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Abstract. High temperature superconductors (HTS) are discussed as energy-efficient solutions 

for applications needing high direct currents beyond 10 kA e.g. for large high-field magnets or 

bus bar systems in industrial electrolysis plants. A number of high-current cable concepts based 

on REBCO tapes were developed such as the Roebel cable, co-axially wound tapes and several 

stacked-tape arrangements, among them the HTS CrossConductor (HTS CroCo), a stacked-tape 

conductor with high current density developed at KIT. In this manuscript, the experimental test 

of a high DC demonstrator, termed Supra-DC-Cable, made from twelve HTS CroCo strands is 

presented. The demonstrator was tested successfully at T = 77 K, reaching the expected critical 

current of 33 kA at 77 K and even for a constant-current operation at 36 kA for more than 30 

minutes limited by the copper connections, not the superconducting cable. Currents and voltages 

were measured in all twelve strands individually during the parallel operation in the cable. These 

measured data allow the experimental validation of the modelled current distribution, based on 

the individual characterization of the twelve strands.  

1.  Introduction to High Direct Current Applications 

 

Global warming is one of today’s key challenges and technologies to decarbonize and to increase the 

energy-efficiency of all aspects of our way of living are of key interest. Within the German “energy 

transition” it is targeted to reduce the primary energy consumption by 20 % in 2020 and 50 % by 2050 

compared to the 2008 values [1]. The replacement of carbon-based fuels by renewable energy sources 

are one major aspect. About 47% of Germany’s net electric power is consumed by industry [2] and 

nearly half of this value by the so-called energy-intensive industries [3]. Consequently, improvements 

in the energy efficiency of these industries can provide a big contribution to the reduction goals.  

The reduction of electric losses by superconducting cables, in particular based on high temperature 

superconductors (HTS), can be one technology to improve energy efficiency. As 𝑃𝑙𝑜𝑠𝑠 = 𝑅 𝐼2, high 

current applications can benefit in particular from superconducting cable systems, where in the cable 

the resistance is 𝑅 ≈  0. Highest currents are encountered in aluminum electrolysis, where currents can 

reach up to 600 kA [4], [5] other electrolysis processes e.g. for magnesium or chlorine use currents in 

the ten to several hundred kilo ampere range [4-7]. Most of these applications operate almost 

continuously at high loads and allow therefore for substantial energy savings. HTS can provide 

substantially higher current densities than conventional copper or aluminum systems and can reduce 

size and weight of installations or allow for more powerful systems in existing ducts (retrofitting) [8]. 

Electrolysis may be one important field of application for superconducting high DC systems but there 

are several other potential applications where energy-efficiency can be improved or new concepts can 

be enabled. 

In railway systems, superconducting DC cables are discussed as solution to allow for lower voltage 

drop along the lines and reduced number of converters [9]. In large data centers, low-voltage DC bus 

systems could be realized by superconducting systems reducing space, weight or allow for facility-wide 
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installations at 48 VDC or 400 VDC [5], [10]. Potential new applications include DC grids on large ships 

[5] or in future electric airplanes [11], [12]. 

Over the last years, several DC cable systems with currents of 10 kA and more were realized. These 

include two 20 m long 20 kA test cables of Magnesium-diboride based bus bar system to power 

accelerator magnets at CERN [13], a 360-meter-long 10 kA system for an aluminum plant in China [14] 

and a 25-meter-long 20 kA system for a Chlorine electrolysis in Germany [7].  

At KIT, a small-scale test setup was set up to test high-current cable prototypes of about 4 meters 

length in an liquid nitrogen bath operated at ambient pressure, i.e. T = 77 K, at currents up to 50 kA. 

The first tested cable was a cable consisting of twelve so-called HTS CroCo strands with target critical 

current of about 35 kA, termed Supra-DC-Cable. This prototype cable was realized in order to test 

recently developed design and calculation codes for high DC cable systems [15] and the fabrication of 

the required amount of HTS CroCo strands. Details can be found in [15], [16] and [17].   

 

2.  The Supra-DC-Cable Test Setup 

 

The Supra-DC-Cable demonstrator test setup is shown in Figure 1. It consists of twelve HTS CroCo 

strands which are arranged in a circular arrangement on a central carrier of 110 mm diameter, as depicted 

in Figure 1(b). Details of the design was described in previous work [17]. Each individual HTS CroCo 

strand consists of a series connection of the central superconducting part soldered at each end to a copper 

cylinder (CC) over a length of 100 mm. The copper cylinders are soldered to Copper litz wires (CL) of 

300 mm² cross-section. Finally, the copper litz wires are soldered to Cable shoes (CS) which are used 

to connect the wires to common terminals in the LN2 bath. The voltage drops over all soldered 

connections and the litz wires were recorded. The voltage tap configuration is depicted in Figure 2. 

Details on the current source and data acquisition system were reported in [17]. The long CL wires serve 

several purposes: First, they allow for a compensation of thermal contraction, second, they provide the 

required flexibility during the mounting of the twelve strands in the bath, and third, their electric 

resistance allows to determine the current flowing in the individual HTS CroCo strands by measuring 

the voltage drop in the parallel connection of the Supra-DC-Cable demonstrator setup. Using the 

resistivity of copper of  ~ 2 nm at T = 77 K [18], one expects a resistance of 3  over a length of 

450 mm at a cross-section of 300 mm². 

 

 

Figure 1: (a) Open cryostat with Supra-DC-Cable demonstrator installed. The total length of the 

cryostat is 6 meters. The components of each of the twelve strands are labelled.  

(b) Schematics (not to scale) of the concentric arrangement of the twelve HTS CroCo strands together 

with the position of each strand in the demonstrator. Note that the colours of the CroCos correspond to 

colours of the symbols in the graphs.   
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3.  Improvements after initial test campaigns 

 

In previous work [16], all twelve strands were characterized individually in a LN2 bath prior to the first 

Supra-DC-Cable test campaign. The characterization included the individual measurement of the 

strands’ critical currents and n-values at T = 77 K, self-field and the lead resistances in the configuration 

shown in Figure 2(a) and were already published in [16] and [17]. Critical currents range between 2.89 

kA (CroCo # 11) and 3.68 kA (CroCo # 5) due to a combination of different tape performance and 

improvements in HTS CroCo manufacturing in the course of this project.  During the analysis of these 

measurements, a significantly higher lead resistance was observed on HTS CroCo strand # 6, which 

could not be straight-forwardly explained. Therefore, this single-strand measurement of HTS CroCo #6 

was repeated and cross-checked resulting in resistance values much closer to results obtained in the 

other eleven strands. The most likely reason for the deviation in the initial measurement of CroCo # 6 

is a not complete thermalization of one cable end which led to higher lead resistances there. Figure 2(b) 

displays a stacked plot of the resistances of the individual parts of the cable for all twelve HTS CroCo 

strands. It can be seen that the total lead resistance ranges between 7.8  and 8.9 i.e. differing by 

less than 15% between the highest and lowest value. Moreover, the contribution from the copper litz 

wire is the dominant part on each side, contributing to about 3  each. The connection to the HTS 

CroCo is ranging between 150 n and 320 n, and is therefore by at least an order of magnitude smaller 

than the contribution from the copper litz wire.  

 

 

 
 

Figure 2: (a) Schematics of the components of the leads connecting each HTS CroCo strand. Note that 

checkered coloring is used for the plus pole, striped coloring is used for the minus pole.  

(b) Measured resistance values of the individual parts of the leads connecting each HTS CroCo 

strand at T = 77 K. 

 

In the parallel connection of the twelve HTS CroCos and their individual leads, the voltage in each 

one must be the same, which allows to calculate the individual HTS CroCo currents 𝐼𝑖 and the cable 

current 𝐼𝑐𝑎𝑏𝑙𝑒 for a given voltage from the equations  

                          𝑉(𝐼𝑐𝑎𝑏𝑙𝑒) = 𝑉𝑙𝑒𝑎𝑑 , 𝑖 + 𝑉𝐻𝑇𝑆,𝑖 =  𝑅𝑙𝑒𝑎𝑑,𝑖 𝐼𝑖 + 𝐸𝑐𝐿 (
𝐼𝑖

𝐼𝑐,𝑖
)

𝑛𝑖

, where                          (1) 

𝑅𝑙𝑒𝑎𝑑,𝑖 = 𝑅𝑖
𝐶𝑆−𝐶𝐿,+ + 𝑅𝑖

𝐶𝐿,+ + 𝑅𝑖
𝐶𝐿−𝐶𝐶,+ + 𝑅𝑖

𝐶𝐶−𝐶𝑟𝑜𝐶𝑜,+ + 𝑅𝑖
𝐶𝐶−𝐶𝑟𝑜𝐶𝑜,− + 𝑅𝑖

𝐶𝐿−𝐶𝐶,− + 𝑅𝑖
𝐶𝐿,− + 𝑅𝑖

𝐶𝑆−𝐶𝐿,−
 

 

and 𝐼𝑐𝑎𝑏𝑙𝑒 =  ∑ 𝐼𝑖
12
𝑖=1  

 

The only unknown resistance contribution which could not be checked in previous characterization 

is the resistance of the clamped cable shoe to the common copper termination block (see Figures 1 and 

2(a)). In an earlier test campaign of the Supra-DC-Cable [17], a weak connection on one strand led to 
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an unequal current distribution. This issue was eliminated in this test campaign by using bolts with the 

same thermal expansion coefficient as copper for the connection of the cable shoes.  

4.  Performance of the Supra-DC-Cable at constant current ramp rate 

 

The cable current was increased at a constant current ramp rate of 500 A/s until it was stopped by the 

quench detection system at ~ 40 kA. Figure 3 shows the electric field as calculated from the voltage 

measured between the voltage taps of 2.8 m separation. It is shown on a logarithmic scale in all twelve 

HTS CroCo strands as a function of the total cable current in the range from 20 kA to 42 kA. The 

symbols denote the measured electric field values, the dashed lines denote calculated values according 

to Equation 1 from the parameters of the individual strand characterization. It should be noted that there 

are no free fitting parameters in the model.  

The critical electric field 𝐸𝑐 = 1µ𝑉/𝑐𝑚 is reached first in HTS CroCo # 12 at a total cable current 

of ~ 33 kA, followed about 2 kA later by strand # 11. At 37.5 kA, CroCo # 2 reaches the critical electric 

field. The other strands follow, but not all reach 𝐸𝑐 until the end of the measurement. These observations 

can be very well understood from the model described above, because the resistance of the Cu-litz of 

the individual CroCos decouple the transition from superconductivity to resistive behavior for the 

individual CroCos. At a substantial non-zero electric field, the transition to the normal state is very well 

matched by the model. At currents below 30 kA, a small, but non-zero voltage is seen in the measured 

data but not in the model.  

 

Figure 3: Electric field on a logarithmic scale in all twelve HTS CroCo strands as a function of the 

total cable current in the range from 20 kA to 42 kA. The symbols denote the measured electric field 

values, dashed lines denote calculated values according to Equation 1 without free fitting parameters.  

 

 

In order to gain further insight into the current and voltage distributions during the current ramp, the 

currents of the individual HTS CroCo strands are calculated from the voltage drop over the copper litz 

cable at the positive and negative pole, 𝑉𝑖
𝐶𝐿,+

 and  𝑉𝑖
𝐶𝐿,−

, with the known resistances of the cable 𝑅𝑖
𝐶𝐿,+

 

and 𝑅𝑖
𝐶𝐿,−

 (Figure 4). Then the mean value of the plus and minus pole, 𝐼𝑖 =
1

2
 (

𝑉𝑖
𝐶𝐿,+

𝑅𝑖
𝐶𝐿,+ +

𝑉𝑖
𝐶𝐿,−

𝑅𝑖
𝐶𝐿,−) and the 
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standard deviation 𝜎𝐼𝑖
= √(

𝑉𝑖
𝐶𝐿,+

𝑅𝑖
𝐶𝐿,+ − 𝐼𝑖)

2

+ (
𝑉𝑖

𝐶𝐿,−

𝑅𝑖
𝐶𝐿,− − 𝐼𝑖)

2

 are calculated. In order to check for 

consistency, all currents in the individual CroCos are added and compared to the total cable current 

obtained from a separate measurement (described in detail in [17]). Over most of the current range, the 

sum of the individual currents is about 2% to 3% larger than the total cable current but in agreement 

when the uncertainty of the sum of the individual CroCo currents is also considered as it can be seen 

from Figure 4. 

For further analysis, the individual CroCo currents are therefore normalized to the total cable current 

by considering 𝐼𝑖,𝑐𝑜𝑟𝑟(𝐼𝑐𝑎𝑏𝑙𝑒) =
𝐼𝑖

∑ 𝐼𝑖
12
1

𝐼𝑐𝑎𝑏𝑙𝑒. 

 

 

Figure 4: Sum of the individual HTS CroCo currents and uncertainties as obtained from the voltage 

drop in the copper litz wires and the previously measured resistances normalized to the total cable 

current. The red line indicates an ideal agreement ∑ 𝐼𝑖
12
1 𝐼𝑐𝑎𝑏𝑙𝑒⁄ = 1. 

 

This measured and corrected CroCo cable current is then calculated and plotted in Figure 5 as a 

function of the total cable current in the range from 30 kA to 41 kA for CroCos 1, 9, and 12 (filled 

symbols). This selection of strands is chosen as CroCo 1 has the highest overall lead resistance, CroCo 

9 the second lowest lead resistance and second highest critical current and CroCos 12 has the second 

smallest critical current and lowest lead resistance of the twelve strands. The remaining nine strands are 

not shown to improve the clarity. 

In addition, the expected individual CroCo currents according to Equation (1) from the single strand 

characterization are presented as dashed lines. The colors correspond to those of the symbols of the 

CroCo strands. A very good agreement between the measured individual strand critical currents and the 

expectation from the calculations is observed. In particular, CroCo 9 shows the highest strand current 

as expected from the comparatively low lead resistance. Even at the highest cable current, the strand’s 

critical current is not reached.  For CroCo 1, the situation is reversed: Due to the highest lead resistance, 

it carries the lowest current. CroCo12 is of particular interest as at a cable current of ~33 kA, the critical 

current of of 2.93 kA is reached. At higher currents, the slope of the strand current starts to decrease 

until a leveling off at highest currents of ~ 40 kA is almost observed. This behavior is expected as the 

total voltage over the twelve CroCos in parallel connection is expected to be the same and since at 𝐼𝑖 >
𝐼𝑐,𝑖 the superconducting cable part starts to develop a substantial voltage in the millivolt range (see 

Figure 3) in addition to the voltage drop over the leads of ~ 25 mV at a strand current of ~ 3 kA, therefore 

the slope of the individual current as function of the total cable current decreases.     
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Figure 5: Current in HTS CroCos #1, #9 and #12 as function of the Cable current. The measured and 

corrected HTS CroCo current is shown by filled symbols, the expectation from modelling based on 

individual-strand characterization is given by dashed lines. The colours of the symbols and lines 

correspond to the CroCos as indicated in Figure 1. 

 

5.  Influence of cable current ramp rates on electric field evolution in the HTS CroCos 

 

By a series of cable current sweeps it was investigated how the transition to normal conducting state 

changes. Figure 6 shows the electric field on HTS CroCo #12, i.e. the strand which showed the highest 

electric field of all twelve strands, as function of the cable current for current ramp rates from 25 A/s to 

2500 A/s. It can be seen that for current ramp rates smaller than 500 A/s, lower maximum cable currents 

were achieved. This behavior is attributed to insufficient cooling at the electric fields beyond 10 µV/cm. 

The substantially longer measurement time corresponding to smaller ramp rates leads to thermal 

runaway and a steepening of the transition to normal state.  

 
Figure 6: Electric field in CroCo # 12 at cable currents > 33 kA for different ramp rates. 

6.  Steady-state operation  

 

In a final series of measurements, the limit of stable cable operation was investigated. Therefore, the 

cable current was kept constant at a target value and until either thermal runaway was observed and the 
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quench detection system triggered a current shutdown or until an over-temperature on the room 

temperature bus bar system was observed. Figure 7 shows the electric field on HTS CroCo #12 as 

function of the time since the target current was reached for various currents.  

The series of measurements was started at 36 kA, where the electric field in CroCo #12 already 

exceeded the critical electric field by a factor of 4. Still, cable operation was possible for more than 

39 minutes, before the current had to be shut down due to over-temperature of the room-temperature 

bus bar. For the same reason, operation at 37 kA had to be stopped after 11 minutes where still no 

thermal runaway was detected. Yet a continuous small increase of the electric field is observed. At 

37.5 kA, thermal runaway triggered the quench detection system after ~2.5 minutes. With increasing 

current, the thermal runaway occurred after shorter time until at 39.5 kA it started right after the target 

current was reached and no stable operation was observed.  

It should be noted that at these current levels, about 500 W of Joule heating from the resistance of 

each lead is generated on each pole which adds to the heat generated in the outer leads connecting the 

room temperature end of the common 77 K termination in Figure 1 to room temperature. This heat leads 

to evaporation of liquid nitrogen and additional turbulence in the cryostat. In a real cable system, e.g. 

cooled by a flow of sub-cooled liquid nitrogen, such large heat intake is of course prohibitive.  

  

 

Figure 7: Electric field in CroCo # 12 as function of time for different cable currents. 

7.  Outlook and further work 

 

During this test campaign, all HTS CroCo strands were connected through the ~ 4 µ large lead 

resistances per pole to the common termination block. The total voltage at the highest current of 40 kA 

was consequently dominated by the voltage drop over the lead resistances even for the CroCo strands 

which exceeded 𝐸𝑐 there, e.g. CroCo #12. Figure 8(a) shows the calculated voltage distribution between 

the superconducting and the lead part in detail. The large series resistance therefore prevents effective 

current sharing between the strands connected in parallel.  

One option to improve current sharing between the HTS CroCo strands is to add a common connector 

after the copper litz wires such that the only (unavoidable) series resistance is the resistance of the 

soldered connection between the common connector to the superconducting HTS CroCo strand. If one 

assumes this resistance of equal the average of the CC-CroCo resistance of ~200  (see Figure 2 (b)), 

and the resistance within the common connector to be negligible, the voltage distribution between lead 

and HTS CroCos and within HTS CroCos is now much more equalized as it can be seen from the 

calculation shown in Figure 8(b). The realization of the common connector and the test in modified 

arrangement will be discussed in further work. 
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Figure 8: Calculated voltage distributions between leads (red, shaded) and HTS CroCo (blue) at a 

cable current of 40 kA. (a) Supra-DC-Cable connected “as-is”, (b) with additional common connector 

to which the HTS CroCos are soldered directly assuming an equal solder resistance of 200 n each. 

Note the different scale of the voltage axis. 

8.  Summary 

 

In this manuscript, results on the Supra-DC-Cable demonstrator consisting of twelve superconducting 

HTS CroCo strands are discussed. In the design of the demonstrator, each HTS CroCo strand was 

connected by individual copper litz wire which could be used to determine the currents flowing in the 

individual strands. The critical electric field was reached at a cable current of 33 kA in HTS CroCo 

strand # 12. However, due to the variation of series resistances, some of the CroCos did not reach the 

critical electrical field even at highest cable currents. 

This measurement confirms the electric DC circuit model – in addition to the critical current also the 

voltage dependence is very well confirmed. At highest currents, a decrease of the slope of the strands 

which carried currents beyond their critical current was observed – in agreement with the model.  

Additionally, the performance of the demonstrator in steady-state operation was checked and at a 

cable current of 36 kA, stable operation of more than 39 minutes – limited by the room-temperature 

connection, not by the superconductor – was observed. 

In further work it is targeted to allow for current sharing by adding a common connector immediately 

at the HTS CroCo ends. The realization of this modified demonstrator is under way and will be reported 

in further work. 
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