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Abstract

Petrophysical measurements on core plugs integrated 
with petrographic information from thin-sections are 
established methods in reservoir quality assessment. 
X-ray micro-computed tomography (μCT) presents an 
opportunity to derive the internal structure of reservoir 
sandstones for digital fluid flow simulations, while si-
multaneously assessing mineral distribution in 3D 
based on mineral densities. We compare the sin-
gle-phase permeabilities obtained with fluid flow sim-
ulations and experiments and discuss the anisotropic 
nature of the permeability tensor in both single- and 
two-phase flow. The results demonstrate a closer 
match for μCT porosity to petrophysical porosity com-
pared to optical porosity, and an acceptable first order 

fit of the main mineralogical constituents. One-phase 
fluid flow simulations deliver results within 10–20 % 
of the laboratory measurements. Two-phase flow sim-
ulations enable the assessment of relative permeabili-
ties in rocks with water-sensitive minerals. However, 
μCT-based fluid flow simulations are computationally 
very demanding and time consuming due to the heter-
ogeneous nature of natural sandstone samples, and 
require a tradeoff between resolution, representative 
volume, and cost. Rock composition reconstructed 
from μCT images can be used as a first-order approxi-
mation for the composition of a sample, but is unable 
to confidently identify minerals that occur in minor 
quantities due to constraints of the chosen resolution. 
Thus, sandstone analyses by μCT cannot completely 
replace established methods.

Introduction

Petrographic analyses using thin-sections 
and petrophysical analyses utilizing core 
plugs are well established methods for reser-
voir characterization [1, 2]. “Digital Rocks” 
has become an established term, generally 
describing the digitization of structure and 
rock composition [3]. Computer tomography 
has been utilized at least over the last twenty 

years as an upscaling approach from 2D 
thin-sections to 3D petrography models, in-
corporating rock physics [3-5]. Advances in 
computational power over the last decade 
combined with the ongoing process of digiti-
zation present new opportunities regarding 
fluid flow simulations through porous silici-
clastic sandstones [6-8]. 
We present digital rock volumes and numeri-
cal one- and two-phase fluid flow simula-
tions based on x-ray micro-computed tomog-
raphy (μCT) images. μCT is calibrated by 
petrophyiscal and petrographical laboratory 
analysis that determines porosity, permeabil-
ity, and mineral distribution, highlighting 
the opportunities and challenges of digital 
rocks for petrophysical and mineralogical 
analysis (Fig. 1).

Materials and methods

Material and laboratory methods

A sample originating from the Upper Rot-
liegend siliciclastic Penrith Formation from 
the Vale of Eden half-graben (Cumbria, UK) 
is studied to highlight the approach. The par-
ticular sample was described in a petrograph-



ic study (sample BQ_1 in reference [9]). All 
petrophysical measurements are performed 
on a cylindrical sandstone plug (diameter: 
25.4 mm, length: 40.0 mm) drilled parallel 
to bedding. The thin section taken from the 
plug cap compares to the x-z plane of the 
computed model detailed further below and 
outlines the rock composition on a grain 
scale. The normal to bedding is reflected by 
the y direction.
Petrophysical measurements include porosi-
ty and ambient permeability. Porosity was 
determined using helium pycnometry. Klink-
enberg-corrected ambient permeability was 
measured at a constant confining pressure of 
1.2 MPa with an air permeameter [10]. Per-
meability is the connected porosity and de-
scribes how easy a fluid can flow through po-
rous media. It is commonly measured in mil-
lidarcy (mD).
The petrographic data is derived from a 
transparent thin-section prepared from the 
plug cap. The plug cap was impregnated with 
a blue-dyed epoxy resin to highlight porosity 
and prepared to a thickness of 30 μm. 
Point-counting (300 counts) was performed 
on a grid adjusted to the maximum grain size 
with a semi-automated Pelcon Point Counter 
installed on a Leitz Aristomet microscope. 
The error of point-counting is dependent on 
the amount of counts and the counts per cat-
egory, and was statistically quantified within 
confidence levels of 95% [11].
The plug for micro-computed tomography 
(μCT) is drilled normal to the petrophysical 
plug axis after petrophysical measurements 
are completed. The μCT plug has a diameter 
of 6.5 mm and a length of 13.0 mm.

µCT methods

Micro-computed tomography (μCT) scans 
were performed by MITOS GmbH with an 
image resolution of 2048*2048 px. This re-
sults in a horizontal μCT resolution of 3.3 
μm/px. Petrography and porosity measure-
ments serve as calibration for the segmenta-
tion of pore-space in the μCT image batch. 
The permeability measurement on rock 
plugs is used as the benchmark for the re-
sults of single-phase fluid in digital rock 
flow simulations. Images from μCT were 
stacked and segmented with ImageJ, using 
helium porosity from rock plugs as a control 
factor on the segmented porosity (Fig. 2). 
Two image sequences are generated for μCT 
analysis: One for density-based mineralogy 
assessment, and one for fluid flow simula-
tions. The mineralogy data set is exported 
as a gray-scale data set, while the simulation 
image sequence is exported as a binary color 
set, segmented for porosity and solids. Con-
trast enhancements are necessary in order 
to enable a more precise segmentation for 
porosity or mineralogy. 
The Beer-Lambert law describes the interac-
tion between an x-ray beam and the material 
[4]. The grayscale intensities are related to 
differences in x-ray attenuation of the respec-
tive minerals, which is parameter-specific 

and depends on atomic mass and density. It 
is incorporated in the Beer-Lambert law as 
attenuation coefficient [12]. For the mineral 
assessment, μCT images are imported in the 
CT processing program Slicer to render a 
high-resolution 3D petrographic model. The 
segmentation was conducted with the seg-
mentation tool in Slicer, which is able to sep-
arate a 3D model into its constituents based 
on grayscale intensities. The grayscale color 
intensities are dependent on the attenuation 
of the respective minerals. Under considera-
tion of the rock composition given by 
point-counting, grayscales in the stacked 
μCT images can be segmented for mineralo-
gy based on grayscale thresholds. The total 
and relative volume of segmented classes can 
be checked or exported at any time, and is 
used as a quality check. 

Simulation methods

For the purpose of solving fluid dynamical 
equations at the pore-scale, the color-gradi-
ent based lattice Boltzmann method is used 
in the present study. This method can deal 
with the wetting boundary condition and a 
range of fluid dynamic viscosity ratios. The 
numerical model’s ability to capture these 

physical phenomena is tested with various 
benchmark tests. One of the main challenges 
of two-phase flow simulations lies in driving 
the flow through the narrow pores of digital 
rock structures. The numerical model utiliz-
es a diffuse interface that can be as large as 
some of the pore throats, thus potentially un-
able to capture the capillary effects. As a 
compromise between the computational 
cost and reliability of simulations, numerical 
interface width is kept at six grid spacing. 
The simulation domain is a cube with dimen-
sions of 1.32 mm (400*3.3 μm) in each direc-
tion (Fig. 2). The numerical interface width is 
then 6 times the grid spacing or roughly 19 
micrometers. The cross-section images are 
in x and y direction for the fluid simulations 
(Fig. 2). These images are then stacked along 
z direction (Fig. 2).
For the evaluation of macroscopic properties 
(such as permeability) of generated digital 
structures, it is important to ensure that a 
sufficiently large domain is used. To choose 
such a volume, first, a series of single-phase 
permeability tests is carried out at increas-
ingly large simulation domains. Once the 
permeability values obtained at two succes-
sive simulation domains are close to each 

Fig. 1  Schematic overview of the workflow used to simulate two-phase flow in siliciclastic reservoir rocks

Fig. 2  Digitized 3D structure using the micro-CT images. This example demonstrates a 400 pixel block, with 
a resolution of 3.3 µm/px. Cross-sections on the left reflect the texture of the x-y plane at different 
positions in z direction 



other, this volume is chosen as the represent-
ative volume of the given sample. In this case, 
such a representative model is achieved with 
a cube of 400*400*400 pixel. This repre-
sentative volume is then further utilized in 
the fluid flow simulations (Fig. 2). 

One-phase flow

In the first step, single-phase intrinsic per-
meabilities of the sample are computed. For 
this purpose, a single-phase fluid is filled in-
side the simulation domain and is driven via 
gravity. The single-phase Darcy’s law is 
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where  is the average fluid velocity, μ is dy-
namic viscosity, p is hydrodynamic pressure, 
g is the acceleration due to gravity, р is densi-
ty and K is the intrinsic permeability tensor. 
The average fluid velocity is found as,

1U U
V

 
 (2)

where summation is carried out over entire 
volume V of the simulation domain and U is 
the local fluid velocity. The local fluid velocity 
U, in turn, is found from the solution of fluid 
dynamical equations via the lattice Boltz-
mann method. The density ρ=1000 kg/m3   
and dynamic viscosity μ=൭x൫൪-൮ Pa.s (water) is 
chosen for the single/-phase fluid in the sim-
ulations. The single-phase permeability of 
any porous medium depends upon its 
pore-geometry and – size alone, and is inde-
pendent of the physical properties of the flu-
id used in the simulation. Thus, the simulat-
ed permeabilities can be compared directly 
with the experimental ones. To find the prin-
cipal component of the permeability tensor 
Kjj (for brevity Kj is used hereafter), the com-
ponent of the gravity vector gj in the direction 
j is switched on. Direction j is a dummy varia-
ble running over the simulations in x, y and z 
direction successively. Periodic boundary 
condition is applied in the j direction while 
no-slip boundary condition is applied on the 
lateral sides. The bounce-back rule [13] is ap-
plied at the solid-fluid boundary to ensure 
the no–slip boundary condition. 

Two-phase flow

The two-phase Darcy’s law is

 (3)
where the subscript i stands for the non-wet-
ting gas (nw) or the wetting water (w) phase , 
k is the relative permeability and Sw is the sat-
uration, which is the fraction of the wetting 
phase in the pore space. The average fluid ve-
locity for the gas is computed as
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where summation is carried out over entire 
volume V of the simulation domain, and φ is 
the local phase-field variable, which identifies 
gas and water phases. The phase-field variable 
takes values -1 and 1 in the bulk non-wetting 

gas phase and wetting water phase, respec-
tively. Similar to the single-phase case, U and 
φ result from the numerical solution of fluid 
dynamical equations via the lattice Boltzmann 
method. The wetting (water) phase saturation 
is related to the phase-field variable as

1 1
2wS
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Capillary number Ca and viscosity ratio 
 are dimensionless numbers, which 

characterize the two-phase flow of the 
non-wetting fluid gas with the wetting fluid 
water on the pore-scale. The capillary number 
is defined as  , where μnw is the vis-
cosity of the non-wetting fluid gas, U is the 
characteristic fluid velocity and σ is the surface 
tension. The capillary number provides a rela-
tive dominance of viscous forces compared to 
the surface tension ones. In this work, the 
capillary number is approximately 10-4 indicat-
ing an interplay of viscous and capillary forces. 
The viscosity ratio M is chosen as 10 corre-
sponding to the typical petroleum reservoirs. 
In addition, the wetting contact angle Ө is 
chosen as Ө =164°.

Results 

Laboratory results

The studied sample has a porosity of 18% and a 
Klinkenberg-corrected permeability of 1040 mD 
(1.026 *10-9 m²) (Tab 1). For the purpose of 
comparability with μCT data, petrographic re-
sults derived from point-counting (27 classes) 
have been simplified to five classes (Tab. 1). 
The sum of detrital and authigenic quartz, al-

so including quartzite and mostly silicic rock 
fragments, is the most abundant constituent 
(89%). The second most abundant constituent 
is the optical porosity (5.3%), indicated by 
blue color in the thin-sections (Fig. 3), which 
comprises of intergranular and intragranular 
porosity. Feldspars (3.3%), including K-feld-
spars and plagioclases, are the third most 
abundant class. The remaining components 
were grouped into clays (2.3%), including mi-
ca as well as authigenic clay minerals, and iron 
oxides. Iron oxides occur in traces in the form 
of dust rims, and detrital grains and were not 
encountered during point-counting.

Digital rock results

Digital petrography and porosity

Mineral composition is derived from μCT imag-
es by enhancing contrast and comparing to the 
most abundant minerals in petrographic 
thin-section analysis (Fig. 4 a). The black color 
represents phases with the smallest density (po-
rosity), while the highest densities are present 
as bright white areas. The major constituent 
(quartz) is dark gray (Fig. 4 a). The selected cube 
primarily consists of quartz (81.6%), and epoxy 
resin (porosity, 13.4%) (Tab. 2, Fig. 4 b). Minor 
constituents are clay minerals (2.1%), feldspars 
(1.6%) and iron oxides (1.3%) (Tab. 2, Fig. 4 b). 
The quantitative petrographic assessment by 
point-counting (Tab. 1) is used as a benchmark 
to threshold the μCT results (Tab. 2). 

Single phase fluid flow

The μCT image sequence intended for binary 

Tab. 1  Experimental petrophysical and petrographic results with statistical error ranges. 

Laboratory results

Petrophysical results

Permeability 1040±30 mD (kx)

Permeability 1040±30 mD (kx)

Helium porosity 18.0±0.3 %

Petrographic results

Quartz 89.0±2.8 %

Feldspar 3.3±1.7 %

Optical Porosity 5.3±2.3 %

Iron oxides 0.0±0.4  %

Clay 2.3±1.3 %

Fig. 3  Petrographic thin section of an exemplary reservoir rock analog from the plug cap of the studied sam-
ple. Porosity is colored with blue epoxy. a) The studied sample is dominated by detrital quartz and 
overgrown cements, which can be distinguished from the detrital quartz due to the brown-reddish he-
matite coats. Feldspar dissolution (kfs lower left) reflects the formation of secondary porosity during 
burial  and uplift (further details about the diagenesis see reference [9]). Pictures in plane-polarized 
light. b) Arrows indicate small patches of clay minerals, mostly illite and mica, which occur as feldspar 
replacements or squeezed between the rigid grains. Picture in cross-polarized light. Qtz: quartz, Kfs: 
Potassium feldspar, FeOx: iron oxides.
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image segmentation was divided into solid 
matter and minerals based on the porosity of 
18% determined by helium pycnometry. 
Based on this porosity benchmark, a porous 
structure was generated in a 400*400*400 
px cube. Under the influence of the applied 
gravity, the viscous forces continue to bal-
ance the effective pressure drop induced by 
the gravity until a steady-state is reached. The 

permeability of the porous medium is then 
computed via Eq. (1), where the average fluid 
velocity and the gravity induced pressure 
drop are known at the steady-state. This pro-

cess is repeated for other principal directions 
to quantify the anisotropic nature of the per-
meability tensor. These principal compo-
nents in the x, y and z directions turn out to 
be 1193 mD, 1585 mD and 827 mD, respec-
tively (Tab. 2). Simulated permeabilities are 
slightly higher following bedding direction, 
and lowest in z direction. Zones of flow can 
be visualized as color-coded flow lines based 
on fluid velocity, highlighting the intercon-
nected porosity of the sample (Fig. 5). Flow-
lines are calculated per direction (x, y, z) 
based on a pressure gradient. Therefore, it is 
only possible to display flowlines along one 
axis per figure. 

Two phase flow

Initially, the mixture of two fluids, with a giv-
en fraction of the wetting fluid Sw, is distrib-
uted randomly inside the simulation domain. 
Similar to the single-phase case, gravity is 
used to drive the fluid flow in different prin-
ciple directions [14, 15] with a no-slip bound-
ary condition on the lateral directions. Due 
to the surface tension between the gas and 
water phases, the mixture slowly evolves to 
form distinguishable phases. Figure 6 shows 
the steady-state of the gas-water system at 
different water saturations when gravity is 
applied in the x direction. From these aver-
aged fluid velocities and the known pressure 
drop created by the gravity, the relative per-
meabilities are evaluated and are shown in 
Figure 7. Relative permeability of one phase 
(e.g. gas) decreases, as the relative amount of 
another phase (e.g. water) increases. More 
gas (knw) will be produced until the water sat-
uration in the rock reaches ~0.45 (x-direc-
tion), ~0.55 (y-direction), or 0.50 (z-direc-
tion). At higher water saturations, the per-
meability of water (kw) is larger than of that 

Tab. 2  Results derived from µCT data for petrophysical simulation and petrographic data. Permeability was 
determined for all three principal directions

Digital rock results

Numerical results

Permeability (one-phase flow) 1193 mD (kx), 1585 mD (ky), 827 mD (kz)

Digital porosity 13.4%

Mineralogical results

Quartz 81.6%

Feldspar 1.6%

Iron oxides 1.3%

Clay 2.1%

Clay 2.3±1.3%

Fig. 4   a) Stacked µCT data after contrast enhancement and cropping into a cube with the dimensions of 
400*400*400 px. Porosity in black, quartz, feldspar and clay in different shades of gray, and iron ox-
ides as bright spots. b) Segmented µCT cube based on densities, coloring the distinguished classes 
porosity, quartz, feldspar, clay and iron oxides

Fig. 6   Two-phase flow simulations at variable wetting-phase saturations. The blue color represents the wet-
ting-phase (water) and the yellow color represents the non-wetting phase (gas). Steady-state configu-
ration of gas-water flow under the action of gravity for different wetting saturation Sw

Fig. 5   Flow stream-lines of the local fluid velocity 
U, based on single-phase permeability sim-
ulation, here in z-direction. The color-coding 
represents the flow velocity and visualizes 
the interconnected flow-zones 



gas (knw) and predominantly water will be 
produced (Fig. 7).
The relative permeability curves are deter-
mined for this sample from two-phase 
gas-water simulations (Fig. 7). For the evalu-
ation of macroscopic properties (such as per-
meability) of generated digital structures, it 
is important to ensure that a sufficiently 
large domain is used. To choose such a vol-
ume, first, a series of single-phase permea-
bility tests are carried out at increasingly 
large simulation domains. Once the permea-
bility values obtained at two successive simu-
lation domains are close to each other, this 
volume is chosen as the representative vol-
ume of the given sample. This representative 
volume is then further utilized in the two-
phase simulations (Fig. 6). Two-phase simu-
lations need to reach equilibrium in order to 
represent steady-state Darcy flow. The rela-
tive permeability under steady-state condi-
tions is directly dependent on the saturation 
of the wetting phase (Fig. 6, 7). 

Discussion

Rock composition

The conversion from 2D (thin-section) to 3D 
space (μCT digital rock) results causes a dif-
ference for the largest absolute mismatch of 
7.4% in quartz content (laboratory: 
89.0±2.8%, digital: 81.6%). Clay content 
(laboratory: 2.3±1.3%, digital: 2.1%) was 
confidently identified within the confidence 
levels, and is commonly reported as straight 
forward to identify [16]. Feldspars (laborato-
ry: 3.3±1.7%, digital: 1.6%) match within 
their 95% confidence level error margins. 
Quartz and feldspar are minerals of very sim-
ilar attenuation, leading to challenging seg-
mentation [16]. This is interpreted as one 
reason for the match of digital and lab data 
for feldspars being barely within the confi-
dence levels given by point-counting statis-
tics. Another reason for the slight mismatch 
between digital and lab data is attributed to 
the partial dissolution of feldspars (Fig. 3 a), 
which results in segmentation of porosity in-
stead of feldspar. The quality of the μCT seg-
mentation for different rock minerals is also 

influenced by large attenuation contrasts of 
individual minerals like iron oxides. Com-
pared to the predominant constituents like 
quartz, these result in large color contrasts 
(Fig. 4 a). The heaviest minerals (here: hema-
tite/iron oxides) generate bright spots in the 
μCT images, which lead to uncertainty in the 
image segmentation (or binarization of im-
age into porous space and solid structure) 
due to over-illumination of adjacent miner-
als. Due to the abundance obtained from 
point-counting (0±0.4%) compared with the 
abundance in the digital rock model (1.3%), 
an overestimation factor of three was as-
sumed for high attenuation minerals.

Porosity

The optical porosity of 5.3% does not match 
with the petrophysical porosity of 18.0%. 
This general mismatch is well established 
and attributed to micro-porosity, sample het-
erogeneity and the fractal effects, leading to a 
general underestimation of porosity [17]. Po-
rosity differences between laboratory results 
(18.0%) and digital rock results (13.4%) were 
observed. Considering the content of clay 
minerals, which are predominantly illite [9], 
microporosity in clays is able to partly ex-
plain the mismatch due to 63±10% micropo-
rosity in illites [18]. Due to 2.1% of clays in 
the digital rock model, this would amount to 
an additional 1.3±0.2%, resulting in a digital 
porosity of 14.7±0.2%. 
Over-illumination effects due to large attenu-
ation differences of iron oxides compared to 
quartz or porosity could also porosity lead to 
porosity being falsely segmented as iron ox-
ides. However, it is not possible to exactly 
quantify the amount of porosity lost to that 
effect. At the very most, this may amount to 
1%, which corresponds to the difference be-
tween digital and laboratory iron oxide abun-
dance (Tab. 1, 2).
The μCT resolution of 3.3 μm introduces an 
additional uncertainty in segmentation, es-
pecially on grain boundaries, where very nar-
row open pore throats could either be seg-
mented as porosity or as solid mineral. Fur-
ther effects on digital porosity, which are 

hard to quantify, are microporosities in feld-
spars, which can reach up to 5% [19]. Assum-
ing these microporosities in conjunction 
with 1.6% in digital feldspar abundance 
would result in the minor contribution <0.1% 
and thus not be a significant factor. 
Considering all these effects, the digital po-
rosity would be increased to roughly 15–16%. 
This is a closer representation of the petro-
physical porosity. However, it needs to be 
considered that helium pycnometry can easi-
ly resolve porosity on a nanometer scale, 
while digital porosity is limited by resolution 
(here: 3.3μm). Similar offsets of 30–40 % be-
tween helium porosity and digital porosity 
without considering microporosity were also 
reported in other sandstone studies [20], 
confirming quality and validity of the results 
in this study.

Permeability

The simulated permeability in the x-direction 
of the sample corresponds well with the ex-
perimental measurements also performed 
along the x-direction of the sample. Although 
the porosity segmentation did mismatch by 
over 30%, permeability matches within in an 
acceptable range of  ±10%. This is due to per-
meability being almost exclusively controlled 
by the large pores, which μCT is able to dis-
play easily. The bottleneck of microporosity 
in porosity segmentation is interpreted to 
not contribute to permeability. Therefore, 
μCT segmentation can be considered as ef-
fective porosity, explaining the good fit of 
digital permeability with laboratory permea-
bility.
The spatial anisotropy of the studied sand-
stone, especially in relation to bedding, grain 
size, and rock composition, plays an impor-
tant role in controlling the fluid behavior at 
the pore-scale and beyond. For instance, per-
meability values measured in simulations 
and experimental results are in agreement 
within 15% (kx) (Tab. 1 & 2). 
Close to water saturation (Sw=0.5), the rela-
tive permeability of the water phase is slight-
ly higher than the gas phase in the x and z di-
rections (Fig. 7). Given the higher wetting af-

Fig. 7  Relative permeability curves in relation todependence of water saturation in the principal directions x, y and z. The water and gas are the wetting and non-wet-
ting phases. The relative permeability is computed at certain intervals of water saturation to optimize computational time



finity of the water phase towards the solid 
porous medium, in fact, the opposite should 
be true. Thus, the simulations indicate that, 
in some cases, the initial random distribu-
tion of the gas-water phases may give rise to 
fluid patterns such that the gas phase is in 
contact with a larger surface area of the solid 
porous medium. According to the simula-
tion, if water saturation exceeds 50% in two-
phase flow normal to bedding, production of 
water starts. 
An advantage of μCT simulations is the appli-
cability in reservoir rocks consisting of wa-
ter-sensitive minerals or water-sensitive ce-
ment phases like anhydrite, evaporites and 
carbonate cements. Two phase flow simula-
tions could be used in these samples without 
altering the intrinsic permeability by dissolu-
tion of water-sensitive phases. 

Conclusions

Our workflow links petrophysical rock and 
numerical digital rock permeability derived 
from μCT scans. Rock composition by μCT 
images and rock samples fall with in analy-
sis bias. 
The mismatch of higher petrophysical rock 
porosity is due to restricted resolution of 
μCT to segment for microporosity. This was 
observed to be less relevant for permeability 
simulations, as permeability is primarily 
controlled by large connected pores, which 
can easily be detected. Large attenuation 
contrasts result in over-illuminated bright 
spots, which lead to a systematic overesti-
mation of the volume of very dense minerals 
(e.g. hematite) by a factor of three. Further-
more, highly porous fibrous clay minerals 
might easily be segmented as porosity, lead-
ing to an overestimation in both porosity 
and subsequent permeability simulations.
Fluid simulations present an opportunity to 
analyze and quantify the anisotropic nature 
of the permeability tensor, in both single- 
and two-phase flow. Differences between 
measured and simulated one-phase perme-
abilities are about 15% (experimental 1040 
mD vs simulated 1190 mD). Results also 
highlight that the water production differs 
by almost 20% in the x-y-z direction of the 
simulated cube, and shows unexpected rela-
tive permeabilities. This suggests that water 
production starts at saturation levels where 
usually gas production is expected.
Overall, the tradeoff between resolution, 
representative volume and computational 
demands requires a case-by-case decision 
on how to process samples for μCT scans. 
Different shades of gray caused by molecu-
lar weight differences require pre-process-
ing, mainly contrast enhancements, before 
mineral assessment based on grayscale in-
tensity thresholds. 
μCT-based mineralogy assessments can 
generally provide information about the 
major constituents, and μCT models can be 
used for fluid flow simulations easily high-
lighting permeability anisotropies for single 
and two-phase flow. However, it still re-

quires the petrographic analysis since coats 
on mineral surfaces affecting wetting angles 
are not resolved by μCT.
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