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by Michael Thomas KNIERIM

The experience of flow is a unique sensation of complete task absorption and effort-
less action that is highlighted as a correlate of peak performances, personal and social
growth, and general well-being. For organisations, higher flow frequencies, therefore,
relate to a more engaged, skilled, and productive workforce. Especially as global phe-
nomena like increasing knowledge work demand and low worker engagement are
developing, organisations could strongly benefit from fostering workers’ flow experi-
ences. However, facilitating flow represents a substantial challenge due to the variety
of workers’ abilities, tasks and workplace configurations. Knowledge workers are
faced with unstructured and complex tasks, that require numerous domain-specific
abilities and cooperation with others. Workplaces are diversifying with boundaries
disappearing between centralized and digitally-mediated workspaces. This variety
means that only person-, task- and situation-independent approaches can deliver
comprehensive flow support. For this reason, research on the experiences neurophys-
iological basis is increasingly pursued. On this basis, adaptive Neuro-Information
Systems (NeuroIS) could be developed that are able to detect flow continuously
(especially through wearable sensor systems), and that can provide flow-supporting
mechanisms. Presently, despite these efforts, the knowledge on how to detect flow
with neurophysiological measures is sparse, highly fragmented, and lacks experimen-
tal variety. On the individual level, competing propositions exist that have not been
consolidated through cross-situational, and multi-sensor observation. On the group
level, almost no research has been conducted to investigate neurophysiological corre-
lates in social interactions, particularly not in digitally-mediated interactions. This
dissertation addresses these gaps through the cross-situational observation of flow
using wearable ECG and EEG sensor systems. In doing so, limitations in the present
state of experimental flow research are addressed that refer to central shortcomings of
established paradigms for the controlled elicitation of flow experiences. Specifically,
two experiments are conducted with manipulations of difficulty, naturalism, auton-
omy, and social interaction to investigate the question of how flow elicitation can be
intensified, and the experience detected more robustly across situations. These inves-
tigations are based on an extensive integration of the theoretic and empiric literature
on flow neurophysiology. Altogether, the results suggest flow to be represented by
moderate physiological activation and mental workload, by increased attentional task
engagement and by affective neutrality. Especially EEG features indicate a diagnostic
potential to separate lower from higher flow intensities by the reflection of optimal
and non-optimal (individual and group) task difficulties. To catalyse, that the positive
promises of fostering flow in individuals and social units, can be realised, avenues to
advance flow facilitation research are outlined.
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Das Flow-Erlebnis beschreibt einen Zustand vollständiger Aufgabenvertiefung
und mühelosen Handelns, der mit Höchstleistungen, persönlichem Wachstum, sowie
allgemeinem Wohlbefinden verbunden ist. Für Unternehmen stellen häufigere Flow-
Erlebnisse der ArbeitnehmerInnen daher auch eine produktivitäts- und zufrieden-
heitsfördernde Basis dar. Vor allem da sich aktuell globale Phänomene wie die
steigende Nachfrage nach Wissensarbeit und das niedrige Arbeitsengagement zus-
pitzen, können Unternehmen von einer Förderung von Flow profitieren. Die Unter-
stützung von Flow stellt allerdings aufgrund der Vielfalt von Arbeitnehmerfertigkei-
ten, -aufgaben, und -arbeitsplätzen eine komplexe Herausforderung dar. Wissensar-
beiterInnen stehen dynamischen Aufgaben gegenüber, die diverse Kompetenzen und
die Kooperation mit anderen erfordern. Arbeitsplätze werden vielseitiger, indem die
Grenzen zwischen ko-präsenten und virtuellen Interaktionen verschwinden. Diese
Vielfalt bedeutet, dass eine solide Flow-Förderung nur durch personen-, aufgaben-
und situationsunabhängige Ansätze erfolgen kann. Aus diesem Grund werden
zunehmend die neurophysiologischen Grundlagen des Flow-Erlebens untersucht.
Auf deren Basis könnten adaptive Neuro-Informationssysteme entwickelt werden,
die mittels tragbarer Sensorik Flow kontinuierlich erkennen und fördern können.
Diese Wissensbasis ist bislang jedoch nur spärlich und in stark fragmentierter Form
vorhanden. Für das Individuum existieren lediglich konkurrierende Vorschläge,
die noch nicht durch situations- und sensorübergreifende Studien konsolidiert wur-
den. Für Gruppen existiert noch fast keine Forschung zu neurophysiologischen
Flow-Korrelaten, insbesondere keine im Kontext digital-mediierter Interaktionen. In
dieser Dissertation werden genau diese Forschungslücken durch die situationsüber-
greifende Beobachtung von Flow mit tragbaren EKG und EEG Sensoren adressiert.
Dabei werden zentrale Grenzen der experimentellen Flow-Forschung berücksichtigt,
vor allem die Defizite etablierter Paradigmen zum kontrollierten Hervorrufen von
Flow. Indem Erlebnisse in zwei kognitiven Aufgaben und mehreren Manipulatio-
nen (von Schwierigkeit, Natürlichkeit, Autonomie und sozialer Interaktion) variiert
werden, wird untersucht, wie Flow intensiver hervorgerufen und wie das Erlebnis
stabiler über Situationen hinweg beobachtet werden kann. Die Studienergebnisse
deuten dabei insgesamt auf ein Flow-Muster von moderater physiologischer Ak-
tivierung und mentaler Arbeitslast, von erhöhter, aufgabenorientierter Aufmerk-
samkeit und von affektiver Neutralität hin. Vor allem die EEG Daten zeigen ein
diagnostisches Potenzial, schwächere von stärkeren Flow-Zuständen unterscheiden
zu können, indem optimale und nicht-optimale Aufgabenschwierigkeiten (für In-
dividuen und Gruppen) erkannt werden. Um das Flow-Erleben weiter zu fördern,
werden geeignete Wege für zukünftige Forschung abschließend diskutiert.
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Chapter 1

Introduction

1.1 Motivation

Flow is described as a unique experience of complete task immersion, in which action
and awareness merge, concentration feels effortless, and that is accompanied by peak
performances and exhilarating satisfaction (Csikszentmihalyi, 1975). Repeated flow
experience has been related to individual and collective benefits, as flow is strongly
linked to general well-being in life, and the strengthening of social relationships
(Keeler et al., 2015; Tse, Nakamura, and Csikszentmihalyi, 2020). In the work domain,
flow experiences have been associated with better job performances (through in-
creased productivity and creativity) and more worker satisfaction, leading to reduced
employee turnover and shielding from burnout (Fullagar and Delle Fave, 2017; Yot-
sidi et al., 2018). Similarly, research on the social dimension of flow at work highlights
the positive links of flow to workgroup performances, interaction satisfaction and
collective efficacy development (Keith et al., 2016; Zumeta et al., 2016; de Moura Jr
and Bellini, 2019). Due to these numerous beneficial relationships of flow to life and
work experiences, the facilitation of flow represents a desirable goal for scholars and
organisational practitioners (de Moura Jr and Bellini, 2019). At the same time, global
polls indicate a severe lack of engagement of workers across professions (Gallup,
2017; Parent-Thirion et al., 2015). As flow is considered as a primordial instance of
deep (task or profession) engagement (Tse, Nakamura, and Csikszentmihalyi, 2020;
de Moura Jr and Bellini, 2019), and as these polls similarly highlight the benefit
of engagement for worker productivity and well-being, the need to foster flow at
work is emphasised further. Therefore, the research on flow in the workplace has
seen increasing attention in recent years (Fullagar and Delle Fave, 2017; de Moura
Jr and Bellini, 2019). However, the facilitation of these experiences still represents a
significant challenge.

The situational requirements for flow are complex and rooted in the cognitive-af-
fective dynamics of the individual. The facilitation of concentration, alertness and
recovery, the shielding from self-criticism and the balance of workload, are amongst
some of the flow requirements that are difficult to manage in today’s hectic work-
places (Ceja and Navarro, 2012; Spurlin and Csikszentmihalyi, 2017; Peifer et al.,
2019). Specifically, in these workplaces, a vast diversity of tasks and configura-
tions is present that poses significant challenges to the structured facilitation of flow.
Demands for unstructured Knowledge Work (KW) are growing, due to the rise of
Artificial Intelligences (AI) that are replacing the repetitive work in sales, adminis-
trative support, or service tasks (Frey and Osborne, 2017). Additional developments
including flat hierarchies, self-directed work and job-crafting further extend this
KW complexity (Spurlin and Csikszentmihalyi, 2017; Bakker and Woerkom, 2017).
These developments require increased individual expertise and entrepreneurship,
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and the utilization of small groups (Wuchty, Jones, and Uzzi, 2007; Keith et al., 2016).
Also, more complex work environments like as open offices and digitally-mediated
collaboration are pervading the KW domain and are supposed to facilitate worker
interaction and flexibility (Spurlin and Csikszentmihalyi, 2017). However, these
trends are accompanied by problematic phenomena such as information overload
(e.g. through high frequencies of electronic messaging), or increases in professional
ambiguities due to requirements of more self-organisation (Bakker and Woerkom,
2017). These phenomena stand in contrast to flow experience requirements as they
represent attention-competing stimuli, unclear goals, a lack of feedback, and the
elicitation of frustration or anxiety (Spurlin and Csikszentmihalyi, 2017; Bakker and
Woerkom, 2017). Similarly, social interactions at work have become more complex.
Concepts such as open offices and virtually distributed teams bring opportunities to
communication, but also impede senses of social connectedness through the alteration
of the communication of social information (Derks, Fischer, and Bos, 2008; Chanel
and Mühl, 2015). At the time of writing this introduction, this shift towards decen-
tralised, remote workplace configurations is strikingly emphasised by the quarantine
measures due to the global pandemic of SARS-CoV-2. The nature of such digital
tools, therefore, alters how flow can be experienced in workgroup interactions, and
further complicates the provision of flow facilitation. Altogether these developments
mean that comprehensive flow facilitation at work must revolve around a person-,
task- and situation-independent approach. One such approach is the development of
adaptive Neuro-Information Systems (NeuroIS).

Adaptive NeuroIS leverage the information from (wearable) neurophysiological
sensors to provide continuous insight into the presence, intensity, and dynamism of
cognitive-affective experiences (Riedl and Léger, 2016; Krol, Haselager, and Zander,
2019; Brouwer et al., 2015). This characteristic means that an adaptive NeuroIS reacts
to the user’s internal state to assist across various situations. Eventually, systems able
to adapt to flow intensities could, for instance, reduce flow interruptions (e.g. by
blocking incoming messages - see, e.g. Rissler et al., 2018) or provide feedback infor-
mation to improve flow regulation (e.g. by adjusting task difficulty, or by optimising
arousal levels through bio- or neurofeedback - see Lux et al., 2018; Knierim et al.,
2017a). Especially electrophysiological methods, like Electrocardiography (ECG)
to observe changes in the heart, or Electroencephalography (EEG) to observe the
electrical activity of neuron assemblies in the brain, provide promising means for
continuous user state detection (Blankertz et al., 2016; Wascher et al., 2019). These
promises are based on the low costs, high portability and high temporal resolution
of these measures, which makes them both valuable for fundamental research and
the eventual transfer of findings into real-world applications. Yet, despite their ap-
peal, adaptive NeuroIS are still far from real-life applicability (Blankertz et al., 2016;
Brouwer et al., 2015). Their limitation is to date based in questions of construct
measurement validity (which constructs can be identified, with high specificity, by
the used sensors), but also in challenges from measurement sensitivity, objectivity,
and reliability. This limitation means that more research is required that bridges
fundamental and applied settings to enable and instantiate adaptive NeuroIS. For
the facilitation of flow experiences, in particular, more research at these intersections
is needed. While survey-based research has identified a variety of individual, group,
and organisational variables that influence flow, experimental and neurophysiologi-
cal flow research are still in early stages. Importantly, despite scholastic efforts, there
is no robust method available yet to detect flow experiences continuously (Moneta,
2012; de Moura Jr and Bellini, 2019). Currently, the only way to detect flow is to
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interrupt someone’s task and ask about their current experience - which disrupts the
(potential) flow experience altogether (Moneta, 2012; de Moura Jr and Bellini, 2019).
Therefore, to enable and instantiate flow-fostering, adaptive NeuroIS, more funda-
mental knowledge about how to observe flow using wearable neurophysiological
sensors needs to be developed.

1.2 Dissertation Research Agenda

The present state of flow neurophysiology research is marked by fragmented findings
from paradigmatic silos, especially in terms of task contexts and research designs.
Having surveyed the available literature on flow neurophysiology (see Chapter 4),
it can be summarised, that there has so far been a rather large absence of the study
of flow neurophysiology in KW. Instead, a focus on highly controlled game tasks
that are manipulated in difficulty is present (the so-called Difficulty Manipulation
- DM paradigm). This focus has led to a problematic common-method bias that
limits the transferability of previous findings to the work context. Thus, to provide a
foundation for flow-facilitating adaptive NeuroIS, first and foremost, research needs
to be advanced on flow in cognitive tasks. Consequently, two central limitations of the
Difficulty Manipulation (DM) paradigm need to be overcome. First, this paradigm
has been criticised for eliciting only shallow flow experiences (Delle Fave, Massimini,
and Bassi, 2011; Hommel, 2010). Second, the focus on single tasks and paradigms
limits the reliability of identified neurophysiological patterns for the detection of
flow intensities. These biases have led to calls for more creative laboratory research
that can intensify the flow elicitation in controlled settings (Harris, Vine, and Wilson,
2017b; Hommel, 2010) and for more cross-situational experiments (Barros et al.,
2018; Katahira et al., 2018). In addition, a low degree of integration of research
is found (e.g. 80% of flow-related Electroencephalography (EEG) studies cite one
or fewer of their related studies, nor theoretic flow neurophysiology work - see
Section 4.3). On the individual level, this lack of research integration is a likely
reason why to date, the understandings of the neurophysiological configuration
during flow experiences are often contradictory and sparse. On the group level,
almost no research has been conducted to investigate neurophysiological correlates
in social interactions. Research that aims to facilitate flow in the context of KW must,
therefore, conduct cross-situational and multi-sensor experiments that are integrated
with related work. First such work needs to consolidate an understanding of the
individual neurophysiology of flow using wearable sensor systems. Afterwards,
given the growing prevalence of decentralised workgroups in KW, these foundations
must be extended to the understanding of flow in small groups, particularly in
digitally-mediated interaction scenarios. This understanding includes not only how
individuals’ flow is affected by social interaction but also how group-level flow
experiences can be described and detected continuously.

The research in this dissertation aims to provide a foundation for the future de-
velopment of flow-fostering adaptive NeuroIS by advancing the understanding of
how to elicit flow under novel (more and less) controlled settings, and by observing
neurophysiological data across these situations with wearable sensors. Thereby, the
two main limitations of the dominant DM paradigm for flow research are addressed,
namely the elicitation of shallow flow experiences and the lack of cross-situational
research. Therefore, in a first experiment a more naturalistic (i.e. closer to a real-world
KW setting) laboratory observation approach is developed that integrates controlled
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environments and the original flow field research method, the Experience Sampling
Method (ESM). In doing so, improvements to both internal validity and external
validity of flow neurophysiology research are proposed. For the same purpose, in
a second experiment, two variables are then integrated into a DM paradigm, the
provision of more autonomy, and the inclusion of a social interaction. The latter
approach provides not only a means to intensify flow (as flow is reported to be deep-
ened through social interaction - see Magyaródi and Oláh, 2017; Tse et al., 2016) but
also allows to expand the previous work into the context of flow in digitally-mediated
social interaction - a highly relevant workplace interaction format. Spanning these
scenarios, sensor systems are integrated into a measurement instrumentation, that
is likely to become usable in real-world settings in the near future (i.e. simple and
wearable ECG and EEG sensors). These combinations critically extend the knowledge
base on cross-situational neurophysiological flow observation, with high-potential
measurement tools. Formally, the Research Goals (RG) for this dissertation are:

• RG1: Integrate the present body of knowledge on how neurophysiological data
can be used to detect flow experiences.

• RG2: Identify how flow experiences can be intensified in the laboratory in
cognitive tasks.

• RG3: Consolidate which neurophysiological patterns of flow can be detected
with wearable sensors across different situations, including simplistic, natural-
istic, and social interaction scenarios.

To reach these goals, the present work provides extensive integrations of the
related literature and the results from multiple experimental instances and a variety of
measurement instruments. The specific contributions are embedded in the description
of the structure of the dissertation that concludes this introductory chapter.

1.3 Dissertation Structure

It is common in academic research that in the continuous discussion and exchange
with other researchers, a research project is improved, shaped, evaluated, and even
sometimes completely inverted. Research is to considerable extent teamwork, as in
many cases, a single person would not be able to perform the data collection alone
or know all available literature by heart. The same is true for presented research,
many hands and heads shaped the results to small or sometimes even significant
extents. Some sections of this dissertation have for that purpose been submitted to
conferences for additional peer review. For each section where this applies, the related
publications are disclosed at the start of the section. All referenced publications,
including co-authors and attribution of contributions, are further detailed in the
Appendix Section A.1.

To establish a background, Chapter 2 describes the state of research on flow theory.
This chapter covers how flow is conceptualised and researched across a variety of
domains like sports, arts, and work. Importantly, this chapter discusses how flow is
currently measured and highlights self-report instruments as the present standard
to establish a ground truth for flow observation. Afterwards, in Chapter 3, the
latest developments in experimental flow research are summarised. In particular,
the primordial role of DM paradigms is critically appraised, and the two major
alternatives and extensions are presented. The first is the provision of more natural
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tasks through controlled Experience Sampling Method (cESM) and the provision of
more task autonomy (= Autonomy Manipulation - AM). The second is the observation
of flow in social interaction (= Social Context Manipulation - SCM). Mainly due to
the comparison of physiological findings across these paradigms, the utilisation of
multiple paradigms represents a valuable contribution to the field of flow research.
The herein conducted neurophysiological study of flow is rooted in comprehensive
reviews of its related work. Chapter 4 presents the results from two Structured
Literature Reviews (SLR) that summarise the state of knowledge on the Peripheral
Nervous System (PNS) and Central Nervous System (CNS) configurations during
flow. The reviews highlight that to date, no distinct markers are known that allow to
directly identify the occurrence of flow in someone’s body or brain. This gap is likely
due to a low degree of integration, that has impeded the discovery of more detailed
patterns. The integration of these works makes the Structured Literature Review
(SLR)s valuable contributions for flow and NeuroIS research. This chapter also
includes a section that discusses the principles and limitations of psychophysiological
research that are at the core of the research in this dissertation.

Building on the established background, Chapters 5, and 6 document the conducted
laboratory experiments. In the first experiment in Chapter 5, the intensification of
flow in the laboratory is pursued by contrasting an established mental arithmetic DM
task to the more naturalistic observation (cESM) of thesis writing under controlled
conditions. Main results highlight a potential qualitative divergence of reported flow
in the form of flow with reduced stress perceptions, but greater physiological demand
in the cESM approach. The higher autonomy in the cESM task is considered as one
potential cause of this divergence. Besides, analyses of EEG patterns across tasks
provide further evidence that refutes a major theory in flow neurophysiology (namely
Transient Hypofrontality Theory - THT) that posits downregulation of frontal brain
areas during flow. Instead, during flow, frontal areas are found to show increased
activity (in the form of decreased Alpha frequency power), and more stable frontal
activation over time (less fluctuation) that is likely related to focused task attention.
In the second experiment in Chapter 6, results from the first experiment are followed
up by extending the DM task with a condition for self-selected optimal difficulty.
This manipulation reviews the question if more autonomy intensifies flow (= Au-
tonomy Manipulation - AM) in a more controlled form. In addition, the traditional
observation of task performance in isolation is contrasted to DM in small groups (=
Social Context Manipulation - SCM). Thereby, the potential of intensifying flow in
the laboratory through the inclusion of social interaction is investigated. Also, this
experiment represents the first step to understand the individual neurophysiological
processes during flow in digitally-mediated social interaction. In contrast to related
work, flow is not found to be increased in groups, which is considered to be caused
by a lack of social information or a lack of opportunities for selecting sub-tasks that
represent more optimal difficulty (a lack of autonomy). Neurophysiological analyses
further consolidate previous findings. Specifically, they confirm propositions that
flow is likely represented by moderate physiological activation (indicated by moder-
ately reduced Heart Rate Variability (HRV) levels), elevated attentional engagement
(indicated by reduced frontal EEG Alpha power), and moderate mental workload
(indicated by elevated EEG Theta and HiBeta power). The vital contribution of this
work is two-fold. First, as diverse findings on configurations of heart and brain are
currently present in the related literature, the present findings that span different
manipulations, provide valuable results to consolidate the body of knowledge on flow
neurophysiology. Second, the results highlight limitations and a promising potential
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to detect boundary conditions (i.e. non-optimal workloads) for the emergence of flow
in the employed wearable EEG system. Specifically, higher Beta frequency ranges
are found as a workload-sensitive and specific feature that is more robust than other
features in the used feature space, and that even shows similar influences through
other group members as do the reported flow experiences.

Following up on the results on the individual level, Chapter 7 further explores the
social interaction condition of the second experiment to understand better, which
group-level flow dynamics unfold in these increasingly relevant interaction scenarios.
Given the added complexity of social interactions, analyses are pursued that seek to
identify potential causes and consequences of flow experience intensities in digitally-
mediated interactions. First, this includes the study of measures of configurational
and perceived diversity metrics of the groups (e.g. ages, genders, technical abilities,
but also perceptions of diversity) and whether or not they show relationships to
experienced flow. In this work flow experiences in groups appear to be independent
of most of these diversity metrics. However, perceived diversity in group member
effort is found to predict flow experience intensities. Second, the relationship of
flow to desirable group interaction experiences (group performance, satisfaction and
growth) is investigated. While such relationships have repeatedly been reported
before, the novelty of the lower flow experience in small groups in this experiment
and the digitally-mediated interaction setting warrant the question if such relation-
ships are affected. The results confirm that flow is positively related to these group
interaction experiences also in digitally-mediated interaction. Third, the possibility of
an emergent group-level flow experience is investigated. This exploration represents
a particularly interesting direction, given its sparseness in the related literature. The
present experiment shows that a weak to moderately strong reciprocal influence
of group members on individual flow (i.e. a shared flow) is likely emerging in the
designed setting. One the one hand, this confirms propositions that a group-level
flow experience might exist. However, the found levels are much lower than in the
one study that conducted similar analyses. Following up the possible reasons for
this difference, a particular contribution of this chapter is the analysis of possible
covariates that enable the emergence of shared flow experiences. It is observed
that reciprocal flow influences are stronger when group members perceive higher
autonomy, and when the task difficulty is lower. The latter finding is confirmed
through experiment design, report, behaviour, and neurophysiology features. This
observation implies that neurophysiological data could be used to detect boundary
conditions (i.e. non-optimal workloads on the group level) for the emergence of
shared flow experiences. Lastly, by the observation of flow reports and EEG features,
a similar pattern in both variables is found that could indicate a relationship between
reciprocal group influences of flow and workload. As flow theory is strongly rooted
in the argument that (elevated) optimal difficulty is required for more intense flow
experiences, the theory could be extended by the proposition that (optimal) recip-
rocal influences of difficulty act similarly as a precondition for the emergence and
intensification of shared flow experiences.

To consolidate both experiments, the findings are integrated and discussed in
Chapter 8. Specifically, it is discussed how the different experimental approaches
to elicit flow experiences compare regarding the goal of intensifying flow (for indi-
viduals and groups) under controlled conditions. As a central result, it is appraised,
that the integration of higher levels of participant autonomy emerged as the most
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effective driver of flow intensification. Opportunities to further extend and integrate
this factor into flow laboratory research are outlined. In terms of neurophysiological
observations, the amalgamation of findings from the experiments in this dissertation
(that relied primarily on wearable sensors) leads to a series of consolidating and
novel results that are discussed extensively. In principle, it is described how wearable
sensors allow describing the configuration of the brain and the heart during flow.
From the present data, it can be summarised that flow appears to be represented by
moderate physiological activation (moderate HRV) and mental workload (moderate
HiBeta power - and tentatively elevated frontal Theta power), and by elevated at-
tentional engagement (reduced and stable frontal Alpha). In addition, flow appears
to be represented by an absence of variation in approach-avoidance motivation or
affective valence (as indicated by the absence of Frontal Alpha Asymmetry (FAA)
changes). Importantly, these results emerge through the inclusion of various mecha-
nisms for the elicitation of flow experiences in the laboratory (DM, cESM, Autonomy
Manipulation (AM), and Social Context Manipulation (SCM)), which represents the
major contribution of this work to the flow neurophysiology literature. Of particular
relevance is the finding that through frequency band personalisation and sub-segmen-
tation promising new options for flow detection emerged. Specifically, the frequency
band segmentation highlighted the particular sensitivity of the HiBeta frequency
ranges with manipulations of difficulty. An additional absence of confounds with
time, and a group level influence on HiBeta power levels, further indicate that this
higher frequency range could have a valuable role for the observation of flow on
the individual and group level. While a connection of Beta powers to flow is not
entirely new, its sensitivity and emergence over a wider area of the scalp (i.e. also in
wearable EEG) make it a promising feature to be leveraged in adaptive NeuroIS in the
future. The opportunities for the development of adaptive NeuroIS based on current
possibilities and under consideration of the (eventual) ethical limitations represent
the last major topics of discussion. Herein, of high importance is an understanding,
that flow must be balanced with episodes of recovery. Also, ethical ramifications, like
the dangers of developing addictive tendencies and how to take preventative action
in adaptive systems research are described, and prescriptive actions are suggested,
like for example the facilitation of flow with diversification amongst activities.

Finally, in the concluding Chapter 9, the contributions of these works are sum-
marised. The first major contribution is the integration of neurophysiological knowl-
edge about flow in the electrophysiological domain (specifically ECG and EEG), from
two SLR, and two multi-paradigm experiments. As a promising metric, in particular,
high-frequency EEG features are found to provide the interesting potential to not
only unobtrusively identify boundary conditions for individual flow, but also for
shared flow experiences of small groups - all given using wearable sensor systems.
The second major contribution is the extension of flow research by the exploration of
alternative research paradigms and the identification of new hypotheses on how to
elicit flow in the laboratory with increased internal and external validity. Hopefully,
the provision of these findings contributes a piece to the larger puzzle that is the
facilitation of flow at work that has been highlighted as such a desirable goal for
individual, organisational and societal reasons (Bakker and Woerkom, 2017; Spurlin
and Csikszentmihalyi, 2017; Gallup, 2017).
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Chapter 2

Flow Theory

Contents of this section are in part adopted or taken from Knierim et al. (2017c),
Knierim et al. (2018a), Knierim et al. (2018b), Knierim, Nadj, and Weinhardt (2019),
and Knierim et al. (2019). See Section A.1 for further details.

2.1 Flow Importance & Components

In this dissertation, the central construct of interest, is the experience of flow, a
primordial instance of (task and profession) engagement (Tse, Nakamura, and Csik-
szentmihalyi, 2020; de Moura Jr and Bellini, 2019). To foster flow experiences through
adaptive Neuro-Information Systems (NeuroIS), a stable theoretic basis is required
to serve as the conceptual reference for such an adaptive system in the future (Riedl,
Davis, and Hevner, 2014; Brouwer et al., 2015). This chapter provides a compre-
hensive overview of flow theory’s importance, its components, and its research
approaches to establish the understanding on which the reviews and experiments in
this dissertation are built.

Flow theory represents a body of theoretic and empiric works in the realm of posi-
tive psychology (Seligman and Csikszentmihalyi, 2000), conceptualised by Mihaly
Csikszentmihalyi (1975; 1990; 1996). The theory focuses on experiential states that
explain intrinsically motivated behaviour, peak performances, personal growth and
general well-being in life (Tse, Nakamura, and Csikszentmihalyi, 2020; Nakamura
and Csikszentmihalyi, 2009; Moneta and Csikszentmihalyi, 1996). Flow theory re-
sulted from Csikszentmihalyi’s interest in the question of why some individuals (e.g.
professional musicians, artists, or athletes) pursued daily activities with the exertion
of extensive mental and physical resources, without typically expected incentives (e.g.
monetary compensation) (Csikszentmihalyi, 1975). Thousands of interview hours
later, the author concluded, that intrinsic motivation and the prospect of experiencing
a highly rewarding mental state cause this type of behaviour (Csikszentmihalyi,
1975; Sadlo, 2016). Thus, a central thesis of the theory emerged, that psychological
well-being and happiness are not generated by material artefacts, but through the
pursuit of intrinsically motivated behaviours. In doing so, a so-called “optimal”
psychological experience (flow) is elicited, that creates a feeling of high intrinsic
reward and satisfaction (Nakamura and Csikszentmihalyi, 2009). Due to this lack of
extrinsic rewards, flow experiences have been termed autotelic (greek autós =“self”
and télos = “goal”). To pursue flow means to pursue an activity just for the sake
of experiencing it (Asakawa, 2004; Moneta and Csikszentmihalyi, 1996; Nakamura
and Csikszentmihalyi, 2009). Flow is, therefore, also termed an archetypal form of
intrinsic motivation (Deci and Ryan, 2000). Because these flow states are experienced
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as so rewarding, individuals are incentivised to seek out flow-opportunities over and
over again (Nakamura and Csikszentmihalyi, 2009). To experience flow, individuals
need to seek out situations with increasing challenges, as the experience of capac-
ity (skill) extension is considered a central driver of flow emergence (Moneta and
Csikszentmihalyi, 1996; Nakamura and Csikszentmihalyi, 2009; Stavrou, 2008).

In the flow state, individuals act with total involvement and absorption in the activ-
ity, to the degree that awareness of the self, the environment and time are lost (Moneta
and Csikszentmihalyi, 1996; Nakamura and Csikszentmihalyi, 2009). More explicitly,
the experience of flow is conceptualised to encompass nine distinct characteristics:
(1) difficulty-skill balance, (2) clear goals, (3) unambiguous feedback, (4) merging of
action and awareness, (5) perception of total control, (7) loss of self-consciousness,
(8) transformation of time, (9) concentration on the task at hand, and (9) autotelic
experience (see Figure 2.1). These nine characteristics were later separated into two
parts that are the preconditions of flow experiences (dimensions 1-3) and the core
components (dimensions 4-9) (Nakamura and Csikszentmihalyi, 2009). Over the
years, these dimensions and categorisations have been developed further by different
research groups. For example, in an effort for more parsimonious conceptualisation
and following empiric validation of survey instrument developments, Engeser and
Rheinberg (2008) argue for a reduction of the core flow components to the dimensions
of absorption and fluency. Besides, the authors have remarked that affective expe-
rience components, e.g. enjoyment or reward, are more appropriately considered
as consequences to flow because the lack of self-awareness during flow makes the
conscious experience of affect unlikely (Engeser and Schiepe-Tiska, 2012). As another
example for the conceptual nuance, Bakker (2008) argues for a simplification of the
flow construct to the dimensions of absorption, enjoyment and intrinsic motivation
and therefore integrates affective and motivational constructs into the flow experience.
Nevertheless, while these distinctions are not unanimously shared, flow scholars
consider, that there is overall a high level of consensus about the components of flow
(Engeser and Schiepe-Tiska, 2012). Flow exists on a continuum of intensity. That
means, flow should not be considered as a binary experience (flow or non-flow),
but rather as a state that can have no intensity, little intensity (i.e. shallow flow),
or high intensity (i.e. deep flow) (Moneta, 2012). The differentiation can be seen
in the emphasis of isolation from the environment, the lack of self-awareness, or
the distortion of time (Moneta, 2012). In the most intense flow experiences, time
seems to be altered severely, and situations can appear to occur in slow-motion like
speeds (Csikszentmihalyi, 1975). In contrast, a less intense flow experience might
lead to forgetfulness of time, when, for example, playing a video game in which
one is absorbed. This distinction of flow intensity as a continuum is an important
assumption in the measurement of flow.

Flow experiences are said to be possible in almost any task, as long as they are
sufficiently complex (but structured) and that active engagement is required from
the individual (i.e. passive tasks like watching TV have been found to be less con-
ducive to flow) (Moneta and Csikszentmihalyi, 1996; Delle Fave and Massimini, 2005;
Csikszentmihalyi, 1975; Csikszentmihalyi and LeFevre, 1989). In support of this
proposition, studies have found support for the experience of flow in contexts like
musical performance (Manzano et al., 2010; Jaque, Karamanukyan, and Thomson,
2015), academic learning (Engeser and Rheinberg, 2008), gaming (Harmat et al., 2015;
Klarkowski, 2016), online surfing or shopping (Mauri et al., 2011; Cipresso et al.,
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FIGURE 2.1: Flow Theory Components Including Two Alternative
Perspectives by Engeser and Rheinberg (2008) and Bakker (2008).

2015), or work (Quinn, 2005; Bakker and Woerkom, 2017). Within the preconditions
for flow to occur, the balance between perceived difficulties of the task and perceived
abilities of the individual (that both also have to be present at a high level), has
been discussed as a primal factor and has spawned theoretic models that aim to
describe psychological experience like flow, boredom, anxiety, apathy (and more) in
terms of the interplay of these two dimensions (Csikszentmihalyi, 1975; Moneta, 2012;
Nakamura and Csikszentmihalyi, 2009; Fong, Zaleski, and Leach, 2015). Figure 2.2
details the historical development of these models. For these models, a few central
lines of reasoning need to be highlighted. First, the dimensions of difficulty and skill
refer to subjective appraisals of these dimensions. This subjectivity means that in
a given situation it is considered less critical what the objective levels of the two
dimensions are, but how the individual perceives them to be (Csikszentmihalyi, 1975;
Csikszentmihalyi and LeFevre, 1989; Moneta and Csikszentmihalyi, 1996; Nakamura
and Csikszentmihalyi, 2009). Second, the balance of the two dimensions is considered
to be required present at a sufficiently high level of both difficulty and skill. This
requirement means, that flow eliciting situations require the individual to stretch
already well-developed abilities. Only in this situation, the individual is not only
enjoying the moment but extends capacities (i.e. realises the development of abil-
ities and increases in personal complexity) (Csikszentmihalyi and LeFevre, 1989).



12 Chapter 2. Flow Theory

FIGURE 2.2: Flow Experience as a Function of Difficulty and Skill - See
Moneta (2012).

This fact is increasingly represented in the refinements of the difficulty-skill models
(first by the inclusion of individualised, i.e. z-scored, above-average levels of both
dimensions, later as the intercept in the regression model). In its latest iteration, the
difficulty-skill models culminated in a three-dimensional model based on regression
modelling perspectives (Moneta, 2012). In this approach, flow (“optimal” experience)
is explained by the heightened presence (intercept β0 above 0) of difficulty (β1) and
skill (β3), that lead to an intensification of flow, together with the required balance
of the two dimensions for the potentiality of flow (β3). The associated regression
equation thus becomes:

( f low) experience = β0 + β1di f f iculty + β2skill + β3|challenge− skill|

The regression model approach was conceived to overcome the limitation of
earlier models for the explainability of the different experiential components in the
quadrant and channel models. Specifically, studies on the earlier models showed
limited potential to explain intensity differences in subjective experience as a product
of difficulty and skill balance (i.e. flow intensities), (Ellis, Voelkl, and Morris, 1994;
Moneta, 2012), or how difficulty and skill alone contribute to flow experiences. Impor-
tantly, the regression model reduces the explanatory focus towards the “optimality” of
experience and therefore allows to predict higher levels of flow (optimal experiences),
and non-flow (non-optimal experiences) without also having to explain the exact type
of other (i.e. non-flow) experience. Therefore the model represents not only a more
refined, but also a more parsimonious theoretic account of this central prediction in
flow theory. Beyond the sophistication and validity of these difficulty-skill models, it
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needs to be appraised, that the validity and dominance of this difficulty-skill-balance
argument for flow potentiality are also heavily criticised. Some authors argue, that
there are diverging empirical results that highlight that some individuals favour
balance while some favour slight imbalances (Csikszentmihalyi and LeFevre, 1989;
Keller et al., 2011; Moneta and Csikszentmihalyi, 1996; Løvoll and Vittersø, 2014).
Also, some research documents the fact that some individuals tend to experience
flow more often than others, for reasons that are not yet fully known (Asakawa, 2004;
Ullén et al., 2012; Moneta, 2012).

Regardless of its potentiality, the experience of flow is attributed to coincide with
excellent performances and heightened creativity (Asakawa, 2004; Csikszentmihalyi,
1975; Nakamura and Csikszentmihalyi, 2009). A large number of studies documents
the relationship between flow and improved task performances across various do-
mains like academia, sports, and work (Engeser and Rheinberg, 2008; Stavrou et al.,
2007; Schüler, 2007; Brunner and Schueler, 2009; Yotsidi et al., 2018). Thereby, associ-
ations between flow and subjective and objective performance variables are detected
for short-term (i.e. state) observations and long-term (i.e. longitudinal) measure-
ments. The flow-performance relationship is explained by the flow characteristics
that describe a highly functional state (Engeser and Rheinberg, 2008). For example,
high concentration during flow and a loss of self-consciousness are supposed to align
attentional processes efficiently, and the rewarding experience supposedly increases
task motivation, effort, and perseverance (Brunner and Schueler, 2009; Engeser and
Rheinberg, 2008). These propositions are further elaborated by neuroscientific work
that argues for enhanced neural cooperation of attention processes (Harris, Vine,
and Wilson, 2017b; Weber et al., 2009). In particular, it is supposed that during flow,
task-related attention is shielded from interference by alerting or orienting attention
processes, and that impulse control is improved (Harris, Vine, and Wilson, 2017b;
Manzano et al., 2013). In addition, flow experiences have been linked to increases
in general well-being (Tse, Nakamura, and Csikszentmihalyi, 2020). High levels of
intrinsic satisfaction and enjoyment are ascribed to accompany or follow flow, which
is why higher frequencies for flow experience are assumed to improve well-being
(higher frequencies of positive emotion experience are generally found as an impor-
tant contribution to general well-being - see Lyubomirsky, King, and Diener, 2005).
The intrinsic enjoyment is considered to be rooted in the experience of competence
(self-satisfaction from mastering a difficult task at the edge of one’s abilities, but also
cognitive efficiency - see Harris, Vine, and Wilson, 2017b). Conversely, flow is consid-
ered to feel “good” through the absence of self-conscious and ruminative thoughts
(Sadlo, 2016), and the absence of threat (Tozman and Peifer, 2016). In the latter view,
flow is attributed to a positive form of stress (similar to the concept of eustress - see
Selye, 1980). Thus flow is said to not only have positive emotional qualities but might
be shielding from negative emotional experiences too (flow is considered to shield
from burnout at work - see Yotsidi et al., 2018). For these cognitive and affective
benefits, positive psychology scholars seek to improve understanding of how to foster
flow in daily life (de Moura Jr and Bellini, 2019).

2.2 State & Standards of Flow Research

The study of flow experiences is argued to date to be a rigorously researched, empiri-
cally supported, and stable concept in the domain of positive psychology (Asakawa,
2004; Nakamura and Csikszentmihalyi, 2009; Engeser and Schiepe-Tiska, 2012).
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While a high level of agreement on the definition of flow is present (Engeser and
Schiepe-Tiska, 2012), there still exists a lively debate about nuanced aspects like the
appropriation of some minor dimensions to the flow construct (some authors include
a few different sub-dimensions in their understanding of flow - see Figure 2.1), or the
appropriateness of different measurement approaches (Moneta, 2012). Nonetheless,
some directions for the extended development of flow research have been put for-
ward by scholars in the field. In their overview of the state of research on flow in the
time from 2005-2010, Engeser and Schiepe-Tiska (2012) conclude that flow research is
(1) still focused on understanding flow conditions (more so than consequences), and
(2) focused on measurement methods (especially with questionnaires). The major
research areas at that time were (1) sports, (2) learning in educational settings, (3)
game-based learning and media use (human-computer interaction in general), but
that research on work contexts is also increasing. Furthermore, as emerging trends,
they identify both flow in social contexts and the psychophysiology of flow. The
emerging relevance of flow at work is best described by the observed trends of low
worker engagement that were outlined in the introduction to this dissertation. As
flow is considered a source of improved performances and well-being, it is consid-
ered a vehicle that could foster such worker engagement and should, therefore, be
understood better. In a similar direction, as many activities, especially in Knowledge
Work (KW), are conducted in social contexts, the - until then - somewhat neglected
social aspects of flow experiences have come into focus. This trend has continued
and is fuelled by propositions, that flow in social interaction is possibly more intense
than in isolation (Walker, 2010; Tse et al., 2016; Magyaródi and Oláh, 2017). The
importance of neurophysiological flow observation is emphasised by the fact that
to date, only obtrusive measures are available (i.e. self-reports), that can be used to
gain an impression on the situations in which flow is experienced. Using such report
instruments, interrupts flow, which has been called a detriment to flow experience
by itself (Moneta, 2012; Engeser and Schiepe-Tiska, 2012). Furthermore, such self-re-
ports do not allow to develop a more precise picture of the time dynamics of flow
experiences. This knowledge would be highly valuable to develop interventions that
help to foster flow (e.g. adaptive NeuroIS).

However, despite these limitations, self-report instruments currently represent the
gold standard as a measure of ground truth for flow experience (Moneta, 2012). As
this dissertation follows up on the aforementioned emerging opportunities (flow in
KW, in social contexts, and its neurophysiological correlates), it too relies primarily
on these self-report instruments as a frame of reference. Therefore, their properties
are explicitly reviewed.

The measurement of flow experience is still a central challenge for the theory and
empirical research (Engeser and Schiepe-Tiska, 2012; Moneta, 2012). This challenge
is reflected by the fact that today, a multitude of approaches exist, albeit with all of
them representing self-report instruments. To gain a broader impression of the used
practices, especially experimental research (to which the work in this dissertation is
most comparable) was analysed for their use of measurement instruments. The ob-
servations in this section are, therefore, based on the findings from the two Structured
Literature Reviews (SLR) on studies on flow neurophysiology that are described in
detail in Section 4.2 and Section 4.3. Based on these findings it can be stated that in
flow (neurophysiology) research, the majority of flow research is primarily grounded
in self-report assessment, for which multi-item (and multi-dimensional) reports are
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considered the standard (Moneta, 2012; Keller, 2016). Some earlier approaches of flow
self-report assessment like the indirect assessment of flow through the assessment
of perceived difficulty and skill alone are still being used by some researchers (e.g.
Labonté-Lemoyne et al., 2016; Gaggioli et al., 2013). However, this approach has
mostly fallen out of favour due to this indirect and highly reductionist flow measure-
ment approach (Moneta, 2012). With most other research flow is operationalised as
a unidimensional, higher-order construct that is reflected by (at least some of) the
nine theoretic dimensions outlined in the previous section. This combination means,
that flow is typically interpreted as the average of these multiple sub-dimensions. In
the aggregation, no distinction is made between the categories of preconditions, di-
mensions, and consequences. Through this averaging, a valid and reliable self-report
indicator is retrieved (after all, high values on the preconditions and outcomes would
integrate well with high values on the flow dimensions) (Keller, 2016).

However, while this compensatory multi-dimensional aggregation approach is
common to most flow scales, differences exist in the extensiveness and considered
sub-dimensions. This variation is primarily explained by different goals of reaching
internal validity or feasibility in research designs (e.g. repeated measurement typ-
ically requiring shorter questionnaires), or by domain-specific adaptations of flow
measurement. In the most traditional reasoning in line with flow theory, the nine-di-
mensional Flow Short Scale (FSS) is used by some researchers (e.g. Klarkowski, 2017;
Shearer, 2016; Kivikangas, 2006) in its long form (4x9 = 36 items) (Jackson and Marsh,
1996) to build empirical analysis on a psychometrically comprehensive basis. The
FSS was developed specifically with the goal in mind to provide a multi-item and
multi-dimension scale that represents all the nine dimensions outlined in flow theory
(Jackson and Marsh, 1996; Martin and Jackson, 2008). However, especially due to
the length of the initial 36-item version of the FSS, short scale versions have been
developed (i.e. the 9-item Flow Short Scale - sFSS) that comprise short form measures
of flow experience built on the strongest loading items of the FSS. Such scales are
preferentially used by scholars that employ repeated measures study designs (e.g.
Harmat et al., 2015; Manzano et al., 2010). Similarly, alternative scales have been
developed like the Flow Kurzskala (FKS) (a 10 item - 2 dimension instrument by
Rheinberg and Vollmeyer, 2003; Engeser and Rheinberg, 2008) that applies a more
reductionistic approach with the argument that flow can be simplified to comprise
the experiential dimensions of fluent action or behaviour and high task absorption. A
breadth of experimental flow research has employed the FKS scale, potentially due
to this practical sparseness in items and factors (e.g. Wolf et al., 2015; Peifer et al.,
2014; Tozman et al., 2015; Peifer et al., 2015; Tozman, Zhang, and Vollmeyer, 2017). In
another approach still rather close to flow theory, but with a domain-specific focus,
the WOrk-reLated Flow Inventory (WOLF) instrument (a 13 item - 3 dimension in-
strument by Bakker, 2008) has been developed to capture flow experiences specifically
in the work environment. This self-report instrument integrates the dimensions of
absorption, enjoyment, and intrinsic motivation. An interesting aspect of this scale is
that it is the only instrument that considers flow aggregation using a conjunctive logic.
This logic means that flow is only considered to be intense when all three dimensions
are present at a high level (each in the 75% quartile). However, this instrument
has so far not been utilised in (neurophysiological) flow experiments. Beyond these
instruments, a variety of domain-specific instruments exist like the Cognitive Absorp-
tion (CA) scale developed in the context of Information Systems (IS) use (Agarwal
and Karahanna, 2000), or the Game Experience Questionnaire (GEQ) (long and short
versions) that include flow experience in few item manners as a sub-dimension of a



16 Chapter 2. Flow Theory

larger battery utilised to measure typical experiences during computer game playing
(Ijsselsteijn, Poels, and De Kort, 2008). With these measurement instruments, there is
an increased distance to the accounts of flow theory. Yet, they are prolifically used in
(neurophysiological) flow research, which makes the integration of related work and
the establishment of ground truth for flow measurement a difficult venture.

Given this breadth of options for flow measurement, researchers, therefore, cur-
rently have to decide on which instrumentation to apply as a metric of ground truth,
under the restrictions of the chosen research approach. For this dissertation, that
focuses on better understanding how to measure flow in various research setups, the
emphasis was placed on selecting a moderate-item, multi-dimensional self-report
instrument to provide an anchor for ground truth that is firmly attached to flow
theory. As will be described in the experiments in Chapter 5, and Chapter 6, the FKS
scale (Engeser and Rheinberg, 2008) was chosen as this reference instrument. The
reason for doing so is the sparseness of the scale (that still allows a multi-dimen-
sional interpretation of experiences for more detailed insight) and the previous use in
multiple related studies.

To provide a short background of flow theory’s development and especially its
related research methods, this section briefly outlines some of the historical devel-
opments. Given this dissertation’s focus on two specific methods - the Experience
Sampling Method (ESM) and laboratory induction paradigms - the description of
earlier work is kept short. For a more extensive review of the history of flow, the
reader is referred to Rich (2013) and Engeser and Schiepe-Tiska (2012). As covered
in section 2.1, upon the conception of flow theory, initial accounts of experiences
of flow states were derived from interviews with expert performers in fields like
sports (e.g. rock climbers), arts (e.g. musicians), and high-risk work (e.g. surgeons)
(Csikszentmihalyi, 1975). As these accounts were derived from experiences in ex-
treme situations, and are naturally limited by the interview format (biases and low
level of detail), an alternative approach had to be developed to form knowledge
about the daily occurrences of flow. The Experience Sampling Method (ESM) was
created precisely for this purpose (Csikszentmihalyi and Hunter, 2003; Trull and
Ebner-Priemer, 2009). As the name suggests, the ESM works by collecting multiple
accounts of daily experience, operationalised in the form of numerous, randomly
timed interruptions by pagers (or smartphones), every day over several days to
weeks. Through this process, detailed descriptions of experiences in a broad range
of activities and circumstances can be collected. This method has been the prime
approach to further deepen knowledge about flow experience and its relationship
to other constructs of interest on the situational, contextual, and personal level, all
within a naturalistic setting (Moller, Meier, and Wall, 2010). While the ESM is seen
as a major contribution to both flow and general psychological research (Rich, 2013),
and has allowed for important theoretical extensions of the flow concept (for a review
see Moneta, 2012), this methodological focus has led to two central limitations. First,
nearly all of the knowledge created in the first 30 years of flow study has been corre-
lational (thus limiting the knowledge of flow causes and consequences) (Keller, 2016;
Moller, Meier, and Wall, 2010). Second, the focus on observational approaches has
limited researchers in their means to deepen knowledge on flow-related phenomena
like neurophysiological dynamics effectively.
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In the last decade (coinciding with the increased interest and feasibility of neu-
rophysiological approaches) there has been an increased interest in the study of
flow in more controlled, experimental flow research approaches (see also Chapter 4).
While the experimental study of flow still represents a major challenge (for reasons
described below), it should be noted that important advances have been made, specif-
ically centred around one experimental paradigm of Difficulty Manipulation (DM)
(Moller, Meier, and Wall, 2010; Keller, 2016). The reason for this focus is likely due
to the simplistic appeal of the salient difficulty-skill experience models, that explain
flow states as an above-average balance of these two dimensions (see Figure 2.2).
While the role of difficulty-skill balance as a single cause for flow experience, is not
substantiated (clear goals and feedback are considered in theory as just as highly
important) (Moneta, 2012), it has remained as a central factor that guides many flow
studies (Fong, Zaleski, and Leach, 2015). To date, the DM approach represents the
most established experimental approach in flow research (Moller, Meier, and Wall,
2010; Keller, 2016). For this reason, the experiments conducted in this dissertation
are built in reference to it. Due to this central position of the DM approach for flow
research in general, and for this dissertation, the approach is discussed in detail
next. Afterwards, promising extensions are discussed, that form the basis of the
experimental work conducted in this dissertation together with the DM approach.
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Chapter 3

Experimental Flow Research

3.1 Best Practice: Difficulty Manipulation

Contents of this section are in part adopted or taken from Knierim et al. (2018a),
Knierim et al. (2018b), Knierim, Nadj, and Weinhardt (2019), and Knierim et al.
(2019). See Section A.1 for further details.

To observe flow requires adequate means of eliciting the experience. Ideally, such
elicitation can take place under controlled conditions to eliminate confounding fac-
tors. This means that experimental paradigms are needed that reliably allow the
manipulation of the circumstances under which flow emerges. As discussed in the
previous chapters, primarily three preconditions are included in flow theory that need
to be met, and that should provide opportunities to elicit different flow intensities
(balance of difficulty and skill, clear goals, and unambiguous feedback). However,
present literature is also discussing important moderating variables that influence
the emergence of flow (e.g. autonomy, expertise, task relevance, and social interac-
tions). This chapter reviews the current state of experimental flow research to ground
the efforts in this dissertation that are focused on overcoming central limitations in
the established paradigms, and, therefore, on intensifying flow experiences under
controlled conditions. In the first section, the de-facto experimental standard, the
Difficulty Manipulation (DM) paradigm is presented. In the following two sections,
the two directions for flow intensification that are primarily pursued in this disser-
tation are motivated and discussed. These are, first the observation of flow in more
naturalistic and autonomous settings (cESM, and AM), and second the observation
of flow in social interactions (SCM).

As previously stated, the idea of manipulation of difficulty is rooted in one of
flow theory’s concepts, that subjective experience is a function of the perceptions of
task difficulty and abilities to cope with the task (Moneta, 2012; Csikszentmihalyi,
1975). This model does not only account for the experience of flow (difficulty-skill
balance above average levels), but also non-optimal experiences like boredom (higher
perceived skill than difficulty), or anxiety (lower perceived skill than difficulty - see
Figure 2.2) (Moneta, 2012; Delle Fave, Massimini, and Bassi, 2011). Based in this
conception, since the early 2000s (Rheinberg and Vollmeyer, 2003; Moller, Meier,
and Wall, 2010), multiple studies have built up an experimental flow elicitation
approach that focuses on providing tasks varied only in difficulty, to elicit these
proposed experiential contrasts (Rheinberg and Vollmeyer, 2003; Keller and Bless,
2008; Moller, Meier, and Wall, 2010; Keller, 2016). To date, this paradigm (Difficulty
Manipulation - DM) has been employed across diverse tasks like computer games
(e.g. Tetris, Pacman) (Ewing, Fairclough, and Gilleade, 2016; Barros et al., 2018;
Peifer et al., 2014), factual knowledge (Keller et al., 2011), mental arithmetic (Ulrich
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et al., 2014; Katahira et al., 2018) or chess (Tozman, Zhang, and Vollmeyer, 2017).
Also, the DM paradigm has been parametrised for durations of multiple seconds
to multiple hours (see Kennedy, Miele, and Metcalfe, 2014 and Ulrich, Keller, and
Grön, 2016a for very short, Keller, 2016 and Léger et al., 2014 for very long instances).
However, the majority of work utilises ranges of 4-8 minutes per difficulty condition
(Keller, 2016). The approach has been strongly focused on gaming tasks given their
manipulability, and often given expected lack of performance stressors or other
extrinsic expectation confounds (Moller, Meier, and Wall, 2010). It should be pointed
out that the manipulation of difficulty, is not unique to flow research. Instead, there
are a few fields of research that have previously studied the impact of varying
difficulty levels on psychological (and importantly, neurophysiological) experiences.
The two main related fields that we found are those of stress research and mental
effort or cognitive workload. Both are discussed in Tozman and Peifer (2016) for
their relations to flow research. The main differences between the work in these
fields pertain to the operationalisation of moderate difficulty conditions and high
difficulty conditions. For the former, the specific extension in flow research is the
inclusion of calibration and adaptive “optimal” difficulty conditions (Tozman and
Peifer, 2016; Keller, 2016; Moller, Meier, and Wall, 2010). For high difficulty conditions
in flow research, importance is placed on creating conditions that elicit high demand,
without excessive difficulty, to keep participants engaged (Keller, 2016). Overall, the
DM paradigm is accepted broadly and is considered a significant advancement to
experimental flow research by multiple authors (Moller, Meier, and Wall, 2010; Keller,
2016; Tozman and Peifer, 2016). However, minor and major critiques remain.

In terms of minor limitations of the DM approach, two factors have become ap-
parent. The first minor limitation in experimental flow research is its focus on game
tasks, a state that is visible from the SLRs on 20 studies on the PNS and 22 studies
on the CNS (see Section 4.2, and Section 4.3). This focus likely came to be due to
the simplicity and controllability of game tasks, but also their naturally occurring
relation to intrinsically motivated task engagement (Klarkowski, 2017; Rheinberg and
Vollmeyer, 2003). Such a focus not only strongly limits the transferability of findings,
but is also likely to emphasise common-method biases. It is therefore important
that flow DM research (focusing on neurophysiology in particular) starts to employ
varied tasks more often and ideally includes multiple tasks for the cross-validation
of findings (Barros et al., 2018). The second minor limitation in experimental flow
research is that DM is realised relatively inconsistently. Moller, Meier, and Wall (2010)
point to the observation that two problems arise in operationalisations that are: (1)
controlled and manipulated variables and (2) calibration of adapted difficulty. In
detail, they show that while some authors achieve their experimental manipulation
using multiple variables (e.g. Keller and Bless, 2008 adjusts both task speed, user
control, and Keller, 2016 discusses multiple adjusted variables in different tasks they
employed in multiple studies), others do so using only a single variable (e.g. Moller,
Meier, and Wall, 2010 using only game speed). The manipulation of multiple vari-
ables introduces confounding influences in the first approach, a shortcoming that is
not yet well understood. It is for example not understood, how the manipulation of
variables that relate to sensory input changes (e.g. the varied number of elements on
the screen in the plane battle game task by Berta et al., 2013) might be represented in
EEG measurements during flow. A particular operationalisation problem refers to the
fact that some scholars provide a moderate difficulty level based on group averages
(population/sample baseline). In contrast, others use within-subject calibration of
optimal difficulty (individual baseline) (Moller, Meier, and Wall, 2010). The latter
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is considered to be aligned better with flow theory accounts - given the stressed
subjectivity of both the difficulty and skill dimension (Csikszentmihalyi, 1975). The
adaptation of difficulty that is sometimes not integrated into flow research, yet con-
sidered an essential advancement in flow experiment paradigms, might be creating
inconsistent results in flow experiments. Similar issues relate to the difficulty in
overload/anxiety experience conditions, that is to be contrasted with flow experience.
Specifically, the problem is that some authors focus on providing task conditions in a
difficulty that does not exceed an individuals’ abilities too much (to keep participants
engaged) (Keller, 2016), while others try to contrast flow with excessive difficulties to
observe such disengagement (e.g. Ewing, Fairclough, and Gilleade, 2016). The re-
sulting difference is considered to elicit both different self-reported and physiological
responses (Keller, 2016; Tozman and Peifer, 2016), and could be a confounding factor
in aggregated study results.

Beyond these minor limitations that mostly refer to confounds in the comparability
of results, major limitations have been outlined that critique the general efficacy of
the DM paradigm to elicit flow experiences in laboratory settings. In general, the role
of difficulty-skill balance as a (sole) flow experience determinant has been criticised
(see Fong, Zaleski, and Leach, 2015 with a cross-method meta-analytic study review).
Specifically, it is noted repeatedly that, the objective difficulty-skill balance could
not sufficiently meet the subjective nature of flow experience, and is thus inherently
limited in eliciting flow in participant equally likely (Moller, Meier, and Wall, 2010;
Keller, 2016; Tozman and Peifer, 2016; Fong, Zaleski, and Leach, 2015; Engeser and
Schiepe-Tiska, 2012). Instead, the role and sufficiency of difficulty-skill balance for
flow facilitation could be moderated by cultural and individual preferences for slight
under- or overload (Løvoll and Vittersø, 2014; Tse et al., 2016). It has for example
been reported, that individuals with negative achievement motivation traits like fear
of failure, show less intense flow experience responses (i.e. favouring slight over-
balance of skills to difficulty) (Engeser and Rheinberg, 2008). Beyond the personal
level, it has also been outlined that laboratory flow elicitation might be limited by the
neglect of accounting for additional, flow-theory related constructs. Moller, Meier,
and Wall (2010) name a variety of factors that should be studied in concert with DM
as they expect interaction effects for the elicitation of flow. Specifically, the role of
task-relevance (or task instrumentality), but also the role of perceived control (or
autonomy) have been stressed as having an important, yet often neglected role for
flow (Moller, Meier, and Wall, 2010; Keller, 2016; Tozman and Peifer, 2016; Fong,
Zaleski, and Leach, 2015). Such variables could moderate difficulty-manipulation
success. In a similar line of criticism, Delle Fave, Massimini, and Bassi (2011) criticise
flow laboratory experiments for (1) the expectation that flow will emerge in short
trial times, for (2) a typical lack of task interest/self-relevance for study participants,
and for (3) the lack of real-life complexity in artificial laboratory settings. The latter is
stressed extensively, in the major critique, that flow elicitation in the laboratory might
be difficult (not to say impossible) in general, due to the artificial nature of laboratory
tasks. This critique is put forward by Hommel (2010), who points to neuroscientific
research that finds perceptions of effort to be necessarily higher whenever novel
stimuli are presented. This phenomenon occurs in opposition to naturally occurring
stimuli for which goal anchors are already constructed that require less effort for goal
activation, which in term facilitate goal selection, maintenance and switching in a
highly efficient manner in known tasks and environments (Hommel, 2010). Therefore,
the experience of effortless attention might be more strongly bound to naturalis-
tic settings than present flow laboratory research is acknowledging. Culminating
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from these arguments is the question as to whether “real” or deep flow experiences
are elicited in the present DM approaches (and to some degree by other artificial
laboratory setups as well).

In summary, the main critiques of the present experimental state of flow research are
related to the properties of its primary DM paradigm: (1) DM is considered to work
well in creating flow experience contrasts. However, it presents the only paradigm
that is often operationalised with game tasks, which might have caused a strong
influence of common-method bias. (2) Operationalisations of DM instances have not
always followed a shared rationale and control of adaptive and high difficulties, and
the way they are achieved by manipulating few variables. (3) DM approaches might
still be severely limited in eliciting intense flow by weakly accounting for interper-
sonal variance in difficulty preferences, by weakly accounting for task relevance and
task control, and by providing highly artificial scenarios limiting the possibility of
effortless attention (Hommel, 2010). Especially as neurophysiological research builds
upon the quality of the experimental approaches, extensions of the DM paradigm,
and in general, more creative laboratory research are required (Harris, Vine, and
Wilson, 2017b). Following up on this requirement, it is a central contribution of this
work to explore neurophysiological flow research in alternative, but DM-connected
research approaches. Specifically, this work follows up on the recommendations that
flow ought to be researched using measurement plurality (not only reported - but
also more objective measures like neurophysiological observations) (Engeser and
Schiepe-Tiska, 2012; Spurlin and Csikszentmihalyi, 2017), that flow research would
benefit from comparing results from multiple research paradigms (i.e. not “just” DM)
(Rich, 2013) and multiple tasks (Katahira et al., 2018; Barros et al., 2018), and that flow
(neurophysiology) research should strive for increased internal and external validity
(Moller, Meier, and Wall, 2010; Hommel, 2010). Specifically, in this work, a variety
of paradigms (DM, & cESM, AM, and SCM), tasks (mental arithmetic & scientific
writing), and measurement methods (self-reports & neurophysiological) are com-
bined to study flow experiences in the context of KW. The increases in internal and
external validity are thereby achieved by adapting the ESM to the laboratory setup
and by extending an established solitary DM task to conditions with self-selected
optimal difficulties (AM) and the small group level (SCM). These two extensions of
flow (neurophysiology) research are discussed next.

3.2 Flow Intensification 1: (Controlled) Experience Sampling

Contents of this section are in part adopted or taken from Knierim et al. (2018a),
and Knierim et al. (2018b). See Section A.1 for further details.

Towards More Naturalistic Flow Research

Within emerging flow (neurophysiology) research, a central focus has been on highly
controlled DM game tasks, leaving gaps to understand flow neurophysiology in
more unstructured tasks typical to Knowledge Work (KW). Furthermore, it has been
criticised whether or not the DM approach can elicit real flow experiences, given the
reduced motivation and involvement common in laboratory tasks (Moller, Meier, and
Wall, 2010), and given the elicitation of effortful attention from a novel and artificial
task (Hommel, 2010). Therefore, current flow (neurophysiology) research could
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benefit strongly from extending paradigms to improve the elicitation and observation
of flow experiences in alternative, controlled approaches. One central aspect of
extending approaches is to focus on the observation of flow in more naturalistic
settings. The idea is that by studying flow in settings where it might be more typical
to emerge (closer to real-world scenarios), both higher internal and external validity
might be achieved. To develop such an approach, central assumptions and related
research are discussed. The main underlying assumptions for paradigm extension in
this direction are three-fold: (1) expertise (high skill levels) together with challenging
tasks should elicit higher flow intensities, (2) high task relevance/instrumentality
should elicit higher flow intensities, and (3) increased autonomy in how to conduct
one’s behaviour is required to enable the former two preconditions. The latter
requirement means that the selection of challenging and important aspects of the task
presents a catalyst for flow intensification. The argument for the necessity of domain
expertise for intensified flow experience is outlined by multiple researchers (Hommel,
2010; Ullén et al., 2010; Moneta, 2012; Harris, Vine, and Wilson, 2017b) and forms a
critical requirement integrated into flow theory (Csikszentmihalyi, 1975; Nakamura
and Csikszentmihalyi, 2009). In fact, in the latest difficulty-skill experience models,
the presence of abilities (and difficulties) beyond a moderate threshold is emphasised
as a necessary precondition for flow (Moneta, 2012). High levels of expertise are
supposed to be required for intense flow experiences due to the facilitation of effortless
attention (Hommel, 2010) and highly automated task processing due to reliance on
learned behaviours (Harris, Vine, and Wilson, 2017b). In that sense, only when the
skills for a task are highly developed, one can get lost in the task because less explicit
cognitive effort is required for the acquisition of a skill (Harris, Vine, and Wilson,
2017b; Ullén et al., 2010).

Task relevance or instrumentality is the second factor that has been considered
to be important for intense flow to emerge. This assumption is based on the ob-
servation, that intense flow appears to be experienced more often by those who
pursue a particular endeavour for the sake of mastering it repeatedly (intrinsically
motivated behaviour) (Csikszentmihalyi, 1975; Partington, Partington, and Olivier,
2009; Delle Fave, Massimini, and Bassi, 2011). Task relevance is considered to drive
flow experience intensities through the expenditure of necessary levels of effort and
the channelling of concentration on the primary task that is to be completed (entirely
focusing on the task at hand). Both Tozman and Peifer (2016) and Moller, Meier, and
Wall (2010) emphasise the role of task relevance. Moller, Meier, and Wall (2010) state
that it moderates the difficulty-skill-balance effect, Tozman and Peifer (2016) postulate
that increased self-relevance should interact with it (i.e. higher self-relevance given
difficulty-skill balance should lead to higher flow). Specifically, Tozman and Peifer
(2016) state that challenging experiences can only occur when a situation is relevant
to the individual and relevant to reach personal goals. In the previously discussed
DM paradigm, task relevance is sometimes introduced by utilising engaging tasks
(e.g. games - see Moller, Meier, and Wall, 2010), or extrinsic incentives (e.g. increased
ego involvement through social evaluation - see Tozman and Peifer, 2016).

The third factor that is considered to be important for intense flow to emerge is
some degree of autonomy in the setup and task of the observed individual. It is
increasingly found that autonomy mediates the emergence of flow. For example
in the work context, autonomy is found to facilitate flow experience by allowing
workers to pursue tasks of personal relevance and with high, but manageable levels
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of task challenge (Bakker and Woerkom, 2017). In a related manner, Fong, Zaleski,
and Leach (2015) in their meta-analysis of flow determinants also report on inter-
est/self-relevance and autonomy/control as central factors at similar importance
as difficulty-skill balance. In this sense, autonomy is considered a catalyst of more
intense flow by allowing individuals to self-select into optimal boundary conditions.
This logic assumes that individuals possess the required knowledge about these situ-
ations and themselves and want to create these conditions in a particular situation.
Moller, Meier, and Wall (2010) also mentions the role of autonomy in flow research
with theoretic and empirical arguments. Autonomy is outlined in Self-Determination
Theory as a primary driver of intrinsic motivation (Deci and Ryan, 1985; Ryan and
Deci, 2002). Also, Moller, Meier, and Wall (2010) mention an empirical study demon-
strating that experiment participants with higher perceived freedom of choice also
experience higher task absorption (Mannell and Bradley, 1986).

From these assumptions, it follows that improvements in the experimental elic-
itation of flow could be achieved through the integration of the requirements for
expertise, task relevance and autonomy. Such integration is possible through, for
example, a focus on observing domain experts in naturalistic tasks and settings.

Related Naturalistic Paradigms

In general, the idea of naturalistic flow observation is rather established, and both
practised in and outside of the laboratory (Delle Fave, Massimini, and Bassi, 2011).
On the one hand, traditional flow research has focused on collecting data during daily
experience using diary methods like the ESM (Csikszentmihalyi and Hunter, 2003) -
albeit not specifically within expert groups. On the other hand, researchers have at-
tempted to employ more naturalistic task experiences by providing more naturalistic
stimuli like rather complex, commercially available computer games (Labonté-Le-
moyne et al., 2016; De Kock, 2014) and even allow participants to select preferred
stimuli out of a range of options and to engage with them repeatedly (Shearer, 2016).
The latter approaches are herein termed Engagement (ENG) paradigms because they
focus on creating situations in which participants engage with the stimulus for an
extended period to create a more naturalistic task experience than is typical with DM
approaches. Both the ESM and the ENG approaches come with a particular set of
limitations that hinder the integration with the goals of increased internal validity of
flow elicitation and neurophysiological study of flow. ESM studies with neurophysi-
ological measures still face severe challenges in terms of participation acceptability
(how long are people going to participate, with how many daily interruptions that
are to capture flow experience variance), and measurement feasibility (application
of neurophysiological measurement is severely limited in daily life, given the high
occurrence of measurement artefacts). Notable examples that are attempting to over-
come these limitations are recent studies on daily flow experiences that make use of
wearable sensors (Gaggioli et al., 2013; Rissler et al., 2018).

However, these studies focus on PNS measures as the daily approach does not yet
allow to employ neural measurement. Furthermore, the large amounts of experiential
and physiological intra- and inter-personal variances make these ESM-wearable
sensors approaches resource intense and inefficient (only a minimal amount of intense
flow experiences are likely to be collected in days or weeks). A similar limitation is
also present in ENG paradigm approaches. While it could be assumed, that these
approaches overcome the short observation time limitation of DM paradigms (Delle
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Fave, Massimini, and Bassi, 2011), it could still be contested, that building necessary
skills and orientation with a task is not as quickly achieved as the researcher might
like. In that regard, it could be considered that those approaches where the repeated
presentation of a simple task might be most suited to enable fast skill development
and experience of intensified flow. Examples for this type of study are given in
(De Kock, 2014; Kramer, 2007), where participants can repeatedly engage with the
same task as to master the skill and get accustomed to the situation and the goal
anchors, which might make effortless attention more likely to emerge. For this
reason, this approach is herein denoted as the Mastery (MAS) paradigm. While the
MAS approaches facilitate the controlled, neurophysiological measurement, they
are still quasi-experimental (because no variables are manipulated - just continuous
observation is performed). Also, they rely on the assumption that skill is built quickly
enough to enable intensified flow in controlled settings. This assumption is still
questioned, given the proposition, that intense flow experiences require the year-long
mastery of complex abilities (Ullén et al., 2010).

For this reason, a particular line of research has attempted to fuse some of the
aforementioned approaches (i.e. DM, ENG, MAS) through the study of experts in
naturalistic tasks but controlled settings. For example, Tozman, Zhang, and Vollmeyer
(2017) have studied the experiences of chess players when placed in matches against
less, equally, or more skilled opponents. Thus these authors put the DM paradigm in
a naturalistic, yet controlled context while being able to collect PNS based measures.
In a related manner, Harmat et al. (2011) and Manzano et al. (2010) observed expert
musicians in the laboratory using a variety of physiological measures and asked the
participants to play well-mastered or challenging musical pieces. Giving up some
more control over the setting, Jaque, Karamanukyan, and Thomson (2015) observed
orchestra conductors during their natural sessions of practice using PNS measures.
These approaches share the increased likelihood of intensified flow by recruiting
expert performers (thus high skill levels and goal anchors are already developed
before the observation) and observing them in situations that do not deviate as
strongly from their natural settings. The approaches differ with regards to the degree
of control/manipulation and with regards to the study domain, which has important
implications for the applicable measurement and the design of the study.

Specifically, two aspects should be noted, as they importantly impact the exten-
sion of flow (neurophysiology) research in the context of KW. First, situations that
require a large amount of physiological movement (e.g. musicians and orchestra
conductors) are to date difficult to study using brain imaging techniques due to
movement artefacts (Muthukumaraswamy, 2013). Second, all of the described ex-
amples provide situations in which participants experience the (repeated) mastery
of a well-practised task (e.g. a practised musical piece or a chess game). The KW
context provides an advantage for the former aspect. As KW is often completed in
sedentary positions in front of computer screens, influences from movement arte-
facts are not generally as much of a problem, which is why the application of, for
example, EEG measurement is feasible. Furthermore, the naturalistic state closely
resembles the situation in experimental laboratories, which makes the study of KW
in the laboratory relatively naturalistic by default. On the other hand, KW is often
highly diverse, rarely with a simple way of solving a problem or repeating a task
(Quinn, 2005). Therefore, to observe flow in naturalistic KW settings, a research
approach needs to be developed that can balance task diversity and homogeneity to
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enable neurophysiological investigation. In this dissertation, one such approach is
developed and the operationalisation described in detail in Chapter 5.

Controlled Experience Sampling

In summary, in an attempt to increase external validity and naturalistic character of
flow laboratory research, the adaptation of the ESM (Csikszentmihalyi and Hunter,
2003) to the laboratory setting is proposed in this chapter. This adaptation signifies
a controlled approach prompting individuals to work on a personalised KW task
during observation with neurophysiological sensors and through a repeated inter-
ruption to “catch flow in the act”. This approach of studying expert performances
resonates strongly with the origin of flow theory in which the pursuit and occurrence
of flow were identified as central drivers for the pursuit of excellence and fulfilling
life experiences (Csikszentmihalyi, 1975). Also, the study of flow in naturalistic
situations similarly adheres to the tradition of flow research to sample daily activ-
ity (Csikszentmihalyi and Hunter, 2003). Furthermore, the strengths of the cESM
approach lie in covering the outlined assumptions by observing expert performers
in their naturalistic tasks (and environments). In comparison to DM, MAS, or ENG
paradigms, observing experts in their natural domain environment not only improves
the likelihood of finding high abilities and challenges but also high task relevance.
Furthermore, autonomy is typically present to a higher degree when an experimenter
does not constrain the observed task. Considering the benefits and drawbacks of
the observational cESM approach, they are naturally highly congruent with those
inherent to the ESM method. Delle Fave, Massimini, and Bassi (2011) describes these
in-depth. They point to the concluding observation, that while low in control and
structure, observational approaches are particularly useful for exploratory purposes,
which is here argued to be an important step to take, given that flow (neurophysiol-
ogy) research is still in a nascent stage given the paucity of paradigms. Again, this
is what is implied in calls from flow scholars for more creative laboratory research
(Harris, Vine, and Wilson, 2017b), in particular such that includes more naturalistic
situations (Rich, 2013). Furthermore, Delle Fave, Massimini, and Bassi (2011) high-
light the advantages of (1) ecological validity, (2) gathering information on behaviour
that can be related to external contingencies, (3) real-time assessment of experience
(major advantage), and (4) repeated measurement over time.

However, while the natural observation of domain experts comes with an increase
in external validity, it also represents a challenge for traditional laboratory setups
(a critical trade-off between researcher control and naturalism for the participant).
Specifically, by allowing for a (partially) self-selected task scenario, the variance
in observed tasks increases strongly, which might introduce an increased amount
of variance from extraneous variables (as compared to the highly controlled DM
approaches). Also, by giving up some degree of experimentation control, the re-
searcher might experience difficulties in observing experiential contrasts. It has been
remarked, that clarity of goals is an important facilitating factor for flow induction
and should be considered an important contextual feature for designing a flow task
(Moller, Meier, and Wall, 2010). Similarly, it has been noted that this is a crucial
feature integrated into most DM designs, given the simplistic nature of employed
tasks (Moller, Meier, and Wall, 2010). However, this is a double-edged sword, as it
would be expected that too much task structure could eventually be detrimental to
flow induction, by restricting the range of action potential and creativity too broadly
(Moller, Meier, and Wall, 2010). The cESM design falls between the extremes of this
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continuum through the operationalisation of initial goal-setting procedures. Finally,
the strongest argument for exploring cESM is that it provides a link from laboratory
to domain-specific ESM research (i.e. a linking step when flow neuroscience research
will go into the field). This bridging quality could be important for future work
that aims to study flow neurophysiology longitudinally - a proposed goal by Rich
(2013). cESM offers this property mainly because the naturalistic experience can
be structurally altered (controlled) to understand which variables might make flow
experiences in the laboratory more or less likely (e.g. through manipulation of envi-
ronmental stimulation, goal-setting procedures, or other flow preconditions). In this
dissertation, the cESM approach is implemented as a research design in the context
of KW, to evaluate how the former assumptions are met and how results from this
more naturalistic approach compare to results from a more traditional paradigm like
DM. Specifically, the approach is explored regarding the impact on flow experience
intensities and the volatility/consistency of flow over repeated interruptions on a
comparably shorter period (i.e. in comparison to daily ESM interruptions).

For the reasons mentioned above, as one important contribution of this dissertation,
the neurophysiological study of flow experiences is conducted at the within-subject
level in an established DM task and a novel implementation of a cESM task. Fur-
thermore, bridges between cESM and DM are included in the second experiment of
this dissertation in the form of autonomous difficulty conditions (while keeping the
majority of the experimental situations and measurement instruments consistent).
Lastly, in this second experiment,the intensification of flow experiences and the va-
riety of flow inducing situations is pursued by focusing on a second approach that
has received increasing attention over the recent years, namely inclusion of social
interaction into experimental tasks. This approach is discussed in the next section.

3.3 Flow Intensification 2: Social Context Manipulation

Contents of this section are in part adopted or taken from Knierim, Nadj, and
Weinhardt (2019) and Knierim et al. (2019). See Section A.1 for further details.

Towards More Social Flow Research

Flow has been centrally conceptualised and studied in the domain of the individual,
yet the theory recognises the potential for flow in social interaction (Ryan and Deci,
2002). In recent years, this has given rise to intensified research on flow experience
in social contexts (Van den Hout, 2016). These works are particularly fuelled by
the propositions, that flow in social interaction is (1) experienced more intensely
(compared to flow experience in isolation), (2) has positive impacts on cognitive and
affective outcomes for the individual and the social unit, and (3) even represents a
qualitatively distinct, under-researched phenomenon (Walker, 2010; Tse et al., 2016;
Heyne, Pavlas, and Salas, 2011; Hout, Davis, and Weggeman, 2018). Given that social
interaction represents an increasingly occurring phenomenon in the context of KW
(Keith et al., 2016; Wuchty, Jones, and Uzzi, 2007), the direction of studying flow in so-
cial interaction thus represents both an opportunity for increasing the internal validity
of flow experiments (intensifying the experience), and the external validity (studying
flow in more natural contexts). For this reason, in this dissertation, an experiment
that includes the manipulation of social context SCM was pursued. To provide a
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foundation for this approach, this chapter summarises the latest related work. Two
recent review articles summarise the emerging field of social flow research, extending
across qualitative and quantitative studies and discussing conceptualisations of flow
experience in social interaction (Hout, Davis, and Weggeman, 2018; Magyaródi and
Oláh, 2017). While a consensus appears on the potential positive effects of flow in
social interaction is present, the question of its phenomenology (the differentiation of
individual and social or group-level flow) is still young (Hout, Davis, and Weggeman,
2018). Some authors agree that the individual-level experience can find aggregation
at a higher level of social units (dyads, small groups) incorporating social dynamics
like reciprocal individual- and group level interactions (Heyne, Pavlas, and Salas,
2011; Magyaródi and Oláh, 2017; Zumeta et al., 2016). The very least, in this instance,
(social) flow experience is connected to social-level phenomena like experiences of
collective absorption or a sense of unity, likely driven by implicit coordination and
synchronisation processes (Hout, Davis, and Weggeman, 2018; Labonté-Lemoyne
et al., 2016; Magyaródi and Oláh, 2017; Walker, 2010). On the front of flow research in
social interactions, the majority of work has continued the tradition of survey-based
research. Some of this research has focused on evaluating remembered social flow
experiences from the past (e.g. Kaye, 2016; Zumeta et al., 2016). Other research has
assessed the quality of highly engaging experiences in the field (e.g. musicians during
practice - see Gaggioli et al., 2017), students during a seminar project - see Aubé,
Brunelle, and Rousseau, 2014; Salanova et al., 2014, or city-wide simulation games
- see Admiraal et al., 2011). Given this dissertations interest in the controlled study
of flow neurophysiology in small groups, an additional review of related work was
conducted, focusing on laboratory experiments of flow in social interaction.

Related Social Flow Research

Google Scholar was searched using the keywords: “(social OR group OR collective)
AND flow” and the corpus completed through forward-backward search (Webster
and Watson, 2002). Integrating with the studies discussed in the two previous reviews
(Magyaródi and Oláh, 2017; Hout, Davis, and Weggeman, 2018), 32 empiric articles
were identified that focus on flow experience in social contexts. From these, ten
studies conducting laboratory experiments were identified.

The results of this literature are documented in Table 3.1. Particular emphasis was
placed on understanding the main concepts of interests, the operationalisation of the
experiments, and the types of measures being used. The identified studies majorly
focused on individual-level flow experience in social contexts (indiv.), in some cases
with a conception of additional social-level experience characteristics (coll.). An ex-
ample for the latter notion is Walker (2010)’s argumentation that individual and social
flow should be similar (being rooted in individual flow), yet that social-level factors
like interdependent and reciprocal flow dynamics would add an experiential note
that alters the experience of the interacting individuals. The focus on (extended) indi-
vidual flow in social contexts is also visible in the employed self-report instruments.
These instruments mostly collect individual flow (that is sometimes aggregated to the
social level afterwards, e.g. through the computation of group means and standard
deviations - see Heyne, Pavlas, and Salas, 2011). However, in some instances, the
social-level flow experience is also conceptualised to be accompanied by experiences
like partner unity or synchronisation and collective absorption (e.g. Magyaródi and
Oláh, 2017; Walker, 2010; Labonté-Lemoyne et al., 2016).
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Flow Preconditions
I. Precondts. x x x x x x x x x
Cooperation x x x x - x x x x
Integration x x - x x x - x x

Flow Accompanying Experiences
Performance - x x - - x - x x
Satisfaction - x x x x - - - -
Growth x - - x x x - - x

Study Design
Sample Size 4 80 128 30 48 169 135 42 352 376
Group Size 4 1/2 1/2 1/2 2/4 1/2-3 3 2 4-5 4
Context Mus. Cogn. Cogn. Sport Sport Edu. Cogn. Gam. KW,

Gam.
KW,

Gam.
Environment F2F - F2F F2F F2F F2F,

DMC
F2F F2F F2F F2F

Paradigm(s) IDPM SCM DM,
SCM

SCM IDPM SCM,
COM;
CPM

DM MAS TBM SCM,
IDPM,
CPM

Measurement
Flow Self-Reports FSS

(I.)
FSQ
(SU.)

sFSS
(I.)

ESF
(I.),
CS
(I.)

ESF
(I.),
CS
(I.)

FKS
(I.)

sFSS
(I.)

CS
(I.)

CA
(I.)

CA
(I.)

Physiology Oxy.,
ACTH

- - - - Cor. - EEG - -

Notes: I. = Individual Level; SU. = Social Unit Level; Condts. = Conditions;
Mus. = Music; Cogn. = Cognition; Edu. = Education; Gam. = Gaming;
TBM = Team Building Task Manipulation;
FSQ = Flow Synchronisation Questionnaire; ESF = Experience Sampling Form;
CS = Challenge-Skill Reports; Oxy. = Oxytocin; Cor. = Cortisol.

TABLE 3.1: Controlled Studies on Flow Experiences in Social Interaction.
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Analysis of this literature corpus further highlights central variables that are re-
peatedly discussed as preconditions and corollaries of flow experiences in social
interaction. Preconditions are described as the individual level flow preconditions
(difficulty-skill balance, clear goals and feedback) by all ten studies. Two additional
preconditions outline factors required for a collaborative interaction (not just mere
co-presence of individuals during a task - see Walker, 2010 for emphasised discussion
of this requirement). The first is a requirement for cooperation that includes factors
like member interdependence, coordination of actions (e.g. through communication),
and positive, supporting interaction (i.e. cooperation not competition). The second
is a requirement for integration that includes well-aligned goals, challenges and
abilities (e.g. similar or aligned skills), roles and procedures. Thus, integration of
group member interdependence in a task and means for coordination and coopera-
tion can be seen as essential requirements for flow in social interaction. Regarding
the experiences accompanying flow in social interaction, both individual and social
level variables are reported in three forms. The first is the impact of flow experience
on individual and group performance (e.g. productivity or creativity, but also the
sharing of information). The second is the impact on satisfaction with oneself (e.g.
enjoyment or flow intensity), and the social unit (e.g. satisfaction with a group). The
third outcome dimension pertains to individual and social growth, that includes
knowledge building, quality of social relationships, and also the facilitation of fu-
ture social flow experiences through establishment or improvement of interaction
structures. For all three dimensions, mostly positive relationships with flow are
reported, which highlights why flow is considered a beneficial experience in small
group interactions.

Experimental research on flow in social interaction has adopted the DM paradigm
(or variations of it where difficulties are continuously kept at a challenging level - e.g.
Walker, 2010; Labonté-Lemoyne et al., 2016), yet has also ventured into new directions.
These directions primarily pertain to the structured manipulation of interaction forms,
for example by comparing the individual to the social flow experience (= SCM), by
comparing outcomes in low or high interdependence (= IDPM), or by manipulation
of communication (= COM) and cooperation format (= CPM). Lastly, broader ma-
nipulations of tasks have been attempted to study task-based outcome differences
(e.g. Keith et al., 2014; Keith et al., 2016 provide two different team-building exer-
cises to study flow in small groups). In summary, this shows a focus on traditional
flow research paradigms DM with the extension to exploration into social unit level
causes and moderators of flow experience outcomes. Another emerging aspect in
this literature is a focus on dyads or small groups, which is likely explained by the
increasing complexity of interactions with larger groups and the proposition, that
smaller groups are more likely to experience a joint state (Walker, 2010; Armstrong,
2008). Furthermore, most of the present research has conducted their experiments
in Face-to-face (F2F) settings, perhaps likely for increased ecological validity and
related exploration. Similarly, these studies mostly provided equal task roles for each
member and fully shared task information.

So far, barely any research has systematically studied neurophysiological phenom-
ena of flow experience in social interaction. Notable exceptions are the articles by
Keeler et al. (2015), which studies interpersonal bonding in differently interdependent
and challenging scenarios (as indicated by oxytocin & adrenocorticotropic hormone
secretion), the study of stress in a diverse range of interaction formats (as indicated
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by cortisol release) by Brom et al. (2014), and the investigation of neurophysiologi-
cal state interaction during dyadic gameplay (observed in frontal EEG activity) by
Labonté-Lemoyne et al. (2016). This state shows, that while there have been emerging
amounts of research on flow neurophysiology on both the PNS and PNS side (see
chapter 4), such work has seen almost no extension to the social interaction level.

Digitally-Mediated Social Context Manipulation

In conclusion, while considerable correlational research has been conducted, it can be
stated that the controlled study of flow in small groups has only sparsely attracted
scholar’s attention. In particular, there appears to be a paucity addressing digitally-
mediated interactions, that are essential to today’s decentralised work environments.
As social interaction processes deviate substantially between face-to-face (F2F) and
digitally-mediated (DMC) settings (Derks, Fischer, and Bos, 2008; Chanel and Mühl,
2015), the extension of previous work on flow in groups to the digital work context
represents an important research gap. Also, while there is an increasing interest to
elucidate the underlying neurophysiological processes of the flow experience, there
has so far been almost no related research in small group settings. Furthermore,
a central observation has been so far, that flow in social interaction may be even
more intense than when experiencing flow alone (Walker, 2010). This hypothesis
provides an additional opportunity to assess the validity and reliability of previous
neurophysiological findings that mostly stem from DM experiments. Given that
social interaction represents an increasingly occurring phenomenon in the context of
KW (Keith et al., 2016; Wuchty, Jones, and Uzzi, 2007), the approach of studying flow
in social interaction thus represents both an opportunity for increasing the internal
validity of flow experiments (intensifying the experience), and the external validity
(studying flow in more natural contexts). For this reason, in this dissertation, an
experiment that includes the manipulation of social context SCM was pursued.
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Chapter 4

Flow Neurophysiology

4.1 Fundamentals of (Flow) Psychophysiology Research

To enable the development of adaptive NeuroIS that could in the future be able to
facilitate flow experiences, a thorough understanding of the potentials of (wearable
sensor-based) neurophysiological data needs to be created. It is for this reason, why
the first major research goal in this dissertation focuses on the integration of the
present body of knowledge on how neurophysiological data can be used to observe
flow experiences (RG1). This chapter discusses the fundamental ideas and challenges
of psychophysiological research and reviews the state of neurophysiological flow
research in two Structured Literature Reviews (SLR). Thus, a comprehensive integra-
tive effort is put forward that represents the basis for the selection of measurement
instrumentation, the development of fitting experimental approaches and the frame
of reference for the interpretation of the following experimental results.

Before detailing the state and approach to neurophysiological flow observation, a
critical appraisal of the approach is useful to understand its benefits and limitations.
On the one hand, researchers are eager to use neurophysiological measures due
to their previously detailed benefits (low intrusiveness, automatic and continuous
recording, non-participant-manipulated observation). However, their limitations
are more rarely considered, and the potential of neurophysiological data is easily
over-interpreted. Specifically, studies show that neurophysiological data is often
falsely ascribed with superior robustness and explanatory potential (Brouwer et al.,
2015). A common misconception in psychophysiological research is, that objectivity
and validity of physiological measures surpass the quality of, for example, self-re-
port measurements, or that measures from different domains (physiology, report,
behaviour) converge on the same construct (Brouwer et al., 2015; Bridwell et al., 2018;
Riedl, Davis, and Hevner, 2014).

However, neurophysiological (e.g. ECG or EEG) measurement is generally subject
to the same psychometric considerations as other measurement types that attempt
to describe psychological states (Keil et al., 2014). Nevertheless, issues such as task
matching, measure reliability, measure specificity, or discriminability are often over-
looked (Keil et al., 2014; Cacioppo, Tassinary, and Berntson, 2007; Riedl, Davis, and
Hevner, 2014). As with any psychophysiological measure, physiological information
needs to be discussed in the form of the quality of the relationship between a psy-
chological and physiological state that can take forms as (1) outcome, (2) marker, (3)
concomitant, or (4) invariant (Cacioppo, Tassinary, and Berntson, 2007) (see Figure
4.1). These possibilities mean that the relationship between an independent and a
dependent variable can easily be complicated if a third variable is present that shares
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variance with either variable (e.g. if two subject groups are not well-matched in age,
gender, handedness, or time of days of the sampling - see Keil et al., 2014). A clear
one-to-one relationship between physiological and report or behaviour variables is
rarely the case (Bridwell et al., 2018). It is for these reasons important, that results
from neurophysiological studies are compared extensively with related literature,
and that data are collected across different measurement scenarios, to establish the
reliability of the observed patterns and relationships.

FIGURE 4.1: Taxonomy of Psychophysiological Relationships - See
Cacioppo, Tassinary, and Berntson (2007).

Another important, yet often overlooked factor in neurophysiological research
is the high degree of variance (both within and between individuals) present in
the measured signals (Pivik et al., 1993; Bridwell et al., 2018; Brouwer et al., 2015;
Müller-Putz, Riedl, and Wriessnegger, 2015). Highlighting the individuality of, for
instance, one’s EEG signature is the fact that such signatures are now used as a
safety feature in security applications (Armstrong et al., 2015). In this research,
the uniqueness of a person’s neural signature is used to safeguard access to an
Information Technology (IT)-system, as are nowadays fingerprints. Inter-individual
variance factors include a myriad of variables like demographic backgrounds (e.g. age,
gender, ethnicity) or lifestyle factors (e.g. physical activity, stress, smoking or alcohol
consumption - see Valentini and Parati, 2009; Keil et al., 2014). For some measurement
methods, additional specific factors have to be accounted for. For example, for cardiac
activity, physiological determinants like the circadian cycle, posture, blood pressure
or respiratory activity can act as influencing factors (Valentini and Parati, 2009). In
another example, for electrical neural activity, factors like handedness, head shape,
skull thickness, or cortical structure influence the observed data (Homan, Herman,
and Purdy, 1987; Bridwell et al., 2018; Keil et al., 2014; Pivik et al., 1993). A simple
example that shows inter-individual differences is age. For cardiac activity, it is
known that resting heart rates are lowered on average with increases in age (Tanaka,
Monahan, and Seals, 2001). For electrical neural activity, it is known that with age
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Delta and Theta frequency power levels are generally reduced with increasing age
across the life span (John et al., 1980). Within individuals, physiological signals
have been found to vary due to influences from various variables like biochemical,
metabolic, circulatory, hormonal, neuroelectric, and behavioural changes (Teplan,
2002; Pivik et al., 1993). These influences mean that the repeated measurement of a
single individual can substantially vary simply by the time of day, substance intake,
or situational affect (see, e.g. Harmon-Jones, Gable, and Peterson, 2010).

These variability potentials require a variety of considerations. First of all, they
require that neurophysiological research attempts to overcome this variance by ad-
equate participant samples, recording rigour, task design, and sophisticated data
analysis. Ideally, samples should cover sufficient size and be sufficiently homoge-
neous to minimise or average out individual differences, as should task designs (e.g.
provision of multiple repeated trials) (Müller-Putz, Riedl, and Wriessnegger, 2015;
Brouwer et al., 2015; Picton et al., 2000; Pivik et al., 1993). Data analysis should take
individual baselines into account (e.g. through the computation of change scores from
rest phases or individualise features further), and could even consider computational
approaches to isolate individualised features (Bridwell et al., 2018; Brouwer et al.,
2015). For instance, Zhang et al. (2019) extract features personalised in the time,
frequency, and spatial domain from highly-dimensional EEG data sets.

Finally, it needs to be highlighted, that neurophysiological science is presently at a
critical junction of acknowledging the imprecision in the overlap of latent psycholog-
ical constructs and observed physiological parameters (Bridwell et al., 2018; Riedl,
Davis, and Hevner, 2014). The question of how, for example, an observed EEG pattern
maps onto constructs from psychology textbooks challenges psychophysiological
assessment (Buzsaki, 2006; Bridwell et al., 2018). Similar considerations have been
outlined in NeuroIS research (Riedl, Davis, and Hevner, 2014). Specifically, besides
the issues of how specific, sensitive, and reliable a particular kind of measure is, the
issues of construct validity and convergent validity need to be emphasised as critical
and fundamental properties to establish in psychophysiological research. Stated
simpler: It is possible, that measures from different domains (physiology, but also
different physiological systems, reports, behaviour), may capture different aspects
(variance) of a construct (Riedl, Davis, and Hevner, 2014). Therefore, “researchers
should not generally expect that different measures in a construct domain are substi-
tutes; rather, in many cases, they may be complements” (Riedl, Davis, and Hevner,
2014, p. xv), or in some cases, they may also be indifferent or divergent. One of
the underlying fundamental questions in psychophysiological research is, therefore,
whether the data are related representatives of a construct of interest or artefacts of the
chosen instruments (Riedl, Davis, and Hevner, 2014). Research indicates that to date,
achieving construct validity (convergent and discriminant validity) through multi-
modal measurement, is often impeded by two phenomena: (1) measures capture only
some part of a construct or (2) measures represent multiple constructs (see Figure
4.2) (Riedl, Davis, and Hevner, 2014; Strube and Newman, 2007). The implications
of these two phenomena are, for case 1, that real, existing relationships can easily
be overlooked because direct modelling might fail due to insufficient overlaps of
explained variance from two measures (Riedl, Davis, and Hevner, 2014). For case 2,
it is possible that third underlying variables may cause observed relationships, and
that theoretic explanations derived from an observed relationship excluding such
variables must not necessarily be correct (Riedl, Davis, and Hevner, 2014).
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FIGURE 4.2: Construct Validity Threats - See Riedl, Davis, and Hevner
(2014) and Strube and Newman (2007).

This confound means, that a central problem common to all measures is, that it is
difficult to identify, how much variance of the actual construct of interest is captured,
which part of the variance is captured, or if potentially multiple constructs are cap-
tured instead. This issue is further complicated, when complex (opposed to rather
simple) constructs are investigated. Comparing the convergent and discriminant
validity of self-report and physiological (ECG and EEG) measures for three con-
structs (arousal, engagement, and cognitive load) using a Multi-Trait-Multi-Method
approach, Ortiz de Guinea, Titah, and Léger (2013) find that the simpler arousal
construct suffers less from mono-method bias than the more complex constructs of
workload and engagement (Ortiz de Guinea, Titah, and Léger, 2013; Riedl, Davis,
and Hevner, 2014).

This problem of convergent validity is to date very much true for the experience of
flow (an experiential composite of six individual constructs). It explains (in measure-
ment theory terms), why so far, no simple, distinct marker of flow has been found.
For this reason, following state-of-the-art recommendations on psychophysiological
research methodology is of utmost importance in this line of work. These recom-
mendations are, to clearly define the observed state and measure of ground truth, to
control for confounding factors, and to define the theoretic connection between state
and neurophysiology (Brouwer et al., 2015). Furthermore, it is of high importance
for complex state psychophysiology research to include multivariate data and to
sceptically interpret the results. These interpretations should explicitly state the
underlying assumptions and should carefully distinguish current (i.e. study-specific)
observation from generalizable insights (Brouwer et al., 2015; Bridwell et al., 2018;
Riedl, Davis, and Hevner, 2014). Besides, the integration of findings from the mea-
surement domains represents an essential aspect of interpreting one’s results. For
this reason, the extensive literature reviews later in this chapter represent a major
contribution of this dissertation and are fundamental pillars for the interpretation of
the experimental results.

The field of flow neurophysiology research is rather young. This observation is
not only remarked in seminal articles on flow neurophysiology (Peifer, 2012; Harris,
Vine, and Wilson, 2017b) but visible when reviewing the publication chronology of
the articles reviewed in the course of this dissertation (articles from two SLRs that
are described in the following two sections). As can be seen in Figure 4.3, despite the
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long-established foundation of flow theory (dating back to Csikszentmihalyi’s first
book in 1975), the majority of theoretic and empiric work on flow neurophysiology
has been conducted rather recently. As to why there is such a large gap between
the conceptualisation and flow theory, three main reasons are likely: (1) a lack of
experimental paradigms to manipulate flow experience in laboratory setups (flow
research initially concentrated on interviews and daily diary methods), (2) a lack
of theoretical propositions on neurophysiological configurations and patterns dur-
ing flow experience, and (3) limited availability or feasibility of neurophysiological
measurement methods. Remedies for all three problems appeared around the first
years of the current century. The Difficulty Manipulation (DM) paradigm was in-
troduced (Rheinberg and Vollmeyer, 2003), first neurophysiological accounts of the
flow experience were published (Marr, 2001; Dietrich, 2004), and the first Peripheral
Nervous System (PNS) flow study was implemented by a psychology student in 2006
(Kivikangas, 2006). The latter development exemplifies the increasing availability of
physiological measurement instruments. Whereas the research on PNS flow phys-
iology slightly pre-dates the Central Nervous System (CNS) work, it appears that
especially an interest in CNS observations has risen in the late years of the current
decade (from 2014 to 2016).

FIGURE 4.3: Overview of the Publications on Flow Neurophysiology
as Identified by the Two SLRs in This Dissertation.

Given the complexity of the observation of different aspects of neurophysiological
processes, the available, related literature was reviewed extensively to establish a
foundation on which to build the herein used research approaches and with which to
integrate the results of the experiments in this dissertation. Furthermore, given the
apparent youth of the field, the importance of providing integration of knowledge
became apparent. The importance of this integration was further emphasised by
the results from the bibliometric analysis in the second SLR (focused on the CNS
- see section 4.3), that showed a substantial lack of citations of related work. Such
a lack of integration of knowledge has likely strongly impeded the progress of
identifying neural configurations of flow and the theory-driven development of
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adaptive NeuroIS. For this reason, as a key, integrative contribution to the research
on flow neurophysiology from this dissertation, the following two sections describe
in-depth which findings have so far been made regarding how flow experiences are
accompanied or manifested by neurophysiological processes.

4.2 Peripheral Nervous System Research

Contents of this section are in part adopted or taken from Knierim et al. (2017c).
See Section A.1 for further details.

Flow Observation in the Body

Deriving from the flow experience characteristics (challenge-skill balance, clear goals,
unambiguous feedback, autotelic experience, action-awareness merging, sense of
control, loss of self-consciousness, transformation of time, and concentration on the
task at hand - see Csikszentmihalyi, 1975; Nakamura and Csikszentmihalyi, 2009),
rather recently, multiple theoretic propositions have been made about how flow is
reflected in PNS and CNS activity. This dissertation integrates findings from both
domains, in separate SLR studies. In a first study, the focus was placed on the PNS as
related features are of heightened interest in research on adaptive NeuroIS due to high
user acceptance of such measurements. Consider, for instance, the increased ubiquity
and user acceptance of wrist-worn wearable sensors (e.g. smartwatches) (Seneviratne
et al., 2017). Beyond this aspect, there are particularly promising hypotheses regarding
the PNS configuration during flow experience, that postulate uncovered potential to
detect flow with PNS features alone (Keller, 2016; Harmat et al., 2015).

The central proposition on the PNS side is, that flow represents a state of optimised
physiological activation (Peifer, 2012). To investigate this proposition, an emphasis
has been put on the observation of the Autonomous Nervous System (ANS), the
part of the human nervous system that regulates critical physiological components
such as heart rate, smooth muscles (e.g., to control eye movements), and glands
(e.g., to release behaviorally relevant hormones). The ANS comprises two major
branches, the activating sympathetic branch, and the calming parasympathetic branch
(for more background information see Andreassi, 2000 and Section 4.4). Typically,
these two branches act antagonistically (Berntson, Quigley, and Lozano, 2007), with
sympathetic dominance representing increased physiological arousal and activation,
and parasympathetic dominance representing increased relaxation. Knowledge of a
present configuration is often derived from observing changes in the cardiovascular
system, in particular, the time between adjacent heartbeats, as the heart is related and
sensitive to both activities of the sympathetic and the parasympathetic ANS branches
(Berntson, Quigley, and Lozano, 2007). Also, observations of hormonal changes are
used for this inference (particularly cortisol as a measure of physiological activation -
e.g. Peifer et al., 2014; Tozman, Zhang, and Vollmeyer, 2017). It has been repeatedly
reported that flow is accompanied by increased (i.e., moderate to high) physiological
activation levels (Peifer, 2012; Tozman et al., 2015; Keller et al., 2011; Ulrich, Keller,
and Grön, 2016b; Klarkowski, 2016; Bian et al., 2016). Thus, to experience flow, the
body must expend some amount of physiological energy (Debus et al., 2014). It
follows that without some energy or effort, there is no flow.
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However, it has not been established thus far how these increased energy levels are
realised, a fact that holds particularly true regarding the interplay of the sympathetic
and parasympathetic ANS branches. A set of contesting propositions has so far been
brought forward. First, due to increased concentration on a task that is appraised
as challenging but not threatening and accompanied by positive affective valence,
Peifer (2012) describes flow to be reflected by optimised physiological activation
(i.e., moderate peripheral arousal and elevated but moderate sympathetic activation).
Second, Keller (2016) postulates that flow is an experience similar to stress resulting
from intense mental effort due to high involvement in an activity that requires
heightened task difficulty (i.e. high levels of sympathetic activation). Third, Manzano
et al. (2010) describe flow physiology as being reflective of positive affect, increased
arousal, and increased mental effort, caused by focused attention on a task. In this
line of thought, Ullén et al. (2010) follow the concept of effortless attention, arguing
that a physiological coping mechanism simultaneously constitutes flow. The latter
refers to an increase in the relaxing activity of the parasympathetic branch of the
ANS (Harmat et al., 2015; Ullén et al., 2010). Following this thought, they suggest
that flow is possibly represented in the body by a rare configuration of the two ANS
branches, the state of non-reciprocal co-activation that is considered to emerge when
the body requires an increased precision level for calibrating the situational provision
of energy in challenging situations (Berntson, Quigley, and Lozano, 2007). Lastly,
Léger et al. (2014) propose that high concentration and attention in flow are reflected
by a stable, less volatile state of physiological and affective activation. While all of
these propositions have received some (early) support, to align the differences in
these propositions, more research is needed to consolidate empirical findings into a
common understanding. With the novelty of the research conducted, integrations of
the emerging knowledge can provide important knowledge building catalysis and
provide an answer to the following Research Question (RQ):

• RQ1: How can the configuration of the body during flow be described using
measures of the PNS?

This work makes two key contributions to flow neurophysiology research and
provides a foundation for the theory-driven development of adaptive NeuroIS. First,
a systematic review and overview of existing studies that utilise PNS measurements
of flow are provided. Such an overview represents a valuable starting point for
future research to build on. Second, the present knowledge is integrated, and syn-
thesised knowledge and propositions are provided on how to measure flow using
PNS-related instrumentation. Importantly this integration covers findings from dif-
ferent research approaches and thus fosters the identification of meaningful patterns,
but also limitations in the present research.

SLR Method

To address the RQ, a Structured Literature Review (SLR) was conducted following
the guidelines of Kitchenham et al. (2009) and Webster and Watson (2002). Overall,
the review was subdivided into plan, conduct, and report stages (see Figure 4.4). Web
of Science and Scopus (Bandara et al., 2015; Hamari, Koivisto, and Sarsa, 2014) were
searched with the search string:

“(flow OR cognitive engagement OR cognitive absorption) AND (physiological signal*
OR psychophysiology OR neurophysiology)”
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FIGURE 4.4: Stages of the SLR on Flow PNS Observation.

This search string was developed in five steps. First, an exploratory search was
conducted using Google Scholar with the search term “psychophysiology AND flow”.
Second, the first 20 search results were reviewed, and six highly cited studies were
identified: Peifer (2012), Manzano et al. (2010), Mauri et al. (2011), Tozman et al.
(2015), Kivikangas (2006), and Nacke and Lindley (2008). Third, the full text of these
six articles was reviewed, and the terms “neurophysiology” and “physiological sig-
nal(s)” were extracted as highly relevant to the research question. Fourth, “cognitive
engagement” and “cognitive absorption” were identified as relevant flow derivations.
Finally, Boolean operators were used to creating the final search string. To ensure a
holistic search, the search was not limited to a specific time period. All studies that
met the following criteria were included: The study (1) contains an empirical compo-
nent, (2) is a peer-reviewed journal article, article in press, in conference proceedings,
or book chapter, (3) refers to the psychological phenomenon of flow, (4) focuses on
the PNS. The selection criteria were first applied to the abstract, title, and keyword
section (excluding 1437 studies). In a further attempt, the criteria were applied to the
full text of remaining studies (excluding 46 studies). Finally, a forward and backward
search based on the remaining 17 studies was conducted. Thereby, another three
relevant studies were identified. Overall the SLR identified 20 relevant studies.

Results

In line with a concept-centric focus (Webster and Watson, 2002), the findings are
summarised and split into three main areas: (1) experiment design parameters, (2)
theoretical perspectives, and (3) findings on physiological features (see Table 4.1).

To condense the findings and their relationship to flow, a dedicated syntax was
developed. As an explanation of its meaning, consider the first study in Table 4.1
by Harmat et al. (2015) as an example. The authors conducted an experiment using
the digital game Tetris and evaluated flow with a subset of the Short Version of
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the Flow Short Scale (sFSS). Insignificant relationships between Heart Rate (HR)
and the self-report scale were found ( ). The dot thus represents the indication of
an absent relationship. Moreover, a positive linear relationship between Thoracic
Respiratory Depth (tRD) and the flow self-report scale was found ( ). A line with
two dots (one at the left and one at the right end) thus represents a result from direct
modelling of the relationship, and the slope of the line represents the direction of
the relationship. As another example, consider the work by Ulrich, Keller, and Grön
(2016b). These authors used a mental arithmetic task and found an inverted U-shaped
relationship ( ) between Skin Conductance Level (SCL) and difficulty-manipulated
task conditions termed boredom, fit, and overload (B/F/O), in which flow experience
was most intense in the fit (F) condition. The line with three dots thus represents
the findings across the experiment conditions, and the relationship to flow can
be identified from the indirect comparison of the reported flow patterns and the
physiological patterns. In the presented studies, conditions denoted as fit (F) or as task
(t) are those that showed the highest reported flow intensities. Partial findings like
the inverted U-shaped relationship between Low Frequency Heart Rate Variability
(LF-HRV) with flow reports in the first half of the experiment by Peifer et al. (2014)
are denoted with an asterisk ( ).

Within the experimental designs, central variables of interest are sample sizes,
flow induction tasks, and dependent variables/measures. In the literature corpus,
sample sizes vary strongly across studies ranging from seven to 77 experiment
participants. The sample counts include reported, usable observations only. The
majority of studies in this SLR (14/20) used games as flow induction tasks. This
observation is vital as designing tasks that reliably induce flow states is still a major
challenge in flow research (Tozman and Peifer, 2016). In this regard, game paradigms
have been criticised as to not sufficiently induce straining experiences (Peifer et
al., 2014). Depending on research goals (e.g., in the case of separating flow from
stress experiences), this spectrum is critical for flow research. Utile alternatives
include high involvement tasks with naturalistic components (e.g. observing chess
players like in Tozman, Zhang, and Vollmeyer (2017)). Third, dependent variables
differ in two operationalisation formats, that are self-reports (14/20) and experiment
conditions (8/20), with some studies utilising both (4/20). Conditions are most often
differentiated along the dimension of task difficulty. In total, nine different self-report
instruments were used in 15 studies to measure flow.

This category refers to the theoretical propositions in the articles of how flow can
be differentiated physiologically (e.g. from stress). Perspectives and studies are
ordered in terms of diagnosticity (i.e., how proposed physiology patterns are to
isolate flow from other states) (Riedl, Davis, and Hevner, 2014). While increased
peripheral physiological arousal is a common denominator in both flow and strain
(Peifer, 2012), four central distinguishing patterns are described towards flow: (1)
modulation of arousal by relaxing influences (Mdl. Relax), (2) moderate instead
of high levels of arousal (Mod. Activ.), (3) stable, less volatile arousal (Sta. Activ.),
and (4) the simultaneous presence of arousal and positive affect (Pos. Affect). The
abbreviations in parentheses refer to how these perspectives are denoted in Table
4.1. The first perspective is currently the only characterisation that sufficiently dis-
tinguishes flow by the phenomenon of non-reciprocal co-activation of sympathetic
and parasympathetic branches of the ANS. Three types of studies were derived. The
first category (high diagnosticity - sufficiency condition fulfilled) proposes distinct
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physiological signatures by investigating arousal modulation by relaxation (6/20).
The second category (moderate diagnosticity - necessity condition fulfilled) proposes
indicative physiological signatures (6/20). The third category (low diagnosticity) pro-
poses either indistinct physiological signatures (2/20), or do not include hypotheses
towards flow physiology specifically (6/20).

This category captures as variables the type of observed physiological parameter
(cardiac, pulse, electrodermal, respiration, hormonal, facial muscle, and pupillary
reactions) and the resulting physiological findings in terms of derived features (actual
metrics). In terms of methods, it can be stated that cardiac features are used most
often (12/20), especially in the class of higher diagnostic studies (6/6). This focus is
probably due to the property of the cardiovascular system to reflect both sympathetic
and parasympathetic activation (Berntson, Quigley, and Lozano, 2007). Therefore,
distinguishing flow is enabled by comparison of arousal levels, arousal variability or
the isolated activity of parasympathetic activation. Electrodermal Activation (EDA)
is the second-most used feature (10/20), albeit mainly in studies with lower diagnos-
ticity (7/8), which is surprising given the theoretical propositions and the property
of the EDA metric to be a highly diagnostic indicator of sympathetic ANS branch
activation. Electromyography (EMG) measures are used mainly in valence-related
studies across classes (7/20). Together, support has been found for all four theoretical
propositions, with (1) being mainly related to the sympathetic and parasympathetic
ANS activity (HF-HRV, tRD), (2) being most often related to moderate cortisol (CoLe),
skin conductance (SCL) and HRV levels (Total HRV and LF-HRV), (3) being related
to skin conductance and hormonal level reactivity, and (4) being most often related to
increased facial muscle activity (ZM).

Discussion & Future Directions

RQ1 asked, how the configuration of the body during flow can be described using
measures of the PNS. This SLR identified four central approaches to the physio-
logical measurement of flow. All include increased levels of arousal, yet vary in
their explanation to how arousal states differ from straining experiences such as
stress. Of these four, three fulfil only necessity conditions to distinguish flow. The
proposition of a non-reciprocal co-activation of the sympathetic and parasympathetic
nervous system in flow (Harmat et al., 2015; Ullén et al., 2010) also fulfils sufficiency
conditions. For this proposition, however, so far only partial support has been found
(Manzano et al., 2010; Bian et al., 2016) and some research has also not found support
for this proposition (Harmat et al., 2015). This suggests that more research is required
to understand if this proposition has merit, specifically such research that employs
unconfounded indicators of activity in both ANS branches with high temporal reso-
lution. The use of for example ECG measures alone is not sufficient for this purpose,
as it only allows to infer isolated parasympathetic activity (and includes influences
from sympathetic activation in some features) (Malik et al., 1996; Berntson, Quigley,
and Lozano, 2007). Therefore, future research that aims to investigate this proposition
ought to include multiple measurement methods. For example, combinations of
ECG data with impedance cardiography features have been recommended, as the
latter can well identify sympathetic activation through observation of the duration of
pre-ejection periods of the heart (Tozman and Peifer, 2016). An alternative approach
might be to combine ECG and EDA metrics, as the EDA signal is well known as an
indicator of sympathetic activity (Boucsein, 2012). Interestingly, these two methods
have so far not been utilised together, which is potentially due to a lack of knowledge
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about these theoretical propositions and integrations of related work. Therefore
this SLR might be providing a first, clear overview over a central gap that can be
addressed by flow PNS observation. Flow researchers can uniquely contribute to the
state of knowledge by advancing the line of research on these diagnostically higher
perspectives. Furthermore, an alternative option is highlighted, which is the increase
in diagnosticity through a combination of measurement and directions (1)-(4). Sup-
port has been found for all directions through different physiological features, which
is why it is advisable to integrate multiple propositions in further investigations. An
exemplary approach in this direction is reported by Bian et al. (2016). However, as
the inclusion of various measurement methods requires additional domain expertise
(Brouwer et al., 2015), it is herein recommended that future work focuses on a select
set of sparse measures (e.g. 2-3) to enable deepened insight that is critically needed at
this stage of research.

Through cross-study integration of the present results, it appears that mainly the
aforementioned direction (studying sympathetic and parasympathetic activation
patterns) is of the highest value. This recommendation is not to say that others do
not have merit, but that the findings and related theoretic accounts do not yet show
as clear a path forward. Relating to the time dynamics of PNS measures of flow (the
proposed stability of physiological activation during flow), a central challenge is
that some identified features (especially HRV metrics) are only robustly usable after
aggregations to longer periods (i.e. five minutes). Such a requirement can quickly
extend the duration of experiments and make them difficult to realise for participants
and experimenters. Relating to the affective dynamics of PNS measures of flow, there
is presently still only the observation of facial muscles known as a robust indicator of
affective experience (Riedl and Léger, 2016). Results from related studies indicate a
mixed picture in terms of which affective experience might be present during flow.
As there is still lively debate about whether or not flow is experienced as positively
valenced or as a state of neutral affect (due to a lack of self-evaluative thoughts - see,
e.g. Engeser and Schiepe-Tiska, 2012), it is unclear how an observation of affect may
inform a physiological picture of flow. However, it should be noted, that results have
so far not been presented for these measures in the more established experimental
flow paradigm of DM. Therefore, future research might want to follow up on this
path to narrow the understanding of how affect is expressed through facial muscles. If
such a direction is pursued, additional measures of affective orientation, for example
in the form of observing asymmetries in frontal brain activation (see Harmon-Jones,
Gable, and Peterson, 2010) could be a valuable addition.

Independent of the pursued measurement instruments and theories, a central
limitation to the present flow PNS research became apparent, that is a salient focus
on game tasks, on DM paradigms, and importantly, on single observation scenarios.
While on the one hand, this provides a shared foundation to integrate results, this
state of work comes with the central downside of not knowing how transferable
findings are to other situations, and how strong identified relationships are in gen-
eral. Highlighting this state of the research represents an important contribution
of this SLR. It is therefore adamant that future research starts to investigate flow
physiology in other task domains (e.g. knowledge work or e-Sports that lend them-
selves to physiological measurement), using other flow elicitation paradigms (e.g.
more naturalistic task settings or flow requirement manipulations) and importantly,
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comparisons of tasks and paradigms for the identification of task-independent flow-
physiology relationships. In following these propositions, flow research can benefit
from finding means of increased objective validity in flow measurement and also
advance constructivist efforts to facilitate flow through adaptive NeuroIS.

Conclusion

This SLR summarised the work from 20 studies on Peripheral Nervous System (PNS)
observations during flow. One of the main results is that a need for more cross-task
and cross-paradigm research is present in this body of work. In particular, this need is
based on the observation of mostly incoherent physiological feature relationships with
flow experiences. Cross-situational research can, therefore, help to elaborate on more
robust findings on the PNS configurations during flow. The SLR provides a starting
point to pursue these directions and therefore contributes to flow neurophysiology
research and to the development of theory-driven adaptive NeuroIS. As a particularly
promising direction, the observation of physiological activation through cardiac
activity patterns emerged. It has been repeatedly found that the flow experience is
accompanied by increased (i.e., moderate or high) physiological activation levels.
Thus, there is the assertion that to experience flow, the body must expend some
amount of physiological energy (Debus et al., 2014). However, it has so far not been
established how exactly these increased energy levels manifest. Considering that HRV
markers reflect sympathetic and parasympathetic modulation of the heart, several
propositions are presently being discussed, that can be well advanced by focusing on
cardiac observation across multiple tasks. To reiterate, these propositions refer to how
(or if) flow can be differentiated from other experiences (e.g. stress) through PNS
measures. Whether or not flow is a state of very high physiological activation (which
would be apparent from strongly reduced levels of HRV - e.g. in balanced difficulty
compared to hard tasks), of moderate physiological activation (which would be
apparent by only moderately reduced HRV levels), or whether or not flow is a state
of both high activation and strong calming influences at the same time (as could,
for example, be indicated partially by elevated activity of parasympathetic HRV
indicators) represents a central question in the current state of flow neurophysiology
work. To follow up on this central line of research, it was therefore decided to utilise
HRV measures for flow observation that was considered to take place across multiple
tasks and experimental paradigms.

4.3 Central Nervous System Research

Contents of this section are in part adopted or taken from Knierim et al. (2018b).
See Section A.1 for further details.

Flow Observation in the Brain

While research on the psychology of flow has a rich history, the neural mechanisms
behind it have only more recently become subject of theories and empiric studies
(Cheron, 2016; Dietrich, 2004; Harris, Vine, and Wilson, 2017b; Peifer, 2012; Weber
et al., 2009). The general proposition that has so far emerged is that the corollary of
a phenomenologically distinct state as flow should be a unique neurophysiological
state (Cheron, 2016; Weber et al., 2009). The present state of flow neuroimaging
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research can be described in three categories that are neurophysics (functional princi-
ples the brain operates by), neuroanatomy (regions and networks of the brain that are
involved), and neurocognition (neural activity correlating with cognitive processes).
To investigate these propositions, the behaviour of the firing of neuron cells in the
brain is observed. In particular, this activity is observed in the cerebrum, the largest
part of the brain that contains the cerebral cortex and several subcortical structures,
like the hippocampus, basal ganglia, and amygdala (for more background infor-
mation see Andreassi, 2000 and Section 4.4). Both indirect and direct measures of
neuronal activity are used to study flow experiences in the brain. Hemodynamic
imaging methods like functional Magnetic Resonance Imaging (fMRI) and functional
Near-Infrared Spectroscopy (fNIRS) measure blood flow to brain regions and, there-
fore, indirectly index in which brain structures neural activity increases (Riedl and
Léger, 2016). Electrophysiological imaging methods on the other hand measure direct
electrical activity of neuron assemblies in the outer brain regions (the cerebral cortex)
(Andreassi, 2000; Cohen, 2017). So far, two central neurophysical mechanisms have
been proposed to explain the experience of flow. The first is the reduction of neural
activity (reductionist theories - see Dietrich, 2003; Marr, 2001; Peifer, 2012), and the
second is the interaction/synchronisation of neural activity (interactionist theories -
see Harris, Vine, and Wilson, 2017b; Weber et al., 2009).

The first, central perspective on flow neurophysiology rests on the notion that
in flow, task-irrelevant activities are down-regulated for the benefit of the brain to
operate without interference at a highly efficient level (Marr, 2001; Peifer, 2012). Arne
Dietrich (2003; 2004), proposed a theory based on this reasoning named Transient
Hypofrontality Theory (THT). The theory states, that while in flow, activity in
frontal brain regions is reduced in favour of concentration of resources in regions
of the brain dedicated to processing the task at hand (e.g. from explicit towards
implicit information processing in the motor or sensory regions). THT is intuitively
plausible, especially so within the sports research context, as learned motor behaviour
would show better execution when free from the interference of conscious control
(Dietrich et al., 2010; Harris, Vine, and Wilson, 2017b). However, THT has been
criticised for being overly simplistic and for neglecting critical concepts related to
attentional processes (ease of attentional control, lack of attentional effort, absence
of self-referential attention) (Harris, Vine, and Wilson, 2017b; Peifer, 2012; Sadlo,
2016; Weber et al., 2009). This critique has been supported by neuroimaging studies
investigating the role of prefrontal brain structures in flow. This research shows a
much more nuanced pattern of activation in areas of the Prefrontal Cortex (PFC),
specifically reduced activity in the medial PFC (Ulrich, Keller, and Grön, 2016a;
Ulrich et al., 2014; Barros et al., 2018), increased activity in dorso- & ventrolateral
PFC (Yoshida et al., 2014; Barros et al., 2018), but also no reduction in frontal activity
(Harmat et al., 2015). These findings have led researchers to suggest alternative
neural patterns while keeping with the paradigm of reduction. One such approach
extends the THT by integrating the aforementioned findings of nuanced PFC activity
with research on the neurophysiology of self-awareness, particularly with activity
in the so-called Default Mode Network (DMN) (Harris, Vine, and Wilson, 2017b;
Sadlo, 2016). Activity in the DMN is related to mind-wandering, and thinking
about the self, past, and future, and is reduced in goal-directed behaviours (Buckner,
Andrews-Hanna, and Schacter, 2008). Conversely, reductions in the DMN could
explain the experience of reduced self-awareness, the improvement in performance
(as the “inner critic” is silenced, more efficient information processing could take
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place), but also the rewarding experience (as apparently, it is very pleasing to forget
oneself and one’s troubles) (Harris, Vine, and Wilson, 2017b; Peifer, 2012; Sadlo, 2016).

Theories from the interactionist view propose the central importance of synchro-
nised interaction of attention and reward networks of the brain as an alternative
explanation of flow neurophysiology (Harris, Vine, and Wilson, 2017b; Weber et al.,
2009). The first proposition in this direction called Synchronization Theory (ST), con-
ceptualises flow as a qualitatively discrete, emergent phenomenon resulting from the
synchronised firing of neuronal networks (Weber et al., 2009). With synchronisation as
an energetically cheap principle (Buzsáki and Draguhn, 2004; Siegel, Donner, and En-
gel, 2012), the resulting energetic optimisation is supposed to explain the perception
of effortlessness during flow (Harris, Vine, and Wilson, 2017b). In the interactionist
theories, attentional phenomena are at the centre of flow theory. Additional to the
previously discussed phenomena of automaticity (PFC, verbal-analytic reasoning &
motor region areas), and self-referential attention (DMN), Harris, Vine, and Wilson
(2017b) integrate mechanisms that would explain how attentional control, impulse
control, and conflict monitoring mechanisms would jointly explain the experiential
components of flow (Harris, Vine, and Wilson, 2017b). In summary, they propose that
efficient attention and automated action control account for many of the experiential
components of flow theory, with attention during flow being considered as more
external, less self-conscious, less prone to distraction and more task-directed. The
neural underpinnings of these attentional processes would be manifested by a com-
bination of reduced medial prefrontal areas and the DMN (reduced self-awareness),
reduced conflict monitoring (reduced activity in the anterior cingulate cortex - see
Klasen et al., 2011; Ulrich, Keller, and Grön, 2016b), improved impulse control related
to dopamine activity, and considerable activity in networks related to higher-order
processing (e.g. the multiple demand network) (Harris, Vine, and Wilson, 2017b).

The borders between the two theoretic perspectives are somewhat dotted. As the
research into this area is rather young, it might very well be, that there is even more
overlap between some of these propositions that a holistic theory of flow neuro-
physiology will have to account for. Taken together, it appears that so far, reasoning
and evidence mostly document physical, anatomical, and cognitive patterns, that
still focus on a lack of interference of task-irrelevant processes and increased neural
efficiency during flow experiences. However, reviewing this initial literature on flow
neurophysiology theory also highlighted that much of the reasoning is based on
studies using hemodynamic imaging (see, e.g. Ulrich et al., 2014; Harmat et al., 2015;
Barros et al., 2018), and that emerging EEG literature is only sparsely integrated into
this research domain. If however, neural measurement is supposed to be leveraged
eventually for adaptive NeuroIS, neuroimaging methods that are usable in different
situations (i.e. portable) must be utilised. Presently, only the EEG provides such
potential (Blankertz et al., 2016; Lance et al., 2012). Therefore, as previous work has
focused on fundamental descriptions of flow neurophysiology, the integration of
EEG literature is missing. To provide a foundation for the observation of flow using
wearable EEG, it was decided to conduct an SLR to answer the following RQ:

• RQ2: How can the configuration of the brain during flow be described using
EEG measures?

As will be shown later, the EEG results so far only relate to reductionist theories
(i.e. THT-related reasoning) and not to interactionist theories (i.e. ST), as there are no



4.3. Central Nervous System Research 49

studies that observe neural networks (e.g. using connectivity analyses). Therefore,
it was decided to focus in particular on the THT related findings (i.e. frontal brain
regions), to consolidate and improve the knowledge in this area by a more nuanced
investigation. This work makes two key contributions to flow neurophysiology
research and provides a foundation for the theory-driven development of adaptive
NeuroIS. First, a systematic review and overview of existing studies that utilise EEG
measurements of flow are provided. Such an overview represents a valuable starting
point for future research to build on. Second, the present knowledge is integrated
and synthesised knowledge, and propositions are provided on how to observe flow
using EEG-related instrumentation. Importantly this integration covers findings
from different research approaches and thus fosters the identification of meaningful
patterns, but also limitations in the present research.

SLR Method

Similar to the previous section, this SLR was conducted according to the guidelines
of Kitchenham et al. (2009) and Webster and Watson (2002) (see Figure 4.5). The
search strings were developed in five steps. First, an exploratory search on Google
Scholar (scanning all 50 returned search pages) was conducted using a search string
of synonyms of flow and related terms, combined with often occurring synonyms
for psychophysiological research approaches. 103 articles were identified by title and
abstract as potentially related to flow psychophysiology (PNS and CNS), of which 67
were confirmed to be after full-text review (excluded articles had no direct relation to
flow theory or measurement). At this stage, it was decided to narrow the focus on
EEG studies in favour of deepened analysis. Therefore, a preliminary corpus of 18
EEG studies of flow was extracted (using the criteria 1-3 that are outlined below). In
the next step, databases for the main search were selected. Twelve databases were
compared as to how well the preliminary corpus was represented (WebOfScience,
ACM Digital Library, EBSCOhost, Scopus, PsychINFO, IEEExplore, ScienceDirect,
SpringerLink, WileyOnline, ProQuest, EmeraldInsight and JSTOR). The top two
databases (in terms of the number of retrieved studies from the preliminary corpus),
Scopus (13/18) and WebOfScience (9/18) were then chosen to conduct the subsequent
literature search. The search string was further refined to capture flow synonyms or
related concepts, to focus on capturing EEG-related research, and to exclude studies
focusing on alternative contexts of the term flow or studies of other than healthy
adult populations. In total, 3.167 articles were returned from the two databases.

In the first decision stage, all studies that met the following (primary) criteria
were included: The study (1) is a peer-reviewed journal article, an article in press, in
conference proceedings, dissertation, or book chapter, (2) refers to the psychological
phenomenon of flow, and (3) the study focuses on psychophysiological measurements,
specifically EEG. Duplicate articles were identified in the database results and not
additionally reviewed. Afterwards, to reduce the still considerable corpus size,
article titles were scanned for their relation to the review context, by an automatic
and a manual process. First, all titles not including either one of the main keywords
(flow, “optimal experience”, engagement, absorption, immersion, psychophysiologic*,
neurophysiologic*, electroencephalo*, EEG) nor more than one of these additional
keywords (intrinsic, motiv*, involv*, attent*, creativ*, distract*, chall*, adapt*, learn*,
perform*, *physio*, brain) were excluded (1.964). Then, all titles were manually
reviewed, and articles excluded if they were found to be unrelated to the review
context (1.077). For the remaining sample (126 remaining), the abstracts were screened
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FIGURE 4.5: Stages of the SLR on EEG Observation of Flow.

manually and excluded in adherence to criteria 1-3 as far as applicable (71). For the
remaining 55 studies, the full texts were analysed, and all remaining studies excluded
using criteria 1-3 (40). The 15 retained articles were combined with the 18 articles
from the preliminary corpus and subjected to a backward and forward search process
using Google Scholar. This process identified eight additional studies of interest,
concluding this first decision stage. After the conclusion of the search, two studies
were published that were also added to the corpus. Therefore, for the literature
analysis, a broad corpus of 43 studies was retained initially.

During the second and final stage, additional decisions were made that led to
further study exclusion. Four (secondary) criteria were considered that should
further improve the comparability of the corpus. First, it was decided to focus
on studies containing (4) completed empirical analyses (three excluded), and (5) a
focus on flow state observation, not trait variables or Brain Computer Interface (BCI)
input (three excluded). Second, studies that (6) did not report sufficiently detailed
information on measures and data analysis (four excluded as electrode positions
were not reported; six excluded as proprietary EEG feature algorithms were used
and thus feature extraction information was not reported; one excluded as the role of
EEG data in pooled Machine Learning (ML) models is not reported; two excluded
as it is not reported how ground truth values were derived; one excluded that does
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not report main flow-related condition comparisons), and (7) did not use any other,
but physiological measures to provide a ground truth observation of flow were
removed due to the heightened danger of ungrounded physiological inference and
circular reasoning (Richter and Slade, 2017; Brouwer et al., 2015) (three excluded).
The search led to a corpus of 20 publications (22 studies). Articles discussing flow
neurophysiology from theoretical perspectives or using other neuroimaging methods
were also retained for bibliometric analysis.

Results

Following a concept-centric focus (Webster and Watson, 2002), the findings are sum-
marised in three areas: (1) bibliometric status of the body of work, (2) theoretical
perspectives and research methods, and (3) findings on EEG features.

A short bibliometric analysis (Aria and Cuccurullo, 2017; Börner, Chen, and Boy-
ack, 2005; Zupic and Čater, 2015) was included to comprehend the state of EEG flow
research better. In particular, the integrative character of EEG research within itself,
but also with other neuroimaging studies and flow neuro-theory was investigated.
References of all articles in the final EEG literature corpus were extracted once man-
ually and once automatically using the programming library CERMINE (Tkaczyk
et al., 2015). Bibliometric results are reported in the form of an historiograph in Figure
4.6 that shows the publication time course and centrality measures (in-degree and
out-degree) (Börner, Chen, and Boyack, 2005). It can be seen in the historiograph
that the majority of EEG studies (75%) has been published in the last five years,
demonstrating the youth and emergence of this approach. The results of the reference
analysis (within the EEG corpus) show a strongly fragmented research field. Many,
and even recent, articles show degree counts without or very little citation of other
EEG studies in this corpus (in-degree of <= 1 for 90%, out-degree of <= 1 for 80%
of studies). Other neuroimaging work is referenced even less, only by five studies
at all, and central tendencies for all studies are close to zero (min = 0, mean = 0.35,
median = 0, max = 2, out-degrees of <= 1 for 90% of studies). The integration metrics
for the EEG studies with theoretic accounts are slightly higher (min = 0, mean =
0.65, median = 0, max = 4, out-degrees of <= 1 for 85% of studies), yet the majority
of citations falls to three articles. It is therefore observed that the integration with
theoretical work on flow neurophysiology is also mostly absent in studies of EEG
patterns during flow. Altogether, this points to a shortcoming of the present literature
in terms of integration of reasoning and evidence, highlighting the need for this SLR
and in general, more integrative work in flow EEG research.

As the first part of the corpus analysis, utilised theories, research methods, and
analysis foci were inspected to provide context for the comparability of study results.
Table 4.2 provides an overview of these results. Four publications (only 20% of
publications) refer to major flow neurophysiology theories. This distribution shows
that little explicit EEG study of major theories is present. Of the major theories, only
Transient Hypofrontality Theory (THT), but not Synchronization Theory (ST) is in-
vestigated. Furthermore, 11 studies do not include any explicit theory or hypotheses
(55% of publications). This further highlights a problematic lack of theoretic integra-
tion. A possible cause for this distribution is the high number of mainly explorative
efforts, but also that some studies only peripherally investigate flow experiences.
Within the alternative hypotheses, one is close to a major theory (NE = Neural Effi-
ciency). In contrast, others are more distant to major theories and cluster with either
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FIGURE 4.6: Historiograph of Three Flow Neurophysiology Study Categories. Ar-
rows Show Referencing. Values In the Nodes Show In-/Out-Degrees. Referencing
Was Only Evaluated for the EEG Studies. The Degree Counts and Reference Map-

pings are Summarised Again in the Appendix Table A.1.

attention (FA = Focused Task Attention), arousal or emotion concepts (AP = Approach
Motivation, IA = Increased Arousal, RE = Increased Relaxation). The distribution
of alternative hypotheses is similar. NE hypotheses are combined with all arousal
and affect concepts, which shows an increased diversity in theoretic opinions. This
diversity is further apparent in the presence of antagonistic predictions, especially
relating arousal/relaxation states (IA vs RE). Regarding research designs and mea-
sures, the majority of studies (72.73%) uses acceptable, albeit relatively small sample
sizes (mean = 26.45, median = 21). Also, the majority of studies (86.36%) uses high
quality (i.e. research-grade) EEG systems with multiple electrodes on a gel or saline
basis. In terms of establishing ground truth of flow elicitation, self-report instruments
are almost always used (86.36%). This focus shows that this is still likely considered
the benchmark (see also Moneta, 2012). Some studies (40.91%) include behavioural
metrics, always operationalised with some type of task performance measure (either
positive = score, negative = errors, and efficiency = moves). All studies are con-
ducted in laboratory environments. Most (54.55%) use the DM paradigm. Given the
similarity of the MAS to the DM paradigm (both focus on an adapted difficulty as
flow entrance requirement), it can be said that difficulty adaptation is the central
experimental approach. In terms of analysis foci, the majority of studies (95.45%)
performs traditional Statistical Inferential Modelling (SIM). Yet, some studies also
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Theory Design Measures
Reference View N Par. Context Ground Sys. FOI ROI

Statistical Inferential Modelling (SIM)
Bombeke et al. (2018) FA 18 MAS Gam. Rep.,Per. RG ERP,FB P
De Kock (2014) THT 20 MAS Gam. Rep.+Per. RG FB WS
Katahira et al. (2018) - 16 DM Cogn. Rep.,Per. RG FB WS
Kramer (2007) NE, IA 10 MAS Gam. Phy.,Per. RG FB T
Labonté et al. (2016) NE, RE 42 MAS Gam. Rep. RG FB F
Soltész et al. (2014) THT 20 DM Gam. Per. RG FB WS
Wolf et al. (2015) NE, AP 29 MAS Sports Ref. RG FB T
Ewing et al. (2016) IA 20 DM Gam. Rep.,Per. RG FB WS
Fairclough (2013) IA, AP 20 DM Cogn. Phy.,Per. RG FB F+C
Léger et al. (2014) THT 36 DM Edu. Rep.,Phy. RG FB F
Klarkowski (2017) - 50 DM Gam. Rep.,Phy. IG FB F+O
Beyer et al. (2015) - 28 ENG Gam. Rep. RG FB O
Johnson et al. (2015) - 55 ENG Gam. Rep. CG FB F
Nacke et al. (2010) - 27 ENG Gam. Rep.,Phy. RG FB WS
Li et al. (2014) - Exp. 1 - 44 DM Gam. Rep.,Phy. IG FB F
Li et al. (2014) - Exp. 2 - 44 DM Gam. Rep.,Phy. IG FB F
Chatterjee et al. (2016) - 20 DM Cogn. Rep.,Per. CG Hjorth F
Sinha et al. (2015) - 16 DM Cogn. Rep.,Per. CG FB F

Machine Learning (ML)
Berta et al. (2013) - 22 DM Gam. Rep.,Phy. CG FB F+T
Chanel et al. (2011) - 14 DM Gam. Rep.,Phy. RG FB WS
Shearer (2016) - Exp. 1 THT 27 ENG Gam. Rep.,Phy. RG FB,Raw F+P
Shearer (2016) - Exp. 2 THT 4 ENG Gam. Rep.,Phy. RG FB,Raw F+P

Notes: HFA = High and Focused Task Attention; NE = Neural Efficiency;
APP = Approach Motivation; IA = Increased Arousal; RE = Increased Relaxation;
Par. = Paradigm; Gam. = Gaming; Cogn. = Cognition; Edu. = Education;
Rep. = Self-Report; Phy. = Physiology; Per. = Performance;
RG = Research Grade (Many & Gel-based Electrodes); IG = Intermediate Grade
(Some & Possibly Wet Electrodes); CG = Consumer Grade (Few & Dry Electrodes);
F = Frontal; T = Temporal; P = Parietal; O = Occipital; WS = Whole Scalp.

TABLE 4.2: EEG SLR Overview of Extracted Concepts.

(and sometimes focally) utilise ML methods (including feature selection and state
classification) (18.18%). All these studies focus on temporally aggregated findings
during the observation (e.g. the full five minutes of a task condition pooled). On the
other hand, a small percentage of studies (13.64%) analyses the Time Dynamics (TD)
EEG patterns within such conditions.

Regarding the (EEG) results extraction, a particular effort was made in not only
the inclusion of positive (significant), but also negative (insignificant) and potential
findings (e.g. mixed results, feature selection results, or descriptive comparisons of
central tendency measures). This returned a high amount of collected data (>1000
unique results, i.e. unique combinations for region x feature x method, for the
22 studies). Findings were split into homogenous sub-categories to increase the
comparability of results. These sub-categories are first of all based on employed
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methods: (1) SIM Findings - 880 findings, and (2) ML Findings - 50 findings. Second
of all, studies observing EEG data changes over time during a task were collected
separately as (3) TD Findings - 148 findings. Given the large number of reported
findings, it was in this stage decided to narrow the focus on studying a restricted
feature range. First, it was decided to focus on findings that relate to frontal brain
regions to consolidate THT-related findings. Additionally, it was decided to focus
on frequency-domain features that represent the majority of reported observations.
Findings from feature selection procedures of ML studies that inform which features
might have diagnostic value to separate flow intensities were also included in the
following results. To emphasise the feasibility of this approach of focusing on frontal
cortex frequency power changes, three additional summaries were used. In an
overview of the 21 studies employing SIM or feature selection methods, six different
types of features are reported. Table 4.3 shows that the two largest clusters of utilised
features in all studies are for frequency-domain features. Frontal brain frequency band
changes in flow experiences have been reported often. The frequency-domain features
include band amplitude and power findings, their ratios and lateral asymmetries. An
overview of the types of features is presented in Table 4.4. The following ranges were
used to categorise reports from different frequency ranges: Very Low Frequency (VLF)
(0,5-2 Hz), Delta (0,5-4 Hz), Theta (3,5-8,5 Hz), Alpha (7-14 Hz), Beta (10-35 Hz),
Gamma (30-50 Hz), Very High Frequency (VHF) (30-100 Hz), Broad (1-40 Hz). The
majority of findings cluster in the simple frequency band features, particularly in the
ranges from Theta to Beta.

Feature Class Feature n-Studies n-Paradigms n-Methods n-Tasks

Time-Domain ERP 1 1 2 1

Freq.-Domain

Hjorth 1 1 1 1
Freq. Band 20 3 6 5
Ratio 4 3 3 2
Asymmetry 2 2 2 2
Coherence 4 3 3 2

TABLE 4.3: Diversity of Observed EEG Feature Types.

Freq. Band VLF Delta Theta Alpha Beta Gamma VHF Broad

Occurrence 2 8 17 16 14 6 3 3

TABLE 4.4: Counts of Reported Frequency Band Ranges.

To reiterate, the study of frontal regions has been preferred often based on the
THT account of flow neurophysiology (Dietrich, 2004). So far, for THT’s central
hypothesis of frontal activity reduction during flow, little support has been found in
fMRI (Ulrich et al., 2014) and fNIRS (Harmat et al., 2015; Barros et al., 2018) imaging
studies. Instead, it appears parts of the PFC, specifically lateral parts, are highly
active during flow, yet the medial PFC shows activity decreases during flow, and
underload/boredom conditions show a more general PFC reduction (Harris, Vine,
and Wilson, 2017b; Barros et al., 2018). Frontal activity has also been reported in
most of the related flow EEG studies, with repeated results supporting the region
as a location of interest. While three of these studies (Chanel et al., 2011; Berta
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et al., 2013; Sinha et al., 2015) report on the relevance of frontal activity for the
ML-based classification of flow states, nine other studies describe activity in more
detail. The findings on frontal frequency band patterns with flow experiences are
ordered by the three major frequency bands (Theta, Alpha, and Beta) and are reported
in Table 4.5. The notation for the findings is the same as described in Section 4.2
for the PNS SLR. One difference is that here, findings are reported concerning their
observation on the scalp. This detail means that the results are reported from left
to right hemisphere with different stages of distance to the midline. For instance,
a finding listed furthest to the right indicates that the observation was made on
electrodes on the lateral outside of the scalp (e.g. electrode F8). In addition, the table
shows the used frequency band ranges (in Hertz), the context of the experimental task
and the type of employed analysis (indirect comparison of conditions are denoted
by separated letters - e.g. B/F/O; direct comparisons using correlation or regression
analyses are indicated by flow self-report instrument that was used). A novel element
in this table (in comparison to the PNS SLR) is the x relationship, which indicates
that a potential to differentiate the experimental conditions was found (e.g. from
Feature Selection (FS) algorithms), but that the exact relationship to these conditions
or flow is not reported. Whenever mixed results are reported (e.g. in the form of
x/ ), this means that multiple models were tested and some reported differentiation
for conditions, while others did not.

Aggregating the results of these studies that primarily focused on frequency band
activity across difficulty-manipulated conditions, numerous results can be integrated.
First, one of the more robust findings is an elevated level of frontal Theta band
activity in flow. More precisely, frontal Theta levels appear to be elevated in flow
conditions (e.g. moderate or balanced difficulty conditions), when compared to
easy difficulty conditions. Furthermore, either similarity between flow and hard
(difficulty) conditions (Soltész et al., 2014; Katahira et al., 2018) are found or decreases
from flow to hard conditions indicating an inverted U-shaped relationship between
frontal Theta activity and task demands (Ewing, Fairclough, and Gilleade, 2016;
Fairclough et al., 2013). Support for frontal Theta to differentiate situations of lower
and higher flow has also been noted in ML research on flow classification (Chanel
et al., 2011; Sinha et al., 2015). In contrast to this, a minority of findings shows no
relationship between frontal Theta and difficulty condition comparisons (Klarkowski,
2017; Chanel et al., 2011), between frontal Theta in quasi-experimental condition
comparisons (lower vs higher flow intensity trials) (De Kock, 2014), and correlation
or regression analyses using self-reports and frontal Theta relationship analysis
(Katahira et al., 2018; Klarkowski, 2017). Also, one instance of a negative relationship
between frontal Theta and flow self-reports is found (Li et al., 2014).

Second, repeated observations have been made for frontal Alpha activity, albeit
with even higher diversity. The Alpha frequency band and the diversity of findings
are particularly relevant to review, as Alpha has been recommended as the prime
candidate to study areas of (prefrontal) downregulation (Cheron, 2016; Harris, Vine,
and Wilson, 2017b). This proposition is based on the understanding that Alpha is
an inhibitory oscillatory rhythm that indicates cortical idling (Buzsaki, 2006). There-
fore, increased Alpha power in a particular region indicates a reduction of neural
activity. In the present corpus, one study finds increased Alpha power with higher
flow self-reports (Léger et al., 2014). This finding is supported in its direction by
a quasi-experimental comparison of difficulty conditions, in which frontal Alpha



56 Chapter 4. Flow Neurophysiology

R
ef

er
en

ce
C

on
te

xt
D

V
H

z
LH

(L
at

.t
o

M
ed

.)
M

id
./

A
ll

R
H

(M
ed

.t
o

La
t.)

Th
et

a
Fr

eq
ue

nc
y

R
an

ge
(4

-8
H

z)
K

at
ah

ir
a

et
al

.(
20

18
)

C
og

n.
B/

F/
O

W
S

4-
7

sF
SS

D
e

K
oc

k
(2

01
4)

G
am

.
fL

/f
H

W
S

4-
7

Ew
in

g
et

al
.(

20
16

)
G

am
.

B/
F/

O
W

S
i(

4-
7)

Fa
ir

cl
ou

gh
(2

01
3)

C
og

n.
B/

F/
O

W
S

i(
4-

7)
Si

nh
a

et
al

.(
20

15
)

C
og

n.
fL

/f
H

W
S

(F
S)

4-
7,

5
x

Be
rt

a
et

al
.(

20
13

)
G

am
.

B/
F/

O
W

S
(F

S)
4-

8
C

ha
ne

le
ta

l.
(2

01
1)

G
am

.
B/

F/
O

W
S

(F
S)

4-
8

x
/

x
/

x
/

x
/

x
/

x
/

B/
F/

O
W

S
x

x
K

la
rk

ow
sk

i(
20

17
)

G
am

.
B/

F/
O

W
S

/
FS

S
4-

8
Li

et
al

.(
20

14
)E

xp
.1

G
am

.
G

EQ
4-

8
Li

et
al

.(
20

14
)E

xp
.2

G
am

.
G

EQ
4-

8
So

lt
és

z
et

al
.(

20
14

)
G

am
.

B/
F/

O
W

S
4-

8

A
lp

ha
Fr

eq
ue

nc
y

R
an

ge
(7

-1
3

H
z)

Ew
in

g
et

al
.(

20
16

)
G

am
.

B/
F/

O
W

S
7,

5-
10

So
lt

és
z

et
al

.(
20

14
)

G
am

.
B/

F/
O

W
S

8-
11

Ew
in

g
et

al
.(

20
16

)
G

am
.

B/
F/

O
W

S
10

,5
-1

3
So

lt
és

z
et

al
.(

20
14

)
G

am
.

B/
F/

O
W

S
11

-1
3

K
at

ah
ir

a
et

al
.(

20
18

)
C

og
n.

B/
F/

O
W

S
10

-1
3

sF
SS

Be
rt

a
et

al
.(

20
13

)
G

am
.

B/
F/

O
W

S
(F

S)
8-

12
x

x
C

ha
ne

le
ta

l.
(2

01
1)

G
am

.
B/

F/
O

W
S

(F
S)

8-
12

x
/

x
/

x
/

x
/

x
/

x
/

B/
F/

O
W

S
D

e
K

oc
k

(2
01

4)
G

am
.

fL
/f

H
W

S
8-

12
La

bo
nt

é
et

al
.(

20
16

)
G

am
.

B/
A

/F
/O

W
S

8-
12

Lé
ge

r
et

al
.(

20
14

)
Ed

u.
C

A
8-

12



4.3. Central Nervous System Research 57

R
ef

er
en

ce
C

on
te

xt
D

V
H

z
LH

(L
at

.t
o

M
ed

.)
M

id
./

A
ll

R
H

(M
ed

.t
o

La
t.)

K
la

rk
ow

sk
i(

20
17

)
G

am
.

B/
F/

O
W

S
/

FS
S

8-
13

Be
ta

Fr
eq

ue
nc

y
R

an
ge

(1
2-

35
H

z)
Be

rt
a

et
al

.(
20

13
)

G
am

.
B/

F/
O

W
S

(F
S)

12
-1

5
x

x
D

e
K

oc
k

(2
01

4)
G

am
.

fL
/f

H
W

S
12

-1
5

Lé
ge

r
et

al
.(

20
14

)
Ed

u.
C

A
12

-2
2

Be
rt

a
et

al
.(

20
13

)
G

am
.

B/
F/

O
W

S
(F

S)
15

-2
0

x
x

D
e

K
oc

k
(2

01
4)

G
am

.
fL

/f
H

W
S

15
-2

0
Si

nh
a

et
al

.(
20

15
)

C
og

n.
fL

/f
H

W
S

(F
S)

16
-2

0
x

So
lt

és
z

et
al

.(
20

14
)

G
am

.
B/

F/
O

W
S

13
-2

5
Be

rt
a

et
al

.(
20

13
)

G
am

.
B/

F/
O

W
S

(F
S)

20
-3

0
x

x
D

e
K

oc
k

(2
01

4)
G

am
.

fL
/f

H
W

S
(W

S)
20

-3
0

So
lt

és
z

et
al

.(
20

14
)

G
am

.
B/

F/
O

W
S

25
-3

5
C

ha
ne

le
ta

l.
(2

01
1)

G
am

.
B/

F/
O

W
S

(F
S)

12
-3

0
x

/
x

/
x

/
x

/
x

/
x

/
B/

F/
O

W
S

K
la

rk
ow

sk
i(

20
17

)
G

am
.

B/
F/

O
W

S
13

-3
0

FS
S

K
at

ah
ir

a
et

al
.(

20
18

)
C

og
n.

B/
F/

O
W

S
14

-3
0

N
ot

es
:M

os
tP

ub
lic

at
io

ns
R

ep
or

tF
re

q.
Ba

nd
Po

w
er

,K
at

ah
ir

a
et

al
.(

20
18

)R
ep

or
tF

re
q.

Ba
nd

A
m

pl
it

ud
es

;
M

id
.=

M
id

lin
e;

La
t.

=
La

te
ra

l;
M

ed
.=

M
ed

ia
l;

G
am

.=
G

am
in

g;
Ed

u.
=

Ed
uc

at
io

n;
C

og
n.

=
C

og
ni

ti
on

;
B/

A
/F

/O
=

Bo
re

do
m

/A
pa

th
y/

Fi
t(

Fl
ow

)/
O

ve
rl

oa
d

D
iffi

cu
lt

y
C

on
di

ti
on

s;
fL

/f
H

=
Lo

w
er

Fl
ow

/
H

ig
he

r
Fl

ow
G

ro
up

Sp
lit

;C
on

di
ti

on
W

it
h

H
ig

he
st

Fl
ow

In
te

ns
it

y
is

U
nd

er
lin

ed
.

TA
B

L
E

4.
5:

O
ve

rv
ie

w
of

Fl
ow

EE
G

Fi
nd

in
gs

.



58 Chapter 4. Flow Neurophysiology

power becomes maximal at right frontal sites during increased and balanced difficulty
situations (Labonté-Lemoyne et al., 2016). In contrast, within the DM group compar-
ison studies, findings of decreases in Alpha activity with increasing task difficulty
are found (Ewing, Fairclough, and Gilleade, 2016). Katahira et al. (2018) report the
inverse relationship, but use amplitudes as the unit of analysis (squaring the results
would also instead indicate a reduction of frontal Alpha with difficulty increases).
ML research also finds frontal Alpha activity to be a difficulty-differentiating feature
(Berta et al., 2013; Chanel et al., 2011). However, some studies find no relationship of
frontal Alpha power with flow, with different situations, for example through flow
self-report correlation and regression analysis (Katahira et al., 2018; Léger et al., 2014;
Klarkowski, 2017), or quasi-experimental condition comparison (lower vs higher flow
intensity trials) (De Kock, 2014). Also, multiple studies find no relationship of frontal
Alpha in difficulty condition comparison (Soltész et al., 2014; Ewing, Fairclough, and
Gilleade, 2016; Chanel et al., 2011; Klarkowski, 2017). The latter finding appears to oc-
cur more often in this contrast to the studies mentioned earlier when the broad Alpha
band or lower Alpha band components are observed. Overall it can be noted that a
variety of frontal Alpha findings have emerged that do not show a clear relationship
with flow so far.

Third, some observations have also been made regarding frontal Beta band activity
in flow, with ML reports demonstrating differentiation potential alone for broad
Beta (Chanel et al., 2011) and Beta sub-bands (Berta et al., 2013; Sinha et al., 2015).
Beyond this aspect, results are mixed. One study finds that left frontal beta band
reductions correlated with higher flow self-reports (Léger et al., 2014). On the other
hand, DM and quasi-DM studies point to increases in frontal Beta at both left and
right frontal sites (Klarkowski, 2017; De Kock, 2014). However, the slightly most
repeated finding is a lack of relationships between flow and frontal Beta in difficulty
condition comparisons (Chanel et al., 2011; Soltész et al., 2014; Katahira et al., 2018).
The meaning of these findings, together with how these frequency ranges have been
observed in more fundamental neuroscientific studies, is discussed in the next section.

Discussion & Future Directions

RQ2 asked how the brain’s configuration during flow can be described using EEG
measures. This SLR highlights five aspects of the present state of flow EEG research,
specifically the study of frontal brain regions to investigate THT-related hypotheses.

Overall, a low degree of integration of the present EEG work on flow with itself and
with other neuroimaging and neuro-theoretic research is found. This fragmentation
is not only visible by the apparent lack of citations, which is to some degree under-
standable given the youth of the field, but also by the lack of inclusion of theoretic
accounts on flow neurophysiology. Instead, several articles follow the motivation to
explore neurophysiological patterns during increased flow experience primarily, even
some that have been published rather recently (i.e. even amongst the very latest pub-
lished studies). This lack of integration has likely impeded the advancement of more
refined observation of diagnostic EEG patterns during flow and might be a central
reason for why a relatively high diversity of findings is present, despite somewhat
comparable paradigms and analyses. It is, therefore, an essential recommendation
for future research to take into account such previous results when interpreting how
novel findings are likely to integrate with such previous work. It presently seems
of utmost importance that more detail is added to future flow research in terms of
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explanations for observed patterns (in light of employed paradigms, tasks, analyses
and pre-processing steps) and terms of considerations of the robustness of reported
findings. To aid in this endeavour, the utilisation of cross-task or cross-paradigm
studies appears as a highly valuable approach for the identification of flow-related
EEG patterns. As was the case for the work in the PNS SLR, there is currently a
strong focus present on game tasks and DM paradigms, that can be used as an anchor
for new work, but that should be overcome importantly for the assessment of the
robustness of identified relationships.

Despite the reasonably comparable and (for the most part) very adequately oper-
ationalised experimental approaches, so far, barely any highly diagnostic findings
have emerged that would help to identify a unique configuration of flow (in frontal
regions), that can be detected by the EEG. Such a finding is not necessarily something
that would have to occur, given that little is known and theorised about what the
neural configuration during flow is. However, the present (mostly explorative) body
of work can be appraised in terms of how diagnostic emerging results are. The
findings that could be classified as having higher diagnosticity (e.g. showing maxima
or minima in situations with higher flow) are either related to direct linear modelling
with self-report constructs, or given for example with the frontal Theta maxima dur-
ing balanced difficulty conditions (Ewing, Fairclough, and Gilleade, 2016; Fairclough
et al., 2013). Whether or not frontal Theta is a sign of flow is yet to be clarified,
especially as frontal Theta power has so far more strongly been related to changes in
task difficulty (Borghini et al., 2014; Silvestrini, 2017). Moderate Theta levels suggest
some degree of long-range cortico-cortical communication, particularly emerging
from frontal regions (where midline Theta increases are typically reported) as the
Anterior Cingulate Cortex (ACC) recruits information from other brain regions to
meet task demands (Borghini et al., 2014; Silvestrini, 2017). A possible explanation for
the maxima in (Ewing, Fairclough, and Gilleade, 2016; Fairclough et al., 2013) could
be that the task difficulty was too high so that disengagement occurred. However,
such disengagement must not result in lower Theta due to quitting the task altogether.
It is, therefore, possible that maximal frontal Theta activation could be a sign of high
attentional task engagement, that peaks during flow experiences.

Regarding the diagnosticity of linear modelling of flow with self-reports, caution
appears warranted. In the presented corpus, analysis methods using direct linear
modelling of flow self-reports and EEG features appear to often return quite different
results from those studies that compare differences across difficulty conditions. The
explanation for this complication is two-fold. Either there is a different part of the
variance of the flow construct that is observed through either method (Riedl, Davis,
and Hevner, 2014; Léger et al., 2014), or the patterns observed across manipulated
difficulty are not as strongly directly linked to flow intensities (they could relate more
to difficulty or other, third variables). In either case, it is not yet sufficiently clear, how
to integrate these diverging findings. Importantly, it should be considered whether
or not a focus on direct linear models is adequate. In contrast, in PNS flow studies,
non-linear models have increasingly shown utility in detecting direct relationships
between physiology and flow self-reports (e.g. Tozman et al., 2015; Bian et al., 2016).
Given these questions, future research should, therefore, focus on reconciling the
presence of relationships with more detail and sophistication in experiment designs
and employed analyses. For example, the use of more steps in DM paradigms or the
combination of DM paradigms with other experimental approaches could help in
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clarifying flow relationships to frontal Theta power changes. In addition, the use of
non-linear analyses appears as a useful approach to deepen and consolidate results
from indirect analyses (i.e. difficulty condition comparisons) with direct models.

Concerning THT, there is so far no clear evidence, as to whether or not it is observ-
able by the EEG. In particular, observations of frontal Alpha activity patterns have
returned mixed results. Frontal Alpha observation is recommended to identify corti-
cal idling during flow and could indicate prefrontal downregulation (Cheron, 2016;
Harris, Vine, and Wilson, 2017b). Across studies, experiment tasks, and methods of
analysis, it is not yet possible to conclude whether or not a reduction in prefrontal
cortex areas is visible by the EEG in terms of increased Alpha power. Furthermore,
the findings of increased frontal Theta power during increased flow would appear to
indicate an increased (or at least not decreased) utilisation of prefrontal structures
like the ACC - as this is a well-documented finding in working memory research
(Silvestrini, 2017; Klimesch, 1999; Borghini et al., 2014). In this regard, while a general
reduction of activity in prefrontal structures also seems unlikely in terms of EEG
findings, more refined approaches are required to understand the frontal cortex con-
figuration during flow experiences. Specifically, it appears that so far, some of the
more refined analyses of frontal electrodes and especially the distribution of power
in a refined Alpha band spectrum have not yet been integrated well into the line of
flow EEG research. Often frequency band ranges are extracted using generalised,
broad ranges (e.g. Theta 4-7.5 Hz or Alpha 7.5-12.5 Hz), despite the evidence, that
such generalised ranges can mask frequency sub-band specific changes (Klimesch,
1999), and despite more established segmentation in EEG research on meditation
(Hinterberger, Kamei, and Walach, 2011). Importantly, evidence from laboratory
experiments has highlighted that Alpha band components can show different and
even sometimes opposing patterns (Klimesch, 1999). For example, by segmentation of
personalised Alpha bands into three 2 Hz wide subcomponents, lower Alpha bands
(Lo1 and Lo2) have been found to relate to general attentional demands and alertness
over the whole scalp (Klimesch, 1999). The upper Alpha has been found to react to
changes in task-specific processes in topographically restricted regions (Klimesch,
1999). As flow is not only repeatedly associated with cognitive demands in the form
of working memory recruitment (i.e. Theta range activity), but also often in relation
with attentional processes (Harris, Vine, and Wilson, 2017b), it would seem of high
interest to employ Alpha band segmentation to not only identify regions of reduced
neural activity, but perhaps even identify global changes in attentional demands, and
task-specific pattern changes. Furthermore, given the findings of opposing activation
in medial and lateral PFC sites through hemodynamic imaging (Ulrich et al., 2014;
Ulrich, Keller, and Grön, 2016b; Barros et al., 2018), it would appear that a more
nuanced observation of Alpha power changes at different frontal electrode positions
could deliver useful additional insights.

Lastly, higher frequency findings (i.e. Beta) on frontal locations have been mixed.
As to whether or not, a particular pattern would be expected here only a few propo-
sitions have been put forward. Léger et al. (2014), for example, expect a reduced
frontal Beta activation as a sign of reduced arousal during flow. As in other related
flow research, moderate physiological arousal levels have been proposed to be a
(moderately diagnostic) correlate of flow experiences (Peifer, 2012) (see Section 4.2),
such an hypothesis seems somewhat justified. On the other hand, Beta power (es-
pecially when segmented in lower and higher parts) is known to react positively
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to changes in mental workload through increased task difficulties (Michels et al.,
2010). It is therefore similarly plausible that flow would at least be represented by
elevated frontal Beta levels. However, such a finding might also be more expressed
in central and posterior brain regions (Michels et al., 2010). From the present state of
research, it is not yet clear, if a Beta change is common during flow experiences, or if
it perhaps depends on electrode positions and Beta band segmentation. For example,
fronto-lateral Beta increases are found by Klarkowski (2017) in a broad Beta band,
and by De Kock (2014) in a mid-range Beta band. The reasons for the large diversity
in frontal Beta changes during flow need to be better understood.

Beyond these main advancements that can be made to flow EEG research, it should
also be mentioned that a variety of additional observations would be interesting
to follow up on. The analyses and discussions above have focused on analyses
conducted with temporally aggregated EEG data (e.g. means of windows of a few
minutes of observed EEG data). Especially as the EEG has the main advantage to
study direct activity at a very high temporal resolution, studying time dynamics
of flow would seem like a unique approach to learn about the dynamics of flow
onset, protection and offset. In more fundamental neuroscientific work, it has, for
example, been found that the study of time dynamics can help to more robustly
identify instances of approach or avoidance motivation (Allen and Cohen, 2010).
Approach motivation (observed through what is called Frontal Alpha Asymmetry -
see Harmon-Jones, Gable, and Peterson, 2010; Smith et al., 2017) has been suggested
to be related to flow (Labonté-Lemoyne et al., 2016). This association is based in the
understanding that flow is an experiential state that is characterised by high intrinsic
motivation and a desire to repeat an experience. It would, therefore, be plausible to
assume that during flow, individuals experience a high level of approach motivation.

Conclusion

This SLR summarised the work from 22 studies on EEG observation during flow. A
central result is that more detailed spectral, spatial and temporal analyses across tasks
and paradigms are needed to consolidate this highly fragmented state of work. The
SLR provides a starting point to pursue these directions and therefore contributes to
flow neurophysiology research and to the development of theory-driven adaptive
NeuroIS. Altogether, it can be stated, that there is still a long way to go to uncover
how EEG measures can describe the flow experience (see, e.g. Katahira et al., 2018;
Soltész et al., 2014). A focus on broad regions or frequency bands is likely to over-
simplify the neural state during flow. However, it can aid in better understanding
what occurs in the brain in terms of broader cognitive and physiological processes.
More comprehensive, detailed, and feature-integrative studies are needed. To aid
in the endeavour of isolating and consolidating EEG patterns of flow, two general
directions with similar value should be highlighted that are replication and explo-
ration. Many present findings would greatly benefit from additional, comparable
data to consolidate the understanding of the neurological basis of the flow state,
and replication would provide anchors for new explorations. Therefore, flow EEG
research should more strongly increase in detail than in diversity. It is for these
reasons why the propositions heavily feature advanced analyses methods, whose
possibilities should be substantiated by refined designs and measurement. In terms of
research designs, refinements should strive to improve internal and external validity,
reliability and diagnosticity. To improve internal validity, the elicitation of more
intense flow experiences should be considered.
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Beyond these factors and especially given the current lack of highly diagnostic EEG
findings, the inclusion of additional measurement methods has been highlighted
(Katahira et al., 2018; Harris, Vine, and Wilson, 2017b; Cheron, 2016). Co-registered
hemodynamic imaging and EEG methods could provide more refined insight into the
neural state during flow. However, these are also relatively complicated and costly
approaches. In contrast, ANS modulation of cardiac activity is considered a valuable
extension for the assessment of neural activity during task performance and stressful
experiences (Thayer et al., 2009; Thayer et al., 2012). The inclusion of ECG measures
to EEG study of flow could, therefore, provide a simple, yet informative addition
(Harris, Vine, and Wilson, 2017b). Lastly, advanced analysis methods (in detail
and quality) represent the central direction for future work. Increasingly detailed
analyses should be realised first in feature extraction processes. Improvements
should occur in the study of effects in frequency band splits, and individualised
features (e.g. individualised Theta and Alpha) that have been reported to represent
an often occurring confound in EEG research (Klimesch, 1999; Ewing, Fairclough,
and Gilleade, 2016; Hinterberger, Kamei, and Walach, 2011). Afterwards, improved
localisation of signal sources by application of spatial filtering methods (a significant
improvement in EEG methods in the past decade - see Cohen, 2014; Blankertz et al.,
2016) could provide necessary additional detail.

The field of flow EEG research appears still ripe with opportunity. The main con-
tribution of this SLR is the documentation and integration of a highly fragmented
body of work. In this dissertation, this basis is extended by two experiments using
two different tasks with four different paradigms in total. Using both ECG and
EEG measurement and following up on the proposition of refined frontal power
investigation (by studying more frontal locations and frequency sub-bands) further
consolidation of the state of knowledge on flow neurophysiology is provided. Before
the experimental results are presented, the following section details the main neuro-
physiological measurement approaches to provide an essential background about
their properties.

4.4 ECG & EEG Methodology

Selection of Measurement Approaches

ECG and EEG measures were considered to represent likely candidates for the in-
vestigation and continuous detection of flow experiences due to their low costs, high
portability and high temporal resolution. These characteristics make them both valu-
able for fundamental research and its eventual transfer into real-world applications
(i.e. flow-facilitating adaptive NeuroIS). Furthermore, both measurement systems are
not only highly developed for research purposes (the EEG for instance, has been em-
ployed in research for almost 100 years - see Buzsaki, 2006), but are also increasingly
available for the utilization in field studies and daily applications. ECG sensors are
readily integrated into chest belts that can be worn throughout the day (Baig, Gho-
lamhosseini, and Connolly, 2013; Weippert et al., 2010), and have for these reasons
already been used in field studies on emotion and flow experiences (Wilhelm et al.,
2006; Gaggioli et al., 2013). Moreover, ECG sensors have been directly integrated into
textiles to enable continuous and comfortable cardiac activity observation (Yoo et al.,
2009). The maturity of the technology has even allowed scholars to develop their own
low-cost wearable ECG devices that are used in field studies after having been sent to
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participants’ homes by mail (Courtemanche et al., 2020). Similarly, EEG sensors have
seen increasing potential to bridge laboratory and field research. The development
of dry-electrode EEG systems has greatly facilitated the sensor usability, and related
feasibility studies have repeatedly demonstrated acceptable data collection qualities
(Guger et al., 2012; Mullen et al., 2015). Subsequently, publications in prestigious
academic journals have appeared that leverage such technology for EEG research in
laboratory and field settings (see, e.g. (Krigolson et al., 2017; Barham et al., 2017; Bo-
brov et al., 2011)). Wearable EEG sensors have been used to observe mental workload
levels in software engineers at work (Kosti et al., 2018) or to provide neurofeedback
for emotion regulation (Ramirez et al., 2015).

Furthermore, the results from the SLRs further emphasise the relevance of ob-
serving neural and cardiac activities. Thus, the focus on these two measurement
domains was considered to be well-grounded. The focus was kept on two measures
for additional reasons. Psychophysiological research requires high levels of domain
knowledge on neurophysiological dynamics to enable the derivation of substantial
insights (Brouwer et al., 2015). Therefore, focusing on two measures is already a
challenging endeavour. However, as both ECG and EEG observe electrical activity,
at least this shared functional principle allows for methodological overlaps (e.g. in
terms of signal processing and feature extraction). Besides, neuronal and cardiac
activities have been jointly researched in the related, but more general fields of cog-
nitive-affective regulation research (Thayer et al., 2009; Mather and Thayer, 2018)
and mental workload research (Borghini et al., 2014; Silvestrini, 2017). Also, in flow
research specifically, the integration of frontal neural activity and cardiac reactivity
has been considered due to shared physiological regulation mechanisms (Barros et al.,
2018; Harris, Vine, and Wilson, 2017b). Therefore, the integration of both neural and
cardiac measures was considered to provide complementary insights.

Altogether, combining ECG and EEG measures for the description and continuous
detection of flow experiences was considered promising, feasible, and timely in terms
of how such instrumentation could become implemented in adaptive NeuroIS in
the near future. To provide a critical understanding of the underlying processes
of these data domains, the following two sections briefly describe the underlying
physiological systems, the general principle of the measurement instruments, and the
features extracted from the signal that are primarily investigated in this dissertation.

A Primer on the Autonomous Nervous System (ANS), Electrocardiography
(ECG), and Heart Rate Variability (HRV)

The Autonomous Nervous System (ANS) & Cardiac Activity

The human nervous system consists of different parts. The following descriptions are
based on the work by Andreassi (2000). A primary distinction is made between the
Central Nervous System (CNS) (brain and spinal cord) and the Peripheral Nervous
System (PNS) (all tissue except for the CNS). The PNS comprises two subsystems that
are the somatic and autonomic nervous system. The somatic system consists of cranial
and spinal nerves to and from the sensory organs, muscles, joints, and skin. The
main functions of the somatic nervous system are movement control and the trans-
mission of sensory information (e.g., vision, temperature, touch). The Autonomous
Nervous System (ANS) acts as the coordinator of critical bodily activities, including
digestion, body temperature, and blood pressure. The term “autonomic” implies
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that these functions are mostly operating outside of volitional control. The ANS is
further subdivided into two branches, the excitatory sympathetic nervous system
and the inhibitory parasympathetic nervous system. Whereas the former is related
to increased physiological activation due to the mobilisation of energy resources in
emergency and stress situations (“fight-or-flight”), the latter is related to physiological
deactivation, or relaxation during return to safer circumstances (“rest-and-digest”).
These ANS responses are correlated with a number of physiological changes. Thus.
sympathetic activation correlates with: pupil dilation, skin conductance elevation,
airway relaxation, heartbeat acceleration, heart rate variability decrease, glucose
release, and muscle tension. Parasympathetic activation results in reverse effects:
pupil contraction, skin conductance reduction, airway constriction, heartbeat slowing,
heart rate variability increase, halted glucose release, and muscle relaxation.

For research on flow experiences, the influences of the ANS on cardiac activity
have been of central interest (see Section 4.2). The cardiovascular system is controlled
by the two branches of the ANS, through its connection to the vasculature and the
heart (Berntson, Quigley, and Lozano, 2007; Milnor, 1990). The heart represents
the pump in the cardiovascular system. The main heart muscle consists of two
nodes (sinoatrial and atrioventricular node), two atria and two ventricles. The atria
and ventricles are separated by the heart valve (see Figure 4.7). The heart prompts
blood circulation in blood vessels through muscle contraction (systole) and relaxation
(diastole) in alternation (Milnor, 1990). Each cardiac cycle (i.e., heartbeat) begins
with the depolarization of the sinoatrial node (the heart’s pacemaker), causing a
contraction of the atria. The electrical signal spreads, the atrioventricular node
depolarizes causing a contraction of the ventricles. After the stimulation of the
ventricles, a refractory period follows. Then, after repolarisation of the ventricles, the
heart is ready to repeat the cycle. This cycle of events allows the heart to perform
the pumping action. The unit of analysis in cardiac activity observation is the time
between two heartbeats that forms the basis of measures like Heart Rate (HR) and
Heart Rate Variability (HRV) (Malik et al., 1996). This heartbeat sequence can, for
example, be retrieved through ECG.

FIGURE 4.7: The Human Heart - See Milnor (1990).

Electrocardiography (ECG)

The ECG records electrical potentials in millivolts. For a recording, electrodes are
placed on prescribed locations on the skin (Berntson, Quigley, and Lozano, 2007). A
clinical ECG consists of 12 leads but three- and five-lead ECGs, which simplify the
setup process, are also available (Petty, 2015). In this dissertation, to utilize wearable
sensors, a three-lead configuration (termed Lead II) was chosen (see Figure 4.8).
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FIGURE 4.8: ECG Lead II Placement Standard Based on a Three-Electrode System as
Used in the Present Work - See Fortin-Cote et al. (2019).

Based on a heartbeat, an electrical impulse travels through the heart. During the
migration of the electrical stimulation wave, a variety of potentials differing in size
and direction arise (Milnor, 1990). Figure 4.9 shows a conceptual illustration of an
ECG-signal of a heart in normal sinus rhythm. The characteristic electrical signal
is segmented in the so-called PQRST-cycle that is further divided into the initial
P-wave, the QRS-complex, and the final T-wave. Following the depolarization of the
sinoatrial node, the contractions in the right and left atria produce the first electrical
impulse referred to as P-wave. A flat line follows as the electrical impulse moves
to the ventricles. The right and left ventricles produce the next impulse referred
to as QRS-complex. The final impulse is referred to as the T-wave, representing
electrical recovery or return to a resting state for the ventricles. To extract HR and
HRV measures from an ECG recording, detecting the QRS-complex is essential for
measuring the time interval between the succeeding heartbeats (Malik et al., 1996).

FIGURE 4.9: Segments of an ECG Recording - See Kerner and Brückel
(2011).

Heart Rate Variability (HRV)

HRV is a function of ANS activity. The sympathetic part, among others, activates the
release of stress hormones, increases the heart’s contraction rate and force (cardiac
output), but decreases HRV. Conversely, the parasympathetic part reduces the heart
rate, but increases HRV, to restore homeostasis after a state of physiological activation.
Importantly, this interplay between the sympathetic and parasympathetic parts of the
ANS makes it possible that the heart instantaneously responds to different situations



66 Chapter 4. Flow Neurophysiology

and needs (Malik et al., 1996; Berntson, Quigley, and Lozano, 2007). A variety of
indicators extracted from ECG recordings exist that make the assessment of changes
in heart rates possible (Malik et al., 1996; Shaffer and Ginsberg, 2017). Most of these
indicators are calculated either in the time-domain or the frequency-domain of the
signal. The most relevant signal aspect is the time interval between subsequent peaks
in the QRS-complex, known as RR-interval or Inter-Beat Interval (IBI). RR-intervals
of normal signals are known as NN-intervals.

Time-domain methods are typically based on the difference between succeeding
NN-intervals (Malik et al., 1996). These features comprise, for instance, the Standard
Deviation (SD) of the difference between adjacent NN-intervals (SDNN), the root
mean square difference between adjacent NN-intervals (RMSSD) or the percentage
of adjacent NN-intervals that do not differ more than 50ms (PNN50). Additional
time-domain features (e.g. geometric or non-linear) are increasingly studied (Shaffer
and Ginsberg, 2017). However, they have so far not seen application in flow research,
which is why they are not detailed here further. The interpretation of statistical
time-domain measures depends on the time window over which the measures are
calculated (Malik et al., 1996; Shaffer and Ginsberg, 2017). Statistical time-domain
measures are usually calculated over five minutes (short- term) to 24 hours (long-term)
(Malik et al., 1996). The lower bound of five-minute recordings, therefore, represents
an essential requirement in experimental flow physiology research (see, e.g. Tozman
et al., 2015; Harmat et al., 2015). According to Shaffer and Ginsberg (2017), both the
sympathetic and the parasympathetic nervous system impact the Standard Deviation
of NN-Intervals (SDNN). By contrast, the Root Mean Square of Successive Differences
(RMSSD) is predominantly influenced by the activity of the parasympathetic nervous
system (Berntson, Quigley, and Lozano, 2007).

Frequency-domain methods rely on Power Spectral Density (PSD) analysis of the
NN-interval sequence (Malik et al., 1996). The PSD provides information on how
power distributes over frequencies. The frequency components depend on the length
of the NN-interval sequence. For short-term recordings of two to five minutes, the fre-
quency components are divided between very low (VLF: <0.04 Hz), low (LF: 0.04-0.15
Hz), and high frequency (HF: 0.15-0.4 Hz) components. The LF-HRV component is
influenced by both the activity of the sympathetic nervous system and the parasym-
pathetic nervous system (Berntson, Quigley, and Lozano, 2007). The High Frequency
Heart Rate Variability (HF-HRV) component is only influenced by the parasympa-
thetic nervous system. Conversely, HF-HRV metrics have been found to correlate
positively with the time-domain feature RMSSD (Malik et al., 1996; Berntson, Quigley,
and Lozano, 2007). Time- and frequency-domain measures present advantages and
disadvantages. Time-domain measures do not rely on methods to obtain a PSD
estimate and can be calculated more easily from the NN-interval sequence. However,
frequency-domain measures may be the better choice for studying the context-de-
pendent activity of the sympathetic and parasympathetic nervous systems. Also,
frequency-domain measures have shown higher robustness for shorter observations
(Berntson, Quigley, and Lozano, 2007).

Finally, it needs to be appraised that for an analysis of HR and HRV measures, it
is recommended to take influential factors into account (Andreassi, 2000; Valentini
and Parati, 2009). Influences occur from the proximal environment (e.g. temperature,
or social interaction), but also internal variables like the consumption of recreational
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drugs, posture, or exercise (Andreassi, 2000; Valentini and Parati, 2009). For these
reasons, the experiments presented in this dissertation have attempted to control
for such issues by participant screening and requirements like the abstinence of
recreational drugs before the experiment. Descriptions of these screening criteria are
outlined in the experiment procedures in Chapters 5 and 6.

A Primer on Neuroanatomy and Electroencephalography (EEG)

Neuroanatomy

At the smallest unit of analysis, operations of the brain are coordinated by billions
(estimated 50 to 100 billion) of brain cells called neurons (Andreassi, 2000). Neurons
are excited by exogenous (e.g. sensory input) and endogenous stimuli (activity from
other neurons) (Andreassi, 2000; Blankertz et al., 2016). As a critical point in stimula-
tion is reached, the neuron will discharge and transmit the electrical impulse over to
other cells. The concomitant effects are called excitatory or inhibitory post-synaptic
potentials (Andreassi, 2000) due to their resulting increases and decreases of neuronal
activity levels (Andreassi, 2000; Buzsaki, 2006). These post-synaptic potentials of
neuronal activity can be recorded at the scalp level (Andreassi, 2000; Cohen, 2014;
Cohen, 2017; Buzsaki, 2006). To better understand the process through which neurons
coordinate operations in the brain, an overview of the brain’s anatomy is provided.

From an overarching point of view, the major sections of the brain can be described
as the cerebrum, cerebellum, and brain stem. The cerebrum comprises the largest part
of the brain and contains two halves (hemispheres) (Andreassi, 2000). The cerebellum
sits on top of the posterior part of the brain stem and transmits information to and
from the spinal cord and to other parts of the brain. The brain stem sits at the
posterior ventral part of the brain and structurally connects with the spinal cord. The
cerebrum contains the cerebral cortex (outer layer) and several subcortical structures
(including the hippocampus, basal ganglia, and amygdala). The outer layer, that
is the cerebral cortex is the outer grey matter (where the cell bodies sit) covering
the surface of the cerebrum. The cortical surface controls basic sensory and motor
functions. By orientation on central fissures, the cerebral cortex can further be divided
into four lobes: frontal, parietal, occipital, and temporal (Andreassi, 2000). Lobes
and cerebral cortex are visualized in Figure 4.10. The frontal lobe is considered to

FIGURE 4.10: Main Structures of the Cerebrum, Specifically Lobes and
Cortex - See Ferrez and Milan (2007).
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be centrally involved with cognitive processes like planning, decision-making and
problem-solving (Andreassi, 2000; Carlén, 2017). At the temporal regions, auditory
and language-processing related functions are situated. At central and parietal
regions lie the primary motor area and the somatosensory cortex that handle input
signals from bodily sensations and regulate the execution of motor behaviour. At the
occipital lobe, the primary visual cortex is responsible for processing visual input
(Andreassi, 2000). While this basic description of the brain’s anatomy and related
functionality is supposed to give an overview, it should be noted that it drastically
simplifies the complexity of function and interaction. Contemporary neuroscience has
outlined an understanding of the brain as a complex system in which the interaction of
multiple subcomponents is more likely to explain function (Buzsaki, 2006). Therefore,
investigation of brain processes needs to focus not only on location to study function,
but interaction in time and space. In this dissertation, the emphasis is placed on
the observation of time dynamics through the observation of oscillatory, electrical
patterns of neuron assemblies (Cohen, 2017; Buzsaki, 2006; Andreassi, 2000).

Oscillatory patterns describe a rhythmic activity in time, in this case electrical
discharge of neurons. Functionally speaking, neural oscillation describes a form
of self-organization of individual neurons and the brain as a whole (Buzsáki and
Draguhn, 2004). Numerous studies have revealed that both individual neurons and
assemblies of neurons resonate and oscillate at multiple frequencies at the same
time (Buzsáki and Draguhn, 2004). The likely reason for the oscillatory resonance of
neurons is argued to reside in two main properties: (1) the precise timing allowed
from (variable) rhythmic behaviour allows a simple encoding of information, (2)
oscillation is an energetically cheap principle with sufficient variability to achieve
coordination, thus explaining the ability of the brain to synchronize neural activity
across local and distant neuronal networks (Buzsáki and Draguhn, 2004). While
slower rhythms are said to synchronize large spatial domains, faster rhythms bind
together smaller assemblies (Buzsáki and Draguhn, 2004; Siegel, Donner, and Engel,
2012). Electroencephalography (EEG) allows to observe this rhythmic electrical
activity of neuron assemblies in the brain, providing promising means for continuous
user state detection (Blankertz et al., 2016; Wascher et al., 2019).

Electroencephalography (EEG)

Within neuroscientific research methods, electromagnetic observation (in particular
EEG) has in the last century become a central tool for the study of neural activity
due to its ability to cost-effectively, noninvasively, and directly measure the electrical
activity of neuron assemblies at a high temporal resolution of millisecond changes
(Cohen, 2017; Andreassi, 2000; Pizzagalli, 2007). Furthermore, information from
the EEG has been shown to link to perception, cognition, affect, and motor action
reliably through various types of features (Buzsáki and Draguhn, 2004; Pizzagalli,
2007; Cohen, 2017; Bridwell et al., 2018). The EEG measures synchronously oscillat-
ing electrical discharges of neuron assemblies, predominantly in the cerebral cortex
(Pizzagalli, 2007; Andreassi, 2000). This means that the EEG only records some of
the electrical activity of the brain (i.e. not of deep subcortical regions) (Müller-Putz,
Riedl, and Wriessnegger, 2015). The EEG is recorded from multiple electrodes typi-
cally positioned symmetrically across the head surface based on an internationally
standardized placement system (the 10-20, or 10-5 system for >75 electrode sites -
see Figure 4.11). Electrical activity measured at the scalp by EEG is always a relative
value, specifically, the difference in electrical activity between two or more electrodes
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FIGURE 4.11: Electrode Positions in EEG Research - The Extended International 10-20
System by Oostenveld and Praamstra (2001). Black Locations Are Available in the Emotiv

Epoc+ EEG Headset Which is Used in This Dissertation.

(Cohen, 2014; Pizzagalli, 2007). The placement of reference electrodes can occur in
multiple forms and plays an important role in the analysis of EEG waveforms, as they
can exacerbate, dampen or regionally distort the relative EEG readings (Müller-Putz,
Riedl, and Wriessnegger, 2015; Pizzagalli, 2007; Cohen, 2014).

Generally, features from the EEG are derived from the time-domain (i.e. voltage
changes in time) and the frequency-domain (changes in energy of sinusoidal oscilla-
tions) (Cohen, 2014; Bridwell et al., 2018; Keil et al., 2014). Features in both dimensions
have been strongly linked to aspects of cognition (Bridwell et al., 2018; Cohen, 2017;
Siegel, Donner, and Engel, 2012; Pizzagalli, 2007), yet show stark contrasts in the
way they are recorded and extracted from the EEG signal. In the time-domain, two
types of ongoing EEG activity are considered that are spontaneous (or continuous)
EEG and Event Related Potential (ERP) (Müller-Putz, Riedl, and Wriessnegger, 2015).
Spontaneous EEG is the measure of omnipresent, ongoing neural activity in the
brain that fluctuates with typical (peak-to-peak) amplitudes under 75 microvolts
(Müller-Putz, Riedl, and Wriessnegger, 2015). ERP features as their name suggests are
phasic reactions to externally introduced stimuli (e.g. visual, auditory, somatosensory,
or olfactory) that manifest in either positive or negative voltage changes visible at
a particular point in time after the stimulus introduction (Müller-Putz, Riedl, and
Wriessnegger, 2015; Picton et al., 2000; Cohen, 2014). In contrast, frequency-domain
features are more similar in their form of recording and analysis to ECG features. In
this dissertation, they are primarily used for this similarity and their previous use in
flow neurophysiology research (see Section 4.3).
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EEG Frequency Power Features

In the frequency domain, sinusoidal oscillations are commonly described in ranges
describing their oscillatory speed (Buzsáki and Draguhn, 2004; Andreassi, 2000;
Müller-Putz, Riedl, and Wriessnegger, 2015; Cohen, 2014; Pizzagalli, 2007). The
function of these frequencies is still subject to much debate (see, e.g. Cohen, 2017).
However, it is known that five major frequency bands differ reliably with relations to
specific cognitive aspects, and also with topographical distributions and temporal
characteristics (Cohen, 2017). A schematic extraction of these frequencies from a con-
tinuous EEG signal is shown in Figure 4.12. Delta waves (1-4 Hz) are considered to be
an inhibitory mechanism and are typically associated with sleep states and some neu-
rological pathologies (e.g. unconsciousness or coma) (Pizzagalli, 2007; Müller-Putz,
Riedl, and Wriessnegger, 2015). Theta waves (4-8 Hz) are associated with some sleep
states, meditation, and drowsiness (with a widespread scalp distribution), but also
with increased mental workload (over frontal midline positions) (Müller-Putz, Riedl,
and Wriessnegger, 2015; Silvestrini, 2017; Borghini et al., 2014; Pizzagalli, 2007). The
Anterior Cingulate Cortex (ACC), a neural structure situated just behind the medial
Prefrontal Cortex (PFC) is considered as the generator of this frontal Theta activity
(Pizzagalli, 2007). Alpha waves (8-13 Hz) are found to relate to relaxed wakefulness
and are majorly implicated as inhibitory processes, specifically as a marker of cor-
tical idling (Müller-Putz, Riedl, and Wriessnegger, 2015). Alpha rhythms are most
prominent over posterior regions (Pizzagalli, 2007). Beta waves (13-25 Hz) have been
related to mental states such as active concentration, task engagement, excitement,
attention, or vigilance and typically present with a symmetrical fronto-central distri-
bution (Müller-Putz, Riedl, and Wriessnegger, 2015; Pizzagalli, 2007). Beta activity
is therefore concerned to be primarily an excitatory mechanism (Müller-Putz, Riedl,
and Wriessnegger, 2015). Beta band activity typically replaces Alpha band activity
during cognitive activity (Pizzagalli2007). Beta band activity has also repeatedly been
found related to increases in mental workload over frontal, temporal and posterior
sites (Michels et al., 2010). Gamma waves (25-200Hz, but mostly not much higher
than 40 Hz) are often associated with arousal and perceptual binding (Müller-Putz,
Riedl, and Wriessnegger, 2015; Pizzagalli, 2007).

These frequencies can occur both competitively and simultaneously within the
same brain structure or over the whole scalp. One of the major drawbacks of EEG ob-
servations is the quality of the spatial resolution and the aggregation of synchronous
activity (Cohen, 2017). The main issue is the problem of source localization as it has
been found that resulting electrical activity at the cortical surface can theoretically
be traced back to an infinite number of possible sources, an observation termed the
“inverse-problem” (Pizzagalli, 2007). Even though recent developments with larger
electrode arrays propose that the EEG may eventually approach the spatial resolution
of other neuroimaging techniques (Pizzagalli, 2007; Cohen, 2017), at the moment,
EEG readings come with the grain of salt that sources of neuronal activity are difficult
to localize from the recorded data. To overcome the inverse problem, it is of major
importance to postulate physiologically and anatomically sound assumptions about
putative EEG sources (Pizzagalli, 2007). Therefore, neuroanatomical reasoning on
flow experience (i.e. considering the neuroscientific theoretical perspectives out-
lined in Section 4.3) is of high importance in this research. Lastly, similar to ECG
observations, EEG research must control for possible confounding influences. For
example, gender, age or handedness are known to influence anatomical development
and can, therefore, confound sample comparability if such factors are not sufficiently
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FIGURE 4.12: EEG Signal Decomposition Into Frequency Bands - See
Buzsaki (2006) and Cohen (2014).

varied or controlled (Picton et al., 2000). Also, substance intake (e.g. recreational
drugs) and behavioural factors like movement (of body and especially facial muscles)
can lead to measurement artefacts (Cohen, 2014; Pizzagalli, 2007). Therefore, not
only participant screening but also rigorous signal processing must be applied to
derive substantial results. The procedures implemented in the experiments in this
dissertation are outlined in Chapters 5 and 6 and Appendix Section A.4.

In concluding this background section, it can be summarised that the combina-
tion ECG and EEG measures for the description and continuous detection of flow
experiences was considered promising, feasible, and timely in terms of how such
instrumentation could become implemented in adaptive NeuroIS in the near future.
Given the similarity in the electrophysiological measurement principles, these two
methods were chosen to facilitate the endeavour that is the detection of flow expe-
riences using neurophysiological measures across various tasks. The next chapters
will now describe the procedures and results from the experiments that build on this
theoretical, empirical and methodological foundation.
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Chapter 5

Experiment 1 - Difficulty
Manipulation & Experience
Sampling

Contents of this section are in part adopted or taken from Knierim et al. (2018a)
and Knierim et al. (2018b). See Section A.1 for further details.

5.1 Exploring Flow in More Naturalistic Knowledge Work

Building on the integration of previous flow research in the earlier chapters, the
herein described experiment integrates paradigms and measurement approaches into
a first experiment. This experiment lays the groundwork for the second and third
research goal of this dissertation, to identify how limitations of present experimental
paradigms can be overcome for the intensification of flow experiences in the labo-
ratory (Research Goal (RG)2), and to identify which neurophysiological patterns of
flow can be identified with wearable sensors across different measurement scenarios
(RG3). Through this experiment, vital empiric evidence is collected that can aid in
the future development of flow-facilitating adaptive NeuroIS.

While flow facilitation in real-world settings is still a substantial challenge due
to the complex requirements (e.g. absence of distractions, the structure of the task,
challenge of the task, physiological and psychological state of the individual) (Ceja
and Navarro, 2012; Spurlin and Csikszentmihalyi, 2017), investigations under labora-
tory conditions have demonstrated sufficient flow manipulability for fundamental
studies to build upon (Moller, Meier, and Wall, 2010; Keller, 2016). Nonetheless, a
focus on artificial laboratory setups is also highlighted as a particular shortcoming in
experimental flow research (see Chapter 3). This focus is especially visible for flow
neurophysiology research (see Chapter 4). At present most of the neurophysiological
research is conducted in highly controlled game tasks, leaving gaps to understand
neurophysiological configurations during flow in primarily cognitive, and more
unstructured tasks that are typical in Knowledge Work (KW) (Quinn, 2005; Moller,
Meier, and Wall, 2010). Only a few experiments have so far employed mainly cog-
nitive tasks for flow elicitation such as performing mental arithmetic (Ulrich et al.,
2014) or matching invoices (Rissler et al., 2018) with adapted difficulties. These ap-
proaches require reproduction to ascertain their utility for laboratory flow research
closer to the KW context. Furthermore, while there have been serious advancements
in fields as affective computing (Picard, 2003), neuro-ergonomics (Parasuraman and
Wilson, 2008), and brain-computer interfaces that keep extending the applicability
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of real-time physiological measurement and neuroimaging to in situ phenomena
including attention, operator workload and engagement (Blankertz et al., 2016; Kosti
et al., 2018), the study of neurophysiological correlates of flow in more naturalistic
scenarios (i.e. closer to the real world) is still sparse (see Chapter 4).

As KW demand is estimated to increase strongly (see Chapter 1), Experiment 1
aims to build a bridge from controlled experimental setups towards more natural-
istic settings by adapting an original flow research method, namely the Experience
Sampling Method (ESM) (Csikszentmihalyi and Hunter, 2003) (see Chapter 3) to a
laboratory setting. The ESM was developed to overcome interview limitations (e.g.
recollection bias) and catch flow closer to its occurrence through repeated interruption
(Csikszentmihalyi and Hunter, 2003). Only more recently, experimental flow induc-
tion has been developed with the primary paradigm of Difficulty Manipulation (DM)
(Moneta, 2012). While the DM approach has been deemed useful to elicit contrasts, it
has also been criticised as to whether deep flow experiences are elicited, given the
low involvement often present in experiment tasks, and given the often artificial task
nature (Moller, Meier, and Wall, 2010; Delle Fave, Massimini, and Bassi, 2011). This
artificiality prevents participants from capitalising on high levels of pre-developed
expertise (Ullén et al., 2010), and might require attentional processes incompatible
with flow experience (Hommel, 2010). This shortcoming has created calls for more
creative laboratory research on flow experiences (Harris, Vine, and Wilson, 2017b).

Therefore, by inviting knowledge workers to continue an ongoing, personal work
project in a laboratory environment, a naturalistic task is combined with the con-
trollability of task-external factors in the laboratory. In this controlled Experience
Sampling (cESM) approach individuals can work on a personalised, yet comparably
structured knowledge work task while being observed using neurophysiological
sensors and being interrupted multiple times to “catch flow in the act”. This cESM
approach shares similarities to flow research with expert musicians (Harmat et al.,
2011; Manzano et al., 2010) or chess players (Tozman, Zhang, and Vollmeyer, 2017)
that perform their naturalistic task within the area of their expertise. However, as KW
tasks are not generally similarly segmentable in this manner, the paradigm focuses
on the continuation of a larger piece of work and utilises the repeated interruption
of this work to observe changes in flow. Such naturalistic (i.e. closer to real-world)
approaches also share an important distinction in terms of expertise and intrinsic
motivation to approaches that have focused on Engagement (ENG) paradigms where
participants are, for instance, asked to play an (unknown) game and report their
experience afterwards (e.g. Labonté-Lemoyne et al., 2016; Shearer, 2016). Importantly,
naturalistic approaches for the KW context have not yet been investigated previously.
By analysing experience across interruptions, and by comparing them to a standard
flow induction approach, this experiment aims to answer the main Research Ques-
tion (RQ) of how well the cESM approach can elicit flow. More specifically, the RQs
to be answered in Experiment 1 are:

• RQ3: Is the laboratory-based flow elicitation using a mental arithmetic DM task
reproducible?

• RQ4: Is flow elicitation in the laboratory intensified by a more naturalistic task
setting (through the cESM approach)?

• RQ5: Which neurophysiological correlates of flow can be observed across
different cognitive task scenarios with wearable sensor systems?
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To summarise, in Experiment 1, the experience of flow is observed in two cognitive
tasks (mental arithmetic and scientific writing) across two experimental paradigms,
one established as reference (DM), and one newly developed to provide increased
naturalism in the controlled laboratory environment (cESM). Together this work
contributes to the literature on flow experience, and the development of adaptive
NeuroIS by (1) advancing the understanding of flow elicitation in laboratory settings,
by (2) extending flow neurophysiology research to the KW context, and by (3) deliv-
ering insights into flow neurophysiology (specifically changes in HRV and frontal
EEG powers) across tasks.

5.2 Experiment Basis

As discussed in the chapter on experimental paradigms for flow elicitation (see
Chapter 3), the manipulation of a task’s difficulty is used as a primary means to
create flow experience contrasts in the laboratory. DM has been found to work
sufficiently well across a variety of tasks (Keller, 2016; Moller, Meier, and Wall, 2010).
It has therefore been employed primarily with digital games (e.g. Tetris - see Ewing,
Fairclough, and Gilleade, 2016, Space Invaders - see Rheinberg and Vollmeyer, 2003,
Racing Games - see Tozman et al., 2015, or Pacman - see Harmat et al., 2015), but also
with expert musicians (Harmat et al., 2011) or chess players (Tozman, Zhang, and
Vollmeyer, 2017), and with primarily cognitive tasks like Tower of London Reasoning
(Chatterjee, Sinha, and Sinha, 2016), the n-back working memory task (Fairclough
et al., 2013), or knowledge trivia (Keller et al., 2011). With a focus on KW settings,
it was for this dissertation decided to utilise a simple cognitive task DM instance.
Specifically, a mental arithmetic task has been used which has been created by Ulrich
et al. (2014), Ulrich, Keller, and Grön (2016b), and Ulrich, Keller, and Grön (2016a).
While the instantiation has undergone some alterations in all experiments of this
dissertation, the reference to the initial design by Ulrich et al. (2014) represents the
anchor for the herein derived results. For this reason, and to ease the comparability
of the design changes, the initial design is outlined here in detail.

In the original mental arithmetic DM design by Ulrich et al. (2014), two or more
numbers have to be mentally summed and entered. In every trial, the result had to be
a three-digit number. Participants were asked to enter the result as “accurately and
fast as possible” (Ulrich et al., 2014, p. 195). The time for each trial was 18 seconds,
and a break of 4 seconds between trials was used. During this break, the expression
“xxx + x” was shown. Once an answer was entered, the break expression was shown.
If an answer was not provided, the trial was aborted after the 18 seconds, and the
break expression was shown.

The trials were delivered in three conditions. These conditions were configured
to deliver very easy (“Boredom” condition) equations non-adaptively, or dynami-
cally-adapted, moderately difficult equations (“Flow” condition) or hard equations
(“Overload” condition). In the “Boredom” (B) condition, only two numbers were
shown, with the first summand randomly drawn from an interval of [100, 109], and
the second is randomly drawn from an interval of [1, 9]. However, it was ascertained
that a result could only be in the interval of [101, 110] so that no mental carries would
have to occur. In the “Flow” condition, the difficulty would adapt dynamically based
on the performance of the participant. Therefore, two or more numbers were shown.
The higher the level, the more summands were shown. For a level increase, either,
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another single-digit summand was added or a second digit would be added to a
single-digit summand if one was available. Level decreases used this logic inversely.
The results of the last two trials (sliding window) were used to evaluate the task
performance. If two out of these two trials were solved correctly/incorrectly, difficulty
was increased/decreased by one level. The starting level for the flow condition was
estimated during a five-minute calibration phase using the “Flow” condition logic.
It is assumed (as it is not reported in Ulrich et al., 2014) that the initial level of the
calibration condition used a two number, double-digit difficulty, where the result had
to be a three-digit number (e.g. 65 + 73). The average level of the last 25% of trials
was used to compute the starting level of the “Flow” condition. The “Overload” (O)
condition operated with a similar adaptation logic as the “Flow” (F) condition. The
differences were though that the initial difficulty level for the “Overload” condition
was set to be three levels higher than the starting level of the “Flow” condition and
could never fall below this starting level. Also, the difficulty was increased/decreased
in the “Overload” condition, when three out of five/four out of five trials (sliding
window) were correct/incorrect. A central goal of this approach was to keep the
difficulty at a level too high for participants to master, but also to prevent perma-
nent frustration and disengagement. Examples of equations by condition and level
difference are shown in Table 5.1.

Lastly, an initial introduction phase using the “Boredom” treatment logic for five
minutes was included in the experiment by (Ulrich et al., 2014). In the progress of
this dissertation, it was found in pre-testing, that the length and difficulty of this
initial phase could be critical to elicit a more boring task experience in the actual
“Boredom” condition that follows later during an experiment. Shorter introduc-
tion phases appeared to retain an element of relaxation and excitement about being
able to solve many simple tasks in quick succession during “Boredom” conditions.
Each difficulty condition (besides introduction and calibration phase) lasted for 184
seconds and was presented three times in a block design that used two sequences
(“R-B-F-O-F-R-O-B-O-B-F-R” and “R-B-O-F-O-R-F-B-F-B-O-R”). The “Rest” (R) con-
dition denotes a 25-second eyes-open resting phase (white screen). After each condit-
ion, self-reports about flow experiences were collected, as were task preferences once
at the end of the experiment.

As Ulrich et al. (2014) presented their task to participants in an fMRI scanner, the
input modalities were peculiar in the sense that a trackball was used to control the
on-screen keyboard to type in the numbers or to correct a mistake (see Figure 5.1). In
the experiments of this dissertation, desktop computers with keyboards and mouses
were used instead. Participants could immediately see their input which had the
default value of “000”. Mistakes could be corrected within the trial time window. No
feedback about the correctness of trials was shown to the participants. These design
elements were replicated exactly for the experiments in this dissertation.

This concludes the description of the mental arithmetic task design using a DM
paradigm by Ulrich et al. (2014). Support for the feasibility of the task to induce
varying levels of flow according to the flow theory notion of challenge-skill bal-
ance/imbalance has been found in some additional attempts (Ulrich, Keller, and
Grön, 2016b; Ulrich, Keller, and Grön, 2016a). However, as this task is considered as a
reference in the experiments of this work, its reproducibility represents a cornerstone
for the evaluation of the flow intensification efforts in this dissertation.
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FIGURE 5.1: Mental Arithmetic Task from Ulrich et al. (2014). Excerpt
from a Screenshot During the “Boredom” Condition.

5.3 Experiment Design & Preparation

5.3.1 Materials

In this experiment, each participant worked on: (1) solving arithmetic equations
manipulated in difficulty, and on (2) writing a research project report both within the
same session.

Mental Arithmetic DM Task

The mental arithmetic task was chosen as a reference to a validated DM task (Ulrich
et al., 2014). Replicating the design by Ulrich et al. (2014), participants sum two or
more numbers, depending on the active and dynamically adjusted difficulty level.
Slight adjustments were made to the design and procedure due to pre-test findings
and due to the requirement of including two tasks into the experiment. First, the task
difficulties were found to be too high in pre-tests. This complication might be caused
by utilising a different student sample. While the participants in Ulrich et al. (2014)
were most likely psychology students, the students from the Karlsruhe Institute of
Technology (KIT) experiment pool predominantly pursue study majors in business
and engineering sciences and were considered to have a different affinity or ability
level for arithmetic tasks. Therefore, the Low Difficulty (EASY) condition was further
simplified by only drawing equations in one of three forms (101 + 1, + 2, or + 3). Also,
for the Calibrated Optimal Difficulty (CAL) condition, the difficulty adaptation logic
was changed so that difficulty increased/decreased when three (not two) sequential
responses were correct/incorrect. This alteration was included to slow down the
up-levelling process that was found to lead to overly high difficulties too soon, which
might be a consequence of another alteration, the extension of the condition duration
to five minutes (instead of three minutes in Ulrich et al., 2014). The longer duration
was required for the observation of HRV features for which the five-minute window
is an essential basis (Malik et al., 1996). In contrast, to keep the overall duration of the
experiment at bay, the introduction phase (three minutes) and the calibration phase
(four minutes) were shortened. Also, the difficulty conditions (EASY, CAL, HARD)
were only presented once (not three times as in Ulrich et al., 2014), for the sake of
keeping the experiment duration acceptable to participants. As a final alteration,
eyes open resting phases (60 seconds) were included after each difficulty condition.
These washout phases were included to reduce the risk of carry-over effects between
the conditions. The rest of the approach is the same as in Ulrich et al. (2014) and
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as outlined in Section 5.2. A screen-shot of the math task is shown in Figure 5.2,
and a simplification of the task difficulties is shown in Table 5.1, with the changes
highlighted in comparison to the design by Ulrich et al. (2014).

FIGURE 5.2: Mental Arithmetic Task in Experiment 1. Excerpt from a
Screenshot During the EASY Condition.

Condition Level Ulrich et al. 2014 Experiment 1

EASY 0 103 + 6 101 + 2
CAL 1 65 + 73
CAL 2 58 + 91 + 4
HARD 15 72 + 12 + 32 + 67 + 29 +

58 + 63 + 14 + 45
HARD 16 19 + 46 + 55 + 26 + 73 +

49 + 57 + 10 + 34 + 5

Notes: Additional Digits with Level Increase are Highlighted in Bold.

TABLE 5.1: Mental Arithmetic Task Difficulties in Experiment 1.

Writing cESM Task

To provide an approach for flow intensification, a more naturalistic paradigm was
developed for the KW context. This approach combines expertise and intrinsic
motivation (through the continuation of a personally relevant project) with the options
to control the task environment in the laboratory. Similar approaches have been
employed with expert musicians, that were invited to laboratory settings and asked
to repeatedly perform a musical piece that they find challenging (Manzano et al.,
2010). However, as KW tasks are not generally similarly segmentable in this manner,
the paradigm focuses on the continuation of a larger piece of work and utilises
repeated interruption of this work to observe changes in flow. For the similarity of
this more naturalistic approach to the traditional flow field research method (ESM),
the approach is termed cESM. As a task instance for this paradigm, scientific writing
was chosen due to its nature of being a challenging and frequent task for students
(exemplary future knowledge workers). Also, writing (scientific or literary) has
previously been related to engaging experiences in general and flow in particular
(Csikszentmihalyi, 1996; Erhard et al., 2014; Galluch, Grover, and Thatcher, 2015).
Participants brought their own thesis project to work on for a session of 23 minutes
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(3· 7minutes for writing + 2 minutes of initial orientation - time for goal setting and
survey interruptions not included). A similar, three-stage logic of (1) orientation, (2)
calibration, and (3) action was employed to design the writing task aligned to the
mental arithmetic task. The structural similarity is shown in Figure 5.6.

In the first stage (introduction/orientation), participants were given time to inspect
the state of their document for two minutes, to facilitate the entry in the writing
process that followed afterwards. In pre-tests, it was found that participants were
well-prepared in advance to continue working on their thesis, being very familiar
with their open tasks. Therefore, the short duration of two minutes was considered
sufficient for this stage.

In the second stage (calibration), the preconditions for flow experience were opera-
tionalised by a structured goal-setting process. Specifically, participants were asked
to define a challenging yet achievable goal, to create optimal difficulty circumstances
for the following writing session. To standardise the goal-setting approach, the
SMART mnemonic was used (Doran, 1981). The SMART goal setting format has been
used extensively in previous literature, for example in academic planning (Day and
Tosey, 2011; Lawlor, 2012; Moeller, Theiler, and Wu, 1988) and clinical rehabilitation
(Bovend’Eerdt, Botell, and Wade, 2009; Bowman et al., 2015). The SMART letter
operationalisations were chosen following guidelines by Bovend’Eerdt, Botell, and
Wade (2009) and Bowman et al. (2015) and adopted to the present setting. The letters,
therefore, herein refer to a goal that is specific (S), measurable (M), achievable (A),
relevant (R) and time-bound (T). In addition to the SMART letters, participants are
asked to provide a more generic, overall goal for their session. This approach was
also considered to facilitate flow experiences. Setting a specific goal (S) (i.e. that is
less abstract) has been found to facilitate high-quality writing outcomes (Flower and
Hayes, 1981), and should provide the flow prerequisite of having goal clarity. In
addition, deriving a goal attainment measure (M) was considered to help fulfil the
second flow prerequisite of unambiguous feedback. Lastly, the focus on a relevant (R)
and achievable (A) goal, was considered to enhance the optimality of a task challenge
further. The choice to ask for the provision of “challenging” and “relevant” goal
parts was made to ascertain flow prerequisites and general guidelines for proper goal
setting are met (as outlined above). Furthermore, following guidelines on general
pitfalls of goal setting (Latham and Locke, 2006), participants were told that they
would not have to fear evaluation of goal attainment. Examples of what an expected
goal would look like were provided to overcome limitations of individuals’ abili-
ties to goal-setting (Latham and Locke, 2006) and to increase consistency between
participants. The feasibility of this approach was pre-tested, and testers reported no
difficulties in defining their writing session goals according to the provided schema.
Figure 5.3 shows a screen-shot of the goal-setting stage.

Afterwards, in the third stage (action), the writing session began. The thesis writing
software was standardised to Microsoft Word in full-screen mode. This setup was
chosen to provide a comparable yet familiar task environment for participants. The
experiment software loaded the participants’ documents automatically and switched
between surveys and Microsoft Word autonomously. Participants were informed that
their writing process was saved before each interruption. For a screen-shot of the
task, see Figure 5.4. Participants were informed that they would be interrupted at
some point during their session to report their experience during the writing process.
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FIGURE 5.3: Goal-Setting Stage of the Writing Task in Experiment 1.
Screenshot from a Participant With Completed Goals.

However, they were not informed about the timing and frequency of these interrup-
tions. This approach was chosen to facilitate task concentration (the anticipation of a
survey interruption should not detract participants). Also, the decision was made
in reference to traditional ESM designs, where participants are asked to complete
surveys at random times (but once per defined interval - e.g. 2 hours) to “catch flow
in the act” (Csikszentmihalyi and Hunter, 2003; Gaggioli et al., 2013). After each
interruption, participants were informed about how much time they had approxi-
mately left to complete their task (i.e. “more than half of the time” and “about a third
of the time”). This information was included to enable flexible adaptation of task
goals and processing if required. However, no information about actual time was dis-
played on the screens or in the experiment environment (participants were asked to
remove their watches) to facilitate concentration on the task. Such recommendations
are generally outlined for laboratory flow research (Moller, Meier, and Wall, 2010).
Assuming that some time is required to re-enter the writing task after an interruption,
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and to keep the overall task duration in balance with minima (some time is needed to
complete a thesis writing task), and maxima (the overall experiment duration needs
to be contained) requirements, three writing periods of seven minutes were included
in the design. The constant interruption frequency was selected to initially assess
flow experience fluctuation, without additional variance from interruption timings.
After the experiment, participants received a copy of their saved thesis progress.

FIGURE 5.4: Writing Task in Experiment 1. Screenshot from a Partici-
pant During a Writing Period.

5.3.2 Procedure & Sampling

Experiment 1 was conducted in a laboratory setting with air-conditioned booths, one
participant at a time. Each participant completed both the mental arithmetic and the
writing task (within-subject design). The task order was randomised. Also, the three
mental arithmetic task conditions were ordered randomly, which resulted in a total
count of 12 procedure variations (2 · 3! combinations). All variations were executed
once. At the start of the experiment, participants were welcomed, informed about the
upcoming procedure and measurements. Afterwards, participants were asked to sign
a consent form for their participation. Next, participants were guided to their booth
in the laboratory and fitted with the physiological sensors on the head (EEG) and
chest (ECG), and the signal quality adequacy was checked. Following, participants
completed a first survey collecting demographic information and some initial state
variables. Figure 5.5 shows the setup in the laboratory booth. To complete this
preparation stage, participants then completed eyes-open and eyes-closed baseline
phases in which they were asked to “let their mind wander to wherever it takes
them”, to keep their eyes focused on a black fixation cross on a white screen (in the
eyes-open phase), and to avoid unnecessary movements. The same message and
fixation cross were shown for the washout screens before each math task condition
and between math and writing task. During the task stages, participants responded
to surveys after each condition (round surveys), after each task (mental arithmetic
or writing - task surveys), and at the end of the experiment. After the last survey
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FIGURE 5.5: Photo of the Laboratory Booth Setup in Experiment 1.

was completed, sensors were removed, and participants were debriefed. Figure 5.6
outlines the complete procedure.

Twelve students (three female) participated voluntarily and were recruited from
the circle of students working on a thesis project under the supervision of colleagues
at the KIT. Table 5.2 summarises additional information on the sample. Participants
were screened for being generally healthy, not taking any mind-altering medication,
having full eye-sight (with or without correction), and abstinence of the consumption
of alcohol, marijuana or other recreational drugs in the past 24 hours before the
experiment. Furthermore, participants were asked to arrive at the laboratory with
washed hair and not to use hair gel, hairspray, or similar products. In the recruitment
survey, participants reported average thesis challenge levels of 4.3 (SD: 0.98), on
average normal, but rather low levels of domain-general flow proneness (compared to
the large sample used in Ullén et al., 2012), and on average rather low domain-specific
flow proneness for writing tasks. The latter variable might be explained by the lower
level of writing expertise, as the majority of thesis projects was still on the bachelor
level. Paired Wilcoxon signed rank comparisons showed no difference in preference
for math or writing tasks.

Variable Counts / Distributions

N 12
Age (Mean / Median) 24,83 / 24
Gender (Female / Male) 3 / 9
Handedness (R / L / Ambi) 10 / 1 / 1
English Abilities ≥ B1 100%
Thesis Type 7 Bachelor Thesis /

4 Master Thesis /
1 Seminar Thesis (Master Level)

Thesis Challenge (Mean / Median - 7p) 4,33 / 4

TABLE 5.2: Sample Description for Experiment 1.
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FIGURE 5.6: Procedure of Experiment 1 for Each Participant (Task
Type and Difficulty as Within-Subject Factors).

5.3.3 Measures

Demographic information about age, gender, handedness, study majors, language
abilities and thesis challenge levels (single item from Engeser and Rheinberg (2008))
were collected through a survey preceding the experiment session. This survey also
collected information on thesis challenge levels. Afterwards, self-reported perceptions
of experiences were collected at three levels: (1) after the mental arithmetic task
conditions or after the writing task interruptions (both herein termed “rounds”), (2)
after a task (mental arithmetic or writing - herein termed “tasks”), and (3) at the end
of the experiment (herein termed “end”). Round questionnaires contained scales
on flow and task demand (ten-item FKS and one additional task demand question
all by Engeser and Rheinberg, 2008, stress (five-item construct by Tams et al., 2014,
and affect (single question arousal & valence Self Assessment Manikin (SAM) scales
by Bradley and Lang, 1994), amongst others. Task surveys included scales on task
importance (Engeser and Rheinberg, 2008). End surveys included scales on mental
arithmetic task preferences (Ulrich et al., 2014), and domain-general flow proneness
(Ullén et al., 2012). Almost all questions used 7-point Likert scales (SAM arousal and
valence used 9-point). Tables A.2, A.3, A.4, A.6, and A.8 in Appendix A.3 provide an
overview of all measured variables, including the item operationalisations.

Neurophysiological data were collected using two electrophysiological methods.
Particular emphasis was placed on the utilization of wearable sensors. The selected
sensors were chosen, balancing the trade-off of acceptable signal quality and wear-
ability. ECG data were collected in Lead II configuration using gelled electrodes.
ECG data were sampled at a rate of 1000 Hz, and with a 12-bit resolution using a
Biosignalsplux signal hub. EEG data were collected with an Emotiv Epoc+ headset.
This 14-channel wireless headset uses saline-based electrodes, collecting data at a
sampling rate of 256 Hz and with a 16-bit resolution. Electrode sites are AF3, F3, F7,
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FC5, T7, P7, O1, O2, P8, T8, FC6, F8, F4, AF4 (according to the international 10-20
system - see Oostenveld and Praamstra, 2001). Two reference electrodes, the Common
Mode Sense (CMS) and Driven Right Leg (DRL) were placed on the left and right
mastoids (M1 and M2). While the headset comes with limitations in terms of data
quality (primarily due to a non-gelled electrode contact basis), it has been found to
deliver adequate data for the present type of study (e.g. a frequency power analysis,
not an event-related potential study) (Barham et al., 2017). Also, the Epoc+ headset
has been used in previous studies related to the KW context (Kosti et al., 2018), and
related to flow experiences (Klarkowski, 2017). Before the application of the headset,
the felt-pad electrodes were moistened with a standard 0,9%-NaCl saline solution.
After the application, acceptable contact qualities were controlled for all electrode
sites using the proprietary impedance information supplied by the manufacturer’s
application programming interface.

5.3.4 Data Processing

Based on the experiment design, round variables were measured at six points in
time (repeated measures with six cells - three math conditions, three writing in-
terruptions), with the variables nested in the tasks (mental arithmetic or writing)
and difficulty manipulation or interruption number. All data for this experiment
were processed along with the following schema: First, outliers in the data were
identified and removed. The metric of ≥2 SD from the construct mean was chosen as
a compromise between removing too much data and retaining severe outliers. Then,
with the focus of conducting mean level comparisons, assumptions for parametric
analyses of variance were tested. Normal distribution (Shapiro-Wilk test) and vari-
ance homogeneity (Fligner-Killen test) were violated for many samples, prompting
the use of non-parametric tests. The choice for variance-based mean comparisons is
rooted in their prevalence as a best practice in neurophysiological studies (see Chap-
ter 4) and to account for the challenge of non-overlapping variance between reported
data and observed neurophysiological processes (see Section 4.1). As instances of
non-parametric tests (alternatives to the here designated one-way repeated-measures
Analysis of Variance (ANOVA) and pairwise t-Tests), Friedman tests for main effects
and Wilcoxon signed-rank tests were chosen. The details per data domain (report, or
neurophysiology) are outlined in the following paragraphs.

For the self-report data, given the small sample, internal consistency was assessed
for multi-item constructs by inspection of average item-total correlations, and Cron-
bach’s Alpha values. One item was removed from the flow construct, as substantial
improvements in reliability indicators were indicated. Table 5.3 shows all indicator
values and documents acceptable internal consistency of the used constructs.

Variable (Items Retained)
Cronbach’s
Alpha

Avg. Item-Total
Cor.

Flow (9/10) 0.81 / 0.94 0.63 / 0.83
Stress (5/5) 0.84 / 0.82 0.82 / 0.81

Notes: First Value = Mental Arithmetic Task, Second Value = Writing Task;
Numbers in Parentheses = Retained/Measured Items.

TABLE 5.3: Latent Variable Internal Consistencies in Experiment 1.
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ECG data were processed following the guidelines of Malik et al. (1996). Data
from all participants were included. ECG data were primarily processed using the
Python toolboxes BioSppy (Carreiras et al., 2015) and NeuroKit (Makowski, 2016) to
derive time-series data of adjacent heartbeat intervals (RR-intervals). Afterwards,
based on the RR-interval data, HRV features were computed in the same toolbox and
cross-validated using the R toolbox RHRV (Martinez et al., 2017). In terms of extracted
features, HRV metrics that have been central to previous flow physiology research
(see Chapter 4.2) were selected for analysis. Similar to related research (Harmat et al.,
2015; Tozman et al., 2015; Keller et al., 2011) change scores were used in the analysis
(∆HRV = HRVtask - HRVbaseline) of five-minute window time-domain (SDNN, and
RMSSD) and frequency-domain (LF-HRV, and HF-HRV) features preceding each
survey. For the definition of these metrics, see Malik et al. (1996). The complete ECG
processing pipeline is summarised in Appendix A.4 Table A.9.

EEG data were processed following the guidelines of Cohen (2014). Appendix
A.4 summarises the complete feature extraction pipeline. Data were processed for
a homogenised sub-sample (three female participants were excluded) to lower the
impact of gender-based variability (Picton et al., 2000). Also, two data sets were ex-
cluded due to recording failures. The retained sample comprised seven right-handed
males. Data preparation, feature extraction, and analysis were conducted in R, signal
processing and artefact removal in EEGLab (Ver. 14.1.1) (Delorme and Makeig, 2004).
Initially, experiment phases of interest were extracted (eyes-open baseline, all three
math task conditions, all three writing task rounds) and channels centred through
mean subtraction. Afterwards, the extracted data were loaded into EEGLab where
a 0.5-45 Hz bandpass and a 50 Hz notch filter were applied. Signal data were then
inspected for artefact removal. First, channels that had failed to collect data were
removed. Then, paroxysmal artefacts were removed manually. Afterwards, using the
infomax algorithm, an Independent Component Analysis (ICA) was performed to
remove data components related to eye blinks and sideway saccades. Next, frequency
bands were extracted for the frontal electrodes (AF3, F3, F7, FC5, FC6, F8, F4, AF4)
similar to Ewing, Fairclough, and Gilleade (2016) based on 2s long epochs with 50%
overlap and tapered using a Hann windowing function. Average band power (µV2)
was extracted using the Fast Fourier Transformation (FFT). Only artefact-free and
complete epochs were used (epochs containing more than 95% of required samples,
i.e. > 2s · 256 Hz = 512 samples). Extracted frequency bands are Theta (4-8 Hz),
Alpha (8-12 Hz), and Beta (12-30 Hz). Also, for the Alpha and Beta band, additional
subsegments were extracted that are LoAlpha (8-10 Hz), HiAlpha (10-12 Hz), Lo-
Beta (12-15 Hz), MidBeta (15-20 Hz), and HiBeta (20-30 Hz). Afterwards, frequency
powers were normalised (natural logarithm transformation). Electrodes were pooled
by computing the mean for three regions of interest (ROI) that are all frontal sites
(AF3, F3, F7, FC5, FC6, F8, F4, AF4), left frontal sites (AF3, F3, F7, FC5), and right
frontal sites (FC6, F8, F4, AF4). Next, feature epochs were aggregated temporally by
computing the median over each experiment phase. Median use was preferred as
a way of conservative data interpretation, taking care of potential outliers (Cohen,
2014). Finally, to facilitate comparisons between experiment phases, change scores
were computed by subtracting the eyes open baseline phase mean from each experi-
ment phase (e.g. ∆Theta = Thetatask - Thetabaseline). For additional analysis of shorter
periods, the same procedure was repeated on 30 second long epochs within each
condition (round). The window length of 30 seconds was chosen based on the report
by (Soltész et al., 2014), who argue that at the start of phases, temporal differences
could occur in this interval already.
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5.4 Results

5.4.1 Manipulation Checks

Difficulty Manipulation

In the first step, as a difficulty manipulation check, the perceived difficulty variable
was inspected (similar to Keller et al., 2011; Tozman et al., 2015). Friedman tests
showed a highly significant main effect with large effect size, indicating a high
degree of variation in perceived difficulties throughout the experiment (see Table 5.4).
Follow-up pairwise Wilcoxon signed rank tests further showed a pattern supporting
manipulation success (see Figure 5.7). Specifically, significant differences were found
between all mental arithmetic task conditions, showing stepwise increasing difficulty
from EASY to High Difficulty (HARD) conditions, confirming manipulation success.
The perceived difficulty level in the CAL condition (mean of 5.18) suggests that the
task was potentially still slightly too difficult for an optimal demand level. Aside
from one trend level difference between writing sample 1 and 3, no differences were
found within the writing task, indicating a rather consistent task difficulty during
the writing phase, with a potential decrease towards the task end. The perceived
difficulty levels in the writing samples lay consistently between the mental arithmetic
EASY and HARD condition, and possibly below the CAL condition, indicated at
trend level for the first two writing rounds and the 0.05 significance level for the last
writing round. The absolute levels of perceived difficulty during the writing task
(means of 3.73 to 4.42) suggest a task demand level close to optimality.

FIGURE 5.7: Perceived Difficulty Reports in Experiment 1. Crosshairs
and Numbers Next to Them Represent Means.
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Goal Setting Usefulness

To evaluate the potentiality of flow experience in the writing task beyond the cal-
ibration of difficulties, participants were asked at the end of the experiment about
how well the goal-setting procedure worked to set clear goals for the writing task.
Two questions were created for this purpose, one asking about the helpfulness of
the goal-setting procedure. The first asked about the helpfulness directly: “How
helpful was the goal to guide your actions in writing?”. The second asked about its
utility indirectly by asking about the need to adjust the self-set goals throughout the
writing task: “How much did you have to adjust your goal as you moved forward
in writing?”. Histograms with the responses (7-point Likert scales) are shown in
Figure 5.8. The results show that most participants found the procedure helpful
(mean = 5.17), and did not have to adjust their goal in substantial ways (mean =
3.08). However, it should be noted that these findings are not unanimous, which
means that there might still be room for improvement in this goal-setting procedure.
Together with the manipulation of difficulty, these findings are taken as support that
flow preconditions were likely instantiated sufficiently for the writing task.

FIGURE 5.8: Goal-Setting Usefulness for the Writing in Experiment 1.

Task Importance

To complete the comparison of the two tasks in terms of flow experience likeliness,
participants indicated the level of importance they put on both tasks. No significant
differences were found in a paired Wilcoxon Signed Rank test (W = 20.5, p = 0.491,
mental arithmetic mean = 3.82, writing mean = 4.00). This finding means that at
least in terms of task importance flow experience ought to be equally likely in both
tasks. Assuming comparability of task importance and successful manipulation (in
particular for the mental arithmetic task), variables related to flow experience were
investigated further to assess variation of flow in line with theoretic expectations.

5.4.2 Flow & Related Experiences

Flow

Flow experience was assessed as a construct comprised of perceptions regarding
fluent action and absorption in the task (using the FKS scale by Engeser and Rheinberg
(2008) and Rheinberg and Vollmeyer (2003)). Significant main effects are found
with a moderate effect size (see Table 5.4). Comparisons of the flow reports (see
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Figure 5.9) indicate significant differences between the mental arithmetic CAL and
HARD condition only. These findings mean that flow reports only partially support
theoretical predictions of maximised flow during optimally difficult task conditions
(an inverted U-shape). Within the writing task, there were no significant differences,
indicating a consistent flow experience level in writing. Additional support for
this observation is also found in the within-subject range of flow reports across
all writing rounds (mean range = 1.13, SD = 0.62). Across both tasks, repeated,
significant differences are found for flow between the mental arithmetic EASY and
HARD conditions with the writing rounds. Also, there is a trend level indication of
higher flow in the first writing sample than in the mental arithmetic CAL condition.
Therefore, flow was reported at least as high in writing as in the mental arithmetic
CAL condition, and potentially higher in the first round of writing.

FIGURE 5.9: Flow Reports in Experiment 1. Crosshairs and Numbers
Next to Them Represent Means.

Together with the perceived difficulty findings, the results suggest that within the
mental arithmetic task, a maximum of flow experience was most likely during the
CAL task condition. The lack of separation between the EASY and CAL condition
is potentially caused by high levels of perceived fluency during the very easy task.
Similar complications have been reported in related work (Peifer et al., 2014; Peifer
et al., 2015; Tozman, Zhang, and Vollmeyer, 2017), and some work has therefore also
included participant action slowing-mechanisms during these easy task conditions
(Keller et al., 2011; Harmat et al., 2015). Nevertheless, together with the results from
the other variables below (perceived stress and neurophysiological data), it is consid-
ered that flow was most likely at its highest intensity in the CAL condition within the
mental arithmetic task and in the first writing round across all measurements.
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Dependent Variable (DV) Test Statistic P-Value Effect Size

Perceived Difficulty χ2(5) = 31.1914 <0.0001 0.7798 (L)
Perceived Flow χ2(5) = 22.5397 0.0004 0.4098 (M)
Perceived Stress χ2(5) = 32.9056 <0.0001 0.6581 (L)

Notes: Reported Effect Sizes are Kendall’s W (Kendall and Smith, 1939),
Interpreted as: 0.1 - < 0.3 (Small = S), 0.3 - < 0.5 (Moderate = M) and
>= 0.5 (Large = L) Effect Sizes - See (Tomczak and Tomczak, 2014).

TABLE 5.4: Friedman Tests for Self-Reports in Experiment 1.

Stress

Perceptions of stress were collected and evaluated to assess the presence of motivated
performances (see Tozman et al., 2015). Significant main effects with large effect sizes
are found for the perceptions of stress. Post-hoc comparison of stress reports (see
Figure 5.10) revealed significant differences between all three mental arithmetic task
conditions, with stepwise increasing stress levels from EASY to HARD. Within the
writing task, the stress levels did not differ significantly. Stress levels were consistently
lower in the writing task than in the mental arithmetic CAL and HARD conditions.
The results altogether indicate low stress perceptions during the writing and easy
mental arithmetic task conditions.

FIGURE 5.10: Stress Reports in Experiment 1. Crosshairs and Numbers
Next to Them Represent Means.

These results show both expected and surprising results. On the one hand, in-
creased arousal and stress have been reported to occur with increasing difficulties
(see, e.g. Tozman et al., 2015; Klarkowski, 2016), which is why the patterns for the
mental arithmetic task are in line with related literature. Interestingly, however, stress
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perceptions were low in all rounds of the writing tasks, despite greater perceived dif-
ficulties than in the mental arithmetic EASY condition, and despite similarly elevated
flow levels as in the mental arithmetic CAL condition. The role of these findings is
discussed further after the presentation of the neurophysiological results, that extend
the picture further on these dynamics of difficulty, flow, and stress.

5.4.3 Neurophysiological Results

ECG Results

First, variations in heart rate variability HRV were assessed to follow up on exam-
ining how the cardiac system operates during flow, both within the traditional DM
paradigm and across paradigms and tasks. Friedman tests of main effects across
the sampling points were only significant for RMSSD and HF-HRV, in both cases
indicating small effect sizes (see Table 5.5). RMSSD and HF-HRV are considered
two typically positively correlated HRV indicators of parasympathetic ANS branch
activity (Berntson, Quigley, and Lozano, 2007). Both HRV metrics show similar
patterns in post-hoc test results (see Figure 5.11 and Figure 5.12). For the RMSSD
feature, Wilcoxon tests of mean differences show a significantly higher level in the
mental arithmetic CAL condition than in the HARD condition. This finding was
not corroborated by the HF-HRV feature, which indicated similar HRV levels across
mental arithmetic task conditions, albeit with a stepwise decrease in means from
EASY to HARD. No significant difference across sampling points was found for all
the writing task rounds, in both features. However, importantly, task comparisons
showed significantly lower HRV levels in both RMSSD and HF-HRV in comparison
to both mental arithmetic CAL and HARD conditions. HF-HRV was also signifi-
cantly lower in all writing task conditions compared to the mental arithmetic EASY
condition, indicating a consistently stronger withdrawal of parasympathetic cardiac
modulation during the writing task. Together these results indicate that flow is likely
related to increased physiological activation (moderate or low HRV as indicated by
parasympathetic cardiac modulation features).

Dependent Variable (DV) Test Statistic P-Value Effect Size

∆RMSSD χ2(5) = 13.2000 0.0216 0.2640 (S)
∆SDNN χ2(5) = 4.5064 0.4790 -
∆PNN50 χ2(5) = 7.4156 0.1915 -
∆HF-HRV χ2(5) = 12.2987 0.0309 0.2236 (S)
∆LF-HRV χ2(5) = 4.1429 0.5290 -

Notes: Reported Effect Sizes are Kendall’s W (Kendall and Smith, 1939).

TABLE 5.5: Friedman Tests for HRV Features in Experiment 1.
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FIGURE 5.11: ∆RMSSD Results in Experiment 1. Crosshairs and Num-
bers Next to Them Represent Means.

FIGURE 5.12: ∆HF-HRV Results in Experiment 1. Crosshairs and
Numbers Next to Them Represent Means.
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EEG Results

Variations in EEG frequency band powers were assessed to examine how frontal
regions of the brain operate during flow, both within the traditional DM paradigm and
across paradigms and tasks. Two analyses were conducted that assess the averaged
power changes for each condition, and also the pattern of temporal variation over
30s windows within each condition.

For the between-condition analyses, Friedman tests were computed for each fre-
quency band (over one Region of Interest (ROI) - the pooled frontal electrodes: AF3,
F3, F7, FC5, FC6, F8, F4, AF4) to detect main effects across sampling points. In a
preparatory step, the presence of hemispheric differences for the Alpha frequency
ranges (due to possible effects in terms of FAA - see Labonté-Lemoyne et al., 2016;
Harmon-Jones, Gable, and Peterson, 2010) was assessed for an Alpha range hemi-
spheric difference score: Right Hemisphere (RH) - Left Hemisphere (LH). No main
effect was found for these FAA features (see Table 5.6). The analysis of hemispheric
differences was, therefore, not pursued further.

For the pooled frontal frequency band features, a main effect was found for the
HiAlpha band. No effects were found for any other frequency range. Post-hoc
pairwise Wilcoxon tests were conducted on the frontal HiAlpha feature (see Figure
5.13). Within the mental arithmetic task, the HiAlpha band shows significantly
higher levels in the EASY condition than in the HARD condition, and the CAL
condition indicated on a trend level. No difference was found between the CAL and
HARD conditions. Within the writing task, no significant differences are found in
the HiAlpha band. Across tasks, significantly lower HiAlpha is found in all writing
rounds compared to the mental arithmetic EASY condition (trend level for writing
round 2). Furthermore, trend level differences indicate lower HiAlpha in W1 and W3
than in the mental arithmetic CAL condition, and one trend level indication of lower
HiAlpha in W1 compared to the mental arithmetic HARD condition.

ROI Freq. Band Test Statistic P-Value Effect Size

Frontal ∆Theta χ2(5) = 5.0476 0.4101 -
Frontal ∆LoAlpha χ2(5) = 4.3810 0.4960 -
Frontal ∆HiAlpha χ2(5) = 12.1905 0.0323 0.4063 (M)
Frontal ∆LoBeta χ2(5) = 8.9524 0.1110 -
Frontal ∆MidBeta χ2(5) = 6.7619 0.2390 -
Frontal ∆HiBeta χ2(5) = 0.9524 0.9663 -
FAA (RH-LH) ∆LoAlpha χ2(5) = 3.8095 0.5772 -
FAA (RH-LH) ∆HiAlpha χ2(5) = 8.0952 0.1511 -

Notes: Reported Effect Sizes are Kendall’s W (Kendall and Smith, 1939).

TABLE 5.6: Friedman Tests for EEG Features in Experiment 1.

Together these results indicate primarily that, with increased task difficulty, frontal
brain regions become active, and not generally de-activated as is suggested in the
Transient Hypofrontality Theory (THT) (Dietrich, 2004). In contrast, very easy and
monotone tasks show higher frontal Alpha power, expressed here in the higher Alpha
frequency ranges. For flow, this indicates rather that at least some prefrontal areas are
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FIGURE 5.13: Frontally Pooled ∆HiAlpha Results in Experiment 1.
Crosshairs and Numbers Next to Them Represent Means.

required to process the task. However, given a lack of specificity of the frontal Alpha
pattern to changes in reported flow, this observation is instead considered to represent
an engagement of top-down attention on the task at hand. Therefore, from these
results across two tasks and paradigms, flow is considered to be related to increased
attentional engagement (and not frontal downregulation). A surprising observation
is the lack of frontal Theta power changes, as these have been repeatedly reported in
related work (see Section 4.3). It is possible that this is caused by too coarse frequency
band extraction methods (as related work uses more elaborate frontal Theta power
isolation approaches - see Ewing, Fairclough, and Gilleade, 2016) or by a lack of
frontal midline electrode positions in the used wearable EEG device (as frontal Theta
changes are typically observed close to midline electrodes).

As a last series of analyses, an interesting proposition is followed up, that flow
might be better identified through EEG measures by studying frequency power
changes in time (see for example Soltész et al., 2014; Wolf et al., 2015). For this
purpose, within-condition frequency power variations were investigated. Friedman
tests on 30s-based segments of each round were computed (resulting in 10 and 14
segments for the mental arithmetic and the writing task respectively) (see Table
5.7). Results show main effects in the mental arithmetic EASY condition for the
HiAlpha band, in the Writing Round 1 (W1) for the MidBeta band and the Writing
Round 3 (W3) for the HiAlpha band. For the CAL and HARD mental arithmetic task
conditions and Writing Round 2 (W2), no changes over time were observed.

For the follow-up assessment, a descriptive analysis was conducted. In a similar
format, such analyses have previously been pursued for flow PNS measures (Harmat
et al., 2011) for the sake of hypothesis development from small sample neurophys-
iological data. The descriptive analysis relies on rank transformed data (to further
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Freq. Band Test Statistic P-Value Effect Size

Mental Arithmetic - EASY Difficulty
∆Theta χ2(9) = 7.7091 0.5637 -
∆LoAlpha χ2(9) = 13.5636 0.1387 -
∆HiAlpha χ2(9) = 18.0727 0.0343 0.3347 (M)
∆LoBeta χ2(9) = 11.4182 0.2481 -
∆MidBeta χ2(9) = 8.0727 0.5268 -
∆HiBeta χ2(9) = 10.0000 0.3505 -

Mental Arithmetic - CAL Difficulty
∆Theta χ2(9) = 7.8182 0.5526 -
∆LoAlpha χ2(9) = 10.9455 0.2795 -
∆HiAlpha χ2(9) = 5.6727 0.7722 -
∆LoBeta χ2(9) = 12.4727 0.1880 -
∆MidBeta χ2(9) = 9.9636 0.3534 -
∆HiBeta χ2(9) = 14.6182 0.1020 -

Mental Arithmetic - HARD Difficulty
∆Theta χ2(9) = 1.5818 0.9965 -
∆LoAlpha χ2(9) = 10.3527 0.3227 -
∆HiAlpha χ2(9) = 6.7745 0.6606 -
∆LoBeta χ2(9) = 15.2400 0.0846 -
∆MidBeta χ2(9) = 8.7818 0.4577 -
∆HiBeta χ2(9) = 8.6509 0.4701 -

Scientific Writing - Round W1
∆Theta χ2(13) = 9.3510 0.7459 -
∆LoAlpha χ2(13) = 8.7306 0.7930 -
∆HiAlpha χ2(13) = 9.4816 0.7357 -
∆LoBeta χ2(13) = 19.4735 0.1091 -
∆MidBeta χ2(13) = 32.6163 0.0019 0.3584 (M)
∆HiBeta χ2(13) = 22.1673 0.0528 -

Scientific Writing - Round W2
∆Theta χ2(13) = 11.3905 0.5781 -
∆LoAlpha χ2(13) = 13.6571 0.3984 -
∆HiAlpha χ2(13) = 13.9238 0.3792 -
∆LoBeta χ2(13) = 15.1810 0.2962 -
∆MidBeta χ2(13) = 16.0000 0.2491 -
∆HiBeta χ2(13) = 12.1524 0.5152 -

Scientific Writing - Round W3
∆Theta χ2(13) = 12.2286 0.509 -
∆LoAlpha χ2(13) = 14.3143 0.3521 -
∆HiAlpha χ2(13) = 24.8571 0.0241 0.478 (M)
∆LoBeta χ2(13) = 6.8286 0.9108 -
∆MidBeta χ2(13) = 12.2000 0.5113 -
∆HiBeta χ2(13) = 17.4286 0.1804 -

Notes: Reported Effect Sizes are Kendall’s W (Kendall and Smith, 1939).

TABLE 5.7: Friedman Tests for EEG Within-Task Features in Experiment 1.
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remove inter-individual differences - for a similar logic see Manzano et al., 2010)
plotted against the progression in time. Furthermore, a Locally Estimated Scatterplot
Smoothing (LOESS) smoothed fit line (Cleveland, 1979) is included in the plot as a
conservative representation of a possible time-frequency power progression. The
minimally possible span for the LOESS algorithm was selected to aid towards this
goal of conservative representation. The progressions are shown in Figure 5.14. This
progression indicates that HiAlpha peaks slightly in the first 1-3min. Toward the end
of the phase (minutes 4-5), more volatility in the HiAlpha pattern is visible. For the
writing task, some HiAlpha fluctuation is also indicated in round W3, in particular
with early, mid and late-phase peaks (60s, 120s, 420s), and valleys in-between (150s,
330s). Furthermore, within the writing task, MidBeta progressions indicate a second
and different pattern. Specifically, with the most pronounced differences for early vs
late segments, pointing to a MidBeta activity increase in the first minutes of round
W1. Overall, it should also be noted that no repeated start or end effects were found
in all bands and experiment phases. Also, besides the MidBeta pattern in writing
round W1, the phases showing higher flow reports are more strongly marked by
consistency than volatility.

FIGURE 5.14: Frontal ∆HiAlpha and ∆MidBeta Within-Condition Changes in Ex-
periment 1. Error Bars Are One Standard Error (SE).
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Together these neurophysiological results from two tasks and paradigms indicate
that flow is likely related to increased attentional engagement (as indicated by reduced
and stable frontal HiAlpha power) and possibly to brief mental workload increases
(as indicated by a short frontal MidBeta increase at the beginning of the writing task -
the round that showed the highest reported flow levels amongst all conditions).

5.5 Discussion

5.5.1 Critical Findings

In these analyses, central gaps in the (neurophysiological) research on flow in more
naturalistic settings were addressed that pertain to (1) the comparison of flow in-
tensities across two experimental flow elicitation paradigms, of which one is newly
developed for the Knowledge Work (KW) context, and to (2) the detection of flow
experiences using wearable neurophysiological sensors that build on within-sub-
ject observation over two tasks and paradigms. Concerning the derived research
questions, novel insights emerged that need to be critically appraised.

RQ3 - Mental Arithmetic DM Task Replication

Research Question 3 asked if the laboratory-based flow elicitation using a mental
arithmetic Difficulty Manipulation (DM) task is reproducible. Within the mental
arithmetic task, the results suggest a successful manipulation of difficulty (and sub-
sequently flow) with comparable results to previous research. Specifically, the results
show that flow experience (as indicated by self-reports) is experienced most strongly
when task demands are optimally balanced with participants’ skill levels. It needs to
be appraised though, that this intensity of flow compared to low-difficulty task situ-
ations (the EASY condition), was not reaching statistically significant higher levels.
This lack of separation between the EASY and CAL condition is potentially caused
by high levels of perceived fluency during the very easy task. Similar complications
have been reported in related work (Peifer et al., 2014; Peifer et al., 2015; Tozman,
Zhang, and Vollmeyer, 2017), and some work has therefore also included participant
action slowing-mechanisms during these easy task conditions (Keller et al., 2011;
Harmat et al., 2015). Nevertheless, together with the results from the other variables
below (perceived stress and neurophysiological data), it is considered that within
the mental arithmetic task flow was most likely at its highest intensity in the CAL
condition. This is why RQ3 is considered to be confirmed, as the elicitation of flow
experience intensities was successfully reproduced, even in a different setting and
using different self-report instruments than in (Ulrich et al., 2014).

RQ4 - cESM Utility

Research Question 4 asked if flow elicitation in the laboratory is intensified by a more
naturalistic task setting (i.e. through the controlled Experience Sampling - cESM
approach). First of all, within the writing task, all presented variables indicate a
rather stable experience, despite repeated interruptions. This finding is important
as interruptions are often considered a prime cause for a reduction or lack of flow
experiences (Rissler et al., 2017). Therefore, initially, more experiential variance was
anticipated due to repeated task interruption. It is possible that other factors in the
writing task design (like the goal setting process) helped to mediate this interruption
impact. Goal setting has been found to be an important step in the writing process



5.5. Discussion 97

that facilitates high-quality work (Flower and Hayes, 1981) and is theorised a prime
conductor for flow experiences in the original theory (Csikszentmihalyi, 1975). The
structured goal-setting approach that was included in the cESM task design was
reported as being helpful to guide participants actions in the writing task. Also, par-
ticipants did not report that substantial adjustment of these task goals was necessary
as the task progressed. Therefore, it is herein considered that this structured form
of goal setting for KW tasks might be a useful element for flow research with more
naturalistic tasks to enable the elicitation of flow experiences. In comparison to the
mental arithmetic DM task, flow in cESM writing was reported to be at least as high
as in the CAL mental arithmetic condition, and with tentatively higher levels (in one
instance bordering statistical significance - Writing Round 1). The results, therefore,
show support that the cESM approach with a writing task can be used to elicit flow, at
least at similar intensities that are elicited with a standard DM paradigm (the mental
arithmetic task). Therefore, RQ4 is considered to be partially confirmed.

Furthermore, though, another clear difference is visible between the two tasks.
Even though tasks are reported as similarly important, writing appeared to be experi-
enced as less stressful and difficult and showed stronger Heart Rate Variability (HRV)
reductions. A key reason for the stress difference could be the design-related, con-
trasted presence of multiple stress factors (difficulty overload, social-evaluative threat,
lack of control) (Tozman, Zhang, and Vollmeyer, 2017). These factors have in the past
purposefully been introduced to flow experiment designs to elicit motivated task
performances (Tozman et al., 2015; Ulrich et al., 2014; Tozman, Zhang, and Vollmeyer,
2017) and have resulted in repeated sightings of increased stress or arousal in CAL
and HARD conditions (compared to EASY conditions), even in contexts where threat
experiences could be less likely (i.e. gaming tasks) (Harmat et al., 2015; Tozman et al.,
2015; Klarkowski, 2016; Tozman, Zhang, and Vollmeyer, 2017). The results indicate
that a task that is naturally important to the individual, yet lacks these stressors re-
sults in similarly reported flow intensities without perceptions of strain. The critique
on the aptitude of the DM paradigm to elicit deep flow experience could, therefore,
receive some support (Moller, Meier, and Wall, 2010), as could the proposition that
naturalistic tasks are perceived as less attentionally effortful and therefore more in the
realm of deeper flow experiences (Hommel, 2010). It should also be pointed out, that
these results might indicate a central psychometrical limitation of flow self-report
instruments, as there could be experiential components to flow (e.g. a perception of
effortlessness) that are not captured by established scales. With a similar thought,
some related work has started to include measures of effortless concentration (Harmat
et al., 2015) and mental workload (Harris, Vine, and Wilson, 2017a).

RQ5 - Cross-Situation Flow Neurophysiology

Research Question 5 asked which neurophysiological correlates of flow can be ob-
served across different cognitive task scenarios with wearable sensors. Two phys-
iological feature spaces (HRV as PNS measures and frontal EEG frequency band
powers as CNS measures) delivered interesting and consolidating insights.

Regarding the ECG features, within the mental arithmetic task, the observed HRV
results are comparable with previous work showing increased PNS activation from
CAL to HARD conditions (that would indicate a moderate level of physiological
activation in flow) (Tian et al., 2017; Klarkowski, 2017; Tozman et al., 2015; Klarkowski,
2016). Within the writing task, the HRV similarity across the sampling points further
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supports the observation of a consistent experience. However, given this consistency,
it is hard to tell if the reduced HRV (compared to the mental arithmetic task) is due to a
qualitatively different flow experience, or due to other variables (e.g. task complexity
or effort). Nevertheless, the finding that even though the writing is perceived as
less stressful, the observation of further lowered HRV levels is interesting and could
alternatively indicate that the proposition, that flow is a state of high physiological
activation, is correct (Manzano et al., 2010; Keller et al., 2011; Ulrich, Keller, and Grön,
2016b). In any case, the comparison of the two tasks could explain these previously
contradictory findings (i.e. why in some studies the physiological results point to
moderate PNS activation and in some to high PNS activation) to be caused by task
or paradigm based confounds. These results highlight a complication for future
adaptive NeuroIS work that uses physiological thresholds to infer experiential states
based on single-task calibration. Multi-task observation is likely going to be necessary
to calibrate the detection of classification of flow intensities even on a within-subject
level. What is interesting about the present results is also, that only indicators of
parasympathetic cardiac modulation (RMSSD and HF-HRV) were found with main
effects. Related work has also indicated an increasingly robust utility of these markers
for the separation of optimal and non-optimal difficulties (see Section 4.2).

Regarding the EEG features, within the math task, observations of frontal regions
integrate in multiple ways with previous work. First of all, it needs to be outlined that
one of the more robust findings from related work (elevated frontal Theta levels with
difficulty increases) is not supported by the findings in this work. The absence of the
frontal Theta pattern could point to a need to further specify Theta band activity (like
Ewing, Fairclough, and Gilleade, 2016 who select individualised Theta band activity
in a 1 Hz range within the 4-7 Hz range, where the largest power modulation from
the difficulty treatment is visible). On the other hand, it is possible that this frontal
Theta effect is not visible as it typically emerges closer to midline electrodes, that are
not available for the EEG headset that was used in this work.

Second, the finding of lower HiAlpha activity with increasing task difficulty is
interesting in multiple ways. First, the separation of the Alpha band shows that HiAl-
pha is a more differentiating feature for the mental arithmetic task conditions. This
finding has not been outlined as such in previous work, yet would explain why some
of the work that includes separation does find frontal Alpha to contribute valuable
diagnostic information between difficulty conditions (see, e.g. Ewing, Fairclough,
and Gilleade, 2016; Katahira et al., 2018), while others that work with the broad
Alpha band do not (see, e.g.Chanel et al., 2011; Klarkowski, 2017). Whether or not the
HiAlpha band provides a diagnostic potential for flow observation beyond the indi-
cation of a difference to EASY conditions, remains however a subject of future work.
Presently it appears that CAL and HARD conditions show a similar level of HiAlpha,
that is lower than in the EASY condition (thus showing a potentially reduced activity
in frontal brain regions in the EASY condition). The results of Alpha decreases with
increased task difficulty are in line with previous EEG research on mental workload
(Borghini et al., 2014) and are a possible indicator of top-down attentional task en-
gagement. These results are also somewhat similar to a recent fNIRS-based study
that finds frontal brain activity to be reduced in low difficulty conditions and to
increase when task difficulty increases (Barros et al., 2018). These authors attribute
this activity to attention on the task. The finding is plausibly transferrable given that
the volatility of the HiAlpha power is only present in the mental arithmetic EASY
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condition. Besides, mind wandering during this condition was noted explicitly by one
participant in the final experiment survey comment section. However, it needs to be
appraised that frontal Alpha reduction is not a unanimous finding in the related work
(see Section 4.3). For example, the results by Léger et al. (2014) and Labonté-Lemoyne
et al. (2016) point in the opposite direction. These differences might be mainly caused
by experimental approaches and analyses. Labonté-Lemoyne et al. (2016) observe
two interacting participants and do not manipulate difficulty externally. Léger et al.
(2014) derive their conclusion not through a DM paradigm but through regression
analysis of reported flow and frontal Alpha power at the end of a prolonged learning
session. The present data are, however, amongst the first to show this reduction of
frontal Alpha across two tasks and paradigms, which represents a vital contribution
to the literature.

Third, an absence of frontal Beta main effects was observed in the present results,
yet a pattern was detected for the temporal dynamics in the writing task. In related
work, lower beta activity is linked to higher flow experience self-reports (Léger et
al., 2014), and has also been found to increase with task difficulty increases from
EASY levels (Klarkowski, 2017). However, other studies have also found no beta
difference at all on frontal sites (Soltész et al., 2014; Katahira et al., 2018). As Beta
frequencies have generally been found to be related to changes in mental workload
(Michels et al., 2010), the absence of Beta changes with task difficulties and tasks in
this work is rather unexpected. It could be expected that at least some elevation in
Beta levels would occur with flow, given that it unlikely occurs in very low difficulty
tasks. The absence of such findings can perhaps be explained by methodological
limitations, specifically the somewhat large area of pooled electrodes (as related
work shows that workload-related Beta changes emerge less over medial central
regions - see Michels et al., 2010), or the criteria for the sub-segmentation for the
Beta bands that might have been insufficiently sensitive in capturing these expected
patterns. Future work should apply a more refined perspective to further elaborate on
potential Beta frequency relationships with flow. However, a possible relationship is
identified in the temporal analysis, specifically for the frontal MidBeta range. Within
the writing task, EEG results mostly support the view of a consistent experience
across writing trials. The only effect that shows variation is the initial Beta increase
within the first part of writing round W1 (temporal analysis). On the one hand,
this round showed tentatively elevated flow reports when compared to the mental
arithmetic CAL condition and the other writing task rounds. This elevation could
mean, that at least some early elevation of frontal Beta could be related to intensified
flow experiences. Given that this variation is not apparent in later phases, it is most
likely attributable to a type of task initiation activity. It could perhaps be interpreted
as an indicator of taking on a challenging task. It has been reported in flow and
writing research (Flower and Hayes, 1981; Csikszentmihalyi, 1996) that initiation of
a writing session takes additional effort to structure the task that may be required
less at later stages. Given that Beta activity is in neuroscience literature often related
to increased mental workload (Michels et al., 2010), this finding could signify an
initial increase in cognitive effort and mental workload that dissipates after a while.
Whether or not this observation is related to flow experience intensities will have to
be studied further, but provides a novel proposition on how to possibly observe flow
experiences through a time-dynamics perspective.
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As an answer to RQ5, these neurophysiological results from two tasks and para-
digms indicate that flow is related to increased physiological activation (moderate or
low HRV as indicated by parasympathetic cardiac modulation features), to increased
attentional engagement (and not frontal downregulation - as indicated by reduced
and stable frontal HiAlpha power) and possibly to brief mental workload increases
(as indicated by a short frontal MidBeta increase at the beginning of the writing task -
the round that showed the highest reported flow levels amongst all conditions).

5.5.2 Limitations & Future Directions

Several limitations to the presented experiment need to be appraised. In general, the
focus on a sample of German students and the small sample size is a critical limitation
of this study, which is why the results can only be treated as preliminary. Through
the integration with related work, this limitation was attempted to be overcome
to some degree. Nevertheless, future work will have to repeat and extend these
observations with larger samples. Due to this small sample, only indirect comparisons
(non-parametric ANOVAs) were pursued between self-reports (flow and stress) and
neurophysiological data. While this is common practice in the related work and was
selected especially due to this relatability, future work should explore the use of more
direct modelling of relationships. To that regard, especially rank-based Repeated
Measures (RM) models (see Manzano et al., 2010) and non-linear regression analyses
(e.g. Bian et al., 2016; Tozman et al., 2015; Chin and Kales, 2019) have helped to
identify relationships between HRV metrics and reported flow. The application of
these methods to the EEG feature space could provide similarly interesting additions
to the flow neurophysiology literature and for the development of adaptive NeuroIS.

In more specific limitations, it was found that while the mental arithmetic DM task
was replicable, it was also seen that flow contrasts could be improved. On the one
hand, this might be achieved by further inducing boredom through waiting periods
to prevent participants from rushing through very easy tasks and thus experiencing
highly fluent actions. Similar recommendations have been made in related work
(Harmat et al., 2015; Keller, 2016). On the other hand, flow intensities in optimal
difficulty conditions could be further intensified by improving the calibration mecha-
nism. In this instance, it is possible that difficulties in the CAL condition were slightly
too high. Therefore, slower level increases in the calibration stage might help to set
better difficulties. However, another direction seems particularly interesting, namely
the integration of a more self-determined optimal difficulty calibration. Such an ap-
proach has been used in Barros et al. (2018) and was found to increase flow intensities
compared to automatically calibrated difficulties. This approach is also interesting, as
there was a tentative increase in flow experiences seen in the writing task. It was a
primary argument that the writing task provides a more naturalistic task experience
through the provision of more freedom and autonomy to work on a task that fits
one’s preferences and abilities. Therefore, the inclusion of a self-selected (optimal)
difficulty could provide additional comparability between the two paradigms (DM
and cESM) through added autonomy in the DM task. Furthermore, for the cESM
approach, the consistency of elicited flow (and other) experiences was considered as
a benefit. However, it can also be seen as a limitation in terms of low experiential
variance that might be needed to identify neurophysiological contrasts. Therefore,
future work should increase variance in the paradigm, for example by including a
boredom phase (for example a text copying stage with slowed keyboard input), or
by temporally varied sampling (with short and long task intervals, more or less flow
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might occur). Such an approach could also provide highly interesting insights into
the time-dynamics of flow, one area that was considered to provide promising new
grounds for the study of flow in this work and related work (Soltész et al., 2014; Wolf
et al., 2015). In such future analyses, more sophisticated methods for feature extrac-
tion and time series modelling should be applied. For example, EEG band power
extraction through Morlet Wavelet Transformation (MWT) is known to provide high
temporal resolution up to the original sampling frequency (Cohen, 2014). It could,
therefore, be used to derive much more accurate time series patterns than is possible
with the herein used Fast Fourier Transformation (FFT) power extraction.

Lastly, the present work is limited in particular to frontal brain sites, yet with a
fairly high aggregation. Future work should explore other topographical regions of
interest that could be providing valuable information on what differentiates flow
from other experiences. Some research points to the explicit role of temporal (Wolf
et al., 2015), or parietal and occipital brain regions (Chanel et al., 2011). Also, more
fundamental neuroscientific studies point to the relationship of higher frequency
powers (Beta and Gamma) to mental workload over widespread regions of the scalp
(Michels et al., 2010). As flow is related to task difficulties, such an observation
could provide valuable information on flow boundary conditions. Lastly, since recent
hemodynamic imaging work has found more nuanced frontal activation patterns
(differences in activations of medial and dorsolateral Prefrontal Cortex - PFC areas
during flow), a refined analysis of frontal regions could help to learn if the herein
found frontal Alpha patterns are more topographically isolated.

5.6 Conclusion

In sum, an extensive analysis of the self-report and neurophysiological data was con-
ducted in two flow elicitation paradigms. The results from this experiment, therefore,
contribute in theoretical and practical ways to a foundation for the theory-driven
development of adaptive NeuroIS. First, evidence is provided for the applicability
and utility of the controlled Experience Sampling (cESM) approach to study flow
in more naturalistic tasks in the context of Knowledge Work (KW). The writing
task design was found to elicit a consistent flow experience that is at least as high
in intensity as in an established Difficulty Manipulation (DM) paradigm. At the
same time, this cESM approach elicited lower perceptions of stress, which makes the
approach an interesting alternative for flow research. Specifically, the question arises,
if it might be possible to study a difference between the experience of flow as a state of
effortless (cESM) or effortful (DM) attention (Hommel, 2010) through comparison of
these paradigms. Second, consolidating evidence is provided for neurophysiological
configurations (of heart and brain) during flow experiences. Importantly, this evi-
dence emerges across two experimental paradigms, which is a central contribution of
this work. These results indicate that flow is likely related to increased physiological
activation (moderate or low HRV as indicated by parasympathetic cardiac modula-
tion features), to increased attentional engagement (and not frontal downregulation
- as indicated by reduced and stable frontal HiAlpha power) and possibly to brief
mental workload increases (as indicated by a short frontal MidBeta increase at the
beginning of the writing task that showed the highest reported flow levels).

These results converge with recent understandings (Harris, Vine, and Wilson,
2017b) that the Transient Hypofrontality Theory (THT) is likely too simplistic since
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no general frontal downregulation is indicated. The results also provide more con-
solidation for related work through the application of frequency band segmentation.
Previous results (of absent frontal Alpha relations to flow) may have been caused by
the use of broad Alpha bands (e.g. 8-12 Hz). Such broad brands have been reported to
possibly mask effects in narrower frequency ranges, especially such related to task-re-
lated and general attentional engagement (Klimesch, 1999). In the present work, the
Alpha band separation provided useful diagnostic detail, isolating Alpha changes
to the HiAlpha band. For the Beta band, however, this seemed less to be the case,
although a few results point to potentially higher diagnostic properties of the MidBeta
band. In particular, a direction that has been previously highlighted as promising for
the identification of neural flow configurations - the study of time-dynamics of flow -
received further support by this frequency separation approach.

For the development of adaptive NeuroIS, the neurophysiological results point to
the opportunity to instantiate systems able to differentiate situations of non-optimal
and optimal task difficulty by including HRV features (specifically RMSSD and
HF-HRV) and frontal EEG features (specifically HiAlpha power). However, such
a system would currently most likely only be used to identify situations of low
task difficulty and mind wandering, as the separation of moderate from high task
difficulties needs further insights. As related work that has combined DM paradigms
with increased autonomy has found minima in HRV during these more autonomous
conditions (Barros et al., 2018), it could be possible that HRV reductions beyond what
is expected in higher task difficulties together with stable, frontal HiAlpha activity
could be used to detect flow experience likeliness or at least its corollary of increased
task attention. The convergence of these two features might thereby be explained
by shared regulatory mechanisms (Peifer, 2012; Barros et al., 2018). Whether such
diagnosticity is achievable and useful will be an interesting direction for future work.
So too is the search for neurophysiological differences that could explain the stress
perception difference and with it, the potential difference of flow experience as a state
of effortless attention (Hommel, 2010).
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Chapter 6

Experiment 2 - Difficulty,
Autonomy, & Social Context

Contents of this section are in part adopted or taken from Knierim, Nadj, and
Weinhardt (2019) and Knierim et al. (2019). See Section A.1 for further details.

6.1 Exploring Flow with Autonomy & Social Interaction

To provide the groundwork for the development of flow-facilitating, adaptive Neu-
ro-Information Systems (NeuroIS), the work in this dissertation focuses on studying
flow experiences in primarily cognitive tasks, to identify how flow could be intensi-
fied in experimental research (RG2). In this approach, flow neurophysiology research
converges on more Knowledge Work (KW) related scenarios and refines how neuro-
physiological processes related to flow can be described across different situations
using wearable sensor systems (RG3).

Experiment 1 confirmed that varying flow intensities could be elicited in laboratory
research by using the mental arithmetic paradigm. Furthermore, it showed that alter-
native paradigms could elicit similarly strong, potentially stronger, and potentially
qualitatively different flow experiences (high flow without stress perceptions). These
differences were mainly considered to be driven by increased task naturalism and
autonomy. In addition, physiological results showed that flow could be accompanied
by high physiological activation (reduced HRV) and by reduced frontal Alpha power
(EEG - considered to reflect increased attentional engagement). However, the EEG
results also showed the absence of expected effects in the form of elevated mental
workload levels (expected frontal Theta and Beta increases). Following this disser-
tation’s research goals and building on the results from Experiment 1, Experiment
2 was set up, to further investigate some of the identified patterns, especially the
patterns regarding autonomy and stress. Therefore, in Experiment 2, findings from
Experiment 1 were integrated into alternative research designs, in particular in the
form of providing increased autonomy by allowing participants to self-select an opti-
mally challenging difficulty level for the mental arithmetic task. Also, Experiment 2
pursued an additional direction to intensify flow in the laboratory, namely completing
a task during social interaction in a small group.

Two reasons drove the decision to investigate flow in small group interaction.
On the one hand, related work has recently found repeatedly, that flow is more
intense when experienced in a group (Magyaródi and Oláh, 2017; Tse et al., 2016;
Walker, 2010). On the other hand, there is a high practical relevance that is currently
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placed on small group work. Groups are increasingly used to solve problems that
surpass the capabilities of individuals, for example in academia where the dominant
role of authoring groups is becoming apparent for high-quality research (Wuchty,
Jones, and Uzzi, 2007). Also, in the industry, where Artificial Intelligence (AI) is
leading to an increased demand for human knowledge problem solving, demand
for group cooperation is increasing (Keith et al., 2016; Frey and Osborne, 2017).
However, the Aristotelian promise (“the whole is more than the sum of its parts”)
is not automatically realised, and groups are often found to perform below their
potential (Kerr and Tindale, 2004). For this reason, an emphasis has been put on the
support of performance conducive states in small group research and thus on flow in
small groups in particular (Keith et al., 2016).

The study of flow in social interaction is relatively young (Hout, Davis, and Wegge-
man, 2018). The flow experiences of small group members have been found to impact
not only individual-level, but also group-level performance, satisfaction and growth
outcomes (Heyne, Pavlas, and Salas, 2011; Walker, 2010). Furthermore, a central
observation has so far been, that flow in social interaction might even be more intense
than when experiencing flow alone (Walker, 2010). Nonetheless, while considerable
correlational research has been conducted, the controlled study of flow in small
groups has only sparsely attracted scholar’s attention. Therefore, by extending es-
tablished work on flow elicitation in the laboratory to the small group level (i.e. by
adapting the mental arithmetic task), the intensification of flow in the laboratory can
be further explored. Doing so, important contributions are made to understand flow
experiences in a more encompassing nature. Importantly, a particular gap in flow
in small groups can be bridged, that is the paucity of research addressing digital-
ly-mediated interactions. As social interaction processes deviate strongly between
face-to-face and digitally-mediated settings (Derks, Fischer, and Bos, 2008; Chanel
and Mühl, 2015), the extension of previous work on flow in groups to the digital
context represents an important research gap. Also, while there is an increasing
interest to elucidate the underlying physiological processes of the flow experience,
there has so far been almost no related research in small group settings. If scholars
and practitioners want to better understand and facilitate flow in groups, laboratory
experiments using physiological measures must be conducted. By analysing experi-
ences across solitary and small group interactions during varied difficulties, the aim
of Experiment 2 is to answer the main research questions of how well manipulations
of autonomy and social context (= Autonomy Manipulation - AM and Social Context
Manipulation - SCM) can serve to elicit more intense flow in the laboratory. More
specifically, the research questions in Experiment 2 are:

• RQ6: Is flow elicitation in the laboratory intensified by:

• RQ6.a: increased task autonomy?

• RQ6.b: performing tasks in groups?

• RQ7: Is the flow elicitation using of a mental arithmetic Difficulty Manipulation
(DM) task extensible to social interaction settings?

• RQ8: Which correlates to flow can be identified amongst different knowledge
work scenarios using wearable sensors in:

• RQ8.a: the PNS – in particular parasympathetic HRV indicators?

• RQ8.b: the CNS – in particular mental workload and attentional engage-
ment EEG power indicators?
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To summarise, in Experiment 2, the experience of flow is observed in isolation
and in digitally-mediated small group work on a cognitive task (SCM), with ad-
ditional treatments that offer increased autonomy (AM). Altogether this second
experiment contributes to the literature on flow experience, and the development of
adaptive NeuroIS by (1) being the first to extend and compare a previously validated
experimental task for solitary flow to the group level, and (2) extending the sparse
knowledge on flow in digitally-mediated social interaction, and identifying two novel
theoretical propositions as to why some flow experiences might be experienced as
more intense than others. Furthermore, the refined analyses of neurophysiological
data (specifically, parasympathetic HRV indicators, and EEG power indicators of
mental workload, cortical idling, and attentional engagement) further consolidate
the empirical knowledge on how flow can be described through changes in the heart
and the brain. Importantly, these results are strengthened through the inclusion of
various mechanisms for the elicitation of flow experiences in the laboratory (DM,
AM, and SCM), which represents the major contribution of this work to the flow
neurophysiology literature.

6.2 Experiment Design & Preparation

6.2.1 Materials

As in the first experiment, the second experiment was built on the pre-validated men-
tal arithmetic DM paradigm (see Section 5.2). Replicating the design by Ulrich et al.
(2014), participants sum multiple numbers, depending on the active and dynamically
adjusted difficulty level. Adaptations and extensions were included to investigate
additional hypotheses on the individual level and to enable comparability with small
groups completing the task. To reduce the impact of potential confounding factors
in small groups and to keep consistency with related work, constant groups sizes of
three anonymous members were chosen.

Optimal Difficulty Mechanisms (AM)

First of all, given the results from Experiment 1 and emerging research, an addi-
tional mechanism for difficulty calibration was included, namely the self-selection
of optimal difficulty (denoted AUTO). This alteration was used to test if increased
autonomy would lead to intensified flow experiences - as this was found to be a
possible conclusion from the cESM writing task in Experiment 1. Support for this
proposition was also found in recent research that found more intense flow expe-
riences in the laboratory when comparing self-selected and objectively calibrated
optimal difficulties (Barros et al., 2018). This approach also factors in the discussion
of the adequacy of objective mechanisms for optimal difficulty calibration. Specif-
ically, it has been highlighted that such optimality might be a subject-dependent
state with some individuals preferring underload and others preferring overload
(Fong, Zaleski, and Leach, 2015; Tse et al., 2016). Thus, to achieve optimal difficulty
balance, two different approaches were included. In contrast to the Self-Selected
Optimal Difficulty (AUTO) condition, the established optimal difficulty calibration
approach was used (Ulrich et al., 2014). In this calibrated difficulty condition (here
denoted: CAL), the optimal level was computed from the mean level of the last 25%
of trials in a calibration phase. For the optimal difficulty self-selection, at the start
of the AUTO condition, participants were shown examples of how the levels would
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look in different difficulties, and were asked to select the level that would optimally
challenge them. A screenshot of this mechanism is shown in Figure 6.1.

FIGURE 6.1: Selecting the Optimal Mental Arithmetic Difficulty Before
the AUTO Condition in Experiment 2. The Displayed Equation was

Updated When the Selected Level Was Changed.

Mental Arithmetic DM Task Adaptation

Secondly, given the emerging research on intensified flow experiences in groups, it
was decided to alter the mental arithmetic task in ways to allow for its completion
by multiple members of a small group (here: 3 people). As a starting point, it was
decided to increase the number of equations to be solved from one to three. Still, a final
solution had to be provided in the form of a three-digit number, yet partial answers
could now be entered. This separation was used to allow participants working the
task in a small group (Multi Person Condition (MP) condition) to focus on sub-tasks,
a process typical for small group work. This change meant, that always, at minimum,
six summands were presented (instead of a minimum of two), which increased the
task difficulty for participants working in isolation (Single Person Condition (SP)
condition) considerably. For this reason, the trial durations were extended to 28
seconds (from the previous 18 seconds). To further re-balance the difficulty in the
SP condition, the digit ranges and the levelling logic were adjusted. In the EASY
condition, only the results 303 or 304 were possible. This solution represented the
minimal possible difficulty, that would require participants to keep their attention on
the task. For the other conditions (CAL, AUTO, and HARD), difficulties were again
adapted dynamically, and the mechanism of adding/removing a digit with level
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increases/decreases was also retained. However, the ranges of digits and the number
of summands varied between the two latter conditions. Equations were changed
to be of a similar form as in the EASY condition, always starting with the number
100 to be added to the remainder of each partial equation. This format allowed to
further lower the difficulty in the CAL and AUTO conditions by decreasing the range
of possible digits to [1-3] while still generating a resulting three-digit number. In the
HARD condition, this digit range was increased to [1-6] to increase the likelihood of
additional mental carries, that were found to moderate difficulty changes together
with the overall number of digits per equation. As in the original design by Ulrich
et al. (2014) and in Experiment 1, the difficulty levels could vary freely in the optimal
difficulty conditions (both CAL and AUTO). However, the levelling logic was further
altered to slow the increase in difficulty, again to counterbalance the already increased
difficulty through the added number of summands, especially for the SP condition.
Specifically, difficulties were increased when 3/3 consecutive answers were correct
and decreased when 2/3 answers were incorrect. In the HARD condition, a balance
had to be achieved between creating trials that are hard to solve for small groups
(especially in MP), but that also do not cause prolonged frustration (especially in SP)
(Keller, 2016). For this reason, the initial level in the HARD condition was set to be
twelve levels higher than calibrated the starting level for the CAL condition. Yet,
the difficulty could still fall three levels from this point on. Furthermore, to ensure
difficulty was high enough but could fall quickly enough if necessary, levels increased
when 2/3 consecutive answers were correct and decreased when 3/3 answers were
incorrect. Additional adjustments were made to the task design to provide better
contrasts in difficulty and thus, ideally, flow. A waiting time for each trial was
introduced (i.e. participants had to wait for 7s before entering their final result).
Similar approaches have been used by other scholars to prevent participants from
rushing through very easy tasks (Keller, 2016). Lastly, the introduction phase was
prolonged to six minutes to induce boredom during the EASY condition further, and
to account for increased learning time in the small group condition.

Small Group Specific Task Extensions (SCM)

Furthermore, a set of extensions were specifically created for the MP condition. To
integrate the requirements for cooperation and integration (see Section 3.3), two
adjustments were made to the original task format. To create integration (in particular
interdependence between group members), one part of the equation was hidden for
each group member. This partial privatisation of information meant group members
were never able to solve a trial on their own, as they only saw two of three equa-
tions (random allocation at each trial – no unsolvable trials). Similar approaches
have been used in so-called Hidden Profile Paradigms in other small group research
(Schulz-Hardt et al., 2006). To enable cooperation (in particular coordination), in
the MP version, by clicking on a partial answer field, participants could signal to
other participants on which part of the equation they were currently working. All
participants shared the partial answer fields, that means they were able to correct the
partial answers of each other. Each participant, however, was able to provide their
final answer, which could not be altered by the other group members. This step was
found to be a necessary to provide a simple feedback mechanism about the group’s
performance. It was also important, as participants were informed that a trial could
only be solved correctly if at least two out of three group members provided the
correct answer (to keep all group members engaged). Comparably, in the SP treat-
ment, internal feedback about how well one is doing is already available. Through
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this sharing of final answers, at least a similar monitoring process was enabled. It
was determined in pre-tests, that without such monitoring, participants found it
impossible to assess how well their group was doing. Lastly, for the determination of
the self-selected optimal difficulty for the group, the median of the selected individual
optimal difficulties was chosen, and participants were informed (with an example)
about this process while making their decision (see Figure 6.1). The median was
chosen over the arithmetic mean as it was least likely to be manipulated by other
group members. A screenshot of the math task during the MP condition is shown in
Figure 6.2, and simplified examples of the task difficulties are shown in Table 6.1.

Condition Level Ulrich et al. 2014 Experiment 1 Experiment 2

EASY 0 103 + 6 101 + 2 100 + 1 (+)
100 + 1 (+)
100 + 2

CAL 1 65 + 73 100 + 22 (+)
100 + 3 (+)
100 + 1

CAL 2 58 + 91 + 4 100 + 13 (+)
100 + 22 (+)
100 + 3

HARD 15 72 + 12 + 32 + 67 + 29 + 100 + 14 + 15 + 62 (+)
58 + 63 + 14 + 45 100 + 55 + 65 + 23 (+)

100 + 23 + 53 + 11
HARD 16 19 + 46 + 55 + 26 + 73 + 100+35+22+16 + 2 (+)

49 + 57 + 10 + 34 + 5 100 + 64 + 45 + 26 (+)
100 + 25 + 51 + 31

Notes: Additional Digits with Level Increase are Highlighted in Bold.

TABLE 6.1: Mental Arithmetic Task Difficulties in Experiment 2.

FIGURE 6.2: Mental Arithmetic Task in Experiment 2. Excerpt From
the EASY MP Condition. This Picture was Shown to Participants in

the MP Condition to Explain the Task.

6.2.2 Procedure & Sampling

Experiment 2 was conducted in a laboratory setting with sound-proofed and air-
conditioned booths. Participants completed either the mental arithmetic DM task
(difficulty as a within-subject factor) in isolation SP or as part of a three-person group
MP (social context as a between-subject factor). Four participants were invited per
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session and allocated to SP or MP treatments randomly to increase anonymity and
to contain potential confounding effects of group member familiarity. The order of
the four mental arithmetic task conditions was randomised. To keep the number of
condition order variations low, a uniform and balanced Latin Square Williams Design
was chosen for the randomisation (four different orders) (Williams, 1949). At the start
of the experiment, participants were welcomed, informed about the upcoming proce-
dure and measurements. Afterwards, participants were asked to sign a consent form
for their participation. Next, participants were guided to a booth in the laboratory
and were fitted with the physiological sensors on the head (EEG) and chest (ECG),
and the signal quality adequacy was checked. Following, participants completed
a first survey collecting demographic information and some initial state variables.
The setup in the laboratory booth is almost identical as for Experiment 1 - which
was shown before in Figure 5.5. To complete this preparation stage, participants
then completed eyes-open and eyes-closed baseline phases in which they were asked
to “let their mind wander to wherever it takes them”, and to avoid unnecessary
movements. In the eyes-open phase, the participants were further asked to keep
their eyes focused on a white fixation cross on a grey screen. The same message
and fixation cross were shown for the washout screens before each task condition.
Afterwards, an introduction to the math task was shown, and participants could
familiarise themselves with the task in a practice round using the EASY condition
design. Afterwards, the task was shown in the CAL condition design, starting at
level 1 to calibrate the optimal difficulty. Next, all four math task conditions were
presented in randomised order for five minutes. Participants responded to surveys
after each condition (round surveys) and at the end of the experiment. After the last
survey was completed, sensors were removed, and participants were debriefed. The
complete experiment procedure is outlined in Figure 6.3.

FIGURE 6.3: Procedure of Experiment 2 for Each Participant (Mixed
Between/Within-Subject Design).

Data were collected for 41 participants in the SP treatment and 120 participants (i.e.,
3 participants per group x 40 groups) in the MP treatment. Additional information
on the sample is summarised in Table 6.2. Participants were sampled from a public
student pool at the KIT and received a compensation of 21 Euros for the SP and
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23 Euros for the MP condition. The compensation was based on the duration, and
the MP version of the experiment lasted longer on average as participants had to
wait on the slowest group member in the survey stages. Participants were screened
for being generally healthy, not taking any mind-altering medication, having full
eye-sight (with or without correction), and abstinence of the consumption of alcohol,
marijuana or other recreational drugs in the past 24 hours before the experiment.
Furthermore, participants were asked to arrive at the laboratory with washed hair and
not using hair gel, hairspray, or similar products. SP and MP samples were assessed
for comparability in terms of task preferences (3 items by Ulrich et al., 2014) and
flow proneness (21 items by Ullén et al., 2012). Two-sided Welch’s t-Test comparisons
revealed no significant sample differences for flow proneness (p = .6278) and math
task preferences (p = .3929). These results suggest an absence of a general bias for the
likeliness of flow experience among the two participant samples.

Variable Counts or Distributions
SP MP

N (Indiv. / Groups) 41 / – 120 / 40
Age (Mean / Median) 24.15 / 23 23.34 / 22
Gender (Female / Male) 17 / 24 54 / 66
Handedness (R / L / Ambi) 39 / 1 / 1 108 / 11 / 1
English Abilities ≥ B1 97.44% 100%

TABLE 6.2: Sample Description for Experiment 2.

6.2.3 Measures

Demographic information about age, gender, handedness, study majors, and lan-
guage abilities were collected at the start of the experiment. Afterwards, self-reported
perceptions of experiences were collected at two levels: (1) after mental arithmetic
task conditions (herein termed “rounds”), and (2) at the end of the experiment (herein
termed “end”). Round questionnaires contained scales for individual difficulty (and
group difficulty in MP) (one item by Engeser and Rheinberg, 2008, and one item
by Ulrich et al., 2014), flow (ten-item FKS scale by Engeser and Rheinberg, 2008,
individual performance (and group performance in MP) (one item adapted from the
NASA TLX by Hart and Staveland, 1988, and affective experience (two single-item
SAMs for affective valence and arousal by Bradley and Lang, 1994, amongst others.
In the MP condition, additionally, perceptions of information sharing (two items
by Aubé, Brunelle, and Rousseau, 2014) were collected after each condition. End
surveys included scales to explore some of the relationships of flow experience with
group experiences. These group experiences span multi-item measures for individual
satisfaction and growth opportunities in the social unit (Wageman, Hackman, and
Lehman, 2005), and perceptions of collective efficacy (Zumeta et al., 2016). These
constructs are collected once at the end of the experiment. Almost all questions
used 7-point scales (SAM arousal and valence used 9-point scales) that indicate
the level of agreement with a presented statement. As additional control variables,
trait variables named to influence flow experience like flow proneness (Ullén et al.,
2012) were also collected. An overview of all measured variables, including the item
operationalisations is summarised in Appendix A.3.
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Neurophysiological data were collected using wearable sensors. The selected sen-
sors were chosen, balancing the trade-off of acceptable signal quality and wearability.
The same two sensor systems, as in Experiment 1, were used (see Subsection 5.3.3).

In terms of ECG features, this experiment focuses on further elucidating flow-HRV
patterns, in particular with regards to the role of the parasympathetic activity during
flow (see Section 4.2). A central challenge in this approach is that almost all of
the related research has been conducted with DM paradigms. This focus brings
with it a critical confound that parasympathetic activity patterns might relate more
to changes in difficulty, than to changes in flow. In the first experiment in this
dissertation, changes in HRV (specifically parasympathetic activity indicators RMSSD
and HF-HRV) highlighted that flow experiences could be accompanied by both
moderately and strongly reduced HRV levels. These levels are either determined
by the task (academic writing might require more physiological effort than mental
arithmetic), or possibly by the increased autonomy that individuals had in the writing
situation. This autonomy might have caused the elicitation of a more intense flow
experience that is insufficiently captured by the flow self-reports alone. The latter
is based on the observation that stress perceptions were also much lower in the
writing task, despite similarly high flow levels and despite a substantial increase
in physiological activation in this writing scenario. To follow up on these central
HRV lines of research, in this second experiment, the patterns of parasympathetic
activation related HRV features (RMSSD and HF-HRV) are analysed in two additional
manipulations (AM and SCM).

Given the high dimensionality of the EEG data, it was again decided to focus on
select Regions of Interest (ROI) and frequency band ranges to study flow-related
neural activity patterns which have been proposed in related work (see Chapter
4.3). These variables of interest focus again on primarily frontal features, namely
frontal midline Theta power (a known correlate of mental workload - Borghini et
al., 2014; Ewing, Fairclough, and Gilleade, 2016) and frontal Alpha power (for the
assessment of frontal downregulation as proposed in the Transient Hypofrontality
Theory (THT)). However, as in Experiment 1 frontal Theta and Beta observations
did not differentiate between difficulty conditions (possibly due to the electrode
distributions of the EEG headset), Beta power over the whole scalp was additionally
analysed given its well-documented relationship to changes in mental workload
(Michels et al., 2010).

6.2.4 Data Processing

For all types of data, the data processing followed a five-step strategy. First, prob-
lematic data instances were identified and removed (e.g. failed control questions,
implausible or erroneous physiological values in resting phases). Second, outliers
were removed from the data using a conservative distance metric of ≥2 SD from the
variable mean. Third, variable distributions were checked for normality using skew-
ness and kurtosis inspections with cut-offs of ≤ ±1.5. Fourth, main effect analyses
were conducted using Mixed ANOVAs or Linear Mixed Model (LMM)s (whenever
individual and/or group level random effect structures were indicated). The appro-
priateness of employed models was assessed in a stepwise manner with increasing
model complexity. This process means that initially, null models were created to
assess the support of random effect structures for individuals (level-1) and groups
(level-2) subsequently. If random effects were not supported, Mixed ANOVAs were
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used afterwards. Otherwise, LMMs were used. Next, the main effects were included
in the model and model quality criteria (Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), and χ2) assessed regarding fit improvements. Then, an
interaction term between the two treatment variables was added, followed by the
addition of various potential covariates. Models shown below always represent the
best-fitting model as identified by this process. Fifth, whenever of interest, adequate
regression analyses (e.g. non-linear regressions for report-physiology relationships)
were utilised to further identify direct links between variables (as previous main effect
tests only allow to test variable changes with the experiment conditions). Finally, it
should be noted that in each analysis, p-value Benjamini-Hochberg (BH) correction is
performed to reduce the inflation of false-positive error rates. The details per data
domain (report, behaviour, or neurophysiology) are outlined in the following.

Data from participants who repeatedly failed control questions and who showed
signs of uncooperative responding (close to zero variance in the survey responses)
were removed. Overall, 39 usable SP data sets and 116 usable MP data sets (40 groups)
were retained. Self-report constructs with multiple items were further analysed for
their internal consistency (see Table 6.3). Having removed items that strongly reduced
internal consistency, all variables exceed the recommended thresholds (e.g. 0.6 for
Cronbach’s Alpha - see Griethuijsen et al., 2015). In particular, one item each was
removed from the flow scale, the general group satisfaction scale, the personal growth
scale, the group diversity scale and the interaction quality scale. In total, adequate
internal consistency was indicated for all constructs in both SP and MP conditions,
with Alpha and Omega values passing general threshold recommendations. For two
control variables (interdependence and adequate group size), the internal consisten-
cies were poor, which is why only single items were used for the related analyses.
The data were normally distributed as assessed by skewness and kurtosis values of
≤ ± 1.5. The only variable exceeding these thresholds is the individual difficulty
variable in the SP EASY condition, likely caused by floor effects through the difficulty
manipulation. As random effects (neither level-1 or level-2) were not supported for
this variable, a parametric, mixed ANOVA test was employed that is robust against
slight deviations from normality.

Objective data from the task conditions were extracted and processed analogously
to the self-report data. The variables extracted for analyses include the average task
(difficulty) level per condition and the count of correct trials per condition for DM
checks. Similar metrics have been employed in related work with comparable experi-
ments (Katahira et al., 2018; Ewing, Fairclough, and Gilleade, 2016). Furthermore, the
elicited preferences for optimal difficulty were collected as a metric per individual
and per group (range of preferences). After removal of outliers (≤2 SD from the vari-
able mean), normal distribution was confirmed (with the exception of the task level
variable that has no variance in the EASY condition, and the SP HARD condition due
to floor effects (often no correct trials in this condition). As random effects (neither
level-1 or level-2) were not supported for these two variables, mixed ANOVAs were
employed. These tests have been shown to be robust against slight deviations from
normality and were therefore deemed appropriate in these cases. Overall, 41 usable
SP data sets and 40 MP (group) data sets were retained.

ECG data were processed following the guidelines of Malik et al. (1996), using
the Python toolbox BioSppy (Carreiras et al., 2015). The complete ECG processing
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Variable
(Items Retained)

Cronbach’s
Alpha

Avg. Item-Total
Cor.

McDonald’s
Omega

Flow (9/10) 0.80 / 0.77 0.62 / 0.60 0.80 / 0.76
Stress (5/5) 0.83 / 0.82 0.77 / 0.76 0.83 / 0.82
Autonomy (3/3) 0.81 / 0.82 0.85 / 0.86 0.81 / 0.82
Soc. Presence (5/5) – / 0.88 – / 0.82 – / 0.89
Int. Qual (2/3) – / 0.78 – / 0.90 – / 0.79
Grp. Skills (3/3) – / 0.70 – / 0.79 – / 0.71
Grp. Effort (3/3) – / 0.73 – / 0.80 – / 0.75
Grp. Divers (2/3) – / 0.77 – / 0.90 – / 0.77
Grp. Engmt. (3/3) – / 0.70 – / 0.79 – / 0.70
Pers. Growth (2/2) – / 0.80 – / 0.91 – / 0.80
Grp. Sat. (2/3) – / 0.66 – / 0.86 – / 0.66
Coll. Effic. (4/4) – / 0.86 – / 0.84 – / 0.85
Inf. Sharing (2/2) – / 0.81 – / 0.92 – / 0.82

Notes: First Value = SP, Second Value = MP; Numbers in Parentheses =
Retained/Measured Items; Int. = Interaction; Qual. = Quality; Grp. = Group;
Divers. = Diversity; Engmt. = Engagment; Pers. = Personal; Sat. = Satisfaction;
Coll. = Collective; Effic. = Efficacy; Inf. = Information.

TABLE 6.3: Latent Variable Internal Consistencies in Experiment 2.

pipeline is summarised in Appendix A.4 Table A.10. Notably, participants with
implausible baseline values (e.g. >200 beats per minute in the eyes open resting
phase) were removed from the data as they indicate data collection errors. Overall,
35 usable SP data sets and 104 usable MP data sets (38 groups) were retained. After
outlier removal and natural log transformation of frequency domain features (a
typical transformation for power-law distributed variables - see Harmat et al., 2015;
Berntson, Quigley, and Lozano, 2007; Cohen, 2014) normal distribution of variables
were confirmed. In this analysis, particular emphasis was placed on HRV features
that reflect parasympathetic heart rate modulation (RMSSD, HF-HRV) due to their
previous prevalence in Experiment 1, and their salient role in related work.

EEG data were processed primarily following the guidelines of Cohen (2014). The
automated EEG data preparation process is outlined in detail in Appendix A.4 Table
A.12. Data sets with recording errors or insufficient data quality were excluded
before the execution of the pipeline through visual inspection. Signal data were
additionally screened after signal processing to ensure no critical errors occurred
in the pipeline. Overall, 34 usable SP data sets and 103 usable MP data sets (39
groups) were retained. Parameters for the processing steps were tuned for the Epoc+
EEG headset. For the feature aggregations, median averaging was used to reduce
the impact of outliers in the data (Cohen, 2014). Frequency bands were extracted
following Klimesch (1999). To account for inter-individual differences, Individualized
Alpha Frequency (IAF) peaks were identified. As Alpha is also known to vary
regionally (being slower at anterior sites), yet as not all participants showed such
clear peaks for all sites, a global IAF maximum was determined as lying 0.5 Hz
below the occipital Alpha maximum during an eyes-closed resting phase (see Figure
6.4). Based on this IAF, 2 Hz Theta and Alpha sub-bands were extracted (see Figure
6.5). To extend the personalised and band-refined approach, the Beta band was
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similarly decomposed. In line with previous research that has extracted low, mid,
and upper Beta bands with 3 Hz, 5 Hz, and 10 Hz ranges respectively (Berta et al.,
2013), the previous IAF-based decomposition was continued using these ranges.
For the following analyses, wherever spatial aggregation (into ROI) was performed,
only those observations were retained where >50% of electrodes had available data.
After such aggregations, outliers (≤2 SD from the mean) were removed. Frequency
band power features showed normal distributions. For the analyses of frontal Alpha
activity, before analyses on homologous electrode pairs were conducted, difference
scores were created (RH-LH), to assess the potential presence of FAA effects. FAA
is related to approach-avoidance motivation (Harmon-Jones, Gable, and Peterson,
2010; Smith et al., 2017). This step is conducted not only to assert the adequacy
of electrode pair pooling but also because FAA has been suggested to be present
during flow (a state of high intrinsic motivation that elicits a desire to repeat the task)
(Labonté-Lemoyne et al., 2016).

FIGURE 6.4: PSD for One Participant During Eyes-Closed Resting
With Pooled Frontal (AF3, AF4, F3, F4, F7, F8, FC5, FC6), Tempo-
ral (T7, T8), Parietal (P7, P8), and Occipital (O1, O2) Sites. Dots

Are Regional Maxima.

FIGURE 6.5: Grand Average PSD for All Participants During an Eyes-
Closed Resting Phase With All 14 Electrodes Pooled, Demonstrating
the Decomposition Into Narrow Theta, Alpha and Beta Frequencies.
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6.3 Results

6.3.1 Manipulation Checks

Subjective & Objective Difficulty Variation

To check the success of the manipulation of difficulties, subjective perceptions and
objective metrics of task difficulty were evaluated. Specifically, questions regard-
ing perceived difficulty and perceived optimal difficulty were assessed (subjective
difficulty) and task level and counts of correct trials per condition were analysed
(objective difficulty). For all four variables, no model supported the inclusion of
individual (level-1) or group (level-2) random effects. Therefore, two-way mixed
ANOVAs (with Greenhouse-Geisser (GG) correction for violations of sphericity) were
used to analyse the variable changes across conditions. Model statistics are shown in
Table 6.4. Variable Distributions, including follow-up tests (one-way or RM ANOVAs
and post-hoc Welch’s t-tests), are shown in Figures 6.6 to 6.8.

Factor(s) Test Statistic P-Value Effect Size

Perceived Difficulty
Social Context F(1, 133) = 7.3351 0.0153 0.0225
Difficulty F(2.88, 383.45) = 344.6897 <0.001 0.6018
Social Context * Difficulty F(2.88, 383.45) = 3.6663 0.0153 0.0158

Perceived Optimal Difficulty
Social Context F(1, 133) = 0.7801 0.3787 0.0018
Difficulty F(2.59, 343.96) = 79.8077 <0.001 0.2940
Social Context * Difficulty F(2.59, 343.96) = 9.3493 <0.001 0.0465

Task Level
Social Context F(1, 69) = 2.4139 0.2497 0.0156
Difficulty F(1.42, 97.96) = 2172.9226 <0.001 0.9450
Social Context * Difficulty F(1.42, 97.96) = 1.6441 0.2497 0.0128

Nr. of Correct Trials
Social Context F(1, 68) = 3.6103 0.0617 0.0183
Difficulty F(1.84, 125.19) = 1583.6239 <0.001 0.9380
Social Context * Difficulty F(1.84, 125.19) = 4.8990 0.0214 0.0447

Notes: P-Values are BH Corrected; Reported Effect Sizes are η2
G.

TABLE 6.4: Two-Way Mixed ANOVA for Subjective and Objective
Task Difficulty in Experiment 2.

For individual task difficulty, a significant interaction between social context (SP
or MP) and difficulty (EASY, CAL, AUTO, or HARD) was found. Subsequent tests
for simple main effects for social context show higher perceived difficulty in the SP
CAL and AUTO conditions. Simple main effects for difficulty show significant effects
in both SP and MP conditions. Follow-up pairwise Welch’s t-Tests show significant,
stepwise increases in perceived task difficulty. Flow theory states not just moderate
task difficulties (as would be supported so far), but optimally adapted difficulties as
a requirement for deeper flow intensities (Nakamura and Csikszentmihalyi, 2009).
Therefore, one item used by Ulrich et al. (2014) (“the task demands were well matched
to my ability”) was further analysed. For perceived optimal difficulty, a significant
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interaction was present between social context and difficulty. Subsequent tests for
simple main effects for social context reveal better balance in the SP CAL condition
(trend level) and the AUTO condition, and lower levels in the SP HARD condition.
Simple main effects for difficulty show significant differences for both the SP and
MP conditions. Follow-up Welch’s t-tests show a significant, stepwise increase in
optimal difficulty from EASY to the CAL and AUTO conditions and a decrease from
these two conditions to HARD in both social contexts. In the MP condition, there are
no significant differences between EASY and HARD and no significant differences
between CAL and AUTO. In the SP condition, the perceived optimal difficulty is
increased in the AUTO condition when compared to the CAL condition at trend level,
and the HARD condition is significantly less optimal than the EASY condition.

To further evaluate the manipulation success beyond perceived measures, two
objective metrics of task difficulty were evaluated. First, the average task level per
difficulty condition was used to assess changes in difficulty. For this variable, no
interaction effects were present for social context and difficulty. Main effects for
difficulty were present, and no main effect was indicated for social context. Thus,
subsequent pairwise tests were conducted that show a significant stepwise increase
in average task level from EASY to CAL to AUTO to HARD. As a second metric
of objective difficulty, the count of correctly solved trials per difficulty condition
was evaluated. A significant interaction is found for this variable across social
context and difficulty conditions. Subsequent tests for simple main effects for social
context reveal a significantly lower number of correct trials in MP EASY and a higher
number of correct trials in the MP HARD condition. Simple main effects for difficulty
show significant changes in both the SP and MP conditions. Follow-up pairwise
comparisons show significant, stepwise decreases in the number of correct trials with
the difficulty conditions in both social context conditions.

In summary, these results illustrate a successful manipulation of (subjective and
objective) difficulties with large effect sizes and a maximum of perceived optimal
difficulty in the balanced difficulty conditions (CAL and AUTO). The optimality of
difficulty varies with medium to large effect sizes across the difficulty conditions. It is
maximised in the CAL and AUTO conditions, to a larger extent so in the SP condition.
These results suggest that the manipulation meets not only necessary but sufficient
criteria to elicit flow in different intensities. The comparison of objective difficulties
indicates that the mental arithmetic tasks showed a broader range in difficulty for
those completing them in isolation (SP).
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FIGURE 6.6: Difficulty Variable Distributions in Experiment 2. Follow-Up Tests
are One-Way ANOVAs (MP vs SP). P-Values are BH-Corrected. Crosshairs and

Numbers Next to Them Represent Means.
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FIGURE 6.7: Subjective Difficulty Variables Pairwise Comparisons. P-Values are
BH-Corrected. Crosshairs and Numbers Next to Them Represent Means.
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FIGURE 6.8: Objective Difficulty Variables Pairwise Comparisons. P-Values are
BH-Corrected. Crosshairs and Numbers Next to Them Represent Means.
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Autonomy in Optimal Difficulty Conditions

In a second step, the characteristics and comparability of the CAL and AUTO con-
ditions were assessed. To report and observe these differences is important because
previous research has found differences in flow intensity from different optimal diffi-
culty calibration mechanisms (i.e. automatic calibration vs self-selection), yet reported
mainly similar average difficulty levels in both treatments (Barros et al., 2018). As
was previously seen, in both SP and MP conditions, the difficulty (subjective and
objective) was higher in AUTO than in CAL. Thus, on average, the self-selected
optimal difficulties were higher, which might indicate that the automatic calibration
might have lead to sub-optimal, too low difficulties. However, the distributions of
difficulty deltas in AUTO (i.e. the difference to the calibrated optimal difficulty in the
CAL condition) show that not merely a too low difficulty was calibrated (see Figure
6.9). Instead, it can be seen that the majority of participants selected only slightly
different difficulty levels (-3 to +3), and some preferred lower difficulties as well. An
F-test does not indicate that the range in selected difficulties is different for the SP
and MP conditions (p = 0.151). Therefore, the efficacy of the AUTO condition (and
therefore the AM) receives support to calibrate optimal difficulties better.

FIGURE 6.9: Selected Optimal Difficulties in Experiment 2.

In addition, the structure of the selected optimal difficulties in the MP AUTO con-
dition was assessed. This step was taken to understand better if there are systematic
variations in how groups might differ in terms of preferences for difficulty. To provide
an overview, Figure 6.10 shows that it can be considered, that substantial range is
present in the subjective difficulty preferences per group (median range = 6 levels
of difficulty). As the shading in this figure shows, this range does not appear to be
connected to the direction of how the difficulty level was realised (relative to the
calibrated optimal difficulty in the CAL condition). This pattern means that some
groups chose harder or lower difficulties unanimously or with more heterogeneity.
Altogether, these results demonstrate, however, that substantial range is present in
the difficulty preferences in the MP AUTO condition. As will be discussed below
(specifically regarding the perceptions of autonomy) and as is apparent from the
optimal difficulty variable, the MP AUTO condition might not have been similarly
able to elicit more intense flow experiences due to this insensitivity to all group
members’ difficulty preferences. Therefore, the AM is only considered to have been
partially successful (specifically more clearly for the SP condition).
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FIGURE 6.10: Selected Optimal Difficulties By Group in Experiment 2. Shadings
Represent the Change in Optimal Task Level (AUTO - CAL).

Assessment of the Social Interaction Format

To further assess the quality of the social interaction, and especially to validate
the successful integration of the key requirements for cooperation and integration,
distributions of respective variables were assessed descriptively (see Figure 6.11).
The boxplots show support for the successful integration of the requirements. The
coordination was found to be sufficiently possible (single self-developed item), group
members found to be mutually dependent, and the group size to be just right (both
single items from Wageman, Hackman, and Lehman, 2005).

FIGURE 6.11: Perceptions of the Group Interaction Format in the MP Condition in
Experiment 2. Crosshairs and Numbers Next to Them Represent Means.
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6.3.2 Flow & Related Experiences

Flow

Flow reports were analysed using a multilevel LMM as the data had a hierarchical
structure with individual-level variables (level-1) nested within small groups (level-2).
In the stepwise model development process (see Table 6.5), the best model fit was
indicated for model 3 that includes the main experiment effects (difficulty and social
interaction) with their interaction, and additionally condition sequence (the order
in time) and flow proneness as covariates. Results indicate a significant interaction
between the manipulated variables social context and difficulty. Corrected post-hoc
contrasts using the Estimated Conditional Means (ECM)s reveal a significant maxi-
mum of flow in the SP AUTO condition (compared to other SP and MP conditions).
No other differences emerged between the SP and MP conditions. In both social
contexts, flow was minimal in HARD compared to all other conditions. All pairwise
comparisons are shown in Figure 6.12 and Figure 6.13.

Flow
Metrics Model 1 Model 2 Model 3

Fixed Effects
Social ContextF 1.390 1.356 2.095
DifficultyF 49.876*** 52.635*** 52.384***
Social Context * DifficultyF – 5.871*** 5.916***
Condition SequenceC – – -0.0499 (0.0276)t

Flow PronenessC – – 0.6438 (0.1421)***

Random Effects
Level 1 Resid. (Indiv.) 0.1614*** 0.1712*** 0.1392***
Level 2 Resid. (Grp.) 0.0368*** 0.0361*** 0.0259***

Goodness-of-Fit
χ2 (df) 130.611 (4)*** 17.452 (3)*** 22.917 (2)***
AIC 1423.7609 1412.3092 1393.3918
BIC 1458.5260 1460.1112 1449.8851
Marginal R2 0.165 0.183 0.230
Conditional R2 0.388 0.413 0.418

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; F = Factor Variable (Showing F-Test
Results); C = Continuous Variable (Showing Beta-Coefficients with SE); Random
Effects Shown as Variance; χ2 Goodness-of-Fit Statistics Obtained by Comparing
Target Models with Their Previous Models (e.g. Model 1 to Model 0);
P-Values are BH-Corrected.

TABLE 6.5: LMM for Perceived Flow in Experiment 2.

Altogether, it can be stated, that the typical, inverted U-shaped pattern of flow with
increasing difficulty is fully visible for the SP condition (where the AUTO condition
showed highest flow) and partially for the MP condition (where flow is only reduced
in the HARD condition). Therefore variation of flow intensities by manipulation of
difficulty is confirmed. However, with the SP AUTO condition showing the highest
intensity, the intensification of flow by social context is considered to be rejected.
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FIGURE 6.12: Flow Reports Per Condition in Experiment 2. P-Values are BH-
corrected. Dots Are ECMs, Error Bars One SE.

FIGURE 6.13: Flow Reports Post-Hoc Contrasts in Experiment 2. P-Values are
BH-Corrected. Crosshairs and Numbers Next to Them Represent Means.

In much of the previous work on flow experiences in social interaction, the em-
piric tenor has been that social flow experience is intensified or facilitated (see, e.g.
Magyaródi and Oláh, 2017; Tse et al., 2016; Walker, 2010). However, in the present
results, not only, does flow in groups appear to be at most on par with the solitary
intensities, but also in some instances is lower than in individuals working alone,
which is the first finding of this type. This difference may be caused by less optimal
difficulties in the MP than in the SP condition. Previous work might have found
more intense flow in social interaction due to inverse difficulty patterns (i.e., a task
for individuals might have been slightly too hard and for groups have had just the
right difficulty). However, two additional explanations are possible given the two
major novel elements in this experiment design (the optimal difficulty self-selection
condition and the digitally mediated environment).
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Autonomy Follow-Up

The first explanation for the unexpectedly similar or lower flow in the small groups
could be caused by an inversion of opportunities for optimal difficulty selection (i.e.
contrary to previous work, in isolation/groups, participants had more/less flexibility
in difficulty selection). Considering, that the task was designed to be very simple
(three equations for three participants – all with the same subtask difficulty), a major
reduction of freedom to self-select a sub-task that is optimally difficult might have
reduced flow in the MP condition. Previous studies might not have encountered this
by using more complex task designs. Compare the present design, for example, to
a puzzle task in related work (Tse et al., 2016). In their study, dyads cooperatively
finished easy (3x3 tiles), moderate (4x4 or 5x5 tiles) or hard (6x6 tiles) puzzles. Such a
task provides more opportunities and autonomy for individuals to select subtasks
(i.e. puzzle piece combinations) that match their current preference for difficulty,
than does the experiment design in this work. If this difference is a vital factor, the
previous finding of intensified flow in groups could be mainly driven (i.e. moderated)
by degrees of freedom and autonomy – not just the social interaction itself. In line
with this reasoning, self-selected difficulty approaches have been found to elicit more
intense flow in SP settings (Barros et al., 2018). Such an effect might be caused by
better matching of task difficulty preferences (the one-size fits all for optimal difficulty
setting has been generally critiqued for the DM paradigm - see Fong, Zaleski, and
Leach, 2015; Løvoll and Vittersø, 2014). From the present data, it also appears that the
SP AUTO condition has elicited the most intense flow experience. The same effect
might have further reduced flow potentials in the MP condition.

To assess the possibility that autonomy differences might be related to more intense
flow, follow-up analyses were conducted. First, autonomy perceptions (collected after
each difficulty condition) were compared for the optimal difficulty conditions and the
social context conditions (using an LMM with individual-level random effects and an
interaction term for the variables difficulty and social context - see Table 6.6). Post-hoc

Metrics Autonomy

Fixed Effects
Social Context 1.7902
Difficulty 2.2211
Social Context * Difficulty 4.9390*

Random Effects
Level 1 Resid. (Indiv.) 1.7584***
Level 2 Resid. (Grp.) –

Goodness-of-Fit
AIC 971.8618
BIC 994.0644
Marginal R2 0.014
Conditional R2 0.777

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; Fixed
Effects Shown as F-Test Results; Random Effects
Shown as Variance; P-Values are BH-Corrected.

TABLE 6.6: LMM for Perceived Autonomy in Experiment 2.
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contrats (see Figure 6.14) show (with trend level significances), that the perceptions
of autonomy were not generally higher in the SP condition, but only in the SP AUTO
condition. Thus, a weak indirect link appears to be present, between increases in
autonomy and flow. Note also the low values for marginal R2 but high values for
conditional R2 that indicate that perceptions of autonomy are more strongly varied
between persons than by the experimental manipulations. For the MP conditions, it
was further assessed if perceived autonomy could be related to the range in group
members’ preferences. For this purpose, an artificial grouping variable was created
(median split on the preference ranges) and entered into the previously described
LMM (excl. social context due to focus on MP condition only). Model fit indices did
not support the inclusion of this split or interaction with the condition variable. The
distribution of the data after this split (see Figure 6.15) also does not indicate the
presence of such an effect.

FIGURE 6.14: Perceived Autonomy in the
Optimal Difficulty Conditions in Experi-
ment 2. P-Values are BH-corrected. Dots

Are ECMs, Error Bars One SE.

FIGURE 6.15: Perceived Autonomy in the
MP Optimal Difficulty Conditions After
a Median Split on Difficulty Preference

Ranges. Crosshairs Are Means.

Second, an LMM was created to assess a possible direct link between flow and
perceived autonomy. The results (see Table 6.7 and Figure 6.16) show significant
positive and moderately sized relationships between the two variables, with a steeper
slope in the SP condition. The interaction effect suggests that the social context
moderates the relationship between autonomy and flow. Altogether, the proposition
that increased autonomy is linked to an increase in flow receives further support.

Third, to assess whether or not increased autonomy is related to an improvement
in difficulty calibration, a Linear Regression Model (LM) was created for perceptions
of autonomy and optimal difficulty. The results (see Table 6.8 and Figure 6.17) show
a significant and positive relationship between the two variables, that is again more
pronounced for the SP condition, suggesting that changes in autonomy translate
more directly into difficulty optimisation when no social interaction is present.

In summary, the findings for perceived autonomy, flow, and optimal difficulty,
indicate that with increased autonomy (that was specifically higher in SP AUTO - and
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Metrics Flow

Fixed Effects
Intercept 3.8195 (0.1230)***
Autonomy 0.2269 (0.0319)***
Social Context (SP) -0.4065 (0.2326)
Social Context * Autonomy 0.1546 (0.0601)*

Random Effects
Level 1 Resid. (Indiv.) 0.1148***
Level 2 Resid. (Grp.) 0.0266***

Goodness-of-Fit
AIC 1400.9069
BIC 1431.1017
Marginal R2 0.188
Conditional R2 0.341

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; Fixed Effects
Shown as Beta-Coefficients with SE; Random Effects
Shown as Variance; P-Values are BH-Corrected.

TABLE 6.7: Autonomy-Flow LMM in Experiment 2.

Metrics Optimal Difficulty

Fixed Effects
Intercept 3.7512 (0.2323)***
Autonomy 0.1997 (0.0624)**
Social Context (SP) -1.1245 (0.4443)
Social Context * Autonomy 0.2726 (0.1177)*

Goodness-of-Fit
AIC 2247.4812
BIC 2269.0489
R2 0.0578
Adj. R2 0.0526

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; Fixed Effects Shown
as Beta-Coefficients with SE; P-Values are BH-Corrected.

TABLE 6.8: Autonomy-Optimal Difficulty LM in Experiment 2.

at least not higher in MP in this experiment) better calibration of difficulty occurs. This
calibration is again linked to higher flow experience intensities. Therefore, there is
additional evidence present, that the lower flow intensities in the MP condition might
be caused by an inverted pattern of freedom of choice for task difficulty. Previous
findings of intensified flow in social units might, therefore, be confounded with the
nature of how more freedom is provided in more complex tasks that are typically
present in small group interaction settings.
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FIGURE 6.16: LMM Slopes of Autonomy and Flow in Experiment 2.

FIGURE 6.17: LMM Slopes of Autonomy and Optimal Difficulty in Experiment 2.
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Social Context Follow-Up

Another central difference in the experiment design might have resulted in an inhi-
bition of social context manipulation-based flow intensification, namely the social
interaction format. Having opted for a digitally-mediated cooperation scenario, the
interaction possibilities in the present design have been reduced to task-related action
signalling only (i.e. participants could only show on which part of the problem they
were currently working). This restriction is a central difference to previous work that
has almost exclusively opted for face-to-face interaction settings (see Table 3.1). It
could be possible, that not just any type of social interaction will do similarly well
to facilitate flow and could even be the limiting factor to it. This possibility falls in
line with the general understanding that digital media can be altering and limiting
the “normal” (i.e. known from face-to-face environments) exchange of socio-affective
communication (Derks, Fischer, and Bos, 2008; Chanel and Mühl, 2015).

To further explore the possibility of this effect, a relationship between perceptions
of social presence (collected in the MP condition at the end of the experiment) and the
average level of flow experiences across all difficulty conditions was compared. First
of all, the distribution of the social presence rating indicates a rather low level of social
presence (mean = 3.28, SD = 1.34, median = 3.2 - on a 7p Likert scale), which indicates
the possibility, that a lack of social signals has been perceived in this experiment.
Furthermore, a LM analysis between average flow and social presence indicates a
(trend level) significant, weak positive relationship between the two variables (see
Table 6.9 and Figure 6.18). As this effect is weak, the possibility of a link between
social information and flow in social interaction does not receive much support. The
social presence variable can however only be seen as a proxy for a variety of social
factors that might influence the intensity of flow (e.g. emotional contagion - see
Labonté-Lemoyne et al., 2016, or stress-buffering - see Tse et al., 2016). Therefore,
while not receiving strong support in this instance, a relationship between social
signals and flow intensity should be further investigated. However, as the present
study did not directly compare a face-to-face to a digitally-mediated interaction
scenario, or did not manipulate social signals in any other form, conclusions on these
relationships require additional experiments.

Metrics Flow

Fixed Effects
Intercept 4.3153 (0.1548)***
Social Presence 0.0783 (0.0437)t

Goodness-of-Fit
AIC 201.5334
BIC 209.5798
R2 0.0294
Adj. R2 0.0202

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; Fixed
Effects Shown as Beta-Coefficients with SE;
P-Values are BH-Corrected.

TABLE 6.9: Social Presence - Avg. Flow LM in Experiment 2.
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FIGURE 6.18: LM of Avg. Flow and Social Presence in Experiment 2.

Stress Follow-Up

To follow up on the relationships of flow with stress that was identified in Experiment
1, main effect and direct comparison (LMM) analyses were conducted. To reiterate,
in Experiment 1, flow was found to be both accompanied by moderate and low stress
levels. This observation prompted the question as to whether the experienced flow in
the writing task might be qualitatively different. It could represent a flow experience
without stress perceptions that would appear to be more in line with theoretical
predictions (e.g. the concept of flow as a unique experience of effortlessness - see,
e.g. Bruya, 2010; Ullén et al., 2010). To investigate this possibility further, first,
a main effect analysis (i.e. for the manipulated variables) was conducted similar
to the flow reports in the previous section. This indirect comparison was chosen
specifically to identify whether increases in flow were accompanied with reductions
of stress - that would be expected given the results in Experiment 1. Most notably,
such a flow increase appeared here in the SP AUTO condition. The model with best
indicated fit includes the manipulated variables as fixed effects (without interaction)
and individual (level-1) random effects (see Table 6.10). The absence of an interaction
effect is a first indicator that an increase in flow is not accompanied by a reduction
in stress, as this would be expected given the disordinal interaction effect for flow
(maximum in SP AUTO). The main effect for difficulty and the pairwise post-hoc
contrasts indicate a slight increase of stress in the AUTO condition compared to the
EASY condition, and a reduction of stress (significant at trend level) from the CAL
condition to the AUTO condition (see Figure 6.19). First of all, these results show
that stress perceptions increase disordinally with difficulty (that increases stepwise -
see Figure 6.7). Furthermore, in the AUTO condition, while difficulties are elevated,
and flow stays constant compared to lower difficulties (MP) or increases compared to
lower difficulties (SP), stress perceptions show a tentative decrease. This observation
adds weak, but additional support to the findings from Experiment 1 that higher flow
levels might be associated with lower perceptions of stress. It is possible, however,
that the results alternatively indicate that flow and stress are partially unrelated.
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Metrics Stress

Fixed Effects
Social Context 2.0279
Difficulty 41.7950***

Random Effects
Level 1 Resid. (Indiv.) 0.5392***
Level 2 Resid. (Grp.) –

Goodness-of-Fit
AIC 1774.4230
BIC 1805.1429
Marginal R2 0.119
Conditional R2 0.468

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; Fixed
Effects Shown as F-Test Results; Random Effects
Shown as Variance; P-Values are BH-Corrected.

TABLE 6.10: LMM for Perceived Stress in Experiment 2.

FIGURE 6.19: Stress Report Post-Hoc Contrasts in Experiment 2. P-Values are
BH-corrected. Dots Are ECMs, Error Bars One SE.

To further assess the relationship between stress and flow, an LMM analysis was
pursued. Given the previous results and after inspection of a scatterplot, polynomial
terms were included in the model development. The best-fitting model included stress
(as a quadratic term) and social context as fixed effects and individuals and small
groups as random effects (see Table 6.11 for the model development). The results (see
Figure 6.20) show a significant quadratic relationship of stress and flow that indicates
an increasingly declining flow experience with higher stress perceptions.
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Metrics Flow

Fixed Effects
Intercept 4.6798 (0.0516)***
Stress -8.3939 (0.9002)***
Stress2 -2.5019 (0.8648)**

Random Effects
Level 1 Resid. (Indiv.) 0.1633***
Level 2 Resid. (Grp.) 0.0359***

Goodness-of-Fit
AIC 1458.9573
BIC 1485.0731
Marginal R2 0.150
Conditional R2 0.359

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; Fixed Effects
Shown as Beta-Coefficients with SE; Random Effects
Shown as Variance; P-Values are BH-Corrected.

TABLE 6.11: Stress-Flow LMM in Experiment 2.

FIGURE 6.20: LMM of Flow and Stress Perceptions in Experiment 2.

Therefore, it can be stated that higher intensities of flow occur with lower percep-
tions of stress. However, the incompatibility of stress and flow increases mostly with
higher levels of stress. On the one hand, these results suggest that with higher flow,
stress is rather reduced, which together with the findings from Experiment 1, could
indicate a shortcoming of present self-report instruments to capture the stress-ab-
sence (effortlessness) facet of the flow experience. Yet, this finding could also be seen
as further support for the alternative proposition that flow and stress are partially
unrelated (at least at the lower end of stress perceptions). Theoretical integrations
proposed by (Tozman and Peifer, 2016) would account for this effect by explaining,
that flow and stress become only incompatible when a task becomes too difficult,
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such that self-evaluative threats emerge. To further elaborate on what the actual
pattern is, more data from naturalistic settings and laboratory experiments will have
to be acquired. Nevertheless, the results highlight an important aspect for further
development of the situational assessment of flow. Inclusion of stress or effortlessness
dimensions into future flow self-report constructs could provide a valuable addition
to assess the internal validity of flow measurements (the quality of experienced flow).
An additional aspect to the questions about flow quality from Experiment 1 was the
observation of high flow with lower stress in writing and a concomitant increase in
physiological activation. This pattern suggested, that while flow was present and
perceived as stress-/effortless, individuals still exerted a higher amount of energy,
which further added to the possibility that high flow is perceived as effortless yet
shows increased physiological effort. This pattern is similarly observed by (Harris,
Vine, and Wilson, 2017a) and investigated in the next section.

6.3.3 Neurophysiology

Electrocardiography (ECG)

As previously discussed (Subsection 6.2.4) and to follow up on the results from
Experiment 1, HRV-indicators of parasympathetic cardiac modulation were analysed
to observe how the body balances physiological activation during flow experiences.
Specifically, time-domain (RMSSD) and frequency-domain (HF-HRV) features were
analysed. First, main effects from experimentally manipulated variables (social
context and difficulty) were assessed, followed-up by direct (i.e. regression) analyses
of flow-HRV relationships. For HRV-features, fixed effects were stepwise included
for (1) experimentally manipulated variables, (2) their interactions, (3) time (stage
one to four in the difficulty condition sequence), and (4) demographic covariates (age
and gender - see, e.g. Valentini and Parati, 2009). To account for time covariates is
important in HRV analyses with prolonged task exposures (see, e.g. Barros et al.,
2018). For readability, the results from the best fitting models are reported. For
the main effect analyses for both HRV features, LMMs include difficulty, social
interaction, and time as fixed effects and individual (level 1) and small group (level 2)
random effects (see Table 6.12). Time was found to be a significant and strong positive
covariate. This finding indicates that with time, HRV levels increase. Demographic
covariates (age and gender) were eliminated as they did not show improvements in
model fits. The results (Table 6.12) show significant main effects for social context
(trend level for RMSSD) and a main effect for difficulty for RMSSD at trend level.
Therefore, first of all, a contrast is visible in how physiologically demanding the two
social contexts were. Figure 6.21 shows that in the MP condition, parasympathetic
activation was higher, than in the SP condition, which indicates a less demanding
experience in MP.

It was further assessed if this finding represents a difference amongst the samples
by comparing HF-HRV and RMSSD feature levels during the eyes open resting phase.
One-way ANOVAs with social context as factor indicate no significant difference
for HF-HRV (F(1) = 1.1506, p = 0.2855), and also not for RMSSD (F(1) = 0.0769, p =
0.7820). Therefore, the lower physiological demand in the MP condition is considered
a consequence of the experiment design.

For the effect of task difficulty (Figure 6.21), it can be seen that HRV levels show
a known pattern of reduction with difficulty from related work (see Section 4.2,
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Metrics HF-HRV RMSSD

Fixed Effects
Social ContextF 7.965* 3.892t

DifficultyF 1.661 2.426t

Condition SequenceC 0.0827 (0.0145)*** 1.9243 (0.2514)***

Random Effects
Level 1 Resid. (Indiv.) 0.2937*** 87.4028***
Level 2 Resid. (Grp.) 0.0051* 0.1878***

Goodness-of-Fit
AIC 727.5956 351.5257
BIC 765.5097 355.3116
Marginal R2 0.066 0.059
Conditional R2 0.725 0.719

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; F = Factor Variable
(Showing F-Test Results); C = Continuous Variable (Showing
Beta-Coefficients with SE); Random Effects Shown as Variance;
P-Values are BH-Corrected.

TABLE 6.12: LMM for Parasymp.-HRV Features in Experiment 2.

Table 4.1). However, these effects are too small in the present data to pass statistical
significance thresholds. Only the RMSSD feature shows a trend level effect for
difficulty, with post-hoc contrasts (see Figure 6.22) indicating a (trend level) HRV
minimum in HARD. Together, these analyses show poor sensitivity to difficulty
changes for the HRV features in this experiment. Yet, the descriptive patterns are
convergent with one particular view in related work (represented, e.g. by Peifer
et al., 2014; Tozman et al., 2015; Bian et al., 2016). The present patterns suggest
a moderate reduction of HRV during flow experience, specifically in the form of
moderate activation or withdrawal from parasympathetic cardiac modulation.

In the direct relationship follow-up analysis, flow and HRV show a similar picture.
Given the previous patterns and in line with that body of related work, non-lin-
ear relationships of cardiac activity and flow were analysed through LMMs with
quadratic terms. The best-fitting models included orthogonal linear and quadratic
terms and eliminated social context as a covariate. As with previous flow mod-
els, individual (level 1) and group (level 2) random effects were included. Initially,
the results (Table 6.13) support the presence of quadratic relationships of flow with
both HF-HRV and RMSSD (at trend level). Follow-up sensitivity analyses (including
quadratic predictors only) supported the pattern for RMSSD (t = -1.6771, p = 0.0944),
but not for HF-HRV (t = -1.6318, p = 0.1036). Therefore, the regression results confirm
that only RMSSD shows a weak, inverted-U-shaped pattern with flow (Figure 6.23).
Again, while weakly sensitive, these results are in line with most of the latest work
and are therefore taken as further confirmation of findings, that flow is most likely
represented by moderate physiological activation level - here specifically moderate
parasympathetic activation.
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FIGURE 6.21: HRV in Experiment 2. P-Values are BH-corrected. Dots
Are ECMs, Error Bars One SE.

FIGURE 6.22: RMSSD Post-Hoc Contasts in Experiment 2. P-Values are BH-
corrected. Dots Are ECMs, Error Bars One SE.



6.3. Results 135

Flow ~
Metrics RMSSD HF-HRV

Fixed Effects
Intercept 4.6768 (0.0534)*** 4.6727 (0.0534)***
HRV 0.1689 (-1.0502) 0.5486 (-1.0489)
HRV2 -1.8890 (-1.0062)t -1.8443 (0.9941)t

Random Effects
Level 1 Resid. (Indiv.) 0.1468*** 0.1432***
Level 2 Resid. (Grp.) 0.0043** 0.0092**

Goodness-of-Fit
AIC 1305.8518 1299.7415
BIC 1330.8569 1324.7717
Marginal R2 0.008 0.029
Conditional R2 0.172 0.188

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; Fixed Effects Shown
as Beta-Coefficients with SE; Random Effects Shown as Variance;
P-Values are BH-Corrected.

TABLE 6.13: HRV-Flow LMMs in Experiment 2.

FIGURE 6.23: RMSSD-Flow LMM in Experiment 2. The Black Line
Represents the LMM Quadratic Regression Prediction. Dashed Lines

Represent Predicted Values per Subject with Random Intercept.

Electroencephalography (EEG)

To follow up on related work and the results from Experiment 1, EEG-indicators of
mental workload (Theta and Beta frequency band powers over frontal and whole
scalp ROI), and indicators of frontal downregulation (Alpha frequency band power)
were assessed. In a central refinement to Experiment 1 and as a contribution to the
body of related work, IAF-based frequency band personalisation, including band
sub-segmentation, was employed to conduct more refined analyses of the patterns of
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interest. For EEG-features, fixed effects were stepwise included for (1) experimentally
manipulated variables, (2) their interactions, (3) time (stage one to four in the difficulty
condition sequence), and (4) demographic covariates (age, gender and handedness
- see, e.g. Picton et al., 2000). To account for time covariates is important in EEG
analyses with prolonged task exposures (see, e.g. Borghini et al., 2014; Wascher et al.,
2014) For readability, the results from the best fitting models are reported.

Theta

Frontal Theta was assessed, that is changes in power in the -6 to -4 Hz range from
the IAF at homologous frontal electrode pairs close to the midline - AF3 & AF4 (AF)
and F3 & F4 (F-M). For AF, models did not support the inclusion of social context
or difficulty main effects and were discarded from further analysis. At F-M, models
supported interaction effects for these two experimentally manipulated variables at
F-M. The latter model also includes time as a significant covariate and eliminated
demographic covariates. In addition, individual (level-1) random effects are included.
The results from the final model for F-M are shown in Table 6.14 and Figure 6.24.
Given the corrected (trend level) interaction effect, pairwise post-hoc contrasts were
assessed (see Figure 6.25). No differences between the SP and MP conditions were
found. In the SP condition, the ECMs primarily show a pattern of increased frontal
Theta from EASY, yet without significant differences. While this means that there
is no statistical support for a relationship between frontal Theta and flow, the ECM
distribution pattern is similar to related work. In such related work elevated frontal
Theta levels during flow are found (see, e.g. Fairclough et al., 2013; Ewing, Fairclough,
and Gilleade, 2016; Soltész et al., 2014). The MP condition contrasts the patterns in
SP, as HARD shows significantly reduced Theta power (when compared to EASY
and AUTO), and a tentatively elevated Theta level in EASY.

FIGURE 6.24: F-M Theta ECMs in Experiment 2. P-Values are BH-corrected. Dots
Are ECMs, Error Bars One SE.

In subsequent regression analyses, the lack of sensitivity of frontal Theta in this data
is indicated further. No differences or interactions with social interaction context (SP
vs MP) were found. Yet, initially, a quadratic relationship between frontal Theta and
flow is observed (see Table 6.15). However, follow-up sensitivity analysis that include
only the quadratic term in the regression no longer support the presence of a quadratic
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FIGURE 6.25: F-M Theta Post-Hoc Contrasts in Experiment 2. P-Values are BH-
corrected. Dots Are ECMs, Error Bars One SE.

relationship (t = -0.3560, p = 0.7223). This finding further confirms the likeliness that a
lack of sensitivity for frontal Theta activation is present. Such a finding might be best
explained by the absence of midline electrodes, over which frontal Theta activation
is typically found concerning changes in difficulty (see Borghini et al., 2014; Ewing,
Fairclough, and Gilleade, 2016). To conclude the frontal Theta results presentation, it
should be noted that the observed patterns showed no considerable difference when
extracting Theta frequency band power using generalised thresholds (i.e. 4-7.5 Hz

Metrics Theta F-M

Fixed Effects
Social ContextF 1.6779
DifficultyF 1.4832
Social Context * DifficultyF 2.7406t

Condition SequenceC 0.0574(0.0219)*

Random Effects
Level 1 Resid. (Indiv.) 1.324***
Level 2 Resid. (Grp.) -

Goodness-of-Fit
AIC 839.8971
BIC 883.3832
Marginal R2 0.020
Conditional R2 0.876

Notes: tp <.1; *p <.05; **p <.01; ***p <.001. F = Factor Variable
(Showing F-Test Results); C = Continuous Variable
(Showing Beta-Coefficients with SE); Random Effects Shown
as Variance; P-Values are BH-Corrected.

TABLE 6.14: LMM for F-M Theta in Experiment 2.
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band power). Overall, the results can only indicate on a descriptive level that during
flow, a moderate increase of frontal Theta activation might be present, that would
represent moderate demands. At least, such a finding integrates with related work
and with flow theory (flow as the result of a situation with demand-skill balance).

Metrics Flow ~Theta F-M

Fixed Effects
Intercept 4.7038 (0.0662)***
Power 0.7737 (1.0490)
Power2 -2.8543 (1.0077)**

Random Effects
Level 1 Resid. (Indiv.) 0.0722***
Level 2 Resid. (Grp.) 0.0873***

Goodness-of-Fit
AIC 974.7435
BIC 998.0934
Marginal R2 0.027
Conditional R2 0.204

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; Fixed Effects Shown
as Beta-Coefficients with SE; Random Effects Shown as Variance;
P-Values are BH-Corrected.

TABLE 6.15: F-M Theta-Flow LMM in Experiment 2.

Alpha

Frontal Alpha, that is power in the 2 Hz wide sub-bands ranging from -2 to +2 Hz
range from the IAF, was inspected at homologous frontal electrode pairs (AF3+AF4
= AF, F3+F4 = F-M, F7+F8 = F-L, FC5+FC6 = FC). No lateral asymmetries were
indicated for these paired sites (see Table 6.16 and Table 6.17), which indicated
suitability of pooling for these frequencies and ROIs. For AF, F7 & F8 (F-L), and
FC5 & FC6 (FC), models did not support the inclusion of social context or difficulty
main effects and were discarded from further analysis. Thus, results for homologous
electrode pairs show that only at F-M sites, the experimentally manipulated variables
indicate main effects for both the LoAlpha and the HiAlpha band. The final models
have the same form as those for frontal Theta. Specifically, models include interaction
effects for social interaction and difficulty and condition sequence as a significant
covariate. In addition, individual (level-1) random effects are included. The results
from the final models are shown in Table 6.18 and Figure 6.26. Only difficulty was
found to have a main effect on frontal Alpha. Pairwise post-hoc contrasts show a
reduction of frontal Alpha from EASY for both LoAlpha and HiAlpha to all other
difficulty conditions (see Figure 6.26). These findings are in line with studies that have
found a frontal Alpha reduction during flow (Ewing, Fairclough, and Gilleade, 2016),
and other phenomena such as Working Memory (WM) load, top-down attention, or
mental fatigue (Borghini et al., 2014; Deiber et al., 2007; Wascher et al., 2014).
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Metrics LoAlpha LoAlpha LoAlpha LoAlpha
AF F-M F-L FC

Fixed Effects
Social Context 1.2443 2.3373 3.5309 0.2646
Difficulty 1.3550 0.3503 1.4646 3.1415

Random Effects
Level 1 Resid. (Indiv.) 0.7354*** 1.8724*** 0.5160*** 1.0135***
Level 2 Resid. (Grp.) 0.1839*** - 0.1338*** -

Goodness-of-Fit
AIC 796.4535 1097.0984 720.5125 911.8465
BIC 827.5201 1125.6419 751.7117 939.8217
Marginal R2 0.014 0.019 0.034 0.007
Conditional R2 0.789 0.867 0.775 0.800

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; Fixed Effects Shown as F-Test Results;
Random Effects Shown as Variance; P-Values are BH-Corrected; Model Fit
Indices Also Showed No Improvement of the Shown Model Compared to Their
Null Model.

TABLE 6.16: LoAlpha FAA Evaluation in Experiment 2.

Metrics HiAlpha HiAlpha HiAlpha HiAlpha
AF F-M F-L FC

Fixed Effects
Social Context 1.2888 2.6467 3.7732 0.0566
Difficulty 3.1348 0.3536 0.4033 2.8254

Random Effects
Level 1 Resid. (Indiv.) 0.9824*** 1.7282*** 0.5110*** 0.8908***
Level 2 Resid. (Grp.) - - 0.0921*** -

Goodness-of-Fit
AIC 788.0449 1090.2653 699.7471 881.6616
BIC 815.2670 1118.8249 730.9682 909.6194
Marginal R2 0.017 0.021 0.033 0.005
Conditional R2 0.811 0.858 0.773 0.787

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; Fixed Effects Shown as F-Test Results;
Random Effects Shown as Variance; P-Values are BH-Corrected; Model Fit
Indices Also Showed No Improvement of the Shown Model Compared to Their
Null Model.

TABLE 6.17: HiAlpha FAA Evaluation in Experiment 2.
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Metrics LoAlpha F-M HiAlpha F-M

Fixed Effects
Social ContextF 0.0777 0.0053
DifficultyF 5.4098** 13.3641***
Social Context * DifficultyF 1.1937 11.197
Condition SequenceC 0.0783 (0.0190)*** 0.0706 (0.0182)***

Random Effects
Level 1 Resid. (Indiv.) 1.3660*** 1.3944***
Level 2 Resid. (Grp.) - -

Goodness-of-Fit
AIC 954.8888 915.2611
BIC 999.8683 960.1404
Marginal R2 0.014 0.017
Conditional R2 0.879 0.892

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; F = Factor Variable (Showing
F-Test Results); C = Continuous Variable (Showing Beta-Coefficients with
SE); Random Effects Shown as Variance; P-Values are BH-Corrected.

TABLE 6.18: LMM for F-M Alpha in Experiment 2.

In subsequent regression analyses, no direct relationship of flow with frontal
Alpha is found (see Table 6.19). No differences or interactions with social interaction
context (SP or MP) were supported for either model. Initially, a quadratic relationship
between frontal LoAlpha and flow is observed. However, a follow-up sensitivity
analysis that includes only the quadratic term in the regression no longer support
the effect (t = -1.4905, p = 0.1377). Also, for both LoAlpha and HiAlpha, no linear
relationships are detected.

Therefore, the results suggest together, that during flow, no general frontal down-
regulation is present. Instead, neural activity in frontal regions close to the midline
(yet not spread out further) is increased. This increased activation is likely related
to attentional engagement towards the task (see Klimesch, 1999; Deiber et al., 2007).
Yet, while this is a known observation from other paradigms in neuroscience, the
results further indicate that in situations with balanced (optimal) difficulty, no Alpha
peculiarities emerge that might be related to the flow experience. The identification
of the topographical restriction of Alpha activity is, however, important to note, as
the observation of larger areas might have led scholars to different conclusions. The
segmentation of the Alpha band was in this instance not found to be of relevance
as the observed effects are similarly found in both Lo- and Hi-Alpha sub-bands.
This means that the previous findings from Experiment 1, (and some related work)
might also be artefacts, for example resulting from the utilisation of non-personalised
frequency ranges.
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FIGURE 6.26: F-M Alpha ECMs & Pairwise Post-Hoc Contrasts in Experiment 2.
P-Values are BH-corrected. Dots Are ECMs, Error Bars One SE.
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Flow ~
Metrics LoAlpha F-M HiAlpha F-M

Fixed Effects
Intercept 4.6920 (0.0585)*** 4.7051 (0.0599)***
Power 0.6930 (-1.0282) -0.0021 (0.0380)
Power2 -2.0225 (-1.0087)* -

Random Effects
Level 1 Resid. (Indiv.) 0.0587*** 0.0725***
Level 2 Resid. (Grp.) 0.0932*** 0.0975***

Goodness-of-Fit
AIC 1320.1541 1315.6773
BIC 1345.3572 1336.6391
Marginal R2 0.010 0.000
Conditional R2 0.182 0.193

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; Fixed Effects Shown
as Beta-Coefficients with SE; Random Effects Shown as
Variance; P-Values are BH-Corrected.

TABLE 6.19: F-M Alpha-Flow LMM in Experiment 2.
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Beta

Beta activity, that is power in 3, 5 and 10 Hz wide sub-bands ranging from +2 to +20
Hz range from the IAF was analysed at four ROI over the whole scalp. This set of
four ROI (Frontal = AF3 + F3 + F7 + F8 + F4 + AF4; Central = FC5 + T7 + T8 + FC6;
Posterior = P7 + O1 + O2 + P8; Whole Scalp = All 14 electrodes) was chosen to involve
fewer tests, and the selection was based on the reported reactivity of these locations
to variations in mental workload (Michels et al., 2010). All models were developed in
the same way as for previous frequency bands. For LoBeta, models did not support
the inclusion of social context or difficulty main effects and were discarded from
further analysis. For MidBeta, models supported the inclusion of these main effect
variables for all sites. Posterior sites, however, showed no significant main effects, but
frontal, central and whole scalp ROI indicated main effects, without interactions. All
three sites showed elevated MidBeta in the MP condition (see Table 6.20 and Figure
6.27). Difficulty effects were indicated for frontal (at trend level) and central MidBeta.
Post-hoc contrasts (see Figure 6.28) did not further confirm this effect for frontal sites,
but show a stepwise increase with difficulty in central MidBeta from CAL to AUTO
and HARD, with no difference between EASY and CAL.

Metrics MidBeta MidBeta MidBeta MidBeta
Frontal Central Posterior Whole Scalp

Fixed Effects
Social ContextF 6.3659* 6.4950* 1.2344 6.4671*
DifficultyF 2.3200t 7.6698*** 0.1375 0.9989
Condition SequenceC - - 0.0458t 0.0498*

(0.0231) (0.0178)
Diff. * Cond. Seq.F - - 0.5114 0.2478
Soc. Co. * Diff.F - - 0.4941 -
Soc. Co. * Cond. Seq.F - - 3.9025* -
Soc. Co. * Diff. * Cond. SeqF. - - 0.3854 -
AgeC - - - 0.0124

(0.0124)
GenderF - - - 2.2998
HandednessF - - - 0.7423

Random Effects
Level 1 Resid. (Indiv.) 0.4978*** 0.8216*** 0.8134*** 0.5198***
Level 2 Resid. (Grp.) 0.0036* - - -

Goodness-of-Fit
AIC 1009.2431 1136.8294 1195.0056 1012.1950
BIC 1043.2583 1166.3874 1271.0120 1075.8283
Marginal R2 0.039 0.049 0.024 0.082
Conditional R2 0.715 0.763 0.811 0.747

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; F = Factor Variable (Showing F-Test
Results); C = Continuous Variable (Showing Beta-Coefficients with SE); Random
Effects Shown as Variance; Models Per ROI Chosen Due to Best Fit; P-Values are
BH-Corrected.

TABLE 6.20: LMMs for MidBeta in Experiment 2.
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FIGURE 6.27: MidBeta ECMs in Experiment 2. P-Values are BH-
corrected. Dots Are ECMs, Error Bars One SE.
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FIGURE 6.28: MidBeta Pairwise Post-Hoc Contrasts in Experiment 2. P-Values are
BH-corrected. Dots Are ECMs, Error Bars One SE.
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For HiBeta, all four ROI show significant main effects for social context and dif-
ficulty. Furthermore, these models did not support interactions between these ex-
perimentally manipulated variables and eliminated time and other covariates (age,
gender, handedness). Also, the HiBeta models include group (level-2) random effects
for all but the posterior ROI, which suggests a reciprocal influence from other group
members for this particular frequency range. The results for the HiBeta LMMs are
shown in Table 6.21 and Figure 6.29. For HiBeta at all ROIs, a main effect for social
context is found with higher HiBeta in the MP condition. Also, for all ROIs, a main
effect for difficulty is confirmed. Post-hoc contrasts (see Figure 6.30) show a stepwise
increase of HiBeta with difficulty, with weaker sensitivity for the lower difficulties at
central and whole scalp sites.

Metrics HiBeta HiBeta HiBeta HiBeta
Frontal Central Posterior Whole Scalp

Fixed Effects
Social Context 6.8131* 3.3005t 4.6173* 8.5640**
Difficulty 14.6334*** 24.3435*** 38.4679*** 25.4697***

Random Effects
Level 1 Resid. (Indiv.) 0.7202*** 0.9745*** 0.8366*** 0.5925***
Level 2 Resid. (Grp.) 0.0274*** 0.0433*** - 0.0366***

Goodness-of-Fit
AIC 1283.6867 1447.2835 1367.2711 1248.5461
BIC 1317.6089 1481.0482 1401.3017 1282.5150
Marginal R2 0.064 0.067 0.094 0.094
Conditional R2 0.680 0.662 0.686 0.666

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; Fixed Effects Shown as F-Test Results;
Random Effects Shown as Variance; Models Per ROI Chosen Due to Best Fit;
P-Values are BH-Corrected.

TABLE 6.21: LMMs for HiBeta in Experiment 2.

It was further assessed if the difference by social context (SP vs MP) finding rep-
resents a difference amongst the samples by comparing HiBeta levels during the
eyes open resting phase. One-way ANOVAs with social context as factor indicate
no significant difference for Frontal (F(1) = 0.0001, p = 0.9752), Central (F(1) = 0.0181,
p = 0.8932), Posterior (F(1) = 0.1085, p = 0.7424), or Whole Scalp (F(1) = 0.0045, p
= 0.9463) ROIs. Therefore, the increased HiBeta levels in the MP condition can be
considered a consequence of the experiment design. Together these findings indicate,
that HiBeta is visible as a specific and sensitive feature, most likely related to changes
in mental workload. In contrast, lower Beta ranges show no (LoBeta) or only sparse
(Central MidBeta) reactivity to changes in difficulty. The robustness of the findings
across ROIs that is only identified in the higher Beta ranges represents an important
contribution of this work for flow EEG research, as it might allow to more robustly
identify instances of (sub-)optimal workload.
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FIGURE 6.29: HiBeta ECMs in Experiment 2. P-Values are BH-
corrected. Dots Are ECMs, Error Bars One SE.
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FIGURE 6.30: HiBeta Pairwise Post-Hoc Contrasts in Experiment 2. P-Values are
BH-corrected. Dots Are ECMs, Error Bars One SE.
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To follow up on the utility of HiBeta observations, subsequent regression analyses
were conducted for the HiBeta feature (see Table 6.22). For all HiBeta ROIs, quadratic
models were tested and supported the presence of non-linear relationships with
perceived flow over all regions (except frontal sites - for distributions see Figure
6.31). No differences or interactions with social interaction context (SP or MP) were
supported for any HiBeta-flow model.

These findings demonstrate the link between flow and HiBeta levels in an invert-
ed-U shaped form. As HiBeta is herein understood as a sensitive indicator of mental
workload, this finding is considered to integrate well with previous flow-related
findings like moderately elevated frontal Theta band power (see, e.g. Fairclough et al.,
2013; Ewing, Fairclough, and Gilleade, 2016; Soltész et al., 2014) or inverted-U-shaped
flow relationships with physiological activation (see, e.g. Tozman et al., 2015; Peifer
et al., 2014; Bian et al., 2016). Lastly, the observation of group (level-2) influences on
HiBeta features is an interesting observation. No other physiological feature showed
similarly robust influences from group membership. It is, therefore, possible that
HiBeta features share a relationship with group influences on flow experiences.

Flow ~
Metrics HiBeta HiBeta HiBeta HiBeta

Frontal Central Posterior Whole Scalp

Fixed Effects
Intercept 4.7393*** 4.7025*** 4.7081*** 4.7043***

(0.0598) (0.0526) (0.0568) (0.0540)
Power -0.0693 -1.3006 -2.3347* -2.7775**

(0.0430) (0.9976) (-1.0012) (-1.0017)
Power2 - -3.0002** -2.0021* -1.8309*

(0.9378) (0.9333) (0.9318)

Random Effects
Level 1 Resid. (Indiv.) 0.1403*** 0.1373*** 0.1029*** 0.1187***
Level 2 Resid. (Grp.) 0.0449*** 0.0198** 0.0675*** 0.0377***

Goodness-of-Fit
AIC 1322.9734 1314.8561 1321.4671 1315.6277
BIC 1343.9861 1340.0956 1346.7548 1340.8792
Marginal R2 0.006 0.025 0.022 0.026
Conditional R2 0.218 0.206 0.217 0.206

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; Fixed Effects Shown as Beta-
Coefficients with SE; Random Effects Shown as Variance; P-Values are
BH-Corrected.

TABLE 6.22: HiBeta-Flow LMMs in Experiment 2.
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FIGURE 6.31: HiBeta-Flow Quadratic Fits in Experiment 2. The Black
Line Represents the LMM Quadratic Regression Prediction. Dashed Lines

Represent Predicted Values per Subject with Random Intercept.

6.4 Discussion

6.4.1 Central Findings

RQ6 & 7 - Flow Intensification

In this experiment, different flow experience intensities were elicited through a
controlled, Difficulty Manipulation (DM) experiment design. Furthermore, additional
manipulations of autonomy (AM) and social context (SCM) were included in the
design. In doing so, as one of the first studies, a fully digitally-mediated cooperation
scenario was used for the MP condition. These additions that are integrated with a
previously validated task and paradigm represent a particular contribution of this
work. In relation, Research Question (RQ) 6 asked if flow elicitation in the laboratory
is intensified by increased task autonomy (RQ6.a) and by performing a task in small
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groups (RQ6.b), and RQ7 asked if the flow elicitation using a mental arithmetic DM
task is extensible to social interaction settings. To this regard, the presented results
reveal intriguing findings that require critical review and discussion.

Throughout the variables for subjective or objective difficulty, the designated
manipulation of difficulties into low, balanced, and high difficulties was supported in
both the SP and the MP conditions. Beyond this pattern, slight interactions are found
for each variable, like the lower perceived (and less optimal) difficulty in the balanced
difficulty MP conditions, and the opposite pattern in the objective difficulty variable
of nr. of correct trials (fewer correct in EASY and more correct in HARD in the
MP condition). These findings highlight the challenge of creating fully comparable
conditions in terms of DM for SCM paradigms. The nature of the small group setting
creates interaction effects, that must be considered in the interpretations of results. In
the present form, they appear to most readily aid in explaining the weaker contrasts
for flow experiences in the MP condition. Therefore, a takeaway from the presented
approach is, that contrasts in creating easy, optimal, and hard task can be improved
for MP settings. Especially towards the intensification of flow, it would appear that
alternate mechanisms to create optimally balanced group difficulties ought to be
employed. This shortcoming means that RQ7 is answered by partial affirmation, that
the herein presented mental arithmetic task appears to be suitable for the extension for
social flow research, yet that some refinement is further required. For the SP condition,
one approach that appeared to provide desirable results in this direction was the
inclusion of the AM manipulation, that was indicated as successful by the increase
in perceived autonomy from CAL to AUTO. However, no such effect was found
for the MP condition. Furthermore, such an effect did also not become apparent,
even in situations when the range of preferred difficulties within groups was rather
small. This finding indicates that the manipulation of autonomy in small group
settings requires alternate mechanisms. Presently, it would appear that the approach
of median preferred difficulty selection does not sufficiently integrate individual
preferences. Instead, an approach could be to aggregate individual preferences more
in the form of a summation instead of an averaging. This idea means that, for example,
by providing sub-tasks in the preferred difficulty of each individual, every member’s
preference should be included more clearly. The third manipulation, namely SCM
is considered to have been successful by task design and by descriptive reports.
Participants could not complete the tasks in the MP condition by themselves and
indicated an elevated level of perceived interdependence on average. Yet, besides the
manipulation having occurred, its consequences for flow experience intensities were
in contrast to expectation.

First of all, the pattern of flow experience, in particular in the MP condition, was
not expected in this form. While the success of DM was confirmed, the SCM did
not lead to intensified flow. In much of the previous work on flow experiences in
social interaction, the empiric tenor has been that social flow experience is intensified
or facilitated (see, e.g. Magyaródi and Oláh, 2017; Tse et al., 2016; Walker, 2010).
However, in the present results, not only, does flow in groups appear to be at least on
par with the solitary intensities, but also in some instances is lower than in individuals
working alone, which is the first finding of this type. This effect may be to some
degree caused by less optimal difficulties in the MP compared to the SP condition.
Previous work which has found inverted patterns might have found more intense
flow in social interaction due to inverse difficulty patterns (i.e., a task for individuals
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might have been slightly too hard and for groups have had just the right difficulty).
Yet, it can be argued that also in the MP condition, two moderate difficulty levels were
instantiated (difficulty increased from CAL to AUTO), which makes it unlikely that
the lower flow intensities in MP are but the result of inadequate difficulty calibration.
Given the two major novel elements in the present experiment design (the optimal
difficulty self-selection condition and the digitally mediated environment), two other
central explanations for these results were followed-up on in exploratory analyses.

The first explanation for the unexpectedly similar or lower flow experiences in
groups could be rooted in an inversion of opportunities for optimal difficulty selection
(i.e. contrary to previous work, in isolation/groups, participants had more/less
flexibility in difficulty selection). It has been stated that intense flow might be difficult
to elicit in laboratory setups, particularly due to a variance in preferences for optimal
difficulty (i.e. some people prefer slight underload, some prefer slight overload - see
Fong, Zaleski, and Leach, 2015; Tse et al., 2016). This variance is often not addressed
through preference insensitive difficulty calibration algorithms (like the one used
in this and most related work - see Keller, 2016; Ulrich et al., 2014). This problem
means that through a one-size-fits-all difficulty calibration (that personalises difficulty
based on performance only), the potentiality for flow intensification is systematically
limited. In contrast, self-selected difficulty approaches have been found to elicit
more intense flow in solitary tasks (Barros et al., 2018). From the present data, it
similarly appears that the AUTO SP condition has elicited the most intense flow
experience. The same effect might have further reduced flow potentials in the MP
condition. The follow-up analyses on flow, autonomy, and optimal difficulty support
this consideration, as significant positive relationships were found between perceived
flow with autonomy and autonomy with optimal difficulty. This results suggests
that increased levels of autonomy could be related to better calibration of difficulties
which are theoretically grounded as preconditions for flow intensity (Nakamura
and Csikszentmihalyi, 2009). Notably, the slopes for these relationships varied with
social context and showed a stronger relationship amongst the variables in the SP.
A possible explanation for this finding is that in the small group interaction, higher
levels of individual autonomy must not directly lead to higher levels of flow, most
likely because other members actions are still likely to interfere with flow emergence.
These results support the idea, that previous findings of intensified flow in groups
could be largely driven (i.e. moderated) by degrees of freedom and autonomy - not
just social interaction. This finding provides a new rationale and starting point to
differentiate further what might drive flow experience intensities in the laboratory
and social interaction.

Another central difference in the experiment design might have resulted in an
inhibition of social context manipulation-based flow intensification, namely the social
interaction format. Having opted for a digitally-mediated cooperation scenario, the
interaction possibilities in the present design have been reduced to task-related action
signalling only (i.e. participants could only show on which part of the problem they
were currently working). This design element is a significant difference to previous
work that has almost exclusively opted for face-to-face interaction settings (see Table
3.1 in Section 3.3). It could be possible, that not just any type of social interaction
will do similarly well to facilitate flow and could even be the limiting factor to it.
This possibility falls in line with the general understanding that digital media can
be altering and limiting the “normal” (i.e. known from face-to-face environments)



6.4. Discussion 153

exchange of socio-affective communication (Chanel and Mühl, 2015; Derks, Fischer,
and Bos, 2008). To further explore the possibility of this effect, a relationship between
perceptions of social presence and the average level of flow experiences was com-
pared. While the overall level of perceived social presence is rather low, only weak
support was found for a relationship between perceived social presence and flow in
this experiment. Therefore, the possibility that social signals influence the intensity of
flow is not receiving proper support. However, these results are limited to the extent
as to how they can inform on such a hypothesis. First of all, the level of perceived
social presence can only represent a proxy for the wide array of influential social
signals and processes. Second of all, as the present study did not directly compare
a Face-to-face (F2F) to a Digitally-Mediated Communication (DMC) scenario, nor
manipulated social signals in any form, conclusions on these relationships require
separate experiments.

To follow up on the relationships of flow with stress that was identified in Experi-
ment 1, dedicated follow-up analyses were conducted. To reiterate, in Experiment
1, flow was found to be both accompanied by moderate and low stress levels. This
observation prompted the question as to whether the experienced flow in the writing
task is qualitatively different, namely a flow experience without stress perceptions
that would appear to be more in line with theoretical predictions (e.g. the concept of
flow as a unique experience of effortlessness - see, e.g. Bruya, 2010; Ullén et al., 2010).
The results showed a significant quadratic relationship between stress and flow, that
indicates an increasingly declining flow experience with higher stress perceptions.
Therefore, it can be stated that higher intensities of flow occur with lower perceptions
of stress. However, the incompatibility of stress and flow increases mostly with
higher levels of stress. On the one hand, these results suggest that with higher flow,
stress is rather reduced, which together with the findings from Experiment 1, could
indicate a shortcoming of present self-report instruments to capture the stress-ab-
sence (effortlessness) facet of the flow experience. Yet, this finding could also be seen
as further support for the alternative proposition that flow and stress are partially
unrelated (at least at the lower end of stress perceptions). Theoretic integrations
proposed by Tozman and Peifer (2016) would account for this effect by explaining,
that flow and stress become only incompatible when a task becomes too difficult,
such that self-evaluative threats emerge. To further elaborate on what the actual
pattern is, more data from naturalistic settings and laboratory experiments will have
to be acquired. Nevertheless, the results highlight an important aspect for further
development of the situational assessment of flow. Inclusion of stress or effortlessness
dimensions into future flow self-report constructs could provide a valuable addition
to assess the internal validity of flow measurements (the quality of experienced flow).
An additional aspect to the questions about flow quality from Experiment 1 was the
observation of high flow with lower stress in writing and a concomitant increase in
physiological activation. This pattern suggested, that while flow was present and
perceived as stress-/effortless, individuals still exerted a higher amount of energy,
which further added to the possibility that high flow is perceived as effortless yet
shows increased physiological effort. These patterns have been similarly observed by
(Harris, Vine, and Wilson, 2017a). The observations on neurophysiological patterns
of flow are discussed in the next section.

Together the results from manipulation checks and reported flow intensities pro-
vide a two-sided answer for RQ6. RQ6.a can be affirmed as flow was found to be
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intensified through the inclusion of higher levels of autonomy. RQ6.b can be negated
as flow was not found to be intensified through social interaction in digitally-medi-
ated environments.

RQ8 - Cross-Situation Flow Neurophysiology

In the analyses of neurophysiological features, interesting findings emerged in re-
lation to flow experiences that ought to be discussed. It should first of all be noted
that the results are still strongly bound to the DM paradigm and a fairly restrictive
laboratory setup. Nevertheless, the additional inclusions of AM and SCM manipula-
tions in this experiment provide additional evidence and increased external validity
when compared to most previous work that focused on flow experience in isolation
in DM paradigms. Especially as the AM manipulation realised at least some level
of intensification of in-laboratory induced flow, the data come with the potential to
further deepen and consolidate previous findings from more naturalistic settings
(e.g. Experiment 1). Thus, the data provide the potential to follow up on some of the
salient hypotheses on flow neurophysiology (e.g. the level of calming physiological
influences, or the degrees of frontal downregulation). The related RQ8, therefore,
asked which correlates of flow can be identified amongst different knowledge work
and is reviewed in the following paragraphs for Peripheral Nervous System (PNS)
and Central Nervous System (CNS) feature spaces.

Throughout ECG and EEG features, even with refined approaches, no features
were found that show variation with reported flow in the form of a highly diagnostic,
one-to-one relationship. Given that related work has also not uncovered such mark-
er-features, the present results suggest, that either such markers are not identifiable
with the present feature space, or that flow elicitation effects are still too weak to allow
for neurophysiological contrasts in this feature space to emerge. Instead, however,
the amalgamation of findings on neurophysiological parameters (e.g. for the PNS and
CNS), does serve to describe a coarser configuration picture of the neurophysiological
state during flow. From the present data, it can be summarised that flow appears to
be represented by moderate physiological activation (moderate HRV) and mental
workload (moderate HiBeta power - and tentatively elevated frontal Theta power),
and by increased attentional engagement (reduced frontal Alpha). In addition, flow
appears to be represented by an absence of variation in approach-avoidance moti-
vation or affective valence (as indicated by the absence of frontal alpha asymmetry
changes - see Harmon-Jones, Gable, and Peterson, 2010 for the foundation of this
interpretation). Altogether, these findings provide detailed answers to RQ8 and are
in its subtleties discussed in the next paragraphs.

The HRV related findings suggest, that flow is not represented by a level of high
physiological activation similar to stress, as has been previously documented in
some research (Experiment 1 and Keller et al., 2011). Also, the findings further raise
questions as to whether or not a strong calming influence is present and whether a
configuration like non-reciprocal co-activation is present in the body. However, in the
absence of sympathetic activity markers, the change in the interaction dynamics of the
two Autonomous Nervous System (ANS) branches cannot be sufficiently assessed
and still requires further research. For the HRV features in this experiment, two
peculiar observations need to be discussed further. First, a lack of sensitivity to the
difficulty manipulation was present, that is irregular in comparison to related work.
Related work has found a high level of variance in the sensitivity of parasympathetic
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HRV features to difficulty manipulations across two game tasks (Barros et al., 2018).
Therefore, the lack of feature sensitivity in this experiment might be a result of
the chosen mental arithmetic task. Further cross-task experiments are required to
clarify this issue. Second, a significant difference in HRV levels across the SP and
MP condition was visible, that was not expected in this form. Two explanations are
considered for the lower physiological demand (higher HRV) in the MP condition.
On the one hand, the task could have been less hard in MP in general. Yet, no
other metrics would indicate such an effect (subjective and objective task difficulty
measures). Furthermore, the herein found more highly diagnostic markers for mental
workload (specifically HiBeta EEG power) point in an opposing direction. Therefore,
a more likely explanation for the HRV differences across the social contexts (despite
the absence of general differences in flow, stress, or task difficulty) could be found
in the duration of breaks during the experiment. In the MP condition, participants
often had to wait on other group members to complete surveys to move on to
the next difficulty condition as a group. This waiting time might have lead to an
overall higher level of physiological relaxation as compared to the SP condition. This
interpretation is supported by the observation that time has a significant and strong
positive relationship with the HRV features.

The frontal Theta and higher Beta findings over the whole scalp suggest that
flow is related to moderate levels of mental workload. In these features, several
important findings and contributions to flow research ought to be discussed. First
of all, an initially surprising finding was the absence or weak sensitivity of one the
more robust workload indicators that has previously emerged in flow EEG research,
namely frontal Theta. In the SP condition, a pattern of increased frontal Theta from
EASY is visible, yet without significant differences. While this means that there is
no statistical support for a relationship between frontal Theta and flow, the pattern
is similar to related work that has found elevated frontal Theta levels during flow
(see, e.g. Fairclough et al., 2013; Ewing, Fairclough, and Gilleade, 2016; Soltész et al.,
2014). It is only for this reason that the elevated frontal Theta effect is considered to
be tentatively visible, with increased task difficulty. However, the effect is too small
to reach significance, which is likely due to the absence of electrodes over midline
positions (e.g. Fz) over which the frontal Theta effect is typically observed (see, e.g.
Borghini et al., 2014; Ewing, Fairclough, and Gilleade, 2016). Conversely, frontal
Theta effects have also been found to be absent in Difficulty Manipulation (DM)
experiments that have also used the Emotiv Epoc+ EEG headset (Klarkowski, 2017).
Beyond this initial limitation, a second peculiarity for the frontal Theta band variation
was found, namely the divergence of Theta levels with social context (elevated from
EASY in SP vs high and reduced in HARD in MP). Given the absence of small
group EEG studies in related work, the explanation of this pattern is a bit more
difficult to explain. Besides, another concomitant of mental workload (see Beta
power below) does not show a similar reduction towards HARD (yet a generally
elevated level in MP, that might reflect a generally higher workload in MP). As a
possible explanation for these patterns, the specificity of Theta power is considered.
In more fundamental neuroscientific work, both Theta and Beta power have shown
reactivity to increases in task difficulty induced mental workload (Kahana et al., 1999;
Deiber et al., 2007; Michels et al., 2010). However, frontal Theta has additionally been
found to be influenced by task complexity (Kahana et al., 1999) and by (working
memory-independent) attentional engagement to visual stimuli (Deiber et al., 2007).
In this experiment, the MP condition does not only provide a higher level of visual
stimulation in general (signals by other group members - see Figure 6.2) but also
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the requirement to attend to other group member’s actions (due to incomplete task
information). This added attentional demand in the MP condition is considered to
have caused the (tentatively) elevated frontal Theta levels in the MP condition. The
reduction of frontal Theta in MP HARD might then furthermore be explained by a
reduction of attentional complexity towards the high task difficulty when it becomes
harder to monitor the actions of others. Stated differently, in the high task difficulty,
group monitoring might be given up to some degree in favour of focusing on one’s
task that is already very difficult. In support of the latter argument it can be said
that even in this MP HARD condition, the frontal Theta levels are still reasonably
elevated when compared to all SP Theta levels, which indicates an elevated level of
mental workload.

Beyond the (weakly diagnostic) frontal Theta findings, another feature set indicated
much clearer reactivity to the manipulations of difficulty and social context, namely
Beta power over the whole scalp. Isolated by the frequency band sub-segmentation,
in particular, the higher Beta ranges showed an apparent reactivity to the manipula-
tion of difficulty in both SP and MP scenarios. As the separation of Beta bands has
in neuroscientific work been found to emphasise mental workload changes in the
higher frequency ranges (Michels et al., 2010), and as positive Beta band relationships
with higher workloads have been reported often (Michels et al., 2010), the present
results indicate a high sensitivity of HiBeta powers to changes in difficulty. Given
the elevated HiBeta levels in the MP condition, the HiBeta range is considered to
show high specificity to mental workload changes. The latter is based on the findings
that workload is considered to increase with higher task complexity (Kahana et al.,
1999; Deiber et al., 2007) (which is here considered to be the case). The additional
group interaction is, therefore, likely driving the HiBeta increases throughout the MP
condition. These considerations are in line with the previously discussed divergence
of frontal Theta levels between SP and MP conditions. Given that HiBeta was found
to be unconfounded by time and visible over the whole scalp, it currently represents
one of the most useful EEG features for the observation of flow in this experiment.
The observation that it appears to more clearly appear after segmentation of the
broad Beta band (LoBeta and MidBeta showed almost no reaction to the experimental
manipulation) makes the methodological approach a valuable contribution to flow
research. The identification of a direct non-linear relationship in this region has not
been reported before. However, some research has already found a relationship of
higher frequency ranges with flow (Soltész et al., 2014 finds Gamma band relation-
ships). Therefore, future work might want to more closely explore how to leverage
the higher frequency ranges for flow experience observation. Presently, they would
seem to appear as suitable indicators of (non-)optimal workload situations that can
be used across situations and repeated measurements. Moreover, it should be noted
that the HiBeta models include group (level-2) random effects for all but the posterior
Region of Interest (ROI), which suggests a reciprocal influence on mental workload
from other group members. This observation is interesting in itself, as such an effect
has not been documented in previous flow research. Given the indicated sensitivity
and specificity of the HiBeta band to changes in mental workload, it is possible, that
HiBeta features might be related to group influences on flow experiences. Potentially,
they could be indicating a situation of shared mental workload during shared flow.
This possibility is further explored in the following Chapter 7.
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The last set of findings relates to attentional engagement and frontal downregula-
tion, that is, the frontal Alpha power patterns. The Alpha results suggest together that
during flow, no general frontal downregulation is present. Instead, neural activity
in frontal regions close to the midline (and not spread out further) is increased. This
increased activation is likely related to attentional engagement towards the task (see
Klimesch, 1999; Deiber et al., 2007; Borghini et al., 2014). While this is a known
observation from other neuroscience experiments, the results further indicate that
in situations with balanced (optimal) difficulty, no peculiar Alpha changes emerge
that might be related to the flow experience. The identification of the topographical
restriction of Alpha activity is useful to note here, as the observation of larger areas
might have lead researchers to different conclusions. The segmentation of the Alpha
band was in this instance not found to be of relevance as the observed effects are
similarly found in both Lo- and Hi-Alpha sub-bands. Yet, the confidence levels show
that for HiAlpha, the effect appears more pronounced. This result means that the
previous findings from Experiment 1 (i.e. the absence of main effects from difficulty
on the LoAlpha band), (and some related work - see, e.g. Ewing, Fairclough, and
Gilleade, 2016) might also be artefacts, for example resulting from the utilisation
of non-personalised frequency ranges. Overall, the present observations integrate
with the findings from Experiment 1 that tasks with increased difficulty show a
reduction (that was also more stable) of frontal Alpha. The requirement for a refined
downregulation hypothesis in the Transient Hypofrontality Theory (THT), there-
fore, gains further support based on EEG-methodology as well. However, at least
with the present EEG system, a much too low spatial resolution is available that
would be needed to further integrate findings from hemodynamic studies on medial
and dorsal Prefrontal Cortex (PFC) activation with EEG Alpha observation. Using
co-registered EEG and fMRI, for example with this mental arithmetic DM paradigm
(previously used in an fMRI study by Ulrich et al., 2014; Ulrich, Keller, and Grön,
2016b) could allow providing more insight here. Also, it would be interesting to
investigate how source-localisation methods and spatial filters from high-density
EEG recordings might lead to a better understanding of frontal activation patterns
during flow. Presently, frontal Alpha can only be used in the form of identifying flow
boundary conditions, specifically as it might lend itself to identify situations of low
top-down attentional engagement towards a task (instances of mind-wandering). In
a final note on frontal Alpha patterns, it should be noted, that no changes in Frontal
Alpha Asymmetry (FAA) were detected with flow in the present experiment. This
finding is intriguing since flow has been considered to be related to FAA because
it is often considered to be related to approach-avoidance motivation (Smith et al.,
2017; Harmon-Jones, Gable, and Peterson, 2010). The present findings (including
the absence of such effects in Experiment 1) indicate that flow is more likely a state
of affective neutrality, likely explained by the absence of self-monitoring and self-
-evaluative processes (see, e.g. Sadlo, 2016; Harris, Vine, and Wilson, 2017b). Such
interpretations of affective neutrality have been put forward by psychologists (see,
e.g. Engeser and Schiepe-Tiska, 2012), yet are contested by those who argue that flow
is an experience of strong positive valence (see, e.g. Mauri et al., 2011; Manzano et al.,
2010). Convergent with the latter view, some scholars have already suggested that
flow could be related to FAA (Labonté-Lemoyne et al., 2016). Yet, the present results
are the first reported evidence that refutes this suggestion. It is possible, however, that
the findings indicate merely, that during the task, flow is not affectively valued, but
that such connotations arise after the task is completed and self-evaluative processes
emerge again. To study these temporal dynamics of FAA (see Allen and Cohen, 2010)
could, therefore, be an interesting opportunity for flow EEG research.
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6.4.2 Limitations & Future Directions

A few general and specific limitations to the presented experiment need to be ap-
praised. General limitations of this work are the use of a German student sample
(with a majority of business administration and engineering study majors - >45% of
participants), the limited number of observations (no more than 40 observations on
the individual and group level), the limited signal availability and quality from the
wearable EEG devices, and the large number of statistical tests that were performed.
To counter these limitations, it can be argued, that flow is found to be a universal
experience (Nakamura and Csikszentmihalyi, 2009) that spans across cultures, ages,
and professions. Therefore, the student sample might be quite representative of this
particular kind of work. Sample size recommendations would typically lead to higher
numbers of desired participants, it can also be argued that the presented efforts repre-
sents an unusually large account in relation to how many neuroscientific studies are
conducted (see Turner et al., 2018; Szucs and Ioannidis, 2017), and in relation to other
related work that has (except for a few studies) used smaller samples (see Table 4.2).
As for the EEG sensor quality, it can further be argued that while there are certainly
improvements possible in terms of signal quality, the apparatus was selected as it
was found to deliver acceptable quality for power frequency analyses (Barham et al.,
2017). Regarding the number of statistical tests, the issue was recognised by p-value
corrections throughout the analyses to reduce false-positive errors.

Beyond these rather typical experiment limitations, some that are specific to the
experiment ought to also outlined. Given the artificial laboratory environment and
the focus on just one task setting, the internal and external validity of the presented
results is limited. As was previously discussed (Experiment 1) and has been found
in related work (Barros et al., 2018), multi-task investigations certainly deliver some
variation in perceived experiences and physiological patterns. Therefore, it is critical
to investigate further how robust some of the presented results are, when observed in
different tasks (e.g. that require different abilities), in different task formats (e.g. that
are less constrained or more tailored towards mastery), and for the social context in
different interaction settings (e.g. with more social information, more autonomy for
the individual, or different group sizes). However, it can also be appraised that in the
presented experiment, there are already multiple different manipulations involved,
which is why at least some additional validity (compared to a pure DM approach)
could be attested. Improvements to the experiment designs are considerable specif-
ically for the MP condition for both DM and AM manipulations. Given that effect
sizes for the manipulated flow experiences in the MP could be improved, in particular,
the mechanisms for optimal difficulty setting should be refined. On the one hand,
the calibrated difficulties might, for example, benefit from seeing a higher starting
level or faster level increment, as the level of perceived (and optimal) difficulties were
found below the SP condition reports. On the other hand, especially the AM condit-
ion should see dedicated refinements, especially as results showed the positive link
between autonomy and flow that did not seem to be leveraged in the MP condition.
As an adjustment, the self-selected individual optimal difficulty could be used to dis-
tribute equations based on individual preferences. In this approach, each individual
would get an equation that fits their indicated preference. Alternatively, an extension
of the present research could increase the complexity and freedom in the math task in
general by providing more subtasks (e.g. six equations with different lengths) and
longer trials (e.g. 60s), so that the self-selection possibilities are returned during an
MP condition. Both design aspects would re-introduce self-selection towards more
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and less difficult subtasks and could, in comparison elucidate whether the intensified
flow experience in social interaction is more due to an optimised sharing and alloca-
tion of difficulty-balanced task aspects. Lastly, the comparison of the social context
settings with the present data would be a valuable endeavour to understand further
what does or does not intensify flow in individual and group settings. The present
findings do provide a useful starting point to further differentiate if and which types
of signal exchange (task, affect or interpersonally-related) might be required to reap
benefits of intensified flow in small group interactions. Future work could, therefore,
start by manipulating the availability of interaction channels, while using the other-
wise unchanged experiment design outlined (i.e. extending the present experiment to
include audio- or visuo-auditive communication). In the simplest and most pressing
form, a comparison of the digitally-mediated MP condition to a face-to-face setting
will have to be conducted.

The second, important limitation specific to this experiment is the selection and
processing of measurement instruments, both reported and physiological. For the
reported measures, a limitation emerged by the selection of a short flow survey
instrument. Specifically, as some findings point to the importance of understanding
more nuanced facets of flow (e.g. how stress- or effortful it is), the utilisation of
short is likely insufficient to develop an elaborate understanding. Future work could
benefit strongly from leveraging more complex and multidimensional survey instru-
ments (e.g. the FSS - see Jackson, Martin, and Eklund, 2008) that will provide more
insight into perceived experiences. In the physiological domain, signal processing
techniques can be improved further. For example, the segmentation of higher (Beta)
frequencies occurred based on decisions from related work (Berta et al., 2013), not
from physiological criteria (as they are for example available for the individual Alpha
frequency - see Klimesch, 1999). Therefore, spectral filters might help in isolating
better, which ranges provide useful information on flow and related processes. In
another example, the ROI for the EEG analyses were primarily selected from theo-
retical arguments and previous work. However, this method does not protect from
some of the inter-individual variation in the emergence of observed patterns over
the scalp. Spatial filters that constitute a significant advancement in EEG research
(Blankertz et al., 2016) would represent a useful advancement to understand further
where flow-related effects are best observed for each individual. The importance of
using such refined approaches in the future is exemplified by work that has been able
to predict the difficulty level of a game task from the EEG data alone (Naumann et al.,
2016). To achieve such sensitivity for the extracted EEG data could be very valuable
not only in terms of practical uses (being able to observe with a much higher level of
certainty if a task is too easy or too difficult for an individual) but also in terms of
how theoretical knowledge is advanced. Having such high sensitivity could mean,
for instance, that one could observe experts performers or people with high flow
proneness or metacognitions in Mastery (MAS) paradigms (see, e.g. De Kock, 2014;
Kramer, 2007) to understand better what the flow preconditions and configurations
are on a neural level.

Lastly, the previous remarks on feature extraction processes highlight the spe-
cific limitation in the presented work, that primarily a priori decision-making was
involved together with traditional methods of statistical inference. This approach
grounds the developed knowledge in scientific best practices. Nevertheless, es-
pecially in the field of psychophysiology, it can be argued that such deterministic
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approaches are generally flawed when attempting to isolate patterns across domains
of reported and physiological data (Bridwell et al., 2018). In principle, this is the
argument that there is no reason as to why concepts from psychology textbooks
should directly match on to neurophysiological data (see Section 4.1). Therefore,
it is a critical limitation of the present approach to neglect data-driven approaches
to identify neurophysiological patterns during flow, which has been argued for in
related work (Rissler et al., 2018; Maier et al., 2019). In general, there is an increas-
ing prevalence of using data-driven methods for feature extraction, selection and
integration into classification models for the observation of mental states (Brouwer
et al., 2015; Bridwell et al., 2018; Roy et al., 2019). Deep Learning methods have, for
example, shown great promise to make sense of EEG signals due to their capacity
to learn good feature representations from raw EEG data (Roy et al., 2019). Given
that presently, a high degree of a priori decision making is involved in the analyt-
ical process in most flow neurophysiology research, more data-driven approaches,
might hold the valuable potential to improve the validity and accuracy of derived
physiological features and should be employed in future work - if only for feature
extraction and selection.

6.5 Conclusion

The results from this experiment contribute in theoretical and practical ways to a
foundation for the theory-driven development of adaptive NeuroIS. First, flow the-
ory is advanced by testing whether or not difficulty, autonomy, and social context
manipulations elicit varied flow intensities in the context of digitally mediated coop-
eration. In doing so, mechanisms for flow elicitation are confirmed and extended. The
unexpected finding of lower flow in social interaction identifies the need for further
refinement of the conceptual integration of the relationships of optimal difficulties,
autonomy, and social interaction within flow theory. In particular, two important new
directions for research are identified, that pertain to the questions of opportunities
and autonomy as a driving factor in intensified flow in the laboratory and to the
question of how digital media could impact flow experiences in groups through the
exclusion of open communication and social signals. For both directions, simple alter-
ations to the present design are outlined (inclusion of more subtasks and summative
integration of member preferences for the former and comparison with face-to-face
settings for the latter), that can further deepen the understanding on how to elicit
more intense flow in individuals and groups.

Furthermore, the refined analyses of neurophysiological data further consolidate
the empirical knowledge on how flow can be described through changes in the heart
and the brain. Altogether, from the present data, it can be summarised that flow
appears to be represented by moderate physiological activation (moderate HRV) and
mental workload (moderate HiBeta power - and tentatively elevated frontal Theta
power), and by increased attentional engagement (reduced frontal Alpha). In addi-
tion, flow appears to be represented by an absence of variation in approach-avoidance
motivation or affective valence (as indicated by the absence of FAA changes). Im-
portantly, these results emerge through the inclusion of various mechanisms for the
elicitation of flow experiences in the laboratory (DM, AM, and SCM), which rep-
resents the major contribution of this work to the flow neurophysiology literature.
Of particular relevance is the finding that through frequency band personalisation
and sub-segmentation, some previous findings could be consolidated (specifically,
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frontal Alpha reduction), and some promising new directions emerged. Specifically,
the frequency band segmentation highlighted the particular sensitivity of the HiBeta
frequency ranges with manipulations of difficulty. The additional absence of con-
founds with time, and the group level influence on HiBeta levels, further indicate
that these higher frequency ranges could have a valuable role for the observation of
flow on the individual and group level.

The presented results need further confirmation through additional experiments
with varied tasks and task formats. In addition, future work should employ a set of
more refined data-driven feature extraction and selection methods. Presently, it is
primarily argued that the observed patterns allow discussing flow-related changes
in a refined manner and that they pose interesting alternatives for the detection
of situations of optimal difficulty. These alternatives are especially highlighted for
scenarios in which less information might be available than typically is in laboratory
setups (i.e. with wearable EEG with fewer and unevenly distributed electrodes).
When considering how adaptive NeuroIS employ thresholds to inform adaptation
rules (see, e.g. Ewing, Fairclough, and Gilleade, 2016; Karran et al., 2019), features
indicating maxima during EASY (e.g. frontal Alpha power) or HARD conditions (e.g.
HiBeta power) could be valuable boundary condition indicators. In this regard they
may be used to robustly identify when difficulty is unbalanced and flow unlikely.

Ideally by finer spectral and spatial EEG power analysis, future flow research
will move even closer to identifying robust concomitants and markers of flow that
can be employed in adaptive NeuroIS using portable EEG in real-world scenarios.
So far the identification of sensitive features has implications for the development
of flow prediction and classification models (see e.g. Rissler et al., 2018; Maier et
al., 2019), as they describe sparse feature spaces that might allow to observe flow.
For example, especially given the herein found usefulness of HiBeta power, EEG
observation from a few select sites becomes an interesting option, at least when
the goal is to observe situations of (non-) optimal difficulty with few electrodes
and without confounds from time and task context. Especially since some of the
more robust findings emerged from central ROI, an interesting direction would
be to explore the potential of flow state prediction using ear-EEG systems (see e.g.
Bleichner, Kidmose, and Voix, 2020). Such systems have recently been shown to
allow mental workload classification in driving simulations (Wascher et al., 2019)
and might therefore provide an unobtrusive approach to flow boundary condition
detection as well. Eventually, systems able to adapt to flow intensities could reduce
flow interruptions (e.g. by blocking incoming messages - see, e.g. Rissler et al., 2018)
or provide feedback for flow self-regulation (e.g. by optimising arousal levels and
catalysing task focus through EEG-neurofeedback - see Lux et al., 2018).

In conclusion, in this chapter, valuable contributions to flow theory and adap-
tive NeuroIS development have been presented through the advancement of the
understanding of individual-level flow experiences in isolation and social interaction.
Given the complexity of social interactions, In the following chapter, a dedicated
investigation of the group-level flow dynamics is pursued to complete the study of
social flow experiences.
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Chapter 7

Experiment 2 - Group-Level Flow
Dynamics

Contents of this section are in part adopted or taken from Knierim et al. (2019).
See Section A.1 for further details.

7.1 Flow Experiences in Small Groups

To provide foundations for flow-facilitating, adaptive NeuroIS, the work in this
dissertation focuses on studying flow in primarily cognitive tasks. Thereby, it is
investigated how flow could be intensified in experimental research (RG2). In this
approach, flow neurophysiology research converges on more Knowledge Work (KW)
related scenarios and refines how neurophysiological processes related to flow can be
described across situations using wearable sensor systems (RG3).

Experiment 1 and 2 showed that varying flow intensities could be elicited in
laboratory research by using various manipulations. In particular, in Experiment
2, findings from Experiment 1 were integrated into alternative research designs, in
particular in the form of providing increased autonomy by allowing participants to
self-select an optimally challenging difficulty level for the mental arithmetic task.
Furthermore, another potential approach for flow intensification in the laboratory was
explored, namely, the comparison of completing a task in isolation or during social
interaction. In the results for Experiment 2, only autonomy, but not social context
was found as a factor that elicits deeper flow experiences. However, an interesting
observation was made for the neurophysiological data. HiBeta EEG features showed
group (level-2) random effects for all but the posterior Region of Interest (ROI)
that are similar to the random effects structure for reported flow. These findings
indicate a reciprocal influence on mental workload from other group members,
that could be related to the reciprocal influences of groups on their members’ flow
experiences. Such an effect has not been documented in previous flow research. As
already mentioned, the study of flow in social interaction has in recent years been of
highlighted importance for flow scholars (Walker, 2010; Magyaródi and Oláh, 2017;
Hout, Davis, and Weggeman, 2018; Tse et al., 2016). This importance is mainly due
to the increased reliance on small groups to complete complex KW tasks. To follow
up on the neurophysiological findings and to further explore additional compelling
social interaction flow dynamics in Digitally-Mediated Communication (DMC), a
series of additional analyses was pursued in this chapter.
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Flow theory was initially developed with a focus on the experience of the indi-
vidual (Csikszentmihalyi, 1975). One of the leading questions in Csikszentmihalyi’s
scholastic endeavours was to find an explanation for why some individuals would
spend many hours by themselves pursuing tasks that did not show to provide much
extrinsic value (Csikszentmihalyi, 1975). However, while having been conceptualised
independent of social context, flow theory always recognised the potential for flow in
social interaction (Walker, 2010). In recent years flow in social contexts has increas-
ingly gained attention with competing terms such as “team flow” (Keith et al., 2014;
Hout, Davis, and Weggeman, 2018), “collective flow” (Salanova et al., 2014), “conta-
gious flow” (Culbertson et al., 2015), “shared flow” (Zumeta et al., 2016), “networked
flow” (Gaggioli et al., 2017), and “social flow” (Kaye, 2016; Walker, 2010). Momentum
for this emergence has built on the enticing proposition of one of the first salient
articles by Walker (2010), that flow in social interaction might represent an even more
fulfilling experience than flow in isolation. To date, not only the terms but also the
descriptions of group-level flow are somewhat diverse. The breadth and diversity
of terms (and underlying theoretical compositions) highlight that there is still much
ground to be covered to understand better: (1) what causes and consequences of
flow experiences in small groups are, and (2) what the qualitative character of flow
experiences in groups is.

In terms of causes (or requirements) of flow in groups, it was summarised in Section
3.3 that causes are first of all described as the individual level flow preconditions
(difficulty-skill balance, clear goals and feedback). Yet, two additional preconditions
were identified that describe factors required for a collaborative interaction (not
just mere co-presence of individuals during a task). The first is a requirement for
cooperation, that includes factors as member interdependence (i.e. members are
dependent on the work of others) or coordination of actions (i.e. members are able
to coordinate their work with others). For example, it is considered, that when
individuals in a group are merely co-present but do not have to or cannot share
their work, their flow experiences are likely to occur only on the individual level.
Walker (2010) describes three types of flow experiences that are solitary, co-active and
interactive flow experience, wherein the latest form describes a situation in which
interdependent interaction is required. If such interaction is reduced or potentially
removed, the shared experience is unlikely to occur, which makes the factor of group
member interdependence crucial for the concept of group-level flow. Stated otherwise,
if a groups’ task can be easily divided into fully independent action, group-level
flow will not necessarily be achieved (Keith et al., 2016). The second precondition for
flow in groups is a requirement for group member integration. Integration means
that group members have well-aligned goals, abilities, roles and procedures. For
example, if diverging individual goals are present, or if member abilities are not well
aligned, (non-technical) conflict is more likely to occur which hinders the emergence
of flow in the social unit (Hout, Davis, and Weggeman, 2018). In line with the
reasoning by Walker (2010), these two additional preconditions (cooperation and
integration) are herein considered as the foundational differentiating feature between
flow experiences in isolation and small groups.

However, an interesting question that has not received much attention is whether
or not there are group composition variables that influence the emergence of flow
in small groups. Group composition variables are herein understood as the group
member characteristics that make up the unique character of each social unit (see
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Wildman et al., 2012). Initially, it would seem plausibly in line with flow theory,
that flow intensity in a social interaction setting would be dependent on the level of
diversity in members’ abilities (Hout, Davis, and Weggeman, 2018). Furthermore,
beyond such technical diversity, other member characteristics could be considered
to impede social flow experiences. For instance, in much of the related work on
small group interactions the degree of diversity in small groups (e.g. in the form
of cultural, technical, or cognitive diversity) has been found to interfere with group
interaction processes and to for example impact group performance and interaction
satisfaction (Knippenberg and Schippers, 2007; Wildman et al., 2012). For example, in
related small group research, gender diversity or diversity in emotional intelligences
have been found to influence task-independent small group performances (Woolley
et al., 2010; Engel et al., 2015), even in digitally-mediated interaction scenarios (Engel
et al., 2014). How such social unit composition factors might influence social flow,
represents a gap in the current body of knowledge.

Regarding the consequences of flow in social interaction, three central dimensions
have emerged that are the performance of the social unit, satisfaction from the social
interaction, and growth of the social unit (e.g. as a form of building collective efficacy,
knowledge, trust, or social relationships). However, most of the present research
has been conducted Face-to-face (F2F) in small groups (2-4 individuals), perhaps to
explore the social interaction with higher external validity. Another possibility is
the recognition that shared experiences are more likely to occur in smaller groups
(Aubé, Brunelle, and Rousseau, 2014). Thus, a central gap is present, that is the
study of flow in social interactions in Digitally-Mediated Communication (DMC).
Digital environments are known to deprive social signals which are critical for the
exchange of affective and interpersonal information (Derks, Fischer, and Bos, 2008;
Chanel and Mühl, 2015). As digital environments are central to today’s decentralised
work environments, and as social signals may be important for flow in cooperative
scenarios, there is an urgency to investigate flow in DMC small group interactions.

Beyond this consideration of causes and consequences, it is a central question in
social flow research, whether or not flow in social units represents a qualitatively
different phenomenon from flow in isolation (Walker, 2010). Two central lines of
thought have emerged. The first perspective is rooted in traditional flow theory and
understands flow in social units to be comprised of the same nine dimensions of
flow experience, yet including the additional interdependence precondition (thus
sometimes including communication as a precondition) (Keith et al., 2014; Keith
et al., 2016), and including intensified experiential outcomes (e.g. enjoyment and
growth) (Walker, 2010). The second perspective understands flow in social units as
an emergent property from the social interaction, that is better described by own pre-
conditions and state characteristics. Some researchers that follow this understanding
have considered social unit flow to be operationalised by a sense of reciprocal flow
influencing. Magyaródi and Oláh (2017) and Olsson and Harmat (2018) for example
operationalise this social unit flow by using a flow synchronisation questionnaire that
gauges the level of (individually perceived) shared fluency and absorption. Tse et al.
(2016), on the other hand, follow a more established route by observing the influ-
ence of the social unit on reported flow intensities using the Intra-Class Correlation
Coefficient (ICC). The ICC is a standard method in small group research to assess
the amount of variance in an individuals response that can be explained through
the social unit membership (Bliese, 2000). In that sense, shared flow is indicated as
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the individual-level experience that is however dependent on (influenced by) the
social unit. Lastly, even new theoretical models have been proposed that ought to de-
scribe the emergent group-level flow phenomenon. One such perspective is brought
forward by Hout, Davis, and Weggeman (2018), who outlines the preconditions of
(1) collective ambition, (2) common goal, (3) aligned personal goals, (4) high skill
integration, (5) open communication, (6) safety, and (7) mutual commitment, and the
state characteristics of (8) sense of unity, (9) sense of joint progress, (10) mutual trust,
and (11) holistic focus.

In any case (i.e. independent of a particular theoretical perspective), there have so
barely been any studies that consider how neurophysiological processes might be
involved in such emergent group-level flow experiences. In relation, the only two
studies that provide evidence are the work by Keeler et al. (2015) and Labonté-Le-
moyne et al. (2016). Keeler et al. (2015) find reduced arousal and stress as indicated by
reduced adrenocorticotropic hormone levels that are thought of reflecting social flow
experiences. Stated otherwise, the stress-buffering effect (see also Palumbo et al., 2017)
from the social interaction is considered to be an element of an emergent group-level
flow experience. Interestingly, such a finding would be convergent with the work
by Tse et al. (2016) who find that flow experience is intensified in (stress-averse)
dyads, especially when tasks are becoming hard. Furthermore, Labonté-Lemoyne
et al. (2016) find that one group members boredom might be linked to the second
group members flow experience through right frontal Alpha power differences. This
finding could also indicate that a lower experience of distress in (at least some) social
unit members is beneficial for the flow experience of others. However, none of this
research integrates multidimensional data (reports, behaviour, physiology), with a
large sample to further elaborate on possible neurophysiological patterns of flow
experiences in social interaction (and in particular for the possibility of shared flow
experiences). This state represents a salient gap in the research on flow in social units.

In summary, central gaps in the research on flow in social units pertain to (1) the
causes of flow in terms of social unit compositions and behaviours, (2) the conse-
quences of flow in social interaction in digitally-mediated environments, and (3) the
analysis of the emergence of shared flow experiences, especially paired with the
investigation of multidimensional data (report, behaviour, neurophysiology). Given
that Experiment 2 in this dissertation collected exactly this data, it allowed closing
these gaps. Thus, a dedicated set of exploratory analyses was conducted. The guiding
Research Questions (RQ) that are investigated in this context of digitally-mediated
environments are as follows:

• RQ9 Is flow in social units influenced by group composition (diversity)?

• RQ10 What are the relationships of flow with group performance, satisfaction,
and growth?

• RQ11 How does shared flow emerge in digitally-mediated environments?

Together, these additional analyses focusing on small group dynamics and group-
level experiences contribute to the literature on flow experience and the development
of adaptive NeuroIS by (1) extending the knowledge on flow in digitally-mediated
social interaction through analyses of possible causes and consequences of flow in
these settings, and by (2) being the first to explore influences on group-level (shared)
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flow experiences. Specifically, by analysing data across report, behaviour and neuro-
physiology domains, possibilities are identified as to when shared flow experiences
may emerge (identification of boundary conditions). In addition, opportunities for
the unobtrusive detection of such group-level experiences are proposed together with
simple extensions to flow theory on how to integrate social dynamics into the premise
of optimal difficulty as a precondition to flow experience. The following sections
build on the previous documentations of related work (see Section 3.3) and leverage
the data collected in Experiment 2 of this dissertation (see Chapter 6). Therefore, the
following chapter only briefly appends data processing descriptions as needed for
the novel analyses.

7.2 Data Processing

In this chapter, three groups of analyses were conducted following the RQs, as
mentioned above. In general, the data (pre-)processing strategies were identical to
those reported in Section 6.2.4. Report, behaviour and neurophysiological data were
utilised after the processing mentioned previously. Wherever necessary, additional,
subsequent processing was performed. The description of these steps, including their
rationale, are outlined here.

The first analysis focuses on the influence of small group member diversities on
flow experiences. For this purpose, a Linear Mixed Model (LMM) similar to the
previously developed one in Section 6.3.2 was created. This time, however, only
the MP condition data was utilised. The model development process comprised a
sequential build-up, first including known random effects (level-1 and level-2) and
fixed effects (difficulty and flow proneness), and then including fixed effects for
reported diversity metrics (perceived diversity in member efforts, technical abilities,
and general perception of group diversity) and demographic diversity metrics (age
range, gender distribution, technical backgrounds). P-values were BH-corrected.

The second analysis focuses on the relationship of flow experiences with variables
related to desirable group experiences, specifically regarding group performance,
satisfaction and growth. The perceptions of flow and group performance were
collected as a Repeated Measures (RM) after each condition. The remaining variables
were collected once at the end of the experiment. The quality of the self-report
instruments (internal consistencies for multi-item measures) was already reported in
Table 6.3 in Section 6.2.4. To identify relationships, suitable correlation metrics were
used. This means that for the RM measures (performance), RM correlations (Bakdash
and Marusich, 2017; Bland and Altman, 1995) were calculated. For the remaining
variables, Pearson correlations between the average flow per participant and their
perceived interaction experiences were calculated. P-values were BH-corrected.

The third analysis focuses on the emergence of shared flow experiences. For this
purpose, the metric called ICC was utilised that describes the amount of variance that
can be explained in a person’s variable outcome (report, behaviour or physiology) by
the group membership. The ICC as it is used in small group research (Bliese, 2000) is
determined as the variance from the group level (level-2) divided by the sum of the
variance from the group level (level-2) and the residual variance in the dependent
variable (or the total variance in short). The ICC1 can be considered an index of the
reliability of the group means (Bliese, 2000). This property means that for high ICC



168 Chapter 7. Experiment 2 - Group-Level Flow Dynamics

values, a single rating from an individual can be considered to provide a relatively
reliable rating of the group mean. However, for lower ICC levels, multiple ratings
might be required to provide reliable estimates of group means (Bliese, 2000). In this
research, the ICC1 was computed from an LMM with the group level (3-person unit)
as a random effect variable for univariate and multivariate analyses (i.e. across all
difficulty conditions and for each difficulty condition). For the univariate analysis,
the within-subject level (RM) was also included as a random effect. In theory, the
ICC, when calculated from an LMM can take values from 0 to 1, with 0 representing
the absence of group influence, and 1 representing complete determination of the
individual’s response by the group. In practice, rather low values are typically found,
with values from 0 to 0.4. Values of 0.5 are considered exceptional (Musca et al.,
2011), and values above 0.25 are considered large effects, values between 0.25 and 0.1
moderate effects, and values above 0.05 small effects (Bliese, 2000). For simplification,
a level of 0.1 means that 10% in the DV response of an individual can be attributed
to the membership to a group. By this property, the ICC can be used to determine,
if a DV can be considered to be aggregatable to the group level (e.g. through mean
averaging) and if a shared experience is present. In short, the emergence of a shared
flow experience in the present data can be considered to be present, if elevated (i.e.
roughly > 0.05) ICC1 levels are found. By utilising the ICC assessment of group
member reciprocal influences on flow, an advantage is that the analysis is bound to
the fundaments of flow theory and the employed survey instruments.

To enable follow-up analysis on the ICCs across the different data domains (report,
behaviour or physiology), it was decided to impute missing values to retain sufficient
statistical power. Otherwise, the removal of missing data in each domain would
have strongly narrowed the number of complete data sets (i.e. complete groups).
Groups with data for at least two members were retained (again, to retain statistical
power), as the LMMs handle unbalanced data well (Cnaan, Laird, and Slasor, 2005).
Predictive mean matching (Vink et al., 2014) was employed for the imputation, using
the repeated measures and the group ID as predictor variables. This way, only
data missing at random were imputed, not entire missing sessions. Thus, primarily
those data were imputed that were removed through previous outlier removal, but
also instances where EEG features might be missing for an ROI where electrodes
were removed in the data preparation process. In addition, potential group-level
effects are already accounted for in the imputation by including the group ID in the
imputation regression. Therefore, in the end, matched (i.e. available completely for
each participant) variables for 101 participants (37 groups in total, 27 of them with
three members, 10 with two members) were available.

Given that the ICC metric is a variance-based point estimate, for which no general
distribution is known, comparison of ICC values requires the use of resampling meth-
ods. Initially, bootstrapping with 5000 repetitions (with replacement on the group
level) was employed to determine ICC1 Confidence Interval (CI)s. This resampling
approach returned very large CI estimates with ranges up to .311, which would mean,
that the present effect sizes would be likely to occur completely at random (i.e. an
effect per condition could just as well be none as it could be exceptional). Given
that bootstrapped CIs from small samples show a substantial variation (Hesterberg,
2015), the complicated statistical distribution of the data underlying the ICC1 (Ren,
Yang, and Lai, 2006), and the finding that bootstrapping ICC CIs performs poorly for
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small cluster sizes (Wang et al., 2019), the unintuitive CI results here were consid-
ered to be too conservative. In related work, ICC-specific bootstrapping algorithms
have for such purposes been explicitly developed for the cases of generalised linear
models with binary outcomes (Ren, Yang, and Lai, 2006) or non-linear mixed mod-
els (Demetrashvili and Van den Heuvel, 2015). Furthermore, in a related manner,
more straightforward, leave-one-out resampling methods have been found to per-
form better than bootstrapping approaches for the CI-based comparison of different
clustering coefficients (Severiano et al., 2011). Due to this understanding, as a com-
promise between the overly conservative bootstrapping results and too optimistic
leave-one-out CIs, a leave-3-out resampling approach was chosen to estimate the
CIs for the ICC1 values in this experiment and, more specifically, for the pairwise
differences amongst them. Leaving out three groups per estimation, a total number
of (37

3 ) = 7770 resampled estimates were computed.

Following the ICC evaluations for the identification of reciprocal (flow) influences,
a set of follow-up analyses were conducted. These approaches have not been pre-
viously pursued in (social) flow research and represent a major contribution of this
work. Specifically, through a combination of median splits with the aforementioned
resampling methods (to compare sub-sampled ICC1 estimates), it is explored which
variables indicate a relationship with the strength of flow group dependence. It is
important to note, that these analyses provide insight not on the per-group inten-
sity of a shared flow experience, but rather on conditions under which a reciprocal
influence on flow experiences emerges in groups in general. The process for these
analyses is as follows. First, the designated explanatory variable of interest (always
the mean average of the group) is used to split all the groups into sets with lower
and higher levels along the median (excluding groups that are on the median). Sec-
ond, the flow ICC1 metrics are calculated for the lower and higher DV expression
sub-groups. In step three, the previous process is repeated for each sample of a
leave-three-out resampled data subset to estimate CIs of differences between the two
sub-groups (lower and higher variable levels). However, given the already small
data set, a median split approach comes with a severe limitation in statistical power.
Given the potential that this can introduce sporadic results, an additional sensitivity
analysis was conducted to further assess the likeliness and robustness of the median
split results. For this sensitivity analysis, ICC1 levels are estimated for sequentially
shortened data, in which lower and higher percentiles of the data are removed (in
steps of 1 percentile). This process means, for example, that in a first step, samples
in the 99th percentile are removed from the data, in the second step the groups in
the 98th percentile, and so forth until the data contains only the data up to the 50th
percentile (excluding the median again). The samples thus represent instances that are
step by step closer to the below-median sub-group, or stated otherwise, the samples
represent instances where the highest-scoring groups are sequentially eliminated.
Then this process is also completed by starting to remove data from the 1st percentile
up to the 50th percentile (the lowest scoring groups are stepwise removed). This
process allows inspecting if a result found in the median split is following a trend
or rather represents a sporadic result. This process is visualised in Figure 7.1. Given
the different frequencies of collected data, these analyses are either conducted for
the univariate ICCs (across all difficulty conditions - for variables collected at the
end of the experiment) or for the multivariate ICCs (for variables collected after each
condition). Through this approach, there are no aggregation mismatches created
for the interpretation (separation of general perception levels and conditional per-
ceptions). Furthermore, for the multivariate ICC-split analyses, the two conditions
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with optimal difficulties (CAL and AUTO) were used only. This step was taken for
two reasons. First, it was considered that multiple evaluations would be useful to
deflate the previously outlined risk of false positives and negatives. Second, given
that the border conditions (EASY and HARD) have shown apparent differences in
various variables to the two optimal difficulty conditions, they were excluded from
this evaluation (see Section 6.3).

FIGURE 7.1: ICC Influence Analysis Process.

Given that the previously mentioned analyses do not allow to infer single-group
flow clustering levels (due to their high aggregation level), in a final analysis step,
variables with similar ICC patterns are used for regression analyses that include
mean-aggregated variables, whenever possible (i.e. for conditions in which ICC
levels > 0.05 are found - see Bliese, 2000). In this approach, it is especially of interest,
whether or not data with higher temporal availability (here: neurophysiological -
precisely, EEG data) shows predictive power for mean flow levels in groups.
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7.3 Results

7.3.1 Flow & Small Group Diversity

The first analysis focuses on the influence of small group member diversities on
flow experiences. For this purpose, an LMM similar to the previously developed
one in Section 6.3.2 was created. This time, however, only the MP condition data
was utilised. The model with the best fit includes individual (level-1) and group
(level-2) random effects, and fixed effects for difficulty, flow proneness, and reported
diversity metrics (perceived evenness in member effort, integration of abilities and
expertise, and general perception of group diversity). Demographic diversity metrics
(age ranges, gender distribution - as the number of women per group, and technical
backgrounds - as the number of different study majors) were not included in the final
model as the did not improve model fit. The final model is shown in Table 7.1. The
results show that besides the already identified fixed effects, only perceived diversity
in member effort has a significant, positive influence on perceived flow (trend level).
The latter result means that flow experiences increased when individuals perceived
all group members to put forward similarly high levels of effort. In contrast, other
indicators of diversity (perceived diversity, integration of abilities, age range, gender,
and technical diversity) show no relationship with flow in this experiment.

Metrics Flow (MP)

Fixed Effects
DifficultyF 25.9192***
Flow PronenessC 0.4887 (0.1656)*
General Group DiversityC 0.0873 (0.0684)
Even EffortC 0.1274 (0.0571)t

Skills IntegrationC -0.0773 (0.0725)

Random Effects
Level 1 Resid. (Indiv.) 0.1213***
Level 2 Resid. (Grp.) 0.0045**

Goodness-of-Fit
AIC 902.8918
BIC 946.2915
Marginal R2 0.195
Conditional R2 0.359

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; F = Factor Variable
(Showing F-Test Results); C = Continuous Variable (Showing
Beta-Coefficients with SE); Random Effects Shown as
Variance; P-Values are BH-Corrected.

TABLE 7.1: LMM for Flow in the MP Condition Including Diversity.

7.3.2 Flow & Small Group Experiences

The second analysis focuses on the relationship of flow experiences with variables
related to desirable group experiences, specifically regarding group performance,
satisfaction and growth. The results for the RM variables (performance indicators)
are shown in Figure 7.2. The results for the group satisfaction and growth variables
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FIGURE 7.2: RM Correlations of Flow Reports with Perceived Group Per-
formance Reports in the MP Condition in Experiment 2. P-Values Are
BH-Corrected. The Fit Line is Created From an LMM. Dashed Lines

Represent Predicted Values Per Subject With Random Intercept.

are shown in Figure 7.3. For performance, both the perception of group perfor-
mance and the perception of the amount of information sharing - a measure that
has been previously used as an indirect measure of performance in small groups
(Aubé, Brunelle, and Rousseau, 2014; Heyne, Pavlas, and Salas, 2011) confirm this
relationship through RM correlations. By analysing the mean flow experiences to-
gether with general session perceptions from the end of the experiment, further
group-level results are found. Firstly, significant, positive small to moderately sized
correlations are found between flow and variables indicating a sense of satisfaction
with the group like a sense of enjoyable group member interactions and relationships,
general satisfaction with the group work, and a sense of affective involvement with
the group work. Further, significant, positive and moderate correlations are found
between flow and perceptions of individual growth through the interaction with the
group, perceptions of collective efficacy (a sense of growth of the group as a unit),
and perceptions of identity fusion (a sense of identification with the group).

Thus, across numerous variables, flow experiences show positive correlations with
indicators for group performance, satisfaction and growth. Previous research shows
fitting results (see Table 3.1), but show for the first time, that these relationships are
found even in digitally mediated-interaction scenarios. This finding is especially
important as the previous chapter has shown that a too restrictive interaction format
might impede flow experiences in small groups. Nevertheless, such limitations to
flow emergence do not seem to impede the relationship with these desirable group
interaction experiences. Such results highlight the potential that flow support might
be a useful vehicle to elicit or a representative indicator to assess desirable experiences
in knowledge work for individuals and particularly for groups.
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FIGURE 7.3: Correlations of Avg. Flow Reports per Participant with Group
Interaction Experience Variables in the MP Condition in Experiment 2.

P-Values Are BH-Corrected. The Fit Line is Created From a LM.

7.3.3 Shared Flow Experience Patterns

Flow ICCs

In social flow research (see, e.g. Magyaródi and Oláh, 2017; Heyne, Pavlas, and Salas,
2011; Hout, Davis, and Weggeman, 2018) it is proposed by some researchers, that the
experience of flow in social units represents a shared, group-level experience. Some
researchers also propose that the group-level flow experience is phenomenologically
different from individual flow (Hout, Davis, and Weggeman, 2018). Some of this
research has already attempted to explore the possibility of a shared group level
experience. For example, Tse et al. (2016) find that individual flow experience reports
in dyadic face-to-face interactions (using a DM paradigm) are highly influenced by
other group members (ICC of .447) and are thus validly aggregatable to the group
level. Other research that has argued for group-level aggregation of flow experiences
has so far not provided evidence for this aggregation potential (see, e.g. Heyne,
Pavlas, and Salas, 2011; Magyaródi and Oláh, 2017). Given that the present research
represents an interesting variation to this related work (i.e. being situated in a
digitally-mediated interaction setup with a cognitive task and the AM as a novelty in
a small group DM approach), the presence of shared flow experiences was explored.

To assess the emergence of shared flow experiences in this experiment, univariate
and multivariate ICC1 coefficients were computed. For the univariate ICC1, in
addition to the group ID as a random effect, the individual ID was added as a random
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effect to account for individual changes in flow reports across the difficulty conditions
(similar to the approach by Tse et al., 2016). For a visualisation of the underlying
data, see Figure 7.4. Figure 7.5 shows the ICC estimates, including the recommended
interpretations for effect sizes by (Bliese, 2000) and Figure 7.6 shows the multivariate
resampled ICC distributions, including pairwise differences. For the evaluation of the
results, the absolute values of the point estimates along the recommended effect sizes
are interpreted. The overall level of group influences on flow reporting is moderate
(univ. ICC1 = .130) and substantially lower than in the only comparable study
available (Tse et al., 2016 report an ICC1 of .447 in a dyadic, face-to-face puzzle task
with varied difficulties). Therefore, while the data suggest that flow experiences are
reciprocally influenced in groups (i.e. that there is some possibility for the presence
of a “shared” flow), it appears to be much lower than in related work. Furthermore,
from the assessment of multivariate ICCs across difficulty conditions, the present
data suggest that the potential for such a “shared” flow appears to disappear, when a
task becomes (too) hard (ICC = 0 in HARD in contrast to moderate effect levels in the
other difficulty conditions).

FIGURE 7.4: Flow Reports Per Group and Difficulty Condition in the
MP Condition in Experiment 2. Shapes Represent Group Members.
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FIGURE 7.5: Univariate and Multivariate Flow ICC1 Point Estimates
Incl. Recommended Effect Size Thresholds. The Black Dashed Line

Represents the Univariate Flow ICC1.

FIGURE 7.6: Leave-Three-Groups-Out Resampled Multivariate ICC1
Distributions Incl. Significance Levels of Pairwise Differences. Crosses

and Numbers Next to Them Represent Resampled Means.



176 Chapter 7. Experiment 2 - Group-Level Flow Dynamics

Possible Explanations for Low Flow Clustering

Overall, the ICC results indicate a present, yet only moderately strong influence
of the social unit on individual flow reports. This observation is in stark contrast
to previously reported findings (Tse et al., 2016). The reasons for this difference
could lie in peculiarities of the experimental designs and cultural backgrounds. Tse
et al. (2016) use a full Within-Subject (WS) design that includes conditions with and
without social interaction for each participant. Experiencing the contrasts of these
situations directly might be causing different strengths of reciprocal flow influence
to emerge (remember: flow could also be getting worse in the social interaction -
perhaps especially in simple experiment tasks). Also, Tse et al. (2016) work with an
Asian sample. Due to stronger collectivist cultural orientations (Hofstede, 1984), it
could be possible that a stronger influence of other group members on individual
flow emerges by tendencies to integrate the actions of other’s more strongly into
one’s actions. Furthermore, as shared flow has been suggested to more readily
emerge in smaller sized groups (Armstrong, 2008), merely the fact that Tse et al. (2016)
observed dyadic interactions could be a central cause for the higher ICC levels in that
study. More experiments are required to elaborate if these possibilities represent valid
explanations for different intensities of reciprocal flow influencing in small groups.

However, given the previously documented results on lower flow intensities in
social interaction in this experiment (see Section 6.3.2), it is also possible that the lower
ICC levels might be related to other factors that can be further investigated given the
present data. Importantly, these factors relate to the previous observation, that the MP
condition represents a rather restrictive environment in terms of social information,
task degrees of freedom, and integration of individual difficulty preferences. It
is considered possible, that the emergence of reciprocal flow influences, might be
limited by these factors: First, a lack of social signal information might be reducing the
potential to experience shared flow by limiting processes like emotional contagion or
stress-buffering, that might be involved in the emergence of shared flow experiences
(see, e.g. Labonté-Lemoyne et al., 2016). Given that the experiment in Tse et al.
(2016) was conducted in a F2F setting, the ICC difference to this study could also
be explained by the reduced social information factor. Second, a lack of degrees
of freedom to select sub-tasks that are optimally difficult might also be reducing
the possibility for shared flow emergence, as individual strengths, weakness and
preferences cannot be usefully integrated to leverage the potentials of acting in a
small group. Again, comparing the present design to that by Tse et al. (2016) in
which dyads solve puzzles with many more sub-tasks (puzzle tiles), this explanation
for the ICC differences is similarly plausible. Given that the present experiment
includes variables for perceptions of social presence and autonomy, and recorded
preferences for optimal task difficulty of each group member, these two possibilities
were evaluated using median splits.

As perceptions of social presence were collected at the end of the experiment,
data splits were performed on the group average perceived social presences, and
univariate flow ICCs were estimated afterwards. Figure 7.7 shows the results of the
flow ICC estimations. The paired difference CIs indicate that no significant differences
are found after the social presence median split. Also, the LM in the sensitivity
analysis further indicates the absence of such an effect. Therefore, it is considered that
differences in social presence perceptions are not related to the emergence of shared
flow. However, it should be noted that the absolute values for perceptions of social
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presence are rather low. Also, as was discussed in the previous chapter, the social
presence variable cannot be seen as a representative for the wide variety of social
dynamics that could be possible to occur and interact with the emergence of group
influences on flow experiences. Therefore, more research is needed to substantiate if
the current result representatively describes the independence of social information
and “shared” flow.

FIGURE 7.7: Flow ICC1 Estimates After Median Splits on (Group Average) Perceived
Social Presence in Experiment 2. C = Confidence Level; Left: Leave-Three-Groups-
Out Resampled ICC Estimates. Right: Flow ICCs After Stepwise Removal of Lowest

and Highest Percentiles.

Preferences for optimal difficulty were collected once per participant and group at
the start of the AUTO condition. Data splits were performed on the range of difficulty
preferences, and multivariate flow ICCs were estimated afterwards, in this instance,
for the AUTO condition as it reflects the time of preference elicitation. Figure 7.8
shows the results of the flow ICC estimations. The paired difference CIs indicate a
(trend level) significant difference for the median split, with higher flow ICCs when
difficulty preferences are more similar. The LM in the sensitivity analysis further
indicates that such a trend might be present. Therefore, it is considered that similarity
or diversity in preferences for optimal difficulty are weakly related to the emergence
of reciprocal flow influences.

Lastly, perceptions of autonomy were collected after each difficulty condition.
Therefore, data splits were performed on (group average) perceived autonomy and
multivariate flow ICCs were estimated afterwards. Results are presented for the
optimal difficulty conditions CAL and AUTO, as these are considered to be the most
representative, natural situations in the experiment (see Section 7.2). Figure 7.9 shows
the results of the flow ICC estimations. The paired difference CIs indicate significantly
higher flow ICC in the CAL condition, but not the AUTO condition. However, in
the latter condition, the a difference is similarly visible, and the sensitivity analysis
suggests a trend in both conditions. Therefore, it is considered that differences in
autonomy perceptions are related to the strength of group influences on flow. These
results lend first evidence for the proposition that increased autonomy in groups
influences the reciprocal flow influence of group members. Yet, the effect size might
be moderated by the task difficulty, dissipating with more difficult tasks.
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FIGURE 7.8: Flow ICC1 Estimates After Median Splits on (Group Range) Preferences
for Optimal Difficulty in Experiment 2. C = Confidence Level; Left: Leave-Three-
Groups-Out Resampled ICC Estimates. Right: Flow ICCs After Stepwise Removal

of Lowest and Highest Percentiles.

FIGURE 7.9: Flow ICC1 Estimates After Median Splits on (Group Average) Per-
ceived Autonomy in CAL and AUTO Optimal Difficulty Conditions in Experiment
2. Left: Leave-Three-Groups-Out Resampled ICC Estimates. Right: Flow ICCs After

Stepwise Removal of Lowest and Highest Percentiles for Social Presence.
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In a last set of analyses, it was assessed further if variables related to the diversity
of group members show a relationship to flow ICC levels. Specifically, perceived
diversity metrics (general group diversity, even efforts, skills integration and average
flow proneness) were assessed. The demographic group composition variables (e.g.
gender, technical background) that were analysed previously were excluded from
this analysis as their distributions were not suitable for the median split analysis. The
results of the analyses are summarised in Table 7.2. No relationships between uni-
variate flow ICC levels and these perceived diversity metrics were found. This result
indicates that the emergence of flow group-level influences of flow is independent of
such group member diversity factors. This pattern is further in line with the general
impression from the previous flow-diversity analyses, that flow in groups (at least in
this setting) might not be so dependent on diversity factors, or that these variations
were not strong enough to show as significant effects in this experiment.

Variable Means ICCs Sig. CI β

Flow Proneness 4.1 / 3.76 0.123 / 0.090 n.s. C = 90 [-0.04, 0.10] 0.04
Gen. Grp. Diversity 6.10 / 4.72 0.148 / 0.079 n.s. C = 90 [-0.09, 0.17] 0.05
Even Effort 6.06 / 4.62 0.106 / 0.111 n.s. C = 90 [-0.10, 0.05] 0.00
Skills Integration 5.52 / 4.23 0.091 / 0.143 n.s. C = 90 [-0.14, 0.01] -0.03

Notes: First Value is for Upper Sub-Group, Second Value is for Lower Sub-Group;
β Represents the LM Coefficient From the Sensitivity Analysis.

TABLE 7.2: Univariate Flow ICC Relationships to Diversity Metrics in Experiment 2.

Altogether, these follow-up analyses provide first empirical evidence for some of
the developed propositions that reciprocal flow influence might be dependent on task
degrees of freedom, or integration of individual difficulty preferences. These results
do not disconfirm other propositions and are insufficient to rigorously substantiate
how the emergence of shared flow is determined. Yet, they provide a starting point for
the development of dedicated experiments that can provide better means to confirm
the results. Presently, a hypothesis that can be derived as a starting point is that
higher levels of autonomy are needed for the emergence of a shared flow experience.
This result means in contrast, that when group members feel that they cannot act
autonomously (i.e. that their actions are determined externally), they will less likely
experience shared flow.

Shared Flow Changes with Difficulty

Beyond the assessment of flow report clustering over the whole experiment, clustering
indices were also analysed at a more granular level. Multivariate (i.e. difficulty
condition-specific) flow ICCs have not yet been reported in the related literature.
However, such elaborations could help in explaining what makes a shared flow
experience happen. In the present experiment, moderate ICCs are visible for flow in
all difficulty conditions except HARD (see Figure 7.6). To further assess the robustness
of this finding, additional indicators for difficulty from three data domains (report,
behaviour, and physiology) were utilised to conduct follow-up analyses. Specifically,
(group average) reported difficulties, objective task difficulties (task difficulty levels),
and HiBeta EEG powers (the most sensitive mental workload feature in the present
neurophysiological data) were used in median split analyses. The results for reported
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difficulties are shown in Figure 7.10, for task difficulty levels in Figure 7.11, and
HiBeta (at all four ROIs) in Figures 7.12 to 7.15. For all three data domains, the results
further confirm the initial assessment, that with higher difficulties flow ICC levels
are reduced. This confirmation is the case in both optimal difficulty conditions. For
the HiBeta features, this effect is most visible in the CAL condition at all ROIs, and
visible in both CAL and AUTO conditions at Central scalp electrode positions. It is
important to note that the HiBeta feature at Central sites has in previous flow-EEG
analyses also shown the strongest effect sizes of these four ROIs (see Section 6.3.3),
which further indicates a particular relevance of this cortical site for the identification
of flow boundary conditions.

FIGURE 7.10: Flow ICC1 Estimates After Median Splits on (Group Average) Per-
ceived Difficulty in CAL and AUTO Optimal Difficulty Conditions in Experiment 2.
Left: Leave-Three-Groups-Out Resampled ICC Estimates. Right: Flow ICCs After

Stepwise Removal of Lowest and Highest Percentiles.

The finding that metrics that assess difficulties from various domains unanimously
support the dissipation of reciprocal flow influences with high difficulties shows the
robustness of this observation. A possible explanation for this phenomenon is that
with too high task difficulties, group members turn their attention to themselves and
away from other group members. Such a disengagement from the group (a form
of isolation) could explain why shared flow experiences are no longer emerging,
as essentially every group member might be acting by themselves alone. Thus,
in too hard tasks, despite formal interdependence, only a form of co-located flow
(see Walker, 2010) can emerge. Note again, that in this situation, it is still possible
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FIGURE 7.11: Flow ICC1 Estimates After Median Splits on (Average) Task Diffi-
culty Levels in CAL and AUTO Optimal Difficulty Conditions in Experiment 2.
Left: Leave-Three-Groups-Out Resampled ICC Estimates. Right: Flow ICCs After

Stepwise Removal of Lowest and Highest Percentiles.

that individuals might experience some form of flow by themselves, it is just no
longer influenced by other group members. The observation that such instances
might be readily identifiable using a neurophysiological marker with high temporal
resolution (that is less intrusive than reports and more task-independent than a task
difficulty level feature) provides an exciting opportunity for future research and the
development of adaptive NeuroIS. Given sufficient calibration of a respective system,
HiBeta EEG power could be used to identify situations when tasks are becoming too
difficult for group members and shared flow experiences are no longer possible. Such
EEG features that are reflective of mental workload states could also be employed in
efforts to identify situations of too low individual difficulties. Therefore, they appear
to possess the potential to calibrate, for example, task automation or feedback systems
that inform individuals and groups about the distribution of workloads. Lastly,
another possibility was previously indicated, that is the emergence of group-level
influences on HiBeta features in contrast to most other neurophysiological features.
The relevance of this finding is further pursued in the next section.
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FIGURE 7.12: Flow ICC1 Estimates After Median Splits on (Group Average) HiBeta
at Frontal Electrode Positions in CAL and AUTO Optimal Difficulty Conditions in
Experiment 2. Top: Leave-Three-Groups-Out Resampled ICC Estimates. Bottom:

Flow ICCs After Stepwise Removal of Lowest and Highest Percentiles.
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FIGURE 7.13: Flow ICC1 Estimates After Median Splits on (Group Average) HiBeta
at Central Electrode Positions in CAL and AUTO Optimal Difficulty Conditions in
Experiment 2. Top: Leave-Three-Groups-Out Resampled ICC Estimates. Bottom:

Flow ICCs After Stepwise Removal of Lowest and Highest Percentiles.



184 Chapter 7. Experiment 2 - Group-Level Flow Dynamics

FIGURE 7.14: Flow ICC1 Estimates After Median Splits on (Group Average) HiBeta
at Posterior Electrode Positions in CAL and AUTO Optimal Difficulty Conditions in
Experiment 2. Top: Leave-Three-Groups-Out Resampled ICC Estimates. Bottom:

Flow ICCs After Stepwise Removal of Lowest and Highest Percentiles.
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FIGURE 7.15: Flow ICC1 Estimates After Median Splits on (Group Average) HiBeta
Over the Whole Scalp in CAL and AUTO Optimal Difficulty Conditions in Exper-
iment 2. Top: Leave-Three-Groups-Out Resampled ICC Estimates. Bottom: Flow

ICCs After Stepwise Removal of Lowest and Highest Percentiles.
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Shared Flow Prediction

The observation of group influences on Frontal, Central, and Whole Scalp HiBeta
features (see Section 6.3.3, Table 6.20) brings with it interesting possibilities. The
emergence of group-level influences for this sensitive and specific mental work-
load feature suggests that such reciprocal influences could represent an influence on
mental workload by other group members. As flow theory is firmly rooted in the
argument that (elevated) optimal difficulty is required for more intense flow experi-
ences (see Chapter 2), the theory could be extended by the proposition that (optimal)
reciprocal influences of difficulty act similarly as a precondition for the emergence
and intensification of shared flow experiences. However, more evidence is needed to
substantiate such a proposition. To further investigate a possible relationship, two
follow-up analyses were conducted. First, multivariate ICC patterns for the HiBeta
features were evaluated for indirect inference. Second, based on this first analysis, a
direct analysis is pursued using (group) mean aggregated flow reports as DV and
HiBeta power as IV in an LMM analysis on group flow - group HiBeta relationships.

The results of the first analysis (the HiBeta ICC patterns per condition) are shown
in Figure 7.16 and Figure 7.17. Both figures indicate that HiBeta levels show a similar
progression as flow ICCs, namely a dissipation at high(er) task difficulty levels.
Again, the Central ROI is found as the most related feature, together with the Whole
Scalp HiBeta feature. These findings further indicate that flow clustering and HiBeta
clustering might be related.

FIGURE 7.16: Multivariate Flow and HiBeta ICC1 Point Estimates Incl.
Recommended Effect Size Thresholds.
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FIGURE 7.17: Leave-Three-Groups-Out Resampled Multivariate ICC1
Distributions Incl. Significance Levels of Pairwise Differences for
HiBeta Features at Frontal, Central, and Whole Scalp ROIs. Crosses

and Numbers Next to Them Represent Resampled Means.
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Given that these first results indicate the suitability of flow and HiBeta pooling,
(group) mean aggregations were computed for both types of data for all conditions
in which the ICC levels were above the small effect size threshold of 0.05 (see Bliese,
2000). Afterwards, separate LMM models were developed to assess direct relation-
ships (see Table 7.3). For Frontal and Whole Scalp ROIs, LMMs include linear (group
mean) HiBeta power as predictors of (group mean) flow. For the Central ROI, a better
model fit was indicated for the inclusion of orthogonal quadratic HiBeta power. All
models also include group (level-2) random effects. The importance of this analysis
is, that in contrast to the previous ICC analysis, analysis with group mean aggre-
gations allow to infer the absolute level of shared flow experiences. Initially, only
for the quadratic group mean Central HiBeta power, a significant relationship was
found with group mean flow. However, follow-up sensitivity analyses that included
only the quadratic term in the model did no longer find a significant relationship.
Therefore, so far, there is no sufficient support that group mean flow can be predicted
using group mean aggregations of EEG mental workload indicators.

Group Mean Flow ~

Metrics
HiBeta Frontal
(excl. AUTO)

HiBeta
Central

HiBeta
Whole Scalp

Fixed Effects
Intercept 4.7475 (0.0821)*** 4.8183 (0.0613)*** 4.7881 (0.0830)***
Power 0.0384 (0.0927) 0.4734 (0.5989) 0.0474 (0.0768)
Power2 - -1.3349 (0.5765)* -

Random Effects
Level 2 Resid. (Grp.) 0.1116* 0.0653* 0.0918**

Goodness-of-Fit
AIC 131.9562 196.3044 204.0962
BIC 141.3314 210.0723 215.1106
Marginal R2 0.003 0.054 0.004
Conditional R2 0.376 0.256 0.284

Notes: tp <.1; *p <.05; **p <.01; ***p <.001; Fixed Effects Shown as Beta-Coefficient
with SE; Random Effects Shown as Variance; P-Values are BH-Corrected.

TABLE 7.3: Mean-Flow Mean-HiBeta LMM in Experiment 2.

Given the previous results, it is still an interesting endeavour to investigate this
possibility further. The observed ICC levels for both flow and HiBeta in this experi-
ment are reasonably low. Therefore, intensifications of this clustering strength could
bring more robust findings to light. Currently, the low ICC levels come with a lack
of reliability of the group means (Bliese, 2000) that can only be overcome through
such intensification. A simple approach would be to compare the digitally mediated
setting to a more open F2F setting with more complex tasks, as this seems to have
lead to stronger flow report clustering in previous work (see Tse et al., 2016). Together
with the other findings on the relationships of flow and HiBeta, this would currently
appear to be one of the best candidates to indicate such a relationship. Furthermore, it
was previously observed that the present data does not include one of the more robust
indicators of mental workload, that is frontal Theta power (likely due to the absence
of missing midline electrodes). Thus, the proposed relationship could be investigated
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in such situations through additional features in other EEG measurements. The same
can generally be said for the observed HiBeta features, namely that higher density
EEG recordings together with spectral and spatial filters, could further identify if the
suggested relationship exists. The likeliness of a relationship of reciprocal workload
influences with reciprocal flow influences represents a proposition that is close to
original flow theory, and has herein received initial evidence. This relationship can
well be tested in future research both by improving effect sizes (and thus reliability
of ICC metrics) and sensitivity of EEG feature extraction. Therefore, the derived hy-
pothesis that shared workload might be involved with shared flow as a precondition
or experiential component represents a valuable contribution to the related literature
and a central one from this second Experiment in this dissertation.

7.4 Discussion

7.4.1 Central Findings

In these analyses, central gaps in the research on flow in social units were addressed
that pertain to (1) the causes of flow in terms of social unit compositions and be-
haviours, (2) the consequences of flow in social interaction in digitally-mediated
environments, and (3) the analysis of the emergence of shared flow experiences,
especially paired with the investigation of multidimensional data (report, behaviour,
neurophysiology). Concerning the derived research questions (that specifically focus
on the observation of flow in digitally-mediated small group collaboration), novel
insights emerged that need to be critically appraised.

RQ9 - Flow & Small Group Diversities

Research Question 9 asked if group composition (diversity) variables influence flow
in social units in digitally-mediated interaction. Theoretical work has highlighted
that dimensions like even group effort, skill integration and member diversity could
be of importance for the emergence of flow in social interaction (Hout, Davis, and
Weggeman, 2018; Walker, 2010). For this reason, relationships of these variables with
flow experiences in small groups were expected, yet were not found (except for even
effort). On the one hand, this confirms previous propositions to some degree by
showing that perceptions of uneven efforts of group members appear to be linked to
lower flow intensities. Two possible reasons for this are considered. One, individuals
might disengage from the task when noticing that other’s do not put forward similar
amounts of efforts as themselves. Two, uneven effort levels might be related to
imbalances in task difficulties, as some members might have to take on more (too
much) task load while others might take on less (too little) of that task load. In both
cases, lower flow intensities would be likely to emerge.

On the other hand, the absence of flow-diversity results is rather unexpected. Given
the simplistic task and the restrictive experimental design, it is possible, that some
of these variables reflecting group diversities do not play a sufficiently strong role
in this situation. Consider for example, that each group member in this sample,
is likely sufficiently equipped to complete the mental arithmetic task (this was an
explicit consideration in the design of the experiment). Therefore, a variable like
skill integration (see Hout, Davis, and Weggeman, 2018), might exhibit ceiling effects.
Such effects are not present in more naturalistic, real-life settings where complex tasks
require diverse and scarce abilities, and where group members must find ways to
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integrate them in a more dedicated manner. This coordination process is not required
in the present experiment (given more similar sub-task difficulties and member
abilities). However, such coordination processes are also prone to interference from
technical or emotional conflict (Clarke, 2010). Thus, while the present results suggest
that flow experiences in groups could in some circumstances be less related to member
and skill diversities, it is also likely, that there involvements influences flow in groups
in more complex, natural settings. For these reasons, it needs to be studied further
when and how such relationships exist and under which circumstances their influence
might be altered to achieve desirable outcomes for Knowledge Work (KW) groups.
Such desirable small group interaction outcomes are in this work further confirmed
to be related to flow experiences.

RQ10 - Flow & Group Interaction Experiences

Research Question 10 asked what the relationship of flow is with group perfor-
mance, satisfaction and growth in digitally-mediated interaction. The results from
the correlation analyses support the connection of flow to these positive experiences.
Thus, the relevance to advance experimental flow research is highlighted further
as these correlations position flow at least as a proxy, a representative measure for
all these desirable outcomes in the KW context. Researchers have proposed, to use
flow experiences as a metric for high quality work experiences (Quinn, 2005). Such a
proposition receives additional support through this multitude of correlative flow
relationships. This observation is in line with previous studies on flow in social
interaction (see Table 3.1). It is essential to see that the digital mediation scenario does
not impair the general connection to performance, satisfaction and growth outcomes
for groups. However, as is the downside of correlation analyses, it further needs
to be elaborated what the nature of the relationship of flow to these dimensions is.
Whether or not, for example, flow is a direct cause of these dimensions would be
important to identify to refine (social) flow theory further. Also, for practitioners
and the development of adaptive NeuroIS, the identification of causal relationships
(and possible moderating and mediating influences) remains a gap that needs to be
closed to improve the quality of recommendations and to substantiate actions for
behavioural changes.

RQ11 - Group-Level Flow Experiences

Research Question 11 asked how shared flow emerges in digitally-mediated inter-
action. First, it is found that the clustering of flow experiences (in small groups) is
present at a much lower level than in related work. This finding indicates that the
potential of a shared flow experience is reduced in this experiment. As potential
explanations, the lack of degrees of freedom in the task processing, but also the lack
of social signals and communication are identified and explored further. While the
latter proposition is not supported, this does not mean that other social dynamics
might not be related to shared flow experiences. Candidates for such dynamics are
emotional contagion (Labonté-Lemoyne et al., 2016) and stress-buffering (Tse et al.,
2016; Palumbo et al., 2017) that might be suppressed in the present experiment design,
as hardly any form of task-unrelated communication could take place.

In contrast, support is found for the former proposition, as flow Intra-Class Correla-
tion Coefficient (ICC) coefficients appear to increase when the perceived autonomy of
group members increases and when the self-selected optimal difficulty is closer to all
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members preferred optimal difficulty. Two possible reasons are considered to explain
this pattern. First, given that autonomy is known to strongly impact individuals’ task
engagement (a central finding in the Self-Determination Theory in social psychology
- see Deci and Ryan, 1985; Ryan and Deci, 2002), lower levels of autonomy might be
leading to a reduction in engagement with the group. This process would mean that
individuals essentially become less interactive, and a situation of co-presence emerges,
where individuals might experience more or less flow by themselves, but where they
no longer influence each other and therefore not each other’s flow experiences. In
the sense of Walker (2010)s categorisation of (social) flow experiences, situations
with lower or higher member autonomy might thus be differentiated as situations of
co-located (lower autonomy and lower group engagement) or shared flow (higher
autonomy and higher group engagement). Second, the previously found relationship
between autonomy and optimal difficulty lends itself for an alternative explanation of
the autonomy-shared flow relationship (see Section 6.3.2). Specifically, the influence
of autonomy on reciprocal flow influences might be mediated by optimisation of
difficulty for team members. Such difficulty optimisation could be caused on the
one hand by group members that allow others more to self-select the sub-tasks that
they find ideal for themselves. More freedom in optimal task selection is also evident
in the groups with lower ranges of preferred difficulty. Tasks with high difficulty
cause direction of attention to the self and one’s task (see, e.g. Tozman and Peifer,
2016; Fairclough et al., 2013). It is, therefore, plausible to assume, that especially tasks
that are too hard, might lead to isolation from the group. Again, such a shift in the
interaction pattern might explain why lower autonomy might lead to a dissipation of
reciprocal flow influences, as more situations with (too) hard tasks might emerge that
cause group members to disengage from the interaction with the group.

The latter proposition is particularly supported by the findings on flow ICC changes
with task difficulty. Across multiple analyses and data domains (reports, behaviour,
and neurophysiology), it is observed that shared flow experiences appear only pos-
sible when the task is not too hard. Consequently, when a task becomes too hard,
individuals are likely no longer engaging in the interaction with the group but focus
solely on themselves and their task. While this means that they still can experience
flow individually, the shared part of the experience is no longer possible. Not only the
robustness of the finding, but the finding and the approach itself is a novelty in the
related work and represents a central contribution to (social) flow theory. These find-
ings implicate lower task difficulties as necessary preconditions for the emergence of
shared flow experiences. A unique contribution is the inclusion of neurophysiological
indicators of mental workload in the derivation of this hypothesis. This feature is im-
portant because it identifies cognitive dynamics related to the task difficulty variable,
and because it represents a way to measure and (dis-)confirm this hypothesis in future
work. That being said, it needs to be appraised that the robustness of the HiBeta
feature for showing flow ICC changes was different from the other data domains.
Why this is the case needs to be investigated further in future research. While the
potential is indicated (especially for HiBeta power at Central electrode locations),
refined extraction of frequency ranges and spatial locations should be performed to
confirm the utility of EEG measures to differentiate situations of (too) high difficulty
in small groups.

Beyond the observation of shared flow boundary conditions, another interesting
observation emerged from this (first) analysis of neurophysiological relationships
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to reciprocal flow influences. In particular, ICCs of flow and HiBeta (found and
known as a sensitive indicator of mental workload - see Section 6.3.3 and Michels
et al., 2010) showed similar changes with manipulated difficulty. Furthermore, while
the significance could not be confirmed here, a direct (quadratic) relationship was
suggested between group average flow reports and group average HiBeta power at
Central electrode locations. Again, given that the evidence is only indirect so far the
proposition emerges, that shared flow experiences might be related to shared work-
load levels. More specifically, beneficial reciprocal influencing of workload levels
could be related to more intense shared flow experiences and undesirable workload
influencing to a reduction in (shared) flow intensities. Beneficial and undesirable
workload influencing are herein considered in relation to the well-established rela-
tionship of individual difficulty and flow (Nakamura and Csikszentmihalyi, 2009),
namely that when a group member optimises another’s load (difficulty) their flow
experience should intensify. An example for this could be that a group member for
whom the task is currently too easy, decides to take a part of the workload for another
group member for whom the task might currently be too hard. Resulting from this
interaction, both group members flow experiences would intensify, and the act of
this load optimisation through others could be part of the qualitative difference in
perception of flow (i.e. because others foster one’s flow and vice-versa, the situation
is experienced as a shared phenomenon in the group).

While more evidence is needed to support this proposition, its plausibility is
strengthened by the conceptual closeness to the original arguments in flow theory.
Another strength of this proposition is also that it can be further investigated using
neurophysiological measures. Therefore, it represents the first proposition of how
shared flow experiences might be eventually observed using neurophysiological
methods. Furthermore, this finding extends the flow theory proposition of balanced
difficulty-skill entry conditions to the group level by adding the proposition that
functional (i.e. towards optimal difficulty), and reciprocal workload management
might represent a precondition for (stronger) shared flow experiences.

7.4.2 Limitations & Future Directions

General limitations of the experiment (i.e. sample composition, sample size, or sensor
quality) have been previously discussed, as have been specific methodological issues
for the physiological feature extraction (see Section 6.4.2). As the presented analyses
in this chapter build on the same data, these limitations apply equally.

Therefore, the more specific limitations for these analyses are more directly related
to the used methodology. First of all, it needs to be appraised, that for multiple
analyses (e.g. flow with diversity metrics, flow with group experience metrics, and
flow ICC median-split follow-ups), a mismatch is present for some variables in the
frequency of response elicitation (i.e. some measurements were taken after each
condition and others only at the end of the experiment). This mismatch required the
aggregation of flow reports per participant, and thus brings the possible limitation of
introducing spurious results (see Bakdash and Marusich, 2017). Future work should
find a way to circumvent this issue by also collecting general flow perceptions at the
end of such an experiment, together with some of the diversity metrics. On the other
hand, metrics such as group effort could also be collected with a higher frequency
(after each task). These adaptations may strengthen the robustness of related findings.
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Limitations with aggregation levels also apply generally to the ICC analysis. The
ICC is an aggregate measure that reveals information about the individual response
only by comparison of all groups. While the approach of using median splits allowed
to generate valuable insights into which groups might be experiencing stronger
or weaker reciprocal flow influences, the metric does not allow to infer what the
strength of these influences is for any single group. To overcome this limitation
means to observe interacting groups with repeated measurement (one could consider
a moving window repeated measures ICC assessment per group), which quickly
becomes difficult using self-reports. However, self-reports are currently still required
as the measure of ground truth for flow. Nevertheless, such an approach might have
to be undertaken at least until more unobtrusive and more highly-frequent flow
measurement options become available.

A related direction that could be explored in this regard is the research on physio-
logical synchronisation (see, e.g. Palumbo et al., 2017). Since it has been observed,
that physiological changes can synchronise amongst small group members and have
been found in relation to group performances (see, e.g. Stevens et al., 2012; Stevens,
Amazeen, and Likens, 2013; Berka and Stikic, 2017), it would be interesting to analyse,
if, for instance, HiBeta synchronisation is related to increases in flow synchronisation
(i.e. correlation over time) or clustering (i.e. repeated measures ICC). For flow, this
will likely require a higher specificity in the used physiological features, which is
still something that future research will have to identify (see Section 6.4.2). In the
simplest form, using the ICC median split approach presented here, one could study
if the synchronisation of neurophysiological indicators of mental workload is likely
to be related to changes in cross-group ICCs. This idea means that physiological syn-
chronisation could be used to perform data splits again to see first if the two metrics
identify similar patterns (i.e. groups with higher synchronisation should also be the
groups with higher ICCs). A final proposition for the experimental development
and validation of an adaptive NeuroIS could be to combine a set of controlled and
more open task situations as in Experiment 1 (e.g. letting small groups complete
reference conditions with EASY, AUTO, and HARD task conditions first, followed
by work on a more complex, naturalistic task). Based on the collected data from the
first (restrictive) part of such an experiment, classification models could be developed
that attempt to infer instances of within-group workload and flow. Such approaches
can also be seen in work with (individual) meditation state staging (Hinterberger,
Kamei, and Walach, 2011). In this work, the cognitive experience is first observed in a
controlled form. Then experiential states are staged post-hoc for an open meditation
session using highly relevant EEG features and Machine Learning (ML) models.

Finally, a central limitation for most of these analyses is the lack of experimental
manipulation (except the multivariate ICC analysis by DM). This limitation means
that the herein presented results are of a correlational or quasi-experimental nature
(the ICC median-split analyses), which is why they need to be followed up upon by
structured manipulation to confirm the results and to learn about causality directions
in the identified relationships. Several manipulations would appear useful. Future
work should compare more complex interaction settings to the present setting, to
analyse what intensifies reciprocal flow influences. This direction can either mean the
inclusion of more communication channels (to test if social dynamics like emotional
contagion or stress-buffering - or other process criteria like strategising influence
shared flow emergence) or presentation of a more complex task (to test if higher
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levels of autonomy allow more optimal difficulty selection in the small group and
thus influences shared flow emergence).

To test the proposition that shared flow could be related to shared workload, an
additional direction could be to manipulate if and how workloads can be shared
structurally. To do this, one could maintain the present mechanisms of (partially)
private information together with final answers from all group members, and could
vary mechanisms for task sharing (e.g. sending and requesting vs no sharing - i.e.
pre-determined sub-tasks). Importantly, these experimental manipulations could be
successful in eliciting higher reciprocal flow influences, which would improve the
reliability of group mean responses (Bliese, 2000). As the previous results indicated
but did not sufficiently confirm that group mean flow levels might be related in a
non-linear (quadratic) form to the group mean HiBeta levels, the increased mean
reliability would help to evaluate this finding further. Altogether, such experiments
could help to uncover not only how to theoretically refine the dynamics of flow
experiences in groups (e.g. extending shared flow preconditions) but also to advance
the development of adaptive NeuroIS capable of advising on how to enable or
maintain the flow experiences of small groups.

7.5 Conclusion

This research is the first to investigate group-level (i.e. a shared) flow in a digitally
mediated environment. In doing so, important new findings emerge that advance
flow theory. First, it is found that reciprocal flow influences do emerge, but less
strongly so than in related work with dyadic Face-to-face (F2F) interactions. Possible
reasons for this are discussed, and initial evidence is found, that higher levels of
perceived autonomy (that have been previously linked to optimal difficulty calibra-
tion) and actual better optimal difficulty calibration for group members (indicated
by more similar difficulty preferences) lead to stronger reciprocal flow influencing.
This effect is hypothesised to be caused by maintenance of lower levels of mental
workload, which in turn might facilitate reciprocal influencing and monitoring of
group member actions. The latter aspect of the hypothesis is grounded in the robust
finding (emerging across difficulty manipulations, and reported, behavioural, and
neurophysiological difficulty-related measurements), that with too high task difficul-
ties (and thus too high mental workload), reciprocal flow and workload influences
dissipate. Thus, when a task becomes too hard, individuals are likely no longer
engaging in the interaction with the group but focus solely on themselves and their
task. While this means that they still can experience flow individually, the shared
part of the experience is no longer possible.

Not only the robustness of the finding, but the finding and the approach itself is a
novelty in the related work and represents a central contribution in this work. These
findings have important implications for flow theory, namely that preconditions of
shared flow experiences could be considered to be represented by lower difficulties.
Altogether the herein outlined analyses also represent the first attempt to identify
neurophysiological features that might be linked to shared flow experiences. The
possibility indicated from the similar patterns of flow and mental workload indica-
tors (HiBeta), that shared flow might be related to shared workload represents an
interesting new specification to the theory and warrants further research. Opportu-
nities to conduct this additional research are outlined in the form of manipulations
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of social information, task complexity, and workload sharing mechanisms. These
extensions can further elaborate on the ways of how future adaptive NeuroIS might
be operationalised that can foster shared flow experiences.

The correlation analyses confirmed the positive, relationships between flow ex-
perience and desirable group interaction outcomes (perceived group performance,
satisfaction and growth) even in the context of digitally mediated interaction. Pre-
sently, this emphasises the potential for practitioners to use flow experience surveys
as a simple proxy to capture these interaction outcomes within their work teams, and
to capitalise on the teambuilding boosting qualities of shared flow experiences in
simple, difficulty-calibrated collaborative tasks. Altogether, these results highlight
the positive impact that flow-fostering adaptive NeuroIS could have in the KW envi-
ronment. Therefore, the relevance to further advance this research across additional
settings and with refined methods is evident. In the following chapter, a discussion
of how such future research can be supported and advanced is therefore presented to
derive the essential learnings from this dissertation.
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Chapter 8

General Discussion

To experience more flow has been related to individual and collective benefits, as
flow is strongly linked to general well-being in life, and the strengthening of social
relationships (Keeler et al., 2015; Tse, Nakamura, and Csikszentmihalyi, 2020). In
the work domain, flow experiences have been related to better job performances
(through increased productivity and creativity) and more worker satisfaction, leading
to reduced employee turnover and shielding from burnout (Fullagar and Delle Fave,
2017; Yotsidi et al., 2018). Similarly, research on the social dimension of flow at work
highlights the positive links of flow to workgroup performances, interaction satisfac-
tion and collective efficacy development (Keith et al., 2016; Zumeta et al., 2016; de
Moura Jr and Bellini, 2019). The main goal of this dissertation is to contribute to the
facilitation of flow experiences by advancing the foundations for adaptive NeuroIS.
This approach leverages the increasing feasibility of unobtrusive state observation
through neurophysiological sensors (Blankertz et al., 2016; Seneviratne et al., 2017;
Krol, Haselager, and Zander, 2019). Building on the basis of flow theory, a series
of experiments were conducted that focused on overcoming central limitations in
experimental flow elicitation (i.e. shallow flow contrasts through Difficulty Manipu-
lation - DM paradigms), while observing experiences using wearable ECG and EEG
sensors. Thus, the accompanying research goals and questions focused primarily on
intensifying flow in controlled settings and on the possibility of combining available
neurophysiological knowledge with diversified observations to identify flow from
continuous physiological measures across tasks and paradigms, for individuals and
small groups. To this regard, two Structured Literature Reviews (SLR) (on Peripheral
Nervous System - PNS and EEG observation of flow) and two experiments (with
mental arithmetic and scientific writing tasks - and four manipulations of difficulty,
naturalism, autonomy, and social interaction) were conducted, and the cumulative
results are herein critically reviewed. To do so, first, the insights on flow intensifica-
tion are discussed, followed by an integration of insights on flow observation from
wearable ECG and EEG sensors. Each section briefly discusses its background and
integrates findings, and then discusses limitations and directions for future related
research. Afterwards, in two sections, the broader avenue of developing adaptive
NeuroIS is discussed, rooted in the current state of knowledge and appraising the
ethical limitations that such adaptive systems could face in the future.

8.1 Intensification of Flow in the Laboratory

Beyond Difficulty Manipulation

The experiments in this dissertation have centrally focused on intensifying flow
in laboratory settings further to enhance approaches for unobtrusive, continuous
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flow detection. DM, controlled Experience Sampling (cESM), Autonomy Manipula-
tion (AM), and Social Context Manipulation (SCM) paradigms have been explored as
these were found to represent the most salient candidates for flow intensification in
the related work. DM was included as the current best practice (Keller, 2016), and
SCM was included as perhaps the most recent candidate for flow intensification. Both
approaches worked moderately well, particularly so because they elicited contrasts
between lower and higher flow experiences. The reasons as to how these approaches
are limited have been extensively discussed in the previous chapters. For the DM
approach, the major limitation lies in the challenge of calibrating optimal difficul-
ties that take individual preferences (for slight underload or overload) into account
(Løvoll and Vittersø, 2014; Fong, Zaleski, and Leach, 2015). For the SCM approach,
major limitations were likely found in the restriction of social information and the
complexity of the task, both factors that are typically much more strongly present
in real-world situations, even those with digitally-mediated communication. Both
DM and SCM approaches have herein likely shown limitations through the more
controlled experiment setup. Such control in experiments is generally seen as an ad-
vantage for the increase of internal validity of Dependent Variable (DV) measurement
(Bless and Burger, 2016). With flow research, however, it has also previously been
considered to hinder the emergence of deep flow experiences (Hommel, 2010; Delle
Fave, Massimini, and Bassi, 2011). In both Experiment 1 and Experiment 2 of this
dissertation, it appears so, that relaxation of these constraints has helped to intensify
flow experiences. Specifically, in comparison, the approaches centrally characterised
by the variation of autonomy (cESM in Experiment 1, AM in Experiment 2), have
shown the most promising flow intensification potential.

Including Autonomy for Intensified Flow

Recommendations for future flow research herein centrally propose an integration
of higher autonomy for the experiment participants. Such autonomy would ideally
be integrated into an otherwise controlled environment. The two approaches that
have been shown here are: (1) to allow participants to self-calibrate a task’s difficulty
towards an optimal level, and (2) to allow participants to bring a task that is naturally
relevant to them and to self-select a challenging task goal. Similar options have
already been employed in related work. For example, Barros et al. (2018) allow to
self-select the difficulties in game tasks in a DM paradigm. Shearer (2016) allows
participants to select from a palette of five pre-selected video games at the start of
an experiment that is conducted over two sessions to include individual preferences.
Manzano et al. (2010) and Harmat et al. (2011) observe musicians as they perform
well-known pieces that were brought to the experiment by the participants. When
higher control is required, an interesting option for flow intensification research could
thus be to integrate recommendations for task complexity with participant auton-
omy. In some related work, the herein termed Mastery (MAS) paradigm has been
employed (De Kock, 2014; Kramer, 2007; Manzano et al., 2010). The MAS paradigm
focuses on repeated task execution so that participants can build expertise or so that
through the repetitive process, the flow-entering process is facilitated. A significant
advantage of this design is the repeated measurement itself which is a useful feature
for neurophysiological variables as it capitalises on the observation of intra-individual
variance over inter-individual variance. To include more expertise variation, partici-
pants could be sampled so that they come with different pre-existing expertise levels.
An example of such an approach could be seen in the observation of chess players
(Tozman, Zhang, and Vollmeyer, 2017). For the Knowledge Work (KW) context, this
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could be similarly performed with undergraduate students, graduate students, and
more experienced scholars in a scientific writing task, or with computer science stu-
dents and experienced programmers. Including autonomy in a MAS paradigm could
be achieved by allowing participants to bring their work, or to repeatedly calibrate
the difficulty of the task after each trial or interruption. For example, with the chess
players, they might be allowed to self-select a weaker or stronger opponent after each
game, dependent on how they feel that such an opponent best suits their preference
for optimal difficulty. In the KW context, such adaptation might be included through
revising self-selected goals after each trial. Such approaches not only integrate more
individual preferences and are therefore likely to foster optimal difficulty calibration
(see Section 6.3.2) and intrinsic motivation (autonomy is known as a strong driver of
intrinsically motivated behaviour in Self-Determination Theory - see Deci and Ryan,
1985; Ryan and Deci, 2002). Also, naturalistic (i.e. closer to real-world) approaches
increase the external validity of the research findings, which in itself is an important
goal that flow (neurophysiology) research should focus on.

Increasing Naturalism for Intense Flow

The focus of the presented experiments on (mostly) simple laboratory tasks is thus
still amongst the limitations of this dissertation. As was previously emphasised, the
results stretch across experimental paradigms, yet they are centrally bound to highly
simplified tasks (except for the writing task in Experiment 1). While, for example,
results from flow reports have been found to converge reasonably well and have
demonstrated the feasibility of these experimental paradigms, a larger variety of
findings is present for neurophysiological patterns. This variety is why a central
recommendation for future work on flow neurophysiology must not only be the
inclusion of more externally valid scenarios but must also include more cross-task or
cross-situational research. As flow is highly volatile in workplace environments (Ceja
and Navarro, 2012) and as cross-task DM research has found substantial variation
in physiological features across tasks (Barros et al., 2018), a conceivable path is to
stepwise increase complexities and freedom in flow experiment designs. Initially, the
inclusion of self-calibration of optimal difficulty in DM experiments that use more
complex tasks in laboratory environments could be a promising start. Afterwards,
moving towards more cESM-like research approaches that focus on (some) environ-
mental control (e.g. using writing tasks such as in Experiment 1 or programming
tasks as in Müller and Fritz, 2015) could further help to integrate previous findings
and increase external validity. Eventually, such research can then be integrated with
field studies (more traditional Experience Sampling - ESM) that continuously observe
flow experiences using physiological measures (see, e.g. Gaggioli et al., 2013). For
these approaches, it needs to be outlined, that a sufficiently high pre-existing expertise
level of participants will be required to enable more intense flow elicitation. The
inclusion of expertise is likely to allow for more implicit task processing which is
considered to facilitate the emergence of perceptions of fluency and task absorption
(see, e.g. Ullén et al., 2010; Manzano et al., 2010). This requirement has been at the top
of the lists of recommendations for what to considerate to elicit highly intense flow
experiences, and therefore converges well with the goals of increasing both internal
and external validity of flow (neurophysiology) research.
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Intensifying Flow in Small Groups

In the direction of social interaction flow research, the recommendations of increased
autonomy and naturalism for flow intensification apply similarly. As was discussed
before, the restrictive format of the design in Experiment 2 is likely to have limited
the emergence of flow experiences both on the individual and the group-level. It will
be critical for social flow research to identify further if either task-related processes
(e.g. coordination or monitoring of actions) or socio-affective processes represent vital
factors for the emergence of flow in social interactions. This distinction is important
as the digital interaction formats that are pervading today’s workplace environments
might especially come with limitations to the latter kind of processes (Derks, Fischer,
and Bos, 2008; Chanel and Mühl, 2015). Therefore, research on flow in digitally-medi-
ated interactions will likely also benefit from including more naturalistic observation
scenarios, such as the cooperation of knowledge workers in synchronous commu-
nication media. An exemplary approach could be to observe small groups that are
working on a joint research project (e.g. working simultaneously on a document on a
digital platform similar to Google Docs) and to interrupt them repeatedly to “catch
group-level flow in the act”. Such an approach could be integrated well with the
research design in Experiment 1. If even in such more open and natural interaction
formats, flow experiences are found to be similarly intense as in Experiment 2 (i.e.
lower than in related work - both on the individual and group level), it could be
concluded that social information that is only present through Face-to-face (F2F)
interaction is an essential requirement for social flow experiences. Subsequently, the
structured manipulation of socio-affective information transmission (e.g. through
the inclusion of text-, voice-, or video-messaging) could then provide vital answers
on how to intensify flow experiences in digitally-mediated social interaction. Such
intensification is particularly required for the development of adaptive NeuroIS that
are capable of fostering group-level flow experiences. The ideally accompanying
measurement and analysis methods are discussed in the next section.

8.2 Neurophysiological Observation of Flow

Electrophysiological Possibilities for Flow Detection

In this dissertation, research using (wearable) neurophysiological sensors was con-
ducted to consolidate the state of flow neurophysiology research and identify which
observations can be robustly identified across experimental paradigms. The focus
on (mostly) wearable sensors was placed as these are the candidates likely to be
used in the KW scenarios of the future (see, e.g. Lance et al., 2012; Blankertz et
al., 2016). As the basis for these observations, two SLRs consolidated the highly
fragmented state of research on flow neurophysiology and highlighted that HRV
measures are a highly used measure of choice for flow observation, given its relation
to physiological activation and indication of parasympathetic Autonomous Nervous
System (ANS) branch activity. Nevertheless, three competing hypotheses for physio-
logical (parasympathetic) activation during flow were found (moderate activation,
high activation, non-reciprocal co-activation). Similarly mixed results were identified
for EEG features, namely competing views on frontal Theta, Alpha, and Beta activa-
tion that were considered to relate to moderate or high mental workload (Theta and
Beta) and low or high frontal downregulation (Alpha). To the regard of these mixed
results, the two presented experiments have led to a series of consolidating results
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and have highlighted novel directions that future research can build upon. Through-
out the experiments, no features (neither in the ECG or the EEG) were found that
exactly or closely mimic the variations in reported flow. Given that related work has
also not uncovered such marker-features (see Chapter 4), the present results suggest,
that either such markers are not identifiable with the used feature spaces (extracted
and possible), or that flow elicitation is still too weak to allow for neurophysiological
contrasts to emerge in these feature spaces. Both propositions are equally plausible,
given the youth and limitations of current flow elicitation paradigms and measures
of ground truth (flow self-reports might not yet be wholly and robustly collecting the
experience). Also, the currently explored feature spaces can be considered to be at a
fairly high level. This state means that features such as HRV and Theta, Alpha, and
Beta frequency band power have been implicated in a wide array of more abstract
concepts as attention, activation, and others (Brouwer et al., 2015; Bridwell et al.,
2018; Blankertz et al., 2016). Therefore, it is questionable if they provide the necessary
specificity to represent flow as individual markers.

An Evidence-Based Description of Flow in the Body and the Brain

That being said, from the present data it can be summarised that flow appears to be
represented by (1) moderate physiological activation (moderate HRV - not low or high
HRV as some researchers have suggested - see Harmat et al., 2011; Keller et al., 2011),
(2) moderate mental workload (moderate HiBeta power - and tentatively elevated
frontal Theta power - not maximal as some research has suggested - see Ewing,
Fairclough, and Gilleade, 2016), and (3) by increased attentional engagement (reduced
and stable frontal Alpha - not increased frontal Alpha as some research has suggested
- see Léger et al., 2014; Labonté-Lemoyne et al., 2016). In addition, flow appears
to be represented by an absence of variation in approach-avoidance motivation or
affective valence (as indicated by the absence of Frontal Alpha Asymmetry - FAA
changes). The latter is an interesting finding, as it indicates that flow is more likely
a state of affective or motivational neutrality, likely explained by the absence of
self-monitoring and self-evaluative processes (see, e.g. Sadlo, 2016; Harris, Vine, and
Wilson, 2017b). It is possible, however, that affective connotations only arise after
the task is completed and self-evaluative processes emerge again. To study these
temporal dynamics of FAA could, therefore, be an exciting direction for flow EEG
research.

Altogether, it is important to note that the aforementioned neurophysiological
results emerge through the inclusion of various mechanisms for the elicitation of
flow experiences in the laboratory (DM, cESM, AM, and SCM), which represents
the major contribution of this work to the flow neurophysiology literature. Of par-
ticular relevance is the finding that through frequency band personalisation and
sub-segmentation, some previous findings could be consolidated (specifically, frontal
Alpha reduction), and some promising new opportunities emerged. Specifically, the
frequency band segmentation highlighted the particular sensitivity of the HiBeta
frequency ranges with manipulations of difficulty. The additional absence of con-
founds with time, and the group level influence on HiBeta levels, further indicate
that these higher frequency ranges could have a valuable role for the observation
of flow on the individual and group level. While a connection of Beta powers to
flow is not entirely new, its sensitivity and emergence over a wider area of the scalp
make it a promising feature to be leveraged in eventual adaptive NeuroIS (see next
section). Importantly, these ranges were here found for the first time to show an
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indirect relationship to shared flow experiences (possibly as indicators of reciprocal
workload influences of group members). Further evaluation of this relationship will
likely have to venture into the domain of neurophysiological synchronisation research
(see, e.g. Palumbo et al., 2017; Stevens, Amazeen, and Likens, 2013; Berka and Stikic,
2017). In synchronisation research, is has been observed that neurophysiological
signals of multiple individuals occasionally show correlations over time and that
such synchronisations can relate to superior group performances and social processes
like emotional contagion (Labonté-Lemoyne et al., 2016) or stress-buffering (Tse et
al., 2016). To enable such synchronisation analyses with EEG data, hyperscanning
protocols will be required that allow the time-locking of collected signals in a highly
precise manner (on the level of milliseconds - see, e.g. Toppi et al., 2016).

Presently, it is primarily argued that the observed patterns allow discussing flow-re-
lated changes in a refined manner and that they pose interesting alternatives for the
detection of situations of optimal difficulty. The potential is especially given in sce-
narios where less information might be available than typically is in laboratory setups
(i.e. with wearable EEG with fewer and unevenly distributed electrodes). Ideally, by
finer spectral and spatial EEG power analysis, future flow research will move even
closer to identifying robust concomitants and markers of flow that can be employed
in adaptive NeuroIS using portable EEG in real-world scenarios. Nevertheless, the
presented results need further confirmation through additional experiments with
varied tasks and task formats. Besides, future work should employ a set of more
refined data-driven feature extraction and selection methods.

Data-Driven Methods for Future Work

In this work, primarily a priori decision-making was involved together with tradi-
tional methods of statistical inference. While this approach grounds the developed
knowledge in scientific best practices, especially in the field of psychophysiology, it
can be argued that such deterministic approaches are generally flawed when attempt-
ing to isolate patterns across domains of reported and physiological data (Bridwell
et al., 2018). Therefore, it is a limitation of the present approach to neglect data-driven
approaches to identify neurophysiological patterns during flow, which has been
argued for in related work (Rissler et al., 2018; Maier et al., 2019). In general, there is
an increasing prevalence of using data-driven methods for feature extraction, selec-
tion and integration into classification models for the observation of mental states
(Brouwer et al., 2015; Bridwell et al., 2018; Roy et al., 2019). Deep Learning methods
have for example shown great promise to make sense of EEG signals due to their
capacity to learn good feature representations from raw EEG data (Roy et al., 2019;
Bridwell et al., 2018). Given that presently, a high degree of a priori decision making
is involved in the analytical process in most flow neurophysiology research, more
data-driven approaches might hold the valuable potential to improve the validity
and accuracy of derived physiological features and should be employed in future
work - if only for feature extraction and selection. In related approaches, Machine
Learning (ML) methods have shown promising accuracies for the staging of different
mental states. For instance, Hinterberger, Kamei, and Walach (2011) induced and
classified different meditation states by using principal component analysis together
with Fisher linear discriminant analysis classifiers. For the task- and person-indepen-
dent classification of mental workload levels, Radüntz (2017) and Radüntz (2020) use
a novel method called dual-frequency head mapping together with support vector
machine classifiers. Deep learning methods have also been employed increasingly to
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varied affective experiences (Rouast, Adam, and Chiong, 2018). Also, convolutional
neural networks, in particular, have shown promising results for the extraction of
good feature representations from (often raw) EEG signals, for example, to detect
workload levels (Zhang et al., 2018), depression (Acharya et al., 2018), or sleep stages
(Sors et al., 2018). Leveraging these data-driven methods will likely be a critical step
in the development of adaptive NeuroIS that could eventually be able to foster flow
in the context of KW.

8.3 Towards Adaptive Systems

Non-Optimal Difficulty Based Adaptation

Based on theoretical and empiric research on flow elicitation, several directions are
conceivable for the development of flow-facilitating adaptive systems. However, flow
neurophysiology research has primarily focused on manipulations of task difficulties
(see Chapter 4), as has the work in this dissertation, and has not yet provided highly
diagnostic findings (or explanations on which processes underlie the emergence of
flow). Thus, the most likely approaches for unobtrusive, real-time data-driven flow
facilitation are systems that can either (1) propose adaptations of task difficulty/load,
or (2) try to maintain flow experience, while it is ongoing. As a basis for such systems,
the previously identified features could be used. For example, the combined observa-
tions of higher HRV, increased frontal Alpha power, and low HiBeta power could
provide promising indicators of underload experiences. In the opposite direction, ob-
servations of reduced HRV, low frontal Alpha power, and high HiBeta power, could
provide promising indicators of overload experiences. ECG, EDA, and EEG-feature
based ML models have already provided initial support for the possibilities to dif-
ferentiate situations of underload, balanced load, and overload (Chanel et al., 2011;
Berta et al., 2013; Chatterjee, Sinha, and Sinha, 2016; Sinha et al., 2015), albeit with
moderate accuracies. Given that future work increases the accuracies and robustness
of such classifiers, mechanisms to increase or decrease task load (dependent on the
task and user-situation) are conceivable.

Underload-Adaptive Systems

If the task or the environment allows, underload-adapting systems could attempt
to directly increase the difficulty of the task (in a similar manner to how games
adapt the difficulty for a player that might be performing too well - see, e.g. Ewing,
Fairclough, and Gilleade, 2016). A work-context example for such adaptation can
be seen with air traffic controllers (Prinzel et al., 2000), or with invoice processing
situations (Rissler et al., 2018), where a system could increase the task difficulty or
load by increasing the task throughput (how many subtasks a user has to handle in
a given time frame). Similarly, underload-adaptive systems could signal to group
members that capacities are available so that work subtasks can be directed to the
individual with idle capacities. In the realm of KW, tasks and environments are highly
complex and are not easily integrated into a simplistic IT-based system that can adjust
difficulties, which makes the latter approach a more likely scenario. However, beyond
placing the control into other users, underload-adaptive systems could challenge the
system user or user groups to increase the difficulty or the load of the task themselves
(see, e.g. Ewing, Fairclough, and Gilleade, 2016; Gilleade, Dix, and Allanson, 2005).
For example, systems could recommend the setting of more challenging task goals (for
oneself and or others). Such a message could recommend perspective-taking to urge
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the user(s) to consider the current task to be more challenging in some way. Systems
could also provide the user with more freedom or autonomy in using the system.
By making more complex tools available or by hinting that devising more intricate
means of how to complete a task (perhaps instead of doing something manually,
a user might want to learn how to write a simple program that takes on the task
for him), the user might more readily experience to have to stretch their capacities
to cope - one of the central characteristics of experiencing flow (Csikszentmihalyi,
1975). A particularly valuable benefit of the latter approach would be the supported
competence development of the system user.

Beyond what is known directly from DM-based flow research, additional adaptive
functionalities could be to increase arousal levels. This proposition is based on the
findings, that flow is typically associated with at least a moderate (physiological)
arousal, which often coincides with moderate task difficulties (Peifer, 2012; Tozman,
Zhang, and Vollmeyer, 2017). If increased arousal (perhaps in the form of a proper
warm-up or task preparation that is documented in the sports domain - see Swann
et al., 2012), indeed represents another facilitator to flow experiences, underload-
-adaptive systems could attempt to increase experienced arousal by for example
automatically providing more upbeat and exciting background music. Alternatively,
they might recommend to the system user, that a small degree of physical exercise or
drinking some coffee might increase their arousal states. Similarly, alertness increases
could be a potential facilitator of flow when underload is experienced, as it could
interact with abilities to concentrate and (self-directed) adaptations of the load. Sys-
tems could, for example, try to automatically increase alertness through increasing
a computer screen brightness or colour composition, as more blueish light is found
to increase alertness in digital device users (Wolska et al., 2019). However, the effect
that such an intervention has on flow should be evaluated beforehand.

Both the arousal and alertness increasing approaches will have to take other vari-
ables into account. For example, during the mid-day, due to circadian rhythms, it
is unlikely that arousal increases are feasible as effectively as during other times of
the day (see, e.g. Debus et al., 2014 with the finding that flow intensities are lower
around noon). Also, in the evening, the increase of alertness through light stimulation
or coffee could interfere with natural sleep patterns, which should be avoided. At
this point it should be stressed, that in particular in the case of underload-adaptive
systems, it needs to be made sure, that the recommended increase of difficulty and
workload come only in instances of prolonged underload, as some simple task pro-
cessing is probably desirable in balance with challenging task situations (Debus et al.,
2014; Engeser and Schiepe-Tiska, 2012).

Overload-Adaptive Systems

In the second approach for difficulty or load adaptation, overload-adaptive systems
could assist (Ewing, Fairclough, and Gilleade, 2016; Gilleade, Dix, and Allanson,
2005) the system user by directly decreasing the task load or difficulty if possible.
Analogous to the previously discussed options for underload-adaptive systems, the
decrease of subtasks an individual has to process could be re-directed by the system to
computerised agents, to other workers or to a later point in time. Again, what appears
most likely usable for the moment would be that systems enable users to self-regulate
the perceived task difficulties/load. Systems could recommend that a restructuring
of goals might be in order to better cope with the task. Such recommendations are
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made in adaptive meta-cognitions research (Wilson and Moneta, 2016). For example,
a user that finds a task much too difficult could benefit from the proposition that
breaking the task into smaller pieces will make it much more manageable. Such a
flexible goal structuring has also been proposed in research on how writers experience
flow as a, particularly useful flow-facilitating mechanism (Flower and Hayes, 1981).
Similar mechanisms could be proposed to work groups. Systems could also attempt
to recommend more preparation or utilisation of simpler tools for the task, a way to
build competence first to facilitate flow both during this preparatory phase and the
postponed task completion later. This idea is derived from the sports literature, where
preparation in the form of increased pre-competition exercise is found to increase
flow during the preparation and the competition phase (Brunner and Schueler, 2009).
While this requires a supportive environment (where towering deadlines do not
impede growth), the benefit could be very high in the long-term, as again, not only is
worker well-being enhanced by reducing adverse/stressful events, but by fostering
competence development and growth.

Again, with the often referenced relation between arousal and flow, related flow
facilitation options seem plausible. However, at this point, a particular subtlety factors
in, that is the overload-arousal relationship. Some research points to arousal being
high during overload instances, for example, when an individual experiences stress
and threat and find it hard to cope with the present situation. Such considerations
emerge from integrations of flow and stress research (Peifer, 2012; Tozman, Zhang,
and Vollmeyer, 2017). The detriments of increased arousal are also documented in
Peifer et al. (2015), where study participants received intranasal injections of cortisol,
which reduced their flow experiences in comparison to a control group. On the
other hand, in situations where task difficulties are excessively high, the individual
might also detach from the task and experience even low arousal, when it is felt that
tasks demands cannot be met. This disengagement is described in the integrations
of flow theory with the shark-fin curve of the motivational intensity model (Ewing,
Fairclough, and Gilleade, 2016). Considering it a progression of high, and stressful
demands, to excessive and unmanageable demands, only the former position would
be a sensible aspect for flow facilitation approaches. If high arousal indeed represents
a limitation to experience flow, overload-adaptive systems could attempt to reduce
experience arousal, by, for example, playing soothing background music, or by
recommending that the user takes a short break to relax. Another option could be to
integrate real-time interventions for relaxation, for example, breathing or meditation
techniques, supported by physiological measurement (see, e.g. Chin and Kales, 2019).
In this regard, it has been found, that HRV-biofeedback (Loudon and Zampelis,
2017), and EEG-neurofeedback (Gruzelier et al., 2010) targeted at eliciting calmer
states can lead to more intense flow experiences. To induce relaxation to facilitate
flow in instances of overload, would also appear to be supported by findings that
more recovered individuals find it easier to experience flow throughout the workday
(Debus et al., 2014). As bio- and neurofeedback methods are more becoming readily
implemented in NeuroIS (Lux et al., 2018), such approaches could be implemented
soon, even for small groups (Knierim et al., 2017a).

For overload-adaptive systems, situations in which thinking and alertness are
rather high, yet not channelled towards the main task (e.g. during rumination and
multi-tasking) could also be an interesting flow-facilitation approach. It would seem
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plausible that such situations could coincide with situations of high task difficul-
ty/load, but more research is needed for that. It has however been found, that
unfinished tasks, which can lead to increased rumination, appear to decrease flow
experiences (Peifer and Zipp, 2019), as does an increased tendency for multi-tasking
(Peifer et al., 2019). If such instances can be detected, overload-adaptive systems
might, for instance, assist the user by (1) isolating a single task on a user interface
and blocking other task instances or sources of information (for example the blocking
of incoming messages, especially when not task-relevant has been found to increase
flow - see Rissler et al., 2018), and perhaps (2) locking on to a current task (that can be
completed in a short time), to facilitate task concentration and completion. The latter
approaches could also conceivably directly reduce perceived task difficulty and load
when it is, for example, caused by attempts to manage too many things at once.

Similar to underload-adaptive systems, overload-adaptive systems, will have to
work with sensitive thresholds and will, in particular, have to work with personalised
information (a promising option are therefore dynamic thresholds - see Karran et al.,
2019). This personalisation is especially important as the nature of the perceived
difficulty-skill balance is sensitive to individuals’ preferences for slight underload
and overload to experience flow (Fong, Zaleski, and Leach, 2015; Løvoll and Vittersø,
2014). Again, some overload could be acceptable in some instances and might
occasionally be needed to cause action. However, especially as ailments such as stress
and burnout appear to be on the rise in recent years (Berg-Beckhoff, Nielsen, and
Ladekjær Larsen, 2017), it would appear particularly fruitful if adaptive systems could
provide a way to less excessive task demands, that foster the growth, performance,
and well-being of knowledge workers in the short-term and long-term.

Flow-Stabilising Systems

In the last direction to flow-adaptive systems, some aggregated findings from this dis-
sertation and related literature point to potentials to isolate and detect flow experience
while they are most likely occurring. For example, observations of moderate HRV,
low frontal Alpha power and moderate HiBeta power could point to situations of
optimal task difficulties. In a related manner, DM-paradigm based ML research finds
electrophysiological data to allow for the detection of flow experiences (contrasted
with underload or overload), with moderate accuracy (Chanel et al., 2011; Berta et al.,
2013; Chatterjee, Sinha, and Sinha, 2016; Sinha et al., 2015). Also, ML models from
studies that manipulate interruptions (Rissler et al., 2018), observe work progress
(Müller and Fritz, 2015), or gaming experience (Shearer, 2016), provide reasonably
accurate predictions of lower or higher flow intensities. These models hardly allow
for explanations or recommendations for system users on how to alter their situation
to experience more flow (except for the interruption research). However, all of these
models provide opportunities to stabilise ongoing flow, which is a major challenge
on its own, as, flow is often found to be a fleeting phenomenon, that can occur and
vanish from one moment to the next, particularly in work environments (Ceja and
Navarro, 2012). It still stands to assess empirically, how a flow-stabilising system
should correctly be used to keep a flow experience alive. The difficulty is that flow
experiences might be entangled with many different personal, situational, and en-
vironmental factors. Reduction of interruptions by decreasing message throughput
might be useful in instances where a worker is operating in isolation. However, a
group that is currently working in a highly communicative process might be severely
disrupted in their flow experiences when alterations to the message throughput occur.
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A general recommendation for a flow-stabilising system would therefore presently
be two-fold. First, a flow-stabilising system should take care, to perturb the active
configuration of the system as little as possible. This mechanism means that it
should shield from the introduction of outside variables. With the context of the two
aforementioned examples, a flow support system might want to block e-mails for
the worker operating in isolation, and might for the teamwork only block messages
from outside-team members. Second, as clear feedback is a central precondition to
flow experience, a flow-stabilising system might facilitate flow through providing
positive, reinforcing feedback, that flow is currently occurring. By such means, the
system user might not only receive additional feedback, that he appears to be on
the right track of how he is doing things, but could also be subtly made aware that
he should just continue onwards, that is, not to perturb the present configuration
themselves. Potential for such feedback transmission would be through channels
that are otherwise not as often occupied, for example through a haptic stimulation
pattern of a smartwatch (see, e.g. Shull and Damian, 2015; Azevedo et al., 2017 with
recent work on how subtle haptic feedback can provide a stress relief or information
sub-consciously).

Technical Foundations of Flow-Adaptive NeuroIS

Regardless of the mechanisms of how flow experiences are supposed to be fostered, a
flow-facilitating system must take the user experience into account. IS research has
well established, that inconvenient IT-based systems (e.g. with low ease-of-use) are
unlikely to be adopted by users (Davis, 1985). This convenience factor is a central
reason, why wearable sensors are of high interest to IS researchers, given that they
promise low intrusion while delivering highly frequent and (ideally) highly relevant
information for system adaptation (Seneviratne et al., 2017). In the present research on
flow experience observation, EEG measures have been identified as most useful for
the sake of observing flow boundary conditions for individuals and teams. However,
acquisition of robust, high-quality EEG data is presently still a challenge for many
wearable devices (Lance et al., 2012; Blankertz et al., 2016), despite considerable
advances in this direction (see, e.g. Guger et al., 2012; Mullen et al., 2015). Motion
artefacts represent a complication, as they can easily lead to shifts in electrodes, which
worsens signal-to-noise ratios substantially, mainly when dry electrodes are used.
For this reason, gel-based electrode systems are still a standard recommendation for
the work with EEG data (Cohen, 2014; Teplan, 2002).

In the context of KW, in some instances, for example, when knowledge workers
perform their tasks at a desk in isolation, this complication might be less of an issue.
This pragmatic circumstance is why it was previously discussed that cESM flow re-
search is promising, as it converges with these measurement requirements. However,
as situations become more complex (e.g. work environments where interactions
with colleagues take place), the data quality limitation becomes more severe. In
such situations, another problem for EEG data collection might emerge, that is the
form factor of EEG systems. In many instances, EEG systems come with large, not
particularly aesthetically pleasing electrode caps. This nuisance can become a major
issue as individuals might not feel they want to wear such a large contraption at work
at all. Therefore, wearable, appealing EEG systems are being designed that target a
broader consumer audience (David Hairston et al., 2014; Ratti et al., 2017).
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In the present work, one such EEG device - the Emotiv Epoc+ was utilised to collect
data in a scenario that might suit future workplace settings. Future work might want
to take this a step further while maintaining research-grade data quality. Such an
endeavour is currently supported by a novel system for EEG recording around the
ear (Debener et al., 2015). The benefits of this system are, that it can be used dry or
with the application of gel and that it is usable for multiple-hour recordings without
participants remarking about major discomfort (Debener et al., 2015). The comfort
is realised by a flexible, printed EEG electrode array that can be attached around
both ears, and that fits individual physique (see Figure 8.1). The small form factor
also highlights that the electrodes can be easily concealed, due to the c-shaped form
around the ear (hence the term cEEGrid). This ear-EEG system has been found to also
reliably differentiate posterior Alpha changes during resting states (Debener et al.,
2015), to capture eye blinks and movements (Bleichner and Debener, 2017), heart rate
components (i.e. an ECG recording within the EEG signal) (Bleichner and Debener,
2017), and to differentiate between different levels of mental workload in prolonged
car driving simulations (Wascher et al., 2019). Especially the two latter findings,
therefore, make the c-Shaped Electro-Encephalpography Grid (cEEGrid) system a
promising candidate for the continuous observation of flow boundary conditions.
Consider, that Experiment 2 in this dissertation has particularly found workload
indicators (HiBeta power at FC and T electrode sites) to differentiate these boundary
conditions and to be directly related to reported flow (see Section 6.3.3). The electrode
positions of the cEEGrid system could therefore well be able to collect similar signals
given the closeness to temporal Regions of Interest (ROI). Together with the concealed
form factor, this ear-based EEG system might, therefore, have the potential to make
continuous, unobtrusive EEG recordings of mental workload socially available and
functional for flow-adaptive systems. Future work will, however, have to evaluate this
potential, ideally first by employing it in cESM designs and working with elaborate
feature extraction and ML methods to ascertain its utility.

FIGURE 8.1: cEEGrid - A Flexible EEG Array With Ag/AgCl Elec-
trodes That Can Be Placed Around the Ear Using Adhesives.
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Outlook on Flow-Adaptive Systems

This paragraph concludes the recommendations that presently seem most justified
by the empirical research basis on (neurophysiological) flow detection based on task
difficulties and loads. Indeed, with more emerging research that is based on other
experimental paradigms and that can incorporate more measures on flow and related
constructs, other opportunities for flow-adaptive systems will be conceivable. For
example, as there are recommendations in the flow literature, that cognitive-affective
strategies like the facilitation of concentration or positive thinking could facilitate flow
(Swann et al., 2012), systems that specifically observe such dimensions (i.e. attention
and emotion dynamics), could additionally implement interventions.

Lastly, it should also be highlighted, that only in recent years, the first studies
using neurostimulation methods have emerged, a method that could readily become
a part of flow-facilitating systems. So far, research using transcutaneous vagus nerve
stimulation (Colzato, Wolters, and Peifer, 2018) has found that flow can be inhibited
through neurostimulation, can have no effect (when using transcranial magnetic
stimulation - see Ulrich et al., 2018), or can increase flow experience in both novices
and experts when compared to sham stimulation (when using transcranial direct
current stimulation - see Gold and Ciorciari, 2019). The latter appears especially
promising, as transcranial direct current stimulation has so far been found to cause
no adverse effects in humans in large-scale meta-analytic studies (Aparicio et al.,
2016; Bikson et al., 2016; Nikolin et al., 2018). However, given the invasiveness
of neurostimulation and intricacies of neural processes (Ulrich et al., 2018), flow
intervention research might for now want to leave the neurostimulation approaches
to scientists using it as a tool to improve our understanding of flow neurophysiology.
In contrast, flow intervention research should primarily focus on how adaptive
systems interact with the self-regulation processes of individuals, beyond prescribing
how tools should be used.

In general, it is highly likely that due to inter- and intra-individual variance, and
due to contextual factors contributing to flow experiences, flow-adaptive systems
should be continuously adapted and calibrated by the respective user. For example,
interactive ML processes would appear useful, that achieve higher system efficacy
by being tuned in a reciprocal information provision - parameter adjusting manner
together with the system user (Yannakakis, Cowie, and Busso, 2018). In the effort to
achieve a future of KW, that more often provides highly satisfying experiences and
peak performances, facilitating flow seems highly desirable. In this chapter, directions
for how digital systems that utilise unobtrusive means of automated data collection
and processing, have been outlined that could be used to facilitate or stabilise flow.
However, as desirable as the continuation of this work might appear, it also needs to
be discussed, what the limitations of flow facilitation are. For this reason, in the next
section, these limitations, in terms of physiological and ethical ramifications of flow
facilitation systems, are addressed.

8.4 Ethical Limitations of Fostering Flow

The Morality and Dark Potentials of Flow

When discussing the facilitation of flow, the scholarly tenor appears to be, that in-
creases in daily flow experience intensity and frequency are desirable goals. This
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valuation is particularly fuelled by the highly salient early work of Csikszentmihalyi,
which describes peak experiences, with optimal performances and high degrees of
self-satisfaction, that scholars and laypeople can relate to (Engeser and Schiepe-Tiska,
2012; Schüler, 2012). This view is epitomised by flow states being named “optimal
experiences” (Engeser and Schiepe-Tiska, 2012). Csikszentmihalyi stated that: “Ex-
periencing it [flow] more often does make life more satisfying, and should prevent
a person from living a dull life. It is a thrill that stands out from routine and un-
eventful times.” (Csikszentmihalyi, 1997, p. 97 - words in brackets are added here for
better understandability). However, it should be noted, that while this tendency to
promote flow is dominant (Engeser and Schiepe-Tiska, 2012; Schüler, 2012), there is
neither a normative nor should there be a positive perspective that flow is entirely
desirable in every given situation or to achieve every conceivable goal (Engeser and
Schiepe-Tiska, 2012). This neutrality is because flow is without morality - it is in
itself neither good nor bad (Partington, Partington, and Olivier, 2009). Therefore, a
discussion regarding the facilitation of flow should not be one-sided in favour of the
reported flow benefits only. Instead, critical appraisals of some of the dark potentials
of flow are due (Engeser and Schiepe-Tiska, 2012; Schüler, 2012; Wilson, 2016). Flow
can greatly improve human lives, but it also has the potential to make them worse.

The so-called dark potentials of flow revolve about the characteristic of the deep
involvement and intrinsic reward of flow. Schüler (2012) discusses in detail why
these characteristics also have the potential to cause adverse effects. For example, by
focusing solely on a task, and subsequently losing self-awareness, conflicts can arise
between pursuing the task and one’s own or other people’s goals, needs, and values
(Schüler, 2012). Therefore, flow has been discussed to lead to increased risk-taking
(Stranger, 1999; Partington, Partington, and Olivier, 2009; Schüler and Pfenninger,
2011), sometimes at the cost of the individuals physical, psychological and social
functioning (Keller et al., 2011; Schüler, 2012) to the degree of addictive behaviour
(Partington, Partington, and Olivier, 2009; Dixon et al., 2019; Ross and Keiser, 2014),
and even to a fostering of anti-social behaviour (Harari, 2008). An extreme example
of the latter is the proposition that underlying some fascist regimes, is the provision
of a game plan that sets clear goals and clarifies feedback. In doing so, a renewed
involvement with life is fostered that many followers of such regimes may find to
be a relief from prior anxieties and frustrations (Engeser and Schiepe-Tiska, 2012).
In a similar direction, flow experience in soldierly combat has been documented
as a thrilling experience that could be facilitating survival, but also the killing of
others (Harari, 2008). In another dangerous activity domain, namely extreme sports,
flow has been discussed as a reason for why individuals might pursue even greater
risks to increase the challenge level required to enter more intense flow (Stranger,
1999; Partington, Partington, and Olivier, 2009; Schüler and Pfenninger, 2011). This
rewarding characteristic of flow could, therefore, attract psychological and especially
physiological damage (Partington, Partington, and Olivier, 2009). Observations for
this potential connection of flow to risk-taking have been made in the case of big-wave
surfing (Partington, Partington, and Olivier, 2009), white-water kayaking (Schüler
and Pfenninger, 2011), and motorcycling (Rheinberg, 1991; Sato, 1988). Furthermore,
by the experience of high control and the absence of anxiety, risky decisions can be
made due to the overestimation of one’s abilities.

The matter of physiological damage has also been discussed by flow physiol-
ogy research. As has been previously discussed, some authors find high levels of
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physiological activation (in the form of strongly decreased HRV - e.g. Keller et al.,
2011), which could indicate, that flow places a particular physiological burden on
the body. Such an observation is deemed plausible, as the mere challenge-skill bal-
ance precondition of flow describes the necessity to stretch one’s skills to grow and
match the task demands that are just below what the individual can usually cope
with. While several other studies refute this proposition arguing that flow is more
strongly represented by moderate physiological demand (Peifer et al., 2014; Peifer
et al., 2015; Harmat et al., 2011; Manzano et al., 2010; Harmat et al., 2015), the question
as to whether flow can also lead to exhaustion is yet to be answered. Importantly,
many of these studies typically employ relatively short experimental designs, in
which tasks only last for up to five minutes per condition. Also, in the discussion
of problem gambling and gaming, it has been discussed that flow could lead to a
neglect of social and physiological needs (eating, sleeping) (Partington, Partington,
and Olivier, 2009; Schüler, 2012; Murch, Chu, and Clark, 2017; Dixon et al., 2019). In
this regard, the important question is being asked, whether or not flow can be related
to addictive behaviour, with some research finding indirect connections through
personality variables (Partington, Partington, and Olivier, 2009), others finding a
direct positive correlative connection (Lee, Aiken, and Hung, 2012; Murch, Chu, and
Clark, 2017; Dixon et al., 2019), and yet others proposing that flow and addictions
could be inversely related (Ross and Keiser, 2014; Wan and Chiou, 2006). So far, it
is not yet evident, if a relationship between flow and addictions exists, or what its
nature is (Wilson, 2016; Schüler, 2012). These initial reports still only represent a very
sparse theoretical and empirical basis (Schüler, 2012), and given the divergence of
findings, it is yet to be seen, how the dark potentials of flow manifest. However, such
work importantly highlights, that flow experiences can also have downsides, which
need to be appraised and researched, especially when one is considering to develop
flow-facilitating interventions (Schüler, 2012; Wilson, 2016).

Flow Diversity and Developing Flow Metacognitions

At the very least, caution must be exerted moving research into flow-facilitation
forward. First of all, more (and rigorous) research is needed that produces theoretical
extensions and models, explaining how the issues mentioned above (in particular
risk-taking, exhaustion, and addiction) are connected to flow experiences. A central
limitation in much of the existent research is the conceptual ambiguity and the oper-
ationalisation of constructs. It has not always the case (nor the goal), that behavioural
or self-report instruments captured the breadth and complexity of flow and other
phenomena (Schüler, 2012). However, such rigour will be critical in such a delicate
matter, the determination of which harmful effects might be fuelled by fostering
flow. In particular, the study of flow neurophysiology has for this purpose deemed
an important direction (Schüler, 2012), as it could allow to more directly integrate
knowledge on flow with - for example - biomarkers of addictive tendencies. Second
of all, three recommendations can already be made for the facilitation of flow that
integrate the dark potentials. Regarding the prevention of exhaustion, interventions
should make sure to balance the time spent in flow with time spent in relaxation, or
other cognitive experiences (Engeser and Schiepe-Tiska, 2012; Peifer, 2012; Wilson,
2016). To this point, there is some evidence, that without relaxation, flow experience
is less likely, perhaps even impossible. In a study with software engineers, Debus
et al. (2014) find that flow during the workday is at any time lower for individuals
who indicated lower relaxation at the start of the day. Regarding the prevention of
(extreme) risk-taking and promotion of addictive tendencies, it has been argued, that
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flow interventions should in the case of experts focus on task diversification (Schüler,
2012). Flow diversification means, that for individuals that already possess a high le-
vel of proficiency in a particular task, and that seek flow, it might be wiser to focus on
building new skills instead of further deepening old ones to experience flow (Schüler,
2012). In this sense, another goal to flow facilitation should be, to promote flow di-
versity over (extreme) flow intensity. Besides, it must be a high priority to ensure that
flow-adaptive NeuroIS follow the principles outlined in research on non-addictive
information systems (Kloker, 2020) to prevent adverse effects of automated flow
facilitation. Lastly, regarding the prevention of other adverse consequences and the
utilisation of flow in ethically questionable circumstances, flow interventions should
focus on building (dark) flow meta-cognitions. This recommendation is based on
Csikszentmihalyi’s contention, that individuals should learn when to - and when not
to - experience flow, to not only blindly follow the desire to experience the rewarding
activity (Csikszentmihalyi, 1975). Therefore, a goal for flow facilitations should be
to empower individuals by developing awareness and knowledge about what the
bright and the dark consequences of flow can be.

Ethical Considerations for Adaptive NeuroIS

Lastly, as flow intervention work is operationalised through adaptive NeuroIS, one
more ethical issue needs to be addressed, that is data privacy. Ethical issues in IT
systems are not just a general issue that society is presently concerned with (see,
e.g. Martin and Murphy, 2017; Mehmood et al., 2016), but one that is particularly
relevant in the case of flow. Individuals’ (or teams’) flow (or the absence of it) could
be exploited by peers, leaders or organisations (Schüler, 2012). Instances could be
peers that pressure an individual to utilise his flow experience to engage in risky
behaviour, or it could be a manager that decides to fire employees who show low
levels of flow experience throughout their workday. It could just be the members
of a work team that blame the “weakest flower” during a cooperative session for
hindering the progress of the team. To address these issues, both data accessibility
and data access security need to be considered (see also Knierim et al., 2017b), two
dimensions that are, for example, found in generalised data quality frameworks
(Wang and Strong, 1996). Accessibility refers to the rights of who can inspect collected
data and control the data collection process itself (Wang and Strong, 1996). Access
security then refers to the degree of the safety mechanisms in place that guarantee
that the accessibility rights are upheld (Wang and Strong, 1996). To guarantee data
access security, flow facilitation designers need to devise prototype-based strategies
and recommendations. For IT-based systems, access security concerns are probably
best handled by software engineers, knowledgeable in cryptographic best practices.

Data accessibility, on the other hand, is a more complicated issue. First of all, given
the dangers of flow data misuse, the data collection, storage, processing, and review,
can be subject to misuse and represent steps in the pipeline where accessibility is to
be defined. On the one hand, it stands to reason that the complete pipeline and the
access to it should be in the control of the end-user. This control, about which data
is collected, how it is transformed and represented, and even when and by whom it
is being reviewed, should empower the individual using the flow intervention and
prevent misuse. Furthermore, directing this control to the end-user should foster
the adoption of the technology, as control over it has been found to increase trust
(Peters, Calvo, and Ryan, 2018). However, a variety of reasons complicate this simple
solution that are: (1) A recommendation for some oversight through others to prevent
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adverse/dark flow consequences (especially as long as systems are fairly simple
and cannot autonomously derive recommendations), (2) In some instances the need
to share flow information with others (e.g. work teams), and (3) access of system
developers to the pipeline for maintenance and research. These factors all pose some
need for others to have at least occasional access to the flow data. Still, the privacy and
the control of the end-user over their flow data is of the utmost importance. Therefore,
a compromise is recommended here. It could be a feasible solution, to require a user,
to share his/her flow data with an oversight instance (and system developers) at a
regular interval in time. But, to favour the needs of the individual, he/she could
retain control over what or who that instance is, for example, trusted peers, managers,
or third-party data scientists and physicians. In the case of teamwork, where flow
data sharing is required, the individual might retain control over how his/her data is
represented within the group. For example, if he/she accepts that his/her individual
information to be shown in isolation or whether he/she would rather have the data
represented in an aggregated form (e.g. as the average of a group). In summary, to
bridge the gaps, users could be required to accept some access to their data but could
retain control over the abstraction of it and the receiving entities, thus also taking
into account inter-individual preferences. This way, both the requirement to shield
individuals from the dark sides of flow can be balanced with the upsides, while the
individual retains most of the control about how this process is carried out.

Ultimately, this chapter is not supposed to advise against working on flow fa-
cilitation, especially as an increase of the experience in everyday lives is likely a
good contribution to general well-being (Tse, Nakamura, and Csikszentmihalyi, 2020;
Nakamura and Csikszentmihalyi, 2009; Moneta and Csikszentmihalyi, 1996). Instead,
this chapter points out the limitations and dangerous potentials, so that they are
integrated with the positive goals in future research.
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Chapter 9

Conclusion

The experience of flow is described as a unique experience of complete task immer-
sion, in which action and awareness merge, concentration feels effortless, and that is
accompanied by peak performances and exhilarating satisfaction (Csikszentmihalyi,
1975). Due to numerous beneficial relationships of flow to life and work experiences
(both individual and social), the facilitation of flow represents a desirable goal for
scholars and organisational practitioners (de Moura Jr and Bellini, 2019). However,
the facilitation of flow experiences still represents a significant challenge. The sit-
uational requirements for flow are complex and rooted in the cognitive-affective
dynamics of the individual. The facilitation of concentration, alertness and recovery,
the shielding from self-criticism and the balance of workload, are amongst some
of the flow requirements, that are difficult to manage in today’s hectic workplaces
(Ceja and Navarro, 2012; Spurlin and Csikszentmihalyi, 2017; Peifer et al., 2019).
Furthermore, developments such as self-directed work, and mixtures of co-present
and virtual collaborations of small groups further extend this Knowledge Work (KW)
complexity (Spurlin and Csikszentmihalyi, 2017; Bakker and Woerkom, 2017; Keith
et al., 2016). These trends are accompanied by problematic phenomena like informa-
tion overload (e.g. through high frequencies of electronic messaging), or increases in
professional ambiguities due to requirements of more self-organisation (Bakker and
Woerkom, 2017). These phenomena stand in contrast to flow experience requirements
as they represent attention-competing stimuli, unclear goals, a lack of feedback, and
the elicitation of frustration or anxiety (Spurlin and Csikszentmihalyi, 2017; Bakker
and Woerkom, 2017). Altogether these developments mean, that comprehensive
flow facilitation at work must revolve around a person-, task- and situation-indepen-
dent approach. One such approach is the development of adaptive NeuroIS. This
dissertation set out to advance the foundations for flow-facilitating adaptive Neu-
ro-Information Systems (NeuroIS). This approach leverages the increasing feasibility
of unobtrusive state observation through neurophysiological sensors (Blankertz et al.,
2016; Seneviratne et al., 2017; Krol, Haselager, and Zander, 2019), yet recognises that
more research is required that bridges fundamental and applied settings. To over-
come this gap, a combination of more and less controlled cognitive task settings, and
wearable sensor systems was put in place over two experiments. More specifically,
the guiding Research Goals (RG) for this dissertation were stated as:

• RG1: Integrate the present body of knowledge on how neurophysiological data
can be used to detect flow experiences.

• RG2: Identify how flow experiences can be intensified in the laboratory in
cognitive tasks.

• RG3: Consolidate which neurophysiological patterns of flow can be detected
with wearable sensors across different situations, including simplistic, natural-
istic, and social interaction scenarios.
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At this point, it ought to be critically reviewed if and how these goals have been
achieved and what the major contributions of the presented work are.

RG1 - Integration of Knowledge

In this dissertation, two Structured Literature Reviews (SLR) have been conducted
that summarise the present state of knowledge on what is known on Peripheral Ner-
vous System (PNS) and Central Nervous System (CNS), specifically EEG observation
of flow. For the PNS, it is found that a majority of work has used time- and frequency
domain Heart Rate Variability (HRV) features (more specifically: parasympathetic
HRV-indicators), and that diverse propositions have emerged from high HRV during
flow (a sign of strong calming physiological influences during a configuration of
non-reciprocal co-activation of Autonomous Nervous System - ANS branches), to
moderate HRV during flow (a sign of moderate physiological activation), to low HRV
during flow (a sign that flow is as similarly demanding as are stress experiences). For
EEG work (more specifically: frontal regions), it was found that even higher diversity
in the findings regarding flow is present, with propositions of increased or maximal
frontal Theta levels (that point to moderate or high levels of mental workload), low or
high frontal Alpha (that point to attentional engagement or frontal downregulation
in the sense of the Transient Hypofrontality Theory - THT), and low or high frontal
Beta (that were considered to point to low or high arousal or mental workload levels)
during flow. In addition, it was observed that this diversity in findings is likely driven
by a low degree of integration of scholarly work, as very low degrees of cross-citation
are present. This fragmentation is why the structured integration of this literature is a
significant contribution to flow neurophysiology literature from this dissertation.

Together with the added findings for a lack of neurophysiological study of flow
experiences in small groups, and the consolidating results from two multi-paradigm
experiments (see below), RG1 is considered to have been achieved. However, as a
limitation to this approach, the focus on electrophysiological methods in this work
certainly represents its own limitation to a feature space that may or may not hold
the informative potential to identify the neurophysiological configuration during
flow. For the PNS, at least more indicators of sympathetic ANS activity ought to be
integrated. For the CNS, to understand which processes take place in the brain during
flow, insights from hemodynamic imaging studies ought to be more extensively
integrated into future reviews of the present literature.

The presented consolidation of the related work shows that the development of
flow-facilitating adaptive NeuroIS must conduct more refined and integrated research.
Only through the comparison of findings across measurement instruments and
feature spaces, and the inclusion of results in theoretical frameworks and empirical
models, a stable basis for continuous flow detection can be established. Single
studies will have difficulties to achieve this goal by themselves, which is why a
particular emphasis should be placed on the development of comprehensive reviews
and neurophysiological data repositories. Such repositories have been created for
more fundamental psychophysiological research, for example, in the form of EEG
recordings during affective experiences (see, e.g. Babayan et al., 2019). Also, research
in the IS discipline has highlighted the utility of integrating single studies into publicly
available databases for increasing relevance and robustness of findings (Dann et al.,
2019). Lastly, scholars in the field of neurophysiological signal processing have
recommended the sharing of not just results, but also processing pipelines to enable
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continuous revision and integration of experiment results when improved methods
become available (Bigdely-Shamlo et al., 2015). For flow research as well, more of
such integrative efforts may fast-track the development of adaptive NeuroIS.

RG2 - Intensification of Flow in the Laboratory

Based on a summary of the best practices and latest developments in experimental
flow research, multiple approaches have been pursued to achieve an intensification
of flow experiences, beyond what is currently possible from the established Difficulty
Manipulation (DM) paradigm. To overcome the central limitation of DM that suppos-
edly is the solicitation of only shallow flow experiences in too deterministic (in terms
of difficulty calibration), simplistic and artificial task scenarios (in terms of tasks that
do not require high expertise or that do not include social interactions) (Hommel,
2010; Delle Fave, Massimini, and Bassi, 2011), a more naturalistic KW laboratory
observation approach was developed that integrates controlled environments and
the original flow field research method, the Experience Sampling Method (ESM).
This controlled Experience Sampling (cESM) approach in which participants contin-
ued a personal, ongoing scientific writing project, indicated, that flow experiences
might intensify in this task when compared to an established mental arithmetic DM
paradigm. As a potential reason for this, the higher level of freedom to configure
the task to one’s own needs and preferences (including the setting of an adequate -
i.e. optimally challenging - task goal) was identified. To follow up on this potential,
in the second experiment, a manipulation of autonomy (AM) was included in the
form of self-selecting one’s optimal task difficulty during a similar mental arithmetic
task. Furthermore, this second experiment followed up on another presently in-
teresting direction to intensify flow in the laboratory, that is the inclusion of social
interaction (SCM) (Magyaródi and Oláh, 2017; Tse et al., 2016; Walker, 2010). Hence,
improvements to internal validity were considered, but also to external validity as
flow experiences in KW are not only likely to occur in isolation, but also often in
small groups that increasingly represent today’s workplace configurations (Wuchty,
Jones, and Uzzi, 2007; Keith et al., 2016). In this second experiment, the AM was
found as a more effective catalyst to the intensification of flow than objective difficulty
calibration approaches. This consolidated the results from the first experiment that
autonomy is likely a valuable factor in intensifying flow in laboratory conditions.

This finding represents the second major contribution of this dissertation and con-
firms that RG2 was achieved. However, it should also be noted that the absence
of flow intensification from SCM represented a novelty in the body of social flow
research. Especially due to the repeated finding of autonomy influences on flow, the
question arises whether or not some part of the repeatedly reported flow intensifica-
tion in social interaction could be partially driven by higher levels of autonomy that
might accompany the typically more complex tasks in social interactions.

For the facilitation of flow experiences, these findings highlight the need to employ
more comparisons of highly controlled laboratory research with more ecologically
valid scenarios. On the one hand, this direction is essential as the eventual develop-
ment of a flow-adaptive NeuroIS will have to be able to function in more ecologically
valid scenarios, but might require initial calibration from less confounded settings.
On the other hand, the results indicate that with more autonomy, individuals appear
to experience intensified flow. The elicitation of intensified flow is the cornerstone for
the calibration of such systems. Altogether, it appears highly valuable to increasingly



218 Chapter 9. Conclusion

pursue the research of more naturalistic (i.e. closer to real-world) tasks in controlled
settings - that is the cESM approach. For instance, experts such as designers, pro-
grammers, engineers or scholars could be observed while working on their own
projects either in isolation or in groups (e.g. when using digital platforms similar
to Google Docs). Doing so, controlled environments can be combined with higher
task diversity and autonomy, while maintaining the benefit of eliciting intensified
flow. This combination represents an efficient and feasible way to combine closer to
real-world flow research with the utilisation of neurophysiological sensors.

RG3 - Flow Neurophysiology in Wearable Sensors

Across the experimental paradigms and tasks, a particular emphasis of the work in
this dissertation has been on identifying potentials to unobtrusively observe flow
experiences using wearable neurophysiological sensors. The focus on wearable
sensors was placed as these are the candidates likely to be used in the KW scenarios
of the future (see, e.g. Lance et al., 2012; Blankertz et al., 2016). To that regard, the
amalgamation of findings has led to a series of consolidating and novel results that
aid in formulating an overview of the brain and heart configuration during flow.
From the present data, flow appears to be represented by moderate physiological
activation (moderate HRV) and mental workload (moderate HiBeta power - and
tentatively elevated frontal Theta power), and by increased attentional engagement
(reduced and stable frontal Alpha). In addition, flow appears to be represented by
an absence of variation in approach-avoidance motivation or affective valence (as
indicated by the absence of Frontal Alpha Asymmetry - FAA changes).

Importantly, these results emerge through the inclusion of various mechanisms
for the elicitation of flow experiences in the laboratory (DM, AM, and SCM), which
represents the major contribution of this work to the flow neurophysiology literature.
Of particular relevance is the finding that through frequency band personalisation
and sub-segmentation promising new potentials emerged. Specifically, the frequency
band segmentation highlighted the particular sensitivity of the HiBeta frequency
ranges with manipulations of difficulty. An additional absence of confounds with
time, and a group level influence on HiBeta power, further indicate that this higher
frequency range could have a valuable role for the observation of flow on the indi-
vidual and group level. While a connection of Beta powers to flow is not entirely
new, its sensitivity and emergence over a wider area of the scalp make it a promising
feature to be leveraged in adaptive NeuroIS in the future.

In summary, particularly the high-frequency EEG features are found to provide
a diagnostic potential to not only unobtrusively identify boundary conditions for
individual flow, but also for shared flow experiences of small groups - all given using
wearable sensor systems. For these reasons also RG3 is considered to have been
achieved. However, it should be noted that many of these results emerged from a
priori determined Region of Interest (ROI) and frequency band ranges. Given that
spectral and spatial features have in recent work been found to strongly contribute to
more robust and personalised feature extractions (Blankertz et al., 2016; Zhang et al.,
2019), future work can further improve the quality and stability of the aforementioned
findings using more data-driven feature extraction and selection methods. In addition,
such features can then be more readily integrated into Machine Learning (ML)-based
flow classifiers, that could form the core of flow detection in adaptive NeuroIS.
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Group-Level Flow Experiences

As a final contribution, it was also explored, whether or not shared flow experiences
emerge in the instantiated digitally-mediated interaction format in Experiment 2, and
what its drivers and mechanisms for observation are. It was found not only, that
shared flow experiences do emerge in this setting (operationalised as the amount
of variance in individual flow experiences that can be attributed to influences from
other group members), but that they appear to be weaker than in related work that
used Face-to-face (F2F) interaction formats. As the most plausible reason for this ob-
servation, disengagement from the group interaction is considered that may either be
driven by crowding out of motivation or by unbalanced (i.e. non-optimal) difficulties.
The latter is especially considered as it was found that reciprocal influences on flow
disappear, as task difficulties become (too) hard, a finding that is visible through the
experimental manipulation of difficulty, and also through median splits of report,
behaviour and neurophysiological data. Most likely, hard tasks are considered to
lead to a direction of attention to the self and one’s task and therefore, away from
interacting with the group. In a sense, group members can become isolated, which
is why shared flow experiences can no longer occur. The observation that neuro-
physiological data might be usable to infer these situations is especially valuable as it
might allow inferring robustly when a task is becoming too hard for an individual
and a group, that is when flow can no longer emerge for the individual and on the
group level. Furthermore, with the same neurophysiological features (HiBeta power
at Central ROIs), an indirect relationship was identified between shared flow and
what is most likely an indication of shared mental workload. These results are used
as initial evidence, to derive a theoretic extension to flow theory, that (optimal) recip-
rocal influences of workloads could signify a precondition for (optimal) reciprocal
influences on flow. This relationship means that actions from group members that
balance out the workloads to near-optimal levels for each group member could be
the driver of higher intensity shared flow experiences, a reasoning that is close to the
foundations of flow experience in isolation.

Therefore, the observation of these group-level dynamics and the accompanying
theoretic propositions represent a separate, major contribution from this dissertation.
It should be noted, that beyond the considerations for workload and difficulty influ-
ences on reciprocal flow, it is also possible that a lack of social information might have
inhibited other processes such as emotional contagion (Labonté-Lemoyne et al., 2016)
or stress-buffering (Tse et al., 2016) that could be involved with the emergence of such
shared flow experiences. Future work will have to elaborate on these possibilities.
Importantly, for the development of adaptive NeuroIS, an exciting direction emerges
through these results, that is the observation of synchronisation of neurophysiological
signals for the detection of shared flow experiences. Such synchronisations have
previously been reported in relation to performances of or leadership emergence in
small groups (see, e.g. Stevens et al., 2012; Stevens, Amazeen, and Likens, 2013; Berka
and Stikic, 2017). As KW is increasingly conducted in small groups, the integration
of such multi-person data into a flow-detection system seems promising. The results
presented here can be considered a starting point for this endeavour. Nevertheless,
more precisely synchronised data collection with high temporal resolution (e.g. EEG
hyperscanning protocols) will have to be added to consolidate these results and to
enable the continuous detection of shared flow experiences.
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Concluding Thoughts

In closing, this dissertation contributes to the literature on (social and neurophysiolog-
ical) flow theory, and to the efforts of providing knowledge that bridges fundamental
and applied settings for the development of flow-facilitating adaptive NeuroIS. To-
gether with the discussions on how such systems may be implemented and which
limitations they must acknowledge, hopefully, this work contributes a piece to the
larger puzzle that is the facilitation of flow, for the benefit of positive individual,
organisational and societal developments.
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A.1 Disclosure of Own Contributions

It is common in academic research that in the continuous discussion and exchange
with other researchers, a research project is improved, shaped, evaluated, and even
sometimes completely inverted. Research is to considerable extent teamwork, as in
many cases, a single person would not be able to perform the data collection alone or
know all available literature by heart. The same is true for presented research, many
hands and heads shaped the results to small or sometimes even significant extents.
These persons were attributed an appropriate credit, sometimes also resulting in a
co-authorship of those papers on which this thesis is based. This section intends to
constitute in detail which of the parts were performed by the author of this thesis
and which parts were a joint work, in order to help the reader assess the efforts and
achievements of the author’s work.

Knierim et al. (2017c) is a joint article with Dr. Raphael Rissler, Prof. Dr. Verena
Dorner, Dr. Mario Nadj, and Prof. Dr. Christof Weinhardt, published as a Full Paper
in the Proceedings of the Ninth Retreat on NeuroIS 2017. My contributions were:

• The formulation of the proposal and research questions.

• The literature review - in particular the selection of relevant work and extraction
and integration of results.

• The writing of all sections.

• The presentation of the article.

Knierim et al. (2018a) is a joint article with Dr. Raphael Rissler, Dr. Anuja Hariha-
ran, Dr. Mario Nadj, and Prof. Dr. Christof Weinhardt, published as a Full Paper in
the Proceedings of the Tenth Retreat on NeuroIS 2018. My contributions consisted of:

• The literature review.

• The formulation of the proposal and research questions.

• The theoretical foundations to suggested approaches.

• The development and implementation of the experiment.

• The data collection in the laboratory.

• The processing and analyses of the self-report data.

• The analyses of the ECG data.

• The interpretation of the results.

• The writing of all sections.

• The presentation of the article.

Knierim et al. (2018b) is a joint article with Dr. Mario Nadj, Dr. Anuja Hariharan,
and Prof. Dr. Christof Weinhardt, published as a Full Paper in the Proceedings of
the Fifth International Conference on Physiological Computing Systems 2018. My
contributions consisted of:

• The literature review.
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• The formulation of the proposal and research questions.

• The theoretical foundations to suggested approaches.

• The development and implementation of the experiment.

• The data collection in the laboratory.

• The processing and analyses of the self-report data.

• The processing and analyses of the EEG data.

• The interpretation of the results.

• The writing of all sections.

• The presentation of the article.

Knierim, Nadj, and Weinhardt (2019) is a joint article, published as a Full Pa-
per in the Proceedings of the Third International Conference on Computer-Human
Interaction Research and Applications 2019. My contributions consisted of:

• The literature review.

• The formulation of the proposal and research questions.

• The theoretical foundations to suggested approaches.

• The development and implementation of the experiment.

• The data collection in the laboratory.

• The processing and analyses of the self-report data.

• The processing and analyses of the EEG data.

• The interpretation of the results.

• The writing of all sections.

• The presentation of the article.

Knierim et al. (2019) is a joint article with Maximilian Xiling Li, Dr. Mario Nadj,
and Prof. Dr. Christof Weinhardt, published as a Full Paper in the Proceedings of the
Fortieth International Conference on Information Systems 2019. My contributions
consisted of:

• The literature review.

• The formulation of the proposal and research questions.

• The theoretical foundations to suggested approaches.

• The development and implementation of the experiment.

• The data collection in the laboratory.

• The processing and analyses of the self-report data.

• The interpretation of the results.

• The writing of all sections.

• The presentation of the article.
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A.2 Additional SLR Data

Reference Key Reference Full In-Degree Out-Degree

Theory
Mar’01 Marr (2001) 0 0
Die’03 Dietrich (2003) 2 0
Die’04 Dietrich (2004) 4 0
Web’09 Weber et al. (2009) 2 0
Van’10 Heerden (2010) 0 0
Ull’10 Ullén et al. (2010) 0 0
Die’10 Dietrich et al. (2010) 2 0
Peif’12 Peifer (2012) 0 0
Wes’12 Westcott-Baker and Weber (2012) 0 0
Cher’16 Cheron (2016) 0 0
Sad’16 Sadlo (2016) 0 0
Web’16 Weber, Huskey, and Craighead (2016) 1 0
DiD’17 Di Domenico and Ryan (2017) 0 0
Har’17 Harris, Vine, and Wilson (2017b) 0 0

EEG
Kra’07 Kramer (2007) 3 0
Nac’10 Nacke, Grimshaw, and Lindley (2010) 1 0
Cha’11 Chanel et al. (2011) 2 0
Ber’13 Berta et al. (2013) 1 1
Fai’13 Fairclough et al. (2013) 1 0
DeK’14 De Kock (2014) 0 4
Li’14 Li et al. (2014) 0 0
Leg’14 Léger et al. (2014) 1 1
Sol’14 Soltész et al. (2014) 0 2
Bey’15 Beyer et al. (2015) 0 0
Joh’15 Johnson et al. (2015) 0 1
Sin’15 Sinha et al. (2015) 1 3
Wol’15 Wolf et al. (2015) 0 0
Cha’16 Chatterjee, Sinha, and Sinha (2016) 0 2
Ewi’16 Ewing, Fairclough, and Gilleade (2016) 0 2
Lab’16 Labonté-Lemoyne et al. (2016) 0 1
She’16 Shearer (2016) 0 4
Kla’17 Klarkowski (2017) 0 3
Bom’18 Bombeke et al. (2018) 0 3
Kat’18 Katahira et al. (2018) 0 3

Other Neuroimaging
Kla’11 Klasen et al. (2011) 2 0
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Reference Key Reference Full In-Degree Out-Degree

DeM’13 Manzano et al. (2013) 0 0
Afe’14 Afergan et al. (2014) 0 0
Ulr’14 Ulrich et al. (2014) 2 0
Yos’14 Yoshida et al. (2014) 1 0
Har’15 Harmat et al. (2015) 1 0
Ulr’16a Ulrich, Keller, and Grön (2016b) 0 0
Ulr’16b Ulrich, Keller, and Grön (2016a) 0 0
Bar’18 Barros et al. (2018) 0 0
Hus’18 Huskey et al. (2018) 0 0

TABLE A.1: Underlying Data for the Flow Neurophysiology Study
Historiograph Shown in Section 4.3 in Figure 4.6.
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A.3 Questionnaire Instruments

Item Wording(s) Answer Options

Age (No Reference)
What is your age? Number Input

Gender (No Reference)
What is your gender? Female / Male

Handedness (Picton et al., 2000)
Which one is your dominant hand? Left / Right / Both (Ambidextrous)

First Language (No Reference)
Which is your first language
(that you grew up with)?

List of 144 Languages

English Language Proficiency (No Reference)
1.Please indicate the level of your English
language proficiency.

(English Basic User) A1 Beginner /
(English Basic User) A2 Elementary
English / (English Independent User)
B1 Intermediate English / (English In-
dependent User) B2 Upper-Intermedi-
ate English / (Proficient English User)
C1 Advanced English / (Proficient En-
glish User) C2 Proficiency English

2. My comprehension of the English
language is advanced enough that I find no
difficulty in understanding this sentence.
Therefore I will click on the very first
response option (at the far left) for this
question.

Far left - Far right (7p)

Study Major (No Reference)
In which field is your study major? List of Options 42 options according

to the OECD Fields of Science (FoS)

TABLE A.2: General Demographic Survey Items Used in Experiment 1 (Pre-Experiment
Invitation Survey) and Experiment 2 (Initial Survey During the Experiment).

Item Wording(s) Answer Options

Thesis Project (No Reference)
1. Are you currently working on a bachelor
or master thesis?

Bachelor Thesis / Master The-
sis

2. Are you currently working on a different type
of thesis?

Seminar Thesis (Bachelor Le-
vel) / Seminar Thesis (Master
Level) / Dissertation / Nei-
ther (No Thesis) / Other (Text
Field)

Thesis Writing Demands (Engeser and Rheinberg, 2008)
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Item Wording(s) Answer Options

For me the current demands in writing my
thesis are ...

Much Too Low - Just Right -
Much Too Bigh (7p)

Flow Proneness - Domain Specific (Moneta, 2017)
When I am writing something for my thesis ...

Never - Rarely - Sometimes -
Often - Everyday, or almost
everyday (5p)

1. ... I get so involved that my concentration becomes
like my breathing ... I never think of it.
2. ... I become so absorbed that I am less aware of
myself and my problems.
3. ... I am so involved in it that I don’t see myself as
separate from what I am doing.

TABLE A.3: Specific Demographic Survey Items Used in Experiment 1 Only (Pre-Experiment
Invitation Survey).

Item Wording(s) Answer Options

Difficulty - Skill Balance (Engeser and Rheinberg, 2008)
How did you feel about the last task round overall? Very low - Very

high (7p)For me personally, the task demands were ...

Optimal Difficulty (Ulrich et al., 2014)
During the last task round overall ... Not at all - Very

much (7p)... the task demands were well matched to my ability.

Affect (Valence & Arousal) (Bradley and Lang, 1994)
1. How unpleasant/pleasant were you feeling overall during the
last task round? SAM Images (9p)

2. How calm/aroused were you feeling overall during the last task
round?

Task Performance (Hart and Staveland, 1988)
During the last task round overall, how... Exp. 1: Very little

- Very much (7p);
Exp. 2: Not at all -
Very much (7p)

... successful do you think you were in accomplishing the goals of
the task?

Flow (FKS) (Engeser and Rheinberg, 2008)
During the last task round overall ...

Not at all - Very
much (7p)

1. ... I felt just the right amount of challenge.
2. ... my thoughts ran fluidly and smoothly.
3. ... I didn’t notice time passing.
4. ... I had no difficulty concentrating.
5. ... my mind was completely clear.
6. ... I was totally absorbed in what I was doing.
7. ... the right thoughts occured of their own accord.
8. ... I knew what I had to do each step of the way.
9. ... I felt that I had everything under control.
10. ... I was completely lost in thought.
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Item Wording(s) Answer Options

Stress (Tams et al., 2014)
During the last task round overall ... Exp. 1: Strongly

disagree -
Strongly agree
(7p); Exp. 2: Not
at all - Very much
(7p)

1. ... I felt strain due to the task demands.
2. ... I felt emotionally drained.
3. ... I felt used up due to the task demands.
4. ... I felt fatigued due to the task demands.
5. ... I felt burned out from working on the task.

TABLE A.4: Round Survey Items Used in Experiment 1 (After Each Mental Arithmetic Task
Condition and Writing Task Interruption) and Experiment 2 (After Each Difficulty Condition

Both for the SP and MP Conditions).

Item Wording(s) Answer Options Condition

Autonomy (Sheldon and Hilpert, 2012)
During the last task round overall ...

Strongly disagree
- Strongly agree
(7p)

SP, MP
1. ... I was free to do things my own way.
2. ... I could express my “true self”.
3. ... I was really doing what I wanted to do.

Effortless Concentration (Harmat et al., 2015)
During the last task round overall, how ...

Not at all - Very
much (7p)

SP, MP1. ... well were you concentrating during the task?
2. ... hard was it to concentrate during the task?

Difficulty - Skill Balance (Group) (Engeser and Rheinberg, 2008)
How did you feel about the last task round overall? Very low - Very

high (7p)
MP

For us as a group, the task demands were ...

Task Performance (Group) (Hart and Staveland, 1988)
During the last task round overall, how... Not at all - Very

much (7p)
MP

... successful do you think your group was in accom-
plishing the goals of the task?

Information Sharing (Aubé, Brunelle, and Rousseau, 2014)
During the last math task round overall, we ...

Not at all - Very
much (7p)

MP1. ... shared useful information with each of the team
members.
2. ... made sure we correctly understood our co-work-
ers’ contributions.

TABLE A.5: Round Survey Items Used in Experiment 2 Only.
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Item Wording(s) Answer Options

Task Importance (Engeser and Rheinberg, 2008)
In general, during this whole task (all the task rounds) ...

Strongly disagree
- Strongly agree
(7p)

1. ... something important to me was at stake.
2. ... I was careful to not make mistakes.
3. ... I was worried about failing.

TABLE A.6: Task Survey Items Used in Experiment 1 (After Completion of the Mental
Arithmetic and the Writing Task) and Experiment 2 (After Completion of Each Difficulty

Condition Both for the SP and MP Conditions).

Item Wording(s) Answer Options

Group Interaction Quality (Wageman, Hackman, and Lehman, 2005)
After this whole task (all the task rounds), I feel that ...

Not at all - Very
much (7p)

1. ... there was a lot of unpleasantness among members of this
group.
2. ... the longer we worked together as a group, the less well we did.
3. ... working together energised and uplifted members of our group.
4. ... every time someone attempted to correct someone elses’ solu-
tion, things seemed to get worse rather than better.

Group Relationship Quality (Wageman, Hackman, and Lehman, 2005)
After this whole task (all the task rounds), I feel that ...

Not at all - Very
much (7p)

1. ... my relations with other group members were strained.
2. ... I very much enjoyed working with my group.
3. ... the chance to work together was one of the best parts of working
with this group.

Group Effort (Wageman, Hackman, and Lehman, 2005)
After this whole task (all the task rounds), I feel that ...

Not at all - Very
much (7p)

1. ... group members demonstrated their commitment by putting in
a lot of effort to help us succeed.
2. ... everyone in this group was motivated to have the group
succeed.
3. ... some members of our group did not carry their fair share of the
overall workload.

Group Diversity (Wageman, Hackman, and Lehman, 2005)
In general, during this whole task (all the task rounds) ...

Strongly disagree
- Strongly agree
(7p)

1. ... members of this group were too dissimilar to work together
well.
2. ... this group did not have a broad enough range of experiences
and skills to accomplish its objectives.
3. ... this group had a nearly ideal “mix” of members — a set of
people who bring different experiences and skills to the task.

Group Skills (Wageman, Hackman, and Lehman, 2005)
In general, during this whole task (all the task rounds) ...
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Item Wording(s) Answer Options

1. ... members of this group had more than enough talent and
experience for the kind of task that we did.
2. ... everyone in this group had the skills that are needed for the
group’s work.
3. ... some members of this group lacked the knowledge and skills
that they needed to do their parts of the group’s work.

Group Interdependence (Wageman, Hackman, and Lehman, 2005)
In general, during this whole task (all the task rounds) ...

Strongly disagree
- Strongly agree
(7p)1. ... members of this group had their own individual jobs to do,

with little need for them to work together.
2. ... achieving the objectives of this group required a great deal of
communication and coordination among members.
3. ... members of this group had to depend heavily on one another to
get the group’s work done. (*Only this third item was used in analyses
as poor internal consistency was indicated for the whole construct.)

Group Size (Wageman, Hackman, and Lehman, 2005)
In general, during this whole task (all the task rounds) ...

Strongly disagree
- Strongly agree
(7p)

1. ... this group was larger than it needed to be.
2. ... this group had too few members for what it had to accomplish.
3. ... this group was just the right size to accomplish its objectives.
(*Only this third item was used in analyses as poor internal consistency
was indicated for the whole construct.)

Communication Means (No Reference)
In general, during this whole task (all the task rounds) ... Strongly disagree

- Strongly agree
(7p)

... it was sufficiently possible to coordinate our work.

Collective Efficacy (Zumeta et al., 2016)
After this experiment (all the task rounds) I feel that our group ...

Strongly disagree
- Strongly agree
(7p)

1. ... can show better skills than other groups in tasks like these.
2. ... is effectively prepared for such tasks in the future.
3. ... has improved abilities to overcome problems in such tasks.
4. ... can perform such tasks better than other groups.

Identity Fusion (Swann et al., 2009)
Please chose the diagram that best describes the relationship be-
tween you and the other group members (now after all the task
rounds).

Pictograms of
two more or
less overlapping
circles (4p).

Social Presence (Gefen and Straub, 2003)
In general, during this whole experiment (all the task rounds) ...

Strongly disagree
- Strongly agree
(7p)

1. ... there was a sense of human contact during the group work.
2. ... there was a sense of personalness during the group work.
3. ... there was a sense of sociability during the group work.
4. ... there was a sense of human warmth during the group work.
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Item Wording(s) Answer Options

5. ... there was a sense of human sensitivity during the group work.

Group Engagement (Wageman, Hackman, and Lehman, 2005)
In general, during this whole experiment (all the task rounds) ...

Strongly disagree
- Strongly agree
(7p)

1. ... I felt a real sense of personal satisfaction when our group did
well.
2. ... I felt bad and unhappy when our group had performed poorly.
3. ... my own feelings were not affected one way or the other by how
well our group performed.
4. ... when our group had done well, I felt that have done well.

General Group Satisfaction (Wageman, Hackman, and Lehman, 2005)
In general, during this whole experiment (all the task rounds) ...

Strongly disagree
- Strongly agree
(7p)

1. ... I enjoyed the kind of work we did in our group.
2. ... working with this group was an exercise in frustration.
3. ... generally speaking, I am very satisfied with this group.

Personal Growth Within the Group (Wageman, Hackman, and Lehman, 2005)
In general, during this whole experiment (all the task rounds) ...

Strongly disagree
- Strongly agree
(7p)

1. ... I learned a great deal from my work with this group.
2. ... my own creativity and initiative were suppressed by this group.
3. ... working with this group stretched my personal knowledge and
skills.

TABLE A.7: Task Survey Items Used in Experiment 2 Only (Only for the MP Condition).

Item Wording(s) Answer Options

Flow Proneness - Domain General (Ullén et al., 2012)
When you do something during your (university) work, how often
does it happen that ...

Never - Rarely -
Sometimes -
Often - Everyday,
or almost
everyday (5p)

1. ... you feel bored?
2. ... it feels like your ability to perform what you do completely
matches how difficult it is?
3. ... you have a clear picture of what you want to achieve, and what
you need to do to get there?
4. ... you are conscious of how well or poorly you are performing at
what you are doing?
5. ... you feel completely concentrated?
6. ... you have a sense of complete control?
7. ... what you do feels extremely enjoyable?
When you are doing household work or other routine chores (e.g.
cooking, cleaning, ironing) how often does it happen that ...
1. ... you feel bored?
2. ... it feels like your ability to perform what you do completely
matches how difficult it is?
3. ... you have a clear picture of what you want to achieve, and what
you need to do to get there?
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Item Wording(s) Answer Options

4. ... you are conscious of how well or poorly you are performing at
what you are doing?
5. ... you feel completely concentrated?
6. ... you have a sense of complete control?
7. ... what you do feels extremely enjoyable?
When you do something in your leisure time, how often does it
happen that ...
1. ... you feel bored?
2. ... it feels like your ability to perform what you do completely
matches how difficult it is?
3. ... you have a clear picture of what you want to achieve, and what
you need to do to get there?
4. ... you are conscious of how well or poorly you are performing at
what you are doing?
5. ... you feel completely concentrated?
6. ... you have a sense of complete control?
7. ... what you do feels extremely enjoyable?

Math Task Preference (Ulrich et al., 2014)
How much do you ...

Very little - Very
much (7p)

1. ... like performing mental arithmetic?
2. ... like to write something (a report, short story, etc.)?
3. ... prefer mental arithmetic over writing?

Open Remarks (No Reference)
Is there anything you noticed during the experiment that you would
like to comment on?

Open Text Field

TABLE A.8: End Survey Items Used in Experiment 1 and Experiment 2 After Completion of
All Tasks.
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A.4 Neurophysiological Signal Processing Pipelines

Adhering to recent recommendations for reproducible neurophysiological research
(Bigdely-Shamlo et al., 2015), the complete signal processing pipelines for ECG and
EEG data are outlined in the following tables.

Steps & Parameters Reference

1. Data Extraction
Eyes Open Baseline & Task Phases (5m Windows) -

2. RR-Interval Extraction
Signal Filtering (FIR 3-45 Bandpass) -
R-Peak Segmentation (Hamilton Segmenter) Hamilton (2002)
Correct R-Peak Locations to the Maximum Within a Tolerance
(Defined as the Time Interval)

-

3. HRV Feature Extraction - Initial Processing for All Features
Artefact Detection (Statistical & Physiological) Makowski (2016)
Time Domain Feature Extraction: RMSSD, SDNN, Percent of
Adjacent NN Intervals not Differing More than 50ms (PNN50)

Malik et al. (1996)

4. HRV Feature Extraction - Add. Pre-processing for Freq. Domain Features
RR Interval Interpolation (Third Order Splines) -
Butterworth Bandpass Filter (Range of Target Freq. Band) -
Hilbert Transformation -
Freq. Power Extraction (Multitaper Method):
HF-HRV (.15 to .40 Hz);
LF-HRV (.04 to .15 Hz);
Total Power

Malik et al. (1996)

5. Change Score Computation
∆HRV = Task - Eyes Open Baseline Harmat et al. (2015)

and Tozman et al.
(2015)

TABLE A.9: ECG Processing Pipeline for Experiment 1.

Steps & Parameters Reference

1. Data Extraction
Eyes Open Baseline & Task Phases (5m Windows) -

2. RR-Interval Extraction
Signal Filtering (FIR 3-45 Bandpass) -
R-Peak Segmentation (Hamilton Segmenter) Hamilton (2002)
Correct R-Peak Locations to the Maximum Within a Tolerance
(Defined as the Time Interval)

-

3. HRV Feature Extraction - Initial Processing for All Features
RR Outlier Removal (≥ 2 SD from Mean) -
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Steps & Parameters Reference

Time Domain Feature Extraction:
Mean Average Heart Rate (mHR), RMSSD

Malik et al. (1996)

4. HRV Feature Extraction - Additional Pre-processing for Freq. Domain Features
RR Interval Interpolation (Cubic) Morelli et al. (2019)
Freq. Power Extraction: (Welch Windows With Size 120;
Linear Detrending): HF-HRV (.15 to .40 Hz)

Malik et al. (1996)

Natural Logarithm Transformation of Freq. Powers Berntson, Quigley,
and Lozano (2007)

5. Erroneous Data Inspection
Delete Participants Where mHR is
≥ 1.5 ∗ Interquartile Range (IQR) From Mean

-

6. Change Score Computation
∆HRV = Task - Eyes Open Baseline Harmat et al. (2015)

and Tozman et al.
(2015)

TABLE A.10: ECG Processing Pipeline for Experiment 2.

Steps & Parameters Reference

1. Data Extraction
Eyes Closed, Eyes Open Baseline & Task Phases -
Channel Centering: Subtraction of Channel Mean -

2. Data Cleaning
Signal Drop Artefacts: Deleting Epochs With
Amplitudes >5 SD From Mean

-

Detrending: 0,5 - 45 Hz Bandpass Filter -
Line Noise Removal: 50 Hz Notch Filter -
Channel & Paroxysmal Artefact Removal: Visual Rejection
of Noisy Channels & Epochs

-

Stationary Artefact Removal (Independent Components):
AMICA - ICs: [ Blinks, General Discontinuities]

-

3. Feature Extraction
Epoching: 2s Windows; 50% Overlap; Hann Taper Ewing et al. (2016)
Freq. Power Extraction (Short-Time FFT) Cohen (2014)
Power Normalisation: Natural Logarithm Transformation Ewing et al. (2016)
Freq. Band Extraction: Theta, LoAlpha, HiAlpha,
LoBeta, MidBeta, & HiBeta Bands

Berta et al. (2013)

4. Additional Feature Aggregation
Regional Electrode Pooling (Mean of 8
Frontal Electrodes = AF3, F3, F7, FC5, FC6, F8, F4, AF4) &
Lateral Difference (RH-LH for Asymmetry Scores)

Smith et al. (2017)

Temporal Feature Pooling: Median of Experiment Phase -
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Steps & Parameters Reference

Change Score Computation:
∆Power = PowerTask - PowerEyesOpenBaseline

-

TABLE A.11: EEG Processing Pipeline for Experiment 1.

Steps & Parameters Reference

1. Data Extraction
Eyes Closed, Eyes Open Baseline & Task Phases -
Channel Centering: Subtraction of Channel Mean -

2. Data Cleaning
Line Noise Removal: 50 Hz & 100 Hz

Bigdely-Shamlo et al. (2015)
Re-Referencing: Robust Common Average Reference
Detrending: 1 Hz High-Pass -
Trim Outliers: 800mV / 250ms -
Channel & Paroxysmal Artefact Removal:
Artefact Subspace Reconstruction - Burst Criterion 10 SD

Mullen et al. (2015)

Stationary Artefact Removal (Independent Components):
AMICA - ICs: [Horizontal & Vertical Eye Movement,
Blinks, General Discontinuities] via ADJUST

Mognon et al. (2011)

Processing Inspection: Visual Input-Output Comparison -

3. Feature Extraction
Freq. Power Extraction: Morlet Wavelets (55 Frequencies,
Range [3, 60], Cycle Range [3,10] Log. Spaced With Freq.) Cohen (2014)
Power Normalisation: dB Power = 10 * log10(µV2/Hz)
Frequency Band Extraction: Theta, Lo2Alpha, HiAlpha,
LoBeta, MidBeta, & HiBeta Bands From IAF Peak

Klimesch (1999)

4. Additional Feature Aggregation
Temporal Feature Pooling: Median of Experiment Phase -
Completeness Check: Remove Subjects With Short
Baseline Data (<80% of Expected Samples);
Remove Exp. Phases With <80% of Expected Samples

-

Change Score Computation:
∆Power = PowerTask - PowerEyesOpenBaseline

-

Spatial Pooling (ROIs): Remove Participant
When <50% of Electrodes Available

-

TABLE A.12: EEG Processing Pipeline for Experiment 2.
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