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Abstract
The orientation of a chiral magnetic domain wall in a racetrack determines its dynamical
properties. In equilibrium, magnetic domain walls are expected to be oriented perpendicular to
the stripe axis. We demonstrate the appearance of a unidirectional domain wall tilt in
out-of-plane magnetized stripes with biaxial anisotropy and Dzyaloshinskii–Moriya interaction
(DMI). The tilt is a result of the interplay between the in-plane easy-axis anisotropy and DMI.
We show that the additional anisotropy and DMI prefer different domain wall structure:
anisotropy links the magnetization azimuthal angle inside the domain wall with the anisotropy
direction in contrast to DMI, which prefers the magnetization perpendicular to the domain wall.
Their balance with the energy gain due to domain wall extension defines the equilibrium
magnetization the domain wall tilting. We demonstrate that the Walker field and the
corresponding Walker velocity of the domain wall can be enhanced in the system supporting
tilted walls.

Supplementary material for this article is available online

Keywords: domain wall, Dzyaloshinskii–Moriya interaction, Walker limit, magnetism

(Some figures may appear in colour only in the online journal)

Spin orbitronics relies on the manipulation of magnetic
textures via spin orbit torques and enables new devices ideas
for application in magnetic storage and logics [1–5]. The
key component of these devices is a stripe with out of plane
easy axis of magnetization and featuring the Dzyaloshinskii–
Moriya interaction (DMI). Typically, asymmetrically sand-
wiched ultrathin films of ferromagnets are used, where the

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

DMI originates from the broken symmetry at the film inter-
faces [6, 7]. There are numerous demonstrations of the energy
efficient and fast motion of chiral magnetic solitons includ-
ing skyrmions [8–10], skyrmion-bubbles [11, 12] and domain
walls [13–15] in stripes.

The orientation of the domain wall with respect to the stripe
main axis hasmajor impact on its dynamics including themax-
imum velocity [16] and Walker limit [17, 18]. In equilibrium,
the domain wall is oriented perpendicular to the main axis of
the stripe. This remains true even if the sample possesses DMI.
The domain wall can acquire a tilt yet only if exposed to an
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external magnetic field [19–23], driven by a current [16, 19,
24–27], or pinned on edge roughness during current-induced
dynamics [28]. Being exposed to an in-plane magnetic field,
domain wall tilts unidirectionally with the rotation direction
determined by the sign of the DMI. The tilt increases linearly
with the field strength and the slope of the resulting depend-
ence was proposed to be used for the determination of the DMI
constant [19, 22].

Here, we demonstrate that domain walls can acquire a
unidirectional tilt even at equilibrium if the out-of-plane mag-
netized stripe possesses DMI and an additional easy-axis
anisotropy in the plane of the stripe. The easy axis direction
of the in-plane anisotropy can be given by a crystalline struc-
ture of the ferromagnet [29]. In contrast to the shape aniso-
tropy [17, 30] with an easy axis along the stripe, any mis-
alignment between the in-plane anisotropy and the stripe axes
breaks the symmetry of the magnetic texture and tilts (i) the
magnetization inside the domainwall as well as (ii) the domain
wall. The motion a domain wall in a biaxial magnetic with
DMI has strong impact on the Walker field and the domain
wall velocity. The obtained results allow to design stripes with
stronger Walker field (i.e. extend range of the linear motion of
domain walls) and control the domain wall nucleation process
in T-junctions by selecting the initial tilt direction [31, 32].

We consider an infinitely long magnetic thin stripe of thick-
ness h and width w. The total magnetic energy of the stripe
is E= h

´
dS [WX +WA +WDM +WZ], where the integration

is performed over the sample’s area in xy plane (x̂ axis is
along the stripe). The first energy term is the exchange energy
density WX = A

∑
i=x,y,z(∂im)2 with A being the exchange

stiffness, m=M/MS being the unit magnetization vector and
MS being the saturation magnetization. The second term is
the anisotropy energy density of a biaxial magnet, WA = K1

(1−m2
z )−K2(m · e2)2, with K1 > K2 > 0. The easy axis of

the in-plane anisotropy e2 lies in the stripe’s plane at an angleα
to the x̂ direction. The third energy term is the energy density
of the DMI [33, 34] WDM = D [mz(∇·m)− (m ·∇mz)]. The
last energy term is the Zeeman energy densityWZ =−MSBmz

with B being an external magnetic field intensity. We assume,
that the magnetostatic interaction can be reduced to a local
anisotropy and results in the renormalization of the first aniso-
tropy constant K1 = K0 − 2πM2

S with K0 being the strength of
the magnetic anisotropy with an out-of-plane easy axis.

To describe the structure of the domain wall, we apply the
following ansatz [19]:

cosθ =−p tanhξ, ϕ= ψ− 90◦, ξ =
(x− qℓ)cosχ+ ysinχ

∆ℓ
,

(1)
where the magnetization vector is parametrized as m=
{sinθ cosϕ,sinθ sinϕ,cosθ} in the local spherical reference
frame with θ and ϕ being polar and azimuthal angles, respect-
ively, p= ±1 is the topological charge of the domain wall
(kink or anti-kink), ℓ=

√
A/K1 is the magnetic length,∆ and

q are domain wall width and position of its center, respect-
ively, measured in units of ℓ. The origin is placed in the center
of the stripe. The angle ψ ∈ (−180◦,180◦) describes the tilt of
the magnetization inside the domain wall with respect to the

ŷ axis and the angle χ ∈ (−90◦,90◦) characterizes the mech-
anical tilt of the domain wall with respect to ŷ, see figure 1(a).
In this notation, ψ= 0 or 180◦ and ψ= 90◦ or −90◦ with
χ= 0 corresponds to Bloch and Néel domain walls, respect-
ively. The domain wall is perpendicular to the stripe axis when
χ= 0.

The total energy, normalized by E0 = 2K1hwℓ, reads

E =
E
E0

=
1

cosχ

{
1
∆

+∆×
[
1− k2 sin2(ψ−α)

]
+ d0 sin(ψ−χ)

}
− pbq,

(2)

where k2 = K2/K1 is the normalized in-plane anisotropy, d0 =
πpD/(2

√
AK1) is the dimensionless parameter characterizing

the DMI strength and b=MSB/K1 is the normalized mag-
netic field B along ẑ. Note that the DMI parameter d0 incor-
porates the topological charge of the domain wall p. The static
domain wall configuration (b= 0, and q= 0 without loss of
generality) is given by the minimum of the energy (2) with
respect to ∆, χ and ψ. The equilibrium domain wall width

is∆0(ψ) = 1/
√
1− k2 sin

2(ψ−α). The relation between val-
ues of the angles χ and ψ in equilibrium reads

2sinχ= d0∆0(ψ)cosψ, (3)

After the substitution of (3) in (2), we obtain the expression
for the energy as a function of the angle ψ, characterizing the
orientation of the magnetization in the wall:

E(ψ) =

√
4

∆0(ψ)2
− d20 cos

2ψ+ d0 sinψ. (4)

There are several limiting cases related to the absence of
the in-plane anisotropy (k2 = 0) or DMI (d0 = 0). If k2 = 0
and d0 = 0, we obtain a classical case when a magnetic stripe
with perpendicular anisotropy can support Bloch domainwalls
(ψ= 0, 180◦ as a consequence of minimization of magneto-
static energy), with a domain wall being perpendicular to the
stripe axis (χ= 0). For any finite k2 (still when d0 = 0), the
magnetization in the domain wall is tilted to its equilibrium
value of ψ=α± 90◦. This corresponds to the two equivalent
minima in the energy (4), see red line (d0 = 0) in figure 1(b).
However, the domain wall remains perpendicular to the stripe
axis (χ= 0). This result is expected from the analysis of (3),
indicating that the mechanical rotation of the domain wall
is possible only if the sample possesses a finite DMI. A
nonzero DMI results in the symmetry breaking between the
opposite magnetization directions, see blue line (d0 = 0.1) in
figure 1(b). Arrows indicate the shift of the energy minima
with the change of the DMI constant. For a sufficiently large
DMI, the second energy minimum disappears and only one
orientation of the domain wall remains stable, see green line
(d0 = 0.3) in figure 1(b).

Figure 1(c) shows the domain wall structure in a broad
range of DMI parameters for k2 = 0.30 and α= 45◦. Solid
lines represent the numerically determined minimum of the
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Figure 1. The equilibrium structure and orientation of a domain wall in a biaxial stripe with DMI. (a) Schematics of the out-of-plane
magnetized stripe containing a domain wall. The mechanical tilt of the domain wall with respect to the ŷ axis is characterized with χ. Angle
ψ describes the tilt of the magnetization in the wall. (b) Energy profile (equation (4)) for the case of k2 = 0.30, α= 45◦, p= +1 and varying
strength of the DMI, d0. Arrows show the evolution of the energy minima with the change of DMI strength parameter |d0|. (c) Domain wall
tilt angle (χ) and magnetization tilt angle (ψ) as a function of the strength of the DMI. Solid line corresponds to the numerically calculated
minimum based on equation (4), symbols represent results of the full-scale micromagnetic simulations (open square marks). The simulation
data where magnetostatics was reduced to the effective anisotropy is shown with symbols. (d) A structure of the domain wall for two
different DMI parameters, see mark in panel (c). (e) Size of bistability regions dbis0 for different angles α of the in-plane easy axis e2.

energy (4) taking into account (3). The domain walls acquires
the unidirectional tilt for any finite DMI parameter d0: the
energetically preferable state corresponds to χ> 0 only if
α > 0. The bistability region exists in a vicinity of d0 = 0. We
made two sets of micromagnetic simulations (see appendix
for details): symbols show the result, where magnetostatics is
reduced to a local anisotropy and open squares represent full-
scale simulations. The internal domain wall structure, given by
the angle ψ, is governed by the direction of the easy axis of the
in-plane anisotropy e2. In an extended film, the domain wall
is always oriented perpendicularly to e2 and the DMI energy
favors ψ=χ± 90◦ (magnetization rotates perpendicularly to
the domain wall). In a stripe of a finite width, the balance
between the domain wall tension energy (proportional to its
length and increasing with χ) and the DMI energy results in
a certain value of χ, which is different from ψ. The domain
wall tilt angle χ rapidly increases when d0 approaches its crit-
ical value. The domain wall structure is shown in figure 1(d),
where tilt angles χ and ψ as well as the orientation of the easy
axis of the in-plane anisotropy are depicted. The size of the
bistability region in terms of the DMI parameter dbis0 is shown
in figure 1(e). Note, that the state α= 0 is degenerated with the
domain wall tilt χ≡ 0.

Model 1 is applicable for relatively narrow stripes, where
the domain wall can be approximated by a straight line. For
wide stripes, the curvilinear distortion of the domain wall
should be considered. These distortions can appear as a result
of the dynamical instabilities originated from the magnon gen-
eration on a moving domain wall [35, 36]. Additionally, the
competition between the anisotropy and magnetostatic ener-
gies as any polycrystallinity of the sample can contribute to the
stability of different domain wall configurations in static equi-
librium and to their complex field driven dynamics [37, 38].

The dependencies of the domain wall (χ) and magnetiza-
tion (ψ) tilt angles on the orientation of the easy axis of the
in-plane anisotropy (α) is summarized in figures 2(b) and (c).
The sign of χ is given by the direction of the anisotropy axis
α, while the sign of ψ is opposite to the sign of d0. The domain
wall tilt angle monotonically increases with the increase of d0
and k2, while the magnetization tilt angle is mainly determined
by the k2 for the case of strong DMI.

In the following, we address the dynamics of domain walls
driven by an external magnetic field applied along ẑ. We apply
a collective variables approach [39, 40], considering the wall
position q(t), the magnetization tilt ψ(t), domain wall tilt χ(t)
and the domain wall width∆(t) as time-dependent quantities.
The solutions of the corresponding Euler–Lagrange–Rayleigh
equations are found numerically, see supplementary mater-
ials (stacks.iop.org/JPD/53/395003/mmedia) for details and
compared with micromagnetic simulations, see figure 3(a).
The analysis is performed in the fields, which are smaller
than the Walker field (b< bW). The discussed model is not
applicable above Walker fields due to instability of domain
wall shape against bending. Micromagnetic simulations show
irregular wavy bends of domain boundary during its expan-
sion, see the supplementary materials. In this case, the tilt
anglesψ andχ and the domainwall width quickly relax to their
equilibrium values ψ∞ and χ∞, respectively (see also equa-
tions (S11)–(S13) in the supplementary material). The domain
wall velocity with equilibrium values of its width and angles
reads

v=
pb

2η cosχ∞
√
1− k2 sin(ψ∞ −α)

, (5)
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Figure 2. The domain wall structure (tilt of magnetization ψ and domain wall tilt χ) as a function of material parameters. (a) Tilt angles as
a function of the strength of the in-plane anisotropy k2 with the easy axis direction α= 45◦ and different strength of the DMI parameter d0.
(b), (c) Domain wall and magnetization tilt angles for different d0 and α. Values of angles are shown with isolines. The normalized
anisotropy coefficient k2 = 0.30, topological charge of the domain wall p= +1.
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Figure 3. Domain wall dynamics. (a) Comparison of the results of micromagnetic simulations (symbols) and collective variables model
(lines). Blue and red colors correspond to direction of the easy axis of the in-plane anisotropy α= 45◦ and α=−45◦, respectively. Labels
fav and unf indicate parameters, where favorable and unfavorable magnetization tilt exist, gray arrows indicate simulations, represented in
(e)–(g). (b), (c) Dimensionless Walker field and velocity (solid blue lines). Red dashed line shows the field and velocity at which the
magnetization tilt ψ changes from unfavorable value to the favorable one (unf to fav). (d) Comparison of the numerical solution of the
collective variable model (solid blue line) with asymptotic (dashed black line). (e)–(g) Structure of a moving domain wall for different
orientation of the easy axis of the in-plane anisotropy α and applied field b, see also gray arrows in (a). The parameters used for these
simulations are k2 = 0.30, d0 = 0.63, p= +1, η= 0.5.

where the dimensionless velocity v is measured in units of
2γ

√
AK1/MS with γ being gyromagnetic ratio and η beingGil-

bert damping. Note that the maximum of the Walker field and,
hence, the largest velocity is reached at the angle α0 ≈ 60◦ for
the given parameters, which does not coincide with a shape
anisotropy along the stripe main axis [17, 30]. Asymptotic
analysis shows a good coincidence with numerical solution of
equations of motion even for large enough fields and material

parameters, see figure 3(d) and the supplementary materials
for details.

Upon the motion of the domain wall, its internal structure
changes dependent on the direction of the easy axis of the in-
plane anisotropy α and on the strength of the applied mag-
netic field b (figure 3). There exists a symmetry break with a
favorable magnetization tilt direction (indicated as fav states
in figure 3), in a small angular range about the orientation of
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e2 (along or opposite to it). It results in a higher velocity at a
given field. The domain wall with unfavorable tilt angle (indic-
ated as unf states in figure 3) will switch the internal mag-
netization in the wall to the e2 direction at the beginning of
motion. The red dashed line in figure 3(b) indicates the smal-
lest field, which is needed for switching of the magnetization
angle in the wall. The positive b results in the appearance of
‘unf’ state for negative α and vice versa. Sign of χ coincides
with sign of b for fields, close to bW. We note a certain sim-
ilarity with the texture-induced chirality breaking for moving
magnetic domain walls in nanotubes due to non-local mag-
netostatics [41, 42].

To summarize, we investigate the internal domain wall
structure and its orientation in an out-of-plane magnetized
stripe with biaxial (in-plane and out-of-plane) anisotropy and
Dzyaloshinskii–Moriya interaction. The cooperative effect
of the DMI and the additional anisotropy with an in-plane
easy axis results in a unidirectional tilt of domain wall in
equilibrium and in a symmetry break of a domain wall static
state with respect to the stripe axis. The domain wall dynam-
ics in an applied out-of-plane magnetic field exhibits slow and
fast motion similarly to vortex domain walls in tubes [41, 42].
We demonstrate that the Walker field but also the associated
Walker velocity strongly depend on the orientation of the easy
axis of the in-plane anisotropy. There appears an optimal angle
of the orientation of the in-plane easy axis to maximize the
Walker field and the Walker velocity. This optimal angle does
not coincide with the direction of the easy axis of the shape
anisotropy. These results are relevant for the optimization of
the domain wall dynamics in data storage and logic devices,
relying on spintronic and spin-orbitronic concepts.

See supplementary material for the details of domain wall
dynamics under the action of perpendicular magnetic field.
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Appendix A. Micromagnetic simulations

Numerical analysis is performed using energy minimization
in OOMMF [44–46] for samples of length 1000 nm, width
200 nm and thickness 1 nm with mesh 2× 2× 1 nm with the
domain wall placed in the center. The material parameters
correspond to Co/Pt ultrathin films with the saturation mag-
netization MS = 1100 kA m−1, exchange stiffness A= 16 pJ

m−1 and out-of-plane anisotropy K0 = 1.3 MJ m−3. The in-
plane anisotropy coefficient K2 = K0/8 is chosen if other is
not stated. The domain wall structure is extracted from the
inner part of the stripe with |y|< 40 nm to avoid boundary
effects. All data presented in figures are calculated for the case
when the easy axis of the in-plane anisotropy is directed at
α= 45◦, if other is not stated. The difference between simu-
lations and analytical theory for is explained by the influence
of non-local magnetostatics contribution in the corresponding
simulation series and the difference between ansatz (1) and
real domain wall structure. The finite stripe length also influ-
ences the domain wall structure for very large χ if magneto-
statics is calculated explicitly (full scale micromagnetic simu-
lations).

We consider stripes of length 2000 nm for simulations of
domainwall dynamics and domainwall initial position 500 nm
far from the stripe end. Only exchange interaction, anisotrop-
ies and DMI are taken into account, see SupplementaryMater-
ials for comparison with simulations, where the magnetostat-
ics was taken into account.
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