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Abstract 

This dissertation focuses on the development of improved statistical models for 

bubble-induced turbulence (BIT) (also called pseudo-turbulence). For this purpose, an 

integrated methodology is applied involving different computational methods such as 

Direct Numerical Simulations (DNS) and Euler-Euler (E-E) approach (two-fluid model). 

The investigations are conducted for various scales such as single bubbles, bubble 

swarms, lab-scale and pilot-scale bubble columns. The simulation results are verified 

with experiments and correlations. The applicability of models is demonstrated for 

engineering computations of an industrial bubble column using Computational Fluid 

Dynamics (CFD) codes that rely on E-E approach. 

For the model development, extensive direct numerical simulations for bubble 

swarms within a sub-region of a flat bubble column are performed with an in-house 

code TURBIT-VOF. The transport equation for the liquid phase turbulence kinetic 

energy, kL, which is the cornerstone in many statistical turbulence models, is analyzed 

by using the DNS data. It is deduced that the main source term for the turbulence 

kinetic energy (TKE) is due to interfacial effects, while the production due to shear 

stresses is negligible for the conditions examined here. The production and dissipation 

terms are not in local equilibrium. Instead, the excess of kL production from areas with 

high local gas content is redistributed by diffusion into areas with low gas content. This 

shows that for a reliable calculation of flows in bubble columns with the E-E approach, 

an adequate modeling of the interfacial term in the kL equation is of great importance. 

Model approaches from literature for closure of this term are analyzed by comparison 

with the DNS data and two suitable models for the interfacial term are selected. 

An industrial bubble column is computed using an OpenFOAM® solver based on 

the k- two-fluid approach. The influence of models for the interfacial term is examined. 

It is found that the turbulence model has a very slight influence on the local gas holdup 

and the velocity profiles of phases at normal pressure while the influence is noticeable 

at 18.5 bar. In general, at high pressures, the local gas holdup is significantly 

overestimated by the simulation for a water system measured by project partners. For 

an organic system, numerical and experimental results are very close. Using the 

turbulence model that is identified and implemented during this study, the overall gas 

holdup data for the water system from the experiments is estimated with a deviation of 

9 – 13 %. Based on correlations from literature, one approach is identified that is able 

to predict the CFD data for the overall gas holdup closely in organic system at 18.5 

and 36 bar and in water system at 18.5 bar. The TKE profiles are analyzed for different 

liquid properties, pressure, gas superficial velocities and temperature. A linear relation 

of TKE with local gas holdup and mean gas velocity is identified for the examined cases.  

This work contributes to turbulence modelling in bubbly flows and the 

advancement of CFD as a tool for design of industrial scale bubble columns. The 

implemented systematic procedure is essential for the development of statistical 

models to engage numerical simulations in practical applications.
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Kurzfassung 

Diese Doktorarbeit beschäftigt sich mit der Entwicklung verbesserter statistischer 

Modelle für die Blasen-induzierte Turbulenz (Pseudo-Turbulenz). Es wird eine Skalen-

übergreifende Herangehensweise gewählt, die sowohl Direkte Numerische 

Simulationen (DNS) als auch Euler-Euler (E-E) Simulationen umfasst. Die dabei 

betrachteten Skalen umfassen Einzelblasen und Blasenschwärme sowie 

Blasensäulen im Labor- und Pilotmaßstab. Die Simulationsergebnisse werden jeweils 

anhand von Experimenten und Korrelationen verifiziert. Die Anwendbarkeit von 

Modellen für die ingenieurtechnische Berechnung von einem industriellen 

Blasensäulenreaktor auf Basis von numerischen Strömungssimulationen mit dem E-E 

Ansatz (Zwei-Fluid-Modell) wird nachgewiesen. 

Zur Modellentwicklung werden umfangreiche DNS Berechnungen für Blasen-

schwärme durchgeführt. Hierfür wird das am KIT entwickelte Rechenprogramm 

TURBIT-VOF verwendet und ein Teilgebiet einer flachen Blasensäule betrachtet. 

Mittels der DNS-Daten wird die Transportgleichung der turbulenten kinetischen 

Energie (TKE) der Flüssigphase (kL) analysiert, die den Grundstein der 

ingenieurtechnischen Turbulenz-modellierung darstellt. Es zeigt sich, dass der 

dominierende Quellterm auf Grenzflächen-effekte zurückzuführen ist, während die 

Produktion aufgrund von Scherspannungen für die betrachteten Bedingungen gering 

ist. Produktions- und Dissipationsterm sind nicht im lokalen Gleichgewicht. Der 

Überschuss der Produktion von kL in Bereichen mit hohem lokalem Gasgehalt wird 

durch Diffusion in Bereiche mit geringem Gasgehalt umverteilt. Für die zuverlässige 

Berechnung von Strömungen in Blasensäulen mit dem E-E Ansatz ist eine adäquate 

Modellierung des Grenzflächenterms in der kL-Gleichung daher von großer Bedeutung. 

Ansätze aus der Literatur zur Schließung dieses Terms werden durch Vergleich mit 

den DNS-Daten analysiert und zwei tragfähige Modelle ausgewählt. 

Mit dem k- Zwei-Fluid-Modell in OpenFOAM® wird eine industrielle Blasensäule 

berechnet und der Einfluss des Grenzflächenterms in der kL-Gleichung untersucht. 

Das Turbulenzmodell hat bei Normaldruck nur einen sehr geringen, bei 18,5 bar Druck 

aber einen merklichen Einfluss auf den Gasgehalt und die Gas- und 

Flüssigkeitsgeschwindigkeit. Bei hohem Druck wird der gemessene Gasgehalt für ein 

Wassersystem in der Simulation deutlich überschätzt. Für ein organisches System 

liegen die numerischen und experimentellen Ergebnisse sehr nahe beieinander. Unter 

Verwendung des innerhalb dieser Arbeit implementierten Turbulenzmodells wird für 

das Wassersystem der Gasgehalt in Experimenten mit einer Abweichung von 9 – 13% 

berechnet. TKE-Profile werden für unterschiedliche Bedingungen analysiert und es 

wird eine lineare Beziehung zwischen TKE und lokalem Gasgehalt und mittlerer 

Gasgeschwindigkeit identifiziert. 

Die in dieser Arbeit verwendete skalenübergreifende Herangehensweise trägt zur 

verbesserten Turbulenzmodellierung in Blasenströmungen und damit zur Etablierung 

der numerischen Strömungssimulation für die Auslegung von industriellen 

Blasensäulen bei.
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1. Introduction 

This Chapter introduces the motivation for studying the modelling of liquid phase 

turbulence in bubbly flows and the background information for numerical methods to 

perform this research.  

1.1. Motivation 

Bubble columns are widely used as multiphase reactors in chemical, biochemical 

and petrochemical industries [1, 2]. In bubble columns as multiphase reactors, the gas 

phase is dispersed into a continuous phase [3] and moves in one of the two 

characteristic regimes depending upon the nature of dispersion [4]. The flow regime 

can be homogeneous or heterogeneous (with a wide bubble size distribution). The 

ascending gas-phase creates an unsteady buoyancy-driven flow and induces large 

recirculation loops in the liquid phase (with up-flow in the center and down-flow near 

the wall). Experience, empirical correlations, one-dimensional convection-dispersion 

models and compartment models form usually the basis for the design of industrial 

scale bubble columns. Such approaches remain somewhat limited when increase of 

the reactor performance is sought. Multidimensional Computational Fluid Dynamics 

(CFD) methods are potentially attractive for this purpose, however, their use is 

nowadays often limited to lab scale bubble columns and aqueous liquids and not yet 

used as tool for design of industrial scale bubble columns [5, 6]. 

During the years bubbly flows were analyzed experimentally [7-9] as well as 

numerically [10-12]. Several papers in literature investigated the suitability and 

limitations of different modeling concepts for bubble columns by comparing computed 

mean profiles for gas-holdup, gas and liquid velocity, and turbulence kinetic energy 

(TKE) with experimental data from dedicated lab-scale bubble column experiments. It 

was observed that modification of carrier flow by bubbles depends on the flow 

conditions (e.g. flow Reynolds number) and on the characteristics of the bubbles (e.g. 

bubble size and total gas hold-up) [13]. Though the conclusions are not definite, 

several authors report that predictions of the mean flow (mean velocities, mean gas-

hold-up) and the turbulence kinetic energy obtained by using the k    models are 

comparable to those obtained by using Reynolds stress model (RSM) or Large eddy 

simulation (LES) (at least away from the sparger where the performance of LES is 

clearly superior) [14-17]. However, all model approaches have deficiencies concerning 

turbulence quantities, which often do not compare well with experiments. This deficit 

is of special importance for population balance approaches where turbulence data 
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enter in breakup and coalescence kernels [5, 6]. Therefore, improved closure relations 

for k and   which are necessary for bubble-driven flows are one of the focus in this 

study.  

In bubble columns, the rising bubbles create an unsteady buoyancy-driven flow 

and induce large recirculation loops in the liquid phase. This generates shear-induced 

turbulence (especially near the walls) and bubble-induced turbulence (BIT or pseudo-

turbulence) [6]. Some researchers showed the significance of BIT by measuring 

turbulence intensities in a flow before and after the addition of bubbles [7, 18]. In 

various industrial processes involving slow dispersed two-phase flows no shear 

turbulence occurs [19] and the main flow features such as phase distribution and 

mixing are controlled only by the bubble-induced turbulence. Neither pure pseudo-

turbulence is fully understood nor its inherent non-linear interaction with shear-induced 

turbulence. For reliable mathematical modeling of pseudo-turbulence in bubbly flows, 

it is essential to understand the underlying physics [5, 6].  

Among several engineering approaches commonly used to predict the bubble-

induced turbulence, far the most popular concept is based on the balance equation for 

turbulence kinetic energy of the liquid phase (kL equation) [20]. Turbulence modelling 

in bubbly flows can also be identified based on the basic equations of turbulence in 

gas-liquid flow. Kataoka and Serizawa [21] derived the exact equations for k, the 

turbulence kinetic energy (TKE), and  , the dissipation rate of TKE, for a gas-liquid 

flow consisting of two incompressible phases. The formulation they derived employs a 

single-phase flow representation but includes the influence of the bubbles by means 

of additional interfacial source terms in the balance equations [13]. In the exact kL 

equation, the terms representing the shear production, diffusion, dissipation and 

interfacial momentum transfer must be modeled to close the system of equations. 

Experimentally, it is difficult to obtain data about the terms in the kL equation especially 

under non-dilute conditions. However, direct numerical simulations (DNS) on 

sufficiently fine grids can provide such data [5]. The turbulence in the dispersed gas 

phase is commonly neglected due to the low density of the gas and the small 

dimensions of bubbles [13]. 

Several authors used the formulation of Kataoka and Serizawa [21] for modelling 

the BIT of bubbly flow and proposed models with source terms to represent BIT [22-

25]. Ilic [26] performed DNS studies of laminar bubbly flow in a narrow vertical channel 

in rather viscous liquids (Morton number M > 3106) and evaluated all terms in the kL 

equation for a single bubble [19] and a swarm consisting of up to eight bubbles [27]. 

For all closure terms, they compared the DNS profiles with model predictions. Ilić found 
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that for the production by shear stresses all models yield a strong overestimation, while 

for the turbulent diffusion all models used in engineering codes result in an 

underestimation. For the interfacial term, Ilic [26] analyzed a number of models and 

identified a promising one [5]. However, all the other closure terms in the kinetic energy 

equation need further improvement for bubbly flows [26]. 

In the recent studies, since 2016, Santarelli and Fröhlich [28] and Santarelli et al. 

[29] analyzed the turbulence kinetic energy budget for bubble swarms in a turbulent 

channel flow configuration with realistic density difference and used the DNS data from 

vertical turbulent channel flow laden with finite-size bubbles. Ma et al. [30], [31] and 

Ma [13] extended those works by using the DNS data of two-fluid system to model the 

interfacial terms of BIT and help modelling for E-E and LES simulations. They 

presented a BIT model that is valid for small bubbles in contaminated fluid and a 

closure for the BIT terms in an E-E RANS model based on DNS data.  

An industrial scale validation has not been achieved so far. An up-to-date detailed 

review for the simulation of bubble columns by Mühlbauer et al. [32] in 2019 concludes 

that there is still a need for research in the field of multi-phase turbulence and for bubbly 

flow applications with high gas holdup. They emphasize that one deficit in the literature 

is to bring the use of numerical simulation closer to practical applications and for this 

purpose, a solution procedure involving a systematic validation of the models is 

essential. This should be supported with DNS on the small scale to resolve the transfer 

from single to bubble swarm models in detail and to determine closures for large-scale 

models [32]. 

The current research has been performed under a joint project of the Federal 

Ministry of Education and Research in Germany (BMBF: Bundesministerium für 

Bildung und Forschung). The BMBF project “Multi-Phase” seeks to optimize 

multiphase reactors utilizing scale-independent models, measurement techniques and 

apparatuses. The project members link their competences in academic fundamental 

research, small and medium-sized companies with expertise on measurement 

technologies and design and operation of industrial processes. Evonik Industries AG 

transfers the laboratory data and models to industrial scale and provides the results to 

the project partners. Significant energy efficiency as well as reduced CO2 emissions 

are expected [33]. One main goal of the project is the development of reliable multi-

scale models that allow the numerical investigation and optimization of industrial scale 

multiphase reactors.  

In this context, this study aims on the development and validation of improved 

statistical models for bubble-induced turbulence. The applied strategy is to use the 
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DNS data as basis for improving and testing the models for the main source term of 

BIT and to employ the improved models for the E-E approach. 

1.2. Direct numerical simulations (DNS) 

Direct numerical simulations (DNS) of bubbly flow provides the full information on 

instantaneous three-dimensional flow field and phase interface topology based on 

computational grids fine enough to resolve all flow scales and auxiliary algorithms to 

track the gas–liquid interface. In spite of serious limitations concerning the magnitude 

of Reynolds number of the liquid flow and number of bubbles that can be tracked, DNS 

is a promising way to get a detailed insight into mechanisms governing the turbulence 

in bubbly flows [19]. Steady-state and transient simulations of single bubbles enable 

an isolated investigation of effects such as bubble rise, shape and oscillation [32]. 

In early studies, authors [34-39] investigated the DNS of bubbles in fully periodic 

computational domains. As the bubbles originally inside the domain leave through one 

boundary, new ones come in through the opposite boundary [26]. Such an unbounded, 

steady and homogeneous bubbly flow with uniformly sized bubbles and no bubble 

coalescence approximated by infinite arrays of identical monodisperse bubble-swarms 

[39] doesn’t allow quantitative analysis of mechanisms of the liquid turbulence. This is 

because the imposed spatial uniformity excludes the wall effects and the related 

considerations of the diffusion transport and the transfer of energy between the mean 

and fluctuating liquid flow [26].  

In this study, the DNS computations are performed with the in-house computer 

code TURBIT-VOF, which uses a volume-of-fluid method with piecewise linear 

interface reconstruction for describing the interface evolution [5]. The in-house 

computer code TURBIT-VOF was developed at the Research Centre Karlsruhe (today 

Karlsruhe Institute of Technology) to perform direct numerical simulations of 

incompressible gas-liquid flows within a domain confined with two or four rigid walls 

[40, 41]. It is used and proved through the studies for the analyses of single bubbles 

[41-46] and bubble swarms [26]. In the latter work, the code is further improved for the 

quantitative analysis of balance equation for liquid turbulence kinetic energy and a non-

homogeneous developed gas-liquid flow within a flat bubble column is simulated to 

provide the data for the analyses of mechanisms governing the liquid turbulence kinetic 

energy. The TURBIT-VOF is therefore used in this study to simulate a sub-region of a 

bubble-column with consideration of column wall effects, which is appropriate for a 

quantitative analysis of kL equation. The numerical method and the related equations 

are further discussed in Section 2.5.4. 
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1.3. CFD Methods for simulation of bubbly flows 

Mono-disperse bubble-driven gas-liquid flows in industrial scale bubble columns 

are of interest in this work. In gas-liquid flow and for the flow of two immiscible liquids, 

the phases are separated by an interface. In order to handle the length scales, the 

simulation methods which do not resolve details of the interface are usually used for 

such problems [47]. Two CFD approaches are mainly adequate for capturing the flow 

in bubble columns: two-fluid model (the Euler-Euler (E-E) method) [4, 16, 48-50] and 

particle-based methods (the Euler-Lagrange (E-L) method) [51-55]. The E-E method 

can be applied in principle to any two-phase flow pattern and it is favored over the E-L 

method with its advantage for lower computational costs considering high gas fractions 

due to the model’s capability to apply a quite rough spatial resolution of the flow domain 

[47, 56, 57]. While the E-L method is suitable for bubbly flows with low gas holdup 

(below 5% [58]), the E-E method is much more general and is also suitable for churn-

turbulent flows. Therefore, it is commonly used for the numerical simulation of flows in 

even large industrial-scale reactors. Within the E-E approach one can distinguish two-

fluid models (with a prescribed mean bubble diameter Bd ) and multi-fluid models which 

consider bubble-size distributions, e.g. by population balance models [32, 59, 60] or 

the MUSIG (MUltiple SIze Group) model [61]. In the E-E approach [12], separate 

balance equations with additional modelling terms are solved for the different phases 

[13]. Different approaches in multiphase fluid dynamics including the turbulence 

modeling and the population balance to determine bubble size distributions are 

reviewed and the potential as well as the deficits of the models are evaluated in the 

course of numerous published examples in a recent work by Mühlbauer et al. [32]. 

In Eulerian multi-fluid simulations of flows in bubble columns, there are model 

limitations regarding three main aspects [62]: i) closure relations accounting for 

turbulence effects, ii) closure laws defining interfacial interaction forces between gas 

and liquid phases, iii) determination of local bubble-size distribution, which affects in 

return both turbulence phenomena and interfacial forces. Turbulence (which we are 

interested in here) can be described either by statistical models, which are based on 

the Reynolds-Averaged Navier-Stokes (RANS) equations, or by Large-Eddy 

Simulation (LES). The unsteady recirculating flow with coherent structures suggests 

that LES is more suitable. However, the dimensions of industrial bubble columns 

(diameters of several meters and height of tens of meters) do not allow a sufficient fine 

discretization and it is not possible to simulate sufficient long times necessary for a 

reliable statistical evaluation. Hence, the only viable approach seems to be RANS. 

Here, one can distinguish eddy-viscosity models (such as the k   and k   models) 

and Reynolds stress models (RSM) which can better account for the inherent an-
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isotropy of the buoyancy-driven flow in bubble columns [6]. 

Among RANS approaches, RSM leads to additional constitutive relations and the 

associated modeling uncertainties [63]. The k    approach is commonly used for 

predicting the mean flow parameters of turbulent two-phase flows in bubble columns 

by several researchers and presented reasonable results in comparison to more 

precise LES and RSM methods [14-17]. The interested readers are referred to recent 

studies for a detailed review and comparison of turbulence models for bubble column 

reactors [64] and for a review of bubble-induced turbulence modeling for vertical bubbly 

flows [63]. The E-E method and the k    approach used in the current study are 

further discussed in Chapter 2.  

1.4. Objectives and procedure 

In this research, the turbulence kinetic energy in immiscible, incompressible two-

phase flows of Newtonian fluids with focus on rising gas bubbles in a surrounding liquid 

is investigated for deducing improved closure relations to be further used in Eulerian-

Eulerian Two-Fluid Models. For this purpose, comprehensive DNS investigations for 

bubble swarms with a wide range of parameters are performed and the closure terms 

in the kL equation for bubbly swarms are evaluated. The DNS profiles are compared 

with model predictions and the promising models for the interfacial term are identified 

(A-priori testing). These turbulence models are used in the Euler-Euler simulation with 

the CFD code OpenFOAM® and verified for the bubble columns within the Multi-Phase 

Project (A-posteriori testing).  

In order to reach the goal, the following procedures and objectives arise from the 

above discussions. An overview of the workflow is presented as a sketch in Fig. 1. 

1. Preliminary study:  

The study of Ilic [26] over mono-disperse bubble swarms is considered as a 

reference and extended to higher gas hold-up values (higher number of 

bubbles) in a wider range of parameters, i.e. for lower values of the Morton 

number and a variety of the Eötvös number. Preliminary study is performed for 

single bubbles and bubble swarms to understand the influence of non-

dimensional parameters on the exact kL equation and closure relations for the 

interfacial term (the main source term of the bubble-induced turbulence). The 

investigation under such conditions provides valuable information for testing the 

engineering models in real life applications and later for using those models in 

CFD tools for industrial applications.  
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2. Comparison and validation:  

The DNS results with TURBIT-VOF are analyzed to understand the influence of 

physical features such as surface contamination and side walls on 

hydrodynamics of a rising bubble. The results are also verified via a literature 

study, a code-to-code comparison and validation with experiments. 

3. A-priori testing:  

Closure terms in the kL equation are evaluated and compared with model 

predictions in the literature.  

4. A-posteriori testing:  

The useful model approaches for the interfacial term are then implemented in 

the CFD software OpenFOAM® and the simulations results are compared with 

experiments within the Multi-Phase Project.  

 

 

 
 

Fig. 1: Sketch of the workflow. 
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1.5. Outline 

This dissertation is organized as follows:  

Chapter 2 reports methodology and theoretical background required for 

performing this research.  

Chapter 3 presents the DNS results for the preliminary and comparative 

investigations, the verification of the DNS results for single bubbles by experimental 

data and further simulations of bubble swarms, which are used for evaluation of the 

liquid phase turbulence kinetic energy.  

Chapter 4 is devoted to the analysis and assessment of the liquid phase 

turbulence kinetic energy, and discusses various concepts for closure of the Lk  

equation based on different simulation cases and presents the suitable models for the 

interfacial term in the Lk  equation.  

In Chapter 5, the results of Euler-Euler simulations with OpenFOAM® are 

analyzed and validated with the approaches from the literature as well as the 

experimental data for the test bubble column developed by Evonik Industries within the 

Multi-Phase Project. 
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2. Fundamentals and Methodology 

2.1. Bubble induced turbulence 

Experiments show that statistical features of bubble induced turbulence (pseudo-

turbulence) considerably differ from those in conventional shear turbulence [6]. In a 

bubbly flow, relative motion between bubbles and liquid causes velocity fluctuations in 

the liquid, producing Reynolds stresses and other phenomena inherent to fluctuations 

[65]. For reliable mathematical modeling of pseudo-turbulence in bubble swarms, the 

velocity fluctuations play an essential role. This Section presents the special features 

of bubble-induced turbulence which have been published in Wörner and Erdogan [6] 

as a part of this research. A detailed overview on the physics of BIT is given in [65]. 

2.1.1. Liquid velocity fluctuations 

Velocity fluctuations in BIT are often characterized by the probability distribution 

function (PDF) and the energy spectrum. In BIT, the PDFs are non-Gaussian and 

exhibit a self-similar behavior when scaled with 0.4
G  [66-68]. The spectrum differs from 

that in shear-driven turbulence and follows in a certain range a power law with a slope 

close to -3 of the wave number [7, 66, 69] (in contrast to the Kolmogorov -5/3 law for 

homogeneous single-phase turbulence). The difference in scaling is attributed to the 

immediate dissipation of eddies in the bubble wake in pseudo-turbulence [7, 70]. The 

slope -3 and its origin have been recently confirmed by DNS [71] while E-L simulations 

based on the point-particles approach do not give the correct scaling observed in 

experiments [72]. This indicates that resolving the finite size of the bubble in the DNS 

is essential [6]. 

The evaluation of spectra from experimental or numerical data is not trivial since 

signals arise as segments of different length. In general, spectra are computed from 

signals which are interpolated during the intervals when bubbles are present at the 

measuring point; therefore the kind of interpolation has an impact on the spectra 

themselves [73]. To circumvent this problem, spectra are sometimes measured behind 

the rising bubble swarm [6, 66]. 

2.1.2. Bubble clustering 

The clustering of bubbles modifies the rise behavior of the swarm as compared 

to an isolated bubble (hindering or cooperative rise) and changes the local volume 

fraction. Hence, it is important for consideration of swarm effects in the bubble forces. 
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At the same time, the interaction of the bubble wakes modifies the liquid velocity 

fluctuations as compared to single bubbles. Bubble clustering is often characterized by 

the pair correlation function [37, 69] or radial probability distribution functions [74]. 

Experiments show that PDFs of all components of the bubble velocity have non-

Gaussian form [69]. DNS investigations [37, 38] suggest that the bubble deformability 

and the associated inversion of the lift force play a crucial role in determining the 

orientation of the clustering; close to spherical bubbles have a higher probability of 

aligning horizontally [74] while non-spherical preferentially align in the vertical direction 

[6]. 

2.2. Hydrodynamics of a rising bubble 

In numerical study of a single bubble, a broad range of bubble hydrodynamics 

can be investigated, such as bubble shape, terminal velocity of bubble, liquid velocity, 

and flow formation in the wake and inside of bubble. Bubbles in free rise in liquid under 

the influence of gravity adopt different shapes. The change of bubble shape modifies 

the velocity profiles and thus the flow formation. For interested readers, a detailed 

investigation of bubble hydrodynamics is given in Clift et al. [75]. The relation between 

bubble shapes, velocity and properties of gas and liquid can be explained by non-

dimensional numbers. This Section, firstly, looks over those numbers that are often 

utilized in this study. Further, in this Section, the terminal velocity phenomena in the 

existing literature are reviewed focusing on the attempts to discover generic 

correlations for the estimation of the terminal velocity. 

The experimental study of a single bubble within the Multi-Phase project provides 

data for terminal velocity of the rising bubble. For comparison of the terminal velocity 

with the experiments in the Multi-Phase project, the numerical conditions must 

correspond to the experimental conditions. However, imponderable factors always 

bring about some severity and complexity for validation studies and may affect bubble 

hydrodynamics, therefore must be examined as well. One of the most important 

characteristics influencing the shape and terminal velocity of a bubble is the surface 

contamination. Purifying the system is a general problem in experimental studies. 

Despite all the intention and attempt, the system often remains somehow contaminated. 

Moreover, the walls of the container modify the shape of bubbles rising in bounded 

channels and accordingly change the terminal velocity. A corresponding literature 

review of those factors is also presented in this section. 
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2.2.1. Non-dimensional numbers 

The flow of bubbles rising freely in liquid is represented by three non-dimensional 

numbers: Eötvös number (Eö), Morton number (M), Reynolds number (Re). The book 

of Clift et al. [75] presents a generalized graphical correlation based on those numbers. 

This diagram is given in Section 3.2 together with the cases considered in this study. 

The definition of the non-dimensional numbers is explained here. 

The Eötvös number (Eö) is defined as the ratio of buoyancy and capillary forces 

(surface tension). The change of bubble size is strongly related to the Eö since it is 

characterized mainly by the bubble diameter. For bubble rising in liquid it is defined as 

2

B



 


g d
Eö  (1) 

Here, Δρ = (ρL – ρG) with a unit of (kg/m3) is the density difference of the surrounding 

fluid and gas phase, dB (m) is the bubble diameter,  (N/m) is the surface tension 

coefficient and g is the gravity (g = 9.81 m/s2). 

The Morton number (M) adopts its name from a paper of Haberman and Morton 

[76] and consists of the physical parameters of gas and liquid as 

4

L

2 3

L

 

 

 




g
M  (2) 

The Morton number is dominated by the liquid properties, primarily by the dynamic 

viscosity of the liquid μL (N∙s/m2 or kg/m∙s). It can also be defined as a ratio of forces 

as 

4

buoyancy viscous

2 3

inertia surface tension






F F
M

F F
 (3) 

The Morton number can also be written as 

4

L

3

L L

g  

  

 



M  (4) 

According to Brauer [77], the first factor here in Eq. (4) can be interpreted as a 

dimensionless liquid number, which represents the ratio of acceleration due to gravity 

g and molecular motion 3 4
L L     (m/s2). Mobility of molecules is higher with the 

increment of this molecular acceleration. It therefore makes sense that the bubble rise 

velocity UT must increase with decreasing values of Morton number [77]. 

The Reynolds number (Re) is defined as the ratio of inertial forces to friction 

forces (viscous forces) and for bubbles rising in liquid given as  
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T B L T B
B

L L



 

  
 

U d U d
Re  (5) 

where νL (m2/s) the kinematic viscosity and μL (kg/m∙s) is the dynamic viscosity of the 

liquid. The Reynolds number is dominated by viscous forces for laminar flow and by 

inertial forces for turbulent flow.  

2.2.2. Terminal velocity 

As being a fundamental topic in the field of gas-liquid two-phase flows, several 

studies sought for an approach to estimate the terminal velocity of freely rising single 

bubbles. Much of the previous research has developed empirical, semi-empirical and 

theoretical formulation for the terminal velocity, which many times remain subjective to 

a narrow range of parameters since the rise velocity shows varying nature with the 

system properties [78]. Tomiyama et al. [79] reviewed on the related approaches in 

literature and investigated the terminal velocity (UT) of a single bubble rising through 

an infinite stagnant liquid. They found number of studies (e.g., [75, 80]) conducted to 

establish a reliable UT model. For small spherical bubbles [81] and large spherical-cap 

bubbles [82], some reliable theoretical models are available. However, no theoretical 

UT models have been proposed for a bubble of intermediate size, in which the surface 

tension force plays a dominant role [79].  

An extended review on bubble rise velocity is given in [78]. Kulkarni and Joshi 

[78] assorted the approaches for estimation of UT under three categories, i.e. the 

fundamental approach based on simple force balance, empirical approaches based on 

dimensional analysis and semi-empirical ones through Wave Analogy. In order to have 

a quick overview, those approaches from [78] are summarized here. 

The force balance approach is based on the earliest investigations in the bubble 

rise, where the balance of buoyancy, gravity and drag forces form the bubble 

movement. When a bubble is small enough to be spherical and B 1Re  , UT can be 

evaluated by using the Hadamard–Rybczynski solution [81]. The Stokes drag model 

can be utilized for the evaluation of UT [79] when the bubbles do not have any internal 

circulation [78] and no slip exists at the bubble surface so that the bubble behaves as 

if it were a rigid sphere [79]. In a comprehensive study of bubble dynamics, Clift et al. 

[75] identifies that the internal circulation occurs if 20Re   while the “Bond criterion” 

suggests that internal circulation could only occur for 4Eö  . 

Peebles and Garber [83] analyzed the velocity of air bubbles in twenty-two liquids 

in a wide range of physical properties and defined different correlations for four distinct 

regions in terms of range of applicability depending on Re  and M  whereas Mendelson 
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[84] categorize similar four regions depending on Bd , based on the data of Haberman 

and Morton [76]. Table 1 summarizes those regions considering both authors’ 

approach. According to extensive experimental measurements from Peebles and 

Garber [83], the Stokes solution is adequate to predict the rise velocity of small bubbles 

with 0.2Re   in the Region-1. The Region-2 covers the range of 0.2142 4.02Re M    or 

B0.7mm 1.4mmd    while Region-3 includes bubbles ranging in 

0.214 0.254.02 3.1M Re M    or B1.4mm 6mmd  .  

In the experiments within the Multi-Phase Project, Bd  was obtained in the range 

of 1.6 mm – 1.9 mm. These values, as most of bubbles in practical applications, fall 

into the Region-3 where the bubbles are distorted in time (no longer spherical) and 

tend to follow non-rectilinear trajectory such as a zigzag and helical path. The TU  is 

widely scattered [79] and the drag is increased by the vortex formation in the wake. 

However, with respect to the criterion 0.2142 4.02Re M   , the experiments belong in 

Region-2. This is not very surprising because the criterion depending on physical 

properties (viscosity, surface tension, density) of the phases may differ from strictly 

drawn borders by bubble diameter values, the transition region of the bubbles from 

rigid to fluid spheres or fluid spheres to ellipsoidal may occur.  

According to Peebles and Garber [83], the terminal velocity in Region-2 is 

correlated by  

 
1.280.76 0.52

L

0.52
L

0.33 / 2

10

g d
U






B

T  (6) 

The terminal velocity in Region-3 is given by  

2
1.35U

d




T

B

 (7) 

and in general, it predicts the data very well for M > 10-8.  

Clift et al. [75] discuss some other approaches for higher Re  from the authors 

Haas et al. [85], Levich [86] and Moore [87-89]. The correlation of Moore [88] is valid 

only for 710M   whereas the prediction of Levich [86], and Moore [89] who extended 

Levich [86]’s work, are valid for spherical bubbles for 60Re   [90]. The formula from 

Levich [86] can be used to estimate the terminal velocity for a bubble in potential flow 

(Region-2) is given by 

2
B

L

g

36

d
U






T  (8) 
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However, this correlation may be somewhat limited since it was calculated by using 

drag coefficient ( DC  ) and Re  , both of which contain velocity and viscosity term. 

Maxworthy et al. [91] performed experiments on the rise of air bubbles in distilled water 

mixed with different content of pure glycerin (0-100 wt.%) in an unbounded channel 

and proposed a correlation for M  in the range of 127.71 10 78M    as 

 
3L 0.142 0.5

B L

0.526U Mo Eö
d





T  (9) 

Raymond and Rosant [92] improved the correlation of Maxworthy et al. [91] and found 

a better approximation, but only for 610M  . 

The second type of approach is based on dimensional analysis [78]. This 

category includes the approaches where the correlations for the bubble size and rise 

velocity are determined from the parameters that govern the bubble motion such as 

density, viscosity, surface tension, gravity, equivalent diameter and finally a relation 

between drag coefficient and Reynolds number is obtained. For practical predictions, 

it is useful to have the terminal velocity correlated explicitly in terms of system variables 

[93]. One of the initial attempts, Abou-El-Hassan [94] found correlations independent 

on flow regimes and the bubble shapes, and applicable for the range of Re from Stokes 

region to Newton’s law region [78]. Following the approach of Abou-El-Hassan [94], 

Rodrigue [95] developed a general correlation and Rodrigue [96] further extended it to 

predict the velocity for any bubble volume in any Newtonian fluid. The latest correlation 

derives the bubble rise velocity in terms of the velocity number (V) and the flow number 

(F) as 

 

 

21/176
5

10/11

1 1.31 10

12 1 0.020

M FF
V

F

  
 
 
 

11/20 73/33

10/11
 (10) 

Here 

1/3
2 2d

V U




 
  

 

B
T  (11) 

and 

1/3
5 8

4

d Re
F g Eö

Ca





   
    

  

B  (12) 

Grace et al. [97] also determined the terminal velocity for a rising bubble with a 

correlation including dimensionless groups for contaminated drops and bubbles. In the 
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formulae of Grace et al. [97] and Rodrigue [96], the dependence of the terminal velocity 

on the viscosity and density of the internal fluid is neglected. Tomiyama et al. [79] also 

proposed an approach with projection of bubble shape and it gives a way of 

understanding the trends in rise velocity for different liquid properties and for different 

bubble shapes. However, it is only valid for high bubble Reynolds numbers. 

The third category is the approach through Wave Analogy [78]. Mendelson [84] 

proposed the wave theory for prediction of bubble rise velocity assuming that the 

behavior of rising bubbles is similar to the behavior of surface waves propagated over 

deep water. The terminal rise velocity of a bubble correlated by Mendelson [84] in terms 

of the fluid properties and bubble size dB is given by  

L

2

2

B
T

B




 

gd
U

d
 (13) 

This analogy is mainly valid in the Region-2 and 3 proposed by Peebles and Garber 

[83] for bubbles in low viscosity (low M) but only tested for high velocities. The wave 

analogy is later modified by Maneri [98] for special cases of rise of a planar bubble and 

the rise in a rectangular duct but the model applicability is restricted. Jamialahmadi et 

al. [99] also modified the wave analogy and combined with the correlation of Hamadard, 

and obtained a good fit for pure liquids over a wide range of gas-liquid properties [78]. 

However this model is an extension of Mendelson [84] for small bubble sizes doesn’t 

apply for the cases here. 

As can be seen from broad approaches discussed above, there is no exact 

universal correlation to predict the terminal velocity. Each correlation is valid in a limited 

range of bubble size and flow conditions. Table 1 summarizes the appropriate models 

picked out for prediction of UT to use in comparison study. UT correlation of Peebles 

and Garber [83] in Eq. (7) is valid in a certain range of non-dimensional numbers 

whereas the correlation of Mendelson [84] in Eq. (13) covers a range of all values of 

B 0.7mmd  and 810M   for ellipsoidal fluid particles. The correlation from Levich [86] 

is chosen among similar approaches as the only one with indicated velocity correlation. 

It is valid for spherical bubbles at large Reynolds numbers. Rodrigue [96] in Eq. (10) is 

the most general approach to predict the velocity for any bubble volume in any 

Newtonian fluid considering the effect of Morton number. Maxworthy et al. [91] in Eq. 

(9) is also considered on the ground of the given correlation depending on the 

experiments for Water - Glycerin mixtures for the range of 127.71 10 78M   . 
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Table 1: Classification of single bubble flow behavior and correlations for estimating DC  and TU  from literature. Bubble shape illustrations are 

taken from Bothe and Schlüter [100]. 

 Range of applicability Characteristics Possible applicable correlations 

 a) Mendelson [84] 
b) Peebles and Garber [83] 

Bubble 
shape 

Internal 
circulation 

Path 
Dominant 
force DC  TU  

R
e
g
io

n
 1

 

a) B 0.7mmd   

b) 0.2Re   
 

Rigid Sphere 

No Rectilinear 
Viscous 
force 

Stokes’ law 

D B24 /C Re  

Stokes’ law  
2g

18

d
U








B
T  

R
e
g
io

n
 2

 

a) B0.7mm 1.4mmd   

b) 
0.214

2 4.02Re M


   
 

Fluid Sphere 

Yes Rectilinear 

Viscous 
force and 
Inertial 
forces 

D B48 /C Re  [86] 

DC  from Eq. (63) [101] 

0.78
D B14.9C Re  [85] 

DC  from Eqs.(64),(65) [102] 

Eqs. (6),(8),(9),(13),(18) 

R
e
g
io

n
 3

 

a) B1.4mm 6mmd   

b) 
0.214 0.25

4.02 3.1M Re M
 

    
Ellipsoidal 

Yes 
Tendency 
for zigzag 
and helical 

Surface 
tension 
force 

D B2 3C Eö  [103] 

DC  from Eqs.(64),(65) [102] 

Eqs. (7),(9),(13) 
 

R
e
g
io

n
 4

 

a) B 6mmd   

b) 
0.25

3.1M Re


  
 

Irregular form 

Yes Irregular 
Inertial 
force 

D 0.44C   

DC  from Eqs.(64),(65) [102] 

 
1/4

1.18U g T   

[83] 
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2.2.3. Surface contamination effect 

The surfactant effects on bubble dynamics, primarily on the bubble rise velocity, 

are discussed in this section. In general, one of the main difficulties for comparing the 

experimental data with simulations is that the influence of impurities is very hard to 

avoid. The liquid may always be contaminated [95]. Traces of surface-active 

contaminants may have a profound effect on the behavior of drops and bubbles. If 

surfactants are accumulated on bubble surface, the so-called Marangoni effect makes 

the interface immobile (no slip exists at the bubble surface) and thereby the bubble 

behaves as if it were a rigid sphere [79] and do not have any internal circulation [78]. 

The immobile surface modifies the wake formation and consequently the turbulence 

induced by bubbles related to its modified eddies in the bubble wake. The possible 

influence of surfactants on the recirculation inside of a bubble can be observed from 

the pictures in Fig. 2.  

Clift et al. [75] discusses the surfactant effect on bubbles and refers to Frumkin 

and Levich [104] and Levich [86] as the most reasonable explanation for the absence 

of internal circulation for small bubbles and drops. Surface-active substances tend to 

accumulate at the interface between two fluids, thereby reducing the surface tension. 

When a drop or bubble moves through a continuous medium, adsorbed surface-active 

materials are swept to the rear, leaving the frontal region relatively uncontaminated 

and this causes a tendency to retard surface motion. The surface contamination theory 

implies that all bubbles and drops, no matter how small, will show internal circulation if 

the system is sufficiently free of surface-active contaminants [75]. 

 

  

Fig. 2: Effect of contamination on internal recirculation (Source: [105]). 
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Tomiyama et al. [79] summarized the primal role played by surfactants in bubble 

dynamics. In viscous force dominant regime (small spherical bubble), the immobile 

bubble interface changes the boundary condition on the interface from free-slip to no-

slip, which results in the increase in the viscous drag and the decrease in UT. In surface 

tension force dominant regime (intermediate bubble), surfactants damp down the 

shape oscillation, by which the mean aspect ratio increases, and thereby UT becomes 

close to that for a clean bubble with small initial shape deformation. Consequently, the 

scatter of UT caused by initial shape deformation becomes much smaller than that in 

a pure system.  

In 2010 edition of VDI Heat Atlas, Räbiger and Schlüter [106] presented the 

formation and movement of bubbles and drops. The authors reported that the relative 

velocity of single bubbles is dominated by the shape, whereas the influence of 

impurities and surface-active agents play an important role due to the larger difference 

in density and negligible inertia of the gas phase. They established the differentiation 

for the characterization of bubble shapes according to Peebles and Garber [83] with 

four different general shapes and presented four characteristic regimes (A, B, C, D) 

depending on the properties of the continuous phase.  

Mersmann [107] developed an overall description for a rough estimation of the 

terminal velocity of single bubbles and drops [106]  

2
L* 33T T B

L g



 
  

 
U U Re Fr  (14) 

in dependency of the dimensionless bubble diameter [106] 

L* 3
3

B B 2
L

g 



 
  d d Ar  (15) 

Here, the Reynolds number ReB is as given in Eq. (5), the Froude number is defined 

as 2
T p g Fr U d  and the Archimedes number Ar  is defined as the ratio of external 

forces to internal viscous forces [106] as 3 2
B L Lg      Ar d . Eq. (14) and Eq. (15) 

together with the logarithm of the dimensionless modified liquid number (reciprocal to 

Morton-number) [106] 

 
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L L
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log log
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K 
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 


 
  

  
 (16) 

allow a convenient estimation of the terminal velocity of single drops and bubbles. The 

liquid number helps to differentiate between four characteristic regimes (A, B, C and 

D). The single bubble cases in this study fall into the Regime-B of the four regimes by 
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fulfilling the condition of 
0.25
F7.2 125Ar K   . In this regime, the forces of inertia are 

more dominant with increasing Ar and the drag coefficient can be calculated by 

empirical equation of Haas et al. [85] as given in [106] 

0.078
D B14.9C Re  (17) 

Within the Regime-B, the dimensionless terminal velocity is calculable by the empirical 

correlation  

* 0.4266
T, 0.136ArU Ar  (18) 

A number of studies [79, 108-110] have been conducted to account for surface 

contamination in the estimation of bubble shape and UT. However, it is very difficult to 

develop a mathematically closed model of UT for contaminated systems. A modified 

correlation from Grace et al. [97] to estimate the pure UT from contaminated UT by 

using a correction factor ( ) [75] is given by 

 
T, pure T, cont

G L

1
1

U U
 

 
  

 
 (19) 

Here, the correction factor ( ) can be approximately estimated from Fig. 3 for a certain 

value of  that is given as 

 

 

G L

G L
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 
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 
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Eö
  (20) 

The contaminated UT can be calculated in an easier form by defining a contamination 

coefficient cont  as 

 

1

T, cont T, pure cont T, pure

G L

1
1

U U U
 



 
   

 
  (21) 

and by substituting the value of   into Eq.(21). 
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2.2.4. Wall effect 

The solid wall effect is an important factor affecting the bubble shape and the 

terminal velocity of rising bubble. It must be accounted for comparison of correlations 

for so-called unbounded channels with the results from the experiments and the 

simulations that are obtained in bounded channels. In the prior studies, researchers 

aimed to determine the influence of the ratio of equivalent bubble diameter of the fluid 

particle to the diameter of channel with cylindrical containing walls ( ) on the terminal 

velocity 

B /  d D  (22) 

Using the wall distance as hydraulic channel diameter for vertical parallel plates,   

can be assumed as a ratio of equivalent bubble diameter to the wall distance 

/d L   z B ref  (23) 

It is known that the containing walls tend to cause elongation of fluid particles in the 

vertical direction, suppress secondary motion, and alter the wake structure. Yet there 

are not sufficient experimental evidence to allow useful quantitative generalizations to 

be drawn [75]. 

 

Fig. 3: Correction factor  relating terminal velocity in pure systems to value in 

corresponding contaminated systems. Taken from Clift et al. [75]. 
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The correlations for estimation of terminal velocity of single bubbles discussed 

before are defined for so-called unbounded channels. In reality, they could be 

described as the channels where the wall distance is large enough to minimize the wall 

effects. Clift et al. [75] quantified this definition as 0.1  . This ratio is 0.4 0.5    for 

the simulations in this study so that wall effects on bubble rise velocities are expected. 

A certain limit of wall effects dependent on   was not seen in the literature for spherical 

and ellipsoidal bubble whereas for spherical-caps in low M systems the wall effects are 

negligible for 0.125   [75]. 

In one of the first studies for the walls effect, Uno and Kintner [111] proposed a 

formula depending on a constant related to tube diameter but invalid for small tubes. 

Another correlation is given in Collins [112] for Water-Air system with 40Eö . Clift et 

al. [75] present simple correlations to obtain a coefficient for circular ducts to consider 

retarding effects of the walls for rigid particles, and bubbles and drops at different range 

of Reynolds number. For intermediate size drops and bubbles where 40Eö  , if 

200Re   and 0.6   then they recommend the equation [75] 

3/2
2/ 1U U     T T  (24) 

If 1 Re 200   and 0.6   then the velocity correction factor for rigid spheres at higher 

Reynolds numbers in Fig. 4 should be used. The correction factor is defined as the 

velocity ratio [75] 

/K U UU T T  (25) 

where U

T  is the terminal velocity which the bubble would have in an infinite container. 

Fig. 4 shows the terminal Reynolds number and  1K U  as a function of 
1/3ND . ND  is 

a term called “Best number” and given as [75] 

2 3 2
B LRe 4 / 3D D B    N C gd   (26) 

KU  can be estimated as a function of 
1/3ND  and   of the system from Fig. 4. 
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2.3. Turbulence modelling 

The turbulence models for CFD simulations of flows in bubble columns are the 

main interest in this dissertation. This Section starts with an introduction of the basic 

definitions used for the modelling of turbulent flow for a better understanding of the 

formulations. After an introductory overview on the modelling approaches for the BIT, 

the balance equation for turbulence kinetic energy of the liquid phase (kL equation) and 

its closure are discussed in detail. Furthermore, the k- type approach is elaborated 

here since the E-E simulations in the present study are based on this method. At the 

end, the approaches for estimating the turbulent viscosity are presented. Part of this 

Section is based on Wörner and Erdogan [6] where the shortcomings of common 

concepts for closure of the liquid phase turbulence kinetic energy equation have been 

published as a part of this research. 

2.3.1. Basic definitions 

The chaotic and random nature of turbulent flow compels an indirect and detailed 

solution strategy. The appearance of turbulence reveals itself as random fluctuations 

of the measured velocity component and a mean (averaged) value. The flow variables 

are then required to be characterized in terms of the mean values of flow properties 

 

Fig. 4: Terminal Reynolds number and velocity correction factor for rigid spheres on the 

axis of circular ducts. Taken from Clift et al. [75].  
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(ux,mean, uy,mean, uz,mean etc.) and some statistical properties of their fluctuations (u′x, u′y, 

u′z etc.). This is called the Reynolds decomposition. The velocity is decomposed into a 

steady mean value u and a fluctuating component u′(t) [113]: 

mean( ) ( ) u t u u t  (27) 

All other flow variables will also exhibit this additional time-dependent behavior. The 

Reynolds decomposition defines flow property φ at this point as the sum of a steady 

mean component Φmean and a time varying fluctuating component φ′(t) with zero mean 

value: 

mean( ) ( )t t    (28) 

The mean Φ of flow property φ is defined as follows [113]: 

mean

0

1
( )

t

t dt
t




 
   (29) 

The time average of the fluctuations φ′ is, by definition, zero:  

0

1
( ) 0

t

t dt
t

 


  
   (30) 

The descriptors used to indicate the spread of the fluctuations φ′ about the mean value 

are the variance  

   
2 2

0

1
t

dt
t

 


 
   (31) 

and root mean square (r.m.s.) 

   

1/2

2 2

rms

0

1
t

dt
t

  
 

    
 
  (32) 

The root mean square (r.m.s.) values of the velocity components are of particular 

importance since they are generally most easily measured and express the average 

magnitude of velocity fluctuations. A larger urms indicates a higher-level turbulence. 

Records at different points may have the same mean velocity while each record may 

have a different level of turbulence (different urms values). One-half times the variances 

of velocity fluctuations have a further interpretation as the mean kinetic energy per unit 

mass contained in the respective velocity fluctuations. The total kinetic energy per unit 

mass k of the turbulence at a given location can be found as follows [113]: 
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 2 2 2 21 1

2 2
x y zk u u u u        (33) 

2.3.2. Model approaches for bubble induced turbulence 

In general, one can distinguish (seldom-adopted) models that account for the 

turbulence in both phases, and (more common) models that neglect the turbulence in 

the disperse phase (as it is considered as laminar) and model the turbulence in the 

continuous phase only. In the former case, usually no separate transport equation for 

kG is solved [6].  

I. The modeled Lk  and Gk  equations are solved (with or without interfacial term).  

II. The modeled Lk  equation (with or without interfacial term) is solved while the 

turbulence in the gas phase is neglected. 

For closure of the kL equation it is common practice to adopt for the single-phase 

like terms closure relations and model coefficients from the standard single-phase k- 

model. Two approaches exist for considering the pseudo-turbulence. In the more 

general one, the interfacial term is explicitly modeled. For this BIT source term, several 

closure relations have been proposed in literature (e.g. [14, 26]). In the second 

approach, the interfacial term is neglected, i.e. set to zero, so that the single-phase k-

 equation is solved for the continuous phase. The BIT is taken into account by a two-

phase multiplier for the shear-induced turbulence kinetic energy [8] or by an extra 

(linearly superposed) contribution to the eddy viscosity, e.g. by the model of Sato [114, 

115]. The latter approach has two main drawbacks. First, it can only increase the 

turbulent viscosity in bubbly flow and is, thus, unable to reproduce the attenuation of 

turbulence observed in several bubbly flow experiments. Second, the influence of the 

bubbles on the turbulence kinetic energy and its dissipation rate are neglected [6].  

2.3.3. Turbulence kinetic energy of liquid phase 

The turbulence kinetic energy (TKE) is an important quantity for the analysis of 

turbulence and provides statistical information. In bubble columns operated with gas-

liquid flows, the turbulence is mainly based on the fluctuations of liquid phase quantities 

induced by the bubbles. The transport equation of the TKE which was proposed by [21, 

116] contains the related formulations for the analysis of the mechanisms in such 

turbulence modification or the bubble induced turbulence (BIT) in bubbly flows. The 

transport equation of the liquid phase turbulence kinetic energy, Lk  is the cornerstone 

in k  -    type turbulence models which are commonly employed for industrial 

applications [26]. 
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Kataoka & Serizawa [21] derived the exact conservation equations of turbulence 

for k   and    for a gas-liquid flow consisting of two incompressible phases. The 

formulation uses a single-phase flow representation and involves the effects of the 

bubbles through additional terms in the basic equations. In non-dimensional form, the 

transport equation for the liquid phase turbulence kinetic energy Lk  can be written as 

[6, 19] 

     ' ' ' ' '2 ' ' '
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 (34) 

Here, subscript i denotes liquid phase quantities at the gas-liquid interface. The 

detailed background mathematical formulation of liquid turbulence in bubbly-flows is 

given in [26].  

For an arbitrary physical quantity L , the conditionally averaged value and the 

fluctuation with respect to this average are given by [6] 

L L L L/X X   (35) 

L L L      (36) 

Here LX is the characteristic function (also called the indicator function) of the liquid 

phase. It takes the value 1 in the liquid phase and the value 0 in the gas phase. The 

single overbar indicates averaging while the double overbar denotes phase-weighted 

(conditional) averaging. By applying this notation, the turbulence kinetic energy of the 

liquid is written as '2
L L / 2k  u  . In Eq. (34), the terms involving the mean liquid 

volumetric fraction L LX    have essentially the same form and meaning as in the 

single-phase k  equation. The last term in Eq. (34) contains the specific interfacial area 

ia  and is specific for two-phase flows as it represents a source/sink of turbulence due 

to the presence of interfaces [6]. This term is mentioned in the literature as the 

interfacial term.  

In the context of the combination of the two-fluid approach with the k  -   

turbulence model, all terms of the right-hand side in Eq. (34) (i.e. shear production term, 
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diffusion term, dissipation term and interfacial term) must be modeled to close the 

system of equations. However, some correlations between fluctuating quantities can 

hardly be measured so that detailed information is missing in literature. All terms from 

instantaneous, spatially resolved data obtained via DNS must be evaluated in order to 

gain insight in statistical features of bubble-induced turbulence and to develop 

improved models. 

The performance of variants of the k   model (standard, realizable, RNG, SST) 

in the E-E approach has been investigated in several papers [48, 62, 117-120]. In such 

numerical studies it is important to use higher order schemes since low order schemes 

(like upwind) have a large amount of numerical diffusion, which masks the eddy 

viscosity of the turbulence model [62, 117]. Despite their apparent similarities, the 

Standard, RNG and Realizable versions perform different when applied to flows in 

bubble columns (with the RNG model being the best) [62]. The impact of the BIT term, 

despite being negligible on the computation of velocity fields and gas holdup, is 

significant on the estimation of turbulence quantities [62]. While the above comparative 

studies are useful to identify which model performs best for a certain experiment, there 

are hardly useful for development of improved closure relations [6]. 

The transport equations of the standard k- model contain adjustable constants 

[121], whose values were calculated by numerous iterations of data fitting for a wide 

range of turbulent flows [113] or determined by various relations [122]. Hence, these 

constants are not universal, even in case of single-phase flow. Furthermore, statistical 

features of BIT differ from that of shear turbulence (cf. Section 2.1). It is therefore 

obvious that for two-phase flows specific models and coefficients should be developed 

for closure of Eq. (34). Experimentally it is difficult to obtain detailed information about 

the terms in the Lk   equation especially under non-dilute conditions. By applying 

molecular tagging velocimetry to a turbulent bubbly flow in a vertical square duct, 

Hosokawa et al. [123] studied the effect of bubbles on the TKE budget and carried out 

a priori tests of closure assumptions of the standard and low Reynolds number k   

model. They found that the k  model can reasonably predict the production rate of 

TKE but fails in evaluating the diffusion rate in the near wall region [6]. 

However, more detailed and complete information about the TKE budget can be 

obtained by DNS, where the governing equations are solved numerically on sufficiently 

fine grids so that every continuum length and time scales are fully resolved. In order to 

ensure that DNS results are of relevance for bubble columns, it is - for two reasons - 

essential to consider a computational domain with walls [6]. First, in triple periodic 

computational domains the possibility of occurrence of large-scale recirculating flow 
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structures that are typical for bubble columns is reduced [71]. Second, statistical 

quantities (i.e. all terms in the Lk   equation) depend on the wall distance. DNS 

investigations of turbulent bubbly flow in a vertical channel were performed both for 

up-flow [124] and down-flow [125] by Lu & Tryggvason. 

Ilić [26] performed DNS studies of laminar bubbly flow in a narrow vertical channel 

in rather viscous liquids (Morton number 4 2 3 6
L L L L( ) / 3 10M g           ) and 

evaluated all terms in Eq. (34) for a single bubble [19] and a swarm consisting of eight 

bubbles [27]. The budget of Lk  shows that, for the parameters investigated, a gain of 

Lk  is mainly due to the interfacial term while the production by shear stresses is almost 

negligible. The interfacial term and the dissipation are not in local equilibrium. 

Therefore, the redistribution of Lk   by diffusive transport is very important. Besides 

giving insight in the TKE budget, the DNS data are used for a priori testing of closure 

assumptions. For this purpose, the wall-normal profile of any closure term in Eq. (34) 

as evaluated from the DNS data is compared with the profile predicted by a model for 

this closure term, where all flow quantities entering into the model are taken by the 

respective profiles evaluated from the DNS data. In [27], it was found that all models 

yield a strong overestimation for the production by shear stresses, while for the 

turbulent diffusion all models used in engineering codes result in an underestimation. 

For the interfacial term, a large number of models have been analyzed and one 

promising model could be identified. However, all the other closure terms in the kinetic 

energy equation need further improvement for bubbly flows [6]. 

Most of the above references consider monodisperse flows. For polydisperse 

flows, literature indicates that bubble population balances cannot be applied in a 

satisfactory manner because of the inability of k   models to predict the turbulent 

dissipation rate correctly, thus causing a large underestimation of bubble break-up 

rates [50, 59, 60]. To solve this issue, further developments of coalescence [126] and 

break-up kernels [127] seem to be required on the one hand, while on the other hand 

improved closure relations for k  and   are necessary for bubble-driven flows [6].  

It is noted [6] that for closure of the two-phase source/sink term in the   equation, 

it is common practice to relate it to the two-phase source/sink term in the Lk  equation 

by means of a time scale – for which essentially four options exist, see [128]. 

Simulations with the MUSIG model clearly show that the kind of turbulence modeling 

affects sensitively the bubble coalescence and break-up so that different bubble size 

distributions are obtained for different turbulence models [129]. 
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2.3.4. The k- type models 

The Eulerian conservation equations for each phase may be averaged in various 

ways (i.e. time averaging, volume averaging, ensemble averaging). The result is 

known as the two-fluid model [23]. Because of the averaging, the Reynolds stress 

tensor ,L ,L i ju u   appears in the averaged Navier-Stokes equation. It is an additional 

stress term due to turbulence (fluctuating velocities) [122]. The modelling of Reynolds 

stress term is of practical interest in bubbly flows.  

In eddy viscosity turbulence models the Reynolds stresses are linked to the 

velocity gradients via the turbulent viscosity by using the Boussinesq [130] hypothesis 

[122]. The Reynolds stress in this concept is given by [26] 

 t T
,L ,L L ,L ,L L

2

3
     i j i j i ju u u u kI  (37) 

where 
t
L  represents the turbulent viscosity of the liquid phase as it is given in Eq. (40), 

Lk is the liquid turbulence kinetic energy as given in Eq. (33), I denotes the unit tensor 

and superscript T indicates transposition. 

Two-equation models formulate the stress term by solving two transport 

equations derived for the turbulence kinetic energy k and its dissipation ε [122]. The 

standard k- model from Launder and Spalding [121] and the mixture k- model from 

Behzadi et al. [131] are adopted in this study. The standard k- model [121, 132] is 

commonly applied and widely used by many authors, the transport equations are given 

in [23, 133, 134]. They modelled the turbulent stress-strain relation analogous to the 

constitutive relation of a viscous fluid based on the Boussinesq hypothesis [130]. In the 

frame of two-fluid modelling, the turbulent viscosity is related to the fluid’s turbulence 

kinetic energy k and its dissipation rate , which are governed by their own transport 

equations [135]. The standard k- model approach has been developed originally for 

turbulence modeling in single-phase flows, and thus solely accounts for turbulence 

within the liquid phase [56]. This means the turbulence is dictated by the continuous 

phase. The presence of the dispersed phase is accounted for by the additional terms. 

Thus, only the transport equation for the continuous phase turbulence kinetic energy 

kL needs to be solved while kG is obtained directly from kL via a response coefficient 

[131].  

Such “standard” methods based on the k- model exclusively considering the 

turbulence within the liquid phase are then limited in application to dilute systems. As 

the gas holdup increases, the dominance of the continuous phase on turbulence 

diminishes, in the limit the turbulence of the dispersed phase becomes the sole factor 
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[131]. Thus, the turbulent fluctuations can no longer be assumed to be dominated by 

the liquid phase [56, 131, 135].  

In Behzadi et al. [131] a mixture k- model is proposed where the disperse phase 

turbulence is algebraically related to that of the continuous phase through a turbulence 

response coefficient, Ct [6]. This turbulence model based on the k- equations for the 

mixture of the two phases, i.e. km and m, is formulated in [131, 135]. The mixture k- 

model is suitable for computations at all phase fraction values and reverts to the single-

phase form in the extreme limits of zero when only one or other of the phases is present. 

km and m quantities are defined as follows  
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 

C  (39) 

where m L L G G       is the mixture density and Ct is a turbulence response function 

representing the ratio of the dispersed to continuous phase fluctuations. The variation 

of Ct with phase fraction is determined from experimental data which suggest that as 

phase fraction increases beyond a certain limit, which could be as small as 6%, Ct 

approaches a constant value close to unity [131].  

2.3.5. Turbulent viscosity 

Many authors considered different approaches to evaluate the turbulent viscosity 

of liquid phase for two-fluid model calculations [20]. The effective viscosity 
eff
L  is 

introduced here as a broad definition for the turbulent viscosity. For the k- two-

equation model, in the basic approach [22, 25] the usual (turbulent) eddy viscosity [7] 

is evaluated as 
eff
L  solely 

2
Leff t

L L

L

 


 
k

C  (40) 

Here 0.09C   is a constant and commonly adapted by many studies. L  represents 

the magnitude of the dissipation rate. The second approach accounts for the molecular 

viscosity of the liquid additional to the eddy viscosity [136, 137] as 

eff t mol
L L L     (41) 

Sato [114, 115] introduced an additional eddy viscosity due to bubble existence. The 

model of Sato [114, 115] 
b
L  presents the perturbations induced by bubbles, namely 

BIT, taking account of “drift” phenomena of liquid due to liquid displacement by the 
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bubbles [13] and given as 

b
L G B rel0.6  d u  (42) 

Here relu  is the mean relative velocity between phases, Bd  is the equivalent bubble 

diameter G  is the mean gas volumetric fraction. The approach which takes the model 

of Sato [114, 115] into consideration [24] is then as follows 

eff t mol b
L L L L       (43) 

For the mixture k- model [131] the effective viscosity is compromised from the mixture 

viscosities as:  

eff t mol
m m m     (44) 

Here, 
t
m is the mixture turbulent viscosity given as 
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where t
G  is given with the molecular viscosity as 

mol
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2.4. DNS methodology 

This Section introduces the mathematical formulation and the solution strategy 

for direct numerical simulations in this study.  

2.4.1. Governing equations 

The locally volume-averaged conservation equations for mass and momentum 

describing the flow of two immiscible incompressible Newtonian fluids with constant 

material properties (density, viscosity and surface tension) are given in the non-

dimensional form as follows [43, 46]:  

Zero divergence condition for center-of-mass velocity: 

m 0 v  (47) 

The advection equation for liquid volumetric fraction f  within a mesh cell to account 

for the phase-interface evolution: 

m 0



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

f
f v  (48) 
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The non-dimensional Navier-Stokes equation in single field formulation with surface 

tension term with constant physical properties (density, viscosity and surface tension): 
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Here, θ is the is the non-dimensional time,
*
iA   the non-dimensional interfacial area 

concentration, 
*   is the non-dimensional interface curvature, in̂   is the unit normal 

vector to interface pointing from gas into liquid. The last term in Eq. (49) expresses the 

contribution of the surface tension force. 
*P  is the dimensionless “reduced pressure” 

[43, 46] which is related to the dimensional physical pressure p and defined to allow 

for the use of periodic boundary conditions. 
*
axialL  is the non-dimensional axial length of 

the computational domain, axialê   is the unit normal vector in axial direction. The 

buoyancy force in Eq. (49) is represented by terms which involve the unit vector in 

direction of gravity gê . It appears together with the gravity vector g
ˆgg e  where the 

gravity g = 9.81 m/s2. The non-dimensional mixture density *
m , the non-dimensional 

mixture viscosity *
m  and the non-dimensional center-of-mass velocity m


v  are given 

by 
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Here, Lv   and Gv   represent the mean liquid and gas velocity within the mesh cell, 

obtained by volume averaging over the region occupied by the respective phase.  

The non-dimensional numbers are defined based on reference scales Lref and 

Uref. The definitions of the reference Reynolds number (Reref), reference Eötvös 

number (Eöref), reference Weber number (Weref), reference Froude number (Frref ) and 

reference Euler number (Euref ) are 
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2.4.2. Numerical method 

The flow considered for the DNS in this work involves two immiscible fluids that 

are separated by a phase interface. The description of the temporal and spatial 

evaluation of the phase interface is performed by using the Volume of Fluid method 

(VOF). In VOF method [138] a local volume fraction f represents one of the phases 

and the interface position is captured by introducing this volume fraction. For a certain 

instant in time, 1f    for mesh cells entirely filled with liquid, 0f    for mesh cells 

entirely filled with gas, and 0 1f   for mesh cells that contain both phases. Wörner 

[47] presents a comprehensive review of numerical methods and models for interface 

resolving simulations of multiphase flows, including the VOF method and the solution 

strategy applied in this study.  

VOF methods can be divided into two groups based on the interface evolution 

approaches [47]: Interface-Reconstruction (IR) VOF [139] where the interface 

thickness is zero (sharp interface) and Color-Function (CF) VOF [140] where the 

interface is finite (diffusive interface). CF-VOF method relies on a smooth color function 

that is an approximation of the f   function in classical IR-VOF method. The color 

function equation is solved by a difference scheme that yields smeared interface. 

Instead, in IR-VOF method, the f -equation is solved in an advection step where the 

flux of f  across the faces of any interface mesh cell is calculated in a geometrical 

manner that yields a sharp interface. In principle, an inherent volume (and mass) 

conservation is secured by the IR-VOF method, since all volume fluxes across mesh 

cell faces in the entire computational domain are supposed to sum up to zero [47]. The 

IR-VOF method is used to describe the phase distribution in this study. 

Advection schemes applied in the IR-VOF method can be classified in two 

different categories [139]: operator split schemes and multidimensional (unsplit) 

schemes [47]. The split method consists of a sequence of one-dimensional advection 

steps. In an unsplit method [141], which is of interest in this work, only one 

reconstruction step and one advection step per time step is used [47]. State-of-the-art 

method for interface reconstruction is the Piecewise Linear Interface Calculation 
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(PLIC) method [139, 140] where in any mesh cell with 0 < f < 1 the interface is 

approximated by a line (in 2D) or a plane (in 3D) [47]. An example for 2D interface 

approximation is exhibited in Fig. 5 a). In 3D, the location and orientation of the plane 

representing the interface inside each mesh cell is reconstructed from the discrete 

distribution of the volumetric fraction f  of the continuous fluid. After the first step, the 

surface integrals can then be evaluated in the advection step, which is illustrated for a 

2D case in Fig. 5 b). In the advection step, the flux of the liquid phase crosses through 

the mesh cell face (the right-hand face of a cell) within a time step ∆t and the total flux 

of fluid is evaluated by u.∆t, where u is the velocity component normal to the mesh cell 

face [47, 138]. If the interface is approximated by a plane (in 3D) then the volume fluxes 

of the liquid phase per unit cross sectional area are taken into account.  

 

a) b) 

  

Fig. 5: a) Interface approximation with PLIC, b) Geometric flux evaluation (advection step) 

in interface reconstruction based volume-of-fluid method (Figures are provided by Dr. Martin 

Wörner, KIT). 

2.4.3. Numerical code: TURBIT-VOF 

The direct numerical simulations (DNS) are performed with the in-house 

computer code TURBIT-VOF developed at the Karlsruhe Institute of Technology (KIT) 

[40, 41]. TURBIT-VOF solves the locally volume-averaged Navier-Stokes equations 

with surface tension term in a so-called single-field-formulation for two incompressible 

immiscible Newtonian fluids on a Cartesian grid via a finite volume method under 

assumption of constant fluid properties (i.e. density, viscosity, surface tension). The 

single-field formulation accounts for the proper momentum jump conditions across the 

gas liquid interface. The equations in Section 2.4.1 are implemented in TURBIT-VOF. 

The solution strategy for the momentum equation Eq.(49) and the continuity condition 

Eq.(47) is based on a projection method, by which a divergence free velocity field is 

u 
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ensured at the end of each time step. Time integration of the momentum equation 

Eq.(49) is performed by an explicit third order Runge–Kutta method, where all 

derivatives in space (spatial derivatives) are approximated by second order central 

differences schemes. Discretization in space is based on a finite volume method, 

where a regular Cartesian staggered grid is used.  

The IR-VOF method (cf. Section 2.4.1) is used for computing the evolution of the 

deformable interface, which separates the two immiscible fluids. In the VOF method, 

the liquid volumetric fraction f  is advected by using the transport equation Eq.(48), 

which governs the temporal and spatial evolution of the phase distribution for f  [46]. 

Eq.(48) is solved in a geometrical manner based on the unsplit advection method (cf. 

Section 2.4.1) in two steps. At first, the (infinitely thin) phase interface is locally 

approximated by a PLIC plane in each mesh cell that instantaneously contains the 

components of both phases. The location and orientation of this plane is determined 

and reconstructed by an in-house PLIC algorithm called EPIRA [40]. On a 3D 

structured orthogonal fixed grid, it reconstructs a planar interface of any orientation 

exactly (therefore its name stands for Exact Plane Interface Reconstruction Algorithm) 

[142]. In the second step, fluxes of the liquid are geometrically evaluated over all faces 

of the mesh cells (cf. Section 2.4.1). Further details on TURBIT-VOF can be found in 

[40-43, 142, 143]. The code has been applied for the DNS of bubbly flows in different 

configurations of small channels [27, 43, 45, 46, 144-150], validated with other codes 

[44] and experiments [142] and also used for analyzing the bubble induced turbulence 

[5, 19, 20, 73]. 

2.4.4. Statistical evaluation of DNS data 

The statistical evaluation of the Lk -equation requires appropriate averaging of 

the instantaneous flow field within the computational domain. The averaging procedure 

applied for the statistical analysis of DNS results in the frame of this study have been 

explained in Erdogan and Wörner [5]. For the bubbly flow between vertical parallel 

plates, the vertical and span-wise directions can be considered as homogeneous, 

which allows the spatial averaging over vertical slabs of mesh cells parallel to the 

channel walls [20, 26]. This yields profiles of statistical quantities, which depend on the 

wall-normal coordinate z. In addition, the data over different instants in time within the 

statistically steady regime is also averaged. The respective plane and time averaging 

is denoted by a double overbar [5].  

For the evaluation of the closure terms in Ilic [26], the local instantaneous data 

for phase distribution, velocity field and pressure field are averaged over wall-normal 
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planes and additionally in time. By this averaging procedure, the wall-normal profile of 

the budget of Lk  is obtained; it indicates the relative importance of the various terms 

in Eq. (34) [6]. 

The DNS data of the bubble swarm simulations are averaged to evaluate all terms 

on the right hand side in Eq. (34). For the present set-up, since the vertical and span-

wise directions can be considered as homogeneous, and analogous to [20, 26], the 

averaging of DNS data of one time step takes place over all mesh cells on vertical 

planes with identical wall distance parallel to the side walls. 
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where fi,j,k and i,j,k are the liquid volume fraction and the averaged physical quantity in 

the mesh cell (i, j, k). This spatial averaging yields one-dimensional wall-normal profiles. 

These are additionally averaged over different instants in time where the DNS is 

statistically steady. 

2.5. Two-fluid model methodology 

The k- approach of two-fluid modelling is the most adequate method for CFD 

simulations of the bubbly flow in the bubble columns examined in this work (cf. Section 

1.3). The k- type models are discussed in Section 2.3. The current Section gives an 

overview on the governing equations of two-fluid model and the numerical 

methodology in CFD software OpenFOAM® where the two-fluid simulations are 

performed. The closure relations for the terms interfacial momentum transfer and 

turbulence effects (including bubble induced turbulence) in Eulerian conservation 

equation are presented here.  

2.5.1. Governing equations 

In the two-fluid model, both phases are described using Eulerian conservation 

equations. Hence, the model is also referred to as the Euler-Euler model [135]. The 

capability of two-fluid model method to apply a quite rough spatial resolution of the flow 

domain benefits for numerical simulation of flows even in large scale reactors for 

relatively low computational costs [56]. Each phase is considered as interacting and 

interpenetrating continua [56] and represented by averaged conservation equations 

[135]. So-called interpenetrating field equations which are valid in the entire domain 
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are obtained by the averaging procedure [10, 12, 47, 151]. In the framework of a two-

fluid model, for incompressible two-phase flow without phase change, the following 

conservation equations have to be solved [56, 152, 153]: 

 φ
φ φ 0





 
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Here, φ  is the volumetric phase fraction and φu  denotes the (averaged) velocity of a 

phase, which has the density φ  . eff
φR  is the (averaged) effective Reynolds stress 

tensor and the term φF  represents the sum of all interfacial forces [56] (cf. Section 

2.5.2). The averaging process introduces the phase fraction φ  into the equation set, 

which is defined as the probability that a certain phase is present at a certain point in 

space and time [135, 154]. 

The applied averaging procedure is based on a single averaging process (the 

conditional averaging) [154], whereby the effects of the discontinuities and the 

turbulence are treated at the same time and the derivation of the conservation equation 

is easier. As a consequence of averaging, some detailed information about the local 

flow conditions disappear while some additional terms ( φF  , eff
φR  ) appear in the 

momentum equation Eq.(60) for each phase. Thus, an additional modeling of closure 

terms is required in order to fully describe a two-phase flow [56]. These extra terms are 

the interfacial momentum transfer terms φF   (cf. Section 2.5.2) and the effective 

Reynolds stresses eff
φR  which represents turbulence effect (cf. Section 2.5.3). Closure 

relations for bubble-induced turbulence are typically described as extensions of 

turbulence modeling approaches (cf. Section 2.5.3).  

2.5.2. Interfacial forces 

The term φF  is known as the averaged interfacial momentum transfer term and 

accounts for the average effect of the forces acting at the interface between continuous 

and dispersed phase due to their relative motion [135]. These terms are not directly 

related to turbulence, although they may be affected by it [154]. The modelling of these 

terms are discussed in [153, 154] in detail. Marschall et al. [56] present an overview 

on the main models in the literature. In this section, the models related to the E-E 

simulations in the course of this study are summarized.  

Interfacial interaction can be explained in two categories as drag force and non-

drag forces. For bubbly flows the non-drag forces basically encompass the lateral lift 
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force FL, the turbulent dispersion force FTD, and the virtual mass force FVM and the 

closure term results [56] in 

φ D L VM TD   F F F F F   (61) 

a) Drag force 

In a two-fluid model the drag force DF  is given as [56] 
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There are various models in literature for the modeling of the drag coefficient CD. Clift 

et al. [75] list the equations that have been proposed to approximate CD. Among them, 

the Schiller-Naumann drag coefficient [101] is considered as the closest correlation to 

the standard drag curve. It accounts for small spherical bubbles at low bubble Reynolds 

numbers ReB ≤ 1000 and given as 

 0.687
D B
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24
1 0.15C Re

Re
    (63) 

However, none of these correlations appears to consider all available data.  

Tomiyama et al. [102] developed a drag coefficient model for single bubbles by 

using a balance of forces acting on a bubble and available theoretical and empirical 

correlations of terminal rising velocity. This model covers a wide range of fluid 

properties, gravity and bubble diameter as well as the contamination of the liquid phase. 

The first term represents the standard drag curve for pure systems and Schiller-

Naumann model for the contaminated systems. The second term stands for potential 

flow for spherical fluid particles and the third term is valid for deformed and spherical 

cap bubbles. It is given for pure, slightly contaminated and contaminated gas-liquid 

systems by the following formulations: 

For a pure system (e.g. pure water and air bubbles): 
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For a slightly contaminated system (e.g. air bubbles in tap water): 

 0.687
D

8
,
3 4

24 72
max min 1 0.15 ,C

Eö

Eö
Re

Re Re


  
     

   (65) 

 



38 

For a contaminated system (e.g. high concentration of tracers in liquid): 
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b) Non-Drag Forces 

The performance of a two-fluid CFD study significantly depends on the underlying 

closure models. As a consequence of the averaging procedure, the flow structure and 

topology is not explicitly resolved, thus, additional modeling of closure terms is required 

in order to fully describe a two-phase flow and subsequently solve a corresponding 

two-fluid model [56]. 

Lateral Lift Force ( LF ): 

For bubbly flows this is the most important non-drag force, since the lateral lift force 

acts perpendicularly to the drag force [56] and is given as 

 L G L Lift L G L   CF u u u   (67) 

Two approaches from Tomiyama [155] and Legendre and Magnaudet [156] are widely 

used for calculating the lift coefficient. In Tomiyama’s correlation, CLift takes a negative 

value for large bubbles. Consequently, those bubbles move toward the centerline, 

while smaller bubbles move toward the wall of a bubble column. It is also noted that 

this correlation should be applied with care when considering systems different from 

air / water [56, 157]. On the other hand, the correlation of Legendre and Magnaudet is 

derived by numerically solving the Navier-Stokes equations assuming a smooth and 

pure bubble surface where no particle rotation was induced and is valid for 0.1 ≤ Re ≤ 

500 [56], which corresponds to the cases in this study where BIT is dominating the flow. 

Therefore, the correlation from Legendre and Magnaudet is used for the E-E 

simulations in this work. 

Turbulent Dispersion Force ( TDF ):  

The turbulent dispersion force accounts for turbulent fluctuations in the flow field acting 

on the fluid particles. The corresponding dispersion coefficient is assumed constant, 

taking a value between 0.1 and 1.0 [56]. In the course of this study, a constant value 

of 0.5 is set based on internal discussions and experience of OpenFOAM® users.  

Virtual Mass Force ( VMF ): 

The virtual mass force accounts for the effect that accelerating particles always entrain 

a certain amount of surrounding fluid. For spherical single bubbles, it reads a constant 
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value of 0.5 [56]. It must also be defined although the effective influence of the virtual 

mass force coefficient in bubbly flows is rather small [14].  

Wall Lubrication Force: 

This force has first been introduced by Antal et al. [158] in order to take into account 

the repulsive force between bubbles and the pipe wall in a bubbly pipe flow [159]. 

However, in their numerical investigation for turbulent bubbly flow, Hosokawa and 

Tomiyama [159] found that though the wall force tends to shift the void peak toward 

the pipe center, the predictions without the wall force are better than those with the wall 

force. In their simulations for the bubble columns with OpenFOAM®, Marschall et al. 

[56] neglected the wall lubrication force since models are subject to various restrictions 

and constraints. In this study, the two-fluid simulations are also performed without 

consideration of the wall lubrication force. 

2.5.3. Turbulence models  

The two-fluid model requires closure relations for the effective Reynolds stresses 
eff
φR , which relate to the effects of velocity fluctuations on the mean transport of the 

phases. The velocity fluctuations arise from single-phase turbulent fluctuations (shear 

induced – true – turbulence) and other two-phase flow factors that induce turbulence. 

For a two-phase flow in a bubble column, as in this study, the latter factors involve the 

fluctuations induced by the bubbles (bubble induced – pseudo – turbulence, BIT) which 

is the main source of the turbulence. The unknown terms need to be modeled in terms 

of known quantities to obtain a closed equation set.  

eff
φR  term in the momentum equation contains the phase viscous stress tensor 

(laminar stress term) and the phase Reynolds stress ( φR ). The Reynolds stresses for 

the gas phase are small in comparison with the pressure gradient and the interfacial 

forces, so they can be neglected [23]. Hence, the Reynolds stresses correspond to the 

liquid phase and given as ,L ,L i ju u . The closure of this term represents the turbulence 

closure. The Reynolds stress term is related to the gradient of mean velocity through 

a turbulent (eddy) viscosity [133]. The laminar stress term on the other hand is 

proportional to the molecular viscosity (
mol
L  ) of the liquid. From the definition of 

effective Reynolds stresses, the effective viscosity of the continuous phase 
eff
L  is then 

calculated from 
eff t mol
L L L    . For the purpose of this study, the Reynolds stresses 

are modelled by means of k  -    type models [152]. The adopted models are the 

standard k- model from Launder and Spalding [121] and the mixture k- model from 

Behzadi et al. [131] (cf. Section 2.3.4).  
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The BIT term is significant for the estimation of turbulence quantities [62]. The k

-    models are extended with an interfacial term to incorporate the effects of the 

dispersed phase on the turbulence. The modelling of BIT is one of the cornerstones in 

this study. The model approaches for the interfacial term are investigated in detail by 

means of a-priori-testing (cf. Chapter 4) and the identified suitable models are then 

tested in the two-fluid model computations (cf. Chapter 5).  

2.5.4. Numerical methodology 

The two-fluid model computations in this work are performed with the Open 

Source CFD software OpenFOAM® (Open Field Operation and Manipulation; 

registered trademark from OpenCFD Limited, www.opencfd.co.uk) [160-162]. 

OpenFOAM® is a C++ library, providing numerous numerical algorithms, methods, and 

solvers for solving continuum mechanics problems in the field of chemical and process 

engineering [157]. The developers of the code explain in Weller et al. [160] that their 

intention was to make it as easy as possible to develop reliable and efficient 

computational continuum-mechanics codes. They applied various object-orientation 

techniques to allow mimicking data types and operators [160]. The types and 

associated operations that are part of the verbal and mathematical languages used in 

science and engineering are declared by using the object-oriented mechanism 

(classes) and the solver applications are written using these classes [163]. An 

extensive portfolio of solvers are available for a wide range of physical processes such 

as turbulence, multiphase flows, heat transfer, combustion, molecular dynamics, solid 

mechanics, electromagnetics and acoustics [164]. The conservation equations are 

discretized using the finite-volume method [165, 166] on unstructured meshes [135]. A 

mesh of arbitrary polyhedral cells in 3-D, bounded by arbitrary polygonal faces 

(polyMesh) is defined by default [163]. The system of algebraic equations obtained 

from the discretization is solved using an iterative solver [166]. OpenFOAM® does not 

have a generic solver applicable to all cases. Instead, users must choose a specific 

solver for a class of problems to solve [167]. For more details about the code and the 

numerical methodology please see the following studies [135, 153, 166, 168]. 

OpenFOAM® can be considered as a flexible and efficient development platform 

for a variety of continuum models in the field of reactor design [157]. In this dissertation, 

the two-fluid simulations in a bubble column are performed with the development line 

of OpenFOAM® (OpenFOAM-dev). The top-level solver twoPhaseEulerFoam is used 

in this study. Some authors [169-171] proved the capability of the solver for studying 

bubbly flows. The algorithm of twoPhaseEulerFoam is an extension of the solver 
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bubbleFoam, which was developed for bubble flow. The solution algorithm is explained 

in Rusche [135].  

The twoPhaseEulerFoam solves the conservation equations of a two-phase flow 

using the conditional averaging procedure [154]. The resulting averaged equations are 

given in Eqs.(59) and (60). The conditional averaging is described in Hill [154] and has 

been modified and applied by Weller [152] into the algorithm of OpenFOAM®. The 

unstructured polyMesh is used for discretization of the averaged conservation 

equations. The hybrid PIMPLE algorithm [163] is employed for pressure-velocity 

coupling. The solver composes a set of classes from the OpenFOAM® library to model 

the interfacial forces ( φF ) and the stress tensor ( eff
φR ) in Eq. (60). Several models for 

φF  have already been implemented to the solver, many of them in the frame of the 

study of Otromke [172] in Evonik Industries. The models used in this study are given 

in Section 5.1.4. For the closure of eff
φR , the k -  type models are employed from the 

OpenFOAM® library. For the influence of the turbulence induced by bubbles, two 

models for the interfacial term are utilized (cf. Section 5.1.4), one of those models is 

implemented based on the mixture k- model in the framework of Euler-Euler 

simulations within this study.  

In the course of the Multi-Phase Project, as a part of agreement between the 

OpenCFD Ltd (and later CFD Direct Ltd) and Evonik Industries, the test simulation 

results have been shared with OpenFOAM® developers and during this research the 

solver was improved, and a more stable version was provided. 
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3. Numerical investigation based on DNS 

For the analysis of the transport equation for the liquid phase turbulence kinetic 

energy in Eq. (34), the DNS data must be obtained through bubble swarm simulations. 

To this end, this Chapter is divided into five sections: 

Section 3.1 is dedicated to a brief explanation of computational setup. 

Section 3.2 explains the cases used for single bubble simulations.  

Section 3.3 discusses the results of the single bubble simulations by means of 

the influence of numerical aspects and physical effects. In this dissertation, initially the 

DNS study of Ilic [26] on BIT in mono-disperse bubble swarms is extended on lower 

values of the Morton number. Besides the influence of the Eötvös number and gas 

hold-up on the kL equation and closure relations for the interfacial term is investigated. 

The preliminary studies examine the influence of those non-dimensional numbers as 

well as different related physical (density and viscosity ratio) and numerical parameters 

(grid resolution, domain size, time step width). 

Section 3.4 further discusses the results of the single bubble simulations and 

focuses on comparison of the results with the correlations from the literature as well as 

the reference experimental data and the simulations with another code provided in the 

frame of the Multi-Phase project. In this part, the results are analyzed in terms of the 

terminal velocity of a rising bubble, which is a fundamental topic that regulates a rising 

bubble in the liquid. The surfactant factor that contributes to hydrodynamics of a rising 

bubble and the drag coefficient that is an important phenomenon for modelling are 

discussed. The last part of this part presents the numerical results in comparison to 

the reference experiments and the simulations based on an algebraic VOF method 

from the project partner. 

Section 3.5 at last presents the bubble swarm simulations. The results are 

discussed in terms of common issues for DNS of bubble swarms. The simulation cases 

and the drag models to be used for the analysis of turbulence kinetic energy are 

identified in this part. The method for duplication of computational domain is also 

introduced here. 

3.1. Computational setup 

The cubic computational domain represents a sub-region of a flat bubble column 

(see Fig. 6). In vertical (x) and span-wise (y) direction, periodic boundary conditions 

are specified whereas in z-direction the domain is bounded by two vertical sidewalls 
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(distance Lz = Lwall = Lref) with no-slip condition. The length scales are normalized by a 

reference length Lref. Thus, the size of the computational domain is given in relation to 

Lz = Lref, i.e. in the form Lx / Lref  Ly / Lref  1. The no-slip side walls are placed at z = 0 

and z = 1. The wall distance is about 4 to 6 bubble diameters (which is of the order of 

millimeters). The liquid and gas are initially at rest. The bubbles rise due to buoyancy 

in the center of the channel, whereas near the sidewalls a downward liquid flow occurs. 

The velocity scales are normalized by a reference velocity Uref. The reference velocity 

is taken as 0.1 m/s for the simulations in this work. The resulting time scale is tref = Lref 

/ Uref.  

 

 
 

Fig. 6: Sketch of a flat bubble column and a sub-region representing the computational 

domain (with no-slip conditions at the two lateral side walls and periodic boundary conditions 

in vertical (x) and span-wise (y) direction). Taken from Wörner and Erdogan [6]. 

The simulations are performed with TURBIT-VOF (cf. Section 2.4.3), which 

accounts for the dimensions Lx  Ly  Lz in non-dimensional form. The grid is 

equidistant in vertical (x) and span-wise (y) direction and optionally equidistant or not 

in wall (z) direction. The number of mesh cells is calculated by Ncell = Nx  Ny  Nz. By 

a non-equidistant grid, it is easier to ensure that the liquid film between the bubble and 

the wall is well resolved. Due to the downward liquid flow near the sidewalls, the lift 

force acts away from the wall; this avoids an unwanted contact of bubbles with the 

walls during the simulation [5]. The equidistant grid is mainly considered for the 

preliminary studies of bubble swarm simulations. For statistical analysis with the 
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purpose of model improvement scenarios, the non-equidistant grid is also applied. 

Fig. 7 presents two sketches of the numerical set-up for single bubble simulations. 

On the left side, it is a cubic domain bounded in z-direction by two lateral no-slip walls 

and periodic boundary conditions apply in vertical (x) and span-wise (y) directions. This 

set-up with two parallel walls is mainly used as the numerical set-up in this work. The 

cubic domain represented on the right side of Fig. 7 is bounded in z and y directions by 

lateral no-slip walls and periodic boundary conditions apply only in vertical (x) direction. 

This second set-up is used to understand the walls effects and for the code validation 

(cf. Section 3.4.4).  

 

 
 

Fig. 7: The numerical set-up for single bubble simulations. The rising bubble between 

parallel walls (p.b.c in x (x1) and y (x2) direction) (left) and in a rectangular domain (p.b.c 

in x (x1) direction) (right). 

In this study, the initial bubble shape is always considered as spherical on the 

DNS simulations. The cluster of bubble arrays are thought out with different variations 

and utilized based on the study of Ilic [26]. The initial clustering of bubble arrays for a 

case with 6 bubbles at t = 0 in a 1 × 1 × 1 computational domain represented in Fig. 8 

as an example. This six bubble placement is applied for the cases where dB / Lwall = 1 

/ 5 and gas content in the domain εG = 2.5% from Table 15 in the Appendix A.1, among 

others for example Case No.6, Case A4, B-M7 and B-M8 which are examined in 

Section 3.4.5. 
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a) 

 

b) 

 

c) 

 

d) 

 

 

Fig. 8: A representation of initial clustering of bubble arrays for a case with 6 bubbles at 

t = 0 in a 1 × 1 × 1 computational domain. dB / Lwall ≈ 1/5 (X is flow direction; Z is wall 

direction). a) 3D view with projection of bubbles b) The view between two walls c) The 

view looking through the walls d) The view from above 

3.2. Simulation cases for single bubble simulations 

The direct numerical simulations of the single bubbles are performed for a wide 

range of physical and numerical parameters. The simulations are conducted for the 

gas to liquid viscosity ratio 0.02 ≤ µ ≤ 1, the gas to liquid density ratio 0.00167 ≤  ≤ 

0.04, bubble Eötvös number 0.253 ≤ Eö ≤ 2.539, Morton number 2.2×10-10 ≤ M ≤ 

3.86×10-7 and Reynold number 50 ≤ Re ≤ 187. The ratio of bubble diameter to channel 
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size is in the range of 0.167 ≤ dB / Lwall ≤ 0.476. Here, dB is varied from 1 mm to 1.907 

mm and Lwall from 4 mm to 6 mm. Different equidistant (Ncell=64×64×64, 80×80×80, 

100×100×100) and non-equidistant (Ncell=64×64×80) grid resolutions are tested.  

The usage of organic liquids is one of the focus points in the Multi-Phase Project. 

One of the considered systems is nitrogen (N2) in cumene. Therefore, Cumene-N2 is 

selected as a base system for the preliminary simulations. The bubble diameter is 

chosen as dB = 1 mm and the wall distance between parallel plates (that is also taken 

as reference length) as Lref = 4 mm, thus their ratio is  = dB / Lref = 1/4. The gas-to-

liquid density ratio is  ≈ 1/600 and the viscosity ratio is µ ≈ 1/50. The surface tension 

of the real Cumene-N2 system (σ = 0.028 N/m) is obtained from the measurements 

performed by project partners under varied pressure and temperature. As a result, 

Morton number and Eötvös number are calculated respectively: M = 2.2×10-10 and Eö 

= 0.253. Afterwards, the range of M and Eö is extended to 2.2×10-10 ≤ M ≤ 2.2×10-7 

and 0.253 ≤ Eö ≤ 2.539 based on the physical properties of Cumene and N2. For a 

reliable and target focused comparison, those values are obtained via reducing the 

surface tension of the real Cumene-N2 system with the factor of 2.5, 5 and 10. Thus, 

the possible effects, which may occur by changing other physical parameters, are 

prevented. The single bubbles simulations are performed for the resulted cases that 

are given in Table 2. Extended data for these cases are given in Table 14 in 

Appendix.A.1, where the Case M7 is mentioned as M7-SB1.  

Table 2: The non-dimensional numbers for the cases with adapted surface tension values. 

Number of mesh cells Ncell=100×100×100, Lref = 4 mm, dB = 1 mm. 

 M10 M9 M8 M7 

Surface tension  
Definition 2Cumol-N  

2Cumol-N / 2.5  
2Cumol-N / 5  

2Cumol-N / 10  

[N/m] 28×10-3 11.2×10-3 5.6×10-3 2.8×10-3 

Morton number 2.22×10-10 3.47×10-9 2.77×10-8 2.22×10-7 

Bubble Eötvös number 0.253 0.632 1.265 2.529 

Bubble Reynolds number ~187 ~137 ~131 ~130 

 

In the Multi-Phase Project, the experimental group at Institute for Multiphase Flow 

(IMS) of the Hamburg University of Technology (TUHH) performed experiments for 

single bubbles and these data are used to assess the numerical methods. At the TUHH 

IMS, two series of experiments were carried out for a rising regular bubble chain in a 
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vertical column with a wall distance of 4 mm. In the first series of experiments, the rise 

of air bubbles in a tap water-glycerin mixture with the addition of the surfactant Triton-

X was investigated, where the interface is immobile ("contaminated system"). In the 

second experiment, the rise of nitrogen bubbles in a tap water-glycerin mixture without 

the addition of Triton-X was investigated, so that it behaves like a nominally "pure 

system" with a fully mobile interface. The “Water-Glycerin / Air” system with Triton-X 

(WGA) is tested under 1.1 bar absolute pressure. It consists of 49.5% of the volume 

water, 49.5% glycerin and 1% Triton-X surfactant as liquid phase and synthetic air as 

gas phase. The pure “Water-Glycerin / Nitrogen” system (WGN) experiments are 

performed at ambient pressure with volumetric 50% water and 50% glycerin as liquid 

phase and nitrogen as gas phase. The smallest possible bubbles obtained in the 

experiments have dB in the range of 1.6 – 1.9 mm. The non-dimensional numbers for 

the WGA and WGN cases are shown in Table 3.  

Table 3: The properties of the cases used for comparison. 

 WGA (with Triton-X) WGN (pure) 

Bubble diameter [mm] 1.907 1.67 

Surface tension [N/m] 0.0307 0.0687 

Morton number 3.86x10-7 3.5x10-8 

Bubble Eötvös number 1.295 0.432 

Bubble Reynolds number ~60 ~50 

 

The simulations are performed for cases WGA and WGN in the numerical set-up 

as it is illustrated in Fig. 7. In WGA system, the real density ratio is  ≈ 1/950 and the 

real viscosity ratio is µ ≈ 1/330. For the simulations, the viscosity and density ratio are 

set to  ≈ 1/100 and µ ≈ 1/3.3. The bubble diameter is dB = 1.907 mm and the wall 

distance of 2 parallel plates (reference length) is Lref = 4 mm so that the ratio  ≈ 0.476. 

In WGN system, the real density ratio is  ≈ 1/980 and the real viscosity ratio is µ ≈ 

1/350. For the simulations, the viscosity and density ratio are set to  ≈ 1/50 and µ ≈ 

1/5. The bubble diameter is dB = 1.675 mm and the wall distance is Lref = 4 mm so that 

the ratio  ≈ 0.417.  

Clift et al. [75] established a diagram (Fig. 9) which provides rough estimation of 

physical parameters of two-phase systems for single bubbles rising with an unbounded 

domain filled with quiescent liquid. This diagram is useful for preliminary estimation of 

bubble parameters on the numerical pre-study of wall-bounded application such as 
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bubble rise velocity, and bubble shape and deformation. In Fig. 9, the single bubble 

simulations in Table 2 and Table 3 are highlighted and compared on the “Clift Diagram”. 

The real Cumene-N2 system (M10 in Table 2) is placed, depending on its Eö, near the 

border of the undefined region (above the line of M = 10-12) on the Clift diagram given 

in Fig. 9.The bubble shapes from simulations are consistent with the prediction of the 

Clift Diagram. 

 

 
 

Fig. 9: Diagram of Clift et al. [75]. Cases from Table 2 and Table 3 used for the preliminary 

study are approximately placed in the diagram and marked as the region of interest. The 

bubble shapes of the cases from Table 2 (M10, M9, M8, M7) are extracted from the direct 

numerical simulations for single bubbles. 

3.3. Preliminary investigations 

In order to identify suitable numerical parameters which allow efficient simulations 

for the time consuming simulations of bubble swarms without compromising the 

physics, comprehensive numerical preliminary studies are carried out using single 

bubble simulations (Table 14 in Appendix.A.1). The simulations are performed in an 

equidistant isotropic grid. First, the numerical aspects such as grid resolution, time step 

width and domain size are discussed. Later in this section, the physical effects on the 

numerical results are presented, i.e. density / viscosity and Morton / Eötvös numbers. 

 

Region of interest 

 
 

M10 M9 M8 M7 

WGN WGA 
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3.3.1. Influence of grid resolution 

Fig. 10 shows comparison of different equidistant (Ncell=64×64×64, 80×80×80, 

100×100×100) and non-equidistant (Ncell=64×64×80) grid resolutions to understand 

the effective grid resolution to be considered in this study. The non-equidistant grid has 

different mesh size in wall direction. UT is tested for different domain sizes for the 

equidistant grid. Lx×Ly×Lref as 1×1×1 and 2×1×1. The simulations of Case M7 from 

Table 2 are performed for a single bubble with dB = 1 mm rising between two parallel 

planes with a wall distance Lref = 4 mm. The computational setup is given in Fig. 7. The 

density ratio is set to ρ = 1/25 and the viscosity ratio to µ = 1 (Influence of viscosity 

and density ratio is discussed in Section 3.3.4 and Section 3.3.5, respectively). The 

ratio dB / Lref = 1/4 for an equidistant grid resolution 64×64×64 means that one bubble 

is resolved with 64/4 = 16 mesh cells per bubble diameter (NB=16). NB is used as the 

abbreviation for the number of mesh cells per initial bubble dimeter. For an 80×80×80 

grid NB=20 and for a 100×100×100 grid NB=25. For a 64×64×80 grid the maximum 

resolution occurs in the middle of channel as a mesh size of the value of 1/64 so that 

one bubble is resolved with minimum 16 cells per dB, NB=16. 

The bubble rise velocity profiles in Fig. 10 a) shows that the neither equidistant 

nor non-equidistant grid resolution has any significant influence on the terminal velocity 

of bubble. However, according to the bubbles shapes shown inside Fig. 10 a), it has 

significant influence on the interface reconstruction. In IR-VOF methods, Piecewise 

Linear Interface Calculation (PLIC) method is used for interface reconstruction where 

in any mesh cell with 0 < f < 1 the interface is approximated by a line (in 2D) or a plane 

(in 3D). Interface approximation with PLIC is discussed in Section 2.4.2 and an 

example for 2D interface approximation is exhibited in Fig. 5 b). 

In Fig. 10 a), the bubble surface is smoother for a finer mesh (NB=25) than the 

bubbles with NB=16, as expected. The “rough” surface influences the normal vector 

and curvature calculation on the interface. If the curvature of the interface in the 

momentum equation (Eq. (49)) is not accurately computed, the spurious currents may 

occur and dominate the solution [47]. This numerical artifact may also be the reason 

of the results obtained from the analysis of local velocity profiles (u1) in flow direction 

(x1) within the wake and inside of bubbles in Fig. 10 b). Comparison of three different 

grid sizes showed that the velocity profiles for two finer grids are in good agreement in 

the wake whereas the profiles for the coarse grid deviate from other cases in the bubble 

and in the wake close to the interface. The combination of findings with the results of 

bubble interface reveals that using 80 mesh cells per unit length (Lx, Ly, Lref) so that 

NB=20 is sufficient to obtain results that are independent on the mesh size.  
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Fig. 10: Influence of grid resolution on bubble rise velocity. The profiles are evaluated for 

variations of Case M7 in Table 2 and given in Table 14 as M7-SB1. a) Left: Bubble rise 

velocity profiles and bubble shapes. Right: Simulation result in 2D view with velocity 

vectors (steady state). b) The vertical profile of the vertical velocity component in the 

middle of the computational domain in the wake and inside of bubbles in 1×1×1 domain. 

Right side: The profiles are evaluated along the channel a mid-vertical line (red) on a mid-

vertical plane (green). f is the volume fraction, f = 0 (gas) and f = 1 (liquid). 

A coarse grid may result an inaccurate calculation of the interface normal vector 

and curvature, and severe errors regarding velocity calculation. Because the velocity 

is approximated by the volume averaged solution of the single field momentum 

equation with surface tension term (see Eq. (49)) on a staggered grid. Therefore, 

setting a tolerance above the limit and using NB=25 is still a safer choice. However, the 

required one million mesh cells (100×100×100) cause very high CPU time. This 

disadvantage of high grid resolution can be balanced by choosing a non-equidistant 

grid where the mesh size is becoming finer in wall direction, which is of high importance. 

Having such a discretization reduces the CPU time and still provides enough mesh 

size for smooth interface. Therefore, the 80×80×100 grid size is the most optimal 

choice. It provides a grid resolution of minimum sufficient NB=20 cells per dB for 

independent results on the mesh size and even finer grid near the wall.  

x1 

x3 

 

x1 

x3 
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3.3.2. Influence of time step width 

Many numerical works suffer from one common obstacle: long CPU time. The 

low viscosity and density ratio of the Cumene-N2 system require low time step width ∆t 

≤ 10-6 that causes high CPU time. For reliable results, the velocity profiles ideally 

should reach quasi-steady state condition where the mean velocity of the liquid phase 

and the bubble rise velocity can be considered approximately constant. In some cases, 

4-6 weeks CPU time was required to reach steady state.  

In an unsplit method, as used in TURBIT-VOF, during the advection step the liquid 

volume fluxes cross through all the mesh cell faces during a time step of duration ∆t 

and the total flux of fluid (V) crossing the right cell face per unit cross sectional area is 

calculated as V = u.∆t. At this point, too small ∆t values (i.e. ∆t ≤ 10-6) may cause 

unreliable results by estimating the volume flux transferred through cells incorrectly. 

Besides, there is also an upper limitation for the determination of ∆t. The main 

advantage of IR-VOF methods is the volume conservation property [47]. However, 

some discrepancies such as loss of volume of bubbles were observed in case of using 

high values of ∆t (∆t > 2×10-4). As a matter of collective experience on TURBIT-VOF 

code in the past and during this study, the optimal time step width is determined as ∆t 

= 10-4 for reasonable CPU time as well as for reliable results. In some cases when 

convergence problems occur during simulations, ∆t was decreased down to the value 

of 5×10-6 for sustaining convergence and then again were set to possible closest value 

to 10-4.  

Primarily, the numerical stability must be sustained for further steps. The density 

and viscosity of the gas phase are changed for better numerical stability. The influence 

of these changes on the simulation results is examined. For this purpose, test 

simulations for single bubbles are performed and feasible values are determined in 

Section 3.3.4 and 3.3.5. 

3.3.3. Influence of domain size 

Two different computational domains are considered for single bubble simulations. 

The mainly used one is bounded with two parallel walls, and unbounded and periodical 

in vertical and lateral directions. Another one used for experimental validation is a 

rectangular channel bounded with four walls and periodical in vertical direction (cf. 

Section 3.1). Physically, the single bubble rising between parallel walls or in a 

rectangular channel in a domain with periodic boundary condition (p.b.c.) in flow 

direction can be defined as a chain of identical single bubbles with a well-defined 

vertical distance. The frequency of bubble passage is an important parameter since 
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the passage of consecutive bubbles modifies the mean velocity profile of the liquid and 

influences the vortices in bubble wake [173]. The wake effect leads to an increased 

bubble rise velocity and more bubble – bubble and bubble – wake interactions [174] 

which may lead to a non-rectilinear trajectory of bubble [175]. Consequently, the 

turbulence is enhanced by the frequency of bubble formation [176]. In the literature, 

the wake effect is taken into consideration by modelling the drag force. Chai [177], 

Chai et al. [178] and Chai and Cheng [174] proposed drag force model approach to 

consider the wake acceleration effect on spherical bubbles using the relationship 

between the reduced drag force and the wake velocity together with the bubble 

diameter and the vertical distance between bubbles. For numerical investigations in 

the current study, the frequency of bubbles depends solely on the channel length due 

to p.b.c. in flow direction. Therefore, the channel length must be investigated to identify 

appropriate distance between bubbles for a minimized bubble frequency effect on the 

bubble rise velocity (UT). In the experiments, the bubbles are injected when the liquid 

in the wake becomes almost stagnant. Thus, the injection frequency of single bubbles 

is high enough to reduce the influence of bubbles chain (or the wake effect).  

Fig. 11 shows the influence of the domain size on local velocity field for different 

channel sizes such as 2×1×1 with a grid of 100×50×50, 3×1×1 with a grid of 

150×50×50, 5×1×1 with a grid of 250×50×50 and 3×2×1 with a grid of 150×100×50. 

The Water-Glycerin-Air (WGA) case with dB = 1.907 mm is considered for simulations. 

Table 4 presents the corresponding diameter to length ratio for WGA and WGN cases.  

Table 4: The domain size applied for the cases in the simulations. 

 x
-1 = Lx / dB y

-1 = Ly / dB z
-1 = Lwall / dB 

 WGA WGN WGA WGN WGA WGN 

2×1×1 ≈ 4.2 ≈ 4.8 

≈ 2.1 ≈ 2.4 

≈ 2.1 ≈ 2.4 

3×1×1 ≈ 6.3 ≈ 7.2 

5×1×1 ≈ 10.5 ≈ 12 

3×2×1 ≈ 6.3 - ≈ 4.2 - 

4.5×2.5×1 - ≈ 10.7 - ≈ 6 
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a) 

 

b) 

 

Fig. 11:  a) The vertical profile of the vertical velocity component in the middle of the 

computational domain b) The lateral profile of the vertical velocity component in the middle 

of the computational domain for Water-Glycerin / Air system. 

In Fig. 11 a), the influence of the height of the computational domain or the bubble 

frequency on the local velocity field is illustrated using the vertical profile of the vertical 

velocity component in the middle of the computational domain. The minimum value of 

the liquid velocity in 5×1×1 (Lx / dB ≈ 10.5) domain is approximately half of the values 

in 3×1×1 domain (Lx / dB ≈ 6) and around one fourth of the value in 2×1×1 domain (Lx 

/ dB ≈ 4). The variation in the liquid velocity also reflects to the values of the maximum 

velocity in the bubble (uB,max) but in a lower magnitude. In 2×1×1 domain, it is only 6 – 

7% higher than in 5×1×1 domain. In an even longer domain, the influence may be 

negligible. However, such a domain would not be applicable for a DNS simulation with 

fine grid in terms of computational costs and CPU time. For the computational domain 

2×1×1, the minimum value of the liquid velocity corresponds to approximately one third 
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of uB,max. For the domain 5×1×1 (Lx / dB ≈ 10.5), this effect reduces to about 10%. By 

this effect, the rear bubble in the bubble chain enters to the wake of its fore bubble 

where a positive velocity field exists and therefore the rear bubble accelerates. For Lx 

/ dB > 10, the minimum liquid velocity in the wake is less than 10% of uB,max. This value 

is a good estimation in simulations where extreme precision is not required. 

Chai et al. [178] investigated the wake acceleration effect depending on the 

vertical distance between rising bubbles for large bubbles (4 – 7 mm) with low aspect 

ratio (0.6 – 0.7) and presented that the velocity profile in the wake keeps developing 

until the vertical distance between bubbles is 3 – 5 times of the longer diameter of 

ellipsoidal bubble. Considering rather spherical bubbles as in this study (cf. Section 

3.3.6), these values correspond to approximately Lx / dB ≈ 4 – 6. With respect to 

different flow parameters, bubbles sizes and wake structure, this finding of Chai et al. 

[178] is qualitatively comparable to the results from Fig. 11 a) where for Lx / dB ≈ 6 the 

minimum value of the liquid velocity in the wake is less than 20% of uB,max. 

On the other hand, for the flow between parallel walls there is an interaction of 

bubbles and liquid between the bubbles in lateral direction as if there is another parallel 

channel. This liquid region may be named as so-called “bubble-free liquid column”. The 

neighboring bubbles have also influence on the flow and the velocity profiles within the 

side-liquid slug region. In numerical work, this situation may be interpreted as many 

parallel single bubbles rising side-by-side. This is naturally not the case in the 

experiments. In Fig. 11 b), the influence of the lateral distance in the computational 

domain on the local velocity field is illustrated using the lateral profile of the vertical 

velocity component in the middle of the computational domain. In the lateral direction, 

no walls exist and periodic boundary conditions apply. The liquid velocity profiles are 

negative in the side-liquid slug and stay negative for all cases, which are expected due 

to non-existing walls. For the computational domain 3×2×1 (Ly / dB ≈ 4.2) with a doubled 

lateral distance, uB,max is about 9 – 10% higher than in the computational domains 

3×1×1 and 5×1×1 (Ly / dB ≈ 2.1). The liquid velocity profile in the domain 3×2×1 is flatter 

and almost constant when it gets far from the phase interface. For two cases with lower 

lateral distance, the lowest values of the liquid velocity near the phase interface are 

about twice as low as in the domain with doubled lateral distance. This is due to the 

stronger mixing of eddies near the bubble in 3×1×1 and 5×1×1 domains than in 3×2×1 

domain. Although the magnitude of the liquid velocity values are low in comparison to 

the values of uB,max, the two times wider domain in lateral direction has still influence 

on uB,max and as a natural consequence also on UT. For Ly / dB > 4, the influence of 

lateral distance on uB,max is less than 10%.  
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In an experimental setup where a single bubble rising between parallel walls, the 

parallel plates are located inside of a column / pipe that is limited with its own wall. The 

velocity profile formed in lateral direction due to these walls may have a different 

behavior than the velocity profile for bubbles rising so-called side-by-side as in the 

simulations. Therefore, the influence of lateral distance is only a concern for the 

numerical study and not comparable with experimental conditions. Contrarily, the 

influence of vertical distance (bubble frequency) is quantitatively comparable in 

simulations and experiments. 

3.3.4. Influence of viscosity ratio 

In Fig. 12, the bubble rise velocities are examined for Case M7 (Table 2) for varied 

viscosity ratio. Only gas properties were modified to reach various values whereas the 

liquid viscosity is fixed to its real value. The viscosity ratio is in the range of 1/5 ≤ µ ≤ 

1 for a fixed density ratio ρ = 1/25. The values of µ < 1/5 require small ∆t values less 

than 10-6. All simulations with µ < 1 are performed based on the case with µ = 1 from 

the time point at t = 5tref. Here, tref is non-dimensional time. From the graph, it can be 

seen that the change of µ, where the liquid viscosity is fixed and the gas viscosity is 

varied, has no significant effect on the bubble rise velocity. To date, a number of studies 

explored the relationships between µ and UT [75, 179-181]. It is general practice to 

neglect the effect of the viscosity of the internal fluid in correlations of terminal velocities. 

Clift et al. [75] analyzed data from literature for systems with identical Morton number 

but widely different values of µ (0.35 to 20). They did not observe any systematic 

dependency of terminal velocities on µ, which supports the findings from Fig. 12. 

The condition µ = 1 is suitable for numerical calculation and as can be seen from 

above discussion it has no physical effect on UT. However, the viscosity change 

modifies the velocity field inside of the bubble. This fact raises intriguing questions for 

further analysis of the local velocity profiles. Fig. 13 shows the local profiles in flow 

direction inside and outside the bubble, along the channel and between the walls. What 

stands out is that µ has influence on the velocity profiles in the bubble and in its wake. 

This effect is especially noticeable between the cases with µ = 1 and µ < 1. As can 

be seen from Fig. 13 a), the velocity profiles within the bubble presents different 

structures. This might happen when the intensity of the recirculation in the bubble is 

altered due to the modified shear stresses and the gradient of friction forces. According 

to the drag law of Hadamard-Rybczynski, in pure systems with decreasing µ the drag 

coefficient applied on the bubble also decreases and this leads the UT to increase. 

Since UT stays constant, assuming that the bubble rising in a linear path in the 
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simulations then buoyancy, gravity and drag are in balance. Considering the constant 

density ratio and surface tension with decreasing drag coefficient, the increasing 

friction force, which tends to compensate the local velocity differences, remains the 

only reason to sustain this balance. The most interesting aspect of this graph presented 

in Fig. 13 b) is that for µ = 1 the velocity profile is parabolic whereas for low µ (low 

µG) the highest velocity values appear towards the gas-liquid interface. 

 

 
 

Fig. 12: Effect of viscosity ratio on bubble rise velocity. The evaluated cases are variations 

of Case M7 in Table 2 and given in Table 14 as M7-SB1 and M7-SB5. Simulations for µ 

= 1/2 and 1/5 are started from a time point at quasi-steady-state of the Case M7-SB1 with 

µ = 1. 

Fig. 13 also shows that the influence of µ on the velocity profiles in the liquid is 

accountable only closer to bubble interface. The results in Fig. 13 a) confirms the 

findings of Clift et al. [75] that internal circulation has influence on the wake formation. 

It is also interesting about these results that significant velocity values can be observed 

in the wake of bubble. For a bubble passage, this velocity profile in the wake has 

influence the UT. Such an investigation on local velocities is of great importance to 

understand the wake effect so that the optimum domain size with safe distances can 

be determined.  

Considering the advantages of µ = 1 for limiting the CPU time, this theoretical 

parameter was also used for test purposes. However, the low viscosity ratios (µ < 1) 

have less influence on the shape of velocity profile whereas UT is unchanged for both 

µ = 1 and µ < 1. Therefore, the viscosity ratio µ < 1 is mainly considered in the 

simulations for validation and analysis purpose. 
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a) 

 
b) 

  

Fig. 13: Effect of viscosity ratio on the vertical velocity profiles in flow direction inside and 

outside of bubbles. The evaluated cases are variations of Case M7 in Table 2 and given 

in Table 14 as M7-SB1 and M7-SB5. Simulations for µ = 1/2 and 1/5 are started from a 

time point at quasi-steady-state of the Case M7-SB1 with µ = 1. a) The profiles on a mid-

vertical line along the channel. b) The profiles on a mid-horizontal line cutting through the 

bubble in wall distance. f is the volume fraction, f =0 for gas and f =1 for liquid. 

3.3.5. Influence of density ratio 

In Fig. 14, the bubble rise velocities are examined for Case M7 (Table 2) for varied 

density ratio. Only gas properties were modified to reach various values whereas the 

liquid density is fixed to its real value. The density ratio is in the range of 1/100 ≤ ρ ≤ 

1/25 for a fixed viscosity ratio µ = 1. The values of ρ < 1/100 require small ∆t values 

less than 10-6. 
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In Fig. 14, the simulations are performed starting from t = 0 for ρ = 1/25 and 1/50 

while for ρ = 1/100 the simulation is started based on the case with ρ = 1/25 from a 

time point where the profile is close to a quasi-steady-state. The terminal bubble 

velocity shows no deviation for any of the considered values of ρ. Thus, a gas-to-liquid 

density ratio of 1/25 is appropriate to obtain results that are independent on the gas 

density. This density ratio is also typical for real systems under high pressures so that 

it can be reached in real physical conditions. Additionally, in numerical point of view ρ 

= 1/25 provides lower CPU time with a constant value of ∆t = 10-4. 

 

 

 

Fig. 14: Effect of density ratio on bubble rise velocity. The cases evaluated are variations 

of Case M7 in Table 2 and given in Table 14 as M7-SB1, M7-SB3 and M7-SB4. Simulation 

for ρ = 1/100 is started from a time point at quasi-steady-state of the Case M7-SB1 with 

ρ = 1/25. 

3.3.6. Influence of Morton and Eötvös number 

Fig. 15 presents the bubble rise velocity profiles and bubble shapes of cases (see 

Table 2) with different M (   L

4 2 3
L G L     M g ) obtained by changing the surface 

tension. In the simulation results of M10, M9 and M8 cases from Table 2, more zigzag 

and helical bubble path as well as more shape oscillations are observed with 

decreasing M. For the Case M7 with the highest M, the bubble rises almost rectilinear 

(slightly oscillating). The bubble path influences the velocity profiles as well. In Fig. 15, 

the steady velocity profiles are plotted only for M7 and at earlier times of M8 while for 

low M (M < 10-8) the instability as well as the terminal velocity of bubbles UT increases. 

This effect of low M on the UT can be anticipated based on the Reynold number change 

in Fig. 9 and Table 2. These simulations may be compared quantitatively with the 
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experimental study by Liu et al. [176] where the authors examined the flow structure 

induced by a chain of gas bubbles in a rectangular bubble column using particle image 

velocimetry (PIV). They concluded that the variation of bubble rising trajectory 

associates with the alternation of bubble motions and in general, complex fluid velocity 

fields present in liquid system of low viscosity (low M) where free vortex, cross flow, 

and irregular circular flow can be observed. Bubble behaviors such as varied bubble 

trajectory observed in the simulations and the unsteady velocities of rising bubbles 

shown in Fig. 15 are similar to the results from the experiments of Liu et al. [176]. The 

most probable reason for those outcomes observed in both studies is the high intensity 

of pseudo-turbulence in a low M system. As the measurements of Liu et al. [176] for 

the liquid pseudo-turbulence in terms of turbulence intensity showed, the pseudo-

turbulence is more intense in liquid system with low viscosity (low M). Overall, these 

results suggest that the cases M8 and M7 with less complex flow are more appropriate 

for further direct numerical simulations in this work. 

 

   

Initial bubble t=0s M10 t=0.012s M9 t=0.012s M8 t=0.012s M7 t=0.012s 

     

Fig. 15: Effect of M on bubble rise velocity (a) and bubble shape (b) based on the cases in 

Table 2. Bubble shape of the initial bubble is given at t=0s and bubbles for varied M at the 

same real time, t=0.012s. Grid: 100×100×100. µ = 1, ρ = 1/25. (Bubble sizes may not 

represent exact proportion). 

Clift diagram suggests that the shape of bubbles may be predicted according to 

Morton and Eötvös numbers. If a bubble is able to keep a geometrically definable 

shape, then an aspect ratio can be measured based on its altered radiuses. The 
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relation between aspect ratio of bubbles and Morton and Eötvös numbers for the single 

bubble cases is represented in Fig. 16. Wellek et al. [182] define a correlation of the 

mean aspect ratio for single bubbles in contaminated systems in infinite domain as 

0.757

1

1 0.163Eö
 


 (68) 

 

 a)   b)  

Fig. 16: a) Comparison of mean aspect ratio with correlation from Wellek et al. [182] for 

drops and bubbles in contaminated systems Clift et al. [75]. b) The change of aspect ratio in 

time for three cases (M7, M9, M10). The shown cases are given in Table 2 and Table 3. 

In Fig. 16 a), the aspect ratio of bubbles obtained from simulations is plotted 

against the Eötvös number and compared with this correlation. Blue line in Fig. 16 a) 

represents the correlation for Eö < 40 and M ≤ 10-6 and below the dashed line 

represents the ellipsoidal region. According to Clift et al. [75], "spherical" is defined as 

bubbles which are closely approximated by spheres if interfacial tension and/or viscous 

forces are much more important than inertia forces and if the minor to major axis ratio 

lies within 10% of unity. The term "Ellipsoidal" is generally used to refer to bubbles 

which are oblate with a convex interface (viewed from inside) around the entire surface. 

In Fig. 16 a), the aspect ratio values of the test cases (M7, M8, M9, M10) in Table 2 

are shown with red triangles. All cases are slightly below the correlation of Wellek et al. 

[182] plotted in blue color. This is likely due to pure system conditions in simulations. 

The aspect ratio for M10, M9, WGA and WGN are  > 0.8, namely the deformation 

may be considered as insignificant. The almost spherical bubble shapes of M10 and 

M9 in Fig. 15 b) confirms this result.  
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In Fig. 16 b), the aspect ratio is plotted against the simulation time. For Case M7, 

the bubble changes the shape from sphere to ellipsoidal and does not suffer with much 

oscillation. For Case M10 and M9, the bubble is oscillating so that the bubble shape 

deforms and never forms a steady shape. The bubble shape predictions in Fig. 16 b) 

correspond to the real bubble shapes in Fig. 15 b). The shape oscillations with 

changing M are also similar with those of Liu et al. [176]. 

3.3.7. Summary of Section 3.3 

The single bubble simulations serve as preliminary investigations to identify 

suitable numerical and physical parameters that allow efficient simulations without 

compromising the physics. The simulations are performed in a channel bounded with 

either two or four parallel walls. The influences on the numerical results are 

investigated in terms of numerical aspects, i.e. grid resolution, time step width, domain 

size and the physical effects, i.e. density / viscosity and Morton / Eötvös numbers.  

The investigations show that a grid resolution of 20 cells per bubble diameter 

(NB=20) is appropriate to obtain results that are independent from the mesh size. A 

coarser grid may cause inaccurate calculation of the interface normal vector and 

curvature, and thus severe errors regarding velocity calculation. A finer grid provides 

very close results to those with NB=20 but requires very high CPU time. This common 

obstacle can be solved by choosing high time step width (∆t). However, in case of using 

high values of ∆t, the inherent volume conservation is not secured. The loss of bubble 

volume is observed for ∆t > 2×10-4. The low values of viscosity (µ < 0.2) and density 

ratio (ρ < 0.01) require finer solution of the flow field and interface and thus low time 

step width. For values of ∆t ≤ 10-6 numerical discrepancies are observed which occur 

in an unsplit IR-VOF method when the advection of volume fluxes from one cell to 

another is not calculated properly. Therefore, the time step width is identified as ∆t = 

10-4 for the simulations with TURBIT-VOF code in this study. The choice of time step 

width is crucial for reliable simulations using VOF methods and must be identified 

individually for each code and software.  

Based on the periodic boundary condition in flow direction, a rising single bubble 

physically represents a chain of identical single bubbles with a well-defined vertical 

distance. The ratio of vertical distance to bubble diameter Lx / dB > 10 is sufficient to 

obtain results where the minimum liquid velocity in the wake is less than 10% of 

maximum velocity value in the bubble uB,max. This result is deduced from the 

simulations performed with the channels lengths 4 ≤ Lx / dB ≤ 10.5. For different channel 

height, a modified mean velocity profile of the liquid is observed in the bubble wake 
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related to the passage of consecutive bubbles. In longer channels, the profiles of the 

bubble rise velocity (UT) are flatter and lower than the profiles in shorter channels. 

However, a fully steady state is not observed for any channel height since the vertical 

distance is not high enough to avoid the influence of wake acceleration. In the 

reference experiments where Lx / dB ≈ 525 the flow is in a steady state. On the other 

hand, in a channel with two parallel walls the periodic boundary conditions are also 

valid in lateral direction. For the ratio of lateral distance to bubble diameter Ly / dB > 4, 

the influence of lateral distance on uB,max is less than 10%.  

The change of physical properties has influence on the numerical results. The 

results of the examined cases indicate that a liquid-to-gas density ratio of 25 ( = 0.04) 

is appropriate to obtain results that are independent from the density ratio. The change 

of viscosity ratio µ with fixed liquid viscosity has no significant effect on the bubble rise 

velocity UT. However, with µ = 1 the velocity profile inside of the bubble and in the 

bubble wake differs from the profiles computed with the values of µ < 1. Therefore, 

the viscosity ratio µ < 1 is chosen if higher accuracy is required. With these values of 

physical parameters, the influence of density and viscosity on the velocity profiles in 

the bubble and in the wake of the bubble is negligible. 

The investigations are carried out with varied Morton number 2.2×10-10 ≤ M ≤ 

3.86×10-7 and Eötvös number 0.253 ≤ Eö ≤ 2.539 by changing the surface tension for 

a fixed liquid viscosity. The resulting aspect ratio () of the bubbles are in the range of 

0.6 <  < 0.9. In the given range, the Eötvös number controls the bubble shape and 

the Morton number characterizes the motion of bubble. For higher values of Eö, the 

bubble shape is more ellipsoidal while for the lowest value of Eö the bubble is almost 

spherical. These observations are in good agreement with the estimations in the 

literature. The bubble shape and its evaluation for different values of M and Eö 

correspond to the correlations from Wellek et al. [182] as well as to the approximations 

exhibited in the diagram of Clift et al. [75]. The bubble rise velocity increases with 

decreasing Morton number. With high Morton number ~10-7, where the bubble shape 

is ellipsoidal ( ≈ 0.62), the lateral deviations of bubble path are low and the bubble 

rises almost in a rectilinear line. With low Morton number ~10-10 where  ≈ 0.85, more 

zigzag motion and rotational bubble path are observed and shape oscillations 

(wobbling) occur. However, it is known from [26] that the lateral motions tend to be 

suppressed for a bubble shape closer to spherical ( > 0.9). This means that the lateral 

motion mentioned here is not related to the aspect ratio but mainly to the shape 

oscillations such as wobbling which is exhibited in the diagram of Clift et al. [75]. 
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3.4. Comparison with correlations, experiments and simulations 

This Section consists of four parts. In the first part, the numerical results for the 

terminal velocity of the rising single bubbles are compared with the experiments of 

TUHH and with the correlations from the literature based on the approaches in the 

literature given in Section 2.2. The second part focuses on the influence of surface 

contamination and corresponding bubble shape changes on the terminal velocity. In 

the third part, the results are further discussed by means the drag applied on bubbles. 

In the last part, the DNS results from TURBIT-VOF are validated with the DNS results 

provided by the project partner in TU-Darmstadt and those results are compared with 

the reference experimental data from TUHH for the velocity profiles of the rising single 

bubbles in a bubble chain. 

3.4.1. Terminal velocity 

The correlations in literature are mostly valid for so-called unbounded channels. 

Therefore, a correction factor is applied on the experimental and numerical results in 

order to account for the solid wall effect based on the approaches in the literature 

discussed in Section 2.2.4.  

According to Eq. (23), for the cases in Table 3,   takes the value as follows  

1/ 2.1 0.4767  WGA   (69) 

1/ 2.4 0.4187  WGN   (70) 

Fig. 4 shows the terminal Reynolds number and  1K U  as functions of 
1/3ND  and KU  

can be estimated as a function of 
1/3ND  and   of the system. From ND  given in Eq.(26), 

considering the cases in this study given in Table 3 3194N D, WGA  and 2140N D, WGN  

so that 
1/3 14.7N D, WGA   and 

1/3 12.8N D, WGN  . The velocity correction factor KU   can be 

approximately calculated by  1K U  values estimated from the plot in Fig. 4 as 

/ 2.05UK U U , WGA T T   (71) 

/ 1.85UK U U , WGN T T   (72) 

The wall correction factors in Eqs. (71) and (72) for each case are applied on the 

numerical and experimental bubble rise velocity. However, it must be noted that the 

correction factor is valid for conversion from circular ducts to unbounded channels. No 

relation for parallel walls was found in the literature. 
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Fig. 17: Bubble rise velocity in dependency of the particle diameter and the 

corresponding Eötvös numbers. a) WGA b) WGN. (Num.: Numerical results, Exp.: 

Experimental results, R: Regions shown in Table 1, PG: Peebles and Garber [83], RS: 

Räbiger and Schlüter [106]) 

Fig. 17 demonstrates the validation range of the regions based on the Peebles 

and Garber [83] approach given in Table 1. In Fig. 17, the bubble rise velocity UT  is 

given in dependency of the particle diameter dB (below x-axis) and the corresponding 

Eötvös numbers EöB (above x-axis) is given with aspect ratio according to 

corresponding Eötvös numbers for WGA and WGN cases. The approach from Peebles 

and Garber [83] in Eq. (7) for Region-3 is a relatively good approximation for both 

cases. Eq.(6) for Region-2 drastically underestimates the both experimental and 

numerical findings even though the cases fall into the Region-2 according to Peebles 
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and Garber [83] classification. Eq. (13) of Mendelson [84] and Eq.(9) of Maxworthy et 

al. [91] provide close approximations as they promise for being valid in wide range of 

Morton number. The correlations from Levich [86] in Eq. (8) and Räbiger and Schlüter 

[106] in Eq. (18) underestimate the velocity values of simulation results. Reminding 

that the wall effect is considered for circular duct, but the simulations were performed 

through parallel walls, the qualitative estimation of terminal velocity seems feasible by 

general formulas rather than restricted one for specific regions. 

In Fig. 18, the velocity values, which are calculated from correlations in literature, 

and the physical properties are converted to the non-dimensional group proposed by 

Rodrigue [96] using Eq. (11) and Eq. (12), respectively, and the resulted non-

dimensional velocity number (V) and the flow number (F) are plotted using Eq. (10) (cf. 

Section 2.2.2). It is shown that for WGN, Levich [86] and Maxworthy et al. [91] are in 

good agreement with Rodrigue [96] while Mendelson [84] is underestimated. On the 

other hand for WGA, Mendelson [84] and Levich [86] are in good agreement but 

Maxworthy et al. [91] is underestimated. The dimensionless approach of Rodrigue [96] 

claims to cover a rather wide range of parameters however it doesn’t predict the cases 

in this study.  

 
 

Fig. 18: Comparison of velocities in simulations and experiments with the models in the 

literature. Wall correction factor is applied for each case in simulations and experiments. 

V is the velocity number and F is the flow number defined by Rodrigue [96] (cf. Section 

2.2.2). 
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3.4.2. Surface contamination effect 

The contaminants accumulated on the phase interface have also a profound 

effect on the bubble rise velocity due to Marangoni effect (cf. Section 2.2.3) and 

modified bubble shape. The literature overview for the surface contamination effect of 

rising bubbles is given in Section 2.2.3. The possible effects on the cases WGA and 

WGN are discussed here. 

Fig. 19 shows the dimensionless terminal velocity *
TU  calculated according to Eq. 

(14) in dependency of the dimensionless bubble diameter *
Bd  calculated by Eq. (15) 

and presents the four characteristic regimes (A, B, C, D) graphically. These regimes 

are defined by Räbiger and Schlüter [106] based on the differentiation of bubble 

shapes. The empirical formula * 0.4266
T, 0.136ArU Ar  given in Eq. (18) shows reasonable 

approximation for different cases. It takes almost same value with WGA while 

underestimating the WGN and M7. Yet it is clear that *
T,ArU  is valid for pure systems 

flowing through an unbounded and long channel where no bubble frequency effect 

(due to the interaction between bubbles in chain) on velocity exists. The deviation 

between two and four walls of WGN cases is visible. The Regime-B of Räbiger and 

Schlüter [106] corresponds to the Region-2 of Peebles and Garber [83] and both apply 

similar drag and velocity correlations in their range. For all cases the viscous forces 

are mostly dominant however due to internal recirculation within the bubble and its 

intensity, shear stresses at the interface are reduced and the rise velocity increases 

[84], thus the domination of the inertial forces also increases.  

 

Fig. 19: Dimensionless terminal velocity of gas bubbles 
*
TU  as given in Eq. (14) in 

dependency of the dimensionless bubble diameter 
*
Bd  as given Eq. (15). The graph is 

adopted from Räbiger and Schlüter [106]. 
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The aspect ratio for WGA and WGN is observed as  > 0.8 (cf. Section 3.3.1, Fig. 

16 a). Clift et al. [75] define bubbles and drops in the range of 1 600Re   as fluid 

spheres since they remain nearly spherical without significant deformation and exhibit 

little internal circulation because of high viscosity difference or surface contaminants. 

In Fig. 19, the results in simulations and experiments differ in terminal velocity values, 

reminding that no liquid velocity was deducted from the experimental values. These 

differences for the bubbles with same initial size and remaining spherical (as being in 

Regime-B and/or Region-2) may be explained by intensity of their internal circulation 

according to the argument of Clift et al. [75]. As it is discussed in Section 3.3.4, the 

varied μ  is not the reason for different rise velocity even though it affects the intensity 

of recirculation as argued in Fig. 13 and Fig. 14. The surface contaminants, not only 

affecting the internal circulation but also modifying the wake formation, may then be 

the reason of velocity deviation between experiments and simulations. A type of 

surfactant Triton X was added into mixture for WGA case therefore the velocity 

difference is understandable. However, the above discussions suggest that the WGN 

case may also not be a pure mixture.  

Consequences of both the viscous force dominant regime and the surface tension 

force dominant regime may apply to the cases WGA and WGN. The WGN case is 

implied to be a pure system while WGA is already contaminated with Triton-X. The 

experimental evidence shows that UT does not depend on surfactant concentration 

[110], shape oscillation would gradually damp down even in a slightly contaminated 

system. A contaminant can eliminate internal circulation even if the amount of impurity 

is so small that there is no measurable change in the bulk fluid properties. Thereby it 

increases the drag significantly and reduces overall mass- and heat-transfer rates 

drastically [75]. As it is shown in Fig. 20, the calculated DC  in the experiments are 

significantly higher than the simulation values. This also supports the idea of impurity 

and contamination effect for both cases. Therefore, regardless from purity attempts in 

experiments, measured UT may be expected to be lower than the simulations. In 

comparison to simulations, the bubbles in experiments are expected to be less 

deformed due to strong damping effect caused by surfactants and thereby to exhibit 

less zigzag and helical motions as a result of less scattered of UT. 

3.4.3. Drag model estimation 

The rising bubble velocities can also be explained by means of the drag applied 

on bubbles. Most of the previous studies based on force balance approach calculated 

the terminal velocity dependent on the drag coefficient.  
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The conventional correlation for the drag on a sphere in steady motion as 

"standard drag curve" Clift et al. [75] is given in Fig. 20 where DC   is plotted as a 

function of Re . Fig. 20 also shows some of the popular correlations for DC  from the 

literature. The DC   values for cases WGN, WGA and M7 are calculated from the 

dimensionless definition given by Clift et al. [75] as 

2 3
T T L

3 4U D     N Re C U g   (73) 

Here, TRe  is calculated by the correlation defined for the range of 
7580 1.55 10N   D  

and 
312.2 6.35 10  Re  as [75] 

2 3
10log Re 1.81391 1.34671 0.12427 0.006344W W W          (74) 

where 10logW N D  and DN  is given in Eq. (26).  

 

 

Fig. 20: Drag coefficient of a sphere as a function of Reynolds number. CD values for the 

cases are calculated from Eq. (73) given by Clift et al. [75]. The evaluted cases are given in 

Table 2 and Table 3. 

Fig. 20 shows that the experimental results calculated from Eq. (74) are well 

approximated by the standard drag curve and Tomiyama drag model for contaminated 

systems in Eq. (66). On the other hand, the DNS results are aligned with the Tomiyama 

drag model for pure systems in Eq.(64). In Fig. 20, the calculated DC   from the 

experimental data is significantly higher than the DC  from simulation values for both 

cases. Such a difference may occur if the purity is not fulfilled in the experiments. 
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Haberman and Morton [76] explains the "rigidity" of bubbles based on the equality of 

boundary conditions at the surface: In a contaminated system, the bubble surface 

attracts and holds a high concentration of particles or molecules of the surface-active 

substances. The molecules at the surface travel with the bubble and hence give the 

same boundary conditions as a rigid surface. As the shear forces become larger in 

comparison to the forces holding the molecules at the surface, "rigidity" at the surface 

cannot be maintained; circulation inside the bubble ensues and the drag of the bubble 

becomes smaller as compared to that of a rigid body. As compared to the perfect purity 

in DNS, the experiments for each system reflect the “rigidity” effect and result high DC  

values. The impurity and contamination have influence on not only the WGA case but 

also the WGN case, which was intended to be pure in experiments. 

The “rigidity” also influences the bubble shape. It is known that a flattened particle 

experiences larger drag force than that acting on an elongated or spherical particle 

with the same volume as far as the deformation is not so large [183]. The bubbles in 

the experiments stay always rigid and spherical due to the surfactant effect. 

3.4.4. Validation with experiments and another code 

Based on the measurements in the reference experiments from TUHH for the 

mean bubble diameter and the vertical spacing between the bubbles in the bubble 

chain, the coordinated DNS simulations are performed. The cases based on the 

experiments (cf. Section 3.2), WGA (water-air-glycerin mixture with the surfactant 

Triton-X) and WGN (nominally pure water-nitrogen mixture) are simulated with 

TURBIT-VOF at KIT (cf. Section 2.4.3). On the other hand, the project partner in TU-

Darmstadt, the Mathematical Modeling and Analysis Group at CSI (Center of Smart 

Interfaces) has also simulated the WGN system with the OpenFOAM® solver 

interFoam [184] which uses an algebraic VOF approach.  

In TURBIT-VOF, the Triton-X addition is taken into account via the changed value 

of the surface tension while the phase interface (in contrast to the experiment) remains 

fully mobile. For validation, two different computational domains are considered for Lref 

= 4 mm. In the first one, the computational domain is defined as 5×1×1 (for a 

250×50×50 grid) 20×4×4 mm3 with two side walls and periodic boundary conditions in 

two other directions. It is used for the simulations of WGA and WGN cases with 

TURBIT-VOF. The experimental setup is a similar vertical plate channel that is located 

in a cylindrical column where two 25 mm long vertical parallel plates are placed in 

distance of 4 mm. It is used for the Case WGA experiments. In the second one, the 

computational domain is defined as 4.5×2.5×1 (for a 288×160×64 grid) for 18×10×4 
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mm3 with four side walls and periodic boundary conditions in the flow direction. This 

setup is used for the simulations of Case WGN with TURBIT-VOF. The experimental 

setup is a similar but longer rectangular channel of size 1000×10×4 mm3. It is used for 

the Case WGN experiments. At the CSI, the simulations are performed for the WGN 

case in a rectangular channel both for a fully mobile phase interface and also for a 

partially contaminated and immobile interface using a so-called "stagnant cap" model 

[185], shortly S.C.M., which models the influence of surfactants on the hydrodynamics. 

The channel is long enough to minimize the bubble frequency effect due to the 

interaction between bubbles in chain (cf. Section 3.3.3). Table 4 gives an overview on 

the domain size applied for the cases in the simulations.  

In the experiments, due to surface contamination, the bubble behaves as rigid 

sphere with an immobile interface where the particles cannot move on the surface. Yet, 

the surfactant effect is not considered in the simulations and therefore the bubble 

shape may take another form, i.e. fluid sphere or ellipsoidal bubbles [75]. In order to 

compare the experimental results with simulations for a contaminated system, surface 

contamination effects should be taken into account. For this purpose, the modified 

correlation from Grace et al. [97] is considered. It is used to estimate the contaminated 

UT from pure UT by using a correction factor (   ) [75] given in Eq. (19). The 

contamination factor is calculated for the Case WGA, which is contaminated with 

surfactant Triton X, and for the so-called pure Case WGN in order to compare with the 

simulations from TU-Darmstadt with OpenFOAM® by using S.C.M. model. For WGA 

and WGN cases, Eq. (20) takes the value of 1.29 and 0.431; the correction factor ( ) 

is read from the plot in Fig. 3 approximately as 0.2 and 1.4, respectively. The 

contamination coefficient in Eq.(21) is then calculated as 0.85 and 0.72 for WGA and 

WGN cases, respectively. The contaminated UT is calculated by substituting the values 

of  , cont and the pure terminal velocity from DNS data into Eq.(21). 

For the contaminated system (Case WGA), the simulations are performed in 

computational domains 5×1×1 for a 250×50×50, 3×1×1 for a 150×50×50 grid and 

2×1×1 for a 100×50×50. In Fig. 21, UT is lower for longer channels and its profile comes 

to steady state faster due to the decreasing influence of bubble frequency. Ideally, the 

liquid in the wake must be almost stagnant before the following bubble enters to the 

slug. To eliminate the effect of the vortices in the bubble wake, the vertical distance 

between two bubbles must be long enough. Based on the findings in Section 3.3.3, the 

ratio Lx / dB > 10 is identified as an acceptable estimation in terms of the magnitude of 

the liquid velocity influence on the bubble rise velocity. For the computational domain, 

2×1×1 where Lx / dB ≈ 4.2, the profile of the bubble rise velocity is approximately 14% 
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higher than in domain 5×1×1 with Lx / dB ≈ 10.5 while the profile of the liquid velocity is 

twice as high as in domain 5×1×1. Both velocity profiles of the bubble and the liquid 

are increasing with the time. This is because the effect of the velocity profile of the 

leading bubble still influential and the liquid slug is not stagnant and therefore the rise 

velocity of the rear bubble increases slightly but continuously.  

In Fig. 21, for the contaminated experimental system, the bubble rise velocity (UT) 

calculated with TURBIT-VOF is about 30% higher than the measured value. However, 

the bubble rise velocity from TURBIT-VOF with the contamination coefficient cont TU  is 

only 6 – 10 % higher than the measured values in the experiments. There is no 

available data regarding the values of mean liquid velocity in the experiments. However, 

the wake effect is almost eliminated with a high Lx / dB ratio, which means the liquid 

velocity in the wake is almost stagnant, and the velocity profiles are in Fig. 21 almost 

flat, which indicates that the mean liquid velocity in the experiments are negligibly low. 

Therefore, the velocity profile in the wake that occurs in the simulations is taken into 

account by a relative velocity cont T LU U  , which is used for a better comparison with 

the experiments. The profile of the relative velocity is as flat as in the experiments and 

its values are about 3 – 6% higher than in the experiments.  

 

 

Fig. 21: The bubble rise velocity of WGA system from simulations and experiments. The 

experimental results represented with blue-dotted-line are provided by IMS in TU-Harmburg 

in the frame of the Multi-Phase Project. 
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In Fig. 22, the profiles of bubble rise velocity obtained from the DNS results with 

TURBIT-VOF (for two and four walls) are compared with the DNS results with 

OpenFOAM® and the experimental data. Besides, the profiles of the mean liquid 

velocity, the bubble rise velocity with the contamination coefficient cont TU  , and the 

relative velocity calculated as cont T LU U   are discussed in the figure. The wake effect 

and the retarding effect of the surface contamination are taken into account with this 

relative velocity. For the so-called pure system (no intended surfactant in the WGN 

system), Fig. 22 shows a comparison of the velocity of a 1.67 mm bubble calculated 

with TURBIT-VOF and OpenFOAM® and measured at the TUHH. In the four walls case, 

the bubble deviates from the rectilinear path during the simulation. This is probably due 

to numerical inaccuracies relevant to the wall contact in lateral y (x2) direction. In the 

case of two side walls in TURBIT-VOF, the bubble rises in a straight line and the bubble 

rise velocity is somewhat (4 – 5%) higher than with four side walls for the straight path, 

as expected due to the retarding wall effect.  

Fig. 22 indicates that the bubble rise velocity is significantly lower in the 

experiment than predicted by the simulations. The bubble rise velocity in the TURBIT-

VOF simulations for two walls is about twice as high as in the experiment. However, it 

is about 11% higher than in the DNS simulations of the CSI for a free mobile surface 

(without S.C.M.) in a channel with four side walls. This deviation is plausible due to the 

double periodic boundary conditions in TURBIT-VOF and the simple periodic boundary 

conditions in interFoam. The difference is even smaller and almost none compared to 

the incomplete simulations for four walls in TURBIT-VOF.  

With the "stagnant cap" model (S.C.M.), a significant reduction in the UT (by 

suppressing the internal circulation in the bubble) is observed in interFoam, which 

leads to a good agreement with the experimental results. The profile of bubble rise 

velocity with the contamination coefficient cont TU  is about 7% higher than the results 

with S.C.M. for an immobile surface. Since the rectangular channels in the experiments 

and in the simulations with OpenFOAM® are long enough, the UT profiles are almost 

flat and therefore the liquid velocity in the wake is almost stagnant. To account for the 

wake effect in TURBIT-VOF (Lx / dB ≈ 12 for 5×1×1 domain), the relative velocity is 

calculated as   cont T LU U . The profile of the relative velocity is about 5% higher than 

in the DNS simulations of the CSI with S.C.M. This deviation corresponds to the 

retarding effect due to the four walls setup in interFoam, in contrary to the two walls 

setup in TURBIT-VOF.  

The influence of impurities is very hard to avoid in experiments whereas it is easily 

eliminated in simulations. The experimental results are expected to depend on the 
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water quality. The surfactants introduced in the first series of experiments (Case WGA) 

are still present in the second (nominally pure) series of experiments (Case WGN). 

The surface-active agents hinder the internal circulation in the bubble and effect the 

hydrodynamics of the flow. Therefore, the experimental and numerical (DNS) results 

differ significantly. TURBIT-VOF always assumes a fully mobile interface. For 

comparison with these experiments, a relative UT is calculated by applying the 

correction factor that accounts for the contamination effect and deducting the liquid 

velocity that accounts for the wake effect. The results from TURBIT-VOF simulations 

both for the UT and the relative UT are very close to those from the DNS simulations of 

the CSI in interFoam for a free mobile surface (without S.C.M.) and immobile surface 

(with S.C.M.), respectively.  

 

 

Fig. 22: The bubble rise velocity of WGN system from simulations and experiments. The 

experimental results represented with blue-dotted-line are provided by IMS in TU-Harmburg 

and the DNS results with OpenFOAM® represented with black lines are provided by CSI in 

TU-Darmstadt in the frame of the Multi-Phase Project. 

3.4.5. Summary of Section 3.4 

The results for the terminal velocity of the rising single bubbles (UT) are compared 

with the correlations from the literature, which are mainly valid for unbounded channels. 

A multiple-step correction calculation from Clift et al. [75] for circular ducts is identified 

as the most general approach to account for the wall effects in a wide range of non-

dimensional parameters Eö < 40, Re >200 and dB / Lwall ≤ 0.6. There is no simple 
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approach to account for the parallel wall effects in rectangular channels. After a 

comprehensive review, no universal model is found to approximate UT. The available 

models are valid for strictly defined flow parameters. The validation range concept from 

Peebles and Garber [83] is able to limit the cases examined here to a certain region 

and the correlations from Mendelson [84] and Maxworthy et al. [91] provide close 

estimations to simulation and reference experimental results. Räbiger and Schlüter 

[106] define another validation range approach for UT based on different bubble shapes 

which consequently accounts for the purity of system. The surface contaminants affect 

the internal circulation in the bubble and modify the wake formation, thus, have impact 

on bubble shape and UT. Therefore, a correlation from Grace et al. [97] that involves 

bubble Eötvös number and viscosity ratio of phases is distinguished for calculating a 

contamination coefficient. This correlation provides reliable results in a code-to-code 

comparison within this study. Besides, following comparisons of different models for 

the drag coefficient CD with numerical results, the model from Tomiyama et al. [102] is 

identified as suitable for bubble swarm simulations.  

The DNS results are further validated with the reference experiments and the 

DNS results obtained from VOF based code interFoam (an OpenFOAM® solver) using 

the similar setup and flow properties in the frame of the joint Multi-Phase project. The 

results from TURBIT-VOF simulations both for the UT and the relative UT are very close 

to those from the DNS simulations of the CSI in interFoam for a free mobile surface 

(without S.C.M.) and immobile surface (with S.C.M.), respectively. The deviation is 11% 

and 7%. Besides, the both DNS results that account for the surfactant effects are close 

to the results from the reference experiments. 

3.5. Bubble swarm simulations 

This Section is focused on multi-bubble (bubble swarm) simulations, issues 

encountered before finding useful simulation sets for analysis of turbulence kinetic 

energy of liquid phase and the method for extending the number of bubbles in a domain 

to higher values. Part of the results and some figures presented in this Section have 

been published in Wörner and Erdogan [6]. The bubble swarms are modeled as a 

group of bubbles in a computational domain with periodic boundary conditions. 

Earlier in this Chapter, an extended study of freely rising single bubbles was 

carried out in terms of numerical and hydrodynamic point of view. Those studies shed 

light onto important issues for sustaining stable bubble swarm simulations for achieving 

convergence of statistical data. Based on the study for single bubbles, significant 

number of DNS calculations for bubble swarms were performed (29 cases among them 
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are given in Table 15 in the Appendix.A.1) in order to use in analysis of turbulence 

kinetic energy of liquid phase.  

In the simulations, a variety of parameters was chosen as follows: Number of 

bubbles 4  8, bubble diameter dB 1  5 mm, gas content G 1  6.5%, Morton number 

10-7  10-10, Eötvös number 0.1  10. However, only some of these results are 

discussed subsequently. In order to identify parameters that allow efficient simulations 

without compromising the physics, a grid resolution of 20 cells per bubble diameter, a 

liquid-to-gas density ratio of 25 and a liquid-to-gas viscosity ratio of between 1 and 5 

are used to obtain results that are independent from the mesh size as well as the gas 

density and viscosity. 

 

a) b) c) 

  

 

 

 

  
 

Fig. 23: Trajectories of individual bubbles and captures from simulations for Case No.6 with 

6 bubbles in domain given in Table 15 in Appendix.A.1. G = 2.5%, EöB = 2.5, M = 2.2 × 10-7. 

a) 3D view. The channel walls are highlighted gray/dark gray. b) x1-x3 plane (plane between 

walls) c) x2-x3 plane (above). The symbols represent initial bubble centroid positions.  

file:///C:/Users/kd7257/Desktop/PhD_Report/movies/6B_trajectories/6B_3D.jpg
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76 

The bubble-induced velocity fluctuations of the liquid phase are strongly related 

to the dynamics of bubbles. This is particularly expected in bubble swarm flows where 

the motion of an individual bubble is more complex. For the later turbulence analysis it 

is, therefore, advantageous to determine bubble trajectories [26]. Fig. 23 shows the 

analyses of bubble trajectories for Case No. 6 (see Table 15) in mono-disperse 

condition, before the coalescence occurs. For this case, it can be seen that the bubbles 

are no longer spherical and tend to follow a helical path. The initial conditions at t = 0 

for Case No. 6 are same as the setup explained in Fig. 8 in Section 3.1. 

Ilic [26] found that the bubbles move, not only into the adjacent periodic box in 

the vertical direction through buoyancy, but also in both horizontal directions, wall 

normal and span-wise, through the dispersion. This movement can be also seen in Fig. 

23 b) and c). These lateral movements of bubbles result in the formation of two 

distinctive bubble populations. Bubbles tend to align at approximately constant 

distance from the walls making a kind of bubble curtains between the central liquid 

core and downward flowing liquid layers next to the walls [26]. 

3.5.1. Issues in DNS of bubble swarms 

In multi-bubble simulations in narrow bubble columns two problems occur. The 

first one concerns the approach of bubbles toward the wall. The second and more 

severe problem in the context of the present study concerns bubble coalescence. Part 

of the discussions in this Section are published in Wörner and Erdogan [6]. 

a) Wall contact problem 

When a part of the bubble enters the mesh cell layer that is closest to the wall, 

the liquid film between the bubble and the wall is not resolved. This may lead to artificial 

wall contact of the bubble [6]. Fig. 24 a) shows the approach of bubbles toward the 

wall at an instant time at which the simulation stops. This is because the contact lines, 

which denote the intersection of the interface between two immiscible fluids with the 

solid wall, are not calculated in TURBIT-VOF code. To circumvent this problem a grid 

that is non-equidistant in z-direction with refinement near the side walls is used. Fig. 

24 b) shows the influence of this refinement on the same individual bubbles that cause 

wall contact for equidistant grid. The bubble in non-equidistant meshed domain (red-

dashed-line trajectory) rises on a straighter trajectory than that in equidistant meshed 

domain (blue-line trajectory). By this refinement, the liquid film between the bubble and 

the wall can be resolved better and the interaction of the interface and the wall is 

understood correctly. 
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a) b) 

 
 

Fig. 24: The approach of bubbles toward the wall for Case No.8 with 8 bubbles in domain 

given in Table 15 in Appendix.A.1. a) An instant time at which the code stops the simulation 

when a part of the bubble is between the first and second mesh cell next to the wall. b) 

Trajectories of same individual bubbles in a domain with equadistant (blue-line trajectory) 

and non-equadistant grid (red-dashed-line trajectory).  

b) Coalescence problem 

Coalescence is an unresolved problem in DNS of interfacial flows as some 

methods (e.g. front- tracking) suppress it while others like VOF lead to artificial 

coalescence [47]. In the VOF method in this work, coalescence is initiated when the 

distance between two bubbles is less than the size of a mesh cell [6] and is therefore 

grid-dependent [5]. To limit the physical complexity problem, the investigations within 

in this study aim at mono-disperse bubbly flows. Bubble coalescence is therefore 

unwanted. In the DNS studies of Ilic et al. [20], mono-disperse conditions could be 

preserved for M  3×10-6 and EöB ≤ 3.065 with void fractions up to 6.4% (up to eight 

bubbles, µG / µL = 1, G / L = 1/2). Here, in this work, the DNS computations are 

performed for various conditions with similar values of the Eötvös number but for 

smaller values of the Morton number. It has been found that for lower Morton numbers 

the probability for coalescence in the simulations is significantly increased [5, 6].  
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a) t = 0.0593 s 

 

b) t = 0.0595 s 

 

 c) t = 0.0597 s 

 

d) t = 0.0598 s 

 

Fig. 25: Illustration of the coalescence of two bubbles at four different time points (Morton 

number M = 2.8×10-7, Eötvös number Eö = 1.265, Case No.11 with 8 bubbles in domain 

given in Table 15 in Appendix.A.1). When two bubbles approach (a) and the distance 

between them becomes smaller than a mesh width, the two interfaces make a bond (b) and 

form a gas bridge (c), which increases in time (d) and leads to coalescence. The small boxes 

between the bubbles indicate single mesh cells. The vertical vector field in flow direction is 

shown in coloured scale. Taken from Wörner and Erdogan [6]. 

Fig. 25 shows the close-up visualizations of a small section in a bubble swarm 

simulation (M = 2.8×10-8, EöB= 1.265) with eight bubbles at four consecutive slightly 

different instants in time. (For more frames of this visualization over a longer period, 

see Fig. 53 in the Appendix.A.2). When the distance between two bubbles becomes 
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less than one mesh cell (Fig. 25 a) ) both two interfaces connect (Fig. 25 b) ) and form 

a gas bridge (Fig. 25 c) ) that grows in time (Fig. 25 d) ) and finally leads to coalescence. 

Since the spatial resolution of the gas bridge is only a few mesh cells, the estimation 

of interface normal vector and curvature is rather inaccurate and leads to large 

erroneous velocity vectors (Fig. 25 c) and d) ). It is obvious that the initialization of the 

coalescence process depends on the mesh size. Numerical coalescence can be 

prevented by using a separate VOF function for each bubble [186]. Such an approach 

is applied within the Multi-Phase project in the simulations of the TU-Darmstadt. 

However, the associate computational effort strongly increases with the number of 

bubbles. 

3.5.2. Selected simulation cases 

The overall void fraction is a critical issue in the bubble swarm simulations. Mono-

disperse flows, which represent a useful restriction for the analysis of the kL equation, 

are main interest in this work and bubble coalescence is therefore unwanted. To avoid 

coalescence, only selected results from the total of 29 different DNS cases (given in 

Table 15 in Appendix.A.1) with the rather low gas holdup of 2.1% and 2.5% in the 

domain are considered here. From many tests, a gas holdup εG of about 2.5 % is found 

as a reasonable upper limit for preserving mono-disperse flow in the simulations within 

this study. However, coalescence occurs occasionally even for lower values of εG. In 

the present set-up, εG depends on the ratio deq / Lwall and on the number of bubbles 

within the cubic domain. Here, Lwall = Lref = 5dB is chosen. The number of bubbles within 

the computational domain is either five or six. This corresponds to an overall gas 

content of εG = 2.1% and 2.5 %, respectively. The discussions in this Section have been 

published in Erdogan and Wörner [5].  

The direct numerical simulations and the analysis of the transport equation of 

liquid phase turbulence kinetic energy are motivated from the work of Ilic [20, 26]. In 

those works, the simulations were performed for Morton numbers (M) in the range of 

310-2  310-6 and the Eötvös number Eö = 3.065 with the density ratio  = G / L = 

1/2 and the viscosity ratio µ = µG / µL = 1. The bubble Reynolds number (Re) was in 

the range 1  90. In this study, the simulations are extended to lower values of the 

Morton number M and a wide range of the Eötvös number Eö and thus to higher values 

of Re as well as more realistic density and viscosity ratios. Numerical simulations for 

bubble swarms are performed for two scenarios, where some parameters are varied 

while others are fixed, see Table 5 and Table 6. The values of the liquid density slightly 

differ for Scenario A and B while the gas-to-liquid density ratio is always G/L = 1/25. 
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The liquid viscosity is in the range 0.44 mPas ≤ µL ≤ 5 mPas, the surface tension is in 

the range 0.0028 N/m ≤ σ ≤ 0.028 N/m. These variations yield values of the Morton 

number in the range 2.2×10-8 ≤ M ≤ 3.1×10-7. The cases contain five and six bubbles 

and the volume-equivalent bubble diameter is in the range 1 mm ≤ dB ≤ 3 mm, which 

corresponds to Eötvös numbers in the range 0.747 ≤ EöB ≤ 2.625. The cases with M ≈ 

10-7 are started from spherical bubbles with both, liquid and gas at rest. Instead, the 

cases for M ≈ 10-8 are started from simulations runs with M ≈ 10-7. For most cases, the 

simulations have already achieved statistically steady flow conditions. A mean value of 

the bubble Reynolds number, ReB, which is in the range 35 – 230 is calculated from 

the mean velocity of bubbles in the swarm. As expected, ReB increases for scenario A 

with increase of dB and EöB, and increases for scenario B with decrease of the Morton 

number. 

Table 5: Scenario A - Cases with variation of EöB and εG and following fixed parameters: L = 

867 kg/m3, µL = 5 mPas, σ = 0.028 N/m, M = 3.1×10−7, µG/µL = 1/3. Non-equidistant grid with 

100 × 100 × 120 cells. Adapted from Erdogan and Wörner [5]. 

Case A1 A2 A3 A4 

Number of bubbles 5 5 (3) 5 6 (4) 

dB [mm] 1.6 2.0 3.0 2.0 

εG [%] 2.1 2.1 2.1 2.5 

Eö 0.747 1.167 2.625 1.167 

ReB (mean) 35 55 115 60 

Coalescence No No (Later 2 times) No 2 times 

 

Table 6: Scenario B - Cases with variation of the Morton number and following fixed 

parameters: 6 bubbles, L = 752 kg/m3, εG = 2.5%, dB = 1 mm, EöB = 2.53,  = 0.0028 N/m, 

µG/µL = 1. Equidistant grid with 100 × 100 × 100 cells. Adapted from Erdogan and Wörner [5]. 

Case B-M7 B-M8 

Number of bubbles 6 6 

µL [mPas] 0.79 0.44 

M 2.210-7 2.210-8 

ReB (mean) 125 230 

Coalescence No No 

 

The Scenario A includes four simulations with five or six bubbles for three different 

bubble diameters in the range of 1.6  3 mm and the fixed parameters L = 867 kg/m3, 

µL = 5 mPas, σ = 0.028 N/m, µG/µL = 1/3. In all simulations, the ratio deq / Lref = 1/5 is 

fixed so that with variation of dB, the wall distance Lref and the volume of the 
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computational domain (Lref)3 also vary. The Cartesian grid consists of 100 × 100 × 120 

mesh cells. It is equidistant in x- and y-direction but non-equidistant in z-direction with 

finer cells near the walls to resolve the liquid film between bubbles and walls better. 

From Case A1 to A3, EöB increases and accordingly the bubble shape changes from 

almost spherical to ellipsoidal. For Case A1 and A3 the flow stays mono-disperse 

whereas in Case A2 and Case A4 coalescence occurs two times between different 

bubble couples. Case A2 is averaged over the time interval both with mono-disperse 

and bi-disperse flow. Case A4 is averaged only over the time interval during bi-disperse 

flow with four bubbles exists in the later part of the simulation, where the two larger 

bubbles having the double volume of the two smaller bubbles. The number of bubbles 

in Table 6 refers to the initial conditions of the simulation. The value in brackets for the 

cases with coalescence indicates the remaining number of bubbles after the 

coalescence. Gas holdup of Case A4 is εG = 2.5% while that of other cases in Scenario 

A are εG = 2.1%. 

The Scenario B includes two simulations with six bubbles for a bubble diameter 

of 1 mm and the fixed parameters L = 752 kg/m3, σ = 0.0028 N/m, µG/µL = 1. The 

Cartesian grid consists of 100 × 100 × 100 mesh cells and is equidistant in all directions. 

The gas holdup εG = 2.5% and the Eötvös number Eö = 2.53 are also fixed. The Morton 

number is varied from 2.2×108 to 2.2×107 due to different liquid viscosities (µL = 0.79 

and 0.44 mPas). 

3.5.3. Domain replication 

In Fig. 26, on the right side, it is illustrated how a single domain is replicated to 

multiple domains and transform to a bubble column, as shown on the left side of the 

figure. For the DNS calculations with multiple bubbles, to limit the computation time 

until a statistically steady state is reached and to improve the statistical evaluation in 

general, the following strategy is applied. First, a simulation with 4  8 bubbles in a 

small domain was performed till the statistically steady state. The DNS data on the last 

time points were then replicated in the both periodic directions. This increases the 

computational domain and the number of bubbles by a factor of four where the gas 

content remains the same. The simulations were then continued for the four-fold larger 

computational domain (with more degrees of freedom for the relative arrangement of 

the bubbles) till a statistically steady state which can be evaluated. This procedure is 

tested in Chapter 4 and the results are reliable. 
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Fig. 26: Left: A view from the simulations (replicated domain of Case B-M7, Table 6). Right: 

An illustration of replicating the domain in the direction of periodic boundary conditions in 

order to increase number of bubbles. 

3.5.4. Summary of Section 3.5 

For the bubble swarm simulations, the values of liquid viscosity and surface 

tension between gas and liquid are in the range of 0.44 mPas ≤ µL ≤ 5 mPas and 

0.0028 N/m ≤ σ ≤ 0.028 N/m, respectively. These values yield the Morton number 

between 2.2×10-8 ≤ M ≤ 3.1×10-7 and the Eötvös numbers in the range of 0.747 ≤ Eö 

≤ 2.625. The bubble swarm simulations are performed in a domain with an overall gas 

content of εG = 2.1% and 2.5 % containing five or six bubbles with the volume 

equivalent bubble diameter 1 mm ≤ dB ≤ 3 mm.  

DNS of bubble swarms suffer from imprecise treatment of coalescence, which is 

– depending on the numerical method – either completely suppressed or artificially 

enhanced [6]. In the bubble swarm simulations, numerical coalescence occurs related 

to the mesh size and the VOF method. The process takes place mainly within a single 

mesh cell. Using a separate VOF function for each bubble [186] is recommended in 

the literature to circumvent numerical coalescence but this requires high computational 

effort depending on the number of bubbles. Alternatively, the physical and numerical 

parameters must be limited to preserve mono-disperse flow in the simulations. In this 

work, the void fraction in the domain is limited to 2 – 2.5 %. Despite the limitations, 

coalescence still occurs occasionally. To avoid the coalescence the ratio of the wall 

distance to the bubble diameter Lwall / dB > 5 is another necessary condition. To 

maintain the rectilinear bubble trajectory with least possible lateral motions the Morton 
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number is chosen between 2.2×10-8 ≤ M ≤ 3.1×10-7 whereas the Eötvös number is in 

the range of 0.747 ≤ Eö ≤ 2.625.  

Another problem in multi-bubble simulations is the approach of bubbles toward 

the wall. This problem is avoided by using a grid that is non-equidistant in wall direction 

with refinement near the side walls to resolve the liquid film between the bubble and 

the wall. The ratio of Lwall / dB > 5 is also important to avoid wall contact of bubbles if 

the liquid film between bubble and wall are not well resolved.  

The number of bubbles is increased using a domain replication methodology. In 

this study, the computational domain with up to 64 bubbles are obtained but because 

of required time step width and high CPU effort only the simulation up to 24 bubbles 

are further performed and analyzed for the turbulence kinetic energy. A grid resolution 

of 20 cells per bubble diameter and a liquid-to-gas density ratio of 25 are used to obtain 

results that are independent from the mesh size and the density of gas. The gas-to-

liquid viscosity ratio is µ ≤ 1.  
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4. Analysis of Turbulence Kinetic Energy Equation 
of Liquid Phase 

This Chapter presents the evaluation of the DNS results of the bubble swarm 

simulations for development of improved turbulence models for the Euler-Euler two-

fluid model. The focus here is on the transport equation for TKE of the liquid (kL-

equation given in Eq. (34)), which is the cornerstone in the statistical k- turbulence 

models commonly used for industrial applications. The methodological approach is 

explained in Section 2.5.4. Some part of the results and figures presented in this 

Chapter have been published in Erdogan and Wörner [5]. 

Hereafter, the DNS results from Section 3.4.5 are used to analyze kL-equation 

and to develop improved closure assumptions on this basis. For this purpose, first, the 

profiles and budget of kL, which is obtained by evaluation of all terms in Eq. (34) from 

the DNS data, is discussed. Then, the DNS results for the interfacial term IkL is 

compared with four closure relations from literature. This so-called a-priori-testing 

allows us to identify suitable models and propose potential improvements. The 

recommended model for IkL is tested in the two-fluid model computations in Chapter 5. 

4.1. Distribution of kinetic energy 

In Fig. 27, the wall-normal profiles of the turbulence kinetic energy of the liquid 

for the six cases in Table 5 and Table 6 are plotted. It can be seen that for Scenario-A, 

the maximum value of kL and the integral of kL profiles over the channel increase with 

the increase of dB and EöB. For Scenario-B, both values increase with the decreasing 

liquid viscosity and Morton number. For each scenario, kL increases with increase of 

the bubble Reynolds number. However, a comparison of Case B-M7 and Case B-M8 

with Case A4 shows that in the former two cases kL is lower although ReB is higher. 

This may be attributed to the different values of the viscosity ratio, which notably 

influences the liquid velocity in the bubble wake (cf. Section 3.3.4) [5]. 

Between the cases A2 and A4 it is difficult to make a certain comparison in terms 

of void fraction since for Case A4 coalescence occurs two times between different 

bubble couples thus eventually two initial size and two bubbles with double volume 

exist in the time interval of the statistical analysis. In Fig. 27, if we pay attention to the 

curve with light blue circles (Case A4), we can realize the influence of the different 

bubble sizes in the bi-disperse flow. The kinetic energy curve is not symmetrical since 

the main interfacial term is higher at certain regions depending on the higher void 

fraction of the merged bubbles. For other cases, almost symmetrical curves appear 
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even though slight changes are visible. This is because the evaluation period in a 

statistically steady state is not yet sufficient [5].  

 

 

Fig. 27: Kinetic energy of liquid velocity fluctuations generated by bubble rise through liquids 

for the selected cases Scenario A in Table 5 and Scenario B in Table 6. In the Scenario A 

cases, the EöB (0.747 for A1, 1.167 for A2 and A4, 2.625 for A3) and εG (2.1% for A1, A2, 

A3 and 2.5% for A4) are varied while M = 3.1×10−7 is fixed. In the Scenario B cases, the M 

is varied (2.2×10−7 for B-M7 and 2.2×10−8 for B-M8) while the εG = 2.5%, EöB = 2.53 are 

fixed. Figure is taken from Erdogan and Wörner [5]. 

Fig. 28 shows the components of the averaged mean liquid velocity for the bubble 

swarms in Case B-M7. The vertical component of the mean liquid velocity in flow 

direction uL,1 is higher than the ones in horizontal directions, uL,2 and uL,3. The velocity 

profiles are not symmetrical since the flow is not in an exact steady state. Periodic 

boundary conditions are applied for x1- and x2-directions. However, the structure of the 

liquid flow in x2-direction strongly depends on the number of suspended bubbles and 

therefore is more complex. The profiles, where the domain is replicated in flow direction 

and lateral direction, are well matching with the profiles of the initial domain. 

The root-mean-square (r.m.s) of liquid velocity fluctuations induced by motion of 

bubble swarms through liquid in each direction are given in Fig. 29, where the profiles 

of initial domain are compared with two different replicated domains: 2x1x1 where the 

domain is replicated only in flow direction and 2x2x1 where the replication is applied 

both in flow and lateral direction. The results for both replicated domains reflect are 
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very close to the initial domain. In Fig. 29 the fluctuations in the vertical direction 

strongly dominate the ones in the lateral and span-wise directions. The magnitude of 

the profiles in span-wise direction is higher than the one in the wall-normal direction. 

 

 

Fig. 28: Wall normal profiles of the turbulence kinetic energy of the liquid and mean liquid 

velocities for Case B-M7 given in Table 6 in comparison with replicated domain 2x2x1 (24 

bubbles). 

 

Fig. 29: Root mean square of liquid velocity fluctuations induced by motion of bubble 

swarms through liquid for Case B-M7 given in Table 6 in comparison with replicated domain 

2x1x1 (12 bubbles) and 2x2x1 (24 bubbles). 
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4.2. Budget of kL-equation 

In this Section, the budget of kL-equation, which is obtained by evaluating the Eq. 

(34) from the DNS data for the selected cases, is discussed. Except for the unsteady 

term, all terms are evaluated in accordance with the averaging method described in 

Section 2.4.4 (see more about it in Ilic [26]). The profile of the convection term on the 

left side of equation Eq. (34) was also evaluated, but it is not shown here since the 

values are negligibly small, compared to the other terms.  

 

a) b) 

  

c) d) 

  

Fig. 30: Budget of the exact kL-equation for Case A1 (a), Case A3 (b), Case A2 (c) and Case 

A2 after two coalescence (d). The cases are given in Table 5. 

Fig. 30 and Fig. 31 show the wall normal profiles of the mean gas content and 

the four closure terms on the right side of equation Eq. (34) as evaluated from the DNS 

data for the cases A1, A2, A3 and B-M7. The sum of four closure terms is indicated as 

the "out of balance term", OkL. This term should be close to zero for a statistically fully 

developed flow. For a statistically not fully developed flow, OkL represents essentially 

the unsteady term in Eq. (34). OkL also includes all inaccuracies based on the 

numerical evaluation of the other terms. For the cases evaluated in this study, the 
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magnitude of OkL is always much smaller than that of the maximum balance terms, 

such as the dissipation term  and the interfacial source term IkL. This indicates that the 

statistical evaluation is sufficiently reliable.  

For Case B-M7, all profiles in Fig. 31 are very symmetrical, which is because the 

six bubbles in this case rise relatively straight without big interaction among themselves. 

For the Case A1, A2 and A3 in Fig. 30 a), b), c), the profiles are much more 

asymmetrical due to the uneven number of bubbles. In Fig. 30 d), the asymmetry 

increases due to two coalescence. Also shown in the figures is the profile of the mean 

gas volume fraction G. On the parts where the bubbles with higher volumes appear, 

the high G values can be observed. It is zero in the regions close to the lateral walls 

(where the liquid flows downwards so that the lift force is directed away from the wall) 

and takes local values up to 9% (Case B-M7) and 6% (Case A3), although the overall 

gas holdup is only 2.5% and 2.1%, respectively.  

 

Fig. 31 also shows the budget of the exact kL-equation for Case B-M7 as the 

initialized domain as well as the replicated domain where the computational domain is 

enlarged and the number of bubbles is multiplied by a factor of four while the gas 

content remains the same. The replicated domain for Case B-M7 is demonstrated in 

Fig. 26 a). The simulations were then continued for the four-fold larger computational 

domain and the results were evaluated. The profiles after replication process nearly 

 

Fig. 31: Budget of the exact kL-equation for Case B-M7 given in Table 6. The balance terms 

are demonstrated before (6 bubbles) as well as after replication of the domain (24 bubbles) 

in x and y direction. Figure is taken from Erdogan and Wörner [5]. 
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match with the initial domain. The magnitude of the curves is reflected qualitatively and 

almost quantitatively. The test was successful as four times higher number of bubbles 

could be obtained without high computing times. The ideal comparison of replication 

method could be with a domain initially with 24 bubbles. However, such a test causes 

unacceptable computing time and therefore it was ruled out. The replication method 

offers important advantages for analysis of the budget of turbulence kinetic energy for 

higher number of bubbles in the domain. 

The interfacial term, IkL, contains the specific interfacial area ia   and is thus 

specific for two-phase flows. Since the interfacial term is related to the presence of the 

bubbles and their relative velocity, its shape strongly resembles the shape of the 

average bubble volumetric fraction G [29]. Comparing the profile of IkL with that of G 

shows that IkL has large positive values in regions with high void fraction and is zero in 

regions always occupied by liquid. This indicates that the rising bubbles create velocity 

fluctuations in the bubble wakes and thereby pseudo-turbulence. Clearly, IkL is the main 

source of liquid turbulence kinetic energy whereas production by shear stresses PkL is 

negligible [5]. The same results are reported in [26].  

 

The magnitude of the dissipation rate of kL is very large in two-phase regions but 

is non-zero in pure liquid regions close to the walls. Thus, production and dissipation 

are not in local equilibrium. Instead, molecular and turbulent diffusion DkL redistribute 

the surplus of production in regions of high void fractions toward regions of low or zero 

 

 

Fig. 32: Diffusion term in the exact kL-equation for Case B-M7 given in Table 6. 
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void fraction. So to say, diffusion processes transport the energy generated by bubble 

interfaces from the two-phase regions towards the single-phase regions [5]. The 

diffusion term DkL in the exact kL-equation is shown in Fig. 32 for Case B-M7. It consists 

of two sub-terms: one molecular (first term) and one turbulent term (second term). The 

profiles of both sub-terms have complex distributions and the turbulent part dominates 

over the molecular part. Molecular and turbulent diffusion transports the energy 

generated by bubble interfaces from the two-phase region towards the single-phase 

regions. 

Santarelli and Fröhlich [28] and Santarelli et al. [29] investigated the turbulence 

kinetic energy budget in a vertical turbulent channel flow configuration with realistic 

density difference by employing data obtained from Euler-Lagrange Direct Numerical 

Simulations. They addressed the dynamics of bubbles in a channel flow with 

background turbulence that is different from the rising bubbles in a quiescent fluid in 

this dissertation. They showed that the OkL term is almost zero everywhere for a single-

phase case, as expected. For the bubble swarm case, its magnitude is only around 

10% of the dissipation term, which is the largest in magnitude. For the cases in this 

study, the magnitude of OkL is also much smaller than the maximum balance term 

which is generally the dissipation term . Similar to this study, they also showed that 

the dissipation term  presents a local minimum at the same position of the maximum 

of IkL and there is a balance between the interfacial term and the dissipation term 

whereas the production is negligible. 

4.3. Interfacial turbulence transfer 

In this section, the profile of the exact interfacial term in the kL equation as 

evaluated from the DNS data with profiles predicted for IkL by different models are 

compared. This so-called a-priori test will allow identifying promising model 

approaches as well as model deficiencies and, on this basis, to develop model 

improvements. Since the interfacial term IkL constitutes the main source of kL, this term 

should be modelled properly [5]. In literature, several models have been proposed for 

closure of this term, see e.g. [14].  

Closure assumptions from literature relate the interfacial term in various ways to 

the rate of work performed by hydrodynamic forces [14, 26]. The most important 

hydrodynamic force is the drag force FD. By taking the product of FD with the relative 

velocity between the phases, the rate of the work done by FD is obtained as 

3

D D rel D rel

3

4

 
 

G L

B

W F u C u
d

 (75) 
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The relative velocity is computed as 

rel G L u u u  (76) 

Table 7: Models from the literature for the interfacial term IkL in the kL-equation. 

Reference Mentioned name Model for the interfacial term IkL 

Ishii and Mishima [187] Ishii-model DW  

Olmos et al. [136] Olmos-model D0.75 W  

Lahey [24] Lahey-model 
4/3
D D D(1 ) / 3C C W     

Pfleger and Becker [137]  Pfleger-model (PB) D1.44(1 )G W   

 

In Table 7 four different models from literature are listed. Those models are later 

tested against the DNS data. They relate IkL differently but linear to WD. In the model of 

Ishii and Mishima [187] the interfacial term is L DkI W , while the models of Olmos et 

al. [136], Lahey [24], Pfleger and Becker [137] all include a prefactor. In the Lahey-

model, the prefactor is not constant but a function of CD, whereas in the Pfleger-model 

it is a function of G. The drag coefficient CD in Ishii-model, Lahey-model and Olmos-

model are evaluated from [103] as 
0.5

D B(2 / 3)C Eö . For Eötvös numbers in the range 

0.747 – 2.625 we obtain from this correlation drag coefficients in the range of 0.576  

CD  1.08. The constant value CD =0.44 in the Pfleger-model is valid for flow around a 

rigid sphere at Reynolds number ReB > 1000 while for our cases ReB is much lower 

and in the range 35 – 230 [5]. Initially in this work, (see Erdogan and Wörner [5]), the 

interfacial term models were analyzed based on the approach originally given in their 

related papers. For models Ishii (given as LL by Erdogan and Wörner [5]) and Olmos, 

if 
0.5

D B(2 / 3)C Eö   is inserted in Eq. (75) then Bd   cancels so that the influence of 

coalescence on IkL only occurs via the volumetric fraction G. Thus, the models that 

define IkL proportional to DW  with 
0.5

D B(2 / 3)C Eö do not account at all for the influence 

of the bubble diameter and its change. For the Pfleger-model this is not the case since 

DC  is constant, hence, the value of Bd  in Eq. (75) is still in charge. The Pfleger-model 

provided the best fit for all cases in [5].  

Extending the work in Erdogan and Wörner [5], one unique drag law proposed by 

Tomiyama et al. [102] for clean systems in Eq. (64) is considered to allow for a better 

comparison of the models for the analysis of the interfacial turbulence transfer. Thus, 

all the models define IkL proportional to DW  and account for the influence of the bubble 

diameter and its change. The model is repeated here for convenience: 
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 0.687
D

8

3 4

16 48
max min 1 0.15 , ,C

Eö

Eö
Re

Re Re


  
     

   (77) 

Tomiyama drag model has been verified for a wide parameter range. It is also tested 

in Section 3.4.3 for the single bubble cases and provided satisfactory results. Some of 

drag coefficient models from the literature are also discussed in Section 2.5.2. 

Furthermore, it is interesting to see in Fig. 33 that the profiles of GCD resulted as 

different terms of Tomiyama drag model for the different DNS cases. Fig. 33 shows 

that Eq. (77) results for Case A1 as the first term    0.687
D 16 1 0.15C Re Re  (Schiller-

Naumann with Hadamard-Rybzinsky bubble correction), for Case A2 it is partly the first 

and partly the second term D 48C Re  from Levich [86] (for potential flow for spherical 

fluid particles), and for Case A3 it is the third term    D 8 3 4C Eö Eö  (for deformed 

and spherical cap bubbles). It should be noted that the bubble diameter of the originally 

mono-disperse flow is applied in Eq. (75) and for the determination of Eötvös number, 

Reynolds number and consequently the Tomiyama drag model, even for the cases with 

coalescence. An alternative, which is not investigated here, would be to use the “Sauter 

mean diameter” approach. 

 

 

 

Fig. 33: Profilies of GCD for the Case A1, A2 and A3. The color coding refers to the three 

terms in the right-hand-side of Eq. (75) purple = term 1, orange = term 2, green = term 3. 

 

Fig. 34 shows the wall normal profiles of the IkL (solid lines, left scale) and the 

local gas content (dashed orange line, right scale). Based on the described procedure, 
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the profiles predicted from the models in Table 7 (colored solid lines with symbols) were 

determined for IkL and compared with the exact profiles from the DNS data (black solid 

line) for the mono-disperse Case A1 (a), Case A2 (b), Case A3 (c) and Case A4 (d). In 

the figures, the models for the interfacial term are normalized with liquid density in 

order to be compatible with the exact formulation as defined in TURBIT-VOF [26]. The 

black solid line in Fig. 34 corresponds to the blue line representing the interfacial 

closure term in Fig. 31. It is noted that for Case A2, the profiles in the figure are 

evaluated for the time interval of mono-disperse flow and the first coalescence occurs 

shortly after. This means that the distance between two bubbles that will cause 

coalescence is very low (at x3/Lref  0.6) and therefore the flow is unstable, which can 

be realized from the DNS profiles. 

The closest approximation to the DNS curve is obtained by the Olmos-model for 

cases A1, A2 and A3. For Case A4, where the coalescence occurs, the Olmos-model 

gives an acceptable match with the magnitude of interfacial term for the mono-disperse 

(x3/Lref < 0.3) part of the curve while for the bi-dispersed (x3/Lref > 0.3) part 

underestimates it. If we consider the volume-equivalent diameter of two coalesced 

bubbles for calculation of FD, due to inverse proportion the value of IkL would be 26% 

lower [5], which means IkL gets closer to the Olmos-model at the location of the 

coalesced bubbles (at x3/Lref  0.5 – 0.7). The Ishii-model and in particular the Pfleger-

model overestimate IkL for all cases and the Lahey-model slightly underestimates it 

except Case A2.  

Qualitatively, all four models reflect the bias caused by coalescence although the 

initial Bd  value is used for BEö  in DC  to calculate IkL, not Bd  after coalescence. For 

Case A4, none of the models can reflect the magnitude of the curve (at x3/Lref  0.35), 

where a second coalescence is approaching. This is because the coalescence causes 

a strong variation of bubble trajectories and fluctuations, which has an adverse effect 

on accuracy of the statistical evaluation of the kL-equation. On the contrary, the bubbles 

in case of mono-disperse flow demonstrate almost rectilinear trajectories and thus the 

flow is in a quasi-steady state where the fluctuations are also almost stable.  

Overall, all models investigated here yield a profile similar in shape but different 

in magnitude. The Pfleger-model is valid for higher bubble Reynolds numbers. Among 

them Olmos-model is the best fit. Lahey-model is the second closest model since it 

reflects the magnitude of the curves locally. The Olmos-model and Lahey-model, in 

combination with the drag correlation of Tomiyama, yield satisfactory agreement with 

the profiles of the exact interfacial term for different cases and thus can be used for the 

two-fluid simulations in this study. 
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Fig. 34: Predictions of interfacial turbulence transfer by engineering models for Case A1 (a), 

Case A2 (b), Case A3 (c) and Case A4 with coalescence (d). The solid orange line is the 

void fraction. The models for the interfacial term are normalized with liquid density. The 

figures are based on the similar figures from Erdogan and Wörner [5] but averaged at further 

time points here. 

The Case A2 and A3 are exactly same cases but only with different bubble 

diameter. In Erdogan and Wörner [5] Case A2 and A3 are compared with Pfleger-model. 

The plot is not repeated here, however, comparing the Fig. 34 b), c) one can see that 

less interfacial area is present with smaller bubbles (Case A2) and therefore they 

create less interfacial turbulence than bigger ones (Case A3). For Case A3, lateral 

motion of bubbles occurs by the increase of BRe  and therefore the interfacial term does 

not become zero in most part of the domain except near wall regions [5].  

In their work, Santarelli and Fröhlich [28] and Santarelli et al. [29] considered 

bubbles of fixed spherical shape with low Eötvös number, rising in contaminated water 

in a much larger domain. The authors assessed the model performances in the 

literature by means of the DNS data. The drag coefficient different for each simulation 

was obtained by a formula as in Roghair et al. [188]. The common models considered 

in both work are the Olmos-model, Pfleger-model and Ishii-model. They considered 

Ishii-model as later improved version by Troshko and Hassan [22]. In Santarelli et al. 



95 

[29], for a single test case, the Ishii-model overestimates the interfacial term by around 

17% while in Fig. 34 it is between 15% up to 50% locally. A similar deviation is also 

observed in Ilic et al. [19]. The Pfleger-model yields an over-estimation of around 80% 

for the case of Santarelli et al. [29] while the Olmos-model provides an underestimation 

of IkL by 12%. The Olmos-model, the best fit in Fig. 34, in mono-disperse regions 

underestimates the IkL by max. 12-13% locally, but generally by less than 10%. Overall, 

also in their results all models yield a profile fairly similar in shape compared to the 

DNS data whereas the magnitude can differ substantially [29]. They also proposed a 

model by fitting the available data for their simulations but it is only valid for that specific 

case.  

4.4. Summary 

The development of improved turbulence closure relations for bubble-driven 

flows is hindered by the lack of detailed experimental data on the various closure terms 

in the turbulence kinetic energy equation. Direct numerical simulations of bubble 

swarms can provide such data. For the model development, extensive direct numerical 

simulations for bubble swarms are performed within a sub-region of a flat bubble 

column. From the DNS data, the liquid phase turbulence kinetic energy kL and its 

analytical transport equation are evaluated. The statistical analysis of kL profiles show 

that the maximum value of kL and the integral of kL profiles over the channel increases 

with i) the increasing dB and EöB for a fixed liquid viscosity and Morton number and ii) 

the decreasing liquid viscosity and Morton number for a fixed dB and EöB.  

The evaluation of the individual terms in the kL equation indicates that the main 

source term for the turbulence kinetic energy is due to the interaction of interfaces. In 

bubble columns, the large-scale liquid recirculation generates shear-induced 

turbulence (especially near the walls) which is superposed to the BIT. However, for the 

conditions examined here the production due to shear stresses is negligible. 

Production and dissipation are not in local equilibrium. Therefore, molecular and 

turbulent diffusion redistribute the surplus of production of kL from regions of high to 

low void fractions or, another way of saying, from the two-phase regions towards the 

single-phase regions. The results for the budget of kL equation are consistent with the 

investigations from the literature [26, 28, 29].  

In its modeled form, the kL equation is a cornerstone for CFD simulations of 

bubbly flows with statistical turbulence models based on the Euler-Euler approach. 

Here, the DNS results are used for a priori-testing of closure assumptions for the 

interfacial term in the kL equation. This so-called a-priori-testing allows us to identify 
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suitable models and to propose potential improvements.  

The models from Olmos et al. [136] and Lahey [24] identified as suitable models 

for the closure of the interfacial term IkL, as they are relatively good agreement with the 

DNS data. The Olmos-model with its linear dependency on the drag coefficient CD due 

to constant prefactor is more suitable than the Lahey model with its non-linear 

dependency on CD. The evaluation of models for the interfacial term is restricted to a 

single drag model to allow for a comparison independent from CD. The generic model 

from Tomiyama [102] for clean systems is verified for a wide parameter range and 

utilized for calculations. It is interesting to see that the profiles of αGCD for the different 

DNS cases result from different terms in the equation of CD. For one case, CD is 

calculated with two terms in the Tomiyama drag model. 

Strong variation of bubble trajectories and fluctuations due to coalescence has 

influence on the accuracy of the statistical evaluation of the kL-equation. All the tested 

models reflect the tendency of the interfacial term (even for coalescence) on the 

magnitude of the curves qualitatively, but not quantitatively. The Olmos-model is the 

closest model for reflecting coalescence. Using the volume-equivalent diameter of 

coalesced bubbles for calculation of the interfacial term provide better estimations after 

the coalescence.  
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5. Euler-Euler Simulations of a Bubble Column 

In this Chapter, firstly the numerical code used for the simulations, the test column 

which is the basis for the simulations and the methodology of data analysis are 

explained. Later, the results and analysis of Euler-Euler simulations are discussed. 

5.1. Set-up and procedures 

5.1.1. Industrial DN330 bubble column reactor 

The Euler-Euler simulations are performed based on the experimental studies 

[189, 190] by Evonik Industries and the Helmholtz-Zentrum Dresden-Rossendorf 

(HZDR). The gas holdup and the bubble size distribution are investigated for an 

industrial high-pressure bubble column reactor of Evonik Industries AG in Marl 

(Germany). The stainless-steel bubble column (DN330) has a 5 m height (liquid level: 

3.88 m) and a diameter of 0.33 m. With the chosen column diameter, it was aimed to 

reduce the wall effects. The sketch of the test facility is shown in Fig. 35. In the 

industrial bubble column, the gas (nitrogen) and liquid phase (cumene or deionized 

water) are operated in co-current upward flow. The gas is introduced to the column by 

a perforated plate sparger (352 × 1 mm2 holes) (see Fig. 36), leaves the column at the 

top and the liquid is circulated by a pump. For this bubble column, experiments were 

performed with a gas superficial velocity in the range of 0 to 0.05 m/s at low superficial 

liquid velocities of 0.008 and 0.018 m/s for operating temperatures and pressures up 

to 75 °C and 36 bar [189, 190]. Radial profiles of local gas content at 2.23 m height 

were measured by high-resolution gamma-ray computed tomography (GammaCT) 

and wire-mesh sensor (WMS) which were developed by the HZDR (for details see [191, 

192] ). Circular dimensions of the DN330 bubble column are given in Table 8. 

Table 8: Circular dimensions of the DN330 bubble column and inlets / outlets. 

 Diameter (m) Cross sectional area (m2) (A=πD2/4) 

Bubble column 0.330 Acolumn = 0.08553 

Gas inlet 0.233 AG,inlet = 0.04263 

Holes at gas inlet 0.001(x352) AG,hole = 0.0004524 

Liquid inlet 0.024 AL,inlet  = 0.00159 

Gas outlet 0.045 AG,inlet  = 0.0002765 
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a) 

 

 

 b) 

 

Fig. 35: a) DN330 bubble column geometry for Euler-Euler simulations. The measuring 

point for simulations is shown with a bolded line at 2.23 m. b) Sketch of the industrial DN330 

bubble column of Evonik Industries AG (Marl, Germany) [189, 190] 

Measuring 
point at 2.23 m 

Gas 
inlet 

Liquid inlet 

Gas outlet 

Liquid outlet 
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a) b) 

 

 

c) d) 

  
 

Fig. 36 Perforated plate sparger a) Sparger used in experiments (Photo provided by A. 

Bieberle, HZDR), b) Geometrical representation of the sparger in E-E simulations (2D), c) 

Gas (red) and liquid inlet in E-E simulations (3D), d) Gas (red) and liquid (blue) inlet in E-

E simulations (view from above). Dimensions of the perforated plate sparger are provided 

in Table 8. 

5.1.2. Numerical set-up 

For Euler-Euler simulations, the cases at different conditions were selected from 

the experimental study based on variety of numerical tests. The gas superficial 

velocities are in the range of 0.0014 ≤ UG,0 ≤ 0.0056 m/s and the superficial liquid 

velocities are in the range of 0.0083 ≤ UL,0 ≤ 0.0175 m/s. The operating temperature is 

23 °C ≤ T ≤ 70 °C and pressure is in the range of 1 bar ≤ p ≤ 36 bar. The physical 

properties and initial conditions for the cases are given in Table 9 and Table 10.  

The superficial velocities measured in experiments cannot be used as inlet 

parameters. For numerical purpose, the inlet and outlet geometry of DN330 are 

designed as smeared surfaces and the velocity values are ought to be converted 

according to cross-sectional area. Hence, the superficial velocities are converted into 
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the inlet velocities by calculating the volumetric flow rate (Q) across the cross-sectional 

area (A=πD2/4) given in Table 8 for each inlet and outlet as 

G G,inlet G,inlet G,inlet G,0 column G,outlet G,outlet G,outletQ = u A U A u A    (78) 

L L,inlet L,inlet L,inlet L,0 columnQ = u A U A    (79) 

Here,   is the gas fraction for each phase at the corresponding inlet or outlet. The 

liquid inlet and the gas outlet are open pipe and therefore L,inlet  and G,outlet  are always 

equal to 1. The inlet velocity uL,inlet for liquid phase is then calculated from the balance 

of Eq. (79) and the outlet velocity uG,outlet for gas phase is calculated from the balance 

of Eq. (78). However, for the uG,inlet in Eq. (78) first G,inlet  must be known. The gas is 

sparged to the column through the 352 holes each with a 1 mm2 cross sectional area. 

In order to represent the geometry with holes as a smeared surface the inlet gas 

fraction is calculated as 

 

 

2

hole
G,inlet 2

G,inlet

352 0.001 / 4352
0.0064838

0.233 / 4

A

A





    (80) 

The calculated uL,inlet, uG,inlet and uG,outlet are the initial velocity values for E-E simulations. 

The corresponding velocity values are given in Table 10. These values are entered in 

the U.air and U.water files under “0” folder in OpenFOAM®. The values of k and ε, 

which must be given as inlet conditions, are obtained from the turbulence intensity Ti 

and characteristic length L by means of the correlations explained in Section 5.1.3 and 

the results of the calculations are given in Table 11. 

In the first test simulations, the gas outlet velocity is calculated with the velocity 

inlet/outlet boundary condition of OpenFOAM® while setting the outlet pressure 

boundary condition to a fixed value. However, the simulation did not converge. As the 

superficial velocity across the cross-section and the inlet velocities are known from the 

experiments, the gas velocity at the outlet is easily calculated from the volumetric flow 

rate by Eq.(78). Therefore, the velocity is set to the calculated fixed value uG,outlet for 

each case at the gas outlet and the pressure is defined as the fixedFluxPressure [193] 

boundary condition where the pressure is evaluated by the flux on the boundary which 

is specified by the velocity boundary condition. This means that the pressure is 

calculated according to the velocity input. 

The three-dimensional geometry of the DN330 bubble column for the simulations 

and the grid were provided by Evonik Industries. The liquid at rest without gas content 

was determined as initial condition. The bubble diameter is set to dB = 4 mm at 1 bar 

according to the peak of measured bubble size distribution in experiments [189]. At 
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18.5 and 36 bar, experimental information about the bubble diameter is not available 

for the selected flow conditions in this work. Bubble diameter in bubble columns were 

studies by many authors [194-196], extensively reviewed by Rollbusch et al. [197] and 

investigated in the “Multi-Phase” project via the experiments [190]. The authors found 

that dB is smaller at elevated pressures. At 18.5 bar the bubble diameter is in the range 

of 2.25 ≤ dB ≤ 4 mm and at 36 bar the dB = 2.25 mm. The constant bubble size is 

important for the initial conditions however depending on the operating conditions the 

dB is modified during the simulation due to bubble break-up and coalescence. Thus, 

the average bubble size is expected to be smaller at elevated pressures and 

temperatures [197, 198].  

Table 9: Physical parameters of water, cumene and nitrogen (N2) in the Euler-Euler 

simulations. The values were obtained via measurements from the experiments within the 

Multi-Phase Project. Surface tension (σ) data are only available for low temperature (23 °C). 

Therefore, same values are also used for high temperature (70 °C). 

 Water 
Water-

N2 
Cumene 

Cumene-

N2 
N2 

p 

(bar) 

T 

(°C) 

ρ 

(kg/m³) 

μ 

(Pa.s) 

(10-4) 

σ 

(N/m) 

ρ 

(kg/m³) 

μ  

(Pa.s) 

(10-4) 

σ 

(N/m) 

ρ 

(kg/m³) 

μ 

(Pa.s) 

(10-4) 

1 
23 997.05 8.50 

0.0715 
867.16 7.90 

0.0260 
1.13 0.178 

70 974.84 4.05 820.49 4.27 0.97 0.198 

18.5 
23 997.83 8.50 

0.0687 
876.91 7.90 

0.0255 
20.9 0.181 

70 975.62 4.05 825.85 4.27 17.8 0.201 

36 
23 998.62 8.50 

0.0671 
869.65 7.90 

0.0252 
40.8 0.184 

70 976.39 4.05 828.73 4.27 34.6 0.204 
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Table 10: Initial conditions for the E-E Simulations. 

Scenario Water - N2 p (bar) T (°C) dB (mm) IkL CD UL,0 (m/s) UG,0 (m/s) uL,inlet (m/s) uG,inlet (m/s) uG,outlet (m/s) 

A 

Case A (Base) 1 23 4 Lahey S-N 0.0084 0.0056 1.588 1.733 0.301 

Case A1  1 23 4 Olmos S-N 0.0084 0.0056 1.588 1.733 0.301 

Case A2  1 23 4 2xLahey S-N 0.0084 0.0056 1.588 1.733 0.301 

B 

Case B (Base) 18.5 23 2.25 Lahey S-N 0.0084 0.0055 1.588 1.702 0.295 

Case B1  18.5 23 2.25 Olmos S-N 0.0084 0.0055 1.588 1.702 0.295 

Case B2  18.5 23 2.25 2xLahey S-N 0.0084 0.0055 1.588 1.702 0.295 

Case B3  18.5 23 3 Lahey S-N 0.0084 0.0055 1.588 1.702 0.295 

Case B4  18.5 23 4 Lahey S-N 0.0084 0.0055 1.588 1.702 0.295 

Case B5  18.5 70 2.25 Lahey S-N 0.0084 0.0055 1.588 1.702 0.295 

Case B6  18.5 23 2.25 Lahey S-N 0.0084 0.0034 1.588 1.052 0.183 

Case B7 18.5 23 2.25 Lahey S-N 0.0084 0.0014 1.588 0.433 0.075 

Case B8  18.5 23 2.25 Lahey S-N 0.0175 0.0055 3.300 1.702 0.295 

Case B9 18.5 23 2.25 Lahey To 0.0084 0.0055 1.588 1.702 0.295 

Case B10 18.5 23 2.25 Olmos To 0.0084 0.0055 1.588 1.702 0.295 

C 

Case C1 (Base) 36 23 2.25 Lahey S-N 0.0084 0.0055 1.588 1.702 0.295 

Case C2  36 23 2.25 Lahey S-N 0.0083 0.0039 1.569 1.207 0.209 

Case C3  36 23 2.25 Lahey S-N 0.0084 0.0014 1.588 0.433 0.075 

 Cumene - N2           

D 

Case D1 1 70 2.93 Lahey S-N 0.0082 0.0068 1.550 2.105 0.365 

Case D2 18.5 70 2.94 Lahey S-N 0.0082 0.0061 1.550 1.888 0.328 

Case D3 36 70 2.94 Lahey S-N 0.0082 0.0054 1.550 1.671 0.290 

Case A, Case B and Case C1 are designed as base cases for other cases with same initial. The initial conditions differing from the base cases are bolded. 

Abbreviations: p: pressure, T: temperature, dB: bubble diameter, IkL: interfacial term, CD: drag model, U0: superficial velocity, u: inlet or outlet velocity S-N: 

Schiller-Naumann drag model [101] , To: Tomiyama drag model [102]. 
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Table 11: Boundary conditions as input parameters for the Euler-Euler Simulations. 

 

Pressure Temperature Case 
Water N2 

k (m2/s2) ε (m2/s3) νturb (m2/s) k (m2/s2) ε (m2/s3) νturb (m2/s) 

1 bar 23 °C A, A1, A2 4.310-3 2.710-2 6.010-5 2.3 10-2 8.23 5.810-6 

18.5 bar 
23 °C 

B, B1, B2, B3, B4, B9, B10 

4.310-3 2.710-2 6.010-5 

1.010-2 2.63 3.910-6 

B6 4.610-3 7.410-1 2.610-6 

B7 9.810-4 7.210-2 1.210-6 

B8 1.510-2 0.89 1.110-4 1.010-2 2.63 3.910-6 

70 °C B5 3.610-3 2.110-2 5.510-5 1.110-2 2.91 4.110-6 

36 bar 23 °C 

C1 

4.310-3 2.710-2 6.010-5 

9.210-3 2.07 3.710-6 

C2 5.010-3 0.84 2.710-6 

C3 3.010-3 0.37 2.110-6 

 Cumene  

1 bar 

70 °C 

D1 

3.6 10-3 2.210-2 5.610-5 

3.5 10-2 15.1 7.110-6 

18.5 bar D2 1.410-2 3.82 4.510-6 

36 bar D3 9.510-3 2.18 3.710-6 
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5.1.3. Boundary conditions 

The detailed boundary condition information is required to operate the model 

equations for k and ε and to initialize the simulations until the flow come to a steady 

and stable state. Therefore, the distributions of k and ε must be given as inlet conditions. 

However, measurements of both quantities are rarely available. Possible approaches 

could be: (1) using the values of k and ε from the literature [113] or (2) obtaining rough 

approximations for the inlet distributions of k and ε from the turbulence intensity Ti, 

characteristic length L and the turbulence length scale (mixing length) l, by means of 

the correlations explained below. The latter was considered in this work because the 

boundary conditions are calculated from real parameters of the operating fluids.  

The turbulence length scale l is a physical quantity related to the size of the large 

eddies that contain the energy in turbulent flows. In fully developed duct flows, l, is 

restricted by the size of the duct, since the turbulent eddies cannot be larger than the 

duct. An approximate relationship between l and the physical size of the duct is [199] 

0.07l L  (81) 

The factor of 0.07 is based on the maximum value of the mixing length in fully-

developed turbulent pipe flow, where L is the diameter of the pipe [199]. For a circular 

tube, the hydraulic diameter is the diameter of the tube. 

 2

H

4 / 44 DA
D D

P D




    (82) 

where A is the cross-sectional area and P is the wetted perimeter of the cross-section. 

Therefore, in a channel of non-circular cross-section, L can be defined as the hydraulic 

diameter, L=DH [199].  

The turbulent dissipation rate can be determined by the length scale from this 

relationship 

 
3/2

3/4 k
C

l
   (83) 

Here C   is 0.09 and constant. The transport equations of the standard k- model 

contain five adjustable constants [121], which are given in Table 12.  



105 

Table 12: Coefficients of the turbulence models. 

Cµ C1 C2 σk σc 

0.09 1.44 1.92 1.00 1.30 

 

Turbulence intensity Ti is defined as the average root mean square (r.m.s.) 

velocity given in Eq.(32), which is divided by a reference mean flow velocity, and is 

linked to the turbulence kinetic energy k 

2
rms

i

mean mean


 

u u
T

u u
 (84) 

Here, urms is the r.m.s. of the turbulent velocity fluctuations at a particular location over 

a specified period of time and umean is the average of the velocity at the same location 

over same time period. By substituting 
2u  from Eq. (33) into Eq. (84) then 

 
1/2

i

mean

2 / 3


k
T

u
 (85) 

When the velocities only in flow direction (for example x component) is accounted for, 

then Eq. (33) becomes  

2

2

xu
k


  (86) 

and from Eq. (84) and Eq. (86) the turbulence intensity for x component is then  

 
1/2

rms
i

mean mean

2
 

ku
T

u u
 (87) 

In practice many authors seem not to use the three components of average r.m.s. 

velocity for applying the turbulence intensity (see Eq. (85)) but instead prefer using 

only flow direction component as in Eq.(87). The turbulence kinetic energy k can be 

defined by Ti from Eq. (87) as 

 
2

mean i

1

2
k u T  (88) 

At the core of a fully-developed duct flow, the turbulence intensity can be estimated 

from the following formula derived from an empirical correlation for pipe flows [199]: 

 H

1/8

i D0.16


 
u

T Re
u

 (89) 

where the Reynolds number is defined by the hydraulic diameter 
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5.1.4. Modelling for two-fluid simulations 

The formulation of the inter-phase momentum transfer term and the two-phase 

turbulence model is the main feature of the two-fluid methodology because it depends 

on the exact nature of the flow [135]. The two-fluid simulations are performed with 

OpenFOAM® and the top-level solver twoPhaseEulerFoam is used as solver.  

Models for turbulence: 

The results in Section 4.3 from the investigation of interfacial term in the exact kL-

equation via DNS had revealed that the models for the interfacial term defined by 

Lahey [24] and Olmos et al. [136] yield a reasonable-satisfactory agreement with the 

profiles of the exact interfacial term for different cases. In OpenFOAM® two variations 

of k- turbulence model approaches are available: the standard k- model [121] and 

the so-called basic-mixture turbulence model according to the work of Rusche [131, 

135]. The details for both approaches are explained in Section 2.3.4. 

The standard k- model with the extension of the interfacial term from the work of 

Lahey [24] is named as LaheyKEpsilon. It solves the turbulence kinetic energy 

equations including bubble-generated turbulence (interfacial term) for the continuous 

(liquid) phase, i.e. for kL and L. The source files of the model are available online on 

the website of the OpenCFD Ltd. [200]. In the Lahey [24], the interfacial term is given 

as: 

3
relLahey 4/3

DkL 0.25(1 )


 
L

G

B

u
I C

d
 (90) 

The mixture k- model is called mixtureKEpsilon [201] and solves the equations 

for the mixture of two phases, i.e. km and m. The basic structure of the model is based 

on Behzadi et al. [131]. It uses the Lahey-model [24] as interfacial term same as in 

LaheyKEpsilon. Both models use the standard set of model coefficients (see Table 12). 

However, the choice of the turbulence model has a major impact on the stability of the 

calculations with twoPhaseEulerFoam. With the LaheyKEpsilon model, convergence 

problems occurred often while simulating a bubble column, so that 

twoPhaseEulerFoam did not provide a solution. In contrast, the convergence behavior 

and stability when using the mixtureKEpsilon model are significantly better. This 

observation was made both at Evonik and at KIT. For this reason, all simulations with 

twoPhaseEulerFoam for cases involving Lahey-model [24] as BIT term are performed 

by using the mixtureKEpsilon turbulence model. In the course of this study, an 

additional model, the Olmos-model is implemented in OpenFOAM® as OlmosKEpsilon 

by applying mixtureKEpsilon base. The simulations with these two types of BIT models 
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are performed up to a steady-state condition. In the Olmos et al. [136], the interfacial 

term is given as: 

3
relOlmos

kL D

3
0.75

4




L
G

B

u
I C

d
 (91) 

The LaheyKEpsilon model considers the effective viscosity 
eff
L   approach in 

Eq.(43) as a sum of the usual turbulent viscosity, the molecular viscosity and the eddy 

viscosity model of Sato [114, 115] due to bubbles. On the other hand, in 

mixtureKEpsilon model the effective viscosity is modelled without the bubble-induced 

eddy viscosity from Sato [114, 115] and uses a mixture turbulent viscosity as in Eq. 

(44). This means LaheyKEpsilon allows for the BIT by both viscosity model as well as 

the interfacial term. For mixtureKEpsilon model, the turbulence response function Ct 

affects the mk  and m  as well as the turbulent eddy viscosity 
t
m . However, for small 

values of the density ratio ρG / ρL and for small gas holdup αG the influence of Ct 

negligibly small. Therefore, the mixture quantities take the form of the liquid phase 

when approaching the limiting case of the density ratio and gas fraction, i.e. m Lk k , 

m L    and 
t t
m L   . Therefore, the difference between LaheyKEpsilon and 

mixtureKEpsilon in terms of the k  and   values appears to be rather small for the 

cases investigated in this study. 

Models for the interfacial momentum transfer: 

It is found in Section 4.3 that each of the Olmos-model and Lahey-model in 

combination with the drag correlation of Tomiyama [102] yields a reasonable-

satisfactory agreement with the profiles of the exact interfacial term for different cases 

and thus is chosen to be used for the two-fluid simulations in this study. However, the 

results of simulations with the implemented Tomiyama drag model in OpenFOAM® 

exhibited unphysical behavior and convergence problems. Therefore, the Schiller-

Naumann [101] drag model as given in Eq. (63) is further used in E-E simulations. The 

interfacial forces applied in a bubbly flow are discussed in Section 2.5.2. The models 

used in the E-E simulations are listed in Table 13. 
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Table 13: Applied models in the Euler-Euler Simulations with OpenFOAM®. 

Category Applied Model 

Turbulence (RANS Model) mixtureKEpsilon, OlmosKEpsilon 

aspectRatio Tomiyama 

drag SchillerNaumann, Tomiyama with swarmCorrection-Tomiyama 

virtualMass constantCoefficient=0.5 

lift LegendreMagnaudet 

wallLubrication none 

turbulentDispersion constantCoefficient=0.5 

 

5.1.5. Data Evaluation 

In the experiments within the “Multi-Phase” project, Rollbusch et al. [190] 

performed the experimental study for the DN330 bubble column reactor. Some of their 

gas holdup measurements are used for comparison with the numerical results. For a 

reliable comparison, the measurement and data evaluation methods in experimental 

and numerical way must be consistent.  

For exhibiting results of this analysis, an azimuthal averaging procedure is 

performed on the measuring plane at 2.23 m height (see Fig. 37). The cross-section 

was divided into 10 annular segments (polygonal) and the radial distributions were 

calculated by averaging each property in each segment over a steady time interval. 

The azimuthally averaged radial profiles are then normalized by the column radius 

(r10/R, r9/R, …, r1/R) and plotted from centerline to the wall allowing a simpler 

quantitative comparison.  

Overall gas holdup (G) is usually defined as the ratio of gas volume to total 

volume in the column. This method yields to an easy way of estimating holdups by 

measuring the initial (stagnant) liquid height in the column HG,0 and the gassed liquid 

height HG [190]. Thus G is given as 

G G,0
G

G





H H

H
 (92) 

Based on the uncertainty problems for the measurement of HG in the experiments, a 

manometric method was chosen for the gas holdup measurements where the pressure 

differences (Δp) between two points (Δh= HG – H0) are considered [190] as  

1
g

G

L





 



p

h
 (93) 

Here, H0 is the lowest gassed liquid height in the column. Depending on the location 
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of the sparger and the distribution of gas bubbles, H0 level can be taken as of the 

bottom of the column until somewhere above the sparger. At the experimental 

conditions, the pressure difference was measured by the level measurement of glass 

capillaries and the gas holdups are then calculated according to the ratio of the 

difference of liquid level capillaries and distance between two points of measurement.  

 

a)  b)  

  

 

αG [-] 

 

 

 

Fig. 37: Annular segments used for azimuthal averaging for each flow property. As an 

example, the local volumetric gas fraction αG is exhibited on the plane at 2.23 m in two differen 

representations, a) over the surface b) the circular-like polygonal lines. Here, Rcolumn=165 mm, 

r1=164 mm, r2=160 mm, r3=150 mm, r4=140 mm, r5=120 mm, r6=100 mm, r7=75 mm, r8=50 

mm, r9=25 mm, r10=1 mm. 

Under numerical conditions, the pressure can be obtained precisely so that Eq. 

(93) is directly applicable. Fig. 38 shows the gas holdups based on E-E simulation 

results for Case B (Table 10 in page 102). The green lines represent the calculated 

overall gas holdups according to Eq. (93) for data at different heights of the gassed 

liquid whereas the black lines are calculation from the Paraview for the sections 

between H0 and HG. The blue lines are calculated according to Eq. (92) and the right 

axis represented by red color shows the mean local gas holdups (αG) on a cross-

sectional plane at different HG. As H0 three values were used: H0=0 where is the bottom 

line of the column, H0=0.13005 m slightly above the sparger which placed at 0.13 m 

and H0=0.26 m above the sparger in order to see the influence of measurement point 

on the gas holdup values.  

Based on the evaluation of αG it is possible to see the transition from the gas-

liquid mixture to full liquid part above the column. Within this transient region, the green 

lines of Eq. (93) are almost aligned with each other, the black line of Paraview 
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calculation above H0=0.13005 m is the closest to green line, above H0=0.26 m is 

slightly above whereas H0=0 is drastically below. This clarifies that the measurement 

point at H0=0.13005 m is the most reasonable point. In order not to leave a suspicion, 

the results were also investigated for other cases and it proved that these results are 

not a coincidence. For the brevity, the results for other cases are not shown here. 

Nevertheless, the gas holdup via Paraview are also be calculated above H0=0 for the 

further investigations. This is because the measurements were performed in the 

experiments for the entire column namely above H0=0 [190].  

 

 
 

Fig. 38: Procedure for evaluation of overall gas holdup G (Case B). 

5.2. Results of the Euler-Euler Simulations 

The importance of the interfacial term as the main source of exact kL-equation is 

discussed in Chapter 4. In this section, primarily, the influence of the interfacial term 

(IkL) on the turbulence kinetic energy (km-equation of the mixture k- model) is discussed 

and the radial gas content profiles provided from experiments are compared with the 
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simulation results. Furthermore, the local gas holdup (αG), mean liquid and gas 

velocities (uL, uG) and turbulence kinetic energy (km) are studied for the varied liquid 

properties (water and cumene) and bubble diameter (dB) under various operating 

conditions such as pressure (p), temperature (T) and superficial velocities (UL,0 , UG,0). 

Performance of the implemented Olmos-model (OlmosKEpsilon) for the interfacial 

term in twoPhaseEulerFoam solver and the drag model of Tomiyama are also 

demonstrated in the following section. The cases studied are given in Table 10 (page 

102) and the details of the studied flow parameters and models are given in Table 9 

(page 101).  

E-E simulations are performed for four scenarios given in Table 10, where the 

pressure is fixed for each scenario while other parameters are varied. Scenario A, B 

and C are based on Water - N2 at 1, 18.5, 36 bar pressure, respectively, while Scenario 

D is based on Cumene - N2. The results are discussed mostly around the cases of 

Scenario-B (Case B 1-9) since the several tests have been performed for those cases. 

The base cases of each scenario are started from where both liquid and gas at rest 

and simulated until the distribution of local gas fraction over time is stable. For saving 

computational costs and CPU time, the other cases are started from simulation runs of 

base cases at a steady state. The further calculations are performed by changing 

models or parameters until steady-state conditions are reached. This method is used 

unless otherwise is stated.  

5.2.1. Flow structure 

Fig. 39 shows the gas content in the vertical center plane of the DN330 bubble 

column for a test case in three different sections. In this case, the nitrogen bubbles are 

rising in deionized water at 18.5 bar and the turbulence model is double of the Lahey 

model. In the lower quarter of the bubble column (up to a height of about 1 m), the gas 

distribution is strongly asymmetrical. This is due to the radial displacement of the liquid 

feed. The velocity vectors for the liquid in Fig. 39 c) shows that in the lower part of the 

bubble column a recirculation region is formed leaning against one side of the wall. 

This recirculation region disappears from a height of about 1 m, so that the gas 

distribution becomes significantly more symmetrical (with higher values in the middle 

and lower values near the wall). However, the gas content is not fully rotationally-

symmetrical in the upper half of the bubble column as well, and the lateral influence of 

the liquid feed and resulting liquid motion is recognizable. 
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a) b) c) 
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αG [-] 
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Fig. 39: Contour plots of the volume fraction of gas (αG) in the vertical center plane of the 

bubble column DN330 for deionized water-nitrogen system at 18.5 bar a) Whole bubble 

column, b) lower half of the bubble column, c) lower quarter of the bubble column with 

velocity field of the liquid. (This case is only for the purpose of preliminary study and not 

further investigated). 

Fig. 40 exhibits the vertical cross section, illustrating the volumetric gas fraction 

(αG) and the gas phase velocity (uG) contours for the Case B (Base) at different times 

after its start-up. The lower part is filled with water at t = 0 s, while the upper part (above 

3.88 m) is filled with gas. Marschall et al. [157] examined the flow structure of a 

rectangular and a cylindrical bubble column in the frame of k- based E-E simulations 

by using the top-level solver bubbleFoam in OpenFOAM® software. Their results show 

similarities with Fig. 40. Initially, when gas enters the bubble column a bubble plume 

evolves (Fig. 40 a), t = 5 s); an asymmetric distribution within the bubble plume can be 

observed (Fig. 40 a), t = 10 s). The liquid level increases by rising bubble plume and 

the plume reaches to upper part filled with gas at t = 20 s (Fig. 40 b)). After t = 20 s 
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(Fig. 40 a) ), on the bottom part, the liquid feed starts pushing the bubble plume against 

contrary side of the wall while the plume begins to oscillate and deviates from its central 

position. This deviation is caused by the wall effect hindering the central bubble plume 

in its lateral movement [157]. Starting from t = 90 s (Fig. 40 a), b)), a recirculation region 

is formed on the upper part of the column and finally at t = 390 s the radially displaced 

plume and the recirculation region becomes steady although the gas content is not 

fully rotationally-symmetrical and the lateral influence of the liquid feed is still 

recognizable. Due to lateral lift, large and small bubbles are radially separated [157] in 

the bubble swarm. Mostly large bubbles are aligned at t < 120 s in the center of swarm 

and at t > 120 s on the left-upper radially displaced part exhibiting a high rising velocity; 

taking high gas fraction values. The radial separation occurs within the radially 

displaced swarm where the gas fraction increases from outer to the centerline of the 

displaced region. The gas fraction decreases near the column wall in the recirculation 

region.  

Fig. 41 shows the profiles of turbulence kinetic energy km, local gas holdup αG and 

liquid velocities (uL x,y,z) for Case B. The profiles are based on the data on a line in x-

direction in the middle of a cross-section at different heights, i.e H=2.97 m and H=2.23 

m. Near the walls, uz values tend to decrease due to the presence of the pipe wall [202]. 

The void fraction G takes large positive values on the left side of the channel. These 

dense rising bubbles create velocity fluctuations in the liquid, increase the liquid 

velocity in flow direction and causes pseudo turbulence of liquid phase. That is why 

the uz and km have large positive values in regions with high void fraction as well and 

they decrease in regions occupied by less gas where G has small values. This means 

that the liquid phase turbulence kinetic energy is mainly produced by the rising gas 

bubbles and it diffuses from regions of high G toward regions with low G. This finding 

confirms the DNS results. At a scale, the energy containing turbulent eddies are 

smoothened out by viscos effects which reduces their mechanical energy. In Fig. 41 a) 

on the r.h.s., G makes a peak and goes to zero. This behavior is because of examining 

only a certain point rather than an average of many points and it exhibits that the 

investigation of parameters at a certain line is not very reliable for any comparison 

study, neither with experiments nor with literature. Therefore, the radial distribution 

method by using the azimuthal averaged data as explained in Section 5.1.3 helps to 

minimize the effect of irregular data distribution for comparisons.  



114 

a) volumetric gas fraction αG [-] 
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Fig. 40: Simulation results for Case B. a) volumetric gas fraction αG, b) gas phase velocity uG. 
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a)  

 
 

 

 

 

b) 

 
  
Fig. 41: Profiles of turbulence kinetic energy km, local gas holdup αG and liquid velocities in 

three directions (uL x,y,z) on a cross-section at different heights for Case B. a) H=2.97 m, b) 

H=2.23 m. On r.h.s the bubble column and the cross-sections are shown as color mapped.  
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5.2.2. General results 

In Fig. 42 a), the turbulence kinetic energy km which is calculated by using the 

mixture k- model is plotted against the local gas volume fraction αG at different 

pressures. Hosokawa and Tomiyama [202] measured turbulence intensities and 

Reynolds stresses of bubble-induced pseudo turbulence in air–water laminar bubbly 

flows within a vertical pipe of 20 mm diameter. They showed that the distributions of 

turbulence kinetic energy (TKE) roughly correspond to the void distributions, which 

shows that TKE is induced by the bubbles. Similar to the results of Hosokawa and 

Tomiyama [202], the distribution of km corresponds to the αG distribution for all cases 

in a linear trend. The increase in αG increases the number of BIT eddies, and therefore, 

increases the interaction between BIT eddies and based on this linear dependency 

TKE can be modeled as a linear function of the local void fraction [202].  

 

a) b) 

  

 

Fig. 42: a) Turbulence kinetic energy km plotted against the local gas volume fraction αG at 

different pressures b) Radial distributions of km for cases at 18.5 bar. The radial profiles are 

obtained from azimuthally averaged data on the measuring plane at a height of H=2.23 m. 

Fig. 42 b) radial distributions of turbulence kinetic energy are shown for the 

Scenario-B cases at 18.5 bar (cf. Table 10 in page 102). All the curves have similar 

trend; higher in the column center and decrease closer to the wall. The numbered 

cases differ from the base Case B in terms of the BIT model IkL (B1, B2), the bubble 

diameter dB (B3, B4), the temperature T (B5), the gas superficial velocity UG,0 (B6, B7) 

and the liquid superficial velocity UL,0 (B8). All these parameters are somehow 
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connected and have influence on the TKE profiles in terms of magnitude. For example, 

dB and T modifies ReB as well as the CD and thus IkL. With increasing T from 23 °C to 

70 °C, the viscosity of water decreases to its half and thus increases ReB so that CD 

decreases as well. The relation of changing parameter with CD and thus IkL are plotted 

in Fig. 56 given in Appendix B, where it can be seen that the distribution of TKE 

correspond to the void distributions. Further in Fig. 42 b), the km decreases with the 

increasing liquid superficial velocity, i.e. UL,0 = 0.0084m/s (Case B) and UL,0 = 

0.0175m/s (Case B8). It must be noted that with the decreasing gas superficial velocity, 

i.e. UG,0 = 0.0055m/s (Case B), UG,0 = 0.0034m/s (Case B6) and UG,0 = 0.0014m/s 

(Case B7), the km increases for Case B6 but decreases for Case B7.  

Fig. 43 shows the radial distribution of relative velocity for the Scenario-B cases. 

Except cases B3 and B4 with varied dB, the relative velocity remains constant over the 

cross-section except the near wall region where the gas velocity decreases due to 

presence of the wall as Hosokawa and Tomiyama [202] presented the similar results 

in their experiments. For Case B3 dB=3 mm and Case B4 dB=4 mm whereas for other 

cases dB=2.25 mm. An increasing relative velocity by increasing bubble diameter is 

observed here. It is known that the bigger bubbles rise with higher bubble velocity [190]. 

 

 

Fig. 43: Radial distribution of relative velocity for cases at 18.5 bar. The radial profiles are 

obtained from azimuthally averaged data on the measuring plane at a height of H=2.23 m. 
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5.2.3. Local gas holdup 

In the frame of the joint work in the Multi-Phase project, Bieberle et al. [189] 

determined the radial profiles and the cross-sectional distribution of local gas holdup 

in the bubble column. The measurement is made on a plane at 2.23 m height and the 

data is averaged in each annular segment. The radial profiles of local gas content were 

measured by high-resolution gamma-ray computed tomography (GammaCT) and 

wire-mesh sensor (WMS). The experimental set-up is explained in Section 5.1.1. The 

experimental data is only available for radial distributions of local gas holdup (αG). In 

this section, the numerical data is compared with the experiments and further 

investigated in terms of the axial component of mean liquid and gas velocities (uL, uG) 

and turbulence kinetic energy (km). 

For a fully developed upward flow in a bubble column, large and small bubbles 

are radially separated in the bubble swarm due to lateral lift. The large bubbles are 

aligned in the core region and increase the rise velocity and gas fraction whereas in 

the near wall region a liquid film is formed and mostly small bubbles are gathered and 

decrease the gas fraction [157]. Besides, the experimental study from Zhou et al. [203] 

for a circular pipe shows that the runs with cap-bubbly, slug, and churn-turbulent flows 

have center peaked void profiles since large bubbles (cap, slug, and churn bubbles) 

concentrate in the pipe center region in upward two-phase flows. 

Fig. 44 a) presents the numerical and experimental data for nitrogen in water and 

organic fluid cumene. The numerical results for the cumene system are close to 

experimental data within the range of 10 – 15 %. Besides, the flat profile αG is 

represented well although the curves behave different in the near-wall region. For the 

water system, the deviation is too high. The profile of the water system in the 

experiments is rather flat in the region of r / R < 0.5 whereas the profile in the 

simulations is rather parabolic.  

According to the experimental data plotted in the figure, the αG for the cumene 

system is higher while the radial difference is much lower than the water system. The 

high gas holdup in cumene is connected to the smaller bubble sizes during the 

operation due to lower surface tension and viscosity, which suppresses coalescence 

and therefore, the rise velocity of the bubbles is smaller [189]. This argument can also 

be observed in Fig. 44 b) where the gas velocity of cumene system is lower and flatter 

than the water system. The reason of low radial difference of cumene system is again 

the existence of smaller bubbles which are more evenly distributed along the radial 

coordinate than the bubbles formed in water, which are denser in the middle of the 

column [190]. Hence, the αG profiles of water system are steeper than the cumene 
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system. However, the velocity profile of water system is flatter in the core region where 

αG is high. This inversely proportional distribution of the velocities to αG is related to BIT, 

which flattens the velocity distribution due to the momentum mixing by eddies [202]. 

On the other hand, for cumene system the flattened distribution of the velocities, which 

is directly proportional to the αG, can be attributed to the momentum transfer (mainly 

due to the drag force) between bubbles and liquid [202]. Thus, the turbulence kinetic 

energy for water system is higher than the cumene system. Fig. 44 c) shows that the 

water system produces about ten times more turbulence kinetic energy than the 

cumene system. The radial difference of km distribution is very low in comparison to 

gas holdup and velocity values. For water system near the wall BIT is non-zero even 

where there are nearly no bubbles. This is due to the diffusion of TKE from a high void 

fraction region to no void fraction region [202]. Nevertheless, there is a linear relation 

of TKE with αG and uG. In Fig. 45, the square of local superficial gas velocities JG
2 = 

(αGuG)2 is plotted against turbulence kinetic energy km for different cases of water 

system with different UG,0 and cumene system at different pressure. A linear equation 

in the slope intercept form can be defined for each case. Hence, TKE can be modeled 

as a linear function of αG and uG independent from pressure, gas superficial velocities 

and temperature for the investigated systems and cases in this study. 

   
a) b) c) 

   

Fig. 44: The azimuthally averaged radial profiles of αG on a plane in the center of the bubble 

column at a height of H=2.23 m and the experimental results. The cases are presented at 18.5 

bar pressure and T=70 °C for different liquid properties.  

The radial profile of gas holdup gives idea about the flow regime as well. The flat 

radial profile indicates that the column is operated either in a homogeneous flow regime 

or in a transition flow regime (from the homogeneous to the heterogeneous regime) 
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[189]. The homogeneous regime occurs at superficial gas velocities UG,0 < 5 – 8 cm/s 

[4]. The transition between the homogeneous and the heterogeneous flow can usually 

be observed at about UG,0 ≈ 5 – 7 cm/s if the reactor diameter is not too small [204]. 

Another flow regime is defined by Tchowa Medjiade et al. [205] for superficial gas 

velocities UG,0 ≤ 2 cm/s, at ambient pressure, which occurs by discontinuous bubble 

release, when the gas velocity is too low for continuous bubble formation from the 

sparger. However, such a discontinuity is not reported in the experiments.  

 

 

 

Fig. 45: The square of local superficial gas velocity JG
2 = (αGuG)2 versus km. a) Water – N2 for 

different UG,0, and T b) Cumene – N2 for different pressure. The near wall values are omitted 

in the plots for cumene system. The plotted data are based on the azimuthally averaged radial 

values of αG, uG and km on the measuring plane at a height of H=2.23 m. 

 

a) 

b) 
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a) 

 

b) 

 

Fig. 46: The azimuthally averaged radial profiles of αG on a plane in the center of the bubble 

column at a height of H=2.23 m and the experimental results. The cases are presented at 

T=23 °C a) for 18.5 bar with different gas and liquid superficial velocities and b) for 36 bar with 

different gas and liquid superficial velocities.  

Fig. 46 a) and b) show αG profiles for varied gas and liquid superficial velocities 

compared with the experimental results at 18.5 bar and 36 bar. At lower UG,0, αG profiles 

are flatter and lower as also shown in the experimental study of [196]. This means at 

higher UG,0, more gas is gathered in the center of the column than near the wall region, 

which is caused by an increase in liquid circulation due to higher gas velocities [197]. 

The effect of pressure on local gas holdup can be observed by comparing the cases 

with corresponding UG,0 side by side. It can be seen that αG increases with rising 

pressure. However, several authors reported [197] that the influence of pressure is 

very low at low gas superficial velocities. On the other hand, overall gas holdups G 

increase with rising pressure as it is also observed in the experiments by Rollbusch et 

al. [190]. In terms of the parabolic-like shape, the profiles of numerical results reflect 

the experimental results. At elevated pressure, the numerical results are 3 – 5 times 

higher than the experiments. The deviation is relatively low at 18.5 bar but still not 

reasonable. In the center of the column, it is 45% more than experiments for Case B 

while the values for Case B6 and B7 are more than double of the experiments. The 

deviation increases closer to the wall. Negative values of αG in the experiments are 
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naturally not physical. This might be related to the calculation methodology during the 

measurements.  

In Fig. 46 a), the profiles of Case B8 with UL,0 = 1.75 m/s reflect the experimental 

results in the core region of the column in r / R < 0.4. In the part of r / R ≈ 0.4 – 0.6, the 

curves increase slightly, and then start decreasing until r / R ≈ 0.85 and again 

increasing in the near wall part of r / R > 0.85 until reaching the wall. The numerical 

results are similar to those reported by Zhou et al. [203] except the void fraction values 

at the wall. The authors performed experiments in a circular pipe with about 50 mm 

diameter and for a bubbly flow run with UL,0 = 1.95 m/s observed a uniform void fraction 

profile except a near-wall peaking (starting from approximately r / R = 0.7 to 0.95) that 

decreases at the wall. Considering the above-mentioned experiments, in Fig. 46 a) the 

αG profile at the wall (after r / R > 0.95) must have decreased. Such behavior at the 

wall is also observed in Fig. 48 a) for the αG profiles of the cases at 1 bar. On the other 

hand, non-physical αG values at the wall are observed from the contour plots during 

the data evaluation for the Case B8.  

More plots and discussions regarding the influence of pressure change as well 

as the influence of different bubble diameters in gas holdups and turbulence kinetic 

energy, and further investigation of axial evaluation of local gas holdup are presented 

in Appendix B. 

5.2.4. Influence of BIT model 

In this Section, the radial distribution of local parameters such as gas holdup, gas 

and liquid velocity and the turbulence kinetic energy are analyzed based on the varied 

BIT models. The investigations in Chapter 4 show that the Olmos-model [136] and 

Lahey-model [24] given for the interfacial term are both in relatively good agreement 

with the DNS data. The Lahey-model in Eq.(90) was already implemented in 

OpenFOAM® while the model of Olmos in Eq.(91) is implemented during this research. 

In principle, the model of Olmos has a constant prefactor and therefore a linear 

dependency on the drag coefficient CD while the Lahey-model has a non-linear 

dependency on CD, as given in Table 7. Euler-Euler simulations showed that the 

Olmos-model provides a slightly more homogenous flow structure than the Lahey-

model.  

The influence of the BIT models on local gas holdup, velocity profiles and the 

turbulence kinetic energy is studied by comparing the Olmos-model with the Lahey-

model and a doubled prefactor version of the Lahey-model in Eq.(90) where the 

prefactor is taken as 0.5 instead of 0.25. Fig. 47 shows the contour plots of the slices 
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in the middle of the bubble column at 2.23 m, as an example for Scenario-B cases. In 

Fig. 48 b), these contour plots are then azimuthally and over the period t = 200  300 

s averaged so that the radial profiles allow a simpler quantitative comparison. Fig. 48 

depicts the radial distributions of local gas holdup (αG), axial component of mean liquid 

and gas velocities (uL, uG) and turbulence kinetic energy (km) at 1 bar (a) and 18.5 bar 

(b), for the Scenario-A and Scenario-B cases given in Table 10 (page 102).  

 

 Case B Case B1 Case B2  

αG 

 

αG [-] 

 

uG 

 

uG [m/s] 

 

km 

 

km [m2/s2] 

 

Fig. 47: Contour plots of the measurement plane at a height of H=2.23 m. The related 

properties from top to bottom: αG, uG, km.  

 

Fig. 48 a) shows the simulation results at 1 bar. The inset graph for αG present 

more details for the curves with a logarithmic scale of y-axis. The results for local gas 

holdup αG is in good agreement with the experiments in the center of the bubble column 

(at r / R < 0.3) where the profiles are rather flat. The αG profiles from simulations are 

flat even further in the region of r / R < 0.6. Unphysical αG values at the wall can be 

observed from the contours of the local gas holdup for Case A in Fig. 54 given in the 

Appendix.B.1. In the outer region of the column at r / R > 0.3, the numerical results are 

greatly above the experiments. At r / R ≈ 0.6 they decrease first (as observed in the 

inset graph) and then at r / R ≈ 0.85 increase sharply near the wall and reach their 

maximum value on the wall. The experimental curve on the other hand always 

decreases in r / R > 0.3 in direction to the wall. The velocity profiles of gas and liquid 

are uniform except the near wall region, where the gas velocity drops rapidly at r / R ≈ 

0.9. Similar liquid velocity profiles are reported by Zhou et al. [203]. Comparable to the 

numerical results in Fig. 48 a), the authors indicated that the relatively uniform 

distribution of the void fraction in the bulk flow helps developing uniform liquid-phase 

turbulence structure in the pipe center region [203]. The influence of the varied BIT 

models can be seen in the inset graph. The Olmos-model exhibits higher slope where 

y 

x 

y 

x 

y 

x 
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r / R > 0.3 and a deeper low peak where r / R > 0.85. On the other hand, the km values 

increase more than double, around three times more, when the value of the prefactor 

in the model for IkL is doubled. The Olmos-model is slightly lower in the core region and 

slightly higher in the wall direction in r / R > 0.6. The km values, excluding the Case A2 

with doubled IkL, are relatively low, nearly negligible. Shi et al. [206] measured the 

liquid-phase turbulence in air-water two-phase flows for a circular flow channel with an 

inner diameter of about 25 mm at room temperature and 1 bar pressure using particle 

image velocimetry. The authors presented that for the bubbly flows with low void 

fractions less than 3%, the turbulence structure is similar to single-phase flow with peak 

values in the near-wall region. The low TKE profiles of the cases at 1 bar in Fig. 48 a) 

reflect this statement. 

All three cases exhibit similar peak near the wall so that the reason of this 

behavior may be related to the models chosen in the simulations. It must be noted that 

the simulations are performed without consideration of the wall lubrication force which 

defines repulsive force between bubbles and the pipe wall [159]. In their numerical and 

experimental study for bubbly flows for water and air at atmospheric pressure and room 

temperature, Hosokawa and Tomiyama [159] investigated the effect of wall lubrication 

force model on gas holdup and observed better predictions without wall lubrication. In 

their results, close to the wall at r / R ≈ 0.85 the αG curve exhibits a peak similar to the 

ones in Fig. 48 a), but afterwards drastically reduces at the wall unlike the ones in Fig. 

48 a). The same behavior is also observed by Antal et al. [158] in their void fraction 

profiles for co-current upflow. The results in near-wall region are difficult to estimate 

and must be investigated further.  

For Scenario-B cases in Fig. 48 b), the computed αG profiles overestimate the 

measured αG significantly by 50% and more. The minimum and maximum values of αG 

for each measurement point are also shown in the figure. The Lahey-model provides 

the closest results to the experiments although in the core region even the minimum 

αG value is not able to estimate the experimental data. After r / R > 0.3 some lower 

values of αG get closer to and lower from the experimental curve. For the Olmos model, 

parabolic shape of the αG profile is alike with the measured profile from r / R = 0.4 to 

0.6. However, the magnitude of its curve including the minimum measured values is 

higher than the experiments. The reason for the deviation may be the flow structure. 

In the experiments [189, 190], a liquid film is formed near the wall and the flow structure 

is more homogenous and symmetrical in radial direction contrary to the simulations, 

although they are in a steady state. The radial averaging method used in the 

experiments may also lead to a deviation between numerical and experimental results. 
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a) 

 

b) 

 

 

 

 

 

 

 

 

 
 

Fig. 48: Azimuthally averaged radial profiles of αG; uL, uG; km in the center of the bubble column 

at a height of H=2.23 m with Olmos and simple and doubled Lahey interfacial term IkL at T=23 

°C. Comparison with experimental results for αG. a) Scenario-A with p = 1 bar, Cases A, A1, 

A2. b) Scenario-B with p = 18.5 bar, Cases B, B1, B2.  
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The increase in αG in a core peeking profile accelerates the velocity in the core 

region due to the momentum transfer between bubbles and liquid. The velocity profiles 

are consistent with the αG profiles when this momentum transfer between the phases 

is stronger than the mixing due to BIT then [202]. In Fig. 48 b), Case B and Case B2 

with doubled IkL, each has a core peeking αG profile but contrarily rather flat velocity 

profile. According to Hosokawa and Tomiyama [202], this implies that the BIT flattens 

the velocity distribution due to the momentum mixing by eddies. This means for the 

cases here, the BIT is dominant. The uG and uL profile of Case B2 are lower in the core 

region (r / R < 0.65), where αG takes higher values, but higher in the near wall region 

in comparison to Case B. It means that Case B2 has even flatter profiles than Case B. 

This indicates the clear influence of the stronger BIT model as it can also be depicted 

from the profiles of km in Fig. 48 b) that the km values increase more than double when 

the value of the prefactor in the model for IkL is doubled. On the other hand, in the case 

of the Olmos-model, km distribution over the cross-section in Fig. 47 is more 

homogenous than the Lahey-model. Therefore, the radial difference of km values for 

the Olmos-model is very small. The difference between the Olmos and Lahey models 

on km is low in the core region and increases closer to the wall. 

For all cases in Fig. 48 a) and b), the radial distribution of relative velocity remains 

constant over the cross-section except the near wall region, where uG tends to 

decrease. Similar results are also discussed in Hosokawa and Tomiyama [202]. For 

Scenario-B cases, the liquid velocities are upwards in the central region and 

downwards near the column wall. The correlation between αG and km is proportional. 

Increase in αG also increases TKE.  

5.2.5. Overall gas holdup 

Prediction of gas holdup is essential for the design of bubble column reactors. 

Several authors developed correlations to calculate the amount of gas holdup. For a 

detailed overview of available correlations see Krishna et al. [207]. In the experimental 

study of Rollbusch et al. [190] in the frame of the Multi-Phase project, they reviewed 

some of these approaches to compare with the bubble columns investigated in the 

project. It is noted that many of the correlations are based on experiments with water, 

which is most often not of interest for industrial production plants, and correlations 

suited for the prediction of holdups in organic material are very rare. The appropriate 

correlation to predict gas holdup must account for column diameter, different liquid 

properties and gas density. Those criteria are met by the equations from Zehner [208, 

209] as identified in Krishna et al. [207]. Zehner’s [208] correlation predicted a 
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decrease of holdups with column diameter which is about the same magnitude as 

observed in the experiments [190].  

In his earlier work, Zehner [209] extended the improved circulation cell model 

originally suggested by Joshi and Sharma [210] by substituting circulation cells with 

crosswise on top of each other aligned vortex-cylinder-couples. In this alternative form, 

an upward flow is always available in the centerline of column. The centerline velocity 

of the liquid phase is always directed upwards and the liquid velocity near the wall is 

directed downwards. Most of the bubbles move upwards with the liquid whereas the 

near wall regions the liquid moves in the opposite direction and entrains some bubbles. 

As a result, a difference in gas holdups occurs which causes a pressure difference that 

is relieved by pressure losses due to liquid movement [190, 209]. Based on the 

pressure difference Zehner [209] defined an equation which calculates the maximum 

centerline velocity of the liquid phase as 
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where G,0U  is the gas superficial velocity, D is the column diameter.  

In a later study, Zehner [208] demonstrated the gas-liquid interactions for bubble 

columns on the basis of dispersion coefficient, volumetric mass transfer coefficient and 

gas holdup and defined correlations for those parameter. Zehner’s correlation [208] to 

predict gas holdups is based on the liquid centerline velocity and given as 
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where bsw  is the slip velocity of the biggest stable single bubble. The correlations from 

Mersmann [107] can be applied for the calculation of bsw . The velocity correlation for 

the biggest single stable fluid particle is given as [107] 

 
0.25 1 24

L G G
b 2

L L

g
1.55

   

 

   
    

  
w  (96) 

For liquid to gas viscosity ratio L G  10-200 , the maximum rise velocity of a single 

fluid particle is given as [107] 

 
0.25

L G

max 2
L

g
2
  



 
  

 
w  (97) 



128 

The cases in this work remain in the given range 10 – 200. At T = 23 °C for Water - N2 

L G   47  and for Cumene - N2 L G   44 . The simplified version of the correlation 

in Eq. (96) is utilized by Rollbusch et al. [190] referring to Zehner [208] and given as 
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All the correlations for bsw   depend on the liquid and gas density and the surface 

tension. These parameters are dependent on temperature and pressure. Therefore, 

the velocity correlations must be calculated accordingly. In Fig. 49, the G is calculated 

by Zehner’s correlation [208] based on the correlations from Eqs. (94), (98), (96) and 

(97). The liquid and gas density values are taken from Table 9 (page 101) for three 

different pressures; 1 bar corresponds to Scenario-A, 18.5 bar to Scenario-B and 36 

bar to Scenario-C cases. For the correlations b,simplew  and maxw , which differs only by 

the prefactor, no major deviation is observed at different pressures. However, the line 

for bw  is clearly above the lines for 18.5 bar and 36 bar. 

 

 

Fig. 49: Overall gas holdups G calculated by Zehner’s correlation [208] with wbs values 

wb,simple, wb, wmax (from left to right) at three different pressures 1, 18.5, 36 bar.  
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a) 

 

b) 

 

c) 

 

Fig. 50: Overall gas holdups G from E-E simulations above H0=0.13005 m, G from the 

experiments and G calculated by Zehner’s correlation [208] with varied wbs values for 

Scenario A, B, C cases. 
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Fig. 50 shows overall gas holdup G from E-E simulations and experiments at T 

= 23 °C and 1, 18.5 and 36 bar pressure. The G from E-E simulations account for the 

part above the lowest gassed liquid height H0 = 0.13005 m, which represents slightly 

above the sparger. In Fig. 50 b) the liquid superficial velocity L,0U  is varied by almost 

doubling while in a) and c) L,0U  is almost fixed. The literature values are calculated with 

Zehner’s G correlation [208] in Eq. (95). The c,Lw  is calculated by the formula in Eq. 

(94) while bsw  is calculated by different correlations from Eqs. (98), (96) and (97). The 

numerical results are presented as the averaged G together with maximum, minimum 

and upper/lower quartile values shown with connected horizontal lines.  

In Fig. 50 a) and c), the simulation results for Scenario-A and Scenario-C cases 

are above the experimental results. In Fig. 50 a), the only case for Scenario-A fits 

perfectly to the G with bs b,simplew w . In Fig. 50 c), the calculated lines underestimate 

the Scenario-C results as well as the experiments. In Fig. 50 b), the Scenario-B cases 

with the doubled L,0U  and varied G,0U  are presented. The mean G from simulations at 

high G,0U  has a perfect fit with experimental data. However, with decreasing G,0U  the 

simulations underestimate the experimental line with a deviation up to ca. 22%. On the 

other hand, the upper quartile values of cases with lower G,0U   match with the 

experimental result. For the doubled L,0U , only a single numerical case is available, 

and it overestimates the experiments. None of the calculated holdups matches the 

measured holdups exactly. However, the numerical results reflects a similar inclination 

as the calculated G with bs bw w  whereas for the experiments bs b,simplew w  presents 

closer inclination.  

In Fig. 51, H0 = 0 is considered as measurement level for simulations. This means 

the whole column including the below part of the sparger is taken into account. By this 

measuring point, the G values are about half of the plotted values in Fig. 50. For brevity 

in the graph, the calculated G  lines are only plotted for 18.5 bar properties. It is noted 

in Fig. 49 that only the calculated G line with bw  at 1 bar differs from the plotted bw  

line for 18.5 bar. Different from Fig. 50 b), another set of experimental data for 18.5 bar 

is shown in Fig. 51. Even for the same initial conditions such as L,0U  and G,0U , different 

measurement data are available in the experiments. It can be seen from the figure that 

the simulation cases, depending on the used turbulence model, are closer to those 

experimental values with a 10 – 15 % deviation at G,0 0.3U . The Scenario-B cases 

are then predicted well by the calculated G with bs maxw w  whereas the Scenario-C 

cases by the calculated G with bs bw w . The prediction is better at lower values of G,0U . 

All correlations overestimate the Scenario-A case as well as the related experiments. 

The closest correlation is G with bs maxw w  as also discussed by Rollbusch et al. [190], 
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who showed that G with bs maxw w predicts bubble velocities of nitrogen in cumene with 

outstanding accuracy at 1 bar ≤ p ≤ 36 bar whereas the measure bubble velocities of 

nitrogen in water are about 10% different from the calculation at 1 bar ≤ p ≤ 18.5 bar. 

However, the provided experimental results plotted in Fig. 51 reflects only the tendency 

qualitatively but not quantitively. The deviation is around 30 – 40 %. The measurement 

techniques and measurement level play an important role for the comparative study. 

Based on the result here, the G results for the measurement level H0 = 0 exhibit more 

reliable results, both against experiments and the correlations.  

 

 

Fig. 51: Overall gas holdups G from E-E simulations above H0=0 for different turbulence 

models, G from the experiments and G calculated by Zehner’s correlation [208] with varied 

wbs values for the scenarios A, B, C. 

Fig. 51 also shows the influence of the turbulence model applied in the E-E 

simulations. All the cases plotted in the figure applied Schiller-Naumann drag model. 

For Scenario-A case, the mean gas holdup computed from the simulations with the 

Olmos-model is 7% less than the one with the Lahey-model. Thus, the G with the 

Olmos-model takes a closer value to the experimental line. The G with the Lahey-

model overestimates the experimental line ca. 23% while the deviation of G with the 
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Olmos-model is 13%. For Scenario-B case, the mean G obtained from the simulations 

with the Olmos-model takes a 11% higher value than the one with the Lahey-model. 

Thus, the G with the Olmos-model takes a closer value to the experimental line. The 

G  with the Lahey-model underestimates the experimental line ca. 18% while the 

deviation of G  with the Olmos-model is only 9%. In general, the Olmos-model effects 

the results for a better approximation. If the Olmos-model affects the other cases of 

Scenario-B similarly around 7 – 10 %, the simulation results would fit the blue dashed 

lines of experiments perfectly. Besides, the G with bs maxw w  predicts the mean gas 

holdup with the new implemented Olmos-model for both examined cases. The 

calculated G with bs maxw w  predicts the numerical results at G,0 0.4U   as well.  

As a summary, the measurement level for simulations at H0 = 0 gives better 

results even though the section below sparger where almost no bubble exists is also 

taken into account. Therefore, the mean gas holdup decreases around 40 – 50% in 

comparison to the measurements at H0 = 0.13005 m. By this decrease, the numerical 

results fit the calculated G as well as the experimental data. A reasonable prediction of 

numerical results is observed with the correlations bs b,simplew w  and bs maxw w . In terms 

of experimental comparison, at low superficial gas velocity values larger deviations 

between experiments and simulations are observed since it is more difficult to measure 

holdups at gas fluxes of low magnitude [190]. Rollbusch et al. [190] also indicates that 

larger deviations occur when holdups are predicted in water because of possible 

impurities present in the experimental facility during the measurements. Nevertheless, 

the numerical results simulated by using the Olmos turbulence model and measured 

above H0 = 0 are very close to the experimental data with a deviation of 9 – 13 %. This 

result is very satisfactory.  

Fig. 52 presents the overall gas holdup from the simulations for nitrogen in water 

and cumene and the predicted gas holdups calculated by Zehner’s G correlation [208] 

with bs b,simplew w  and bs maxw w . The cases form scenarios A, B, C and D are presented 

in the graph at T = 23 °C and different pressures. All the cases that are shown here 

used Schiller-Naumann drag model and varied turbulence models. The drag model 

from Tomiyama is not included in the results because of convergence problems during 

the simulations with this drag model. The gas holdup is measured above H0=0.  

Fig. 52 a) shows that the gas holdup at 18.5 bar and 36 bar both for nitrogen in 

water and cumene is predicted within 25% range by the correlation bs b,simplew w . All 

cases at 18.5 bar are 25% underestimated and all Water-N2  cases at 36 bar are 25% 

overestimated. Cumene case at 36 bar exhibits the closest gas holdup prediction 

among all. On the other hand, the prediction of holdups at 1 bar both in water and 
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cumene is failed. The Water-N2 case at 18.5 bar enters this range with consideration 

of the new implemented Olmos-model for BIT. In the inset plot, the difference between 

the Lahey-model and the Olmos-model is shown in detail where the case with Lahey-

model is out of the given range while the Olmos-model with its maximum value very 

close to the predicted line. At 1 bar, the case with Olmos-model gets far from the range.  

In Fig. 52 b), the gas holdup with bs maxw w   correlation is able to predict the 

holdups at 18.5 bar in cumene and water. The case with the Olmos-model is predicted 

with high accuracy. The holdup in cumene at 36 bar is also perfectly predicted whereas 

the results in water at the same elevated pressure are completely underestimated as 

it was also shown in the experiments by Rollbusch et al. [190]. They explained this 

result based on the addition of small tracer substances that changed water quality. 

However, the numerical simulations account for the pure system and the results are 

still same as their observation. Hence, the water quality due to traces is not the reason 

for the deviation. It must be noted that these velocity correlations are improved based 

on other correlations and experimental measurements and thus limited to certain 

parameter range and operating conditions. 

Based on the findings above, the Zehner correlation [208] for gas holdup with the 

velocity correlation of Mersmann [107] maxw  is applicable for holdups in organic liquids 

at elevated pressures (18.5 and 36 bar) and in deionized water at 18.5 bar. The 

prediction is highly accurate for the cases investigated here. The choice of Olmos-

model for the turbulence production due to bubbles is also an important factor for the 

reliable results. The numerical findings and experimental findings are also aligned. 

Therefore, the outcome of this validation study is consistent and satisfactory.  
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a) 

 

  

b) 

 

Fig. 52: Overall gas holdup from the simulations and predicted gas holdups. Prediction by the 

model of Zehner [208] and by applying the bubble velocity a) wbs = wb,simple b) wbs = wmax. The 

inset plots are closeup of the marked areas in each graph. y = x represents the parity. 
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5.2.6. Summary 

Eulerian two-fluid simulations with statistical turbulence models in bubble 

columns often ignore the complex physics of the turbulence and adopt standard single-

phase closure laws and coefficients. The concept of a priori testing of model 

assumptions for closure terms is certainly useful for the development of improved 

models. However, it does not consider that in practical CFD computations the 

quantities entering into the model – e.g. the mean void fraction and velocity profiles – 

are influenced by the model itself, as it is part of the governing equations and, therefore, 

affect the solution for the mean quantities. Since this feedback is non-linear, the a 

posteriori testing of any potential model refinement in full E-E simulations is necessary 

and validation by experiments is mandatory [6]. The joint work in the project provides 

the unique opportunity to validate such an implementation with pilot-scale bubble 

columns. Therefore, different from the previous studies, the improved BIT models are 

applied for industrial purpose and verified for a test bubble column.  

In this context, an industrial bubble column DN330 with 4 m height and 0.33 m 

diameter is computed with the two-fluid model in OpenFOAM® using the 

twoPhaseEulerFoam solver. The standard k- model [121] and the so-called basic-

mixture turbulence model (the mixture k- model) [131, 135] are utilized. The results 

for the k  and   using those models are very close for the cases investigated in this 

study. The turbulence kinetic energy (TKE) is analyzed along with the local (αG) and 

overall (G) gas holdups, and the velocity profiles of gas (uG) and liquid (uL) phase. 

Industrial bubble columns are operated at elevated pressures and high temperatures. 

Organic liquids are of main interest for industrial processes. Therefore, in the 

simulations various industrial operating conditions are considered such as pressure 1 

bar ≤ p ≤ 36 bar and temperature 23 °C ≤ T ≤ 70 °C. Nitrogen in deionized water and 

nitrogen in organic cumene are used as gas-liquid systems. Gas superficial velocities 

vary in the range of 0.0014 ≤ UG,0 ≤ 0.0056 m/s.  

The variation of turbulence model, pressure, temperature and superficial 

velocities have no influence on relative velocity of gas and liquid. The relative velocity 

remains constant over the cross-section except the near wall region, where uG tends 

to decrease. The correlation between αG and km is proportional. Increase in αG also 

increases TKE. A linear relation of km with αGuG is identified for each case examined in 

this work.  

The influence of the interfacial term in the turbulence kinetic energy equation is 

examined using the turbulence models from Olmos et al. [136] and Lahey [24], which 

are identified through the assessment of the balance equation for turbulence kinetic 
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energy of the liquid phase (the exact kL equation) based on DNS data of bubble swarms. 

The Lahey model was already available in the OpenFOAM®. In the course of this study, 

the Olmos-model is implemented (OlmosKEpsilon) as an extension to the mixture k- 

model.  

It is deduced from the examined radial profiles that the BIT is dominant in the flow. 

The velocity profiles are flattened due to the mixing by eddies in the central region of 

the bubble column where more bubbles exist. This behavior is especially obvious when 

the value of the prefactor in the interfacial term is doubled while the turbulence kinetic 

energy increases more than double. This means that the influence of the BIT model is 

more significant on the flow than expected. The influence of turbulence model both on 

azimuthally averaged radial profiles of the local gas holdup αG and that of the velocity 

profiles of phases (uG and uL) is minor at normal pressure 1 bar while it is noticeable 

at 18.5 bar. This is because, for the bubbly flows at atmospheric pressure with low void 

fractions less than 3%, the turbulence structure is similar to single-phase flow [206] 

and thus the bubble-induced turbulence is nearly negligible at 1 bar. With the Olmos-

model, the gas bubbles are distributed more symmetrically over the cross-section and 

the distribution of TKE is more homogenous than with the Lahey-model. Therefore, the 

radial difference of km values for the Olmos-model is very small. The Olmos-model has 

a promising influence on overall gas holdup of the bubble column for a deionized water-

nitrogen system where G is 7% lower at 1 bar and 11% higher at 18.5 bar in 

comparison to the Lahey-model. This leads to a closer value to the experimental data 

with deviation of 13% and 9%, respectively.  

It is known that for a fully developed upward flow in a bubble column, large and 

small bubbles are radially separated in the bubble swarm due to lateral lift where the 

large bubbles are aligned in the core region and small bubbles in the near wall region 

[157]. According to the bubble distribution data from experiments, the bubbles are 

smaller in the cumene than in the water. Small bubbles are produced due to lower 

surface tension and viscosity of cumene system, which suppresses coalescence [189]. 

The simulation results are able to reflect the characteristic of liquid systems. The large 

bubbles formed in water are denser in the middle of the column and thus the gas 

fraction and velocity are locally higher than the organic system. However, the average 

gas content over the cross-section is higher for the cumene system. This is because 

the smaller bubbles in cumene are more evenly distributed along the radial coordinate. 

Hence, the αG profiles are flat. The analysis of exact kL equation in this study shows 

that larger bubbles cause more turbulence kinetic energy. The TKE for the water 

system is about ten times more than that for the organic system. It is also interesting 



137 

to see that, in the near-wall region, TKE is non-zero even there are nearly no bubbles. 

This is due to the diffusion of TKE from the central region with high void fraction to 

near-wall region with low void fraction [202]. This characteristic of TKE is also observed 

in the budget of the exact kL equation. 

The numerical results for the local gas holdup αG are compared with the reference 

experiments by project partners for the same bubble column. In particular, at high 

pressures, the measured αG values for deionized water-nitrogen system are 

significantly overestimated by the simulation for most of the cases examined here. The 

parabolic shape of the measured αG profile is better approximated by the Olmos-model 

at 18.5 bar. For normal pressure, the numerical results are in good agreement with the 

experiments only in the core of the bubble column. Closer to the wall, the numerical 

data take values greatly above the experiments. For the cumene-nitrogen system at 

70 °C, the numerical results are close to experimental data with a deviation in the range 

of 10 – 15 %. On the other hand, the simulation results of water-nitrogen system for 

overall gas holdup G are close to the experimental values with a deviation of 

approximately 10 – 15 % at 1 bar, 18.5 bar and partially at 36 bar. For the latter 

pressure, the deviation increases for the lower values of gas superficial velocity. 

The CFD data are further compared with the correlations from the literature for 

the estimation of overall gas holdup G. The Zehner approach [208] for G is applied 

using the three different velocity correlations for the slip velocity of bubble from 

Mersmann [107], wb,simple from Eq.(98), wb from Eq.(96) and wmax from Eq.(97). All 

correlations overestimate the numerical as well as the experimental results for 1 bar. 

The G values of all cases at 18.5 bar and 36 bar both for nitrogen in water and cumene 

are predicted within the 25% range of the correlation for the slip velocity of bubble 

wb,simple. For the nitrogen in water at 36 bar, the closest approach at lower values of 

G,0U   is calculated with wb for the biggest single stable fluid particle. The simulation 

results of the deionized water system at 18.5 bar and the organic cumene liquid system 

at elevated pressures (18.5 and 36 bar) are predicted well by the calculated G using 

wmax, which is valid for L G  10-200 . The systems examined here fall into this range. 

The predictions with wmax at 18.5 bar are highly accurate. With the choice of Olmos-

model, the simulation results are even closer to the predicted line with wmax. The 

Zehner correlation [208] for G is able to predict both systems at elevated pressures 

with up to 25% deviation when the slip velocity is calculated with wb,simple, whereas it is 

able to predict both systems at 18.5 bar precisely when the slip velocity is calculated 

with wmax.  
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6. Conclusions and Outlook 

This Chapter concludes the thesis in two Sections. The first one summarizes the 

conclusions of this work and the second one makes suggestions for future work. 

6.1. Conclusions 

The dissertation presents numerical investigations of bubble-driven two-phase 

flows at various scale to develop adequate closure relations for the bubble-induced 

turbulence (BIT). For this purpose, two computational methods are used: Direct 

Numerical Simulations (DNS) and Euler-Euler (E-E) approach (also called two-fluid 

model). The DNS is employed on small scale from single bubble to bubble swarms to 

determine the closure for the interfacial term in the balance equation of liquid phase 

turbulence kinetic energy, kL. Two suitable models for the interfacial term are identified 

and utilized for the k- based CFD simulations of industrial bubble columns using 

OpenFOAM®. The models provide accurate and efficient results for the engineering 

computations. The new model implemented in OpenFOAM® has positive impacts.  

Although this study focuses on the development of improved turbulence models, 

the findings contribute in several ways to understanding of numerical analysis of two-

phase flows. Comprehensive DNS investigations for single bubbles revealed that a 

grid resolution of 20 cells per bubble diameter, a liquid-to-gas density ratio of 25 and a 

gas-to-liquid viscosity ratio of µ < 1 are appropriate to obtain results that are 

independent from the mesh size, the gas density and the gas viscosity, respectively. 

The vertical distance of bubbles must be at least 10 times of bubble diameter (Lx / dB 

> 10) to minimize the influence of the wake acceleration that modifies the velocity 

profile in the wake.  

The bubble swarm simulations provide insights for limitations of numerical study 

of bubbly flows. The numerical coalescence is displayed frame-by-frame as it takes 

place mainly within a single mesh cell. To avoid coalescence, the best practices in this 

work for bubble swarms in a certain range of Morton and Eötvös numbers 2.2×10-8 ≤ 

M ≤ 3.1×10-7 and 0.747 ≤ Eö ≤ 2.625 suggest a limitation of the void fraction to 2 – 

2.5 % and a definition of the wall distance to be at least 5 times bubble diameter. Taken 

together, this may provide the rectilinear bubble trajectory and least possible lateral 

motions. Using the domain replication methodology, the number of bubbles is 

increased up to 64 bubbles in a larger computational domain while the void fraction is 

preserved. The simulations up to 24 bubbles are further analyzed for the turbulence 

kinetic energy. Thereby, the present study extends the DNS study of Ilic [26], which 
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was for up to eight bubbles with M > 3106, to higher number of bubbles in a wide 

range of Eö and Re for lower M values, down to M = 2.21010 for single bubbles and 

M = 2.2108 for bubble swarms.  

The concept of a priori testing of model assumptions for closure terms in the 

balance equation of liquid phase turbulence kinetic energy kL is necessary for the 

development of improved models. The DNS data of bubble swarms is used for the 

statistical analysis of kL profiles. In bubble columns, the large-scale liquid recirculation 

generates shear-induced turbulence (especially near the walls) which is superposed 

to the BIT. For the conditions examined here, the production due to shear stresses is 

negligible. The main source term for the turbulence kinetic energy is the interfacial term. 

Production and dissipation are not in local equilibrium. Therefore, molecular and 

turbulent diffusion redistribute the surplus of production of kL from regions of high to 

low void fractions or, another way of saying, from the two-phase regions towards the 

single-phase regions. The results for the budget of kL equation are consistent with the 

findings from the literature [26, 28, 29].  

The investigations for the closure of the interfacial term IkL in the kL equation 

disclose two models that are in a good agreement with the DNS data: The Olmos-

model from Olmos et al. [136] and the Lahey-model from Lahey [24]. The Olmos-model 

is implemented in OpenFOAM® as an extension to the mixture k- model [131, 135] 

and named as OlmosKEpsilon. Both models are utilized for CFD simulations using the 

twoPhaseEulerFoam solver in OpenFOAM®. 

The CFD study complements the solution procedure by engineering simulations 

that are designated to reflect various industrial operating conditions. In practical CFD 

computations, the quantities entering into the model – e.g. the mean void fraction and 

velocity profiles – are influenced by the model itself, as these quantities are part of the 

governing equations and, thus, affect the solution for the mean quantities. A-posteriori 

testing of potential model refinement in E-E simulations is therefore necessary and 

further validation by experiments is mandatory [6]. For this purpose, the identified 

turbulence models are proved for an industrial bubble column. The results for the void 

fraction (or gas holdup) are validated with experimental data and correlations from 

literature. The turbulence kinetic energy (km) is studied in detail and the most of findings 

are supported by previous studies in literature.  

A linear relation of turbulence kinetic energy with the local void fraction (αG) and 

mean gas velocity (uG) is identified for each case examined in this work. Further studies 

with a greater focus on mathematical modelling could produce correlations of km 

depending on (αGuG)2. Regarding another aspect of local cross-sectional analysis, the 
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average gas content in organic cumene is higher whereas the rise velocity of bubbles 

is lower than in water. The numerical findings corroborate the experimental results and 

the deductions of Bieberle et al. [189], who suggested that the smaller bubbles are 

formed in the cumene than in the water due to lower surface tension and viscosity, 

which suppresses the coalescence yielding low bubble rise velocity. Moreover, the 

radial separation of large and small bubbles due to lateral lift is rather uniform for 

cumene owing to the low bubble size distribution. The further investigations of radial 

profiles reveal that the influence of bubble size and coalescence is significant on the 

bubble-induced turbulence. The larger bubbles in water generate about ten times more 

turbulence kinetic energy than the organic system.  

The CFD investigations prove that the bubble-induced turbulence is dominant in 

the flow. Consistent with the DNS results, the E-E simulations confirm the strong 

association between the turbulence kinetic energy and the interfacial term IkL as the 

main source. It is interesting to note that the turbulence kinetic energy increases more 

than double when the value of the prefactor in the model for IkL is doubled. 

In terms of the turbulence models, the analysis for the flow quantities computed 

with the Olmos-model indicates that the cross-sectional distribution of the void fraction 

is smoother and the radial differences in the turbulence kinetic energy profiles are 

almost negligible in comparison to the simulations with the Lahey-model. The choice 

of turbulence model has a minor influence on the local void fraction and the velocity 

profiles at normal pressure (1 bar) while it is noticeable at 18.5 bar.  

For the water-nitrogen system at 23 °C, the simulation results of overall gas 

holdup G for higher values of the gas superficial velocity are close to the reference 

experiments with a deviation of approximately 9 – 15 %. Using the Olmos-model has 

improved the numerical results at 1 bar and 18.5 bar around 50 % compared to those 

with the Lahey-model. In general, the measured αG values are significantly 

overestimated by the simulations particularly at high pressures. For the organic 

cumene-nitrogen system at 70 °C for 18.5 bar pressure, the numerical results for αG 

are close to experimental data with a deviation in the range of 10 – 15 %.  

At the final stage, the CFD simulations are validated by the correlations from 

literature. The Zehner correlation with the slip velocity of bubble from Mersmann [107] 

(wmax) is identified as an applicable approach for the estimation of overall gas holdup 

G in industrial bubble columns, i.e. using organic liquids, operating at elevated 

pressures. The simulation results of the water-nitrogen system at 18.5 bar and the 

cumene-nitrogen system at elevated pressures (18.5 and 36 bar) are predicted well by 

the calculated G using wmax. The predictions with wmax at 18.5 bar are highly accurate. 
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The results with the Olmos-model are even closer to the predicted line with wmax. 

Moreover, another correlation for the slip velocity from Mersmann [107], wb,simple 

provides an approximation up to 25% deviation at elevated pressures. 

6.2. Outlook 

This dissertation contributes to the understanding of turbulence modelling in 

bubbly flows and the use of CFD as a tool for design of industrial scale bubble columns. 

This study presents a full picture of numerical investigation of bubbly flows from a 

single bubble to industrial scale. Therefore, it has been one of the first attempts to 

examine various scale of bubbly flows numerically using different approaches and 

involving systematic validation of the models for each scale. The findings will be of 

interest to future numerical studies in the field and the insights may be of assistance 

to comparative studies for industrial bubble columns using CFD. The methodology in 

this study establishes a framework for the development of models for bubble-induced 

turbulence in bubble columns. This research has a number of important implications 

for future practice. 

In the Multi-Phase project, experimental data were available only for gas holdup. 

The validations have been carried out for one size pilot-scale bubble column. For a 

systematic validation study of gas-liquid flows in bubble columns, a complete 

experimental data set is necessary (i.e. measurement of bubble size distribution, void 

fraction profiles, mean liquid and gas velocity profiles, profiles of turbulence kinetic 

energy in one experiment). Further investigation and experimentation, using a wide 

range of column diameter, varied operating conditions and production-scale bubble 

columns is strongly recommended. The measurement methods in experimental and 

numerical study must be aligned. On the other hand, a numerical research for further 

improvement of the two-fluid model in twoPhaseEulerFoam solver of OpenFOAM® 

would be worthwhile for the numerical stability of the simulations for bubble columns 

under industrial conditions.  

In general, the experimental data obtained in a lab-scale bubble column may 

represent the industrial-scale reactors in terms of similar mixing and fluid dynamics 

[211]. However, a variety of scale-up criteria, for example size of bubble column and 

type of sparger, must be taken into account. As more research involving the 

combination of experiments and CFD is required [212], a study comparing the lab-

scale and the production-scale bubble columns may help for acquiring a better 

understanding of the scale-up of bubble columns. 

Further model improvements for the closure of interfacial term are required for 
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general approaches. A study with more focus on mathematical modelling of turbulence 

models is therefore suggested. A greater focus on numerical coalescence 

phenomenon could produce interesting findings that ensure mono-disperse flow. In the 

current work, mean bubble diameter of originally mono-disperse flow is used for 

calculating the Eötvös and Reynolds numbers, the drag model and the model for 

interfacial term, even in case of coalescence. In future investigations, it might be 

possible to use a different approach to determine the bubble diameter. Other options 

could be to use the “Sauter mean diameter”, to consider an approach that accounts for 

the bubble size distribution or to apply population balance models where bubble 

breakup and coalescence are essential. Tailored studies are needed for each of the 

suggested alternatives.  

The current study provides comprehensive analysis of the budget of exact 

equation liquid phase turbulence kinetic energy. The assessment of the kL profiles 

indicates that the gain of turbulence kinetic energy is mainly caused by the interfacial 

term and it is redistributed by the diffusion term from regions of high void fractions to 

low void fractions. There are still many unanswered questions about the diffusion term. 

As presented briefly in this work, it consists of molecular and turbulent diffusion where 

the turbulent part dominates over the molecular part. Both sub-terms have complex 

distributions of the profiles and thus require a detailed investigation. By applying a 

similar procedure as in the current work, it is possible to use the DNS data to develop 

improved models for the diffusion term as well as other closure terms in the equation 

of liquid phase turbulence kinetic energy. 
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Appendix A. DNS 
 

A.1. Tables of the simulations 

Tables for single bubble simulations and bubble swarm simulations are given in 

this section.  
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Table 14: Single bubble simulations - Computational set-up specified for DNS. 

 M7-SB1 (M7) M7-SB2 M7-SB3 M7-SB4 M7-SB5 M7-SB6 M8 M9 M10 

Lref 4 mm 6 mm 4 mm 4 mm 4 mm 4 mm 4 mm 4 mm 4 mm 

Uref 0.1m/s 0.1 m/s 0.1 m/s 0.1 m/s 0.1 m/s 0.1 m/s 0.1 m/s 0.1 m/s 0.1 m/s 

Computational 

domain size 

1x1x1 

2x1x1 
1x1x1 1x1x1 1x1x1 

1x1x1 

2x1x1 

1x1x1 

2x1x1 
1x1x1 1x1x1 1x1x1 

Grid 

643,803,1003, 

128x64x64, 

64x64x80.  

1003 643 643 
803 and 

128x64x64 

643, 803 and 

128x64x64 
1003 1003 1003 

Mesh cells per dB 16,20,25,16,20 16.6 16 16 20, 16 16, 20, 16 25 25 25 

Equivalent dB  0.25 0.1667 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

dB 1 mm 1 mm 1 mm 1 mm 1 mm 1 mm 1 mm 1 mm 1 mm 

dB / Lref 1/4 1/6 1/4 1/4 1/4 1/4 1/4 1/4 1/4 

Num. of bubbles 1 1 1 1 1 1 1 1 1 

εG 0.818% 0.24% 0.818% 0.818% 0.818% 0.818% 0.818% 0.818% 0.818% 

G /L 1/25 1/25 1/100 1/50 1/25 1/25 1/25 1/25 1/25 

µG/µL 1 1 1 1 1/2, 1/5 1/10 1 1 1 

M 2.22x10-7 2.22x10-7 2.22x10-7 2.22x10-7 2.22x10-7 2.22x10-7 2.77x10-8 3.47x10-9 2.22x10-10 

EöB 2.529 2.529 2.608 2.582 2.529 2.529 1.265 0.632 0.253 

Eöref 40.468 91.054 41.733 41.312 40.468 40.468 20.234 10.117 4.047 

Weref 10.743 16.114 10.743 10.743 10.743 10.743 5.371 2.685 1.0743 

Reref 380.76 571.14 380.76 380.76 380.76 380.76 380.76 380.76 380.76 

Time step width 10-4 10-4 10-4 10-4 10-4 10-4 10-4 10-4 10-4 

Initial conditions Stagnant Stagnant M7-SB1 Stagnant M7-SB1 M7-SB1 Stagnant Stagnant Stagnant 
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Table 15: An overview of bubble swarm simulations performed and used in this study. NBubble: Number of bubbles, Grid: a: 64 × 64 × 

64, b: 80 × 80 × 80, c: 100 × 100 × 100, d: 120 × 120 × 120, e: 100 × 100 × 120. NB: Mesh cells per bubble diameter. Lwall: Wall distance, 

db: Bubble diameter, εG: Gas content, M: Morton number, EöB: Bubble Eötvös number, C: Coalescence, y: yes, n: no, n/a: Not available 

(The information about coalescence is not available since these cases are not further evaluated due to numerical artifacts and following 

unphysical behavior). *: Due to non-equidistant grid NB is minimum 20. 

Case No. 1 2 3 4 5 6 7 8 9 10 11 12 13 

(A4) 

14 15 

(A2) 

16 

(A3) 

17 18 

(A1) 

19 20 21 22 

(B-M7) 

23 

(B-M8) 

24 25 26 27 28 29 

NBubble 4 4 4 4 4 6 6 8 8 8 8 8 8 6 6 5 5 6 5 5 5 5 6 6 6 6 6 6 6 

Grid b c a,b,c c d c d a b c c b d e e e e e e e e e d d d d d d d 

NB 20 20 16,20,25 20 20 20 20 16 20 20 25 10 20 20* 20* 20* 20* 20* 20* 20* 20* 20* 20 20 20 20 20 20 20 

d
B
 / Lwall 1/4 1/5 1/4 1/5 1/6 1/5 1/6 1/4 1/4 1/5 1/4 1/8 1/6 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 

d
B
[mm] 1 1 1 1 1 1 1 1 2 1 1 0.5 1 2.0 0.5 2 3 2 1.6 5 4 3 1 1 1 1 1 2 0.5 

εG [%] 3.2 1.6 3.2 1.6 1.0 2.5 1.4 6.5 6.5 3.3 6.5 0.8 1.9 2.5 2.5 2.1 2.1 2.5 2.1 2.1 2.1 2.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

log M -7 -7 -8 -8 -8 -7 -8 -7 -7 -7 -8 -8 -8 -7 -10 -7 -7 -7 -7 -7 -7 -8 -7 -8 -9 -10 -7 -7 -7 

Eö
B
 2.5 2.5 1.2 1.2 1.2 2.5 1.2 2.5 10 2.5 1.2 1.2 1.2 1.2 0.1 1.2 2.6 1.2 0.7 7.3 4.7 2.6 2.5 2.5 2.5 2.5 2.5 10 0.6 

C y y y y y y n/a y y y y y n/a y n/a y n y n n/a n/a n/a n n n/a n/a n/a n/a n/a 
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A.2. Coalescence process 

    

t1 = 0.0592 s t1+ tx t1+ 2tx t1+ 3tx 

    

t1+ 4tx t1+ 5tx t1+ 6tx t1+ 7tx 

 

Fig. 53: Coalescence process of two bubbles at eight different instants in time. The first instant is at t1 = 0.0592 s and each instant of 

time is tx = 0.8 ms. ahead from the previous one. Case No.11 with 8 bubbles in domain is given in Table 15. The vertical vector field 

in flow direction is shown in coloured scale. This process is discusse in Section 3.5.1 and given as a close-up view in Fig. 25 over a 

shorter period. 
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Appendix B. E-E Simulations 

B.1. Local gas holdups 

Fig. 54 shows the contour plots of slices at different heights. For Case A at 2.23 

and 3.30 m, the αG values changes sharply near the wall, which are locally much higher 

or much lower than the center of the column. This is not a physical but a numerical 

problem and occurred for all cases at 1 bar. For Case B, the transition is smooth and 

local gas holdup values are lower near the wall. 

 

 Case A 
 

 Case B 
 

  

  

 

Fig. 54: Contour plots for αG of slices at different heights in the column. H=1.16 m, 2.23 m, 

3.30 m. T=23 °C, UL,0=0.84 cm/s, UL,0=0.54 cm/s. Left: Case A at 1 bar; Right: Case B 18.5 

bar. 

Influence of bubble diameter 

The “Multi-Phase” Project is focused on mono disperse flow and thus the gas fed 

into liquid through the sparger is set to a constant diameter. For the E-E simulations a 

certain bubble diameter is required as input. During the operation of the bubble column 

different size of bubbles are in action. This approximate bubble diameter is obtained in 

the experiments via bubble size distribution based on the average bubble size in the 

x 

z 

x 

z 
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column [189]. In Fig. 55, the influence of initial dB on the turbulence kinetic energy k, 

the velocity profiles uL, uG and the gas holdup is studied by comparing the cases with 

dB =2.25 mm, 3 mm and 4 mm using the Lahey-model as the IkL.  

The velocity changes are not consistent with the gas holdup. Although the Case 

B3 and B4 take core peaking profiles with very low αG near the wall, their velocity 

profiles are flattened due to the dominating BIT [202]. Thus, the km is higher for those 

cases with higher initial dB, the mixing of eddies is distributed over the cross-section 

and TKE diffuses from a high αG region to low αG region. This is the reason of low radial 

difference on km profiles, which are non-zero even where there are nearly no bubbles. 

The relative velocity (uG - uL) is not constant but increases by increasing initial dB (as 

discussed in Fig. 43). 

The varied bubble diameter modifies the drag force and the drag coefficient CD. 

The interfacial term IkL is then modified depending on modified CD. In Fig. 56 a), IkL 

increases by increasing dB higher in the core region and lower near the wall region, 

although the higher bubble diameter tends to decrease the drag force. However, since 

the relative velocity increases with increasing dB, considering the cubic effect of the 

relative velocity in Eq.(75), the profiles from Fig. 56 a) are logical. The bigger bubbles 

with higher IkL cause higher turbulence kinetic energy as it is seen in Fig. 55 c). 

 

a)  b)  c)  

   

Fig. 55: Azimuthally averaged radial profiles of (a) uL and uG, (b) αG and (c) km in the center of 

the bubble column for 18.5 bar at T=23 °C with different bubble diameter, i.e. dB=2.25 mm 

(Case B), dB=3 mm (Case B3) and dB=4 mm (Case B4). 
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a)  b)  

 
 

Fig. 56:  Radial profiles of IkL (a) and CD (b) calculated from uL, uG, αG and flow parameters 

according to Table 7 and Eq.(75) for Water-N2 cases at 18.5 bar. 

Influence of pressure 

Euler-Euler simulations were performed for varied pressures of 1, 18.5 and 36 

bar using the Lahey-model as the IkL. Fig. 57 shows the radial distributions of local gas 

holdup (αG), turbulence kinetic energy (k) and axial component of mean liquid and gas 

velocities (uL, uG) for different pressures (Case A, B and C). High pressure increases 

the gas density (ρG) significantly as well as the liquid density (ρL) but negligibly. Besides, 

the surface tension between the phases (σ) decreases at higher pressure. Smaller 

bubble diameter was considered in simulations for high pressures due to the 

experimental findings mentioned in Section 5.1.2. Initial bubble size is constant and 

dB=4 mm for 1 bar and dB=2.25 mm for 18.5 and 36 bar.  

Rollbusch et. al. [197] carried out an extended review on the bubble columns 

operated under industrially relevant conditions and highlighted that dB is smaller at 

elevated pressures [194-196]. According to Lin et al. [198], the increased pressure 

leads to an increase in gas holdup which is explained by a reduced stable bubble size 

and thus a retarding effect on bubble coalescence and lower bubble rise velocity [197]. 

This forms an explanation to the high volumetric gas fraction αG at high pressures in 

Fig. 57. Especially for Case B and C with the same initial dB the difference of αG is up 

to 80-85%. This is related to the decreased bubble size in Case C due to a delay in 
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bubble break-up and coalescence [194]. Thus, the lowest gas velocity uG occurs at the 

highest αG for 36 bar whereas the highest gas velocity uG occurs at the lowest αG 

distribution for 1 bar. The change of axial gas velocity is not proportional to the change 

of αG when pressure changes.  

For Case B and Case C, the liquid velocity profiles in the core region are steeper 

where the αG is also high. The corresponding steep profile for each case is because 

the core peaking profile of αG causes acceleration of the liquid in the core region due 

to the momentum transfer between bubble and liquid [202]. The characteristic near-

wall downward flow of a vertical bubble column can be observed in the wall region. 

 

a)  b)  c)  

   
 

Fig. 57: Azimuthally averaged radial profiles of (a) uL and uG, (b) αG and (c) km in the center 

of the bubble column at different pressures, i.e. 1 bar (Case A), 18.5 bar (Case B) and 36 bar 

(Case C). 
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Nomenclature 

 

Roman Symbols 

A Cross sectional area [m2] 

ai Specific interfacial area [m-1] 

Ai Interfacial area concentration [-] 

Ct Turbulence response coefficient [-] 

D Diameter of channel or column or pipe or hole [m] 

dB Bubble diameter [m] 

DH Hydraulic diameter [m] 

DkL Diffusion term in turbulence kinetic energy equation [m2 s-3] 

ê  unit normal vector [-] 

f Liquid volumetric fraction within a mesh cell [-] 

F Force per unit volume [N m-3] 

FD Magnitude of drag force per unit volume [N m-3] 

g Gravity vector [m s-2]  

g Gravitational acceleration [m s-2]  

H Height [m] 

H0 The lowest gassed liquid height in the column [m] 

I Unit tensor [-] 

IkL Interfacial term in turbulence kinetic energy equation [m2 s-3] 

JG Local superficial gas velocity [m s-1] 

k Turbulence kinetic energy for single phase flow [m2 s-2]  

kG Turbulence kinetic energy of gas phase [m2 s-2] 

kL Turbulence kinetic energy of liquid phase [m2 s-2] 

km Turbulence kinetic energy of phase mixture [m2 s-2] 
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KU Velocity correction factor for rigid spheres [-] 

l Turbulent mixing length [m] 

L Length [m] 

Lref Reference length [m] 

in̂  Unit normal vector to interface [-] 

NB Mesh cells per bubble diameter [-] 

Ncell Number of mesh cells [-] 

ND A number used for the estimation of terminal velocity [75] [-] 

OkL Out-of-balance term in turbulence kinetic energy equation [m2 s-3] 

p Pressure [Pa]  

P Wetted perimeter [m] 

P* Non-dimensional reduced pressure [-] 

PkL Production term in turbulence kinetic energy equation [m2 s-3] 

Q Volumetric flow rate [m3 s-1] 

r Radius [m] 

R Radius of column [m] 

R Reynolds stress tensor [m2 s-2] 

t Time [s] 

T Temperature [°C] 

Ti Turbulence intensity [-] 

u Velocity [m s-1]  

u Velocity field [m s-1] 

UG,0 Superficial velocity of gas phase [m s-1]  

UL Velocity of liquid medium surrounding a single bubble [m s-1]  

UL,0 Superficial velocity of liquid phase [m s-1]  

Uref Reference velocity [m s-1] 

UT Terminal velocity of a rising bubble in liquid medium [m s-1]  
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v Velocity field within a mesh cell [m s-1] 

vm Center-of-mass velocity within a mesh cell [m s-1] 

wb Velocity of the biggest single stable fluid particle [m s-1] 

wbs Slip velocity of the biggest stable single bubble [m s-1] 

wc,L Maximum centerline velocity of the liquid phase [m s-1] 

WD Rate of the work done by drag force per unit volume [J s-1 m-3] 

wmax Maximum rise velocity of a single fluid particle [m s-1] 

X Phase indicator function [-] 

x, y, z Cartesian co-ordinates [m] 

 

Greek Symbols 

α Volume fraction [-] 

αG Local gas holdup [-] 

αL Mean liquid volumetric fraction [-] 

Γ Correction factor for estimating terminal velocity [-] 

Γμ Gas to liquid viscosity ratio [-] 

Γρ Gas to liquid density ratio [-] 

Δ Difference [-] 

 Dissipation rate of k [m2 s-3] 

G Overall gas holdup [-]  

θ Non-dimensional time [-] 

κ* Curvature [-] 

κcont Contamination coefficient [-] 

λ Ratio of bubble diameter to wall distance [-] 

μ Dynamic viscosity [Pa s] 

ν Kinematic viscosity [m2 s-1] 



170 

σ Surface tension [N m-1]  

∑ Summation [-] 

τ Shear stress tensor [Pa] 

Φmean Steady mean component  [-] 

φ Arbitrary quantity [-] 

ρ Density [kg m-3]  

 Bubble aspect ratio [-] 

 

Non-dimensional numbers 

Ar Archimedes number 
3 2
p L Lg     d  

CD Drag coefficient 
D

2
L rel

1

2
  

F

A u

 

Eö Eötvös number 
2

B  g d  

Eu Euler number 
2

L p u  

F Flow number  
1/3

5 8 4
B   g d  

Fr Froude number 
2 Bg d u  

KF Liquid number 
3 4

L Lg     

M Morton number 
4 2 3

L L     g  

Re Reynolds number L T B L  U d  

V Velocity number  
1/3

2 2
T B   U d  

We Weber number 
2

L  L u  
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Subscripts 

axial Axial direction 

B Bubble 

cont Contaminated 

cell Mesh cell 

D Drag 

eff Effective 

G Gas phase 

i Liquid phase quantities at the gas-liquid interface 

inlet Quantity at the inlet 

L Liquid phase or Lift 

m Mixture 

max Maximum 

mean Mean component 

outlet Quantity at the outlet 

ref Reference 

rel Relative 

rms Root mean square 

turb Turbulent 

T Terminal 

TD Turbulent dispersion 

VM Virtual mass 

wall wall related 

x, y, z Cartesian co-ordinates 

1 Vertical direction 

2 Span-wise (lateral) direction 

3 wall-normal direction 
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Superscripts 

* Non-dimensional 

eff Effective 

mol Molecular 

rms Root mean square 

t Turbulent 

T Transposition 

φ Phase indicator 

 

Overbar Symbols 

  Averaged component 

  Phase-weighted (conditional) averaged component 

  Fluctuating component (fluctuations) 

  Averaged fluctuating component 

 
2


 

Variance of time averaged fluctuating component 

2  Root mean square of time averaged fluctuating component 

 

List of Abbreviations 

2D Two dimensional 

3D Three dimensional 

BIT Bubble induced turbulence 

CF Color function 

CFD Computational Fluid Dynamics  
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CSI Center of Smart Interfaces of TU-Darmstadt 

DNS Direct Numerical Simulations 

E-E Euler-Euler 

E-L Euler-Lagrange 

EPIRA Exact Plane Interface Reconstruction Algorithm 

GammaCT High-resolution gamma-ray computed tomography 

HZDR Helmholtz-Zentrum Dresden-Rossendorf 

IMS Institute of Multiphase Flows of TUHH 

IR Interface reconstruction 

KIT Karlsruhe Institute of Technology 

LES Large eddy simulation 

MUSIG Multiple Size Group 

N2 Nitrogen 

p.b.c periodic boundary conditions 

PB Model for interfacial term from Pfleger and Becker [137] 

PDF Probability distribution function 

PIV Particle image velocimetry 

PLIC Piecewise Linear Interface Calculation 

RANS Reynolds-Averaged Navier-Stokes 

RNG Re-Normalization Group 

RSM Reynolds stress model 

S.C.M. Stagnant Cap Model 

S-N Schiller-Naumann drag model [101] 

SST Shear Stress Transport 

TKE Turbulence kinetic energy 

To Tomiyama drag model [102] 

TUHH Hamburg University of Technology 
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VOF Volume-of-Fluid Method 

WGA Water-Glycerin-Air system 

WGN Water-Glycerin-Nitrogen system 

WMS Wire-mesh sensor 
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