KIT | KIT-Bibliothek | Impressum | Datenschutz

Estimation of Moisture Content Distribution in Porous Foam Using Microwave Tomography With Neural Networks

Lähivaara, Timo; Yadav, Rahul; Link, Guido; Vauhkonen, Marko

Abstract (englisch):

The use of microwave tomography (MWT) in an industrial drying process is demonstrated in this feasibility study with synthetic measurement data. The studied imaging modality is applied to estimate the moisture content distribution in a polymer foam during the microwave drying process. Such moisture information is crucial in developing control strategies for controlling the microwave power for selective heating. In practice, a reconstruction time less than one second is desired for the input response to the controller. Thus, to solve the estimation problem related to MWT, a neural network based approach is applied to fulfill the requirement for a real-time reconstruction. In this work, a database containing different moisture content distribution scenarios and corresponding electromagnetic wave responses are build and used to train the machine learning algorithm. The performance of the trained network is tested with two additional datasets.


Download
Originalveröffentlichung
DOI: 10.1109/TCI.2020.3022828
Dimensions
Zitationen: 15
Zugehörige Institution(en) am KIT Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2333-9403, 2334-0118, 2573-0436
KITopen-ID: 1000123917
HGF-Programm 34.12.01 (POF III, LK 01) Multiphasen und thermische Prozesse
Erschienen in IEEE transactions on computational imaging
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 6
Seiten 1351–1361
Projektinformation TOMOCON (EU, H2020, 764902)
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page