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ABSTRACT The continuous pursue of sustainable manufacturing is motivating the utilization of new
advanced technology, especially for hard to cut materials. In this study, an adaptive approach for optimization
of machining process of AISI 4340 using wiper inserts is proposed. This approach is based on advance
yet intuitive modeling and optimization techniques. The approach is based on Artificial Neural Network
(ANN), Multi-Objective Genetic Algorithm (MOGA), as well as Linear Programming Techniques for
Multidimensional Analysis of Preference (LINMAP), for modeling, optimization and multi-criteria decision
making respectively. This integrated approach, to best of the authors’ knowledge, has been deployed
for the first time to adaptively serve different designs of manufacturing processes. Such designs have
different orientations, namely cost, quality, productivity, and balanced orientation. The capability of the
proposed approach to serving such diverse requirements answers one of the most accelerating demands
in the manufacturing community due to the dynamics of the uprising smart production lines. Besides,
the proposed approach is presented in a straightforward manner that can be extended easily to other design
orientations as well as other engineering applications. Based on the proposed design, a balanced general
setting of 197.4 m/min, 0.95 mm, and 0.168 mm/rev was recommended along with other settings for more
sophisticated requirements. Confirmatory experiments showed a good agreement (i.e., no more than 7%
deviation) with the predicted optimum responses. This shows the validity of the proposed approach as a
viable tool for designers to promote holistic and sustainable process design.

INDEX TERMS Adaptive design, artificial neural networks, genetic algorithm, modeling, wiper inserts,
turning.

NOMENCLATURE
ANN Artificial Neural Network.
B Balanced design.
DOC Depth of Cut.
EC Intensive cost-oriented design.
EP Intensive productivity-oriented design.
EQ Intensive quality-oriented design.
f Feed.
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GRA Gray Relation Analysis.
IC Intensive cost-oriented design.
IP Intensive productivity-oriented design.
IQ Intensive quality-oriented design.
LINMAP Linear Programming Techniques for

Multidimensional Analysis of Preference.
MOGA Multi-Objective Genetic Algorithm.
MRR Material removal rate.
NSGA Non-dominated sorting genetic algorithm.
Ra Average surface roughness.
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RSM Response surface method.
USD United States Dollar.
Vc Cutting Speed.

I. INTRODUCTION
Owing to the rapidly accelerating global demand for
high-quality and sustainable products, scientific and man-
ufacturing communities are now focusing on sustainable
machining evaluation and design [1], [2], with particular
focus on coming up with innovation and creative solutions
in metal cutting technology. Tooling, as an essential aspect
of metal cutting, has been a topic of interest when it comes
to these solutions. This led to proposing a variety of ideas
in the literature, such as tool coating [3], [4], tool textur-
ing [5], [6], and coming up with new tool materials, designs,
and geometries [7], [8]. Besides, new cooling strategies have
been applied, such as MQL [9], [10] and cryogenic cooling
[11], [12]. All these innovative techniques and others are all
aiming for the same goal, which is enhancing product qual-
ity, improving process economics, and resource utilization
while minimizing the negative environmental impact. One
of these innovations that stands out is using wiper inserts
(i.e., multi radii inserts). These inserts are characterized by
a specially engineered nose geometry using more than one
radius, as shown in Figure 1. Such geometry can allow a
higher production rate while keeping the surface roughness at
accepted levels [13]. Additionally, It has been proposed to be
an alternative for grinding operation [14] as well as being an
effective solution for hard turning (i.e., machining products
with a treated surface for hardness improvement) [15], [16].
However, due to its multi radii geometry, it has been recom-
mended that the wiper inserts may suffer from higher cutting
forces and energy consumption that may negate the economic
gain due to the higher operating cost. These potential con-
flicting responses are the reasons why multi-objective opti-
mization approach is imperative for a successful utilization
of the wiper inserts. This has motivated a lot of effort among
scholars to optimize the wiper insets based turning process.

FIGURE 1. Wiper insert geometry.

Elbah et al. [17] utilized the response surface method
(RSM) and desirability function approach to find the optimal

turning parameters of AISI 4140. This is to find cutting
velocity (Vc), depth of cut (DOC), and feed (f) that minimizes
the three components of surface roughness Ra Rz andRt while
using wiper insert. Paiva et al. [18] used principal component
analysis and multivariate mean square error to find out Vc,
DOC, and f that minimize five different surface components
while turning AISI 52100 hardened steel using wiper inserts.
Venkata Subbaiah et al. [19] performed multi-objective opti-
mization for turning AISI 4340 using wiper inserts. Desir-
ability function with equal weights based on RSM was used
to find out machining parameters (i.e., Vc, DOC, and f) which
minimize surface roughness, cutting forces, and tool wear,
while maximizing material removal rate. Gaitonde et al. [20]
utilized an artificial neural network (ANN) to investigate the
turning performance of AISI D2 cold work tool steel using
wiper and conventional insert. Using the ANN models, plots
of different response surfaces were generated for specific cut-
ting force, surface roughness, and tool wear while varyingVc,
DOC, inset type, and machining time. By using these plots,
machining settings optimizing each response separately was
attained (single-objective optimization). Dabade [21] used
gray relation analysis (GRA) to optimize cutting forces, sur-
face roughness, and residual stress while machining Al/SiCp
composite. Based on equal weight per response, optimum
nose radius, f, DOC, and Vc were evaluated. Gray Relation
Analysis GRA with equal weights were used to optimize Ra,
cutting forces, and hardness while turning AISI 316L and
304L by Basmaci and Ay [22] and Ay [23] respectively. They
compared conventional and wiper tools, as well as MQL and
flood coolant under different feed rates and cutting speeds.

Venkata Subbaiah et al. [24] used grey relational analysis
(GRA) to optimize AISI 4340 steel while using both con-
ventional and wiper inserts. Surface roughness and MRR
were taken as responses with equal importance while inves-
tigating the effect of DOC, f, and Vc as control param-
eters. Camppos et al. [25] utilized principal component
analysis (PCA); multivariate mean square error (MMSE),
GA, and RSM to model and optimize the turning process
of AISI 512100 steel using wiper inserts. PCA was used
to reduce tool life, cutting time, total turning cycle time
processing cost per piece Ra and Rt into three principal com-
ponents. Later these principle components were all assigned
equal weights during the MMSE formulation. The f, DOC,
and Vc were considered as control parameters during the
optimization process.

Based on the available information in the open literature
for wiper insert and other machining applications [26]–[28],
intensive efforts have been made in order to address the opti-
mization of conflicting machining responses. However, none
of them provided any sort of adaptive approach which is able
to offer different solutions for different designs’ orientations
of the same process. In other words, no work has utilized the
posterior preference articulation approach (PPAA), such as
the one proposed in the current study. The main principle
of PPAA, as the name implies in ‘‘posterior,’’ is that the
designer preferences are only applied after obtaining the
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Pareto front [29]. This is particularly attractive in problems
where finding out the designer’s preference is difficult before
examining the trade-off between different responses [30]. The
PPAAwas adopted in a very limited number of studies related
to the current application of interest. Pytlak [31] adopted the
PPAA approach to optimize the production cost, process time,
and cutting force during turning 18HGT steel using CBN
wiper insert. The feed, depth of cut, and cutting velocity were
considered as control parameters. Using empirical models,
the relations between the control parameters and responses
were established. The author investigated two approaches
(i.e., weighted objective and modified distance method) to
compute the Pareto front. Afterwards, according to the PPAA
principle, a hierarchical optimization method based on a
single weighting case (i.e. single design preference) was
performed to select the final solution from the pre-evaluated
Pareto front. To the best of the authors’ knowledge, no other
studies have provided such an adaptive posterior prefer-
ence articulation approach in this particular application, even
though it is proven effective in other applications [32], [33].

In the current study, a new progress has been made to
fill this gap. The proposed approach is flexible enough not
only to satisfy dynamic changes for the process requirements,
but also it is applicable for different applications. For exam-
ple, a particular setting may be capable of producing very
high-quality products but at the expense of high cutting speed
(i.e., high power and cost) and at very low productivity.

This solution may be attractive in a process designed for
precision machining. However, it is not in other cases where
there is no such tight constrain on quality. In fact, such
settings will represent an unjustified economic burden on the
process. This is why the designer should have handy proce-
dures to tune the process design parameters to meet different
needs. This is especially important due to the new production
line dynamics imposed as a sequence of the new era of
sustainable smart customer-drivenmanufacturing [34]. In this
new concept, the product line should always be dynamic and
cable of keeping up with the rapid change in the required
product specifications and even generate different products
from the same production line [35].

For that reason, it is imperative to integrate adaptive pro-
cess design approaches, such as the proposed one in this
study, with advanced machining technologies, like the inno-
vative wiper insert design, to promote sustainability in the era
of smart manufacturing.

Following this introduction, the remaining of this article is
outlined as follows. Firstly, in the methodology section, the
proposed intuitive framework will be outlined for the wiper
inset based machining, as shown in Figure 2. This started
with data collection, where the experiment design and proce-
dures are outlined. These two are considered as application
identifiers to the proposed algorithm and can be adjusted
for different applications. Afterward, these data are fed to a
modeling algorithm to produce the necessary mathematical
model for the optimization technique. It should be stated
that in this study, artificial neural network modeling was

used with genetic algorithm optimization, and both showed
adequate performance through validation. However, the fol-
lowed framework is flexible, allowing for different modeling
and optimization techniques depending on the data com-
plexity. To check the independency of the obtained solution
from the probabilistic features of both the ANN model (i.e.,
data set randomization, initial weights, and biases) as well
as the MOGA operators (i.e., initial population, mutation,
cross over and tournament selection), the whole approach
in Figure 2 was repeated 3 times per each design criteria
listed in Table 3, and the difference between the final selected
settings was found insignificant. Finally, the core of the adap-
tive design methodology is implemented by using a variety
of weighting strategies for a different design using Linear
Programming Techniques for Multidimensional Analysis of
Preference (LINMAP). Each of these steps will be discussed
while focusing on the means to adopt this approach for dif-
ferent problems. Afterward, an intensive discussion will be
provided to show the superiority and trades-off between the
different proposed designs.

II. EXPERIMENTATIONS AND METHODS
A. EXPERIMENTATION
In this study, AISI 4340 steel test specimen was machined
under flood water-miscible cooling on the EMCO concept
turning machine shown in Figure 3. The test specimen was
prepared, as shown in Figure 3 so that a single bar can be
used for four experimental runs. For each run, only 12 mm
length is machined, followed by 10 mm of clearance. After-
ward, 8 mm of the 12 mm machined length is used for the
surface roughness measurements. During the machining pro-
cess, power consumption was recorded through power clamp
meters (Tactix 403057). The full details of the materials and
tools used are illustrated in Table 1. A total of 30 experimental
runs were performed covering a cutting speed (Vc) range
from 150 to 200 m/min, depth of cut (DOC) of 0.5 to 1 mm,
and feed (f) from 0.05 to 0.25 mm/rev. The design of the
experiment was based on mixed levels general full factorial
array with 30 runs, as shown in Table 2. In order to solve
the optimization problem, all responses should be represented
by a mathematical formula which is continuous in the entire
search domain. For the material removal rate, this is attain-
able by equation (1). However, for surface roughness and
power consumption, such equations were established using
the ANN modeling, as discussed in the next section. Finally,
equation (2) was utilized to represent the total machining
cost. It includes a breakdown of the different costs as follows:
machine operation and depression, tool wear and cooling cost
of 1.67, 0.25, and 0.032 [USD/min], respectively, as well as
energy cost 0.032 [USD/min/kW].

MRR = Vc ∗ DOC ∗ f (1)

C(f ,Vc,DOC) = machining time

∗ [1.67+ 0.25+ 0.032+ 0.0013]

∗P(f ,Vc,DOC) (2)
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FIGURE 2. Problem tackling approach for adaptive solutions.

where C is the total cost, and P Represents the consumed
power during the machining process in kW predicted from
the developed ANN model, as shown in the next section.

III. DATA-DRIVEN MODELS
In order to optimize the machining process settings, accurate
closed-form mathematical models, correlating the response
variables to the corresponding tuned parameters, are required.
This mathematical model is a vital tool to allow utilizing
a robust optimization algorithm, as described in the next
section. In the current study, the artificial neural network
was utilized to construct two models, the surface roughness
model, and the power model. The experimental data was
randomized and split into three subsets. The first subset
includes 15% of the entire data set that are excluded from
the training process, while the rest is used during the training
and validation steps. Even though the data was randomized,
the accuracy of the model can be sensitive to the distribu-
tion of the rest of the 85% of the data among training and
validation. This is why, in this study, k fold cross-validation

was used to eliminate this sensitivity. Cross-validation was
utilized to prevent overfitting of the ANN model. During
the cross-validation process, the number of folds was varied
from 1 to 5, and the closest fold to the mean was taken
as the final fold [36], [37]. The training is based on the
backpropagation technique to set the optimum weights of the
feed-forward neural network [38], [39]. Deciding the ANN
topology is another critical step to avoid over and underfitting
the data. In this study, the sigmoid function was selected as
the activation function, and different ANN topologies were
tested for the two models. As shown in Figure 4(a & b),
shallow ANN (one middle layer) with three neurons showed
the lowest variance (RMSE) of 0.074 µm and 0.044 kW for
surface roughness and powermodels. For this reason, this par-
ticular ANN topology is used during the rest of the analysis.
Figure 4(c & d) shows the goodness of fit for both models.
In general, models show a good fit with R2 no less than
0.95 for both training and test data. In fact, these figures show
that these two models provide a higher R2 for the testing data
set compared to the training one. This is a desirable feature
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FIGURE 3. Test rig for machining and specimen.

TABLE 1. Tools and materials.

since these models will be utilized as an objective function for
the optimization algorithm. And the prediction performance
is a critical aspect for such models. This is because there is
no guarantee that the evaluated points during optimization
algorithm fails within the training data set.

A. OPTIMIZATION TECHNIQUE
The optimization problem in this study is solved by utilizing
the (MOGA) multi-objective genetic algorithm. MOGA is
one of the most commonly used optimization techniques
in manufacturing applications [40], [41]. In this study,

MOGA is used to optimize all three objectives (roughness,
MRR, and cost), as shown in equation 3.

Minimize Ra = f1(Vc,DOC, f )
MaximizeMRR = f2 (Vc,DOC, f )
Minimize Cost = f1(Vc,DOC, f )
Subject to :
150 ≤ Vc ≤ 200m/min
0.5 ≤ DOC ≤ 1mm
0.05 ≤ I ≤ 0.25mm/rev

(3)
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TABLE 2. Experiemetal runs.

The MOGA algorithm used in this study is the basic
real coded genetic algorithm (GA) equipped with a
non-dominated sorting NSGA-II algorithm. The GA algo-
rithm is a powerful single objective optimization tool. It mim-
ics the natural selection and survival of the fittest. An initial
population whose size is predefined, based on hypervolume,
as will be discussed later, is compared together based on the
objective function (i.e., fitness value). The fitter the solution
is, the higher its probability of survival to next-generation
(roulette wheel tournament). Those who have survived will
also have a higher probability of having a chance for repro-
duction based on using mutation (i.e., exploration) and cross
over (i.e., exploitation) operators. These processes are con-
tinued to the predefined number of generations, chosen based
on hypervolume, as discussed later [42]. When this criterion
is satisfied, the optimum solution can be easily identified.
However, the above-mentioned algorithmworks very well for
a single objective; it is not applicable in the multi-objective

optimization. This is because of the contradicting nature of
the objectives of interest. Thus, solutions that are achieving
one objective are usually failing the others. This intrinsic
feature in multi-objective optimization is the reason behind
replacing the concept of the best individual solution in GA by
the set of non-dominated solutions in MOGA using NSGA-II
algorithm [42], [43].

The selection of hyperparameter while setting the MOGA
is very critical. In this study, a uniform initialization function,
size of two tournament selection, and 0.8 crossover fraction
were used. A low mutation rate of 0.01 was selected to avoid
missing the optimum value when the current result is in the
vicinity of the global optimum solution. On the other hand,
the number of generation and the particle population size,
as they are susceptible to each particular problem nature,
was tuned using the hypervolume technique. Maximizing the
hypervolume is considered as an indication of both close-
ness to the true Pareto (accuracy) and diversity [44], [45].
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FIGURE 4. (a & b) performance of different tested ANN topology for Ra and Power, respectively, (c & d) Scatter plots showing the goodness
of fit of the two selected ANN models for Ra and Power, respectively.

FIGURE 5. Illustration of hypervolume optimal settings.

Based on the hypervolume maximization using exhaustive
grid research shown in Figure 5, a population of 120 points
and 130 generations were utilized in MOGA setup.

B. DECISION-MAKING TECHNIQUE
The selection of the final point from the computed Pareto
front is challenging. The reason for that is the fact that each
solution in the Pareto front is not dominated by any other

solution. This is why switching between any two solutions
on the Pareto front will always be associated with improving
one objective at the expense of the others. For this rea-
son, in the core of this adaptive design comes the Linear
Programming Techniques for Multidimensional Analysis of
Preference (LINMAP), which is a Multi-Criterion Decision-
Making Algorithm (MCDMA). In this design, it is utilized
to transform the vast Pareto solutions into a single solution
based on the particular design criteria (i.e., weights assigned
for each objective). In LINMAP, the first step is the Euclidian
non-dimensionalization. It is performed in order to put aside
any fake influence of the diverse ranges and magnitudes of
the objectives of interest [46].

Fnxy =
WxFxy
m∑
y=1

Fxy

(4)

where x is an objective index (x = 1: Ra; x = 2: MRR;
and x = 3: Cost), y is a particular Pareto solution and m is
the number of optimization objectives. Fnxy is the normalized
and scaled version for the original objective x of the yth

solution (Fxy). The weight (W ) is the core of the adaptive
design. Based on its value, the design dependence on dif-
ferent objectives can be altered from 0% (i.e., independent)
to 100% (i.e., solely dependent) on this particular objective.
Afterward, the distances between the point under evaluation
and the utopian point are evaluated. The utopian point is an
imaginary point at which all objectives are at the optimum
level (minimum if minimization and maximum otherwise).
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TABLE 3. Weights used for different designs.

This distance is calculated as follows:

d+y =

√√√√( t∑
x=1

(Fnxy − F
n
xutopian)

)2

(5)

The lower the distance, the better that point fits this particular
design. In this approach, the closest point to the utopian
(smallest d+y ) is ranked first, and the same ranking criteria
is used to rank the rest of the Pareto front solutions if needed.

C. ADAPTIVE WEIGHTING
The core of this study is providing intuitive straight forward
procedures that can be tailored for different applications.
Besides, it should be adaptive enough to provide the designer
with flexible alternative designs based on different criteria.
Without the proposed adaptive design, the multi-objective
optimization will lead to a set of solutions (i.e., Pareto front)
that none of its individual is the best choice in all objectives.
The selection from these points is a challenging task. This
is due to the fact that preferring any individual solution over

another one will lead to a penalty on some of the objectives
while improving the others. This is why, in this study, dif-
ferent weighting criteria shown in Table 3 are implemented
while applying LINMAP to improve the efficiency of this
final selection process. It worth mentioning that this will
not eliminate the penalty mentioned earlier; however, it will
localize the damage in the objective which the designer is
least interested in. For example, consider a rough turning
process where the main concern is to maximize the MRR, the
extensive productivity design in Table 3 will be an excellent
choice to get the machining setting. Besides, a more aggres-
sive setting can be implemented obtained by increasing the
MRR weight to unity, as shown in Table 3, for the intensive
productivity design. The difference between aggressive and
intensive design is similar to the difference between single
and multi-objective design. In other words, in the intensive
designs, all the focus is directed to one objective regard-
less of the others. It is even possible to extend the outlined
procedures in Figure 2 beyond the suggested design values
in Table 4. In fact, the procedures are represented in this
study in an intuitive form that can be extended to handle
any process design. Besides, Table 4 is just an example of
four designs re-occurring in the manufacturing application
altering the focus between process cost and productivity as
well as product quality.

IV. RESULTS AND DISCUSSION
In this section, the results obtained from the proposed adap-
tive approach are discussed based on Table 3. The final
Pareto front set of solutions obtained from MOGA optimiza-
tion is shown in Table 4. For each solution, the machining
parameters (f, DOC, and Vc), as well as the corresponding

FIGURE 6. Pareto front, ranked using LINMAP for a balanced design.
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TABLE 4. Ranked Pareto solutions for all designs.

machining responses (Ra, MRR, and Cost), are outlined.
Besides, these solutions are also ranked based on different
designs in Table 3, and the highest rank solution for each
design is bolded for convenience. Based on Table 4, the con-
ventional Pareto front can be upgraded, as shown in Figure 6,
for the balanced (B) case. The figure shows the final Pareto
front in two different domains, the machining parameters
domain in Figure 6 (a & c) and the corresponding machining
responses in Figure 6(b & d). In addition, Figure 6 shows the
ranks by varying the circle radius. The fittest point for the
balanced design is assigned with the biggest radius.

Although, Figure 6 is limited to a balanced case. Sim-
ilar figures can be generated for the other designs based
on Table 4. Figure 6 shows that for the balanced design,
the highest-ranked solutions are clustered at the high cut-
ting speed (195 m/min and higher) and high depth of cut
(1 mm) relative to other Pareto solutions, as shown in the
top right corner in Figure 6 (c). Additionally, in general,
moderate feeds around 0.14 mm/rev shows higher ranks,
as shown in Figure 6 (a). Moreover, since this design is
compromising between all the responses, Figure 6 (b & d)
are showing that the highly ranked solution is in the middle
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FIGURE 7. Key solutions from the adaptive design.

of all responses (i.e., power, Ra, as well as MRR). These
particular settings are attractive for most basic operation
needs, especially if no sophisticated constraints are imposed
on the process performance. However, such general basic
requirements are not guaranteed for all applications at all the
time. This is why numerous alternatives were proposed in the
current study, as shown in Figure 7. This shows an example
of the proposed adaptive approach capabilities. Figure 7 rep-
resents a comparison between all seven designs proposed
in Table 3.

The balanced one, as discussed earlier, has no preference
in preferring one aspect over the others. However, on the
other hand, each of the other extensive designs focuses on a
specific aspect while at the same time, takes the other aspects
into consideration. On the other extreme comes the intensive
designs, as shown in Figure 7 (b to d). In these designs, all
the attention is paid to one aspect of the machining responses
regardless of the others. In Figure 7 (a), it is evident that the
machining responses considered in this study are conflicting
and cannot be all optimized simultaneously. For example,
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FIGURE 8. (a) Conventional and wiper inserts engagement with the workpiece, (b) wiped asperities and surface profile generated by wiper inserts.

the extensive quality case (EQ), the surface roughness, shows
the lowest value (0.35 µm); however, this comes at the
expense of productivity in terms of MRR (2074.8 mm3/min).
This value is 41.5% lower than the MRR obtained for the
extensive productivity case of 3550.3 mm3/min. This shows
that there is no single solution that will be globally accepted
for all operations. For example, for precision machining or
finish machining process, the intensive quality case, shown
in Figure 7 (b), will be favorable even though it will bring
the productivity (MRR) nearly to half its value compared to
the extensive quality case which is still a quality-oriented
case. However, this may be justified for finishing or precise
machining since the Ra has improved by 40%.

It is important to notice that the proposed design is flexible
since the designer is not obligated to choose between these
two extremes. This is due to the fact that Table 4 provides
more modulating, smooth transitional solutions between
them. Figure 7 (c & d) extends the aforementioned decisions
to productivity and economics design. The intensive produc-
tion design is a good option for a rough machining process
while the cost design-intensive is focused on low energy
consumption, which is critical when only smaller machines
are available or when the power rating is high (i.e., dur-
ing peak electricity demand hours). Comparing the balanced
design and extensive production design gives insights about

the great advantage of wiper inserts. These two designs are
very close in terms of cutting speed as well as the depth of
cut with values around 197 m/min and 0.93 mm, respectively.
However, the main difference between these two settings is in
the feed rate, which has increased from 0.14 to 0.19 mm/rev,
respectively (i.e., 1.36 folds increase). Correspondingly the
MRR and Ra have increased by 1.36 and 1.55 folds, respec-
tively. Although such a trade-off between productivity and
quality in these two designs is expected, using the wiper
inserts led to damping the quality sacrifice.

To prove this, consider the rule that for conventional
machining, the Ra is directly proportional to the square of
the feed rate [47]. Based on this rule, the 1.36-fold increase
in the feed should have led to about 1.85 folds increase
in the Ra instead of the recorded 1.55 folds. This proves
the capability of the wiper inserts to handle higher feeds,
which is contributed to its unique multi-radii geometry. The
multi-radii nose of the wiper inserts leads to a larger engage-
ment area between the workpiece and the tool. Such extended
engagement is a feature that the conventional insert lacks,
as shown in Figure 8 (a). This extended engagement will
lead to different effects exclusive to the wiper inserts. The
first is a wiping effect by the secondary nose to the cusp
region created by the first nose, which shortens asperities
peaks [48], as shown in Figure 8 (b). The second effect
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is the higher cutting temperature corresponding to higher
friction and heat generation [49]. This is why it is expected to
have a considerable increase in the cutting forces and power
associated with the usage of wiper inserts [50]. Even though
the cutting forces increase, the wiper inserts are still known to
have longer tool life [49], [51]. This is explained by the better
distribution of this force on the extended engaged cutting
length, which can improve the tool life up to 20% [52]. How-
ever, this extended contact decreases force; it can adversely
induce chatter in the tool holder and machine [53]. This is
because the extended length is considered as a form of extra
tool-workpiece engagement, which is known to enhance chat-
tering. For this reason, extra precautions (i.e., using vibration
damper or increase machine and tool holder rigidity) may be
required while using wiper inserts [47].

These diverse consequences of using wiper inserts are
the reason why applying this proposed holistic and adaptive
process design is essential. This is because that approach is a
handy tool to deal with the contradictingmachining responses
at different machining settings, which is an extremely chal-
lenging task, particularly for a dynamic process. The pro-
posed approach in this study is not only capable of coping
with this and optimize the utilization of the wiper inserts
but is also applicable to different innovative machining tech-
nologies as well as other applications. To further validate
the proposed procedures, four confirmatory experiments
were conducted according to the parameters of the top
four ranked solutions from selected designs. As shown in
Table 5, the experimental results agree with the predicted
ones. No deviation of more than 7% was found for any of
the measured parameters.

TABLE 5. Confirmatory runs.

V. CONCLUSION AND FUTURE WORK
In this study, the machining parameters of AISI 4340 using
wiper inserts were optimized according to different seven
standard manufacturing design criteria. To attain such a
task, an adaptive framework was developed, which involved
data-driven modeling as well as evolutionary and multi-
criteria-based optimization. The data-driven modeling was
performed using Artificial Neural Network (ANN). This
process involved ANN topology tuning and cross-validation
to assure coming up with a robust and generalized model.
Such models were used to represent the surface roughness,
cost, and power. In the optimization stage, a genetic algorithm

was tuned using hypervolume and integrated with Linear
Programming Techniques for Multidimensional Analysis of
Preference (LINMAP) to complete the novel proposed adap-
tive approach. Based on this approach, different solutions
have been proposed for several sophisticated requirements.
Besides, one of these solutions has been formulated to
serve the most common manufacturing application. This
is referred to as the balanced design in the current study.
At cutting speed, depth of cut and feed of 196.8 m/min,
0.93 mm 0.14 mm/rev, respectively, it compromised between
quality, productivity, and process economics, leading to
surface roughness of 0.419 µm, material removal rate of
26131.6 mm3/min and machining power of 4.04 kW. The
proposed design was validated against four confirmatory
experiments and showed no more than a 7% deviation. The
work presented in this study is a novel step towards flexible,
adaptive approaches that are not limited to a particular appli-
cation or set of requirements. Such approaches are essential
for the current era of smart, sustainable customer-driven
manufacturing. In the future, this work can be extended to
include other responses, such as an upgraded cost model
where both tool wear and tool initial cost are taken into
consideration. These and other extra responses will improve
and prove the capability of the proposed model to represent
the process. Besides, more measurements as tool chatter,
cutting temperature, etc. could be considered in the future
while testing different wiper geometries.
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