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A B S T R A C T

Currently, the laser powder bed fusion (L-PBF) process cannot offer a reproducible and predefined quality of the
processed parts. Recent research on process monitoring focuses strongly on integrated optical measurement
technology. Besides optical sensors, acoustic sensors also seem promising. Previous studies have shown the
potential of analyzing structure-borne and air-borne acoustic emissions in laser welding. Only a few works
evaluate the potential that lies in the usage during the L-PBF process.

This work shows how the approach to structure-borne acoustic process monitoring can be elaborated by
correlating acoustic signals to statistical values indicating part quality. Density measurements according to
Archimedes’ principle are used to label the layer-based acoustic data and to measure the quality. The data set is
then treated as a classification problem while investigating the applicability of existing artificial neural network
algorithms to match acoustic data with density measurements. Furthermore, this work investigates the trans-
ferability of the approach to more complex specimens.

1. Introduction and structure of this article

The market segment of additive manufacturing (AM) is growing
rapidly [1]. For manufacturing metal parts, the laser powder bed fusion
(L-PBF) process is one of the most crucial manufacturing techniques
[2]. One of the major drawbacks slowing down the spread of this
process is its low reproducibility concerning the properties of parts. The
low reproducibility is caused by the process complexity due to more
than 50 process parameters influencing the part quality [3]. Under-
standing the process and the complex interactions between the different
parameters is still part of an ongoing research [4,5].

Due to the high process complexity and low reproducibility, early
research focused on investigating process monitoring techniques.
Today, some machine manufacturers already offer monitoring techni-
ques for industrial applications. Most of the monitoring techniques are
based on monitoring the process emissions in the optical spectrum
(plasma, reflected laser emission, thermal radiation). To collect these
process signatures, sensors like cameras or diodes are placed off- or on-
axis (coaxial to the laser beam) [6,7].

A novel approach, which is still in the research state and whose
potential has not yet been assessed conclusively, is the acoustic mon-
itoring of the L-PBF. Acoustic monitoring has already been applied in
laser welding, where a distinction is made between air-borne acoustic

emission (ABAE) and structure-borne acoustic emission (SBAE) [8].
Since both approaches are known from monitoring laser welding pro-
cesses, Section 2.1 summarizes, in total, 15 publications in order to
provide an overview of the methods and approaches used. First pub-
lications on this topic emerged already in 1976. This is followed by a
summary of the present work on acoustic monitoring regarding L-PBF
in Section 2.2.

As of today, most process monitoring techniques available in in-
dustrial L-PBF machines provide feedback on process deviations [6].
However, such detecting of process deviations lacks the informative
value of what may be experienced by the machine operator. He is
unaware of the effects these deviations have on the function of the
processed part and is thus limited in his actions. This work argues in
favor of using part density as a measure of quality and as a more va-
luable feedback. Section 2.3, therefore, describes why this parameter is
used and Section 3 describes the overall methodical approach. This
includes the experimental setup to gather structure-borne acoustic
emission (SBAE) data during the manufacturing process. For gathering
the data, an exemplary process environment is used and is explained in
Section 3.1. Section 3.2 describes the specimens used and the variation
of process parameters in order to obtain parts of different density levels.
One major challenge when analyzing acoustic data is the extraction of
features from the raw acoustic signal. The short-time Fourier transform

https://doi.org/10.1016/j.addma.2020.101324
Received 21 October 2019; Received in revised form 31 March 2020; Accepted 10 May 2020

⁎ Corresponding author.
E-mail address: niclas.eschner@kit.edu (N. Eschner).

Additive Manufacturing 34 (2020) 101324

Available online 23 May 2020
2214-8604/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22148604
https://www.elsevier.com/locate/addma
https://doi.org/10.1016/j.addma.2020.101324
https://doi.org/10.1016/j.addma.2020.101324
mailto:niclas.eschner@kit.edu
https://doi.org/10.1016/j.addma.2020.101324
http://crossmark.crossref.org/dialog/?doi=10.1016/j.addma.2020.101324&domain=pdf


(STFT) used for this work is argued and explained in Section 3.3. Ar-
chimedes’ density measurements, giving results for 52 specimens, are
described in Section 3.4. Section 3.5 concludes the methodical-ap-
proach part by describing the design of the artificial neural network
(ANN) used. ANNs are implemented in this work by employing existing
Python libraries (TensorFlow).

Section 4 is subdivided into two parts:
Section 4.1 determines whether it is possible to classify the resulting

Archimedes’ density level based on the acoustic data of one layer. To
discuss the success, confusion matrix and F1-score are provided.

The robustness of the approach is compared in Section 4.2 by va-
lidating it using three different types of specimens that vary in their
support geometry. This is of interest because the SBAE approach deals
with acoustic waves that have to travel from the processed zone
through the already finished part. In this case, dampening effects in
complex geometries could reduce the performance of the monitoring
technique. For this purpose, the robustness is discussed and evaluated
in Section 4.2 by comparing the results of three different specimen
types.

2. State of the art

Section 2.1 is a literature review of existing work on acoustic
monitoring in laser welding. Section 2.2 summarizes the present work
of acoustic monitoring in the L-PBF process. Furthermore, Section 2.3
provides a short discussion of quality definitions before arguing for the
density measured using Archimedes’ method.

2.1. Acoustic monitoring in laser welding and machine learning for data
analysis

Regarding the aspect of monitoring laser welding, acoustic emis-
sions (AE) have been widely investigated. First publications on this
topic appeared about 40 years ago [9]. This literature research provides
an overview of existing publications on acoustic process monitoring in
laser welding. At the time of writing this article, there were four lit-
erature reviews concerning process monitoring of laser welding in
general [10–13]. In total, 23 relevant papers are considered, 15 of
which were published in scientific peer-reviewed articles that were
included in this review. Table 1 summarizes the key findings which are
explained in the following sections.

First of all, it is worth mentioning that all papers name two sources
for acoustic emissions: evaporation dynamics and temperature gra-
dients. Some of the works also propose formulas for the link between
the acoustic source (in particular evaporation) and the acoustic

pressure level [14–19].
Most of the papers investigate the influence of different process

parameters on the acoustic signal. Commonly used parameters to de-
termine the influence of the laser process on acoustic signals are scan
speed and laser power. Some works also investigate the influence of
focus variation on the acoustic signal. Only a few works focus on more
quality-relevant parameters like penetration depth or gaps and mis-
alignment failures and their influence on the acoustic signal.

In terms of signal processing, most of the papers analyze the signals
in the frequency domain. Early works analyzed the intensity or signal
pressure of the raw signal. Duley et al. [20] first transformed the signals
into the frequency domain, which showed advantages for correlating
acoustic signals with process characteristics. After 2000, either the fast
Fourier transform (FFT) or wavelet functions have been used for all
works, which underpins the advantage of analyzing acoustic signals in
the frequency domain. The main advantages of signal analysis in the
frequency domain are the better comparability and separability of dif-
ferent process conditions [20]. This is also valid when working with
ANNs [19]. In addition, the filtering of noise is also mentioned to be
more accessible in the frequency domain [21].

Moreover, investigations on automating signal analysis have in-
creased in number over the years. Classification algorithms like artifi-
cial neural networks (ANN) [17,19,22] or pattern recognition [18,23]
have been used to find links between the process and the acoustic
signal. The approaches of these works are similar and, for providing a
better insight, two of them are described in more detail.

Huang et al. [22] demonstrate that by using ANN, it is possible to
predict the depth of the weld. The authors use two features forming the
acoustic signal (sound pressure deviation and a frequency domain-
based feature called band power) together with the set process para-
meters (laser power and welding speed) as an input for the ANN. Based
on this input, the welding depth is predicted by the ANN. The resulting
welding depth is determined with the help of views across sections.

Lee et al. show the full potential of data processing using ANNs [19].
In this paper, three different process conditions are distinguished (un-
successful, successful, and over-welding, where thermal defects were
apparent on the bottom of the specimen) and set by varying laser power
and pulse duration resulting in 15 experiments. As input for the ANN,
the amplitudes of three different frequency levels (100–200, 200–300,
and 300−500 kHz) are used. The ANN used is a multilayer perceptron
(MLP). The ANN predicted the correct process condition classes with a
precision of 88 %.

In the past years, other machine learning approaches like random
forest models working with data sets similar to those used by Lee et al.
have increased precision up to 95 % [24].

Table 1
Literature review for acoustic emissions in the laser beam melting process.

Object of Investigation Data Processing Data Analysis Type of AE

Scan parameter Power Focus Defect Penetration
depth

Time domain FFT Wavelet Manual Auto SBAE ABAE Max. freq.
[kHz]

Saifi and Vahaviolos 1976 [9] x x x x 500
Duley and Mao 1994b [20] x x x x 10
Gu und Duley 1996a [23] x x x x x 20
Nava‐Rüdiger and Houlot 1997 [29] x x x x x x 20
Farson et al. 1997 [30] x x x x x x 20
Zeng et al. 2001 [16] x x x x 50
Luo et al. 2005 [17] x x x x x 20
Bordatchev and Nikumb 2006 [18] x x x x x 500
Huang and Kovacevic 2009a [31] x x x x x x 20
Khosroshahi et al. 2010 [32] x x x x 20
Huang and Kovacevic 2011 [22] x x x x x x 29
Lee et al. 2014 [19] x x x x x x 2000
Lee et al. 2015 [21] x x x x 40
Bastuck et al. 2016 [28] x x x x x 1500
Shevchik et al. 2018b [24] x x x x x 1850
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In general, as mentioned in the introduction, there are two types of
emissions produced in the process zone, one is called structure-borne
acoustic emission (SBAE) and the other air-borne acoustic emission
(ABAE). When comparing the findings from SBAE and ABAE, the fol-
lowing differences can be summarized.

For recording the ABAE, regular membrane microphones are used in
most cases. For all SBAE approaches, piezoceramic transducers are
used. ABAE is measured using up to 50 kHz, whereas SBAE is measured
using up to 1000 kHz. This difference shows that SBAE has a broader
frequency spectrum compared to ABAE. The broader frequency spec-
trum for SBAE is reasonable since there is higher damping of acoustic
emissions in the air than in solid specimens [25].

The industrial application of SBAE in laser welding for quality
control purposes is limited by the hardly reproducible coupling of the
sensor to the workpiece [26]. This is a significant challenge for the laser
welding process, since the sequence time in laser welding is only a few
seconds before the workpiece changes, and the sensor has to be re-
attached. It is essential for the analysis of SBAE that the sensor has a
reproducible hardware connection to the workpiece. Hamann et al.
[27] suggest to modify the sensor to meet this demand but do not
evaluate it any further. The difficulties of attaching the sensor might be
the reason why there is generally much more work done on the ABAE
than on the SBAE.

In summary, the acoustic monitoring of ABAE and SBAE has shown
good results for laser welding. ABAE has especially shown its ad-
vantages for evaluating process conditions correlating with plasma
formation. SBAE has shown advantages in evaluating internal defects
like the lack of penetration or porosity [28].

Most approaches are still at a laboratory research level only and are
not industrially applicable. A reason for this could be the difficulty to
interpret the signals and to handle the resulting significant amount of
data.

Even though laser welding and L-PBF are two very similar processes,
there are reasons why the approaches introduced laser welding need
some adaption in order to monitor the L-PBF process. First of all, laser
welding is a single-line process where only one vector is scanned.
Compared to this, L-PBF works with hatching strategies which result in
scanning several vectors for only one layer. This makes it clear that data
processing and process result determination occur in different ways for
L-PBF. Furthermore, the L-PBF process is slightly different from laser
welding due to the different process morphology, and the desired
process window is also different [33]. Nevertheless, the summarized
publications provide relevant knowledge that has to be considered for
the acoustic monitoring of L-PBF. It also underpins the potential of
acoustic monitoring in laser processes.

2.2. Acoustic monitoring in the L-PBF process

Only very little research has so far been done on acoustic emission
(AE) to monitor the L-PBF process. The following section will briefly
introduce each available work. Table 2 summarizes the findings.

Rieder et al. [34] place a piezoelectric transducer for ultrasonic
testing (UT) under a build platform. The UT unit transmits waves
generated by the piezoelectric transducer and evaluates the recorded
echo. Rieder et al. [34] briefly discuss the option of also using the
transducer to monitor SBAE from the weld zone. During welding, SBAE
signals were measured and plotted in a frequency spectrum. However,
there was no further elaboration of the capabilities of this technique,
since Rieder et al. [34] focused on the investigation of the potentials of
UT during laser downtimes.

Two later works by Wasmer et al. [35] and Ye et al. [36] involved
monitoring the air-borne acoustic emissions within the build chamber.
Based on both experimental setups, further work by Ye et al. [37],
Shevchik et al. [38], and Wasmer et al. [39] concentrates on data
analysis. All of the publications mention that some form of ANN as well
as signals in the frequency domain were used as input for the ANN. All

three publications aimed at distinguishing different classes of quality.
Ye et al. [39] determine quality according to the occurrence of

balling, slight balling, regular process, slight overheating, and over-
heating. One significant restriction of this work is that all data were
collected using single laser tracks. This means, only one layer of powder
is molten by one laser scan line. The authors compare different setups of
ANN (Multilayer Perceptron, Deep Believe Network, Support Vector
Machine) and different inputs for the ANN (raw data, FFT, and FFT
including denoising). A 95 % classification rate is reached with the
Deep Believe Network and FFT, which is considered the best possible
solution by the authors.

Shevchik et al. [37] and Wasmer et al. [38] use different scan speeds
to obtain three different classes of density. Both publications used the
same data set but performed different data analyses with different types
of artificial neural networks. While Wasmer et al. [38] used wavelet-
based features as input obtaining an overall accuracy between 79 % and
84 %, Shevchik et al. [37] used FFT-based features achieving an overall
accuracy between 85 % and 89 %.

Another work by Wasmer et al. [40] also shows the connection
between the welding condition and the SBAE. The authors introduce a
test setup where acoustic data can be gathered in a high-speed x-ray
computed tomography (CT). To collect acoustic data, a piezoelectric
sensor is attached to the workpiece. Labeling (conduction welding,
stable keyhole, unstable keyhole, spatter) of data is done according to
the visual inspection of the CT images. The acoustic signal is trans-
formed to Wavelets and then used for training. The results show that
the welding condition can be matched to the acoustic signal. Therefore,
a gradient boost method is used resulting in inaccurate values ranging
between 74 % and 95 % depending on the class.

Besides these scientific works, the machine manufacturer,
Renishaw, launched a system able to identify conspicuous events within
the process with multiple integrated SBAE sensors, allowing for defect
localization by means of triangulation. No scientific research on this
system has been known so far. [41]

2.3. Process quality

In general, quality is defined by the customer and his satisfaction
[43]. To satisfy a customer means to provide for the built part to meet
the requirements of the customer; these in turn must be guaranteed by
the process. Since the abilities to create new and better functions are
the main reason (named by 70 % of a representative customer group)
for using L-PBF [44], mechanical properties (e.g., stress behavior) likely
have to be met by the produced part. Unfortunately, the mechanical
properties (like tensile strength or fatigue behavior) are difficult to
determine and go along with time-consuming destructive testing.
However, to give a feedback nonetheless about the expected mechan-
ical behavior, secondary quality parameters influencing the mechanical
properties can be used as a measure of quality. This is a well-known
process in the industry and is often done by tolerance management
[45]. Unfortunately, there is not much information available on the
tolerances used in the L-PBF process yet.

There is a lot of work available investigating the connection be-
tween process parameters, secondary quality parameters and the me-
chanical properties of the part, which help to understand the complex
interaction between all these factors.

In general, the energy input is often altered in order to influence the
process result. There are works showing, that high energy inputs sup-
port the formation of gas pores, while low energy inputs lead to fusion
pores [6]. Reasons for having fusion pores can be traced back to a lack
of energy, which is insufficient to form a constant melt pool. Compared
to this, gas pores are typically formed when the energy input is too high
and keyhole formation takes place in the process zone. In this situation,
gas from evaporating alloys or process atmosphere gas can be trapped
in a melt pool. Typically, gas pores are spherical and smaller in size
than fusion pores [46–48]. Due to their shape and size fusion pores
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have a much higher impact on the mechanical properties of the part.
Beside pores, the microstructure is a well-analyzed parameter in L-

PBF. The microstructure is also highly influenced again by the energy
input. Both crystallographic orientation and grain size can be controlled
by altering the energy density. [49] In this context the melt pool size an
overlap is highly influencing the microstructure [50]. Big melt pools
from high energy input together with a high overlap lead to remelting
of the martial which results in a bigger grain size [51]. In general it
could be stated that defects like pores have a higher impact on the
mechanical properties than microstructure [49].

Numerous further parameters are influencing the resulting me-
chanical properties (surface quality, residual stress, part orientation,
etc.) [52–54] and the L-PBF process is a quite complex process resulting
in a high variation and interaction of all of these factors. Future re-
search will have to define the tolerances for these parameters to get
reproducible products. For now, this work favors for density out of the
named ones. The reason for this is that density is comparatively easy to
evaluate and that it is often used as a measure for process success and
benchmark within L-PBF [55]. Nevertheless, using only the density of a
part as a measure of quality is a compromise and can only be the first
starting point for monitoring the quality of L-PBF. To vary the density in
the process, the energy density will be varied, which is a well-known
approach in other works.

3. Methodical approach

This section explains the methodical approach of linking the
acoustic signal with the density of a produced specimen. In order to
reach this goal, Section 3.1 shows a suitable test setup for recording the
structure-borne acoustic signal. After this, Section 3.2 explains the
parameter selection and design of the specimens for recording data at
different density and complexity levels. Section 3.3 focuses on the data
processing of the raw acoustic signal. Reference measurements for

evaluating the density of each cube are performed and explained in
Section 3.4 to obtain a data set for a supervised learning approach. An
introduction to the ANN design itself is given in Section 3.5.

3.1. Experimental setup for recording structure-borne acoustic emissions

It is necessary to integrate a sensor as close as possible to the process
zone in order to test the abilities of an SBAE approach in the L-PBF
process. For this purpose, a test setup was built for this work and in-
troduced by Eschner et al. [56]. Fig. 1 shows a view across sections of
the test setup. The following section describes the setup and relevant
components.

A continuous wave (CW) laser system provided by OR LASER with a
wave length of 1064 nm and a peak power of 250 W, Gaussian beam
profile and Raylase scan optics is used in the optical setup. The inert gas
flow over the process zone is realized with the help of additive manu-
factured outlets and inlets (marked green in Fig. 1). A system provided
by ULT AG filters particles from the inert gas and allows the inert gas to
circulate via a controllable pump. An O2 sensor (Microx Oxygen Ana-
lyzer) is integrated into the inert gas flow to measure the O2 level.

In the build chamber (see sketch in Fig. 1), a simple recoater system
wipes the powder from the reservoir to the built platform with a metal-
supported rubber lip (marked dark red in Fig. 1). Stepper motors in the
micro-stepping mode control the movement of all parts (a lip, coating,
powder reservoir, built platform). All parts are placed in a sealed
chamber, which guarantees inert process conditions. The whole system
(motors, scanner, and laser) is controlled by LabView, which offers a
high degree of freedom for adjusting the process parameters.

Regarding the material, 316 L (1.4404) is employed as it is a com-
monly used stainless steel alloy for L-PBF, but having a high demand for
monitoring techniques, since it is more challenging to make post pro-
cess CT scans due to the high material density. The powder is supplied
in one batch by the company M4P. The powder is not reused in order to

Table 2
Literature review on acoustic emissions in the L-PBF process.

Object of Investigation Data Processing Data Analysis Type of AE

Type of Defect Penetration
depth

Focus Scan parameter Power Time
domain

FFT Wavelet Manual Auto SBAE ABAE Max freq.
[kHz]

Rieder et al. 2016 [34] x x x –
Wasmer et al. 2017 [35] x x x x x 1000
Ye et al. 2017 [36] x x x 16
Wasmer et al. 2018 [38] x x x x x 1000
Ye et al. 2018 [39] x x x x x x 16
Shevchik et al. 2018a [37] x x x x x 1000
Wasmer et al. 2018 [40] x x x x x 10,000
Gold und Spears 2018 [42] x –

Fig. 1. Test bench setup for recording acoustic emissions in the L-PBF process.
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avoid contamination from spatters and to ensure consistent powder
parameters throughout all experiments.

Below the build platform (marked yellow in Fig. 1) of the process
zone, an acoustic sensor (marked blue in Fig. 1) is mounted with a bolt.
Glycerine is used as a coupling agent in order to guarantee a re-
producible coupling. The sensor used is a massless piezoceramic sensor
provided by QASS (model number: Q-WT-19 0232). A sampling rate of
4 MHz is used for the performed experiments. Preliminary tests showed
that there are no relevant signals above 2 MHz, which also is in ac-
cordance with the findings mentioned in Section 2.1.

3.2. Design of specimen and parameter variation

Specimens with different density levels are built to find out if the
monitoring system is capable of evaluating different densities. For this

purpose, the process parameters such as laser power (80, 130, 180 W),
scan speed (200, 400, 1000 mm/s), and hatch distance (40, 50 μm) are
altered. The parameter range is adjusted to the parameters employed in
other works using 316 L to ensure processability [57–60]. The aim of
this parameter selection is to generate specimens with high and low
porosity levels. Therefore, a wide range of parameters are used.

Specimen have a cubical shape with an edge length of 5 mm. The
described parameter selection results in a full factorial design of ex-
periments with 18 cubes (see Table 3 for resulting parameter combi-
nations). Cubes are placed in a 3 × 3 matrix shape on the built plat-
form, as shown in Fig. 2.

In order to investigate the influence of part complexity, all 18
parameter combinations are built in three different levels of complexity
(Fig. 3). Due to limitations of the software, only simple geometrical
changes are possible to adjust complexity. Main goal of the complexity
variation is to see if acoustic waves are influenced by the geometry. For
this reason, a geometry simple enough to be printable with the test
setup but complex enough to influence acoustic waves is chosen. The
three resulting levels can be seen in Fig. 3. From the geometry, only the
upper part of the specimens with an edge length of 5 mm (marked red
in Fig. 3) is used for the following data analysis. This is necessary to
guarantee the comparability of the acoustic signals in length and shape,
which is essential for the used data processing approach. Also the fol-
lowing density measurement is only applied to the red marked part of
the specimen. In total, 54 cubes (3 levels of laser power, 3 levels of scan
speed, 2 levels of hatching distance, 3 level of complexity) are built, and
the corresponding acoustic data is collected.

The generated parts are not representative of complex parts that can
be printed with L-PBF. Nevertheless, these variations in geometry will
help to understand whether SBAE monitoring only works for cubical
specimens directly printed on the build plate or if the introduced geo-
metrical cavities shield the acoustic signal in a way that they are not
processable with the chosen approach.

3.3. Acoustic raw signal and feature extraction

The following sections explains the steps for data pre-processing
starting from the raw signal gathered with the SBAE sensor.

By using a trigger generated by the LabView program, a single
measurement file for each layer and each specimen is stored in the
QASS Optimizer4D system. These files are then transferred from the
QASS system to a personal computer after the production job is fin-
ished. On the computer, the data is decoded from the proprietary binary
file format. Due to the findings presented in Section 2.1 regarding laser
welding, where the analysis in the frequency domain showed clear
advantages, now short time Fourier transform (STFT) is used for feature

Table 3
Process parameters and density for each specimen.

Porosity [%] Plate Laser-
power [W]

Scan-speed
[mm/s]

Hatching
[mm]

Complexity
Level

Class

−0.2 6 180 400 0.04 1 1
−0.1 6 180 200 0.04 1 1
0 2 180 200 0.04 2 1
0 3 180 200 0.05 3 1
0.1 1 180 200 0.05 2 1
0.1 1 180 400 0.05 2 1
0.2 1 130 200 0.05 2 1
0.2 5 180 200 0.05 1 1
0.4 1 130 400 0.05 2 1
0.4 2 130 200 0.04 2 1
0.4 3 130 200 0.05 3 1
0.5 2 180 400 0.04 2 1
0.5 4 180 200 0.04 3 1
0.5 6 130 200 0.04 1 1
0.7 3 180 400 0.05 3 1
0.7 4 180 400 0.04 3 1
0.7 5 130 200 0.05 1 1
0.9 3 130 400 0.05 3 1
1 1 180 1000 0.05 2 2
1 5 180 400 0.05 1 2
1.1 4 130 200 0.04 3 2
1.7 5 130 400 0.05 1 2
1.9 2 130 400 0.04 2 2
2.4 4 130 400 0.04 3 2
2.4 6 130 400 0.04 1 2
2.8 6 180 1000 0.04 1 2
3 3 180 1000 0.05 3 2
3.4 2 180 1000 0.04 2 2
3.6 5 180 1000 0.05 1 2
3.9 4 180 1000 0.04 3 2
4.9 2 130 1000 0.04 2 2
4.9 6 130 1000 0.04 1 2
5.2 1 130 1000 0.05 2 2
5.4 4 130 1000 0.04 3 2
5.4 5 130 1000 0.05 1 2
5.5 1 80 200 0.05 2 2
5.7 3 130 1000 0.05 3 3
6.2 3 80 200 0.05 3 3
6.3 5 80 200 0.05 1 3
6.7 2 80 200 0.04 2 3
6.9 4 80 200 0.04 3 3
7.4 6 80 200 0.04 1 3
12.4 6 80 400 0.04 1 3
12.7 4 80 400 0.04 3 3
13.6 1 80 400 0.05 2 3
14.1 3 80 400 0.05 3 3
14.7 5 80 400 0.05 1 3
15 2 80 400 0.04 2 3
25.6 4 80 1000 0.04 3 3
27.3 6 80 1000 0.04 1 3
29.2 2 80 1000 0.04 2 3
33.1 3 80 1000 0.05 3 3
34.3 5 80 1000 0.05 1 3
35.8 1 80 1000 0.05 2 3

Fig. 2. Built platform with nine specimens from top view [56].
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extraction. As a result, a spectrogram is obtained for each layer and
each specimen. The obtained spectrograms are adjusted where needed
to make sure that the spectrograms have the same number of samples.
Shorter spectrograms are padded with the first ten samples of each
measurement at the end.

Furthermore, to reduce noise, a difference mask generated out of the
first 10 ms of each spectrogram is subtracted from the complete spec-
trogram. This difference mask represents the noise that is present
without laser-material interaction. Noise is generated, for example, by
the stepper motors or inert gas flow. Fig. 4 shows a spectrogram for one
layer of one specimen after the STFT and subtraction of the difference
mask.

From this spectrogram for each layer of each specimen, an input
vector is derived containing the information of 12 million values of the
spectrogram. For better convergence during the training phase, all
input vectors are normalized. In total, 54 cubes are processed with each
cube having 120 layers resulting in 6480 input vectors. These input
vectors contain 12 million rows for the 12 million values of the spec-
trogram.

3.4. Reference measurements for determining process quality

In order to link the acoustic signal to the information of the ex-
pected part quality, the actual part quality has to be known. As pointed
in Section 2.3, this work uses the density as a measure of part quality.
Archimedes’ density method is used to derive the density of all cubes.
Two different approaches are used to calculate the density. One of them
considers only the internal pores - Eq. (1), and the other one also
considers surface-connected pores - Eq. (2).

In general, density is calculated by the mass of the body mA over the
volume. According to Archimedes, volume is calculated by buoyant
force divided by the density of the fluid surrounding the specimen. For
both equations, mA is the measured weight of a cube surrounded by air
with the density A. And mF is the measured weight of a cube

surrounded by the used measurement fluid which, in this case, is
ethanol with the density F . To consider surface-connected pores, the
cubes are impregnated with the measuring fluid, and the mass in the air
is weighed which results in mAI [61]. Eqs. (1) and (2) take into account
the fact that the air buoyancy is acting as well on the specimen [55].

= +m
m m

( )A

A F
F A A

*
(1)

= +m
m m

( )A

AI F
F A A

**
(2)

In order to classify the porosity inside the cubes, Eq. (1) would be
most suitable since lowest measurement uncertainties can be realized
for this approach. However, it cannot be used for cubes printed with 80
W and 400 mm/s respectively 1000 mm/s on each plate with the lowest
energy input (see Fig. 5 below red numbers 2 and 3). These cubes have
mainly surface-connected pores, which leads to impregnation not only
on the surface but throughout the complete cube volume. For this
reason, Eq. (2), considering surface-connected pores, is used for the
cube marked with red numbers 2 and 3. All measurements were per-
formed five times by the same operator to determine the statistical
variation of the measurement result.

Table 3 shows the results of Archimedes’ density method. There are
results indicating that there is a negative porosity. This is due to mea-
surement uncertainty of the Archimedean density method.

Fig. 3. Specimen with different levels of complexity.

Fig. 4. Acoustic spectrogram for one layer of one specimen [56].

Fig. 5. Views across sections of plate number 5 of all nine cubes printed with
the laser-power and scan-speed shown.
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The relative density of the specimens varies between 65 % and
100.2 %. The reason for density to be over 100 % is caused by the
measurement uncertainty. One reason for this is the not exactly known
density of the measurement fluid. Since all cubes are measured with the
same fluid it is just an offset and does not affect the further approach.
Based on these results, three different density classes are derived. Each
class has the same number of specimens. Fig. 6 illustrates the three
classes. Class 1 has a density higher than 99 %. Class 2 has a density
between 99 % and 94.3 %. Class-3 specimens have a density lower than
94.3 %. All class-3 cubes are built with the lowest laser power of 80 W.

Fig. 7 also includes error bars for the standard deviation of each
measurement, but error bars are too small for being visible. In addition,
Fig. 8 provides an overview of classes 1 and 2. In this figure, error bars
are visible and show an overlap with the class boundaries.

3.5. Design of an artificial neural network

During the training process of the artificial neural network (ANN),
each layer of a cube and its corresponding acoustic spectrogram (vector
with 12 million values) represents one data set. The data sets are labeled
according to the three classes derived from the part density described
above in Section 3.4. In total, there are 2160 data sets available for each
type of specimen and the respective complexity level. The data set is
randomly split for all data sets into 70 % training and 30 % test data.

This work uses the multilayer perceptron (MLP) known as a typical
ANN architecture. The MLP is one of the simpler neural networks
available, as fewer hyperparameters are to be optimized. Therefore, it is
preferred for the implementation in this work. The input layer consists
of 12 million input neurons to be able to have the 12 million values of

the spectrogram as input. Two hidden layers follow the input layer with
64 and 32 neurons each, which is a bottleneck strategy. [62] This ar-
chitecture performed best for the decided input compared to more
hidden layers and more neurons shown in Eschner et al. [56].

The third and final layer consists of three output neurons for the
three different density classes. Our approach uses the Sigmoid function
as activation function for the individual neurons and Softmax for the
output layer. Categorical cross entropy is used as loss function. The
optimizer for backpropagation is ADAM.

Each training was set up for 100 epochs with early stopping based
on validation loss after each epoch. This approach evaluates overfitting
based on the development of accuracy and loss throughout the training
epochs. [63] Training was done using a TensorFlow environment on an
NVidia DGX station. The authors did not carry out any major adapta-
tions to the provided algorithms from TensorFlow.

Precision, recall, and F1 score are derived from confusion matrices
to measure and compare ANN performance. Precision defines the
number of true positive classifications compared to all positive classi-
fications (“What proportion of the classified data sets for class 1 is
correctly classified as class 1?”1). In contrast, recall compares the true
negative classifications to all real positives (“What proportion of data
sets labeled as class 1 are identified by the algorithm to be class 1?”2).
The F1 score combines precision and recall via Eq. (3):

=
+

F precision recall
precision recall

1 2*( * )
(3)

Having three classes, an F1 score close to 0.33 is equivalent to
guessing, and a F1 score of 1.0 would be an algorithm classifying all test
data sets correctly. In this work, F1 score is preferred over accuracy to
have a better measure for the incorrectly classified cases.

4. Results and discussion

This paper has two objectives: the first is to identify if it is possible
to link the acoustic signal to a quality measure (Section 4.1). The
second objective is to investigate if the geometry of the specimens in-
fluences the performance of structure-borne acoustic emission mon-
itoring (Section 4.2).

4.1. Characterization of quality

The training discussed in this section considers all data sets of the
6480 layers for the 54 cubes to evaluate if a prediction of density is
possible. As mentioned in Section 3.5, the input for the ANN is the
spectrogram (as a vector with 12 million values) of each layer and each
specimen. The output is the density class (labeled as class 1, class 2, and
class 3), as described above in Section 3.4. Being a measure of the
performance of the trained ANN, precision, recall, and F1 score are used
as introduced in Section 3.5.

Table 4 shows the confusion matrix used for the test data classifi-
cation. Table 5 shows the resulting performance parameters for each
density class to classify the test data and the average values throughout
all classes. For density class 1, performance is the best out of the three
classes, precision is 86 %, and recall 91 %, which results in an F1 score
of 89 %.

Class 2 is classified with the lowest performance, where all three
performance parameters are below 80 %, but still higher than 73 %.
The classification of the test data set for class 3 has a precision of 85 %
and a recall of 83 %, which is again a little higher than the performance
measures for class 2. Confusion matrix also shows that there are only a

Fig. 6. Porosity in % for each cube and assignment to the three classes for each
cube.

Fig. 7. Porosity in % for cubes of classes 1 and 2 with error bars from
Archimedes’ density method.

1 From: https://developers.google.com/machine-learning/crash-course/
classification/precision-and-recall [22.08.2018]

2 From: https://developers.google.com/machine-learning/crash-course/
classification/precision-and-recall [22.08.2018]
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few data sets from class 1 classified as class 3 and vice versa.
The fact that the classification of class 1 is slightly better might be

an indication that a good process resulting in a high part density has an
acoustic spectrogram that can be more easily identified by the ANN.
This finding goes along with the findings by Wasmer et al. [40] who
found an algorithm identifying L-PBF- typical process conditions by
using acoustic data.

Overall, the results prove that with the help of machine learning, it
is possible to prove that there is a link between density and acoustic
signals. The classification shows an average precision greater than 83 %
with the described setup across all density classes. Performance is not as
good as it is for some of the works reviewed in Section 2.1. Reasons for
this might be the simplification of using one label over the whole cube,
disregarding that there are layers with different density levels within
one cube. Another reason is the uncertainty in making the classification
labels on Archimedes’ density measurement, which is indicated by the
error bars in Fig. 7. There are cubes classified in class 1 even though
there is a statistical probability that this cube actually has to be class 2.
Nevertheless, these results clearly show the potential of characterizing
density based on SBAE from the process.

4.2. Transfer to more complex test geometries

After the ANN has successfully learned to link part density and
acoustic signals, the focus of this section is now to determine if the
geometry complexity of the specimen influences the performance.

Therefore, three different ANN models for each complexity level are
trained in the same way as in Section 4.1. Table 6 shows the average F1
score for each model used on the corresponding test data set. Table 7
provides the underlying confusion matrixes.

The dataset for training of each model is smaller compared to data
sets used in Section 4.1 and gives reason to expect worse performance
parameters. Overall, the performance parameters for each model within
the trained complexity level is even slightly better than the perfor-
mance of the model trained by using the whole data set in 4.1. The
average F1 score for all three complexity levels is between 85 % and
88 %.

Comparing the performance values with the complexity levels, F1
score is 88 % for the lowest complexity (level 1), 86 % for medium
complexity (level 2), and 85 % for the highest complexity (level 3).
These results show that performance is only slightly worsening as
complexity increases. As shown in Eschner et al. [56], these variations
are within the uncertainty when training an ANN model and are seen as
not significant. Based on these results, it is possible to assume that the
approach also works for more complex geometries, as long as the model
is trained for each geometry.

To further analyze the potential of using one model for different
geometries, the trained model of each complexity level is used by ap-
plying it to the dataset of other complexity levels. With this procedure,
it is possible to get an idea of the robustness the trained models offer
when applying them to unknown geometries

Tables 6 and 7 show the resulting performance scores for the dif-
ferent models applied to the data sets they are not trained for. At this
point, the performance values show that the performance is clearly
declining. Looking at model 1 (trained on the basis of the data set for
the lowest complexity), the F1 score drops to 61 % for the highest
complexity. And the model trained on the basis of the highest com-
plexity level (model 3) has a F1 score that is as low as 56 %. This result
might also explain why the model trained in Section 4.1 scores a little
lower than the ones trained for each complexity level individually. The
authors assume that the established models work best when applied to

Table 4
Confusion matrix for the classification of density classes.

Predicted class

1 2 3

Actual class
1 595 43 16
2 87 454 80
3 7 99 539

Table 5
Performance parameters used to classify density classes.

Precision Recall F1 score

Class 1 0.86 0.91 0.89
Class 2 0.76 0.73 0.75
Class 3 0.85 0.84 0.84
Average 0.83 0.83 0.83

Fig. 8. Shape of the used multilayer perceptron.

Table 6
Performance parameters for the classification of density classes with models
trained for a certain complexity level.

F1 score average

Complexity level 1 2 3

Model
1 0.88 0.69 0.61
2 0.66 0.86 0.65
3 0.55 0.65 0.85
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the geometry they were actually trained for. Further works need to find
a way to analyze and process data so that the approach becomes robust
to geometric variations.

5. Summary and future work

This publication provided an overview of the systems used for
monitoring acoustic emission (AE) in laser processes. The literature
review underpinned the existing high potential in the use of structure-
borne acoustic emission (SBAE) for monitoring laser processes. Section
3.1 introduced a test setup and approach to investigate the potential of
using SBAE to monitor the L-PBF process.

Results in Section 4 underpin the ability to use SBAE for process
monitoring. Section 4.1 showed the ability to classify Archimedes’ part
density by analyzing the acoustic signal in a frequency domain with the
help of an ANN. For the ANN training, a data set containing 54 speci-
mens with different density levels was used. F1 scores up to 88 % were
found, which indicates a connection of acoustic signal and part density
as a measure of quality.

Nevertheless, the results in Section 4.2 also showed that more work
is needed to make the approach transferable to other geometries and
new data sets. Therefore, different measures are in focus:

a) Further types of feature extraction have to be tested. As Wasmer et.
al. [38] and Shevchik et. al [24]. have shown, wavelet transforma-
tion works for analyzing these types of acoustic data. Further feature
extraction of statistic features out of the spectrograms should also be
tested in order to reduce the data set size.

b) In this work, only a simple ANN or rather an MLP is used. Future
work should try to work with more complex types of ANN, e.g. a
convolutional neural network (CNN). These types of ANN are known
for performing better and being more robust but also need more
data.

c) The goal of future work should also be to identify a single event of
defect formation and the corresponding characteristic acoustic
emission. With this, it is very likely to obtain an approach that is
more robust to geometric variations. Other reference measuring
methods such as computed tomography have to be qualified to
match single defects like matching one specific pore to a certain
acoustic signal.

d) Since this is a data-driven approach, more data will help to make it
more robust. Especially more data on different geometries should be
collected.

It would also be essential to use different and more realistic me-
chanisms which are known for causing defects in order to make the
monitoring technique more robust. Right now, the state of the art for

testing process monitoring techniques is to vary process parameters
such as laser power or scan speed, since these parameters are easy to
adjust. The risk at this point is that the ANN learns to detect the change
of these parameters and not the defect formation itself. Further research
has thus to focus on finding other ways of varying the density of spe-
cimens that are more similar to the defects occurring in an industrial
application.

With the current hardware, the setup time to make a spectrogram
for one layer is about 1 min on a desktop computer. Training of an ANN
takes approximately 4 h on a NVidia DGX station. Moreover, the clas-
sification of a given spectrogram takes about 2 min, which is mainly
limited by the mass storage speed of the used computer. All the codes
and hardware are not yet optimized for fast calculation and in-process
classification. Future activities on the subject will find a way to reduce
the time from raw signal to classification with a given ANN.

Future works will also focus on the combination of the SBAE
monitoring techniques with other monitoring techniques like ABAE or
optical ones. It is very likely that these techniques have their ad-
vantages and work much better when combined.
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