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Introduction

The concept of Majorana fermions, developed by Italian physicist Ettore Majorana, originates from
particle physics, where it provides a field-theoretic description of charge-neutral fermionic particles.
The discovery of oscillations between different neutrino flavours (2015 Nobel Prize in Physics) has
boosted interest in Majorana theory as one possible way to add neutrino masses to the Standard
Model. The existence of Majorana mass terms would imply that the fermion number is not a conserved
quantity.
In condensed-matter physics, on the other hand, fermionic systems with non-conserved particle

number are well known from the mean-field theory of superconductivity, where all excitations have
a Majorana character. This property is a manifestation of the redundancy (Nambu doubling) that
is needed to treat a superconductor like an ordinary system of free fermions. The gauge-dependent
nature of the superconducting order parameter means that, in contrast to the concept from particle
theory, Majorana modes in a superconductor are not restricted to being electrically neutral.
Majorana states of lower dimensionality, in particular, have drawn interest in condensed-matter

research: Majorana zero modes, bound states of exponential localisation, may be useful as topologically
protected degrees of freedom for quantum-computation applications, as they are not suceptible to some
decoherence processes caused by perturbations and imperfections of the system. One-dimensional
Majorana edge modes enrich the field of effectively 1D physics and offer the possibility of probing
quantum properties in interferometric studies.
Suitability for topological quantum computation was first predicted for zero-energy Majorana bound

states hosted by vortices in a p-wave superconductor [1]. A simpler, 1D model of a topological su-
perconducting system is given by the Kitaev chain [2], which provides Majorana zero modes localised
at both ends. As the model is strictly one-dimensional, it has a direct equivalent, via Jordan–Wigner
transformation, in a spin-1

2 chain with Ising coupling. Although the character of the spin system differs
substantially from the fermionic one due to the non-locality involved in the transformation, it still has
the potential to emulate behaviour of the fermion chain.
For the appearance of one-dimensional edges, a system with at least two dimensions is required. A

three-dimensional topological insulator, for instance, features gapless electronic states on the surface,
which acts as an effectively 2D system. Edge modes of Majorana character may arise at boundary
lines between a surface region gapped by a superconductor and a magnetically influenced area, or in
line junctions between two superconducting regions [3]. The gapless surface states will generally have
a contribution to the Josephson current flowing between two superconductors that are tunnel-coupled
to the surface.

Both the spin equivalent of the Kitaev chain and superconducting fermionic systems with topological
Majorana modes are studied in this thesis, which consists of five chapters:

• The first chapter introduces fundamental concepts that are relevant, in particular the Jordan–
Wigner transformation, the toy model of the Kitaev chain, Majorana zero modes and their use
in topological braiding, and protected surface states in a topological insulator.
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Introduction

• The second chapter presents a generalised Jordan–Wigner transformation which provides a
locality-preserving mapping between tree structures of spins and of fermions. The extension
uses additional spins to mediate the coupling between one-dimensional chains and allows for the
translation of Majorana braiding into a spin system.

• For a mesoscopic superconducting island hosting two Majorana zero modes, the onset, due to
charging energy, of correlations between the electrical currents at two tunnel contacts coupled to
the Majorana modes is analysed in the third chapter.

• In the fourth chapter, a Josephson junction between two superconductors on a topological-
insulator surface is considered and the current–phase relation is calculated for the contributions
of bound states and scattering states on the surface to the Josephson current.

• Finally, the thesis is concluded by a summary with some outlook on further research potential.

iv



Contents

Introduction iii

1 Fundamentals 1
1.1 Jordan–Wigner transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Majorana operators and non-local zero modes . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Kitaev toy model of a topological superconductor . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Topological braiding with Majorana modes . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Superconducting Majorana structure on a topological insulator . . . . . . . . . . . . . . 7

2 Jordan–Wigner transformations for tree structures 9
2.1 Spin–fermion mapping beyond 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Geometry and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Free fermions and 3-spin couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 XY spin system and fermionic Kondo model . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Majorana braiding and the spin representation . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Current correlation in a Majorana system with charging energy 15
3.1 Transport through Majorana modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Langevin equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Currents and correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Low-energy limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Current–phase relation in a long topological Josephson junction 21
4.1 Proximity effects on a topological insulator . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Electronic modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 SNS case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Scattering states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 Bound states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.3 Josephson current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 SMS case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.1 Scattering states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.2 Bound states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.3 Josephson current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Zero-temperature results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Summary and outlook 35

v



Contents

A Majorana braiding in spin representation 37
A.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.2 Boundary translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.3 Single-interval braiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.4 Two-interval braiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

B Effective action and phase fluctuations 45
B.1 Derivation of the effective action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.2 Fluctuation kernel and decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.3 Low-energy evaluation of noise averages . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

C Details of the correlation calculation 49
C.1 Current and correlation in the limit of large Γ . . . . . . . . . . . . . . . . . . . . . . . 49
C.2 Further treatment of the zero-temperature case . . . . . . . . . . . . . . . . . . . . . . . 51

D Supercurrent in a thermal state 53

E Current calculation via eigenmodes 55

List of Figures 59

Bibliography 61

Acknowledgements 63

vi



1 Chapter 1

Fundamentals

This chapter is a short introduction of some fundamental concepts. The first part explains the definition
and applications of the Jordan–Wigner transformation relating spin-1

2 systems to fermions. Fermionic
Majorana operators do not only result from transforming spin components, as shown in the second
part, but they can also arise as topologically protected degrees of freedom in a fermionic system like the
Kitaev chain, which is presented in the third part. Protected Majorana states have non-Abelian braiding
properties, discussed in the fourth part, which could be used for topological quantum computation. The
last part describes Majorana modes as a more general feature of superconductors, which is of particular
interest in combination with the protected surface states of a topological insulator.

1.1 Jordan–Wigner transformation

The well-known transformation introduced by Jordan and Wigner [4] relates spin-1
2 operators to

fermionic creation and annihilation operators. Thereby, it permits mapping a spin system to a fermionic
one (and vice versa). For sets of fermionic operators c(j), c†(j) and spin raising/lowering operators

σ±(j) = 1
2
[
σx(j)± iσy(j)

]
(1.1)

derived from Pauli matrices σα(j), the Jordan–Wigner transformation can be defined as follows:

c(j) = σ−(j) ·
j−1∏
k=1

σz(k) (1.2a)

c†(j) = σ+(j) ·
j−1∏
k=1

σz(k) . (1.2b)

[By means of an additional spin rotation, components can be swapped, which may be expedient for
some applications.]
To transform the commuting operators of various spins into anti-commuting fermionic operators,

highly non-local string operators are used. In principle, the one-dimensional ordering required for the
strings can be chosen arbitrarily. However, this transformation generally provides a locality-preserving
mapping between Hamiltonians only for strictly one-dimensional systems.

1



1 Fundamentals

In a one-dimensional chain, the Jordan–Wigner transformation can be used to map any local
quadratic fermionic Hamiltonian into a local quadratic spin Hamiltonian:

HF
0 =

∑
j

µj c
†(j) c(j) +

∑
j

[
uj c(j) c(j + 1) + tj c

†(j) c(j + 1) + H. c.
]

(1.3a)

(1.2)−→ HS =
∑
j

µj
1 + σz(j)

2 +
∑
j

[
uj σ

−(j)σ−(j + 1)− tj σ+(j)σ−(j + 1) + H. c.
]
, (1.3b)

where the relation

σ+(j)σ−(j) = 1
2
[
1 + σz(j)

]
(1.4)

was used. Conversely, a 1D spin chain with XY coupling between nearest neighbours and local transver-
sal fields is mapped to a free fermionic Hamiltonian.

1.2 Majorana operators and non-local zero modes

For every pair of fermionic creation operator c†(j) and annihilation operator c(j), we can define two
Majorana operators

γ(2 j − 1) = c(j) + c†(j) , γ(2 j) = −i
[
c(j)− c†(j)

]
. (1.5)

The operators are Hermitian (or real) and they fullfill an anti-commutation relation{
γ(j), γ(k)

}
= 2 δjk , (1.6)

similar to the usual (complex) fermion operators.1 The fermionic anti-commutation relation leads to
the special property that an arbitrary pair of Majorana operators can be recombined,

f = γ(j) + i γ(k)
2 , f † = γ(j)− i γ(k)

2 , (1.7)

(for j 6= k) to a new complex fermion with occupation

f †f = 1 + i γ(j) γ(k)
2 . (1.8)

As γ(j) are linear combinations of the original fermionic operators, a quadratic Hamiltonian consist-
ing of Majorana operators describes a system of free fermions. An interesting fermionic Hamiltonian
results from using the Jordan–Wigner transformation (1.2) for the new operators,

γ(2 j − 1) = σx(j) ·
j−1∏
k=1

σz(k) (1.9a)

−γ(2 j) = σy(j) ·
j−1∏
k=1

σz(k) , (1.9b)

1Alternatively, Majorana operators can be defined with an additional factor of 1/
√

2, which results in an anti-commutator
of δjk, like the one for complex fermion operators.
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1.3 Kitaev toy model of a topological superconductor

on a ferromagnetic Ising spin chain (J > 0) of length L:

HS
Ising = −J

L−1∑
j=1

σx(j)σx(j + 1) (1.10a)

−→ HF = J
L−1∑
j=1

i γ(2 j) γ(2 j + 1) . (1.10b)

Considering the fermionic operators for a 1D chain of length L, we notice that two Majorana operators
do not appear in HF. Therefore, γ(1) and γ(2L) form a non-local fermionic zero mode.

1.3 Kitaev toy model of a topological superconductor

A fermionic toy model capable of reproducing the Hamiltonian (1.10b) was proposed by Kitaev [2]. The
starting point is a one-dimensional, (effectively) spinless chain of L fermions with chemical potential µ,
superconducting order parameter ∆ = |∆| ei θ and nearest-neighbour hopping amplitude w:

Hµ =
L−1∑
j=1

[
−w c†(j) c(j + 1) + ∆ c(j) c(j + 1) + H. c.

]
− µ

L∑
j=1

[
c†(j) c(j)− 1

2

]
. (1.11)

Redefining the Majorana operators to account for the superconducting phase,

c(j) = γ(2 j − 1) + i γ(2 j)
2 ei θ , (1.12)

we now consider the special case of |∆| = w and obtain the Majorana representation:

Hµ = w
L−1∑
j=1

i γ(2 j) γ(2 j + 1)− µ

2

L∑
j=1

i γ(2 j − 1) γ(2 j) . (1.13)

In this representation, the Hamiltonian Hµ consists of two different kinds of Majorana pairings: The
two Majorana operators of the same fermionic site are coupled by the chemical potential µ, while w is
the coefficient for pairs of Majorana operators from neighbouring sites (Fig. 1.1).
For a vanishing chemical potential, γ(1) and γ(2L) are Majorana zero modes, and the Hamilto-

nian Hµ=0 corresponds to the Ising chain (1.10a) with w = J . Due to the non-locality of the transfor-
mation, however, the ground-state degeneracy in the fermionic system is completely different from the
Ising Hamiltonian:
In the spin system, the two ferromagnetic ground states can be distinguished by a local measurement

of any spin. In contrast, this information can only be determined by accessing the two operators at
distant ends of the topological fermion chain, providing a topological protection against local pertur-
bations for this degree of freedom. This difference between topological and non-topological order has
been elaborated in Ref. [5]; it is visualised for the ground states as well as elementary excitations in
Fig. 1.2.
A physical realisation of the Hamiltonian (1.11) is possible by applying a magnetic field to a semi-

conducting wire with spin–orbit coupling and proximity-induced superconductivity [6], as pictured
in Fig. 1.3. If the chemical potential µ is finite, there is no perfect zero mode. But in the regime
0 < |µ| < 2 |w|, Majorana modes of finite extent are localised at the ends of the chain, and their
overlap and energy are suppressed exponentially in the length L [2].
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1 Fundamentals

· · ·

· · ·
γ1 γ2 γ3 γ4 γ5 γ6 · · · γ2L−1 γ2L

Figure 1.1: There are two different kinds of quadratic Majorana terms in the Hamiltonian (1.13)
of the Kitaev chain [2]. The chemical potential µ pairs the two Majorana operators of
a single fermionic site (upper part). In contrast, the combination of superconducting
and hopping terms effects a pairing between Majorana operators of neighbouring sites,
leaving unpaired the two operators at the ends of the chain (lower part). Diagram
inspired by Ref. [2].

↓ ↓ ↓ ↑ ↑ ↑ +J

(a) elementary excitations

· · ·↑ ↑ · · · ↑ ↑
· · ·↓ ↓ · · · ↓ ↓

(b) ground-state degeneracy

Figure 1.2: As the Jordan–Wigner transformation is non-local, it relates two very different kinds
of order. In the ferromagnetic Ising chain (on the left), the lowest excitations are
domain walls (a), and a measurement of a single spin is sufficient to distinguish
the degenerate ground states (b). In the topological fermion chain (on the right),
localised fermionic modes are the elementary excitations (a); due to the non-locality
of the zero mode, in contrast, the ground states cannot be distinguished by any local
measurement (b).

s-wave superconductor

~B field

semiconducting wire

Figure 1.3: Schematic picture of a topological wire (inspired by Ref. [6]). A semiconducting wire
with strong spin–orbit coupling can be driven into the topologically superconducting
phase of the Kitaev toy model (1.11) by a combination of a magnetic field and
proximity to a superconductor with s-wave order parameter [6].
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1.4 Topological braiding with Majorana modes

1.4 Topological braiding with Majorana modes

Many-particle wave functions should satisfy a symmetry under the interchange of indistinguishable
particles. In a system with three (or more) spatial dimensions, bosonic and fermionic statistics are the
only possibilities for this, because physically interchanging the same two particles twice is topologically
equivalent to no change at all. Restricted to 2D, however, multiple interchanges of two particles can
be characterised by a well-defined topological property, the winding number. Thus, in addition to
bosons and fermions, particles with anyonic statistics may exist in 2D systems. In the simplest case,
interchanging identical particles introduces an arbitrary phase ei θ with θ 6= 0, π (values for bosons and
fermions). As multiple phase factors always commute, this implies Abelian anyons.
If there is a ground-state degeneracy in the presence of anyonic particles, interchanging different

pairs of particles may effect non-commuting rotations in the subspace of degenerate ground states. For
such non-Abelian anyons, interchange sequences, which are represented by elements of the braid group,
can yield complex transformations of the system state. The result does not depend on the precise
trajectories, but only on the topology of the braiding; a graphical representation for a simple braiding
operation is shown in Fig. 1.4. Hence, systems with non-Abelian statistics may provide a platform
for quantum computations with topologically protected gates (see Ref. [7] for a review on non-Abelian
anyons and their potential use).

Create

Braid

t

Measure

Figure 1.4: World-line diagram of a braiding operation with four particles. At first, two pairs of
anyons are created (at the bottom of the diagram). Then, the middle ones of both
pairs are interchanged. For non-Abelian anyons, this braiding results in a non-trivial
transformation within the subspace of degenerate ground states. At the end, the
state of the two particle pairs is measured. Picture inspired by Ref. [8].

In the following, we will focus on the non-Abelian anyons appearing in superconducting systems.
They consist in a topological defect which protects a zero-energy Majorana mode. For Majorana zero
modes in half-quantum vortices of p-wave superconductors (or single-quantum vortices in the spinless
case), the unitary rotation was derived by Ivanov [1]: The operation

U = exp
(
−π4 γA γB

)
= 1− γA γB√

2
(1.14)

is the effect of braiding two vortices with Majorana modes γA, γB. [The order of the two operators, or
the sign of the rotation, depends on the chirality of the vortices and on the choice of branch cuts in the
superconducting phase; a clockwise braiding features the opposite sign with respect to an anti-clockwise

5



1 Fundamentals

(Start)

γA γB

(Step 1)

γA

γB

(Step 2)

γAγB

(Step 3)

γAγB

Figure 1.5: Majorana braiding in a T junction (picture inspired by Ref. [6]). Two Majorana
zero modes at the boundaries of a topological interval (Sec. 1.3) are interchanged via
adiabatical shifts of the interval boundaries. This can be effected by local control of
the chemical potential and results in a rotation (1.14) of the system state [6].
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1.5 Superconducting Majorana structure on a topological insulator

braiding.] As should be expected, this transformation affects the Majorana operators involved,

γA → U γA U
−1 = γB , (1.15a)

γB → U γB U
−1 = −γA , (1.15b)

while leaving any other Majorana operator unchanged. Note that the anyonic statistics is not inherent
to Majorana modes, which are fermionic in nature. The non-Abelian behaviour rather arises from the
topological structure of the vortices protecting the zero modes.

In the topological phase of the Kitaev chain, or of the physical realisation in semiconducting wires,
a boundary (of a topological part) of the system has the role of the topological defect. Braiding is
obviously not possible in a strictly one-dimensional geometry, but in a network of topological wires:
If the boundaries of the topological phase can be controlled by local tuning of the chemical potential
with gates, Majorana braiding in the wire network is described by the same operator (1.14) as for
Majorana vortices in 2D [6]. For a T geometry—the most elementary network—a braiding operation
between two Majorana modes is depicted in Fig. 1.5.
The rotations described by Eq. (1.14) generate only the set of Clifford gates, which is a restricted

class of quantum operations. Therefore, topological Majorana braiding needs to be complemented with
unprotected operations to construct a universal set of quantum gates (see Ref. [9] for discussion and
further references).

1.5 Superconducting Majorana structure on a topological insulator

Zero-energy Majorana modes that are hosted by topological defects in a superconductor have drawn
much interest due to their non-Abelian braiding statistics, which could be used for topological quantum
computation. The Majorana nature, however, is a general property of superconducting excitations,
which is not restricted to protected zero modes. We will illustrate this fact using the example of
induced superconductivity on the surface of a topological insulator, at first.
A topological insulator (TI) is characterised by an electronically insulating bulk, while there are

protected gapless states at the boundaries. In a strong 3D TI, the two-dimensional surface provides
ungapped boundary modes that are robust against disorder. They are, in the simplest case, described
by a Hamiltonian for a single non-degenerate Dirac point:

hsurface = v ~p · ~σ − µ , (1.16)

where µ is the chemical potential, ~p the 2D momentum operator and ~σ characterises the spin. In pres-
ence of an s-wave superconductor, the Nambu notation Ψ = [ψ↑, ψ↓, ψ†↓,−ψ

†
↑]T and Pauli matrices ~τ

mixing particle and hole components can be used to incorporate a proximity-induced order parame-
ter ∆. Additionally, we allow for a time-reversal breaking Zeeman fieldM perpendicular to the surface
(induced, e. g., by a magnetic insulator). The spectrum of the Hamiltonian H = 1

2 Ψ† hΨ with

h = v ~p · ~σ τ z − µ τ z +
[
∆ τ− + ∆∗ τ+

]
+M σz (1.17)

is simply gapped out, for M = 0, by the Majorana mass ∆: ε~k = ±
√

(±v|~k| − µ)2 + |∆|2. For ∆ = 0,
the spectrum ε~k = ±(

√
v2 k2 +M2 ± µ) has an effective magnetic gap only if |µ| < |M |.

Let us consider an interface between a superconducting region, ∆ = ∆0 θ(y), and a half-plane with
magnetic mass term, M = M0 θ(−y). Fu and Kane [3] predicted that the boundary between the two

7



1 Fundamentals

different gaps ∆ and M gives rise to one-dimensional chiral Majorana edge modes. They are chiral
because there is only a single band of eigenmodes γk, with energy Ek = ~ v k, while their Majorana
nature means that states of positive and negative energy are not independent, but linked by the relation
γ†k = γ−k [10].
Non-chiral Majorana modes arising in line junctions between two superconductors on a TI surface

and trijunctions of these modes could be used to create and manipulate zero-dimensional Majorana
bound states, similar to the zero modes in p-wave–superconducting vortices [3]. A setup of magnetic
materials and superconductors deposited on the TI surface may also be useful as an interferometer
for probing the one-dimensional Majorana edge states [10]. (Comprehensive reviews on one- and two-
dimensional topological insulators, both in general and in connection with superconducting or magnetic
phenomena, have been published in Refs. [8] and [11].)
Now we will dicuss the generic properties of excitations in a superconductor. As shown in Ref. [12],

their Majorana nature already follows from fundamental symmetries of the Bogoliubov–de Gennes
Hamiltonian in superconducting mean-field theory:

H = 1
2

∫
ddr ddr′ Ψ† hΨ . (1.18)

First, the operator h conforms to the particle–hole symmetry

C−1hC = −h∗ (1.19)

for a matrix C, with C C∗ = 1. [For the surface Hamiltonian (1.17), e. g., C = σy τy.] As a result, for
each positive-energy eigenmode φn with hφn = En φn, there is a negative eigenmode φ−n with energy
E−n = −En. Pairs of positive and negative eigenmodes fulfill the symmetry relation

C φ∗n = φ−n . (1.20)

The same kind of charge-conjugation symmetry is present in the Dirac equation, for instance, where
positive and negative solutions are related to two different kinds of fermionic particles: electrons and
positrons, respectively.
In a superconducting system, however, there is additionally a similar pseudo-reality constraint on

the fermion field operator Ψ,

Cjk Ψ†k = Ψj (1.21)

(summation over the index k is implied), which yields anti-commutation relations of Majorana form:

{Ψj(~r),Ψk(~r′)} = Cjk δ(~r − ~r′) (1.22)

{Ψj(~r),Ψ†k(~r′)} = δjk δ(~r − ~r′) . (1.23)

These symmetry properties are a necessary consequence of the redundancy inherent to the Nambu
formalism for superconductors, which causes the physical excitations to be represented twice in the
spectrum: the creation of a quasi-particle with positive energy is identical to the annihilation of the
corresponding negative-energy state.
The conditions in Eqs. (1.19) and (1.21) are sufficient to prove that, by unitary tranformation, the

Hamiltonian can be brought to a purely imaginary form, with all eigenmodes—not just those at zero
energy—having a representation as real, Majorana-like fields [12].
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2 Chapter 2

Jordan–Wigner transformations
for tree structures

The Jordan–Wigner transformation provides an efficient spin–fermion mapping in one-dimensional
systems (cf. Sec. 1.1). An extension of this mapping, which relates fermionic and spin-1

2 systems
with nearest-neighbour coupling, to arbitrary tree structures is presented in the following. This gener-
alised Jordan–Wigner transformation is made possible with the help of additional spins at the junctions
between one-dimensional chains. The extended mapping allows for straightforward simulations of Ma-
jorana braiding in spin or qubit systems. The results contained in this chapter have been published in
Ref. [14].

2.1 Spin–fermion mapping beyond 1D

As the Jordan–Wigner transformation (Sec. 1.1) provides a locality-preserving mapping between chains
of spins and of fermions, it is very useful in one-dimensional systems. However, a naive application
to higher-dimensional systems generally results in a strong non-locality: The transformation requires
imposing a 1D order to construct the string operators used to relate the commuting operators of
different spins to anti-commuting fermion operators. In a system which is not strictly one-dimensional,
these string operators do not cancel each other for all kinds of local terms in the Hamiltonian.
There are some more sophisticated approaches to higher-dimensional systems: One method is the

use of a multi-dimensional phase factor instead of the one-dimensional string. In this case, the trans-
formation creates a fictitious gauge field [15] and may result in the attachment of flux tubes to the
system operators [16]. In a different approach, additional degrees of freedom are introduced to cancel
the strings, which means that the transformation yields a local, yet more complicated Hamiltonian
and the original properties of the system are preserved in the low-energy sector only [17].
A simpler modification of the Jordan–Wigner transformation was proposed for a more particular

system geometry: Without relinquishing locality, a three-leg star graph of free fermions can be mapped
to quadratic spin chains connected via specific 3-spin couplings [18]. Furthermore, Ref. [18] describes a
locality-preserving mapping of quadratic three-leg spin graphs with XY coupling to a Kondo-like system
of fermionic chains coupled by one spin. In this chapter, we will demonstrate that both transformations
can be generalised to tree structures of one-dimensional chains.
This kind of transformation can, e. g., be used to obtain a spin representation for the braiding
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2 Jordan–Wigner transformations for tree structures

2

3
Sβ0

1

Sβ1

12
Sβ12

11

121

122

Figure 2.1: Binary-tree structure consisting of fermionic or spin chains. In each chain, spins or
fermions are numbered in arrow direction. The chains themselves are identified by
sequential numbers that are appended to the label of their parent chain (if there is
one). The root is the only vertex that has no incoming edge and may have three out-
going edges. At the inner vertices, there are additional spins with Pauli matrices Sβα
(α = 0 at the root, the label of the ingoing chain elsewhere).

of fermionic Majorana modes (cf. Sec. 1.4) in a T-junction geometry. For both the case of a single
topological interval and Majorana modes from two topological intervals, an explicit description of a
Majorana braiding operation translated into the corresponding spin system is given in App. A.

2.2 Geometry and notations

A priori, the tree structures we consider do not have directions or a distinctive root. For the purposes
of the transformation, however, we have to chose an arbitrary vertex as root and assign each edge
(i. e. chain) an orientation away from it. To reflect this hierarchy, the outgoing chains of a vertex are
denoted by sequential numbers that are, if applicable, appended to the label of their parent chain
(ingoing chain of the vertex).

According to the orientation, the spins or fermions in a chain α are numbered from 1 to Lα; they are
represented by the Pauli matrices σβα(j) and the fermionic creation/annihilation operators c†α(j)/cα(j),
respectively. Pauli matrices Sβα represent additional spins located at the inner vertices that are required
for the transformations; here α is the label of the ingoing chain (or α = 0 at the root). An example of
a permissible tree structure is depicted in Fig. 2.1.
We use separate Jordan–Wigner transformations for each chain α,

cα(j) = ηα

j−1∏
k=1

σzα(k)

σ−α (j) (2.1a)

c†α(j) = ηα

j−1∏
k=1

σzα(k)

σ+
α (j) , (2.1b)

with σ±α (j) = 1
2

[
σxα(j)± iσyα(j)

]
. The factors ηα with η2

α = 1 have to be chosen in such a way that
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2.3 Free fermions and 3-spin couplings

proper (anti-)commutation relations between operators of different chains result. The relation

σzα(j) = 2c†α(j)cα(j)− 1 = 1− 2cα(j)c†α(j) (2.2)

is a useful corollary of these definitions. Hence, a (magnetic) field acting in z direction on a spin
corresponds to a local chemical potential at a fermionic site.

2.3 Free fermions and 3-spin couplings

To complete the description of the transformation, we need to define the operators ηα. For the chains
directly at the root, α ∈ {1, 2, 3}, the definition of the transformation in Ref. [18] is used:

ηα = Sα0 . (2.3a)

For all the other chains, denoted by αβ with parent chain α and β ∈ {1, 2}, we define:

ηαβ = ηα

 Lα∏
k=1

σzα(k)

Sβα . (2.3b)

These definitions satisfy the conditions stated in the previous section.
Within a one-dimensional chain, the Jordan–Wigner transformation is known to convert local

quadratic fermionic Hamiltonians into local quadratic spin Hamiltonians (Sec. 1.1); the factors η2
α = 1

in Eqs. (2.1) do not affect this. Therefore we will examine only the couplings at the vertices between
different chains. There are two kinds of vertex couplings: those between a parent and a descendant
chain and those between two descendant chains of the same parent. A coupling term of the first kind
between chains α and αβ, with β ∈ {1, 2}, has the general form

Hαβ = u cα(Lα) cαβ(1) + t c†α(Lα) cαβ(1) + H. c. , (2.4a)

which is transformed, using the relation (2.1), into

HS
αβ = Sβα

[
uσ−α (Lα)σ−αβ(1)− t σ+

α (Lα)σ−αβ(1) + H. c.
]
. (2.4b)

A coupling of the second kind between chains αβ and αγ (here β, γ ∈ {1, 2}, β 6= γ; at the root, α is
empty and β, γ ∈ {1, 2, 3}, β 6= γ) has the general form

Hα(β,γ) = u cαβ(1) cαγ(1) + t c†αβ(1) cαγ(1) + H. c. , (2.5a)

which is similarly mapped to

HS
α(β,γ) = Sβα S

γ
α

[
uσ−αβ(1)σ−αγ(1) + t σ+

αβ(1)σ−αγ(1)
]

+ H. c.

= Sνα εβγν
[
iuσ−αβ(1)σ−αγ(1) + i t σ+

αβ(1)σ−αγ(1) + H. c.
]
, (2.5b)

where εβγν is the Levi-Civita symbol.
This transformation can be generalised, beyond binary trees, to arbitrary tree structures: Any

higher-order vertex (with more than three edges) can be thought of as built out of multiple three-edge
vertices, connected by chains of length zero. For instance, the structure depicted in Fig. 2.1 can be
viewed as a five-edge vertex; the zero-length internal chains (1 and 12) do not contribute products to
the Klein factors, in this case, but coupling terms involving more than three spins may appear.
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2 Jordan–Wigner transformations for tree structures

2.4 XY spin system and fermionic Kondo model

In this section, we consider a tree structure of spins with local XY couplings and use the Jordan–
Wigner transformation to obtain the corresponding fermionic Hamiltonian. A single one-dimensional
XY spin chain is simply mapped to free fermions (cf. Sec. 1.1). The generalised transformation defined
in Eqs. (2.1) and (2.3), however, involves additional spin operators Sβα, which can either commute with
the spins or with the fermion operators in the chains, but not both.
To simplify the resulting fermionic Hamiltonian, we introduce new spin operators S̃βα at the inner

vertices. These operators do not appear in the spin Hamiltonian, and they commute with all the spins
in the chains. Concerning the spin operators Sβα appearing in the transformation (2.1), we need to
take special care of their commutation relations with the fermionic operators. Therefore we define

Sβ0 = S̃β0
∏

chain labels γ
not beginning

with β

Pγ and Sβα = S̃βα
∏

chain labels αγ
not beginning

with αβ

Pαγ , (2.6)

using the abbreviated notation

Pα =

 Lα∏
k=1

σzα(k)

 (2.7)

for the fermionic parity of chain α. As the products consist of Pauli matrices σz only, operators Sβα
inherit the commutation relations of S̃βα. Therefore Sβα are spin-1

2 operators, which can most easily be
seen by example. We can specify them, e. g., for the tree structure depicted in Fig. 2.1:

S1
0 = S̃1

0 P2P3 (2.8a)

S2
0 = S̃2

0

[
P1P11

(
P12P121P122

)]
P3 (2.8b)

S3
0 = S̃3

0

[
P1P11

(
P12P121P122

)]
P2 (2.8c)

(the grouping highlights the tree structure),

S1
1 = S̃1

1
(
P12P121P122

)
(2.9a)

S2
1 = S̃2

1 P11 (2.9b)
S3

1 = S̃3
1 P11

(
P12P121P122

)
(2.9c)

and

S1
12 = S̃1

12 P122 (2.10a)
S2

12 = S̃2
12 P121 (2.10b)

S3
12 = S̃3

12 P121P122 . (2.10c)

The parity operators, i. e. products of σz across one chain, guarantee that Sβα commute with the
fermionic operators of all chains.
Again, the Jordan–Wigner transformation is known to map XY-coupled spins in a 1D chain to free

fermions, so we only have to examine the two kinds of vertex couplings, as we did in the preceding
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2.5 Majorana braiding and the spin representation

section. They result in Kondo-like couplings of the fermionic chains:

Hαβ = uσ−α (Lα)σ−αβ(1) + t σ+
α (Lα)σ−αβ(1) + H. c. (2.11a)

−→ HF
αβ = Sβα

[
u cα(Lα) cαβ(1)− t c†α(Lα) cαβ(1) + H. c.

]
(2.11b)

and
Hα(β,γ) = uσ−αβ(1)σ−αγ(1) + t σ+

αβ(1)σ−αγ(1) + H. c. (2.12a)

−→ HF
α(β,γ) = Sβα S

γ
α

[
u cαβ(1) cαγ(1) + t c†αβ(1) cαγ(1)

]
+ H. c.

= Sνα εβγν

[
iu cαβ(1) cαγ(1) + i t c†αβ(1) cαγ(1) + H. c.

]
. (2.12b)

Thus, inter-chain couplings are mediated by the spin at the corresponding vertex.

2.5 Majorana braiding and the spin representation

Majorana modes arising in the topological phase of the Kitaev chain (Sec. 1.3), a one-dimensional
fermionic system, can be braided in a T-junction geometry by local tuning of the chemical potential
(cf. Sec. 1.4). The modified Jordan–Wigner transformation described in Ref. [18] and Sec. 2.3 provides
us with a spin representation of this free-fermion system. In the following, the spin indices are swapped
in such a way that the resulting Ising couplings are in the z component and transverse fields in the
x direction. Furthermore, we use fermionic Majorana operators γα(m), as defined in Sec. 1.2, to express
the transformation in a convenient form:

γα(2j − 1) = ηα

j−1∏
k=1

σxα(k)

σzα(j) (2.13a)

γα(2j) = ηα

j−1∏
k=1

σxα(k)

σyα(j) (2.13b)

⇒ σxα(j) = i γα(2j − 1) γα(2j) . (2.14)

The Klein factors ηα are those defined in Eqs. (2.3).
The transformation relates the topological (nontopological) phase in the fermionic chains to the

ferromagnetic (paramagnetic) phase of the spin system (for more details see App. A.1). Now we can
simply translate into the spin system the unitary operator produced by, e. g., counter-clockwise braiding
of Majorana modes γA, γB (cf. Sec. 1.4):

U = exp
(
−π

4 γA γB
)
. (2.15)

In the case of two Majorana modes provided by one topological interval, which is located on a single
chain before and after the braiding, the Klein factors cancel in the spin representation, so the additional
spin mediating the coupling at the junction does not influence the result of the operation and is left
unaffected at the end (see Apps. A.2 and A.3).
Braiding neighbouring Majorana modes from two topological intervals on different chains corresponds

to a more complicated operation in the spin system. By choosing, e. g., γA = γ1(2m− 1) from the first
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2 Jordan–Wigner transformations for tree structures

chain and γB = γ3(2n− 1) from the third chain, we obtain:

U1,3 = exp

−π
4 · S

x
0

m−1∏
j=1

σx1 (j) · σz1(m) · Sz0
n−1∏
k=1

σx3 (k) · σz3(n)


= exp

i π4 S
y
0 · σ

z
1(m)

m−1∏
j=1

σx1 (j)
n−1∏
k=1

σx3 (k) · σz3(n)


effectively−−−−−−→ exp

[
i π4 S

y
0 σ

z
1(m)σz3(n)

]
, (2.16)

if the spins outside the ferromagnetic intervals are polarised in x direction. A detailed description of
this operation in the spin language is given in App. A.4.
The spin equivalent of braiding Majorana operators further away from each other involves, conse-

quently, the additional spins at all the intermediate vertices. For γA = γ12(2m−1) and γB = γ3(2n−1),
e. g., this yields:

U12,3 = exp

−π
4 · S

x
0

L1∏
j=1

σx1 (j) · Sy1
m−1∏
k=1

σx12(k) · σz12(m) · Sz0
n−1∏
l=1

σx3 (l) · σz3(n)


= exp

iπ4S
y
0S

y
1 · σ

z
12(m)

m−1∏
k=1

σx12(k)
L1∏
j=1

σx1 (j)
n−1∏
l=1

σx3 (l) · σz3(n)

 . (2.17)

This expression contains a string of all the spin operators that are needed to connect the two original
sites in the tree structure (Fig. 2.1). From a quantum-information perspective, this is a complex
operation, which involves a multitude a spins (qubits) and, in general, entangles the spins in the chains
with the additional spins at vertices. On the other hand, this complexity and entanglement can be
seen as a crucial property for the simulation of fermionic quantum computation in a bosonic system.

2.6 Conclusion

In general, Jordan–Wigner transformations provide a locality-preserving mapping between Hamilto-
nians of spins and of fermions in strictly one-dimensional systems only. However, the scope of this
property can be extended significantly by introducing additional spins at three-chain junctions, as it
was described for the special case of a star graph before [18]. In this chapter, we have shown that the
same method can, in fact, be used for binary-tree structures. Thereby, fermionic trees are mapped to
spin trees with particular 3-spin couplings at the vertices, and XY spin trees are mapped to fermionic
trees with Kondo-like couplings between the chains. This transformation provides, e. g., a spin equiva-
lent of Majorana braiding operations. We have further shown that this construction can be generalised
to arbitrary tree structures.
It must be noted that these mappings involve an enlargement of the original Hilbert space: in the

case of XY spins due to the addition of spins S̃α to the system, in the case of free fermions implicitly
during the transformation. Thus, the degeneracy of all states is multiplied by a factor of 2 to the
power of the number of inner vertices, but the accuracy of the mapping is not affected.
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3 Chapter 3

Current correlation in a Majorana system
with charging energy

In a regular superconductor, the tunneling of single electrons into and out of the system is energetically
disfavoured due to the pairing gap. Majorana zero modes in a topological superconductor (cf. Sec. 1.3),
on the other hand, enable gapless tunneling of unpaired electrons. Despite their non-local nature, two
spatially separate Majorana modes cannot by themselves mediate current correlations between different
contacts tunnel-coupled to the system. In the presence of Coulomb interactions, however, the charging
energy causes correlations between tunnel currents. For the regime of a small charging energy, these
current correlations are calculated in the following.

3.1 Transport through Majorana modes

Besides their potential use for quantum computation (cf. Sec. 1.4), Majorana zero modes in topolog-
ical superconductors have also been studied in transport settings (see e. g. References [19–24]). In
a grounded Majorana system, contacts at perfect, non-overlapping zero modes show ideal Andreev
reflection without any correlation between the currents mediated by different Majorana modes [19].
A large charging energy in the regime of strong Coulomb blockade, on the other hand, effects a

coherent transport (“teleportation”) of single electrons between the contacts at two Majorana zero
modes [21]; in this case, both tunneling currents are perfectly correlated. In between these two extreme
cases, the onset of correlations in the limit of small charging energy is analysed in this chapter.

3.2 Model

We consider a mesoscopic topologically superconducting wire (island) hosting two Majorana zero modes
at the ends (cf. the toy model in Sec. 1.3), which are contacted by a left and a right normal-conducting
lead. In deriving an effective Keldysh action in terms of the phase φ of the island, we generally follow
the approach in Ref. [22] (cf. App. B.1): The superconducting gap ∆ is assumed to be sufficiently
larger than other energy scales involved that transport is mediated by the zero modes only and no
higher-energy quasi-particles are relevant. The effective action consists of two contributions, resulting
from the charging energy and the fermionic dynamics, respectively:

iS = iSc + iSf . (3.1)
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3 Current correlation in a Majorana system with charging energy

The first contribution is due to charging energy Ec on the island and has the form:

iSc = i
∫

dt φ̇q

 φ̇c
2Ec

+ n0

 . (3.2)

The dependence on the gate charge q0 = n0 e will not be relevant in the regime of small charging
energy Ec. In order to obtain the second, fermionic contribution, the normal-conducting leads are
integrated out in a wide-band approximation; subsequent integration over the Majorana fermion fields
and expansion up to the second power in the quantum Keldysh component φq yields

iSf = i
∫

dt I(t)φq(t)−
1
2

∫
dt dt′ φq(t)K(t− t′)φq(t′) +O(φ3

q) . (3.3)

Both the fluctuation kernel K(t− t′) =
∑
jKj(t− t′), see App. B.2, and the operator of the current

flowing into the dot I(t) =
∑
j Ij(t) can be separated into contributions from the left and right contact,

j ∈ {L, R}. The current operators are given by

Ij(t) = Γj

∫
dt′ F (t′ − t) sinΦj(t′, t)GR

j (t− t′) , (3.4)

with Majorana Green’s functions

GR
j (t) = −i Θ(t) e−Γj t ⇐⇒ GR

j (ω) = 1
ω + iΓj

(3.5)

broadened by the coupling to the relevant lead. The (equilibrium) distribution function F applies to
both leads, as the chemical potentials are included in the quantity

Φj(t, t′) = Vj(t− t′) + φc(t)− φc(t′) (3.6)

depending on the voltage Vj at the relevant contact and the classic Keldysh component φc. (Adjustment
of the chemical potential of the island distributes the total voltage between the left and right lead in
such a way that a steady state with vanishing total current I emerges.)

3.3 Langevin equation

In order to describe the currents at both contacts and their (correlated) fluctuations, it is useful
to decouple the φq-quadratic terms of the action by means of two separate Hubbard–Stratonovich
transformations. Thereby we introduce two noise fields ξL, ξR (see also App. B.2):

∏
j

exp
[
−1

2

∫
dtdt′ φq(t)Kj(t− t′)φq(t′)

]

=
∫

D[ξL, ξR]
∏
j

exp
[
−1

2

∫
dt dt′ ξj(t)K−1

j (t− t′) ξj(t′) + i

∫
dt φq(t) ξj(t)

]
. (3.7)

The two fields are uncorrelated and their Gaussian noise averages are determined by their fluctuation
kernels Kj , 〈

ξj(t) ξk(t′)
〉

= δjkKj(t− t′) . (3.8)
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3.4 Currents and correlations

The evaluation of the action is facilitated by expanding it in the classical Keldysh component of the
phase, too. Approximation of I(t) to first order in φc and integration over φq leads to a Langevin
equation for the classical phase:

1
2Ec

φ̈c +
∫ t

dt′ η(t− t′) φ̇c(t′) =
∑
j

ξj(t) . (3.9)

Here, the sum of noise fields corresponds to the single noise field ξ in the calculation of Ref. [22]. Using
the retarded Greens’ function (propagator) DR of this equation, we can express the phase

φ̄c(t) =
∫

dτ DR(t− τ)
∑
j

ξj(τ) (3.10)

as a function of the fluctuation fields ξj . Further approximations in the low-energy limit and the
evaluation of noise averages are described in App. B.3.

3.4 Currents and correlations

To determine the expressions for the currents and their correlations, we carry out a variational cal-
culation in the relevant counting fields at first, using the counting-field-dependent part of the action
(cf. App. B.2)

iSξ[χL, χR] = i
∑
j

∫
dt
[
Ij(t) + ξj(t)

] [
φq(t) + χj(t)

]
− 1

2
∑
j

∫
dtdt′ ξj(t)K−1

j (t− t′) ξj(t′) . (3.11)

Then, we set the counting fields to zero and integrate out φq, which leads to the Langevin equation (3.9)
for the classical phase. The solution (3.10) gives φ̄c as a function of the fluctuation fields ξj , which
remain as the only fields of the path integral.
The operator for the current at contact j can be calculated by performing a single variation of the

action Sξ in the couting field χj ,

δSξ[χL, χR]
δχj(t)

= Ij(t) + ξj(t) , (3.12)

so the current is given by

Ij(t) =
〈
Ij(t) + ξj(t)

〉
ξ

=
〈
Ij(t)

〉
ξ
. (3.13)

In order to calculate the correlation between left and right current, we need to vary the action in
both counting fields. Thereby we obtain the expression

CLR(tL − tR) =
〈[
IL(tL) + ξL(tL)

] [
IR(tR) + ξR(tR)

]〉
ξ
− IL(tL) IR(tR) . (3.14)

While the fluctuation fields ξL, ξR are uncorrelated, they both appear in the classical phase φ̄c. Hence,
we have to consider multiple terms for the correlation:

CLR(tL − tR) =
〈
IL(tL) ξR(tR) + ξL(tL) IR(tR)

〉
ξ

+
〈
IL(tL) IR(tR)

〉
ξ
− IL(tL) IR(tR) . (3.15)
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3 Current correlation in a Majorana system with charging energy

For completeness, the autocorrelation of the current at contact j is given by the expression

Cjj(t1 − t2) = Kj(t1 − t2) +
〈
Ij(t1) ξj(t2) + ξj(t1) Ij(t2)

〉
ξ

+
〈
Ij(t1) Ij(t2)

〉
ξ
− Ij(t1) Ij(t2) , (3.16)

which additionally contains Kj itself, yielding a finite expectation value even without charging energy.

3.5 Low-energy limit

In addition to a small charging energy Ec = Ω/η0 ∼ Ω (with η0 ≈ 4
π , cf. App. B.3), we assume small

voltages as well as a small temperature, compared to the tunnel couplings Γj , and we focus on low
energies, i. e.

Γj � Ω, |Vj |, T, |ω| ∼ |tL − tR|−1 . (3.17)

In this limit, the symmetrised correlation C = 1
2(CLR +CRL) is approximately given by (see App. C.1)

C(ω) ≈ − 3
16

Ω2

ω2 +Ω2 K(ω) . (3.18)

The dependence of the prefactor on the charging energy Ω affects the width of the spectrum. This
Ω-dependent factor can also be written as Ω · δΩ(ω), where δΩ is the approximation of the δ function
with width Ω.

We can express the fluctuation kernel K = KL + KR analytically for two different regimes: In
equilibrium (Vj = 0), K is determined via a fluctuation–dissipation relation [22], which yields the
low-frequency expressions

Keq
j (ω) ≈ η0 ω

4 coth
(
ω

2T

)
. (3.19)

Hence, the correlation function C takes on the form

Ceq(ω) ≈ − 3
8π

Ω2

ω2 +Ω2 ω coth
(
ω

2T

)
. (3.20)

The zero-frequency correlation value depends on the temperature T in this case.
At T = 0, on the other hand, the fluctuation kernels Kj(ω) ≈ K0

j (ω) + KV
j (ω) comprise two

different terms (cf. App. C.2): The first one is approximately given by a linear spectrum, which yields
the correlation expression

C0(ω) ≈ −3
8

Ω2

ω2 +Ω2 |ω| . (3.21)

At small frequencies |ω| . |V 3
k |/Γ 2

k , the voltage-dependent terms KV
j can be relevant:

⇒ CV (ω) ≈ − 1
8π

Ω2

ω2 +Ω2

∑
k

(
|V 3
k |
Γ 2
k

− 3V 2
k

2Γ 2
k

|ω|
)
, |ω| � |Vk| . (3.22)
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3.6 Conclusion

If the voltages are vanishingly small, e. g. |Vk| . Ω3/Γ 2
k in the symmetric case ΓL = ΓR, the

zero-frequency correlation is determined by an additional contribution instead, which yields the value
(cf. App. C.2)

CΩ(ω) ≈ VL VRΩ
3

32Γ 2
L Γ

2
R

Ω2

ω2 + 4Ω2 , |ω| � Ω . (3.23)

Note that VL and VR have opposite signs in the steady state, so the correlation at ω = 0 is always
negative.

3.6 Conclusion

Majorana zero modes in a topological superconductor can mediate the tunneling of single electrons to
normal-conducting leads. But in a system without charging energy, tunnel currents at two perfect zero
modes coupled to two separate contacts are uncorrelated. Although a small charging energy does not
have much impact on the individual currents, it causes correlations between the current fluctuations.
For a low-energy regime, the correlated fluctuations have been analysed in this chapter.
In the equilibrium (zero-voltage) case, a fluctuation–dissipation relation facilitates obtaining a tem-

perature-dependent expression for the symmetrised correlation function. We have also derived ana-
lytical approximations for the correlation in the finite-voltage, zero-temperature limit. Interestingly,
for finite temperatures or voltages, the charging-energy scale Ω does not significantly affect the zero-
frequency value of the correlation. As the correlation function decays proportional to 1/ω2 for larger
frequencies ω, however, Ω acts as a characteristic energy scale for the width of the correlation spectrum
in both cases.
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4 Chapter 4

Current–phase relation in a long
topological Josephson junction

The surface of a three-dimensional topological insulator (TI) can be gapped out by proximity coupling
to a ferromagnet or a superconductor. Boundaries between differently gapped regions support one-
dimensional gapless states, among them Majorana modes (cf. Sec. 1.5). This chapter discusses a long
Josephson junction formed by two s-wave superconductors on a TI surface, with either a ferromagnetic
or an ungapped region in the middle. Generally, the Josephson current mediated by the TI surface is
determined by scattering modes as well as by the states localised around the junction. This analysis of
the current–phase relation in a topological Josephson junction takes into account both contributions.

4.1 Proximity effects on a topological insulator

Proximity effects of superconductors and ferromagnets on the surface of a strong topological insulator
were predicted to permit the realisation of both zero-dimensional and one-dimensional Majorana modes
(Sec. 1.5) by Fu and Kane [3]. Several works have since analysed the properties of topological Josephson
junctions on a TI surface: For the case of a ferromagnetic insulator separating the superconductors
(SMS geometry), the Josephson current resulting from Andreev bound states, in the form of chiral
Majorana modes, has been calculated for s-wave superconductors [25] and for different superconducting
pairings [26]; both a ferromagnetic and an ungapped middle region (SNS case) were considered in
Ref. [27]. Recently, a Josephson Hall current, perpendicular to the regular Josephson current, was
derived from scattering-state wave functions in a SMS system [28].

Theoretical analysis so far has focused on the—experimentally most relevant—case of a large chem-
ical potential µ in comparison to the superconducting gap on the TI surface. In the limit µ = 0, the
current carried by chiral Dirac modes between the chiral Majorana modes of a topological Josephson
junction was evaluated in Ref. [29], but the Josephson current in a plain, translation-invariant SMS
or SNS geometry has not been calculated so far. In the following, such a Josephson junction will be
analysed in the—presently at least theoretically—interesting limit of a vanishing chemical potential.

4.2 Electronic modes

On the surface of a topological insulator, two regions gapped by superconductors surrounding an either
ungapped or ferromagnetically gapped stripe form a Josephson junction (Fig. 4.1). For simplicity, we
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4 Current–phase relation in a long topological Josephson junction

3D TI

B
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φL

SC

φR

x

yz

(a) SNS case

3D TI

B

SC

φL

↑ ↑M SC

φR

(b) SMS case

Figure 4.1: Two s-wave superconductors (SC) with phases φL, φR form a long Josephson junction
of width B on the surface of a three-dimensional topological insulator (3D TI). In the
middle, the TI surface either remains ungapped (a), or it is gapped by a ferromagnetic
insulator (M) with magnetisation perpendicular to the surface (b). The dotted lines
on the TI mark the intersection with the plane x = 0.

assume that the system is homogenous along the y direction. The Hamiltonian for the surface states
(cf. Sec. 1.5) is given by

H = EO + 1
2

∫
dx dyΨ† hΨ , (4.1a)

h = v ~p · ~σ τz +M(x)σz + ∆(x) τ− + ∆∗(x) τ+ , (4.1b)

with an energy offset EO, the fermion fields Ψ = [ψ↑, ψ↓, ψ†↓,−ψ
†
↑]T, the Fermi velocity v > 0 and the 2D

momentum operator ~p = −i ~∇. Pauli matrices σj and τj act in spin and Nambu space, respectively.
We consider the superconducting order parameter to be of the same magnitude ∆0 > 0 on both sides,

∆(x) = ∆0
[
Θ(−x−B/2) eiφL + Θ(x−B/2) eiφR

]
, (4.2)

where B > 0 and Θ is the Heaviside function, and analyse the system for a magnetic gap

M(x) = M0 Θ(B/2− |x|) (4.3)

in the limits of M0 = 0 and M0 = ∆0, with an arbitrary phase difference χ = φL − φR.
The eigenmodes of h can be assembled from the piecewise solutions in the three different regions.

Due to translation invariance, the y dependence of all modes is given by plain waves exp(i q y/~)
with momentum q. In contrast, the solutions generally involve different momenta k along the x axis,
including imaginary values of k for states that are localised in x direction around the junction. As
negative-energy modes ξ− = σyτy ξ

∗
+ are just the particle-hole inverted doublets of positive-energy

solutions ξ+, it is sufficient only to consider energies ε > 0 in the following. In the central region, we
can distinguish electron modes,

ξ
(e)
kM q

(x, y) = 1√
(εM −M0)2 + v2 |kM + i q|2


εM −M0
v (kM + i q)

0
0

 ei kMx/~ ei q y/~ , (4.4a)
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4.3 SNS case

and hole modes of the same energy εM =
√
M2

0 + v2
(
k2
M + q2

)
,

ξ
(h)
kM q

(x, y) = 1√
(εM −M0)2 + v2 |kM + i q|2


0
0

εM −M0
−v (kM + i q)

 ei kMx/~ ei q y/~ . (4.4b)

The superconducting coupling mixes electron and hole components, which yields the solutions

ξ
(j1)
kjq

(x, y) = 1√
ε2j + ∆2

0 + v2 |kj + i q|2


∆0 e−iφj

0
−εj

v (kj + i q)

 ei kjx/~ ei q y/~ , (4.5a)

ξ
(j2)
kjq

(x, y) = 1√
ε2j + ∆2

0 + v2 |kj − i q|2


v (kj − i q)

εj
0

−∆0 eiφj

 ei kjx/~ ei q y/~ (4.5b)

for εj =
√

∆2
0 + v2

(
k2
j + q2

)
in the left (j = L) and right (j = R) region.

Given fixed values of q and ε, only transverse momenta kM , kj producing the correct energy are
relevant, i. e. the solutions of the equations

k2
M = ε2 −M2

0
v2 − q2 , (4.6)

k2
j = ε2 −∆2

0
v2 − q2 =

k2
M −

∆2
0

v2 , if M0 = 0 ,
k2
M , if M0 = ∆0 .

(4.7)

The Hamiltonian is linear in the momentum ~p, therefore the complete eigenmodes need to be continuous
at the two boundaries x = ±B/2. The natural length scale of the system,

ξ = ~ v
∆0

, (4.8)

will be relevant because we analyse the properties of the Josephson junction dependent on the width B.

4.3 SNS case

First, we will treat the SNS case, M ≡ 0.

4.3.1 Scattering states

Scattering states of fixed energy are conveniently characterised, e. g., by the longitudinal momentum q
and the absolute value of the transversal momentum in the normal-conducting region, k0 > ∆0/v:

⇒ ε = v
√
k2

0 + q2 (4.9)
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4 Current–phase relation in a long topological Josephson junction

In all three regions, waves can propagate in ±x direction, therefore the relevant transversal momenta
are ±k0 in the middle region and

±k = ±
√
k2

0 −∆2
0/v

2 (4.10)

in the superconducting areas. Hence, a piece-wise representation of the the wave function is given by

Ξ(x, y) =
∑
±



A±(L1) ξ
(L1)
±kq (x, y) +A±(L2) ξ

(L2)
±kq (x, y) , x < −B/2

A±(e) ξ
(e)
±k0q

(x, y) +A±(h) ξ
(h)
±k0q

(x, y) , |x| < B/2

A±(R1) ξ
(R1)
±kq (x, y) +A±(R2) ξ

(R2)
±kq (x, y) , B/2 < x

(4.11)

for a suitable choice of coefficients A. Given fixed values of k (or k0) and q, there are four independent
solutions fulfilling the condition of continuity at the boundaries x = ±B/2. They correspond, e. g., to
the four incoming waves ξ(L1)+kq , ξ

(L2)
+kq , ξ

(R1)
−kq and ξ

(R2)
−kq . The boundary equations yield the transmission

and reflection coefficients as well as the solutions in the ungapped middle.
To ensure a correct normalisation, we have to consider the system to be of finite size Lx Ly at first.

For the case of a single ingoing wave, the corresponding coefficient needs to be chosen as

Ain = 1√
Lx Ly

. (4.12)

In order to take the infinite-size limit, we have to replace sums over the momenta k, q with integrals.
For integrands quadratic in the coefficients A, the lengths Lx and Ly cancel out in the end because
they also appear in the integration measures.

4.3.2 Bound states

Now we consider the states localised in x direction. In the SNS junction, they consist of propagating
waves in the normal-conducting middle area, but decay into both of the superconducting regions. The
transversal momentum

±k0 = ±|m|
v

(4.13)

yields an effective mass term for the longitudinal wave in the energy:

ε =
√
m2 + v2 q2 . (4.14)

Although the transverse contribution to the energy has an upper boundm2 < ∆2
0, the strict translation

invariance in y direction means that the bound states in this model exist alongside the continuum of
scattering states at energies ε ≥ ∆0, too. In the gapped regions, the momenta kj are imaginary with
the sign chosen to guarantee an exponential decay from the boundary,

i kL = +

√
∆2

0 −m2

v
, (4.15)

i kR = −

√
∆2

0 −m2

v
, (4.16)
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Figure 4.2: In the SNS case, the number of bound-state bands depends both on the junction
width B and on the phase difference χ. As a function of χ, the mass m is given
by a cosine in the limit of zero width (a). For wider junctions, bound-state bands
merge with the continuum, |m(χ)| → ∆0, at certain combinations of B and χ (b).
The bound-state mass m is determined by the condition (4.18) and does not depend
on the momentum q in the translation-invariant direction. As the sign of m has no
impact, only the absolute value is shown here (see Fig. 4.3 for plots including sign).
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Figure 4.3: The sign of the bound-state mass m in the SNS case is arbitrary and has no physical
relevance (see Fig. 4.2 for plots of the absolute value). As a signed quantity, however,
the phase-dependence of m has the form of a single continuous curve for any junction
width B. The functionm(χ) is given by a cosine in the zero-width limit (a). For finite
junction width, the bound-state mass is not a single-valued function of phase; the
number of solutions changes at certain combinations of B and χ due to bound-state
bands merging with the continuum: |m(χ)| → ∆0 (b). The mass m is determined by
the condition (4.18) has no dependence on the momentum q.
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4 Current–phase relation in a long topological Josephson junction

therefore the localised modes have the form

Ξ(x, y) =



A(L1) ξ
(L1)
kLq

(x, y) +A(L2) ξ
(L2)
kLq

(x, y) , x < −B/2

∑
±

[
A±(e) ξ

(e)
±k0q

(x, y) +A±(h) ξ
(h)
±k0q

(x, y)
]
, |x| < B/2

A(R1) ξ
(R1)
kRq

(x, y) +A(R2) ξ
(R2)
kRq

(x, y) , B/2 < x

. (4.17)

The possible values for the mass m are restricted by the boundary conditions, as the wave function
needs to be continuous at both boundary lines x = ±B/2 for a (non-trivial) set of coefficients A. This
yields the quantisation condition

exp
[
i 2mB

~ v
+ iχ

]
=

m+ i
√

∆2
0 −m2

∆0


2

, (4.18)

which depends on the width of the junction B and the phase difference χ between the superconducting
regions. In general, there are multiple bands of bound states, which merge with the continuum at
certain combinations of B and χ. The sign of m is irrelevant for these calculations: both positive and
negative m are allowed here. Figs. 4.2 and 4.3 illustrate the behaviour of the absolute values |m(χ)|
and the signed solutions m(χ), respectively.
As we can calculate the current contribution of the bound states from the χ dependence of the ener-

gies (4.14) via the relation (4.18), we do not need normalised wave functions here. For completeness,
let us remark that the infinite-size limit in y direction can be treated exactly like for the scattering
states. Due to the condition (4.18), we retain a sum over discrete values of the transversal momentum,
and the bound states are exponentially localised along x anyway.

4.3.3 Josephson current

The derivation of the Josephson current is explicated in App. D and App. E. For the scattering
states, we calculate the contribution for momenta k, q by summing the expression (E.5) for the four
incoming-wave solutions:

Isc(k, q) = e v

√
∆2

0 + v2 k2

∆2
0 + v2 (k2 + q2)

Ly

4∑
j=1

(
|A+

(e)|
2 − |A−(e)|

2 − |A+
(h)|

2 + |A−(h)|
2
)
j,kq

, (4.19)

where an additional factor of the system size Ly comes from the translation-invariant y integral. Then,
we integrate over both momenta in order to obtain the thermal expectation value of the current (E.14):

Iscζ = − 1
2 ~2

∫ ∞
0

Lx
2π dk

∫ ζ/v

0

2Ly
2π dq Isc(k, q) tanh


√

∆2
0 + v2 (k2 + q2)

2 kB T

 . (4.20)

We have to introduce a cutoff at v q = ζ � ∆0 because the integral diverges; the additional factor of 2
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4.3 SNS case

replaces the integration over negative values of q. Using the expression

Isc(k, q)
Ly

= 2 e v
Lx Ly

√
∆2

0 + v2 k2

∆2
0 + v2 (k2 + q2)

·
∆2

0 v
2 k2 sin

(
2 B

~

√
k2 + ∆2

0
v2

)
sin(χ)v2 k2 + ∆2

0 sin2
(
B
~

√
k2 + ∆2

0
v2 −

χ

2

)v2 k2 + ∆2
0 sin2

(
B
~

√
k2 + ∆2

0
v2 + χ

2

) , (4.21)

the q integration can be carried out analytically for zero temperature:

Iscζ
Ly

T=0= − e

π ~2

∫ ∞
0

dk
2π sinh−1

 ζ√
∆2

0 + v2 k2



·
∆2

0 v
2 k2

√
∆2

0 + v2 k2 sin
(

2 B
~

√
k2 + ∆2

0
v2

)
sin(χ)v2 k2 + ∆2

0 sin2
(
B
~

√
k2 + ∆2

0
v2 −

χ

2

)v2 k2 + ∆2
0 sin2

(
B
~

√
k2 + ∆2

0
v2 + χ

2

) . (4.22)

For the bound states, we need to sum over solutions mj of the quantisation condition (4.18). From
this condition, we can determine the phase derivative

∂mj

∂χ
= −1

2

√
∆2

0 −m2
j

1 + B
~v

√
∆2

0 −m2
j

, (4.23)

which appears in the bound-state contributions (E.3) to the Josephson current (E.14):

Ibζ
Ly

= − e

~2

∑
mj

∫ ζ/v

0

dq
π

∂ε

∂χ
tanh

(
ε

2 kB T

)

= − e

~2

∑
mj

∫ ζ/v

0

dq
π

mj√
m2
j + v2 q2

∂mj

∂χ
tanh


√
m2
j + v2 q2

2 kB T

 , (4.24)

with the same q cutoff as for the scattering states. For zero-temperature, we obtain the expression

Ibζ
Ly

T=0≈ e

2π ~2 v

∑
mj

ln
(

2 ζ
|mj |

)
mj

√
∆2

0 −m2
j

1 + B
~ v

√
∆2

0 −m2
j

. (4.25)

Both the bound-state and the scattering-state contribution depend on the cutoff ζ, but the divergent
parts cancel each other. Therefore, the complete Josephson current per length is given by the limit of
infinite cutoff:

IJ(χ)
Ly

= lim
ζ→∞

Ibζ + Iscζ
Ly

. (4.26)
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4 Current–phase relation in a long topological Josephson junction

4.4 SMS case

When the magnetic gap is equal to the superconducting gap, M0 = ∆0, the transversal momenta in
the magnetic part are the same as in the superconduction regions.

4.4.1 Scattering states

The scattering states can be treated similar to the SNS case (Sec. 4.3.1). Due to kM = k, we only have
to replace k0 → k in the definition of the wave function (4.11), and we need to take into account that
the energy is given by

ε =
√

∆2
0 + v2 (k2 + q2) (4.27)

for a state with longitudinal momentum q and absolute value of the transversal momentum k.

4.4.2 Bound states

Unlike in the SNS case, the transversal momentum k for the bound states is purely imaginary in all
parts of the system. We use the effective mass m < ∆0 in the energy

ε =
√
m2 + v2 q2 (4.28)

to express the absolute value of k:

i k =
√

∆2
0 −m2 . (4.29)
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Figure 4.4: In the SMS case, there is always exactly one band of bound states. The phase-
dependence of the mass m0 is unremarkable, although it deviates from the cosine
shape for finite junction width (a). The maximum m0(χ = 0) is exponentially sup-
pressed for larger junction widths B (b). The bound-state mass m is determined by
the condition (4.31) and does not depend on the momentum q in the translation-
invariant direction.
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4.4 SMS case

Bound-state wave functions are given by

Ξ(x, y) =



A(L1) ξ
(L1)
+kq (x, y) +A(L2) ξ

(L2)
+kq (x, y) , x < −B/2

∑
±

[
A±(e) ξ

(e)
±kq(x, y) +A±(h) ξ

(h)
±kq(x, y)

]
, |x| < B/2

A(R1) ξ
(R1)
−kq (x, y) +A(R2) ξ

(R2)
−kq (x, y) , B/2 < x

. (4.30)

Like in the SNS case of Sec. 4.3.2, there are bound states in the continuum for large values of the
longitudinal momentum q, and the continuity constraint on the wave function yields a condition for
the mass m:

m = ∆0 cos
[
χ

2

]
exp

[
− B

~ v

√
∆2

0 −m2

]
. (4.31)

The value ofm(∆0, B/v, χ) ≡ m0(χ) is uniquely determined by this self-consistency equation (Fig. 4.4).

4.4.3 Josephson current

The Josephson current is calculated similar to the SNS case (cf. Sec. 4.3.3). Eq. (4.20) describes the
integration over scattering-state contributions

Isc(k, q) = e v2 k√
∆2

0 + v2 (k2 + q2)
Ly

4∑
j=1

(
|A+

(e)|
2 − |A−(e)|

2 − |A+
(h)|

2 + |A−(h)|
2
)
j,kq

, (4.32)

which are given by

Isc(k, q)
Ly

= 2 e v
Lx Ly

v k√
∆2

0 + v2 (k2 + q2)

·
∆2

0

(
∆2

0 + v2 k2
)

sin[2B k/~] sin[χ](
v2 k2 + ∆2

0 sin2
[
χ
2

])2
+ 4 ∆2

0

(
∆2

0 + v2 k2
)

cos2
[
χ
2

]
sin2[B k/~]

. (4.33)

With a momentum cutoff at v q = ζ � ∆0, this yields the zero-temperature current

Iscζ
Ly

T=0= − e

π ~2

∫ ∞
0

dk
2π sinh−1

 ζ√
∆2

0 + v2 k2


·

∆2
0

(
∆2

0 + v2 k2
)
v k sin[2B k/~] sin[χ](

v2 k2 + ∆2
0 sin2

[
χ
2

])2
+ 4 ∆2

0

(
∆2

0 + v2 k2
)

cos2
[
χ
2

]
sin2[B k/~]

. (4.34)
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4 Current–phase relation in a long topological Josephson junction

For the numerical evaluation in the following section, a symmetrical cutoff Θ
[
ζ2 − v2 (k2 + q2)

]
turns

out to be more expedient in this case. Using this alternative cutoff, we obtain

Iscζ
Ly

T=0= − e

π ~2

∫ ζ/v

0

dk
2π ln


√

∆2
0 + ζ2 +

√
ζ2 − v2 k2√

∆2
0 + v2 k2


·

∆2
0

(
∆2

0 + v2 k2
)
v k sin[2B k/~] sin[χ](

v2 k2 + ∆2
0 sin2

[
χ
2

])2
+ 4 ∆2

0

(
∆2

0 + v2 k2
)

cos2
[
χ
2

]
sin2[B k/~]

. (4.35)

In the SMS system, there is only a single solution m0 of the quantisation condition (4.31) for the
effective mass. When we insert the derivative

∂m0
∂χ

= 1
2

m0 tan
[
χ
2

]
B
~ v

m2
0√

∆2
0−m

2
0
− 1

(4.36)

into the expression (4.24), we can write down the bound-state contribution for zero temperature:

Ibζ
Ly

T=0≈ e

2π ~2 v
ln
(

2 ζ
|m0|

)
m2

0 tan
[
χ
2

]
1− B

~ v
m2

0√
∆2

0−m
2
0

. (4.37)

The total current IJ(χ), which is convergent in the SMS case, too, is defined by Eq. (4.26).

4.5 Zero-temperature results

At T = 0, the superconducting order paramter ∆0 determines the energy scale of the problem. For
the numerical evaluation, we construct dimensionless quantities by using both the length scale ξ and
a dimensionful prefactor I0 of the current:

I0 = eLy ∆2
0

~2 v
, ξ = ~ v

∆0
. (4.38)

In the following, the current–phase relation is denoted by IJ(χ) with the derivative

∂IJ
∂χ

∣∣∣∣∣
χ=0
≡ I ′J(0) . (4.39)

The cutoff energy ζ has to be chosen such that sufficient convergence of the limit (4.26) is achieved.
Due to slower oscillations in the numerical integral, a larger value of ζ is needed for smaller values of
B/ξ. As the numerical integration is less stable for larger B, multiple cutoff values are used for the
comparison of shapes in Fig. 4.5: It shows the current–phase relation IJ(χ), normalised to a uniform
slope at χ = 0, for several values of B. In the SNS case, the deviation from the sinus shape increases
with B/ξ (Fig. 4.5a), while the behaviour is non-monotonous in the magnetic case (Fig. 4.5b). As a
numerical quantity characterising the change of shape, the ratio between the current at χ = 3π

4 and
the slope I ′J(0) is depicted for both cases as a function of B in Fig. 4.6.

30



4.5 Zero-temperature results

-1 -0.5 0 0.5 1

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

χ/π

IJ(χ)
I′

J(0)

(a) SNS case

-1 -0.5 0 0.5 1

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

χ/π

IJ(χ)
I′

J(0)

(b) SMS case

Figure 4.5: To illustrate the shape of the current–phase relation, curves are normalised to a
uniform slope at χ = 0. Additionally, a sine is plotted in gray for comparison. Values
of B/ξ: 0.0003 (blue), 0.003 (orange), 0.03 (green), 0.3 (red), 3 (purple). Note that
in the magnetic case (b), the shape changes non-monotonously (cf. Fig. 4.6).
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Figure 4.6: The ratio between the current at χ = 3π/4 and the slope at χ = 0 quantifies the
change of shape (cf. Fig. 4.5). In the SMS case, the ratio is non-monotonous as a
function of the junction width B (b). Plots for ζ/∆0 = 1000.

31



4 Current–phase relation in a long topological Josephson junction

0 1 2 3 4 5

0.00

0.05

0.10

0.15

0.20

B/ξ

I′
J(0)
I0

(a) SNS case

0 1 2 3 4 5

0.00

0.05

0.10

0.15

0.20

B/ξ

I′
J(0)
I0

(b) SMS case

Figure 4.7: The slope at χ = 0 characterises the magnitude of the current, which decays faster
(exponentially) as a function of the junction width B in the SMS case (see Fig. 4.8).
Plots for ζ/∆0 = 100.
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Figure 4.8: In the magnetic case, the dependence of the current on the junction width is given
by an exponential decay (b). In contrast, the dependence looks approximately like a
power law for larger values of B in the SNS case (c). Plots for ζ/∆0 = 100.
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4.6 Conclusion

As a characteristic quantity for the magnitude of the current, the derivative I ′J(0) is shown as a
function of the junction width B in Fig. 4.7. The difference between non-magnetic and magnetic
case is more visible in logarithmic plots: The magnitude of the current seems to have a power-law
dependence in the SNS system, whereas it decays exponentially with B due to the magnetic gap in the
SMS case (see Fig. 4.8). [In the SNS case, the contribution of bound states and the one of scattering
modes individually show an oscillating behaviour, including sign changes. The simpler decay results
only from the sum of both contributions.]

4.6 Conclusion

The limit µ = 0 of a long, translation-invariant Josephson junction on a TI surface has some peculiar
properties. In particular, bound states are not restricted to energies below the continuum, which
results in a logarithmically divergent contribution to the Josephson current. To compensate for that,
the same divergence exists in the scattering-state contribution. 4π-periodic current components do not
appear in our calculation.
For larger junction widths B, the magnetic and non-magnetic cases differ significantly. In the SNS

case, the current as a function ofB behaves in a way similar to a non-topological superconductor–metal–
superconductor junction, including oscillations in the contributions of bound states and of scattering
modes which cancel each other [30, 31]. The magnetic case involves a simpler exponential decay of
both contributions, but the shape of the current–phase relation changes in a non-monotonous and
hence more complicated way.
In addition to the assumption µ = 0, this calculation has another limitation: In general, the compen-

sation of two logarithmic divergences is only possible if the linear spectrum of the topological insulator
holds for an unlimited range of energy. The integration range that is effectively required to observe
the compensation rises up to infinity when the junction width B is decreased to zero. Therefore, the
behaviour of a more realistic system may deviate from this result for narrow junctions.
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5 Chapter 5

Summary and outlook

This thesis has discussed not only Majorana physics of fermions but also a spin analogue. There
is a fundamental equivalence between a spin 1

2 and a fermionic mode, yet it is complicated by the
difference in (anti-)commutation relations. Therefore, the well-known Jordan–Wigner transformation,
which utilises non-local string operators to provide a spin–fermion mapping, is most useful for 1D
problems. The extended transformation presented in Chap. 2 applies to tree structures, i. e. just slightly
more than one-dimensional systems. In comparison to some more general proposals for spin–fermion
transformations, however, it has the advantage that locality of Hamiltonians is strictly preserved and
the complexity of couplings is increased only at vertices of the tree structure.
A larger tree structure is not necessary to perform non-Abelian braiding with Majorana zero modes,

as a three-legged T geometry of topological wires is sufficient. For this special case of a star graph, an
extended Jordan–Wigner transformation was already introduced in Ref. [18]. Although the spin chains
lack the topological protection of a delocalised fermionic zero mode, Majorana braiding operations can
be translated from the fermionic language into a spin representation for this system (cf. App. A).
This representation might be useful for simulating fermions and fermionic quantum computation with
ordinary, bosonic qubits.
Spatially separate Majorana zero modes can be considered to form non-local fermionic states, but

this alone does not result in correlations between the different regions of a system. This is evident
from the fact that, in a universe with multiple pairs of zero-energy Majorana modes, the choice of pairs
for defining the non-local fermions is arbitrary, in principle. A physically relevant connection in the
Hamiltonian is created, for instance, by the Coulomb interaction on a topologically superconducting
island of mesoscopic size. The correlation due to this interaction between Majorana-mediated currents
at two tunnel contacts can be analysed for a small charging energy in the formalism of an effective
phase action, as done in Chap. 3.
The chapters above discussed only (nearly) one-dimensional systems and exponentially localised,

virtually zero-dimensional Majorana bound states. A different setting is the subject of Chap. 4: A
three-dimensional topological insulator has a gapped bulk, but protected gapless states on the surface,
so it provides an effectively 2D system of electrons. An additional feature of the surface states is
their relativistic Dirac spectrum. Proximity to a magnetic material can induce a gap at the Dirac
point, while a proximity-induced superconducting order parameter gaps the spectrum at the chemical
potential.
In a Josephson junction between two superconductors on the topological-insulator surface, this effect

on the spectrum implies that the surface states have an influence on the Josephson current. If the
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5 Summary and outlook

superconductors are separated by a vacuum or a magnetic insulator likewise deposited on the surface,
direct tunneling between the superconductors is suppressed exponentially in their distance. This means
that contributions of surface states, including one-dimensional Majorana edge modes localised around
the junction, are important for the Josephson current.
In addition to a gap opening in a magnetic region, the translation-invariant direction along the

junction decouples completely from the perpendicular direction for a chemical potential at the Dirac
point, which has been considered in Chap. 4. Hence, assuming an unlimited range of the Dirac spec-
trum, there are bound states at arbitrarily large energies with logarithmic divergencies that cancel
each other in bound-state and scattering-state contributions to the Josephson current. This makes the
combination of a translation-invariant junction geometry with a chemical potential at the Dirac point
of a relativistic spectrum a rather unusual case.
In conclusion, topological superconducting systems feature a variety of different Majorana modes.

Chiral and non-chiral realisations of one-dimensional Majorana states, which may be easier to probe
and control in experiment than the zero modes in superconducting vortices, are particularly interesting
examples. While there have been proposals for interferometric studies of topological Majorana modes
for more than a decade (e. g. Ref. [10]), research activity has been encouraged by experimental progress,
with some recent findings indicating a detection of Majorana edge modes [32, 33]. An implementation
of non-Abelian braiding with propagating 1D states of Majorana character would be a very intriguing
prospect. Both about physical realisation and manipulation and in theoretical description, at any rate,
there are still many open questions that remain to be explored.
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A Appendix A

Majorana braiding in spin representation

The modified Jordan–Wigner transformation of Chap. 2 allows for the translation of Majorana braiding
into the language of spin systems. The spin system corresponding to a fermionic T junction of Kitaev
chains (Sec. 1.3) is introduced in the first part of this appendix. Boundary translations allowed me to
describe a Majorana phase-gate operation in a purely one-dimensional geometry in my master’s thesis
(cf. Ref. [13]). As defined in the second part of this appendix, they are used, in the third part, to
explicate the spin representation of a braiding operation for a single topological interval. The final part
provides a detailed calculation for the spin equivalent of braiding Majorana modes from two separate
topological intervals. Results contained in this appendix have been published in Refs. [13] and [14].

A.1 Geometry

The generalised Jordan–Wigner transformation defined in Eqs. (2.13) and Sec. 2.3 yields a spin repre-
sentation for a fermionic T junction of Kitaev chains (cf. Sec. 1.3):

H =
3∑

α=1
H0,α +HS

int (A.1a)

H0,α = −
Lα∑
j=1

hα(j)σxα(j)− J
Lα−1∑
j=1

σzα(j)σzα(j + 1) (A.1b)

HS
int = −1

2
∑
αβγ

|εαβγ | Jαβ Sγ0 σ
z
α(1)σzβ(1) , (A.1c)

a system of Ising spin chains with a local transverse magnetic field hα(j), which corresponds to a
locally tunable chemical potential in the fermionic system. Assuming J > 0, any interval of spins with
|h| � J in one of the chains is ferromagnetic, whereas |h| � J results in a trivial (paramagnetic) phase.
The three chains are linked by the components of an additional central spin S0 via 3-spin couplings of
strength Jαβ = Jβα. This structure is depicted in Fig. A.1.
The in-depth examination of the braiding in the following sections will be restricted to an ideal case:

h = 0 in the topological regions (spins aligned along the z axis) and h = ∞ in the rest of the chain
(all spins point in +x direction). Thereby outside the topological regions, pairs γα(2 j− 1) and γα(2 j)
belonging to spin σα(j) constitute a fermionic mode, while Majorana operators γα(2 j) and γα(2 j+ 1)
of consecutive spins are paired in the topological intervals. This leaves two operators at the boundaries
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A Majorana braiding in spin representation

Sy0

Sz0 Sx0

σz1(1)σz1(2)
· · ·

σz1(L1) σz3(1) σz3(2)
· · ·

σz2(L3)

σz2(1)

σz2(2)

...

Figure A.1: Ising spin chains in a T geometry. A fermionic T junction suitable for Majorana
braiding (Sec. 1.4) has a spin representation of this structure, which is described
by the Hamiltonian in Eqs. (A.1). The couplings between three Ising spin chains
are mediated by the components of an additional spin S0, cf. Ref. [18] and Sec. 2.3.
The system can be manipulated by tuning transverse fields (not depicted here) that
act on the individual spins σα(j) of the three chains.

of each interval to form a zero-energy mode (cf. Sec. 1.3), therefore the groundstate degeneracy is 2 to
the power of the number of intervals.
In a fermionic T geometry, a braiding operation is effected by moving two Majorana zero modes

in such a way that they swap positions (cf. Sec. 1.4). The boundaries of topological intervals can be
shifted by local tuning of the chemical potential, which corresponds to the magnetic field in the spin
system. Assuming J12 = J13 = J23 > 0 for symmetry, we will consider the spin equivalent for both the
braiding of the two Majorana zero modes from a single topological interval and a braiding operation
between two different intervals.

A.2 Boundary translations

For the ideal case we analyse here, it is easy to describe, e. g., a shift of the inner boundary of an interval
towards the coupler, from spin σα(k + 1) to σα(k), due to a suitable adiabatic change of field hk:

T in
α (k) = exp

[
i π4 σ

y
α(k)σzα(k + 1)

]
= 1 + iσyα(k)σzα(k + 1)√

2
. (A.2)

This unitary operator merely rotates σα(k) from the x direction to ±z direction dependent on the
orientation of σα(k + 1). Similarly, we construct the operator describing a shift of an outer interval
boundary away from the coupler, from spin σα(k) to σα(k + 1):

T out
α (k) = exp

[
i π4 σ

y
α(k + 1)σzα(k)

]
= 1 + iσyα(k + 1)σzα(k)√

2
. (A.3)

If the shift goes across the coupler S0, transforming an inner boundary on chain α into an outer
boundary on chain β, the coupler state determines the ferromagnetic or anti-ferromagnetic alignment
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A.3 Single-interval braiding

of the spins. Therefore this translation is given by

Tβ←α = exp
[
i π4 |ε

αβγ |Sγ0 σ
y
β(1)σzα(1)

]
=

1 + i |εαβγ |Sγ0 σ
y
β(1)σzα(1)

√
2

. (A.4)

with an implied summation over the index γ. In the fermionic representation, the coupler does not
appear. It is important to note, however, that the Jordan–Wigner transformation (2.13) results in
non-trivial commutation relations between coupler components and fermion operators.
As long as the two boundaries of an interval do not meet, translations of the inner boundary commute

with translations of the outer one, because the former (the latter) involve only odd-numbered (even-
numbered) Majorana operators. Obviously, boundary translations on different chains commute, too.
Therefore we can describe a translation of a topological interval, e. g. from chain α to chain β, by a
shift of the inner boundary on chain α to its final position as outer boundary on chain β, followed by
a shift of the other boundary, regardless of the actual specific procedure.

A.3 Single-interval braiding

Without loss of generality, we assume that the ferromagnetic interval is positioned on the first chain
at the start of the procedure. In order to effect a braiding operation, the whole interval needs to be
shifted, e. g., first to the second chain, then to the third chain and finally back to the first chain.
On each of the chains α, the interval boundaries will be moved to the position between spin indices

N in
α and Nout

α . We construct the complete braiding operation from the three interval movements:

Ubr = U13 U32 U21 . (A.5)

Each of the movements consists of translations of the two boundaries:

Uβα =
[
Tα,out Tα←β Tβ,in

]†
· Tβ,out Tβ←α Tα,in , (A.6)

where elementary boundary translations from Sec. A.2 are used to construct the operators

Tα,in =
j=N in

α∏
j=1

T in
α (j) (A.7)

and

Tα,out =
j=1∏

j=Nout
α

T out
α (j) . (A.8)

As operators T are unitary and Tα,out contain only the z component σzα(1) for the first spin of the
chain, many terms cancel immediately:

⇒ Ubr = T †1,in T1,out · T
†
3←1 T1←3 T

†
2←3 T3←2 T

†
1←2 T2←1 · T

†
1,out T1,in . (A.9)

For further analysis, we make use of our preexisting knowledge about the operation. All spins in
the second and third chain, in particular σ2(1) and σ3(1), are frozen into +x direction at the start and
end of the operation. Using projectors for the +x alignment of these spins,

P+x
α (j) =

∣∣∣σ+x
α (j)

〉〈
σ+x
α (j)

∣∣∣ , (A.10)
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A Majorana braiding in spin representation

we need to take into account only terms preserving this alignment of σ2(1) and σ3(1):

P+x
2 (1)P+x

3 (1) ·
[
T †3←1 T1←3 T

†
2←3 T3←2 T

†
1←2 T2←1

]
· P+x

3 (1)P+x
2 (1)

= 1
4 P

+x
2 (1)P+x

3 (1)
[
1 + σx1 (1)σx2 (1) + σx1 (1)σx3 (1) + σx2 (1)σx3 (1)

]
P+x

3 (1)P+x
2 (1)

+ i
4 P

+x
2 (1)P+x

3 (1)
[
σx1 (1)σx2 (1)σx3 (1) + σx1 (1)− σx2 (1)− σx3 (1)

]
P+x

3 (1)P+x
2 (1)

= 1 + σx1 (1)
2 P+x

3 (1)P+x
2 (1)− i 1− σx1 (1)

2 P+x
3 (1)P+x

2 (1)

= e−i π4
1 + iσx1 (1)√

2
P+x

3 (1)P+x
2 (1) . (A.11)

As the projectors have removed any dependence on the spins of the second and third chain, they are
not important for the remaining calculation.
Neither T1,in nor T1,out commute with the operator σx1 (1). Therefore, we have to look at the boundary

translations of the first chain in detail. The anti-commutation relations between spin operators can
invert boundary translations,

σxα(k)
[
T out
α (k)

]†
= T out

α (k)σxα(k) , (A.12)

and the squares of the translations are given by

[
T in
α (k)

]2
= iσyα(k)σzα(k + 1) , (A.13)[

T out
α (k)

]2
= iσyα(k + 1)σzα(k) . (A.14)

The σx1 (1) term can be calculated by commuting the boundary translations individually. In the follow-
ing, the terms we commute to a different position are highlighted in blue at their old location and in
red at their new one. The factor that has been relevant for the anti-commutation behaviour is printed
in bold:

T †1,in T1,out · σx1 (1) · T †1,out T1,in

= T †1,in · T
out
1 (Nout

1 ) · · ·T out
1 (2) · T out

1 (1) · σx1 (1) ·
[
T out

1 (1)
]† [

T out
1 (2)

]†
· · ·
[
T out

1 (Nout
1 )

]†
· T1,in

= T †1,in · T
out
1 (Nout

1 ) · · ·T out
1 (2)

[
T out

1 (1)
]2
· σx

1(1) ·
[
T out

1 (2)
]† [

T out
1 (3)

]†
· · ·
[
T out

1 (Nout
1 )

]†
· T1,in

= T †1,in · T
out
1 (Nout

1 ) · · ·T out
1 (3)

[
T out

1 (2)
]2 [

Tout
1 (1)

]2
· σx1 (1) ·

[
T out

1 (3)
]†
· · ·
[
T out

1 (Nout
1 )

]†
· T1,in .

By continuing in this fashion, we obtain

T †1,in T1,out · σx1 (1) · T †1,out T1,in = T †1,in ·
∏j=1

j=Nout
1

[
T out

1 (j)
]2
· σx1 (1) · T1,in

=
∏j=1

j=Nout
1

[
T out

1 (j)
]2
· T †1,in · σ

x
1 (1) · T1,in , (A.15)

40
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which allows us to treat the translations of the inner boundary in a similar way:

T †1,in · σ
x
1 (1) · T1,in

=
[
T in

1 (N in
1 )
]†
· · ·
[
T in

1 (2)
]† [

T in
1 (1)

]†
· σx1 (1) · T in

1 (1)T in
1 (2) · · ·T in

1 (N in
1 )

=
[
T in

1 (N in
1 )
]†
· · ·
[
T in

1 (3)
]† [

T in
1 (2)

]†
· σx

1(1) ·
[
T in

1 (1)
]2
T in

1 (2) · · ·T in
1 (N in

1 )

=
[
T in

1 (N in
1 )
]†
· · ·
[
T in

1 (3)
]†
· σx1 (1) ·

[
Tin

1 (1)
]2 [

T in
1 (2)

]2
T in

1 (3) · · ·T in
1 (N in

1 )

= . . . = σx1 (1) ·
∏j=N in

1

j=1

[
T in

1 (j)
]2

. (A.16)

For the complete σx1 (1) term, this yields

T †1,in T1,out · σx1 (1) · T †1,out T1,in

=
∏j=1

j=Nout
1

[
T out

1 (j)
]2
· σx1 (1) ·

∏j=N in
1

j=1

[
T in

1 (j)
]2

= iσy1(Nout
1 + 1) ·

∏j=2
j=Nout

1
σx1 (j) · σz1(1) · σx1 (1) · σy1(1) ·

∏j=N in
1

j=2
σx1 (j) · iσz1(N in

1 + 1)

= σz1(N in
1 + 1)σz1(Nout

1 + 1)
∏j=Nout

1 +1
j=N in

1 +1
σx1 (j) . (A.17)

Remembering the expression (A.11), we can now write down the effective braiding operator:

Ubr = e−i π4
√

2

[
1 + iσz1(N in

1 + 1)σz1(Nout
1 + 1)

∏j=Nout
1 +1

j=N in
1 +1

σx1 (j)
]

(A.18)

This result is compatible with the expression (2.15) for γA = γ(2N in
1 + 1) and γB = γ(2Nout

1 + 2).
Even though the state of the coupler is unchanged after the braiding operation, the coupler spin
undergoes non-trivial dynamics (and entanglement with the ferromagnetic interval) during braiding,
which results in the additional phase factor in Eq. (A.18).
The fermionic parity of the topological interval is conserved in the braiding operation. Therefore,

the eigenstates |±〉 of the fermionic parity operator for the topological zero mode,

i γA γB = σz1(N in
1 + 1)σz1(Nout

1 + 1)
∏j=Nout

1 +1
j=N in

1 +1
σx1 (j) , (A.19)

with i γA γB |±〉 = ± |±〉, are the eigenstates of the braiding operation Ubr:

|+〉 ≡ |0〉 =
∣∣↑ ↑ ↑〉+

∣∣↓ ↓ ↓〉√
2

, (A.20a)

|−〉 ≡ |1〉 =
∣∣↑ ↑ ↑〉− ∣∣↓ ↓ ↓〉√

2
. (A.20b)

Here, only the spin alignment of the ferromagnetic interval is indicated.
During the whole operation, at most one of the three-spin couplings inHS

int from Eq. (A.1c) is needed.
Therefore it is possible to emulate the braiding process in the purely one-dimensional geometry of only
two spin chains by including controlled rotations of the coupler spin into the protocol (see Ref. [13]).
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A Majorana braiding in spin representation

A.4 Two-interval braiding

Now we consider the spin equivalent of braiding Majorana modes of two topological intervals in the
fermionic system. For each interval, only one of the boundaries is shifted in this process, so the spins
contained in the intervals from the start do not change their alignment, unlike in the single-interval
process. However, two-interval braiding cannot be effected in such a way that at most one of the 3-spin
couplings in Eq. (A.1c) is relevant at each step. Therefore, the coupler spin S0 is necessarily rotated
in the process, which we will examine in the following.
The topological intervals and adiabatic shifts of their boundaries within a fermionic chain can be

translated to the ferromagnetic intervals in the spin representation exactly like for the case of a single
topological interval (Sec. A.3). At the beginning, the ferromagnetic intervals have to be prepared, e. g.,
in the first and third chain in some distance to the coupler spin S0. At first, we consider an initial
state with the spins in both intervals as well as the coupler aligned in +z direction:∣∣ψ0

〉
=
∣∣↑ ↑ ↑ �〉1 ⊗ |��〉2 ⊗ ∣∣� ↑ ↑ ↑〉3 ⊗ ∣∣S0 ↑

〉
. (A.21)

Here the indices denote the three spin chains; the corresponding arrows indicate the spin orientation in
ferromagnetic (↑/↓) and paramagnetic areas (�). Their alignment roughly symbolises the locations of
the intervals in the T-junction geometry, but this calculation does not depend on the specific interval
lengths and distances to the coupler (thought to be in the middle above the second chain as shown in
Fig. A.1). The first step comprises shifting the right boundary of the first interval (i. e. one Majorana
mode in the fermionic system) onto the second chain, resulting in the state∣∣ψ1

〉
=
∣∣� ↑ ↑ ↑〉1 ⊗ ∣∣↑ ↑〉2 ⊗ ∣∣� ↑ ↑ ↑〉3 ⊗ ∣∣S0 ↑

〉
. (A.22)

If the coupler state were
∣∣S0 ↓

〉
, the spins in the second chain would just be flipped compared to those

in the first chain.
The non-trivial part begins when the second interval is also shifted to the junction. While the spin

alignments of the ferromagnetic intervals stay fixed, the coupler spin rotates to adjust to the change
of its effective magnetic field from the z direction

(
0
0
1

)
about the axis ~a = 1√

2

(
1
−1
0

)
to the space

diagonal 1√
3

(
1
1
1

)
:

⇒
∣∣ψ2
〉

=
∣∣� ↑ ↑ ↑〉1 ⊗ ∣∣↑ ↑〉2 ⊗ ∣∣↑ ↑ ↑ �〉3 ⊗ exp

(
i π8 ~a · ~S0

) ∣∣S0 ↑
〉

=
∣∣� ↑ ↑ ↑〉1 ⊗ ∣∣↑ ↑〉2 ⊗ ∣∣↑ ↑ ↑ �〉3 ⊗ [cos

(
π
8

) ∣∣S0 ↑
〉

+ eiπ4 sin
(
π
8

) ∣∣S0 ↓
〉]

. (A.23)

Similarly, when the ferromagnetic interval in the first chain is shifted away from the junction after this,
the coupler undergoes another rotation exp

(
i π8 ~b · ~S0

)
from the space diagonal 1√

3

(
1
1
1

)
about the axis

~b = 1√
2

(
0
−1
1

)
to the x direction

(
1
0
0

)
. This results in the state

∣∣ψ3
〉

= ei π12
∣∣↑ ↑ ↑ �〉1 ⊗ ∣∣↑ ↑〉2 ⊗ ∣∣↑ ↑ ↑ �〉3 ⊗ 1√

2

[ ∣∣S0 ↑
〉

+
∣∣S0 ↓

〉 ]
. (A.24)

Retracting the remaining ferromagnetic interval is a trivial step again:∣∣ψ4
〉

= ei π12
∣∣↑ ↑ ↑ �〉1 ⊗ |��〉2 ⊗ ∣∣� ↑ ↑ ↑〉3 ⊗ 1√

2

[ ∣∣S0 ↑
〉

+
∣∣S0 ↓

〉 ]
. (A.25)
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Unlike in the case of single-interval braiding (Sec. A.3), the coupler spin does not return to its intial
state at the end of the operation.
For other initial conditions, the operation can be treated in a similar way, giving the complete result

∣∣ ����〉1 ⊗ ∣∣���� 〉3 ⊗ ∣∣S0 ↑
〉
−→ ei π12

∣∣ ����〉1 ⊗ ∣∣���� 〉3 ⊗ 1√
2

[ ∣∣S0 ↑
〉

+
∣∣S0 ↓

〉 ]
(A.26a)∣∣ ����〉1 ⊗ ∣∣�♦♦♦ 〉3 ⊗ ∣∣S0 ↑

〉
−→ ei π12

∣∣ ����〉1 ⊗ ∣∣�♦♦♦ 〉3 ⊗ 1√
2

[ ∣∣S0 ↑
〉
−
∣∣S0 ↓

〉 ]
(A.26b)∣∣ ����〉1 ⊗ ∣∣���� 〉3 ⊗ ∣∣S0 ↓

〉
−→ −ei π12

∣∣ ����〉1 ⊗ ∣∣���� 〉3 ⊗ 1√
2

[ ∣∣S0 ↑
〉
−
∣∣S0 ↓

〉 ]
(A.26c)∣∣ ����〉1 ⊗ ∣∣�♦♦♦ 〉3 ⊗ ∣∣S0 ↓

〉
−→ ei π12

∣∣ ����〉1 ⊗ ∣∣�♦♦♦ 〉3 ⊗ 1√
2

[ ∣∣S0 ↑
〉

+
∣∣S0 ↓

〉 ]
(A.26d)

with placeholders {�,♦} = { ↑ , ↓ }. The initial as well as final state of the second chain is always
|��〉2. Using the parity eigenstates (A.20) for the two intervals, we can verify that Eqs. (A.26) indeed
correspond to Majorana braiding, e. g. (neglecting the phase factor)

|0〉1 ⊗ |0〉3 ⊗
∣∣S0 ↑

〉
=
∣∣↑ ↑ ↑〉1 +

∣∣↓ ↓ ↓〉1√
2

⊗
∣∣↑ ↑ ↑〉3 +

∣∣↓ ↓ ↓〉3√
2

⊗
∣∣S0 ↑

〉
−→

∣∣↑ ↑ ↑〉1 ⊗ ∣∣↑ ↑ ↑〉3 +
∣∣↓ ↓ ↓〉1 ⊗ ∣∣↓ ↓ ↓〉3

2 ⊗
∣∣S0 ↑

〉
+
∣∣S0 ↓

〉
√

2

+
∣∣↑ ↑ ↑〉1 ⊗ ∣∣↓ ↓ ↓〉3 +

∣∣↓ ↓ ↓〉1 ⊗ ∣∣↑ ↑ ↑〉3
2 ⊗

∣∣S0 ↑
〉
−
∣∣S0 ↓

〉
√

2
= 1√

2

[
|0〉1 ⊗ |0〉3 ⊗

∣∣S0 ↑
〉

+ |1〉1 ⊗ |1〉3 ⊗
∣∣S0 ↓

〉 ]
. (A.27)

In addition to the ferromagnetic intervals, the superposition involves the coupler spin, in accordance
with the expression (2.16), which is compatible with the results (A.26).
Actually, the coupling J13 is unnecessary for the operation we considered here. The choice of J13 = 0

simplifies the coupler rotations and leads to the same results only without the phase factor of π
12 . [This

geometric phase depends on the details of the coupler rotations (A.23), (A.25) and therefore cannot
be described by the general expression (2.16).] Phase factors as well as symmetries which can be used
to relax the requirement of ideal angle-π2 spin rotations have been analysed in more detail for this
two-interval spin equivalent of braiding in Refs. [34, 35].

43





B Appendix B

Effective action and phase fluctuations

For small charging energies, the dynamics of the Majorana island from Chap. 3 can be expressed
conveniently in terms of the electromagnetic phase. An effective phase action for the system is derived
in the first part of this appendix. The second part introduces the counting fields that are necessary to
calculate transport quantities and explicates a decoupling of the phase action. In the third part, the
decoupled action is used to evaluate phase-fluctuation averages in a low-energy limit.

B.1 Derivation of the effective action

In order to describe the Majorana island and its coupling to the leads, we start from the assumption
of a large superconducting gap ∆ on the island. The gap is assumed to be sufficiently large that the
Majorana modes γj , j ∈ {L, R}, with anti-commutation relation

{γj , γk} = δjk , (B.1)

are the only fermionic degrees of freedom on the island. The electromagnetic phase φ appears in the
charging-energy term (φ̇2/4Ec + n0 φ̇), with gate charge q0 = e n0, as well as in the tunnel coupling to
the leads. Following Ref. [22], we perform a gauge transformation that shifts the chemical potentials µj
of the leads to the tunneling terms. Using the dispersion relation εjk and fermion fields ψjk for lead j,
we obtain the fermionic part of the Langrangian:

Lf = 1
2
∑
j

γj i∂t γj +
∑
jk

ψ̄jk (i∂t − εjk)ψjk −

∑
jk

λj ψ̄jk e−i[µj t+φ(t)] γj + H. c.

 . (B.2)

For completeness, we briefly reiterate further derivation steps from Ref. [22]: To use the Keldysh
formalism, we double all fields for the forward and backward branch. This leads to the new Lagrangian

Lff = 1
2
∑
j

γT
j τz i∂t γj +

∑
jk

ψ̄jk τz (i∂t − εjk)ψjk −

∑
jk

λj ψ̄jk τz e−i
[
µj t+φ̌(t)

]
γj + H. c.

 , (B.3)

where the phase is expressed as a matrix φ̌ = diag(φ+, φ−), or φ̌ = φc + τz φq in terms of the classical
and quantum Keldysh components, τi are Pauli matrices in Keldysh space and the fermion fields are
now vectors, e. g. γT

j = (γ+
j , γ

−
j ).
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B Effective action and phase fluctuations

The chemical potential of the Majorana island, µM =
〈
φ̇c
〉
, is determined by current conservation

and fixes the average time derivative of the classical phase component φc. We can separate this
time dependence from φc, which then contains only the fluctuations of the phase around the mean-
field value (µM t). To compensate the resulting changes in the Lagrangian, we renormalise the gate
charge q0 and both lead chemical potentials, which are thereby transformed into the voltages at the
contacts to the leads, µj → Vj . After that, integrating out the lead fermions ψjk in a wide-band
approximation and using the Keldysh rotation

Ľ = 1√
2

(
1 −1
1 1

)
(B.4)

for the Majorana operators, γ̃j = Ľ γj , yields an effective action [22]

Seff = 1
2
∑
j

∫
dtdt′ γ̃T

j

[
τx i∂t δ(t− t′) + Q̌j(t, t′)

]
γ̃j , (B.5)

Q̌j(t, t′) = iΓj ei τx φq(t)/2
(
δ−(t− t′) 2F (t− t′) eiΦj(t,t′)

0 −δ+(t− t′)

)
τx e−i τx φq(t′)/2 . (B.6)

Here, F is the thermal distribution function for both leads, the coupling Γj = 2π νj |λj |2 contains the
density of states νj =

∑
k δ(εjk) in the corresponding lead, the functions δ±(t) ≡ δ(t ± 0+) include

infinitesimal shifts to ensure proper causality, and the quantities Φj are defined in Eq. (3.6). Integration
over the Majorana fields results in the fermionic action [22]

iSf = 1
2
∑
j

Tr ln
[
τx i∂t δ(t− t′) + Λ̌j(t, t′)

]
, (B.7)

Λ̌j(t, t′) = 1
2
[
Q̌j(t, t′)− Q̌T

j (t′, t)
]
. (B.8)

All Keldysh components of the Majorana Green’s function

Ǧj =
(

0 GA
j

GR
j GK

j

)
(B.9)

are defined using the classical part of Λ̌j only:

Ǧ−1
j (t, t′) =

[
τx i∂t δ(t− t′) + Λ̌j(t, t′)

]
φq=0

. (B.10)

Expansion of Sf to second order in the quantum phase φq then yields the expression (3.3).

B.2 Fluctuation kernel and decoupling

This appendix contains full expressions for the quantum fluctuation of the effective action and their
Hubbard–Stratonovich decoupling (Sec. 3.3), including the counting fields χL, χR used to calculate
the currents at both contacts and their correlations. They appear alongside φq in the action terms
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B.3 Low-energy evaluation of noise averages

originating from the coupling to the leads:

iSf [χL, χR] = i
∑
j

∫
dt Ij(t)

[
φq(t) + χj(t)

]
− 1

2
∑
j

∫
dt dt′

[
φq(t) + χj(t)

]
Kj(t− t′)

[
φq(t′) + χj(t′)

]
. (B.11)

Like the current operator I(t), the fluctuation kernel K(t−t′) =
∑
jKj(t−t′) with j ∈ {L, R}, consists

of contributions from the left and right contact [22]. The complete expressions also depend on the
classical phase component φc:

Kj(t, t′) = 1
2Γj δ(t− t

′)− Γ 2
j

∫
dt1 dt2GR

j (t− t1)GR
j (t′ − t2)

·
[
F (t− t′) cosΦj(t, t′)F (t1 − t2) cosΦj(t1, t2)

+ F (t1 − t′) sinΦj(t1, t′)F (t2 − t) sinΦj(t2, t)
]
. (B.12)

As phase fluctuations are strongly suppressed for a small charging energy Ec, we neglect the φc de-
pendence of K,

Kj(t, t′) ≈ Kj(t, t′)|φc≡0 = Kj(t− t′) , (B.13)

in the rest of our calculations. Then, we can easily decouple the φq-quadratic part of the action:

∏
j

exp
[
−1

2

∫
dt dt′

[
φq(t) + χj(t)

]
Kj(t− t′)

[
φq(t′) + χj(t′)

]]

=
∫

D[ξL, ξR]
∏
j

exp
[
−1

2

∫
dtdt′ ξj(t)K−1

j (t− t′) ξj(t′) + i

∫
dt
[
φq(t) + χj(t)

]
ξj(t)

]
. (B.14)

B.3 Low-energy evaluation of noise averages

In the low energy limit ω � Γj , the Langevin equation (3.9) can be simplified by approximating the
dampening kernel η with its zero-frequency value,

η(t− t′) ≈ η0 δ(t− t′) , (B.15)

which is calculated in Ref. [22] for both finite temperature and T = 0:

η0 = 2
π

∑
j

∫ dε
4T

1
cosh2

(
ε

2T

)
(ε− Vj

Γj

)2

+ 1

−1

(B.16)

T→0−−−→ 2
π

∑
j

1(
Vj/Γj

)2
+ 1

. (B.17)

For the Langevin equation in the time domain, this yields

2Ec
∑
j

ξj(t) ≈ φ̈c +Ω φ̇c(t) , (B.18)
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B Effective action and phase fluctuations

with the inverse RC time given by Ω = η0Ec. The retarded propagator DR takes on the form [22]:

DR(t) ≈ 1− e−Ωt

η0
Θ(t) ⇐⇒ η0D

R(ω) ≈ i
ω
− 1
Ω − iω + π δ(ω) . (B.19)

To calculate the currents and their correlation, we have to evaluate some noise averages of the
fluctuation fields ξj and the classical phase φ̄c. Using the relations (3.8) and (3.10), we easily obtain
an expression for a phase–phase average:〈

φ̄c(t) φ̄c(t′)
〉
ξ

=
∫

dτ dτ ′DR(t− τ)
∑
j

〈
ξj(τ) ξj(τ ′)

〉
DR(t′ − τ ′)

=
∫

dτ dτ ′DR(t− τ)K(τ − τ ′)DR(t′ − τ ′) . (B.20)

For this calculation, it is convenient to define the quantity [22]

J(t) = 1
2

〈[
φ̄c(t)− φ̄c(0)

]2〉
ξ

=
〈
−
[
φ̄c(t)− φ̄c(0)

]
φ̄c(0)

〉
ξ

= 1
η2

0

∫ dω
2π K(ω) 1− cos(ω t)

ω2
(
1 + ω2/Ω2

) = J(−t) . (B.21)

(K is symmetrical.) Similarly, a mixed average of φ̄c and ξk is given by〈
φ̄c(t) ξk(t′)

〉
ξ

=
∫

dτ DR(t− τ)
〈
ξk(τ) ξk(t′)

〉
=
∫

dτ DR(t− τ)Kk(τ − t′)

=
∫ dω

2π D
R(ω)Kk(ω) e−iω (t−t′) . (B.22)
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C Appendix C

Details of the correlation calculation

Charging energy on a Majorana island can mediate current correlations between different contacts
(Chap. 3). The first part of this appendix contains the derivation of analytical expressions for the
correlation at large coupling Γ . Further approximations in the limit of zero temperature are detailed
in the second part.

C.1 Current and correlation in the limit of large Γ

Starting from the assumptions (3.17) in Sec. 3.5, we will omit any corrections beyond the leading order
in Γ−1

j . Both J(t) and the distribution function F (t) have the same time argument as the exponential
decay of GR

j (t) in the current [22]

Ij(t) =
〈
Ij(t)

〉
ξ

= Γj

∫
dt′ F (t′ − t) sin

[
Vj(t′ − t)

]
GR
j (t− t′) e−J(t−t′) . (C.1)

Therefore, we neglect the function J(t), which is continuous with J(0) = 0, at this point and approxi-
mate F (t) by its zero-temperature limit,

F (t) = −iT
sinh(π T t) ≈ −

i
π t

= F0(t) , (C.2)

to obtain the following result for the current:

Ij(t) ≈ Γj
∫

dτ F0(τ) sin(Vj τ)GR
j (−τ) = −Γj

π
arctan

(
Vj
Γj

)
≈ −Vj

π
. (C.3)

The correlation expressions can be treated in a similar way. By symmetry, in the term

Ij(tj) ξk(tk) = Γj

∫
dt′ F (t′ − t) sinΦj(t′, t)GR

j (t− t′) ξk(tk) (C.4)

(unlike for the current), the second contribution from the angle addition formula,

sinΦj(t′, t) = sin
[
Vj(t′ − t)

]
cos
[
φ̄c(t′)− φ̄c(t)

]
+ cos

[
Vj(t′ − t)

]
sin
[
φ̄c(t′)− φ̄c(t)

]
, (C.5)
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C Details of the correlation calculation

yields a finite expectation value:〈
Ij(tj) ξk(tk)

〉
ξ

= Γj

∫
dτ F (τ) cos(Vj τ)GR

j (−τ)
〈

sin
[
φ̄c(tj + τ)− φ̄c(tj)

]
ξk(tk)

〉
ξ

= Γj

∫
dt′ F (τ) cos(Vj τ)GR

j (−τ) e−J(τ)
〈[
φ̄c(tj + τ)− φ̄c(tj)

]
ξk(tk)

〉
ξ

≈ Γj
∫

dt′ F0(τ) cos(Vj τ)GR
j (−τ)

〈[
φ̄c(tj + τ)− φ̄c(tj)

]
ξk(tk)

〉
ξ

(3.10)= Γj

∫
dτ F0(τ) cos(Vj τ)GR

j (−τ)
∫

dτ ′
[
DR(t+ τ − τ ′)−DR(t− τ ′)

]
Kk(τ ′ − tk)

= Γj

∫
dτ F0(τ) cos(Vj τ)GR

j (−τ)
∫ dω

2π D
R(ω)Kk(ω)

[
e−iω τ − 1

]
e−iω (t−tk)

= −Γj2π

∫ dω
2π e−iω (t−tk)DR(ω)Kk(ω) ln

V 2
j + (Γj − iω)2

V 2
j + Γ 2

j

 . (C.6)

Both J(t) and the finite temperature in F (t) have, again, been neglected for small time arguments
t = τ . Γ−1

j . Additionally, the Fourier tranform can be expanded in the small voltage Vj and
frequency ω:

−Γj2π D
R(ω)Kk(ω) ln

V 2
j + (Γj − iω)2

V 2
j + Γ 2

j

 ≈ −1
4

1 + iω
(

1
Ω

+ 1
2Γj

)
− ω2

2Γj Ω

 Ω2

ω2 +Ω2 Kk(ω) .

(C.7)

In both factors of the last term, IL(tL) IR(tR), the angle addition formula (C.5) can be used, yielding
two non-vanishing contributions:

2
〈

cos
sin
[
φ̄c(t′L)− φ̄c(tL)

]
· cos

sin
[
φ̄c(t′R)− φ̄c(tR)

]〉
ξ

= exp

−1
2

〈[
φ̄c(t′L)− φ̄c(tL)− φ̄c(t′R) + φ̄c(tR)

]2〉
ξ


± exp

−1
2

〈[
φ̄c(t′L)− φ̄c(tL) + φ̄c(t′R)− φ̄c(tR)

]2〉
ξ


= 2 e−

[
J(tL−t′L)+J(tR−t′R)

]
· cosh

sinh

〈[φ̄c(t′L)− φ̄c(tL)
] [
φ̄c(t′R)− φ̄c(tR)

]〉
ξ


= 2 e−J(tL−t′L) · e−J(tR−t′R) · cosh

sinh

[
J(tL − t′R) + J(t′L − tR)− J(t′L − t′R)− J(tL − tR)

]
. (C.8)

Obtaining the leading contributions is slightly more complex, here. The prefactor exponentials can be
neglected, as J(t) appears with a small argument there. Using t ≡ tL − tR in the expression〈
IL(tL) IR(tR)

〉
ξ
≈ ΓL

∫
dτL F (τL)GR

j (−τL) · ΓR
∫

dτR F (τR)GR
j (−τR) (C.9)

·
{

sin(VL τL) sin(VR τR) cosh
[
J(t− τR) + J(t+ τL)− J(t+ τL − τR)− J(t)

]
+ cos(VL τL) cos(VR τR) sinh

[
J(t− τR) + J(t+ τL)− J(t+ τL − τR)− J(t)

]}
,

50



C.2 Further treatment of the zero-temperature case

we expand the (hyperbolic) sine and cosine functions in the small parameters τj . The constant part
of the cosh expansion cancels with the term IL(tL) IR(tR):〈

IL(tL) IR(tR)
〉
ξ
− IL(tL) IR(tR) ≈ ΓL

∫
dτL F0(τL)GR

j (−τL) · ΓR
∫

dτR F0(τR)GR
j (−τR)

·
[
τL τR J

′′(t) + τ2
L τR − τL τ2

R
2 J (3)(t)

]

= 1
π2 J

′′(t) + 1
2π2

(
1
ΓR
− 1
ΓL

)
J (3)(t) . (C.10)

By inserting the quantity η0 ≈ 4
π into the definition (B.21) of J ,

⇒ J ′′(t) = 1
η2

0

∫ dω
2π K(ω) cos(ω t)

1 + ω2/Ω2 ≈
∫ dω

2π cos(ωt) π
2

16
Ω2

ω2 +Ω2 K(ω) , (C.11)

we obtain simple expressions for the Fourier transform of the terms in Eq. (C.10):

1
π2 J

′′(t) + 1
2π2

(
1
ΓR
− 1
ΓL

)
J (3)(t) −→ 1

16

1− iω
2

(
1
ΓR
− 1
ΓL

) Ω2

ω2 +Ω2 K(ω) . (C.12)

Combining the results of the IL(tL) IR(tR) term, Eq. (C.12), and of both Ij(tj) ξk(tk) terms, given
in Eq. (C.7), we arrive at the correlation function

CLR(ω) ≈ −1
4

1 + iω
(

1
Ω

+ 1
2ΓL

)
− ω2

2ΓLΩ

 Ω2

ω2 +Ω2 KR(ω)

− 1
4

1− iω
(

1
Ω

+ 1
2ΓR

)
− ω2

2ΓRΩ

 Ω2

ω2 +Ω2 KL(ω)

+ 1
16

1 + iω
2

(
1
ΓL
− 1
ΓR

) Ω2

ω2 +Ω2 K(ω) . (C.13)

In the symmetrised correlator, the imaginary part obviously vanishes. Taking into account the leading-
order contributions to the real part only, we obtain the expression (3.18).

C.2 Further treatment of the zero-temperature case

At T = 0, the fluctuation kernels are given by [22]

Kj(ω) =
∑
±

Γj
2π tan−1

(
ω ± Vj
Γj

)
+KV

j (ω) ≈ K0
j (ω) +KV

j (ω) , (C.14)

KV
j (ω) = Γj

2π Θ
(
2|Vj | − |ω|

)

·

tan−1
(
|Vj |
Γj

)
+ tan−1

(
|Vj | − |ω|

Γj

)
+ Γj
|ω|

ln


(
|Vj | − |ω|

)2
+ Γ 2

j

V 2
j + Γ 2

j


 . (C.15)
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C Details of the correlation calculation

We can use a linear spectrum for the first, leading contribution,

K0
j (ω) = |ω|

π
, (C.16)

to compute an approximation for the function J ′′ (C.11):

J ′′0 (t) = −Ω
2

16
[
eΩ t Ei(−Ω t) + e−Ω t Ei(Ω t)

]
, (C.17)

where Ei(x) = −
∫∞
−x

dx
x e−x is an exponential integral.

The sin–sin–cosh term in Eq. (C.9) vanishes in equilibrium. Otherwise, the lowest-order expansion
in the small times τj yields

ΓL

∫
dτL F (τL)GR

j (−τL) · ΓR
∫

dτR F (τR)GR
j (−τR)VL τL VR τR

τ2
L τ

2
R

2 J ′′(t)2

= 2VL VR
π2 Γ 2

L Γ
2
R
J ′′(t)2 . (C.18)

By using the approximation J ′′(t) ≈ J ′′0 (t) and applying the Fourier transformation,

FT=⇒ VL VR
Γ 2
L Γ

2
R

Ω4

32π

π Ω − 2Ω arctan
(
|ω|
Ω

)
+ |ω|

(
1 + 2Ω2

ω2

)
ln
(

1 + ω2

Ω2

)
ω2 + 4Ω2

ω=0−→ Ω3 VL VR
128Γ 2

L Γ
2
R
, (C.19)

we obtain an additional contribution relevant for small frequencies.
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D Appendix D

Supercurrent in a thermal state

The Josephson current in a system containing two superconductors can be determined from a quantum-
mechanical partition function with a dependence on the superconducting phase difference χ. Starting
from the partition function for the canonical or grand-canonical ensemble, quite general expressions
for the thermal supercurrent, which are useful for the calculations in App. E and Chap. 4, are derived
in this appendix.

Phase and charge are conjugate observables. Therefore the Josephson current IJ in a junction of two
superconductors can be calculated from the (grand-)canonical partition function for the HamiltonianH,

Z = Tr
[
e−β H

]
=
∑
n

e−β En , (D.1)

where β = (kB T )−1 gives the temperature scale and the eigenvalues of H are

En =
〈
n
∣∣H∣∣n〉 , (D.2)

as a derivative of the thermodynamic potential

F = −β−1 ln(Z) (D.3)

with respect to the phase difference χ:

IJ = 2 e
~
∂F

∂χ
= 2 e

~Z
∑
n

∂En
∂χ

e−β En . (D.4)

Given the expression for the Hamiltonian H =
∑
n |n〉Ej 〈n|, it easily follows that for any energy

eigenstate |n〉, we can use the derivative of the expectation value and the expectation value of the
derivative interchangeably:

⇒ ∂Ej
∂χ

= ~
2 e
〈
n
∣∣IJ∣∣n〉 for IJ = 2 e

~
∂H

∂χ
. (D.5)

Hence, the current is given by

IJ = Z−1∑
n

〈
n
∣∣∣IJ e−β H

∣∣∣n〉 = Z−1 Tr
[
IJ e−β H

]
. (D.6)
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D Supercurrent in a thermal state

Discrete sums over eigenstates |n〉 are not well suited to the limit of a continuous spectrum. There-
fore, it can be useful to introduce the density of states ρ(ε) =

∑
n δ(En−ε), which becomes a continuous

function in this limit. There are two possibilities to introduce ρ in the current calculation: If we start
from the expression

Z =
∫

dε ρ(ε) e−β ε (D.7)

for the partition function, only ρ has a phase dependence (via the eigenenergies En), so the current is
given by

IJ = − 2 e
~β Z

∫
dε ∂ρ(ε)

∂χ
e−β ε . (D.8)

The alternative is carrying out the phase derivative first, which yields Eq. (D.4). If the current
contribution per state is a function of energy,

I(En) = 2 e
~
∂En
∂χ

, (D.9)

we can express the total current via the density of states in a different way:

IJ = Z−1
∫

dε ρ(ε) I(ε) e−β ε . (D.10)

From a simple comparison between equations (D.8) and (D.10), it follows that the current contribution
at energy ε is, in fact, given by

I(ε) = − 2 e
~β ρ

∂ρ

∂χ
, (D.11)

which is a function of energy (with parameter χ).
Note that, in general, the density of states ρ consists of both extensive and subextensive contribu-

tions. For a two-dimensional system of area L2, e. g., it can be written

ρ = ρ0 + ρ1 L+ ρ2 L
2 . (D.12)

in the limit L → ∞. Like the distance of energy levels, the quantity I(ε) scales as 1/L. From the
relation (D.11), we conclude that only subextensive contributions to the density of states can depend
on the phase χ. Both the product L2 ρ2(ε) I(ε) involving the extensive part of ρ in Eq. (D.10) for the
second approach and the derivative of a subextensive part, L∂ρ1/∂χ, in the first approach (D.8) scale
linear in L, yielding the leading contribution to the current IJ. A more detailed analysis has been
carried out for similar scaling behaviour of flux-dependent persistent currents in Ref. [36].
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E Appendix E

Current calculation via eigenmodes

The current–phase relation of a Josephson junction can be determined from the dependence of the
eigenenergies of the Hamiltonian on the superconducting phase difference (cf. App. D). However,
this dependence can be rather difficult to determine in a system with a continuous spectrum. In this
appendix, the supercurrent contribution for any eigenmode of the topological Josephson contact from
Chap. 4 will be expressed in terms of the particular wave function, instead.

In the following, we will derive the supercurrent contribution for an excitation with a 4-component
spinor wavefunction Ξ = [ξ1, ξ2, ξ3, ξ4]T, created by

α† =
∫

dx dyΨ†(x, y) Ξ(x, y) . (E.1)

The Hamiltonian (4.1) has the diagonal form

H = EO −
1
2
∑
j

εj +
∑
j

εj α
†
j αj (E.2)

with eigenmodes αj . (For the continuous part of the spectrum, the sums are to be taken as integrals,
of course.)
Due to the particle–hole doubling in the initial expression for the Hamiltonian, an additional sum

over the energies of all eigenmodes appears here. That is why excitations are relevant even for the
zero-temperature supercurrent. As we have already derived the scattering modes and bound states of
the system, we can restrict our calculation to these wavefunctions. For a bound state, we can determine
the current contribution directly from the phase dependence of the energy ε (cf. App. D):

Iα = 2 e
~

∂ε

∂χ
. (E.3)

In the following, we will show that the current contribution for an arbitrary eigenmode α is given by

Iα = e v

∫
dy
[
ξ∗1 ξ2 + ξ∗2 ξ1 + ξ∗3 ξ4 + ξ∗4 ξ3

]
x=0

, (E.4)

which is, for scattering states (and bound states in the SNS case), identical to the expression

Iα = e v2 kM
ε

∫
dy
(
|A+

(e)|
2 − |A−(e)|

2 − |A+
(h)|

2 + |A−(h)|
2
)

(E.5)
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E Current calculation via eigenmodes

in terms of the momentum kM , the energy ε and the coefficients A of the eigenfunctions (4.4).
First, we apply a gauge transformation by redefining the fermionic operators,

ψ↑

ψ↓

+ψ†↓
−ψ†↑

 −→


e−iϕ(x)/2 ψ↑

e−iϕ(x)/2 ψ↓

+eiϕ(x)/2 ψ†↓

−eiϕ(x)/2 ψ†↑

 , (E.6)

in order to shift the phase dependence in the Hamiltonian from the order parameters in the super-
conducting areas to the middle region. The phase ϕ depends on the coordinate x; it has to satisfy
ϕ(x) = φL for x < −B/2 and ϕ(x) = φR for x > B/2. In the middle region, the choice of gauge is not
important and does not need to be fixed yet.
A gauge transformation generally involves a change of the wavefunctions. However, the expres-

sion (E.4) mixes components only within the particle or the hole block, so the phase shift ϕ in the
wavefunction cancels out and can be ignored in this calculation. The only phase dependence remaining
in the transformed Hamiltonian,

h→ v ~p · ~σ τz +M(x)σz + |∆(x)| τx −
~ v
2 σx

∂ϕ(x)
∂x

, (E.7)

comes from the gauge transformation itself. Therefore the current operator, defined in App. D by
Eq. (D.5), takes on the convenient form

IJ = −e v2

∫
dx dy ∂

2ϕ(x)
∂χ∂x

Ψ† σx Ψ

= −e v
∫

dx dy ∂
2ϕ(x)
∂χ∂x

[
ψ†↑ ψ↓ + ψ†↓ ψ↑

]
. (E.8)

Starting from the superconducting ground state
∣∣Ω〉, we calculate the current contribution Iα, using

the relations αα†
∣∣Ω〉 =

∣∣Ω〉 and α ∣∣Ω〉 = 0 as well as a bit of (anti-)commutation algebra:

Iα =
〈

Ω
∣∣∣α IJ α†∣∣∣Ω〉− 〈Ω∣∣IJ∣∣Ω〉

=
〈

Ω
∣∣∣∣α [IJ, α†]∣∣∣∣Ω〉

=
〈

Ω
∣∣∣∣∣
{
α,
[
IJ, α

†
]}∣∣∣∣∣Ω

〉
. (E.9)

With the usual fermionic anti-commutation relation {ψµ(~r), ψ†ν(~s)} = δµν δ(~r−~s), both the commutator
and the anti-commutator can easily be determined:

Cα =
[
IJ, α

†
]

= −e v
∫

dx dy ∂
2ϕ(x)
∂χ∂x

[
ψ†↑ ξ2 + ψ†↓ ξ1 + ψ↓ ξ4 − ψ↑ ξ3

]
(E.10)

⇒
{
α,Cα

}
= −e v

∫
dx dy ∂

2ϕ(x)
∂χ∂x

[
ξ∗1 ξ2 + ξ∗2 ξ1 + ξ∗3 ξ4 + ξ∗4 ξ3

]
. (E.11)
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What remains to be fixed is the gauge in the region between the superconductors. As, in fact, the rest
of the integrand does not depend on position in the interval −B/2 ≤ x ≤ B/2, it does not matter how
exactly ϕ is defined there. A simple choice is a jump at x = 0,

∂ϕ(x)
∂x

= − (φL − φR)︸ ︷︷ ︸
χ

δ(x) (E.12)

⇒ ∂2ϕ(x)
∂χ∂x

= −δ(x) , (E.13)

yielding the expression (E.4).
Now we can use the relations (D.4) and (D.5) as well as the diagonal Hamilton (E.2) to determine

the total Josephson current for an arbitrary temperature (kB T = β−1):

IJ = −1
2
∑
j

Iαj +
∑
j

Iαj

〈
α†j αj

〉

= −1
2
∑
j

Iαj tanh
(
β εj
2

)
, (E.14)

where 〈· · ·〉 is the thermal expectation value, yielding a Fermi distribution.
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