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Abstract

The remaining torque of disengaged wet clutches is a major source of energy
loss and, therefore, an objective of current research. The present contribu-
tion describes the necessary simplifications to obtain an analytical solution
of the governing equations by means of an order-of-magnitude analysis. The
obtained results are brought to a dimensionless frame of reference, where for-
merly unknown simple dependencies of the drag torque and the aeration onset
have been uncovered. The dimensionless description serves as promising a
means to achieve a quantitative comparison of experimental data. Addition-
ally, a new modelling concept for grooves is introduced, which is based on
the hydraulic-diameter concept. The combination of either approach offers
a robust prediction method for drag torque and aeration onset.

Keywords: Open clutch flows, Dimensional analysis, Analytical solution,
Modelling concepts

1. Introduction

Energy-saving trends remain highly important in automotive industry
due to a strict regulation of vehicle CO2–emisson and the potential of a
higher range for battery-powered vehicles. A current field of optimization
are wet clutches, which are part of nearly every higher-class automobile. The5

remaining torque in disengaged state is a major source of energy losses and
consequently an essential research topic in this area with the aim to predict
and minimize these losses. The flow scenario in open wet clutches can be
classified as a rotor-stator configuration with through flow. Figure 1 shows
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the simplified geometry of an open wet clutch model with only one rotor and10

one stator disk. Important parameters are the volumetric flow rate Q, which
is centrally supplied to counter-act heat generation during the engagement
process, the gap height h between both disks, which adjusts autonomously
in wet clutches, the inner and outer radius of the rotating disk R1 and R2,
the angular velocity Ω and the drag torque Ts, which is caused by the speed15

difference of driving and output unit and thus the shearing of the oil.
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Figure 1: Sketch of an open clutch with all geometry and operation parameters, and fluid
properties.

At low differential speed the gap is completely filled with oil, such that
all oil passes through the gap and accordingly no two-phase flow occurs. In-
creasing the rotational speed of the moving disk results in a likewise increased
tangential momentum of the oil and consequently in a higher centrifugal force20

component. At a certain point the conveying capacity exceeds the constant
volumetric flow rate Q, which leads to air induction from the surrounding
into the gap at the outer radius R2. With higher speed difference the pres-
ence of air in the gap leads to a significant reduction of drag torque, since
viscosity of air is much lower than the one of the cooling oil.25

Knowledge of the onset of this so-called aeration is extremely desired
information for the design of clutches, since this onset in turn leads to a sub-
sequent drop of drag torque due to the presence of air in the rotor-stator gap.
Accordingly, the major objective of theoretical clutch-flow modelling efforts
revolves around an accurate prediction of this onset on the basis of known30
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(geometrical and operational) parameters of an operative open wet clutch.
The attempt of a theoretical description of the drag torque was strongly
driven by automotive companies, where the potential of drag reductions was
first discovered and described (e.g. [1]). Different configurations of surface
structures on the disk have proven to result in a reduction of this maximum35

drag torque in open clutch flows. These surface modifications shift the on-
set of aeration to lower rotational speeds, thus reducing the maximum drag
torque of the system. However, the two-phase flow still hasn’t been under-
stood in detail, due to restrictions of the measurement techniques on one side
and limitations of the numerical simulations on the other side.40

Over the last years the topic of open clutch flows has been studied with
numerical, analytical and experimental approaches. One of the first sugges-
tions was made by Kato et al. [2] who modified an approach of Hashimoto
et al. [3], which originally was used for thrust bearings. This approach as-
sumed a turbulent flow and calculated the drag torque with the help of an45

empirical formulation. Yuan et al. [4] used this approach to propose a model
in consideration of an introduced shrinking of the oil film and a classification
of the flow by use of dimensionless numbers. A turbulent flow in the gap
seems however unlikely, due to a small gap ratio G = h/R2 in the order of
10−3 and a moderate Reynolds number (see Launder et al. [5] for more50

details on the classification of rotor-stator flows).
Kitabayashi et al. [6] assumed a laminar flow and used a laminar shear

stress model to describe the drag torque characteristics in the single-phase
region. While this model did not consider the onset of aeration, a new group
of laminar models attempted to overcome this shortcoming. The basis of all55

these models is a laminar shear stress approach given as

τϕz = µ
∂uϕ
∂z

. (1)

Rao [7] combined the shrinking of the oil film of [4] and the laminar
approach of [6] and formed a laminar shear stress model, which is capable to
predict the decrease of the drag torque in the two-phase region and provides
a precise description of the laminar single-phase flow. Several new models60

with slightly different terms were published in the following years. Huang
et al. [8] modelled a hydro-viscous drive with this concept and analysed the
velocity profiles in the single-phase region. The model of Iqbal et al. [9, 10]
considered the fluid and the mist contributing to the resulting torque. The
most recent models and experimental validation were conducted by Pahlovy65
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et al. [11, 12, 13], where surface tension and high rotational speed differences
were considered.

Due to the complex nature of two-phase flow, these models rely on a
simplified description as basis for drag torque calculations, i.e. the concept
of a shrinking radius, that varies from the outer to the inner radius. Al-70

though this concept is in good agreement with the measurements of the drag
torque, the fluid mechanic conditions in the lubrication gap are not taken
into account.

The development of an analytical model was accompanied by various at-
tempts to measure and visualize the gap flow in a laboratory environment.75

The respective experimental studies however focused mainly on the genera-
tion of validation data for the analytical models. More recently, a systematic
experimental investigation and a profound comparison of analytical models
has been provided by Neupert et al. [14].

In continuation of these efforts [14], the present paper provides a detailed80

discussion of the simplification of the governing equations of the flow be-
tween the disks required as to obtain the analytical prediction for torque
and aeration onset found in literature. Particular emphasis is placed on a
correct derivation of the involved interrelationships from a fluid mechanic
point of view, where it will be demonstrated that a transfer of the above85

solution for ungrooved disks to dimensionless numbers allows a direct and
straight forward prediction of torque and aeration onset for different clutch
geometries and operating conditions without consideration of further equa-
tions. Accordingly, a dimensionless diagram is introduced, in which torque
and aeration can be considered independently. Finally, a novel model for-90

mulation is proposed and tested on existing experimental results, which also
comprises the formerly missing information on surface groove dimensions as
influential quantities for the aeration onset.

2. Dimensional analysis and aeration model

Independent from any specific aeration or torque model the drag torque
for open wet clutch flows depends on the interplay of seven other dimensional
parameters (cp. Figure 1). Thus the desired quantity Ts can be written as

Ts = f (h,R1, R2, ν, ρ,Ω, Q) , (2)

where in addition to the above-introduced quantities the density ρ and95

kinematic viscosity ν of the oil at hand appear in Eq. (2).

4



Dimensional analysis according to e.g. Yarin [15] reduces these interde-
pendencies to the five dimensionless parameters

G =
h

R2

gap ratio, (3a)

β =
R1

R2

radii ratio, (3b)

Rel =
R2hΩ

ν
lubrication Reynolds number, (3c)

Q∗ =
Qν

Ω2R2
2h3

non-dimensional volume flow rate, (3d)

ζm =
Ts

ρ
2
R2

5Ω2 (1− β4)
moment coefficient. (3e)

Note that ζm in the present context is a non-dimensional drag torque measure,
similar to the moment coefficient defined in e.g. [16] or [17]. G is the gap
ratio, which is typically in the order of 10−3−10−2 for open clutch flows. The
second geometrical parameter β is important for any drag torque calculation,100

due to the fact, that a significant amount of torque is generated only between
R1 and R2. The so-called lubrication Reynolds number Rel is based on
the circumferential velocity ΩR2 and the gap height, which is a classical
formulation in tribology [18, 19]. This Reynolds number fits well to the flow
scenario of open clutch flows as shown later. The last parameter is the non-105

dimensional volume flow rate Q∗. It is worth to furthermore mention that the
kinematic and dynamic viscosities are coupled via µ = ρν. The dimensionless
quantities (3) are used below to simplify and in turn generalize the results of
the torque and aeration model, which is derived in the following sections.

2.1. Governing equations, assumptions and simplifications110

In cylindrical coordinates the conservation of mass for an incompressible
flow reads

1

r

∂

∂r
(rur) +

1

r

∂uϕ
∂ϕ

+
∂uz
∂z

= 0. (4)

The corresponding momentum conservation for the steady state flow of a
Newtonian fluid is given by

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+
uϕ
r

∂ur
∂ϕ
−
u2
ϕ

r
+ uz

∂ur
∂z

)
=
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−∂p
∂r

+ µ

{
∂

∂r

[
1

r

∂

∂r
(rur)

]
+

1

r2

∂2ur
∂ϕ2

− 2

r2

∂uϕ
∂ϕ

+
∂2ur
∂z2

}
+ ρgr (5)

ρ

(
∂uϕ
∂t

+ ur
∂uϕ
∂r

+
uϕ
r

∂uϕ
∂ϕ

+
uruϕ
r

+ uz
∂uϕ
∂z

)
=

−1

r

∂p

∂ϕ
+ µ

{
∂

∂r

[
1

r

∂

∂r
(ruϕ)

]
+

1

r2

∂2uϕ
∂ϕ2

+
2

r2

∂ur
∂ϕ

+
∂2uϕ
∂z2

}
+ ρgϕ (6)

ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+
uϕ
r

∂uz
∂ϕ

+ uz
∂uz
∂z

)
=

−∂p
∂z

+ µ

[
1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2

∂2uz
∂ϕ2

+
∂2uz
∂z2

]
+ ρgz (7)

in radial r, circumferential ϕ and axial directions z, respectively. Accordingly,
ur, uϕ and uz are the corresponding velocity components. Together with
the no-slip and impermeability boundary conditions on the solid walls these
Navier–Stokes equations describe the flow field in the gap of an open wet
clutch.115

In order to obtain an analytical solution for the given flow field of an
open wet clutch a number of assumptions are common for all existing models
[7, 8, 9, 11, 20]. In addition to the aforementioned consideration of a steady
and incompressible flow of a Newtonian fluid these assumptions are:

(i) laminar flow120

(ii) no influence of gravity on the flow field
(iii) symmetric flow around z-axis

The commonly considered simplification of negligibly small axial flow
component uz is not applied a priori in the present work as will be elaborated
in the following.125

Consideration of assumption (i) - (iii) reduces the governing equations (4) -
(7) to

1

r

∂ (rur)

∂r
+
∂uz
∂z

= 0 (8)

ur
∂ur
∂r
−
u2
ϕ

r
+ uz

∂ur
∂z

= −1

ρ

∂p

∂r
+ ν

∂

∂r

[
1

r

∂

∂r
(rur)

]
+ ν

∂2ur
∂z2

(9)
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ur
∂uϕ
∂r

+
uruϕ
r

+ uz
∂ur
∂z

= ν
∂

∂r

[
1

r

∂

∂r
(ruϕ)

]
+ ν

∂2uϕ
∂z2

(10)

ur
∂uz
∂r

+ uz
∂uz
∂z

= −∂p
∂z

+ ν

[
1

r

∂

∂r

(
r
∂uz
∂r

)]
+ ν

∂2uz
∂z2

. (11)

These simplified equations can still not be solved analytically, which sug-
gests an order-of-magnitude analysis to allow further simplifications. For this
purpose, the characteristic length scales in azimuthal and radial direction are130

the gap height h and the mean radius R = R1+R2

2
, respectively. Similarly, the

characteristic velocities in azimuthal and radial direction are ΩR and q/R,
where q = Q/2πh is the volume flow rate per unit gap height. The quantities
q and Ω are intensive, as they do not depend on geometrical properties of
the system, and are constant throughout the radius for purely radial and135

rotatory flows, respectively.
Inclusion of these characteristic quantities into the simplified continuity

equation (8) yields

O (uz) ∝ O
(
q

R

h

R

)
, (12)

which is an estimate of the order of magnitude of uz.
The order of magnitude analyses for the momentum conservation in ra-

dial, circumferential and axial direction yield

O
(
q2

R3

)
︷ ︸︸ ︷
ur
∂ur
∂r
−

O(Ω2R)︷︸︸︷
u2
ϕ

r
+

O
(
q2

R3

)
︷ ︸︸ ︷
uz
∂ur
∂z

= −1

ρ

∂p

∂r
+

O(ν q

R3 )︷ ︸︸ ︷
ν
∂

∂r

[
1

r

∂

∂r
(rur)

]
+

O(ν q

h2R
)︷ ︸︸ ︷

ν
∂2ur
∂z2

, (13)

O( qΩR )︷ ︸︸ ︷
ur
∂uϕ
∂r

+

O( qΩR )︷ ︸︸ ︷
uruϕ
r

O( qΩR )︷ ︸︸ ︷
uz
∂uϕ
∂z

=

O(ν Ω
R)︷ ︸︸ ︷

ν
∂

∂r

[
1

r

∂

∂r
(ruϕ)

]
+

O(ν ΩR
h2 )︷ ︸︸ ︷

ν
∂2uϕ
∂z2

, (14)

O
(
q2h

R4

)
︷ ︸︸ ︷
ur
∂uz
∂r

+

O
(
q2h

R4

)
︷ ︸︸ ︷
uz
∂uz
∂z

= −∂p
∂z

+

O(ν qh
R4 )︷ ︸︸ ︷

ν

[
1

r

∂

∂r

(
r
∂uz
∂r

)]
+

O(ν q

R2h
)︷ ︸︸ ︷

ν
∂2uz
∂z2

, (15)

where the estimate of O (uz) as obtained from the continuity equation (12)
has already been exploited.
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In order to better assess the relative importance of the respective terms,
the order of magnitude analysis is rewritten so that the first term on the
left-hand side of Eqs. (13)-(15) is of order O (qh2/νR2). This is achieved by
multiplication of Eq. (13) with O (Rh2/qν), Eq. (14) with O (h2/ΩRν) and
Eq. (15) with O (R2h/ν), to obtain:

O
(
q
ν
h2

R2

)︷ ︸︸ ︷
ur
∂ur
∂r
−

O
(

Ω2R2h2

qν

)︷︸︸︷
u2
ϕ

r
+

O
(
q
ν
h2

R2

)︷ ︸︸ ︷
uz
∂ur
∂z

= −1

ρ

∂p

∂r
+

O
(
h2

R2

)︷ ︸︸ ︷
ν
∂

∂r

[
1

r

∂

∂r
(rur)

]
+

O(1)︷ ︸︸ ︷
ν
∂2ur
∂z2

, (16)

O
(
q
ν
h2

R2

)︷ ︸︸ ︷
ur
∂uϕ
∂r

+

O
(
q
ν
h2

R2

)︷ ︸︸ ︷
uruϕ
r

O
(
q
ν
h2

R2

)︷ ︸︸ ︷
uz
∂uϕ
∂z

=

O
(
h2

R2

)︷ ︸︸ ︷
ν
∂

∂r

[
1

r

∂

∂r
(ruϕ)

]
+

O(1)︷ ︸︸ ︷
ν
∂2uϕ
∂z2

, (17)

O
(
q
ν
h2

R2

)︷ ︸︸ ︷
ur
∂uz
∂r

+

O
(
q
ν
h2

R2

)︷ ︸︸ ︷
uz
∂uz
∂z

= −∂p
∂z

+

O
(
h2

R2

)︷ ︸︸ ︷
ν

[
1

r

∂

∂r

(
r
∂uz
∂r

)]
+

O(1)︷ ︸︸ ︷
ν
∂2uz
∂z2

. (18)

Assuming that h/R � 1, the first term on the right-hand side of Eqs.
(13)-(15) can be considered negligible. Likewise, all nonlinear terms on the
left-hand side of Eqs. (13)-(15), except the second term of Eq. (13), can
be neglected according to the assumption that the radial convection is small
compared to viscous diffusion, i.e.

Req =
qh

νR
� R

h
. (19)

Req is the Reynolds number for the radial flow, which can also be extracted
from the dimensionless numbers (3). Introduction of the ratio

α =
q

ΩR2
(20)

between the characteristic radial and azimuthal characteristic velocities into
Eq. (19) recasts Req in terms of a lubrication Reynolds number Rel as

Rel �
R

h

1

α
. (21)
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The assumption of Eq. (21) and its equivalent Eq. (19) are similar to the140

one typically adopted in the derivation of the Reynolds equation for the
quasi-parallel flow between two slightly inclined walls. Differently from the
Reynolds equation, the deviation from the parallel condition is due to the
relative importance of the imposed radial flow, which is measured by α, rather
than being of purely geometric nature. For the present problem, α� 1 holds.145

The second term in Eq. (13) represents the centrifugal forces. Its relative
importance compared to the other terms of the equation can be estimated by
elimination of either q or Ω through the definition of Eq. (20), which yields

O
(

Ω2R2h2

qν

)
= O

(
Req

h

Rα2

)
= O

(
Rel

h

Rα

)
. (22)

Due to α appearing at the denominator, the second term on the left-hand
side of Eq. (13) can not be neglected whenever the rotational motion is
predominant.

In consequencs, the dimensional analysis leads to the following simplified
system of differential equations

1

r

∂ (rur)

∂r
+
∂uz
∂z

= 0, (23)

−
u2
ϕ

r
= −1

ρ

∂p

∂r
+ ν

∂2ur
∂z2

, (24)

0 = ν
∂2uϕ
∂z2

, (25)

0 = −∂p
∂z

+ ν
∂2uz
∂z2

, (26)

and their respective boundary conditions for the present flow

ur (r, ϕ, z = h) = 0; ur (r, ϕ, z = 0) = 0 (27)

uϕ (r, ϕ, z = h) = rΩ; uϕ (r, ϕ, z = 0) = 0 (28)

uz (r, ϕ, z = h) = 0; uz (r, ϕ, z = 0) = 0. (29)

It is possible to solve the system analytically, once it is shown that ∂p/∂r
is not a function of z. This is easily achieved by performing the same order-
of-magnitude analysis for the difference between the z-derivative of Eq. (9)

9



and the r-derivative of Eq. (11), which results in

−
∂u2

ϕ

∂z
= ν

∂3ur
∂z3

. (30)

Integration of Eq. (30) in the z-direction yields

−
u2
ϕ

z
= +f (r) + ν

∂2ur
∂z2

, (31)

where f(r) is an unknown function of r. Comparing Eq. (31) with Eq. (24)150

demonstrates that ∂p/∂r does depend only upon r. Considering this fact,
the partial derivative of p by r is called Π in the following equations.

It is now possible to solve the simplified problem, which yields the fol-
lowing velocity distributions:

ur(r, z) =
1

2µ
Π z (z − h) +

rΩ2

12νh2

(
h3z − z4

)
(32)

uϕ(r, z) = rΩ
z

h
. (33)

It is important to note that the solution for the radial velocity of Eq. (32)
requires, together with the continuity equation, that uz 6= 0.

The pressure gradient Π is unknown in Eq. (32) and has to be determined
by an additional equation. In the present case the volumetric flow rate Q is
a known parameter and an integration of the radial velocity with regard to
z and ϕ yields

Q =

∫ 2π

0

∫ h

0

urr dz dϕ = −πh
3

6µ
Π +

πr2h3Ω2

20ν
(34)

which leaves the pressure gradient in radial direction as the only remaining155

unknown. The first term on the right-hand side is associated with the pres-
sure driven Poiseuille flow. The second term represents the flow as induced
by centrifugal forces, which act on the fluid due to the rotational speed Ω.
Eq. (34) can be rewritten as follows:

Π =
∂p

∂r
= − 6µQ

πh3r
+

3ρΩ2r

10
. (35)

Consideration of a representative set of realistic parameters (as listed160

in Table 1) illustrates the ratio of the volume flow rate Q regarding these
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Table 1: Geometric dimensions used for further calculations

Parameter Symbol Values

inner radius of the disk R1 8.25 · 10−2 [m]
outer radius of the disk R2 9.375 · 10−2 [m]
feeding oil volume flow rate Q 1.667 · 10−5 [m3/s]
density ρ 850 [kg/m3]
dynamic viscosity µ 0.0136 [Pa s]
kinematic viscosity ν 16 · 10−6 [m2 /s]
temperature T 40 [◦C] = const
gap height h 250 · 10−6 [m]
angular velocity Ω 0 < Ω < 314 [1/s]

=̂ 0 < n < 3000 [rpm]

Figure 2: Ratio of normalized volume flow rate Qi/Q as a function of lubrication Reynolds
number Rel, where i = 1, 2 corresponds to Poiseuille and centrifugal flow contributions;
note that Q1 +Q2 = Q for all parameter combinations.

two terms of Eq. (34) as a function of lubrication Reynolds number Rel =
ΩR2h/ν at radial position r = R2; see Figure 2.

It is obvious that an increasing lubrication Reynolds number leads to an
increased contribution of the centrifugal flow to the total volume flow rate.165

In consequence the Poiseuille-flow contribution and thus the radial pressure
gradient is reduced. With a known pressure gradient as a function of Ω it
is possible to calculate the corresponding circumferential and radial velocity
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profiles. Figure 3 shows the radial velocity profile based on the parameters
of Table 1. The increasing relevance of the centrifugal forces in the upper170

half of the gap with increasing Rel can be clearly identified from the salient
shift of the velocity maximum from the gap center towards the rotor. If the
angular velocity is increased further, the centrifugal force becomes the most
dominant part in the equation. At Rel = 113 the pressure gradient changes
sign and at Rel = 245 the wall shear stress in radial direction changes sign175

at z = 0.

Figure 3: Velocity component ur for five different Reynolds numbers at r = R2 for the
parameters shown in Table 1

2.2. Drag torque and aeration equations

One common class of aeration models [8, 10] uses the sign change of the
pressure gradient at r = R2 as onset for aeration

0
!

= Π (r = R2, ϕ, z) = − 6µQ

πh3R2

+
3Ω2

critR2

10
. (36)

In addition to the aeration onset these models aim at predicting the drag180

torque. The most straightforward way for its calculation is a spatial integra-
tion of the shear stress (1) at one of the disks, which is directly given by the

12



velocity profiles derived in Eq. (33) according to

Ts =

∫
A

τϕzr dA = 2π

∫ R2

R1

µ

(
Ωr

h

)
r2dr =

πµΩ

2h

(
R2

4 −R1
4
)
. (37)

The simplification of the governing equations, as discussed above, pro-
vides an analytical solution for the velocity profiles in radial and circumfer-185

ential direction. With these two equations a calculation of the drag torque
can be done, which also allows an estimation of the operating point, where
the air enters the system. These equations are used to define a dimensionless
relationship in the following section.

3. Results of the dimensional analysis190

The dimensionless numbers (3) as derived in Section 2, can be used to
define a more general criterion of the torque model and the aeration onset.
Using the aeration model, where the onset occurs at ∂p/∂r = 0 as discussed
in Section 2.2 leads to

0
!

= Π (r = R2, ϕ, z) = − 6µQ

πh3R2

+
3Ω2

critR2

10

⇔ Q∗crit =
Qν

Ω2
critR2

2h3
=

π

20
.

This indicates that aeration does not occur while195

Qν

Ω2R2
2h3

= Q∗ > Q∗crit =
π

20
.

Consequently, aeration is expected to occur for operating conditions with
dimensionless flow rate below this critical value.

The analytical solution of the velocity field can also be used to obtain a
relation between ζm and Rel according to

ζm =
Ts

ρ
2
R2

5Ω2 (1− β4)
=

πµΩ
2h

(
R2

4 −R1
4
)

ρ
2
R2

5Ω2 (1− β4)

⇔ ζm =
π

Rel
. (38)
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This relation describes the dependence of the drag torque on the operating
conditions before the onset of aeration. Thus the dimensionless reformulation
of the simplified governing equations provides two simple correlations that200

allow to directly estimate drag torque and aeration onset for any open wet
clutch flow, given the applied simplifications are justified.

A simple example is chosen to demonstrate the benefit of the dimension-
less approach in the following. Figure 4 depicts the drag torque for three
geometric parameter combinations in terms of gap height h, volumetric flow205

rate Q and outer radius R2. For all three parameter combinations it is pos-
sible to calculate the corresponding slope of the drag torque and the point,
where aeration occurs, according to Eq. (37) and Eq. (36), respectively.
Consequently, this leads to three different slopes and three different aeration
points. Converted to the above-derived dimensionless quantities the three210

different parameter combinations collapse onto a single curve in a ζm − Rel
diagram according to Eq. (38); see Figure 5a.

The markers in Figure 4 represent the points at which aeration occurs
according to Eq. (36). For the chosen different parameter combinations this
happens at three different values of Ω. Similarly normalized, all points col-215

lapse for a non-dimensional critical flow rate Q∗crit = π
20
≈ 0.157, as shown in

Figure 5b. On the ordinate of this diagram the combined quantity ζmRel/π is
plotted. Since the analytical relations in Fig. 5 are valid for the idealized flow
situation where all applied simplifications are fully justified, it is expected
that experimental or numerical results might show some deviations. Note,220

however, that the order of magnitude for maximum drag torque before aera-
tion onset can likewise be captured with any existing model [7, 8, 9, 11, 20].
So the dimensionless approach isn’t limited to a specific model.

Another benefit is the possibility to compare different experimental drag
torque measurements obtained on test rigs with different geometric dimen-225

sions. The markers in Figure 6 indicate the point of aeration from different
publications.

All considered experimental data [12, 14] match the theoretical prediction
according to Eq. (38) in the ζm−Rel diagram (Figure 6a), which retroactively
also verifies Eq. (37) as to be an appropriate drag-torque prediction.230

Figure 6b shows the product of ζmRel/π over the normalized flow rate
Q∗. The theoretical value for aeration is placed at π/20, if the above-outlined
assumption of a sign change of the pressure gradient as to coincide with the
aeration onset is considered. The values are in the same order-of-magnitude,
but deviate considerably from the theoretical value. Two possible reasons235
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Figure 4: Drag torque Ts over angular velocity for three different parameter combinations:
� : h = 150 µm, Q = 1 l/min, R2 = 0.09375 m;
� : h = 200 µm, Q = 3 l/min, R2 = 0.1172 m;
� : h = 250 µm, Q = 5 l/min, R2 = 0.1402 m

(a) (b)

Figure 5: (a) Moment coefficient ζm over lubrication Reynolds numberRel and (b) Product
ζmRel/π over Q∗ of the parameter combinations used in Figure 4.

might cause this deviation. Either the theoretical description for the aeration
onset is insufficient or the assumptions used for the derivations oversimplify
this type of experimental flow. A broader experimental data set would be
required to testify and clarify the latter, which is beyond the scope of the
present work. As for the former, however, the fact that the drag torque240

fits well to the assumptions made, indicates an imprecise condition for the
aeration onset. From a fluid dynamic point of view a reverse flow, which isn’t
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identical with a sign change of the pressure gradient for this flow, is more
likely to lead to aeration. For this flow configuration a reverse flow at z = 0
occurs at Q∗ = π

45
, according to the partial derivation of Eq. (32).245

(a)
(b)

Figure 6: Comparison of the drag torque coefficient (a) and aeration onset (b) for an
ungrooved disk obtained from experimental data from [12, 14].

4. Effect of grooves on aeration onset

The fact that grooves can yield an aeration onset at lower circumferential
speed as compared to a flat disk, has been discussed by various authors as
has been recently summarized by Neupert et al. [14, 21], for instance.

Figure 7 shows a radially grooved disk, which comprises the relevant
geometrical parameters. Pahlovy et al. [11] introduce the equivalent gap
height value for a grooved disk as

heq,pah = h+H ag = h+H
Agroove

Adisk

. (39)

Here, ag is the ratio of the grooved and ungrooved surface area and H is250

the height of the groove. The equivalent gap height heq,pah is thus a weighted
mean of the grooved and ungrooved areas. This leads consequently to an
earlier aeration onset. Even tough the modelling approach shows promising
results in comparison with experiments for a specific groove geometry, it is
not capable to capture the complex non-linear behaviour of different types255

of grooves as examined by [14]. Especially the expected effect of the change
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ϕ h

W

H

n : number of grooves

(a) Groove segment of a radial groove
� area A; − wetted perimeter P

W

H

R2

R1 R

(b) Perspective scheme of a radial groove
segment; � grooved area Agroove, � un-
grooved area Adisk.

Figure 7: Geometric dimensions and designation of the disk and groove.

of groove ratio H/W (where W is the groove width) cannot be considered
properly with this approach as shown later.

Inspired by these earlier efforts, an alternative formulation of the equiva-
lent gap height is introduced in the following, which builds upon the hydraulic-260

diameter concept.
The forces that act on an infinite fluid volume moving from the inner to

the outer radius of an open clutch can be divided into separate constitutive
components. For a smooth disk this summation of forces can be modelled
based on the simplified Navier–Stokes equations discussed earlier. The point265

of aeration is mainly a balance between inertia, centrifugal and frictional
forces. The introduction of grooves moves this balance to another equilibrium
state. Increasing the cross-sectional through-flow area at the same pressure
gradient reduces the frictional forces on one hand. Frictional forces are, on
the other hand, increased with a greater wetted perimeter.270

The analytical solution based on the assumptions for smooth disks are
not suitable for grooved surfaces, since they cannot consider the complex
flow phenomena in the grooves, such as e.g. helical and/or vortical structures
inside the grooves [22]. A profound analysis of the underlying fluid flow must
be done by experiments or numerical simulations. Nevertheless, for a first and
fast approximation an adapted version of the model for smooth walls might
be able to deliver acceptable results. An easy way to capture a complex
geometry in fluid mechanics is the concept of hydraulic diameter, originally
introduced for turbulent flow in ducts with a non-circular cross-section (see
e.g. [23]). The hydraulic diameter for the present flow can be calculated with
the cross sectional area A at the mean radius R and the wetted perimeter of
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the cross-section P

Dhy =
4A

P
, (40)

where

A = 2πRh and P = 4πR; R =
R1 +R2

2
.

For an ungrooved disk this value gives Dhy = 2 h. For a radially grooved disk
A and P both change such that the equivalent gap height can be defined as

heq =
Dhy

2
=

2A

P
=
hπ (R1 +R2) + nHW

π (R1 +R2) + nH
. (41)

Reorganisation of Eq. (41) leads to

heq =
h+H Agroove

Adisk

1 + H
W

Agroove

Adisk

. (42)

The direct comparison with Eq. (39) as suggested by Pahlovy et al. [11]
indicates that the numerators of both approaches are identical. However,
differences exist in the denominator, where the present model formulation
introduces a non-linear influence of the groove height. Figure 8 shows the
direct comparison of these two approaches, Eq. (39) and Eq. (42), to indicate275

the influence of the modified denominator i.e. the impact of the hydraulic
diameter. Figure 8a and 8b depict heq as a function of groove height H
for constant groove width W and vice versa, respectively. Figure 8c and
8d represent slightly more complex variation scenarios. The third diagram
shows a variation of W and H, while the product of these two quantities is280

constant. For the fourth diagram the frictional area is set constant, so the
number of grooves n decreases with increasing width W . The latter two cases
are chosen, to provide comparability to the systematic experimental study
of Neupert et al. [14]. The advantages of the hydraulic diameter approach
becomes obvious from the latter two cases (Figs. 8c and 8d). For a constant285

product of groove height and width the model based on Eq. (39) does not
predict a change in drag torque, whereas the new approach, Eq. (42), offers a
systematic dependency, which is in agreement with the experimental findings.
This different character also holds for a constant frictional area, which is the
fourth case.290
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(a) W = 1 mm; n = 32 (b) H = 1 mm; n = 32

(c) W ·H = 1 mm2 = const; n = 32 (d) H = 1 mm; Adisk = const.

Figure 8: A systematic comparison of both evaluated models with different parameters.
• : present approach using hydraulic diameter concept; H : approach of Pahlovy et al.
[11]

5. Conclusion

The simplifications required to obtain an analytical solution of the mass
and momentum conservation equations for the fluid flow in open wet clutch
flows with smooth disks have been discussed in detail, so as to provide a basis
to derive a precise analytical model for drag-torque and aeration-onset pre-295

dictions. It is shown that the momentum conservation equations reduce to
two independent ordinary differential equations in radial and circumferential
direction for flow cases in which urh2

νR
� 1 is justified. It has been demon-

strated that the simplifications made by existing open clutch flow models are
appropriate as long as this assumption is valid.300

A dimensional analysis of the obtained equations has been done to reduce
the problem to its principle degrees of freedom. Particularly, a single equa-
tion has been identified to predict the normalized drag torque as a function
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of lubrication Reynolds number, which holds for a variety of possible oper-
ating conditions and clutch geometries. It has further been demonstrated305

that this equation agrees with the simplified version of the governing equa-
tions. This insight, in turn, provides evidence that the derived dimensionless
quantities might serve as a more robust and universal metric to describe and
consequently also predict the drag torque characteristics across the board of
parameter combinations.310

Furthermore, the dimensionless aeration onset can be formulated as a con-
stant number, which takes the value of π/20 for the existing aeration models.
It is therefore recommended that experimental data for aeration onset ob-
tained in different test rigs with different geometric dimensions and inherent
test-rig particularities should be compared in the dimensionless ζmRel/π -315

Q∗ - diagram, where deviations from the idealized and simplified model for-
mulation are directly visible.

Additionally, a new modelling concept for the influence of radial grooves
in open wet clutch flows based on the hydraulic diameter concept is intro-
duced. This new approach advances beyond earlier concepts, since the for-320

merly missing effect of the groove aspect ratio (H/W ) is considered. It can
be, therefore, concluded that the new approach supplies a more accurate
prediction due to a more detailed consideration of the ongoing phenomena
in the lubrication gap.

Finally, in combination with the dimensionless approach the hydraulic-325

diameter concept might serve as a new and broader basis to more accurately
predict the drag force and the rotational velocity for the onset of aeration in
open wet clutches.
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Appendix Analytical Models

Over the last years a number of analytical solutions have been published.
Four models are summarized in Table 2.

Table 2: Analytical models as discussed in the present work

No Author Year Reference

I Rao 2010 [7]
II Iqbal et al. 2013 [9], [10]
III Pahlovy et al. 2014, 2016 [11], [12]
IV Huang et al. 2012 [8]

The simplifications made by every model are listed in the following sim-
plified versions of the continuity and Navier–Stokes equations. The numbers410

under the braces correspond to the author numeration of Table 2.

0 =
1

r

∂ (rur)

∂r︸ ︷︷ ︸
I, II, III, IV

(43)

ρ

(
ur
∂ur
∂r︸ ︷︷ ︸

I, III

−
u2
ϕ

r︸︷︷︸
I, II, III, IV

)
= −∂p

∂r︸︷︷︸
I, II, III, IV

+ µ
∂2ur
∂z2︸ ︷︷ ︸

I, II, III, IV

(44)

ρ

(
ur
∂uϕ
∂r︸ ︷︷ ︸

I, III, IV

+
uruϕ
r︸ ︷︷ ︸

I, III, IV

)
= µ

∂2uϕ
∂z2︸ ︷︷ ︸

I, II, III, IV

(45)

0 = −∂p
∂z︸︷︷︸

I, II, III, IV

(46)

This leads to the solutions of the radial and circumferential velocity, which
can be written as
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ur =
1

2µ

dp

dr
z(z − h)︸ ︷︷ ︸

I, II, III, IV

+
rΩ2

12νh2

(
h3z − z4

)︸ ︷︷ ︸
I, II, III, IV

+
3

20

Q2

π2νr3h6

(
2z6 − 6z5h+ 5z4h2 − zh5

)︸ ︷︷ ︸
I, III

(47)

uϕ = rΩ
z

h︸︷︷︸
I, II, III, IV

+
ρ

60µ2

dp

dr

(
3Ω

h
z5 − 5Ωz4 + 2Ωh3z

)
︸ ︷︷ ︸

IV

. (48)

Rao I, Pahlovy III and Huang IV have to use an iteration method, to find
the solutions of the velocity components, due to the fact that their simplified415

equations remain partial differential equations. For a comparison of the radial
velocity component an integration with respect to ϕ and r seems suitable,
which leads to the volumetric flow rate as shown earlier (Eq. (34)). The
difference at this equation is a third component.

Qr =

∫ 2π

0

∫ h

0

urr dz dϕ = −πh
3

6µ

dp

dr
+
πr2h3Ω2

20ν
+

9Q2h

140πνr2
(49)

The budget of these three components is shown in Figure 9 as a function420

of the Reynolds number Rel, analogous to Figure 2 in the main manuscript.
The third normalized term is colour-coded in blue, takes a constant value
of 6.1× 10−4 and is thus small compared to the Poiseuille flow and the flow
induced by centrifugal forces. Therefore, the simplification of neglecting this
term is justified.425

For the circumferential component two diagrams at the position r = R1

for two selected angular velocities are shown in Figure 10. The Couette flow
predominates both small and large angular velocities. The approximation to
a linear flow profile, which consists only of the first term, accordingly, seems
justified.430
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Figure 9: Budget of the volume flow rate Q as a function of lubrication Reynolds number
Rel

(a) (b)

Figure 10: Budget of the circumferential velocity uϕ at (a) Ω = 21 1/s and (b) Ω = 314 1/s
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