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Abstract: The treatment of cerebro- and cardiovascular
diseases requires complex and challenging navigation of a
catheter. Previous attempts to automate catheter naviga-
tion lack the ability to be generalizable. Methods of Deep
Reinforcement Learning show promising results and may
be the key to automate catheter navigation through the
tortuous vascular tree. This work investigates Deep Rein-
forcement Learning for guidewire manipulation in a com-
plex and rigid vascular model in 2D. The neural network
trained by Deep Deterministic Policy Gradients with
Hindsight Experience Replay performs well on the low-
level control task, however the high-level control of the
path planning must be improved further.
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Introduction

Catheter-based interventions, e.g., for the treatment of
cerebro- and cardiovascular diseases, often require com-
plex navigation of a catheter from the groin to the lesion
through the vascular tree. Even highly trained specialists
regularly struggle with the fact that catheter movements at
the proximal end of the catheter translate into unexpected
movements at its distal end. Automation of this task will
unburden the mental workload for physicians and may
improve the average treatment result.
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Attempts to automate endovascular catheter navi-
gation perform autonomous movements for a highly
specialized task and specific anatomy [1-4]. These use a
H.. loop-shaping controller for the bendable tip made of
shape memory alloy and a robot manipulator for the
translation to follow a given catheter tip trajectory,
automatically orienting the bendable catheter tip to-
wards the target vessel while the translation movement
is performed manually, extracting the vessel centerlines
and controlling a robotic bendable catheter to follow the
desired centerlines or using magnetic motion capture
sensors to control the speed of a robotically actuated
catheter following a given trajectory. So far, no approach
promises quick adaptability to individual patients’
vessel geometries, vessel characteristics and the various
tasks to be performed.

Utilizing Neural Networks trained by Deep Reinforce-
ment Learning as control algorithm for the catheter
manipulation robot has the potential to generalise the
methodology to perform the navigation in catheter-based
interventions. In Reinforcement Learning an agent in-
teracts with a environment by performing actions and
receiving state observations and rewards for every such
action. In Deep Reinforcement Learning a Neural Network
is choosing the next action and the agent trains the Neural
Network, such that the reward is maximised. The reward is
given by the developer and should include all relevant
optimisation factors, e.g., reaching a target, reducing
catheter forces and reducing vessel wall contacts while
navigating a catheter precisely. Solving numerous Atari
games with a single Neural Network configuration shows
the potential of this approach [5].

This paper extends own previous work, where initial
navigation trials of an autonomous catheter guidance
through a simple transparent acrylic glass vascular phan-
tom is shown [6]. The simulation framework, testbench
manipulator and camera-based guidewire tracking are
reused. The vessel geometry of the phantom is modified to
resemble natural vessel shapes and to allow investigation
of learned navigation behaviors. The simulation scene is
adapted to the new vessel geometry and the control algo-
rithm is adjusted to solve the navigation task in the
modified vascular phantom.
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Materials and methods

The testbench setup is presented in Figure 1. The guidewire is actuated
by a manipulator with two degrees of freedom (translation and rotation)
through a rigid 2D phantom filled with a mixture of glycerin and water to
model blood inside the vessels. The phantom is 3D printed using Ster-
eolithographie. A camera mounted above and a light source mounted
below the phantom emulate the fluoroscopy image usually obtained
from X-ray. The catheter position is extracted from the camera image
with 5 Hz in accordance with the control frequency of 5 Hz. The neural
network calculates the commands for the guidewire manipulator. To
enable the principle of human-oversight by the human-in-command
approach [7] for future research, a gamepad provides the option to the
user to manually override the manipulator commands.

The geometry of the vascular phantom is illustrated in Figure 2a.
Most branches can be reached by the shortest path, which would be
the result of a breadth-first-search. However, the phantom is designed,
such that a conventional guide wire cannot directly reach branch 3 by
going directly through branch 1 due to its structural rigidity (Figure 2c).
Instead, it is necessary to navigate through branch 8 and the loop
between branch 1 and 8 (Figure 2d). Furthermore, a bifurcation is
inserted which is mechanically difficult to navigate. When inserting
the guidewire from branch 1 into branch 8 it needs to be translated and
rotated at the same time to avoid kinking. A failed attempt with a
kinked guidewire can be seen in Figure 2b.

The neural network is trained using Deep Deterministic Policy
Gradients [8] with Hindsight Experience Replay [9]. The state of the
guidewire is defined by five points in XZ-Coordinates evenly spaced
with a distance of 5 mm along the guidewire starting from the tip. The
input to the neural network is the catheter state of the current and the
last three timesteps and the last three actions taken by the neural
network. The reward system gives a —1 reward for every timestep
where the preselected target is not reached and O for every timestep
where the target is reached within a threshold of 5 mm. Output from
the neural network are the continuous translation and rotation com-
mands, which are sent to the guidewire manipulator.
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Figure 1: The test bench consists of a guidewire manipulator with
two degrees of freedom, the transparent vascular phantom, the
camera with light source, a gamepad for manual control and a
computer running the camera tracking software and the neural
network controller.
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Training of the neural network is performed in a simulation
environment using the SOFA-Framework [10] with the BeamAdapter
Plugin [11]. Phantom walls are assumed rigid and the lumen empty.
Friction between wall and guidewire and guidewire stiffness have
been iteratively tuned to mimic guidewire failure in the testbench.
Main failure of the guidewire includes entanglement of the guidewires
at bifurcations where increased bending occurs.

During the training in the simulation environment the control al-
gorithm is evaluated every 500 training episodes by performing 100 test
episodes, in which the guidewire has to be navigated from a random
start point to a random target within the vessel geometry of the phan-
tom. An episode is regarded successful, if the target is reached within 25
seconds. Subsequently, the trained neural network is transferred from
the simulation environment to the testbench and tested within the real
phantom. The non-successful episodes are analyzed by observing the
navigation process on the testbench. To improve the success rate on the
testbench, it is also evaluated providing the neural network with the
coordinates of the next bifurcation along the path towards the target
instead of simply setting the target.

Results

Figure 3 shows the success rate of the catheter navigation
during the training process in the simulation environment.
The success rate reached a maximum of 96% after 52,500
training episodes. Transferring the trained neural network
to the testbench resulted in the same results as navigating
in the simulation environment.

The non-successful epsiodes can be split up in two
groups of failures. The first group is the high-level control
failure, where the navigation fails, because the controller
tries to navigate a path to the target which is impossible to
reach. The second group is the low-level control failure,
where the navigation at a single branching point fails,
because the controller is not able to maneuver the guidewire
into the desired branch. The fully trained controller shows
only high-level control failures. These occur either when the
target cannot be reached by trying to navigate the shortest
connection, e.g., navigation from branch 4 to branch 3, or
when the target is in close proximity to the current branch,
e.g., navigating from branch 3 to branch 2. Low-level control
failures only happen with partially trained controllers and
cease to occur when the controller is fully trained.

Providing the coordinates of the next bifurcation along
the path towards the target as interim target to the controller
improved the success rate to 100% for this phantom.

Discussion and conclusion

A neural network trained by Deep Deterministic Policy
Gradients has been shown to learn navigating a guidewire
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(a) Dimensions of the vascular
phantom and branch numbering.
The guidewire is inserted in branch
1 and can navigate to branch 2-9
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(c) Guidewire which cannot enter
branch 3 from branch 1.

within a complex and rigid vascular phantom in 2D. The
low-level control of the guidewire states no problem for the
neural network controller. The learned high-level control,
especially during path planning where the direct path is
not ideal, poses a challenge for the neural network. A
possible reason for this is the fact, that most training epi-
sodes do not require advanced path planning. In most
start/target constellations it is sufficient for the controller
to navigate the shortest path. Learning more complex
motion behavior is presumed to be slow due to seldom
appearance during training. A method to improve training
may be adjusting the start/target constellations to paths
that are hard to reach for the control algorithm or providing
Human Demonstration data for these constellations.
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(b) Kinked guidewire because
it was not rotated while being
inserted branch 8.

(d) Guidewire inserted in branch
3 through branch 8 and the loop
between branch 8 and branch 1.

Figure 2: Vascular phantom and different
guidewire positions.

Alternatively the high level path planning can be
performed by a separate algorithm, such that the target for
the controller is the next bifurcation instead of the final
target. This way, the neural network of the controller is not
required to learn the high-level control.

Concluding it is shown that a controller based on a
neural network trained by Deep Reinforcement Learning
is able to navigate a guidewire through a complex two
dimensional vascular phantom. The low-level control task
of adapting to the mechanics of the guidewire are ach-
ieved effortlessly. The high-level control task of finding
the correct path is difficult to learn if the target cannot
be allocated to a branch clearly or the path is not
straightforward.
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Figure 3: The success rate of the catheter navigation over the
amount of trained episodes during the training process in the
simulation model.

Future work includes improving the neural network
for high-level control and navigation through more
complex vessel structures, e.g., 3D navigation, changing
geometries, and combination of a guidewire with a
catheter.
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