) 
1.266E+01 1.901E+00 1.977E+01 1.553E+00 -56.09% 18.32% 

Table A.23. Membrane and bending primary stress tensor component for the reference HCPB module and slice models on Path4. 

Path4 

Module_Slice3 Slice3_GPS_EU 
Membrane 

Error 

Bending 

Error Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Sx 5.002E+01 8.612E+00 5.078E+01 8.677E+00 -1.53% -0.76% 

Sy 2.971E+01 1.031E+01 3.559E+01 1.031E+01 -19.79% -0.02% 

Sz -3.987E+00 4.773E+00 -3.976E+00 4.773E+00 0.28% 0.00% 

Sxy -9.981E-02 -5.313E-04 -3.604E-04 2.106E-03 99.64% 496.31% 

Syz 9.912E-03 -2.339E-03 -4.884E-04 -2.562E-03 104.93% -9.54% 

Sxz -3.482E+00 -2.112E-01 -3.564E+00 -2.126E-01 -2.34% -0.66% 

Equiv. Stress 

(Von Mises) 
4.763E+01 4.925E+00 4.935E+01 4.941E+00 -3.62% -0.33% 

Table A.24. Membrane and bending primary stress tensor component for the reference HCPB module and slice models on Path5. 

Path5 

Module_Slice3 Slice3_GPS_EU 
Membrane 

Error 

Bending 

Error Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Sx -4.009E+00 4.718E+00 -4.011E+00 4.718E+00 -0.03% 0.00% 

Sy -5.499E-01 2.004E+01 1.176E+01 1.980E+01 2238.75% 1.19% 

Sz 5.534E+00 6.029E+01 6.716E+00 5.981E+01 -21.36% 0.80% 

Sxy -1.847E-05 1.766E-08 7.516E-05 -2.947E-05 506.92% 167021.55% 

Syz -2.673E-02 1.296E-03 2.371E-05 -7.165E-05 100.09% 105.53% 

Sxz -5.149E-01 6.382E-02 -6.892E-01 6.824E-02 -33.86% -6.92% 

Equiv. Stress 

(Von Mises) 
8.416E+00 4.971E+01 1.400E+01 4.931E+01 -66.38% 0.81% 
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Table A.25. Sensitivity analysis of membrane and bending stress tensor component for the reference HCPB module and slice models on Path1. 

Path1 

Case0_Single Slice Case0_3Slice Case4 Case5 Case0  

Membr.  

Error 

Case0  

Bend.  

Error 

Case4  

Membr.  

Error 

Case4  

Bend.  

Error 

Case5  

Membr.  

Error 

Case5  

Bend.  

Error 
Membr. 

[MPa] 

Bend.  

[MPa] 

Membr. 

[MPa] 

Bend.  

[MPa] 

Membr. 

[MPa] 

Bend.  

[MPa] 

Membr. 

[MPa] 

Bend.  

[MPa] 

Sx 1.87E+00 -6.53E+00 1.67E+00 -6.29E+00 1.29E+00 -6.12E+00 1.51E+00 -6.26E+00 10.86% 3.69% 31.16% 6.18% 19.22% 4.16% 

Sy 4.35E+01 1.65E+02 4.85E+01 1.59E+02 4.84E+01 1.60E+02 4.92E+01 1.60E+02 -11.38% 3.53% -11.17% 3.04% -12.88% 3.10% 

Sz 8.19E+01 1.46E+02 9.03E+01 1.36E+02 9.35E+01 1.36E+02 9.10E+01 1.36E+02 -10.19% 7.34% -14.12% 7.14% -11.11% 7.29% 

Sxy -8.73E-01 5.42E-01 -8.93E-01 5.91E-01 -9.30E-01 1.56E-01 -9.07E-01 4.76E-01 -2.29% -9.04% -6.54% 71.25% -3.90% 12.14% 

Syz 2.09E-01 1.99E-01 2.24E-01 1.66E-01 2.26E-01 1.73E-01 2.27E-01 1.67E-01 -7.20% 16.80% -8.25% 13.36% -8.66% 16.30% 

Sxz 1.41E-01 3.94E-02 1.43E-01 1.20E-02 1.45E-01 1.03E-02 1.45E-01 8.85E-03 -1.60% 69.56% -3.14% 73.91% -3.09% 77.57% 

Equiv. Stress  

(Von Mises) 
6.94E+01 1.63E+02 7.68E+01 1.55E+02 7.99E+01 1.56E+02 7.76E+01 1.56E+02 -10.71% 4.89% -15.15% 4.62% -11.86% 4.62% 

Table A.26. Sensitivity analysis of membrane and bending stress tensor component for the reference HCPB module and slice models on Path2. 

Path2 

Case0_Single Slice Case0_3Slice Case4 Case5 Case0 

Membr. 

Error 

Case0 

Bend. 

Error 

Case4 

Membr. 

Error 

Case4 

Bend. 

Error 

Case5 

Membr. 

Error 

Case5 

Bend. 

Error 
Membr. 

[MPa] 

Bend. 

[MPa] 

Membr. 

[MPa] 

Bend. 

[MPa] 

Membr. 

[MPa] 

Bend. 

[MPa] 

Membr. 

[MPa] 

Bend. 

[MPa] 

Sx -9.52E+00 6.21E-01 -9.94E+00 1.10E+00 -1.04E+01 1.28E+00 -1.01E+01 1.14E+00 -4.41% -77.58% -8.71% -105.60% -6.10% -83.20% 

Sy 3.17E+01 1.58E+02 3.66E+01 1.53E+02 3.61E+01 1.53E+02 3.71E+01 1.53E+02 -15.37% 3.41% -13.90% 3.04% -17.05% 3.01% 

Sz -3.89E+01 1.46E+02 -3.50E+01 1.37E+02 -3.45E+01 1.38E+02 -3.50E+01 1.37E+02 10.04% 6.28% 11.24% 5.79% 10.00% 6.14% 

Sxy -3.52E+00 5.02E+00 -3.56E+00 5.63E+00 -3.62E+00 5.31E+00 -3.58E+00 5.54E+00 -1.15% -12.05% -2.67% -5.77% -1.55% -10.35% 

Syz -5.26E+00 -9.26E+00 -5.39E+00 -9.37E+00 -5.46E+00 -9.52E+00 -5.40E+00 -9.40E+00 -2.40% -1.18% -3.70% -2.85% -2.68% -1.53% 

Sxz -3.66E+01 1.58E+01 -3.74E+01 1.62E+01 -3.79E+01 1.65E+01 -3.75E+01 1.63E+01 -2.02% -2.73% -3.55% -4.40% -2.41% -3.16% 

Equiv. Stress 

(Von Mises) 
8.90E+01 1.55E+02 9.10E+01 1.48E+02 9.12E+01 1.49E+02 9.15E+01 1.49E+02 -2.20% 4.54% -2.44% 4.20% -2.83% 4.27% 

Table A.27. Sensitivity analysis of membrane and bending stress tensor component for the reference HCPB module and slice models on Path3. 

Path3 

Case0_Single Slice Case0_3Slice Case4 Case5 Case0 

Membr. 

Error 

Case0 

Bend. 

Error 

Case4 

Membr. 

Error 

Case4 

Bend. 

Error 

Case5 

Membr. 

Error 

Case5 

Bend. 

Error 
Membr. 

[MPa] 

Bend. 

[MPa] 

Membr. 

[MPa] 

Bend. 

[MPa] 

Membr. 

[MPa] 

Bend. 

[MPa] 

Membr. 

[MPa] 

Bend. 

[MPa] 

Sx 1.58E+01 8.45E-01 1.61E+01 8.67E-01 1.66E+01 8.92E-01 1.63E+01 8.81E-01 -1.93% -2.64% -5.00% -5.64% -3.22% -4.30% 

Sy -3.45E+02 7.78E+01 -3.51E+02 7.89E+01 -3.62E+02 8.09E+01 -3.56E+02 7.99E+01 -1.83% -1.40% -4.87% -3.97% -3.22% -2.66% 

Sz -4.53E+02 2.46E+01 -4.62E+02 2.48E+01 -4.76E+02 2.56E+01 -4.70E+02 2.53E+01 -1.80% -0.98% -5.04% -4.32% -3.56% -2.74% 

Sxy 3.83E+00 -1.60E-01 3.88E+00 -1.21E-01 4.00E+00 3.23E-01 3.95E+00 2.48E-01 -1.24% 24.51% -4.36% 301.88% -2.97% 255.07% 

Syz 2.84E+00 -1.37E+00 2.98E+00 -1.36E+00 3.06E+00 -1.40E+00 3.02E+00 -1.38E+00 -4.88% 0.58% -7.81% -2.68% -6.32% -0.96% 

Sxz -3.14E-01 4.47E-01 -3.32E-01 4.52E-01 -3.43E-01 4.62E-01 -3.37E-01 4.55E-01 -5.66% -1.02% -9.08% -3.35% -7.46% -1.68% 

Equiv. Stress 

(Von Mises) 
4.26E+02 6.83E+01 4.33E+02 6.93E+01 4.47E+02 7.10E+01 4.40E+02 7.01E+01 -1.81% -1.42% -5.00% -3.93% -3.47% -2.64% 
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Table A.28. Sensitivity analysis of membrane and bending stress tensor component for the reference HCPB module and slice models on Path4. 

Path4 

Case0_Single Slice Case0_3Slice Case4 Case5 Case0 

Membr. 

Error 

Case0 

Bend. 

Error 

Case4 

Membr. 

Error 

Case4 

Bend. 

Error 

Case5 

Membr. 

Error 

Case5 

Bend. 

Error 
Membr. 

[MPa] 

Bend. 

[MPa] 

Membr. 

[MPa] 

Bend. 

[MPa] 

Membr. 

[MPa] 

Bend. 

[MPa] 

Membr. 

[MPa] 

Bend. 

[MPa] 

Sx 3.07E+02 1.43E+01 3.13E+02 1.22E+01 3.19E+02 1.26E+01 3.15E+02 1.20E+01 -1.84% 14.72% -3.64% 11.43% -2.39% 15.99% 

Sy 1.37E+02 -1.31E+02 1.40E+02 -1.35E+02 1.41E+02 -1.36E+02 1.41E+02 -1.36E+02 -2.04% -2.97% -2.81% -3.68% -2.74% -3.75% 

Sz 1.03E+01 2.62E+01 1.02E+01 2.65E+01 1.03E+01 2.66E+01 1.02E+01 2.66E+01 0.10% -1.08% -0.07% -1.62% 0.14% -1.52% 

Sxy -2.87E+00 3.15E+00 -2.99E+00 3.28E+00 -3.09E+00 3.41E+00 -3.04E+00 3.34E+00 -4.14% -3.92% -7.66% -8.18% -5.77% -5.90% 

Syz 1.85E+00 -9.61E+00 1.93E+00 -1.04E+01 1.93E+00 -1.04E+01 1.93E+00 -1.04E+01 -4.33% -8.53% -4.80% -8.39% -4.76% -8.56% 

Sxz -2.10E+01 -1.29E+00 -2.14E+01 -1.19E+00 -2.19E+01 -1.26E+00 -2.16E+01 -1.20E+00 -2.21% 7.82% -4.37% 2.09% -2.97% 7.12% 

Equiv. Stress 

(Von Mises) 
2.61E+02 1.52E+02 2.66E+02 1.56E+02 2.71E+02 1.57E+02 2.67E+02 1.57E+02 -1.90% -2.14% -3.81% -2.93% -2.47% -2.80% 

Table A.29. Sensitivity analysis of membrane and bending stress tensor component for the reference HCPB module and slice models on Path5. 

Path5 

Case0_Single Slice Case0_3Slice Case4 Case5 Case0 

Membr. 

Error 

Case0 

Bend. 

Error 

Case4 

Membr. 

Error 

Case4 

Bend. 

Error 

Case5 

Membr. 

Error 

Case5 

Bend. 

Error 
Membr. 

[MPa] 

Bend. 

[MPa] 

Membr. 

[MPa] 

Bend. 

[MPa] 

Membr. 

[MPa] 

Bend. 

[MPa] 

Membr. 

[MPa] 

Bend. 

[MPa] 

Sx -4.11E+00 4.81E+00 -4.10E+00 4.81E+00 -4.12E+00 4.81E+00 -4.12E+00 4.81E+00 0.15% 0.10% -0.36% 0.11% -0.33% 0.12% 

Sy 3.06E+02 -5.17E+01 3.08E+02 -5.26E+01 3.10E+02 -5.42E+01 3.09E+02 -5.34E+01 -0.44% -1.78% -1.26% -4.81% -0.91% -3.23% 

Sz 1.35E+02 -7.48E+01 1.36E+02 -7.72E+01 1.39E+02 -8.09E+01 1.37E+02 -7.89E+01 -1.22% -3.14% -3.18% -8.06% -2.01% -5.41% 

Sxy 1.28E-03 -3.00E-03 1.86E-03 -1.44E-02 2.10E-03 2.27E-02 2.02E-03 2.20E-02 -44.95% -379.93% -64.05% 855.09% -57.55% 834.07% 

Syz 2.87E-04 -4.17E-04 -2.87E-03 -1.24E-02 -3.00E-03 -1.24E-02 -3.02E-03 -1.23E-02 1101.6% -2881% 1145% -2883% 1151% -2860% 

Sxz 1.81E+01 2.19E-01 1.84E+01 2.36E-01 1.88E+01 2.39E-01 1.86E+01 2.37E-01 -1.82% -7.90% -4.09% -9.19% -2.68% -8.28% 

Equiv. Stress 

(Von Mises) 
2.71E+02 7.10E+01 2.72E+02 7.29E+01 2.74E+02 7.59E+01 2.74E+02 7.43E+01 -0.43% -2.70% -1.23% -7.00% -0.90% -4.69% 
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9.7 MAIA Procedure HCPB Test Case 

In this Appendix, the results on primary and secondary linearized stresses calculated on the HCPB test 

case are reported. 

From Table A.30 to Table A.34, the linearized primary and secondary stresses as well as the Von Mises 

equivalent stress for each path are displayed. 

Table A.30. Membrane and bending primary stress tensor component for the HCPB slice model on Path1. 

Path1 

Primary Stress Secondary Stress 

Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Sx 1.194E+01 -7.134E+00 -2.287E-01 2.014E+01 

Sy -3.329E+00 -8.140E-01 -8.099E+01 3.629E+01 

Sz 2.242E+01 -3.120E+00 5.142E+01 1.164E+02 

Sxy -5.770E-02 1.940E-01 1.727E+00 1.966E+01 

Syz -2.621E-02 -6.146E-03 1.100E-01 6.128E-02 

Sxz 8.900E-04 1.352E-01 2.933E-01 -1.243E-02 

Equiv. Stress 

(Von Mises) 
2.243E+01 5.555E+00 1.156E+02 9.560E+01 

Table A.31. Membrane and bending primary stress tensor component for the HCPB slice model on Path2. 

Path2 

Primary Stress Secondary Stress 

Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Sx 1.154E+01 -7.136E+00 -1.243E+01 2.505E+01 

Sy -4.906E+00 -1.975E+00 -8.083E+01 2.333E+00 

Sz 1.238E+01 -2.312E+00 -3.005E+01 7.460E+01 

Sxy -2.870E-02 -2.320E-01 -2.539E+00 2.024E+01 

Syz -2.806E-01 -3.760E-01 -4.421E+00 -1.049E+01 

Sxz -1.791E+00 7.060E-01 -3.962E+01 1.779E+01 

Equiv. Stress 

(Von Mises) 
1.717E+01 5.205E+00 9.258E+01 8.127E+01 

Table A.32. Membrane and bending primary stress tensor component for the HCPB slice model on Path3. 

Path3 

Primary Stress Secondary Stress 

Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Sx 1.073E-01 1.169E-02 8.550E+00 4.328E-01 

Sy -2.720E+00 3.350E-01 -1.903E+02 4.621E+01 

Sz -3.150E+00 -1.187E+00 -2.150E+02 2.895E+01 

Sxy 3.450E-02 1.052E-02 2.309E+00 7.927E-01 

Syz 2.370E-02 -2.872E-02 1.129E+00 -8.734E-01 

Sxz -1.669E-02 -3.559E-02 -1.487E-01 2.442E-01 

Equiv. Stress 

(Von Mises) 
3.066E+00 1.391E+00 2.123E+02 4.009E+01 
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Table A.33. Membrane and bending primary stress tensor component for the HCPB slice model on Path4. 

Path4 

Primary Stress Secondary Stress 

Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Sx 3.353E+01 1.557E+00 1.898E+02 1.281E+01 

Sy -7.000E-01 -1.886E+00 4.928E+01 -4.010E+01 

Sz 1.147E+01 7.340E+00 -8.977E-02 7.379E+00 

Sxy -8.608E-01 1.383E+00 4.096E-01 -1.217E+00 

Syz 1.126E-01 3.490E-02 8.032E-01 -5.977E+00 

Sxz -2.898E+00 -5.427E-01 -7.703E+00 1.209E+00 

Equiv. Stress 

(Von Mises) 
3.051E+01 8.475E+00 1.712E+02 5.155E+01 

Table A.34. Membrane and bending primary stress tensor component for the HCPB slice model on Path5. 

Path5 

Primary Stress Secondary Stress 

Membrane 

[MPa] 

Bending 

[MPa] 

Membrane 

[MPa] 

Bending 

[MPa] 

Sx -4.000E+00 4.779E+00 -5.483E-02 5.073E-03 

Sy -4.735E+00 2.398E+01 7.020E+01 -6.787E+01 

Sz 1.908E+00 7.669E+01 5.455E+01 -1.088E+02 

Sxy 2.322E-03 -8.647E-03 1.760E-03 -1.829E-03 

Syz -1.139E-03 6.430E-03 -2.444E-03 9.187E-03 

Sxz 2.610E-02 1.745E-02 5.571E+00 5.927E-02 

Equiv. Stress 

(Von Mises) 
6.308E+00 6.449E+01 6.461E+01 9.516E+01 
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9.8 Validation of the Enhanced MAIA procedure for Water Activation 

Analysis 

In this Appendix, the validation of MAIA procedure for the water activation analysis is reported. 

In order to validate the MAIA procedure for the study of water activation, a simplified model of a water 

pipe has been created as reported in Figure A.16. The water pipe has dimensions in terms of diameter 

similar to the WCLL tubes and channels (Figure A.16 - b). An UM of the water domain has been created. 

Some details on the mesh are reported in Figure A.16 - c and in Table A.35. A neutronic input has been 

created using the Hybrid representation simulating the water by means of the UM. A neutron transport 

calculation has been performed using a mono-energetic planar neutron source with neutrons at 14.1 MeV as 

shown in Figure A.16 - d. 

 

Figure A.16. Simplified model for validation of enhanced MAIA procedure. Left (a) and (b): geometric model. Left (c): detail of 

the UM. Right (d) and (e): neutronic model realised using the Hybrid representation. 

Table A.35. Basic characteristics of UM used for the neutronic model. 

Element type Number of nodes Number of elements 

Quadratic Hexahedron 40461 8400 

From the neutronic calculation, the 3D profile of 16N production rate, calculated using the EMBEE card, 

has been assessed following the procedure described in paragraph 6.3. The 3D distribution is shown in 

Figure A.17. The overall nitrogen production rate, calculated by means of F4 card modified with card FM, 

is equal to 1.53362E+00 [m-3 s-1]. In order to validate the coupling, the computational results obtained by 

means of MAIA procedure have been compared with an analytical solution for the transport of a passive 

scalar on one dimension. Under the assumptions of steady state condition and uniform nitrogen production 

rate along x, the analytical problem is described by the following system of equations: 
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[115, 116]). Solving the system (A.1), the following equation is obtained: 
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 (A.2) 

that is used to compare the computational results in terms of concentration calculated by means of ANSYS 

CFX as shown in Figure A.18 and in Table A.36 and Table A.37.  

As it is possible to observe, the theoretical and computational estimation are in good agreement with a 

maximum variation of 1.42% that occurs in the first centimeters where the flow is not completely 

developed (see Figure A.17 - b) and, then, the mixing phenomena slightly modify the results without 

compromising the correct assessment of nitrogen concentration. For these reasons, the coupling procedure 

and the set of equations and boundary conditions used in MAIA procedure can be applied for studying the 

water activation in the WCLL BU. 

  

Figure A.17. Neutronic and fluid-dynamic results using MAIA procedure. Left (a): 16N production rate. Right (b): velocity profile 

at the inlet and outlet of water pipe. Right (c): concentration profile of 16N at the inlet and outlet of water pipe. 

  

Figure A.18. Comparison between the theoretical calculation of nitrogen concentration by means of eq. (A.2) (blue curve) and the 

computational assessments at different axial positions (red curve). On the right vertical axes, the deviation between the two trends 

is reported.  
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Table A.36. Parameters adopted for the theoretical resolution. 

Nitrogen production rate 

(F4 modified with FM) 
1.534E+00 [m-3 s-1] 

 9.722E-02 [s-1] 

Velocity 1.297E+01 [m s s-1] 

Length 2.100E+00 [m] 

BB residence time 1.619E-01 [s] 

PHTS residence time 35.77 [s] 

Table A.37. Comparison between theoretical and computational concentration assessment. 

Lenght [m] 
Theoretical 

Concentration [m-3] 

Computational 

Concentration [m-3] 
Variation 

0.00 7.945E-03 7.945E-03 - 

0.05 1.385E-02 1.405E-02 -1.42% 

0.10 1.976E-02 2.002E-02 -1.32% 

0.15 2.567E-02 2.600E-02 -1.29% 

0.20 3.157E-02 3.192E-02 -1.10% 

0.25 3.747E-02 3.783E-02 -0.96% 

0.30 4.337E-02 4.377E-02 -0.93% 

0.35 4.926E-02 4.979E-02 -1.07% 

0.40 5.516E-02 5.571E-02 -0.99% 

0.45 6.105E-02 6.170E-02 -1.07% 

0.50 6.694E-02 6.764E-02 -1.04% 

0.55 7.283E-02 7.358E-02 -1.04% 

0.60 7.871E-02 7.954E-02 -1.06% 

0.65 8.460E-02 8.556E-02 -1.13% 

0.70 9.048E-02 9.152E-02 -1.16% 

0.75 9.635E-02 9.743E-02 -1.12% 

0.80 1.022E-01 1.034E-01 -1.19% 

0.85 1.081E-01 1.093E-01 -1.15% 

0.90 1.140E-01 1.153E-01 -1.13% 

0.95 1.198E-01 1.212E-01 -1.09% 

1.00 1.257E-01 1.271E-01 -1.10% 

1.05 1.316E-01 1.330E-01 -1.10% 

1.10 1.374E-01 1.389E-01 -1.09% 

1.15 1.433E-01 1.449E-01 -1.11% 

1.20 1.492E-01 1.510E-01 -1.23% 

1.25 1.550E-01 1.570E-01 -1.27% 

1.30 1.609E-01 1.629E-01 -1.24% 

1.35 1.667E-01 1.688E-01 -1.23% 

1.40 1.726E-01 1.748E-01 -1.27% 

1.45 1.784E-01 1.807E-01 -1.25% 

1.50 1.843E-01 1.866E-01 -1.26% 

1.55 1.901E-01 1.926E-01 -1.32% 

1.60 1.960E-01 1.985E-01 -1.30% 

1.65 2.018E-01 2.044E-01 -1.31% 

1.70 2.076E-01 2.103E-01 -1.30% 

1.75 2.135E-01 2.162E-01 -1.30% 

1.80 2.193E-01 2.222E-01 -1.33% 

1.85 2.251E-01 2.281E-01 -1.32% 

1.90 2.310E-01 2.340E-01 -1.30% 

1.95 2.368E-01 2.398E-01 -1.27% 

2.00 2.426E-01 2.456E-01 -1.25% 

2.05 2.484E-01 2.515E-01 -1.22% 

2.10 2.542E-01 2.573E-01 -1.20% 
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9.9 Conventional and EMBEE Tallies Comparison for Nitrogen Production 

Rate 

In this Appendix, the comparison between the ENBEE and conventional MCNP tally is reported.  

In Table A.38 and Table A.39, the comparison between the conventional F4 card results modified by 

means of FM card and the integral of the elements results over the pseudo cells volumes is reported. 

Table A.38. Comparison between the conventional and ENBEE cards for the 16N production rate calculation. 

16N Concentration Production Rate [cm-3 s-1] 

Cell_UM  Tally F4 with FM EMBEE CARD 

4001 1.579E+10 1.579E+10 0.00% 

4002 1.738E+10 1.737E+10 0.07% 

4003 1.741E+10 1.743E+10 -0.09% 

4004 1.586E+10 1.584E+10 0.11% 

4005 1.015E+10 1.014E+10 0.14% 

4006 1.021E+10 1.018E+10 0.21% 

4007 6.558E+09 6.555E+09 0.04% 

4008 6.947E+09 6.936E+09 0.15% 

4009 6.958E+09 6.953E+09 0.08% 

4010 6.588E+09 6.565E+09 0.34% 

4011 4.239E+09 4.231E+09 0.19% 

4012 4.252E+09 4.244E+09 0.20% 

4013 2.775E+09 2.779E+09 -0.12% 

4014 2.783E+09 2.781E+09 0.09% 

4015 1.140E+09 1.137E+09 0.32% 

4016 1.146E+09 1.141E+09 0.49% 

4017 3.486E+08 3.489E+08 -0.09% 

4018 3.505E+08 3.503E+08 0.06% 

4019 5.459E+07 5.458E+07 0.02% 

4020 3.794E+06 3.807E+06 -0.37% 

4021 3.946E+06 3.955E+06 -0.22% 

5001 2.953E+10 2.999E+10 -1.56% 

5002 3.105E+10 3.192E+10 -2.82% 

5003 3.042E+10 3.128E+10 -2.84% 

5004 3.003E+10 3.037E+10 -1.14% 

5005 2.985E+10 3.055E+10 -2.36% 

5006 2.978E+10 3.006E+10 -0.94% 

5007 2.986E+10 3.055E+10 -2.32% 

5008 3.004E+10 3.031E+10 -0.89% 

5009 3.043E+10 3.088E+10 -1.49% 

5010 3.102E+10 3.136E+10 -1.09% 

5011 2.952E+10 2.994E+10 -1.43% 

TOTAL 4.625E+11 4.681E+11 -1.21% 
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Table A.39. Comparison between the conventional and ENBEE cards for the 17N production rate calculation. 

17N Concentration Production Rate [cm-3 s-1] 

Cell_UM  Tally F4 with FM EMBEE CARD 

4001 1.615E+06 1.615E+06 0.01% 

4002 1.780E+06 1.779E+06 0.07% 

4003 1.783E+06 1.785E+06 -0.09% 

4004 1.622E+06 1.620E+06 0.11% 

4005 1.035E+06 1.034E+06 0.15% 

4006 1.040E+06 1.038E+06 0.22% 

4007 6.666E+05 6.663E+05 0.04% 

4008 7.062E+05 7.051E+05 0.16% 

4009 7.076E+05 7.070E+05 0.08% 

4010 6.694E+05 6.671E+05 0.35% 

4011 4.295E+05 4.287E+05 0.19% 

4012 4.310E+05 4.301E+05 0.20% 

4013 2.805E+05 2.808E+05 -0.12% 

4014 2.814E+05 2.812E+05 0.09% 

4015 1.147E+05 1.143E+05 0.33% 

4016 1.154E+05 1.148E+05 0.50% 

4017 3.489E+04 3.491E+04 -0.07% 

4018 3.515E+04 3.513E+04 0.07% 

4019 5.422E+03 5.418E+03 0.08% 

4020 3.777E+02 3.789E+02 -0.31% 

4021 3.886E+02 3.887E+02 -0.04% 

5001 3.041E+06 3.088E+06 -1.56% 

5002 3.198E+06 3.288E+06 -2.82% 

5003 3.133E+06 3.221E+06 -2.84% 

5004 3.092E+06 3.127E+06 -1.14% 

5005 3.073E+06 3.146E+06 -2.35% 

5006 3.067E+06 3.096E+06 -0.94% 

5007 3.075E+06 3.146E+06 -2.32% 

5008 3.094E+06 3.122E+06 -0.89% 

5009 3.134E+06 3.181E+06 -1.49% 

5010 3.196E+06 3.231E+06 -1.09% 

5011 3.039E+06 3.082E+06 -1.43% 

TOTAL 4.750E+07 4.807E+07 -1.21% 
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