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The high kinetic inductance offered by granular aluminum (grAl) has recently been employed for linear
inductors in superconducting high-impedance qubits and kinetic inductance detectors. Because of its large
critical current density compared to typical Josephson junctions, its resilience to externalmagnetic fields, and
its low dissipation, grAl may also provide a robust source of nonlinearity for strongly driven quantum
circuits, topological superconductivity, and hybrid systems. Having said that, can the grAl nonlinearity be
sufficient to build a qubit? Here we show that a small grAl volume (10 × 200 × 500 nm3) shunted by a thin
film aluminum capacitor results in a microwave oscillator with anharmonicity α two orders of magnitude
larger than its spectral linewidth Γ01, effectively forming a transmon qubit. With increasing drive power, we
observe several multiphoton transitions starting from the ground state, from which we extract
α ¼ 2π × 4.48 MHz. Resonance fluorescence measurements of the j0i → j1i transition yield an intrinsic
qubit linewidth γ ¼ 2π × 10 kHz, corresponding to a lifetime of 16 μs, as confirmed by pulsed time-domain
measurements. This linewidth remains below 2π × 150 kHz for in-plane magnetic fields up to ∼70 mT.
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I. INTRODUCTION

Superconducting circuits are part of a growing group of
hardware platforms which successfully demonstrated quan-
tum information processing, from quantum error correction
to quantum limited amplification [1]. Some of the most
promising platforms, such as spin qubits [2–4], topological
materials [5–7], magnons [8], or molecular electronics
[9–12], benefit from hybrid architectures where super-
conducting circuits can provide unique functionalities, in
particular, dispersive readout [13] and high-impedance
couplers. The success of superconducting circuits is linked
to the availability of nonlinear elements with high intrinsic
coherence, namely Josephson junctions (JJs) fabricated by
thermal oxidation from thin film aluminum (Al) [14].
However, their applicability in hybrid systems [15,16] is

limited by the low critical field of Al [17] and by the
emergence of quantum interference effects in the JJs, even
for magnetic fields aligned in plane [18]. Here we show that
the JJ can be replaced by a small volume of granular
aluminum (grAl) [19] providing enough nonlinearity to
implement a superconducting transmon qubit [20], which
we operate in magnetic fields up to ∼0.1 T.
Granular aluminum, similarly to other materials such as

NbN [21], NbTiN [22], or TiN [23], is an attractive choice
for superconducting hybrid systems operating at radio
frequencies, due to its large critical magnetic field
[24,25], high coherence in the microwave domain [26–29],
and intrinsic nonlinearity [30,31]. The constituent Al
grains, about 3–5 nm in diameter [32], are separated by
thin oxygen barriers; therefore, grAl structures can be
modeled as arrays of JJs [30]. Their kinetic inductance
is tunable over orders of magnitude up to nH=□ [33].
Similar to JJ arrays, the nonlinearity of the grAl kinetic

inductance stems from the Josephson coupling between
neighboring grains, and it is inversely proportional to the
critical current density jc and the volume of the film VgrAl
[30]. This nonlinearity gives rise to a frequency shift K of
the fundamental plasmon mode ω1 for each added photon
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ðn → nþ 1Þ. Although the values KðnÞ depend on the
transition number n, to lowest order they can be
approximated by a constant self-Kerr coefficient K ¼
Cπeaðω2

1=jcVgrAlÞ, where C is a numerical factor close
to unity that depends on the current distribution, e is the
electron charge, and a is the grain size [30].
By reducing the grAl volume and the critical current

density, one can potentially increase Kð1Þ to a value much
larger than the transition linewidth Γ01, allowing one to
map a qubit to the first two levels j0i and j1i, similar to a
transmon qubit [20]. Following this approach, we construct
a circuit with a transition frequency f1 ¼ 7.4887 GHz by
connecting an Al capacitor to a small volume of grAl,
VgrAl ¼ 10 × 200 × 500 nm3, with critical current density
jc ≈ 0.4 mA=μm2 (see Fig. 1). For this structure the
estimated anharmonicity α ¼ Kð1Þ is in the megahertz
range [30]. Indeed, as we show below, the measured value
is α ¼ 2π × 4.48 MHz, which is much larger than the
transition linewidth Γ01 ¼ 2π × 50 kHz, effectively imple-
menting a relatively low anharmonicity transmon qubit.

II. QUBIT DESIGN AND DEVICE FABRICATION

Figure 1 shows a typical copper waveguide sample
holder, together with the circuit design of our qubit,
consisting of a grAl film shunted by an Al capacitor.
From finite-element simulations we extract a shunt capaci-
tance Cs ≈ 137 fF and a geometric stray inductance
Ls ≈ 0.45 nH (cf. Appendix B). The outer electrode of
the capacitor surrounds the inner electrode almost com-
pletely, except for a gap of width w [see Fig. 1(b)], which is
used to tune the coupling rate κ between the qubit and the
waveguide sample holder (cf. Appendix B).
The sample is fabricated on a sapphire wafer in a single-

step lithography by performing a three-angle shadow
evaporation. First, a 10-nm-thick grAl layer with room-
temperature resistivity ρn ¼ 1800� 200 μΩ cm and cor-
responding critical temperature Tc ¼ 1.9 K is deposited at
zero angle, followed by two 40-nm-thick Al layers evapo-
rated at �35° (cf. Appendix J). Thanks to this procedure,
only a small grAl volume, highlighted in blue in Fig. 1(d),
remains unshunted by the pure Al layers and participates in
the electromagnetic mode with a kinetic inductance
LK ¼ 2.85 nH, constituting 86% of the total inductance.

III. RESONANCE FLUORESCENCE

A. Spectroscopy

We characterize the grAl transmon by performing a
single-port measurement of the complex reflection coeffi-
cient S11 as a function of probe frequency f, in the vicinity of
the resonant frequency f1 (see Fig. 2). In the limit of weak
driving, ΩR ≪ α, where ΩR is the Rabi frequency, we can
treat the transmon as a two-level system. If the decoherence
rate is dominated by the energy relaxation rate Γ01, similarly
to Ref. [35] the complex reflection coefficient is

S11ðΔÞ ¼ 1 −
2κ

Γ01

1þ i2Δ=Γ01

1þ ð2Δ=Γ01Þ2 þ 2ðΩR=Γ01Þ2
; ð1Þ

where Δ ¼ ω1 − ω is the frequency detuning between the
drive and the qubit frequency and i is the unit imaginary
number. In contrast to a harmonic oscillator, the reflection
coefficient of a qubit deviates from a circle in the quadrature
plane and becomes increasingly elliptic with drive power
(cf. Appendix C).
Figure 2 depicts the measured reflection coefficient S11

as a function of qubit-drive detuning for incident on-chip
powers Pin ranging between −168 and −138 dBm. From a
least-squares fit to Eq. (1) (solid black lines), we extract the
qubit frequency f1 ¼ 7.4887 GHz, as well as the internal
loss and external coupling rates, γ ¼ 2π × 10 kHz and
κ ¼ 2π × 40 kHz, respectively. The corresponding energy

(a)

(b) (c) (d)

FIG. 1. Sample design. (a) Photograph of a copper waveguide
sample holder equipped with a microwave port similar to Ref. [34],
and, optionally, with a 2D vector magnet (see the Appendix A).
The vector magnet is schematically represented by the blue and red
coils, oriented along the y and z directions. The sample is
positioned in the center of the waveguide and couples to its
electric field along the y direction. (b) Optical image of the qubit
sample, consisting of two Al pads forming a capacitor
Cs ≈ 137 fF, connected by a grAl inductor Lk ≈ 2.85 nH. We
adjust the coupling of the sample to the waveguide by changing the
gap w (see Appendix B). (c),(d) Scanning electron microscope
(SEM) image of the grAl inductor (false colored in blue) with
volume VgrAl ¼ 10 × 200 × 500 nm3 and the Al leads (false
colored in red). The grainy surface structure is due to the antistatic
Au layer used for imaging. The circuit is obtained in a single
lithography step by performing a three-angle shadow evaporation.
The Al layer shunts the grAl film in all areas, except for the volume
VgrAl in the center, which constitutes the source of nonlinearity for
the qubit [30]. The geometric inductance is Ls ¼ 0.45 nH, and the
contacts contribute to the Lk with 0.13 nH (see Appendix G).
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relaxation times due to radiation into the waveguide [36]
and internal losses are T1;κ ≈ 4 μs and T1;γ ≈ 16 μs,
respectively. As shown in Fig. 2(d), the Rabi frequency
shows a linear dependence with drive amplitude, as
expected for a two-level system. From a linear fit passing
through the coordinate origin [35], we calibrate the
attenuation of the input line to 103 dB, within 3 dB from
room-temperature estimates.
For drive powers Pin > −138 dBm, we observe addi-

tional features in the reflection coefficient S11 emerging at
frequencies fn below the qubit frequency f1 [see Fig. 3(a),
left-hand panel]. Similar to the high power spectroscopy of
JJ transmon qubits [37,38], these features are multiphoton
transitions into higher energy eigenstates En starting
from the ground state E0, observed at frequencies fn ¼
ðEn − E0Þ=ðnhÞ, where n is the level number (see
Appendix D for numerical simulations of the spectrum

and Appendix E for two-tone spectroscopy). From the
frequency detuning between the first two transitions [red
markers in Fig. 3(a), right-hand panel], we extract a qubit
anharmonicity α ¼ 2π × 4.48 MHz.
Generally, for a JJ transmon the anharmonicity is given

by the charging energy Ec;s ¼ e2=2Cs associated with the
shunt capacitance [20], which for our geometry is
Ec;s=ℏ ¼ 2π × 141 MHz. In the case of an array of N
JJs, the anharmonicity is reduced by N2 [39,40], which
implies N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ec;s=ℏα
p

≈ 6 for the JJ array implemented
by our grAl volume [30]. The corresponding effective
junctions are therefore separated by ∼80 nm, spanning
approximately ten grains. This result is in agreement with
recent scanning tunneling microscopy measurements per-
formed on similar grAl films, which evidenced the collec-
tive charging of clusters of grains [41].
From the measured multiphoton transition frequencies

fn, we calculate the nonlinear frequency shift ℏKðnÞ ¼
ðEn − En−1Þ − ðEnþ1 − EnÞ, with En=h ¼ nfn. As shown
in the right-hand panel of Fig. 3(a) (right-hand axis), we
find thatKðnÞmonotonically increases with n, likely due to
the contribution of higher-order terms in the expansion of
the Josephson potential, currently not included in the
model [30].
In the top panel of Fig. 3(b) we show measurements

for three different drive powers Pin ¼ −121, −106, and
−101 dBm. At any drive power in this range several
multiphoton peaks are visible. The linewidth of each
transition broadens with power, as illustrated in the bottom
panel of Fig. 3(b) for the third and the tenth multiphoton
transition. The visibility of the peaks and the background
response of the phase is in remarkable agreement with the
master-equation simulation presented in Appendix D. The
broadening of the n ¼ 10 transition, compared to n ¼ 3,
can be explained by offset charge dispersion, which
increases with a power law in n [20].

B. Time domain

The time evolution of the qubit can also be measured
using resonance fluorescence [42]. To enhance the signal-
to-noise ratio, we added a dimer Josephson junction array
amplifier [43], operated in reflection, with a power gain
G0 ≳ 20 dB. In Fig. 4(a) we show the measured Rabi
oscillations between the qubit’s ground and first excited
state, obtained by applying a Gaussian shaped manipula-
tion pulse of duration τm. For the read-out, we demodulate
the second half of a 3.2 − μs-long pulse with rectangular
envelope and power Pr ≈ −152 dBm. Both read-out and
manipulation pulses are applied on resonance with the qubit
transition frequency. As expected, the Rabi frequency
increases linearly with the drive amplitude.
The energy relaxation time T1 ¼ 1=Γ01, shown in the top

panel of Fig. 4(b), is measured by preparing the qubit in the
excited state using a 723-ns π pulse and monitoring the
dependence of the qubit population inversion as a function

(a)

(b)

(c)

(d)

FIG. 2. Resonance fluorescence. (a) Single-port reflection co-
efficient S11 measured around the qubit frequency f1 ¼
7.4887 GHz. For probe powers Pin well below the single-photon
regime (n̄ ≪ 1), S11 closely resembles a circle in the quadrature
plane (dark blue markers), from which, using Eq. (1), we extract
the external and internal decay rates κ ¼ 2π × 40 kHz and
γ ¼ 2π × 10 kHz, respectively. In (b) and (c) we show the real
and imaginary part of the reflection coefficient ReðS11Þ and
ImðS11Þ, respectively, as a function of the detuning between the
probe frequency f and the qubit frequency f1. When increasing the
probe power Pin, the response becomes elliptic in the quadrature
plane, which is the signature of resonance fluorescence of a two-
level system [35]. The black lines indicate fits to the experimental
data according to Eq. (1). The only fitting parameter is the Rabi
frequency ΩR; κ and γ are fixed by the fit to the low power
response [cf. panel (a)]. In (d) we showΩ2

R as a function of incident
on-chip power Pin. For a two-level system, given by the limit
ΩR ≪ α, we expect a linear dependence, as confirmed by the black
dashed line passing through the coordinate origin.

A GRANULAR ALUMINUM TRANSMON QUBIT … PHYS. REV. X 10, 031032 (2020)

031032-3



(a) (b)

FIG. 3. Energy spectrum. (a) Phase of the measured reflection coefficient argðS11Þ as a function of probe frequency f and incident on-
chip power Pin (left-hand panel). With increasing probe power we observe multiphoton transitions at frequencies fn, labeled
ðj0i → jniÞ=n, where n denotes the level number, which are almost equidistant in frequency, as plotted in the right-hand panel. For
clarity we only highlight with arrows the odd n transitions; all indices n are listed on the right-hand side of the 2D plot. From the first two
points in the right-hand panel (highlighted in red) we extract the qubit anharmonicity α ¼ Kð1Þ ¼ 2π × 4.48 MHz, much larger than the
total linewidth κ þ γ ¼ 2π × 50 kHz (see Fig. 2). To highlight the change inKðnÞwith increasing level number n (see main text), the red
line shows a linear extrapolation from the first two points. The extracted values KðnÞ are plotted in orange using the right-hand axis.
(b) Three individual measurements (top panel) performed at different probe powers (Pin ¼ −121, −106, and −101 dBm), as indicated
by the vertical dashed lines in the 2D plot in (a). Several multiphoton transitions are visible. With increasing power the linewidth of these
transitions broadens, as shown in the bottom panels for n ¼ 3 (right-hand panel, Pin ¼ −127 to −123 dBm) and n ¼ 10 (left-hand
panel, Pin ¼ −105.75 to −104.75 dBm). Here, δn ¼ f − fn, with f3 ¼ 7.4842 GHz and f10 ¼ 7.4678 GHz, as indicated by the arrows
in the top panel. In Appendix D we show that these experimental results can be quantitatively reproduced by a master-equation
simulation.

(a) (b) (c)

Q
ub

.
Q

ub
.

Qub.

FIG. 4. Time-domain manipulation and measurements of the grAl transmon. (a) Rabi oscillations between the qubit’s ground j0i and
first excited state j1i as a function of the average drive power of the Gaussian shaped manipulation pulse Pm and its duration τm. The
color scale represents the qubit population inversion from equilibrium (red) to fully inverted (blue). With increasing drive power, the
Rabi frequency increases in agreement with the spectroscopy measurement (see Fig. 2 and Appendix C). The right-hand panel shows
the Rabi oscillation for Pm ¼ −124.7 dBm, highlighted in the 2D plot by a black arrow. The black dashed lines indicate an
exponentially decaying envelope. (b) Measurement of the grAl transmon coherence times. The duration of the π pulse is 723 ns at a
manipulation power Pm ¼ −131.4 dBm. The markers in the top panel show the measured population inversion at a time τ after the π
pulse, and the black line indicates an exponential fit with a characteristic energy relaxation time T1 ¼ 2.8 μs. The bottom panel shows
the results of a Ramsey-fringes (circles) and a Hahn-echo (triangles) measurement. The observed frequency of the Ramsey fringes
agrees within 5% with the frequency detuning Δm ¼ 2π × 300 kHz of the π pulse. From the fits indicated by solid lines, we extract
coherence times T2 ¼ 4.7 μs and Techo

2 ¼ 5.1 μs, as well as the corresponding pure dephasing times 28 and 46 μs, respectively. (c) Time
stability of the energy relaxation time (gray triangles) and the deviation Δ of the qubit transition frequency from its average (pink
markers corresponding to the right-hand axis). The pink shaded area is the uncertainty for the qubit frequency measurement. The
inverted black triangles show the intrinsic energy relaxation time T1;γ ¼ T1T1;κ=ðT1;κ − T1Þ, where T1;κ ¼ 3.1 μs (dashed line) is the
limit due to spontaneous emission into the waveguide. Notably, the T1 and frequency stability data were taken in different cooldowns.
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of the wait time τ. The results are averaged over 3 × 105

repetitions during the course of 8 min. The observed energy
decay is fitted by a single exponential function with
characteristic decay time T1 ¼ 2.8 μs. The bottom panel
of Fig. 4(b) shows Ramsey fringes and Hahn-echo coher-
ence measurements, performed with the same π pulse,
yielding T2 ¼ 4.7 μs and Techo

2 ¼ 5.1 μs, respectively. The
corresponding pure dephasing times are 28 and 46 μs.
These measurements reveal energy relaxation as the main
decoherence mechanism, justifying the limit T2 ≈ 2T1 used
for the derivation of the reflection coefficient in Eq. (1).
In Fig. 2(c), we show the fluctuations of T1 and the qubit

frequency monitored over 15 h. Although spontaneous
emission into the waveguide limits the energy relaxation
time to T1;κ ¼ 3.1 μs, we can infer the intrinsic energy
relaxation T1;γ (inverted triangles) from the measured T1

values using T1;γ ¼ T1T1;κ=ðT1;κ − T1Þ. The obtained aver-
age intrinsic energy relaxation time is T1;γ ¼ 20þ22

−6 μs,
consistent with the γ−1 values extracted from spectroscopy
(see Fig. 2). The pink markers indicate the detuning Δ of
the qubit frequency from its average value. The observed
total change is on the order of the intrinsic linewidth γ.

IV. MAGNETIC FIELD RESPONSE

By applying a magnetic field By, aligned in plane with
the sample, we observe a continuous decrease of the qubit
frequency f1ðByÞ, as plotted in Fig. 5(a). The measure-
ments are performed in two separate cooldowns, with
(filled crosses) and without (open pentagons) an outer
superconducting Al shield. When employing the shield, the

maximal field is limited to ∼70 mT, after which the shield
becomes affected by the field coils, introducing distortions
in the field alignment. Because of the large critical field
of grAl (∼4–5 T [24,25]), the change in frequency is
primarily due to the lowering of the Al gap ΔAl, which
leads to an increase of the kinetic inductance of the Al wires
connecting the electrodes, accounting for ∼10% of the total
inductance.
Figure 5(b) depicts the internal quality factor Qi as a

function of the in-plane magnetic field By measured with
(filled triangles) and without (open pentagons and trian-
gles) an outer Al shield. Compared to the data depicted in
Fig. 2, we attribute the lower internal quality factor in these
three cooldowns to the removal of the μ-metal shield, which
likely results in an increase of the (stray) Bz field. In the
current design the Al pads are the most field susceptible
components, rendering the qubit frequency and internal
quality factor particularly sensitive to out-of-plane mag-
netic fields (cf. Appendix F), as illustrated by the factor of 3
difference inQi values in the unshielded case for nominally
identical setups. Finally, it is important to note that the
absolute value of the nonlinear frequency shift K is not
expected to change in magnetic field, because the ratio
ω2
1=jc in the expression for K is independent of the grAl

superconducting gap. Indeed, we measure a constant K up
to ∼100 mT (cf. Appendix G), confirming the grAl trans-
mon’s resilience to moderate magnetic fields.

V. CONCLUSION AND OUTLOOK

In summary, we have shown that using small volumes of
grAl can provide enough nonlinearity to implement mag-
netic field resilient superconducting qubits. We have
implemented a transmon qubit [20] with an anharmonicity
α ¼ 2π × 4.48 MHz, which, although smaller than the
typical values for JJ-based transmons, is much larger than
the qubit linewidth Γ01 ¼ 2π × 50 kHz. This enables
time-domain manipulation and measurement of the qubit,
from which we extracted an intrinsic T1;γ ¼ 20þ22

−6 μs, and
a pure dephasing time exceeding tens of microseconds. We
observe multiphoton transitions to the 20th order, show-
casing the robustness of the grAl transmon to external
drives; a valuable asset for strongly driven quantum circuits
[45], in particular in the context of bosonic codes for
quantum information [46–48]. Measuring the same qubit
with less shielding, in the presence of in-plane magnetic
fields up to ∼70 mT, the intrinsic linewidth remains below
γ ¼ 2π × 150 kHz, limited by the pure Al capacitor pads.
Following this proof-of-principle demonstration, future

developments will focus on replacing all pure Al compo-
nents with more field resilient materials, such as low-
resistivity grAl [33] or Nb compounds [21,22,49]. This will
allow us to operate coherent superconducting qubits in
magnetic fields beyond 1 T. In the current design, the Al
pads play the role of phonon and quasiparticle traps

(a) (b)

Shielded

Unshielded

Shielded

Unshielded

FIG. 5. Magnetic field dependence. (a) Relative change in qubit
frequency δf1 ¼ f1ðByÞ − f1 as a function of the applied in-
plane magnetic field By (see Appendix F for field alignment). The
experimental data were measured in two separate cooldowns:
with (filled triangles) and without (open pentagons) an outer
superconducting Al shield (see Appendix A). The field depend-
ence can be fitted to a two-fluid model [44] (see Appendix G),
indicated by the black dashed line, from which we extract the thin
film Al critical flux density Bc;Al ¼ 150� 5 mT, in agreement
with Ref. [17]. A more detailed analysis of the qubit transition
frequency with much higher resolution is presented in
Appendix H. (b) Internal quality factor Qi for the shielded (filled
triangles) and unshielded (open pentagons and triangles) case
versus the in-plane magnetic field By.
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[33,50], enhancing the coherence. In future designs, in
which Al is substituted by other superconductors with
higher gap and critical field, quasiparticle poisoning could
be mitigated by adding dedicated phonon traps discon-
nected from the qubit [51,52]. In order to avoid lowering T1

by the Purcell effect, following the recent nonperturbative
design reported in Ref. [53], a cross-Kerr interaction to an
ancilla mode could be used for read-out. The limitations on
qubit manipulation fidelity can be mitigated with derivative
removal via adiabatic gate pulses [54] and by adapting the
design to decrease the grAl volume and critical current
density, thereby increasing the anharmonicity. Further-
more, larger values of anharmonicity might be achieved
in fluxonium qubits [28,55].
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APPENDIX A: 2D VECTOR MAGNET

The waveguide sample holder can be equipped with a 2D
vector magnet, which consists of a pair of Helmholtz (HH)
coils and a solenoid for field alignment, denoted compen-
sation coil in the following [see Fig. 6(a)]. The field
direction of the HH coils is aligned within machining
precision with the in-plane direction of the chip y. The
compensation field is oriented perpendicular to it, in
the z direction, out of plane with respect to the sample.
All coils are winded with the same type of NbTi, multi-
filament superconducting wire with diameter d ¼ 140 μm
(Supercon Inc., 54S43). The winding parameters—the
number of layers nL and the number of windings per layer
nw—and the physical dimensions of the coils—radius R,
length l, and vertical distance Δy (in the case of the HH
coils)—are summarized in Fig. 6(b).

From both coil geometries, we calculate the relation
between the applied bias current Icoil and the magnetic flux
density B⃗ at position r⃗ using the Biot-Savart law. For
simplicity, we approximate the coils with nL × nw single
loops. The loop radius depends on the layer number, and
the position along the coil’s symmetry axis depends on the
winding number, both gradually increasing by the wire
diameter d ¼ 140 μm. Following the approach of Caparelli

(a)

(b)

FIG. 6. Photograph of the cryogenic setup used for the magnetic
field measurements in Fig. 5. The copper waveguide sample holder
equipped with the 2D vector magnet (highlighted in color)
is mounted at the dilution stage of a tabletop Sionludi
dilution refrigerator [57] (gray scale), with a base temperature
Tbase ≈ 20–30 mK. The flat copper cylinder visible in the lower
part of the image is the lid of the outer shield (not shown), which
consists of successive copper (Cu) and aluminum (Al) cylinders,
similar to Ref. [58]. The Cu shield was used in all measurements
presented in Fig. 5, while the Al shield was only used during the
“shielded” cooldown. The inset shows the top view of the copper
waveguide sample holder including the 2D vector magnet (top)
and the numerically calculated Helmholtz field (bottom) By for a
bias current Icoil ¼ 1 A as a function of lateral position x. The
magnetic field of the two Helmholtz coils is aligned within
machining precision with the in-plane direction y of the thin
films. The Bz coil is the compensation coil we use to align in situ
the in-plane field. (b) Table summarizing the geometric parameters
for the coils of the 2D vector magnet: number of winding layers
nL, number of windings per layer nw, total number of windings
Nw, inner coil radius R, coil length l, vertical distance between
Helmholtz coils Δy, magnetic flux density in y and z direction per
1 A of bias current, by and bz, respectively.
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and Tomasi [59], we approximate the magnetic field
components Brðr⃗Þ, in radial direction (parallel to the loop
plane xz), and Byðr⃗Þ by truncating the sum after 20 terms.
Figure 6(a) (bottom right) depicts the numerically

calculated magnetic flux density of the HH coils as a
function of the lateral position x for a bias current Icoil ¼
1 A and y ¼ 0 mm. The center of the waveguide is the
origin for x and y, as indicated by the black dashed lines
(top right-hand panel). Since the magnetic flux density By

changes by only 3% in the region where the sample
chip is mounted (−5 ≤ x ≤ 5 mm), we take the value by ¼
80 mT=A to convert the HH bias current Icoil into a
magnetic flux density. For the compensation coil we find
a conversion factor bz ¼ 50 mT=A.

APPENDIX B: FINITE-ELEMENT
METHOD SIMULATIONS

The eigenfrequency and external coupling rate of the
circuit to the waveguide sample holder is simulated with
a commercial finite-element method simulator (high-
frequency structure simulator). The inductive contribution
of the granular aluminum (grAl) volume is modeled with a
linear lumped-element inductor Lk. Capacitive contributions
arising from the grAl microstructure are not considered. In
order to extract the lumped-element shunt capacitance Cs
and geometric stray inductance Ls of our circuit design, we
sweep the inductance Lk while keeping the design geometry
fixed [see Fig. 7(a)]. The dimensions of the circuit geometry
are listed in Table I. The simulated eigenfrequencies are
fitted to the lumped-element model,

f1ðLkÞ ¼
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CsðLk þ LsÞ

p ; ðB1Þ

yielding Cs ¼ 137 fF and Ls ¼ 450 pH [see Fig. 7(a)].
The external quality factor can be varied over

3 orders of magnitude by changing the gap w in the outer
electrode [see Figs. 1(b) and 7(b)]. As shown in Fig. 7(c),
we confirm that Qc does not significantly change with
the lateral position x, up to x ¼ �8 mm. The measured
sample is shifted by x ¼ 4 mm from the center.

APPENDIX C: RESONANCE FLUORESCENCE:
REFLECTION COEFFICIENT

In the limit of weak driving ΩR ≪ α, we describe our
transmon [20] as an effective two-level system [35]. Under
this assumption, the reflection coefficient is

S11 ¼ 1 −
ffiffiffi
κ

p hσ−i
αin

; ðC1Þ

where κ is the single-photon coupling rate to the waveguide,
hσ−i is the expectation value of the lowering operator in the

(a) (b) (c)

Eq. (B1)Fit to

Simulation

Design

(cf. Fig. 2)

FIG. 7. Finite-element method simulations of the linearized circuit. (a) Simulated transition frequency f1 of the linearized circuit obtained
using the eigenmode solver of a commercial finite-element method simulator (high-frequency structure simulator). For the simulation, the
grAl volume is substituted with a lumped-element inductance Lk which we sweep from 2 to 10 nH in order to fit the shunt capacitance Cs
and additional geometric inductance Ls of our design using Eq. (B1). We extract Cs ¼ 137 fF and Ls ¼ 450 pH. As indicated by the
dotted cursors, the measured frequency f1 ¼ 7.4887 GHz corresponds to a value Lk ¼ 2.85 nH. (b) Simulated external quality factor Qc
as a function of the gap w in the outer electrode for Lk ¼ 2.85 nH. Similarly to the design of Ref. [60], by closing the gap we can vary the
external quality factor by 3 orders of magnitude. For clarity [cf. panel (c)], the color of the markers is related to the value of w. The colored
dashed lines indicate the design value for the experiment and the black marker indicates the measured external quality factor Qc ¼
1.9 × 105 (see Fig. 2). (c) Simulated external quality factor as a function of the lateral chip position x and gap width w. The value of x is
measured from the center of the waveguide to the symmetry axis of the circuit. Because of the large aspect ratio of the waveguide’s cross
section (30 mm × 6 mm), the external quality factor varies by less than a factor of 2 along x.

TABLE I. Geometrical parameters of the sample [see Fig. 1(b)]:
sample width b, sample height h, gap in outer electrode w, length
of the bridge connecting the capacitor pads lb, width of capacitor
pads wf , and gap between capacitor pads gf.

b h w lb wf gf
ðμmÞ ðμmÞ ðμmÞ ðμmÞ ðμmÞ ðμmÞ
1000 800 300 400 100 100
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two-dimensional qubit subspace fj0i; j1ig, and αin is the
expectation value of the annihilation operator of the incident
bosonic single-mode field amplitude ain [61]. Here, we
assume a classical drive ain ¼ αine−iωt, which has in general
a complex amplitude αin.
The expectation value of the lowering operator is

expressed using the Pauli operators σx and σy: hσ−i ¼
ðhσxi − ihσyiÞ=2. The steady-state expectation values (time
t → ∞) for the Pauli operators σx, σy, σz under a continuous
drive with amplitude ΩR and detuning Δ ¼ ωq − ω, in the
presence of qubit energy relaxation at rate Γ01 and qubit
dephasing at rate Γ2 ¼ Γ01=2þ Γφ (Γφ is the pure dephas-
ing rate), are the following [61]:

hσxðΩR;ΔÞi ¼ Γ01Γ2ΩR(Γ01ðΓ2
2 þ Δ2Þ þ Γ2Ω2

R)
−1; ðC2Þ

hσyðΩR;ΔÞi ¼ Γ01ΔΩR(Γ01ðΓ2
2 þ Δ2Þ þ Γ2Ω2

R)
−1; ðC3Þ

hσzðΩR;ΔÞi ¼ −1þ Γ2Ω2
R(Γ01ðΓ2

2 þ Δ2Þ þ Γ2Ω2
R)

−1:

ðC4Þ

Using Eqs. (C2) and (C3),

hσ−i ¼
1

2

Γ01Γ2ΩR − iΓ01ΔΩR

Γ01ðΓ2
2 þ Δ2Þ þ Γ2Ω2

R
: ðC5Þ

Inserting Eq. (C5) into Eq. (C1), the reflection coefficient
writes

S11ðΔÞ ¼ 1 −
ffiffiffi
κ

p
ΩR

2αin

Γ01Γ2 − iΓ01Δ
Γ01ðΓ2

2 þ Δ2Þ þ Γ2ΩR
: ðC6Þ

The relation between the Rabi frequency ΩR and the drive
amplitude αin is

ΩR ¼ 2
ffiffiffi
κ

p haini ¼ 2
ffiffiffi
κ

p
αin: ðC7Þ

Using Eq. (C7) and in the limit of negligible pure dephasing
Γφ ≪ Γ01, Eq. (C6) simplifies to

S11ðΔÞ ¼ 1 −
2κ

Γ01

1þ i2Δ=Γ01

1þ ð2Δ=Γ01Þ2 þ 2ðΩR=Γ01Þ2
; ðC8Þ

which is Eq. (1) in the main text. The factor in front of
the second term of Eq. (C8) is the coupling efficiency κ=Γ01,
with Γ01 ¼ κ þ γ. It is a measure of the relative size of the
internal loss rate γ compared to the external coupling rate κ.
Figure 8 shows the Rabi frequency extracted from

spectroscopy, similar to Fig. 2, and the time-domain
measurements shown in Fig. 4(a). The measurements
follow the dependence expected for a two-level system
given by Eq. (C7).

APPENDIX D: NUMERICAL CALCULATION
OF THE KERR HAMILTONIAN

Since our transmon qubit has a relatively small anhar-
monicty α (see Fig. 3 main text), we can simulate our circuit
as an anharmonic oscillator with self-Kerr coefficient
K ¼ 2π × 4.5 MHz. This model is further justified by
the weak dependence of K on the level number n as
measured in Fig. 3. The driven Kerr Hamiltonian expressed
in the rotating frame of the coherent drive applied at
frequency ω is

HKerr=ℏ ¼ Δa†a −
K
2
a†2a2 −

Ω
2
ða† þ aÞ: ðD1Þ

Here,Δ ¼ ω1 − ω is the detuning between the fundamental
transition frequency ω1 and the drive tone, a† and a are the
bosonic single-mode field amplitude creation and annihi-
lation operators, respectively, and Ω is the drive amplitude.
Notably, the drive amplitude Ω corresponds to the Rabi
frequency ΩR, only in the limits K ≫ κ and Ω ≪ K. Both
criteria are met in our experiment.
In analogy to Eq. (C1) in the case of a two-level system,

the reflection coefficient of an (anharmonic) oscillator is
[62,63]

S11 ¼ 1 −
ffiffiffi
κ

p hai
αin

: ðD2Þ

We calculate the expectation values hai as a function of
detuning Δ and drive amplitude Ω by solving the corre-
sponding master equation numerically using QuTiP: [64,65].

Spec.

FIG. 8. Rabi frequency fR ¼ ΩR=ð2πÞ from spectroscopy and
time-domain measurements. The blue markers (labeled spec.)
indicate the Rabi frequency extracted from fits to the frequency
dependence of the reflection coefficient according to Eq. (C8),
similar to Fig. 2, while the red markers indicate the values
extracted from the time-domain (TD) measurements shown in
Fig. 4(a). Both spectroscopy and time-domain datasets were taken
in the same cooldown (run no. 7). The black solid line represents
the expected Rabi frequency for an ideal qubit according to
Eq. (C7), and using Pin¼Pm¼ℏωqjαinj2.

PATRICK WINKEL et al. PHYS. REV. X 10, 031032 (2020)

031032-8



The master equation in Lindblad form in the presence of
energy relaxation at rate Γ01 is

_ρs ¼ −
i
ℏ
½HKerr; ρs� þ Γ1D½a�ðρsÞ: ðD3Þ

Here, ρs is the system densitymatrix,HKerr is the drivenKerr
Hamiltonian given in Eq. (D1), and D½a�ðρÞ is the Lindblad
superoperator introducing single-photon dissipation:

D½a�ðρsÞ ¼ aρsa† −
1

2
a†aρs −

1

2
ρsa†a: ðD4Þ

For our numerical calculations, we use internal and
external decay rates γ¼2π×10kHz and κ¼2π×40kHz,
respectively, and a total energy relaxation rate Γ01 ¼
κ þ γ ¼ 2π × 50 kHz. The dimension of the considered
Hilbert space is Nlevel ¼ 30. The drive amplitudes
Ω ¼ 2

ffiffiffi
κ

p
αin are chosen to coincide with the values used

in the experiment, with αin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pin=ðℏw1Þ

p
.

Figure 9 depicts the numerically calculated reflection
coefficients S11 and the corresponding least-squares fits
using Eq. (1). The colors are related to the drive power
similarly to Fig. 2. The linear fit to the extracted Rabi
frequencies shown in Fig. 9(d) confirms that the two-level
approximation (qubit limit) is valid in the parameter space
of our experiment.
We reproduce the experimental results presented in

the main text in Fig. 3 by numerically calculating the
reflection coefficient for the same range of probe frequency
and power. Figure 10(a) depicts the phase of the reflection
coefficient argðS11Þ as a function of the incident power Pin

(a)

(b)

(c)

(d)

FIG. 9. Numerical simulations of resonance fluorescence.
Complex reflection coefficient S11 (a), its real part (b), and
imaginary part (c), numerically calculated for probe frequencies f
around the resonance frequency f1 ¼ 7.4887 GHz of the Kerr
Hamiltonian in Eq. (D1). For comparison, the input drive power
Pin, the Kerr coefficient K ¼ 2π × 4.5 MHz, and the decay rates
γ ¼ 2π × 10 kHz and κ ¼ 2π × 40 kHz are set to be the same as
in the experiment. The black lines indicate least-squares fits using
Eq. (1). The only fit parameter is the Rabi frequency ΩR reported
in (d). The linear dependence of the Rabi frequency with drive
amplitude and the quantitative agreement with the measured data
shown in Fig. 2(d) confirm the validity of the qubit limit and the
value of the input line attenuation A ¼ 103 dB.

(a) (b)

FIG. 10. Numerical calculation of the energy spectrum. (a) Phase of the numerically calculated reflection coefficient argðS11Þ as a
function of probe frequency f and probe power Pin (left-hand panel) according to Appendix D. The multiphoton peaks are equally
spaced in frequency, with the difference given by K=2 ¼ 2π × 2.25 MHz (right-hand panel). In contrast to the experiment, we observe a
constant frequency shift K (orange markers, right-hand panel), as expected, because the Kerr Hamiltonian in Eq. (D1) only contains
terms up to the fourth order. (b) Three individual traces (top panel) calculated at distinct drive powers (Pprobe ¼ −121, −106, and
−101 dBm). Similarly to the experimental results shown in Fig. 3(b), several multiphoton transitions are visible at any given drive power
in this range. With increasing power, the linewidth of the transitions broadens as depicted by the enlargements (bottom panels) around
the third (right, Pprobe ¼ −127 to −123 dBm) and tenth (left, Pprobe ¼ −105.75 to −104.75 dBm) multiphoton transition.
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and probe frequency f. Similar to the experiment, multi-
photon transitions at frequencies fn ¼ ðEn − E0Þ=ðnhÞ
becomevisible. From a linear fit to the extractedmultiphoton
frequencies [see Fig. 10(a), right-hand panel], we recover the
self-Kerr coefficient K ¼ 2π × 4.5 MHz set in the calcu-
lation, as expected. Since the Kerr Hamiltonian in Eq. (D1)
does not contain beyond fourth-order terms, in contrast with
the experimental results, the simulated KðnÞ is independent
of the level number n. This confirms that the Hilbert-space
dimension Nlevel ¼ 30 was chosen sufficiently large.
For comparison to Fig. 3(b) shown in the main text,

Fig. 10(b) shows the phase of the calculated reflection
coefficient argðS11Þ as a function of the probe frequency f
for three drive powers, Pin ¼ −121, −106, and −101 dBm.
We would like to add that multiphoton transitions have

been measured in flux qubits [66,67] and Cooper pair boxes
[68,69], with the notable difference that in these previous
cases the transitions are between the ground and the first
excited state [70], while in our case they are between the
ground and higher excited states.

APPENDIX E: TWO-TONE SPECTROSCOPY

Figure 11 shows a two-tone spectroscopy of the qubit
sample in the vicinity of its fundamental transition fre-
quency f1. We apply a fixed frequency drive tone at
Δdrive ¼ 2π × 200 kHz above f1 with varying drive power
Pdrive. Simultaneously, we measure the reflection coeffi-
cient S11 by applying a weak probe tone at varying
frequency f and constant power Pin ¼ −160 dBm.
For small drive powers, only a single response at the

qubit frequency is visible in the phase of the reflection
coefficient argðS11Þ shown in Fig. 11(a). With increasing
drive power, the occupation of the first excited state j1i
increases and a second feature becomes visible 3.9 MHz
below the qubit frequency, corresponding to the single-
photon transition between the first and the second excited
state j1i → j2i, and quantifying the qubit anharmonicity α.
The measured anharmonicity α ¼ 2π × 3.9 MHz and the
qubit frequency f1 ¼ 7.6790 GHz are slightly different
compared to the values reported in the main text, due to the
fact that the measurements were taken in different cool-
downs and the sample parameters changed (most likely the
grAl resistivity ρn). In total we performed seven cool-
downs, summarized in Table II.
Both the j0i → j1i and j1i → j2i transitions split into two

distinct transitionswith increasingPdrive. This observation is
in quantitative agreement with the theoretical modeling of a
driven three-level system (qutrit) [35,71] [see Fig. 11(b)].
The expectation value of the photon number operator

ha†ai is shown in Fig. 11(c), numerically calculated for a
two-level (qubit, red) and a multilevel system (qudit, blue)
with constant anharmonicity (cf. Appendix D). In contrast
to a multilevel system, for a qubit the steady-state occu-
pation number versus drive power saturates at 0.5. The red
shaded area in Fig. 11(c) highlights the qubit limit in which

the difference between the occupation numbers of an ideal
qubit and our system (main text α ¼ 2π × 4.48 MHz) is
below 1%. The black arrow indicates the maximal drive
power used for the resonance fluorescence measurements
shown in Fig. 2.

APPENDIX F: MAGNETIC FIELD ALIGNMENT

Figure 12(a) shows the change in qubit frequency
δf1 ¼ f1ðBzÞ − f1, as a function of Bz for By ¼ 0. The
field sweeps are the following: (i) 0 → −0.2 mT (blue),

(a)

(b)

(c)
Qubit

Qubit

FIG. 11. Two-tone spectroscopy. (a) Phase of the reflection
coefficient argðS11Þ measured with a weak probe tone of constant
power Pin ¼ −160 dBm in the vicinity of the qubit frequency f1,
while an additional microwave drive is applied at Δdrive=2π ¼
fdrive − f1 ¼ 200 kHz detuning, indicated by the dashed white
line. With increasing drive power Pdrive, the fundamental tran-
sition starts to split into two distinct transitions, because of
the Autler-Townes effect [71], observed at frequencies f� ¼
f1 � ΩR=2π [35,71]. Since the population of the first excited
state increases with drive power, at Pdrive ≥ −150 dBm a second
transition becomes visible at 3.9 MHz below f1. This corresponds
to the j1i → j2i transition. The measured anharmonicity α ¼
2π × 3.9 MHz, as well as the qubit frequency f1 ¼ 7.6790 GHz,
are slightly different than the values reported in the main text,
due to the fact that the measurements were taken in different
cooldowns. In total we performed seven cooldowns, summarized
in Table II. Similar to the fundamental transition, the second
transition also splits with increasing Pdrive [71]. (b) Extracted
frequency splittings δf for the first two transitions. The black
lines correspond to the theoretical predictions 2ΩR (first tran-
sition, purple markers) and ΩR (second transition, yellow
markers), respectively, with ΩR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ Ω2

p
and Ω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4κPdrive=hfdrive
p

. (c) Expectation value for the photon number
operator ha†ai as a function of the drive power Pdrive numerically
calculated for a qubit (red line) and for an anharmonic multilevel
oscillator (see Appendix D).
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(ii) −0.2 → 0.2 mT (green), (iii) 0.2 → 0 mT (purple),
with the black arrow indicating the starting point. The
qubit frequency decreases with increasing field magnitude
and returns to its initial value when the field is swept in the
opposite direction. For fields applied in positive z direction,
we observe several jumps and a much less smooth change
in the qubit frequency with field. This observation is not
strictly related to the positive z direction, but depends on
the order of the measurement sequence. Figure 12(b) shows
the internal quality factor Qi extracted from the same
measurement sequence as the qubit frequency shown in
Fig. 12(a).
The measurement shown in Fig. 12 emphasizes the

circuit’s pronounced susceptibility to out-of-plane mag-
netic fields. Interestingly, the maximum of the qubit
frequency does not necessarily coincide with the maximal
internal quality factor. The criterium for the in-plane field
alignment is maximizing the qubit frequency versus Bz. By
performing similar sweeps of Bz for different values of By,
we estimate the misalignment between the HH field and the
sample’s in-plane direction to be 0.7°.

APPENDIX G: QUBIT RESPONSE
TO IN-PLANE MAGNETIC FIELDS

The in-plane magnetic field dependence of the qubit
transition frequency f1ðBÞ is calculated by mapping the
qubit onto a linearized, lumped-element circuit model
consisting of three inductive contributions in series, which
are shunted by a capacitance Cs ¼ 137 fF. The inductive
contributions arise from a field-independent geometric
inductance Ls ¼ 0.45 nH and two field-dependent kinetic
inductances associated with the pure Al and grAl thin films,

Lk;AlðBÞ and Lk;grAlðBÞ, respectively. The lumped-element
model transition frequency is

f1 ¼
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cs(Lk;AlðBÞ þ Lk;grAlðBÞ þ Ls)

p : ðG1Þ

The field dependence of the kinetic contributions is derived
from Mattis-Bardeen theory for superconductors in the
dirty limit [72] and assuming temperatures well below the
critical temperature (T ≪ Tc),

Lk ¼
ℏRn

πΔðB; TÞ ; ðG2Þ

where Rn is the normal state resistance and ΔðB; TÞ is the
magnetic field and temperature-dependent gap parameter.
The dependence of the gap parameter on magnetic fields
applied in plane is derived from a two-fluid model (see
Ref. [44], pp. 392 and 393),

ΔðB; T ¼ 0Þ=Δ00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðB=BcÞ2
1þ ðB=BcÞ2

s
; ðG3Þ

whereΔ00 is the gap parameter at zero temperature and zero
magnetic field, and Bc is the critical magnetic flux density
above which the pair correlation is zero. Because of the fact
that the critical magnetic flux density of grAl [24,25] is
2 orders of magnitude higher than that of our pure Al films
[17], we consider Lk;grAlðBÞ to be constant. However, for
the Al kinetic inductance, by inserting Eq. (G3) into
Eq. (G2), we find

Lk;AlðBÞ ¼
ℏRn

πΔ00;Al|fflfflffl{zfflfflffl}
Lk;Al

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðB=Bc;AlÞ2
1 − ðB=Bc;AlÞ2

s
; ðG4Þ

where Lk;Al is the kinetic inductance in zero field.
Using Eq. (G1) we fit the data presented in Fig. 5(a)
in the main text and we obtain Lk;Al ¼ 200� 5 pH and
Bc;Al ¼ 150� 5 mT.
The 200 pH value of Lk;Al corresponds to the intrinsic

kinetic inductance of the Al film plus the contribution of the
two contact areas between the grAl inductor and the Al
electrodes. The presence of contact junctions is expected
because the Al grains in grAl are uniformly covered by an
amorphous AlOx oxide. Taking into account the typically
measured 15% kinetic inductance fraction in Al thin films
of comparable geometry [58], we estimate the intrinsic
kinetic contribution of the Al film to be 70 pH. The
remaining 130 pH are associated with the contact junctions,
from which we calculate a critical current Ic ≈ 5 μA for
each of them, with corresponding critical current density
jc;JJ ≈ 0.13 mA=μm2, comparable to the critical current

(a)

(b)

FIG. 12. Qubit response to out-of-plane magnetic fields.
(a) Change in qubit frequency δf1 ¼ f1ðBzÞ − f1 as a function
of the out-of-plane compensation field Bz for By ¼ 0. The
colored arrows indicate the order of the measurement cycle.
(b) Internal quality factor Qi as a function of Bz extracted from
the same measurement sequence. The internal quality factor
exhibits a maximum around Bz ¼ −0.1 mT, reaching a factor of
2 higher than the initial Qi value in zero field [see Fig. 5(b), blue
pentagons].
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density of the grAl film, jc ¼ 0.4 mA=μm2 [see Eq. (G7)].
The inductance participation of one contact junction in the
total inductance is p1;J ¼ 2%. Using the energy participa-
tion ratio method presented in Ref. [73], the nonlinear
contribution of both junctions is

K1J ¼
hω2

1

4Φ0Ic
p2
1J ≈ 2π × 5 kHz; ðG5Þ

where Φ0 ¼ h=2e is the magnetic flux quantum.
We calculate the kinetic inductance of the grAl film

Lk;grAl ¼ 2.65 nH by subtracting Lk;Al ¼ 200 pH [fitted,
see Eq. (G4)] and Ls ¼ 450 pH (finite element method
simulations, cf. Appendix B) from the total inductance
L ¼ 3.3 nH, which we obtained from the measured reso-
nance frequency f1 ¼ 7.4887 GHz (see Fig. 2) using Cs ¼
137 fF (finite element method simulations, see Appendix B).
Considering the fact that the grAl volume consists of
approximately 2.5 squares, the corresponding grAl sheet
kinetic inductance isLk;□ ¼ 1.1 nH=□. This agrees with the
value calculated from the room-temperature sheet resistance
Rn;□ ≈ 1800� 200 Ω=□ using the Mattis-Bardeen theory
for superconductors in the local and dirty limit [74]:

LK;□ ¼ hRn;□

2π2ΔBCS
≈ 1.3� 0.1 nH=□: ðG6Þ

As discussed in the main text, the grAl nonlinearity α is
consistent with a number N ≈ 6 of effective JJs, yielding a
critical current density,

jc ¼
Φ0

2π

N
Lk;grAlAgrAl

≈ 0.4 mA=μm2; ðG7Þ

where AgrAl ¼ 10 × 200 nm2 is the grAl cross-section area.
This value for jc is in agreement with switching current
measurements of similar grAl films [75].
In Fig. 13 we show the field dependence of the nonlinear

frequency shift Kð5Þ and Kð6Þ measured during the same
two cooldowns as the data presented in Fig. 5 (main text),
with and without an outer Al shield, respectively. We chose
to measure the nonlinear coefficient for n > 1 in order to

use a larger read-out power and reduce the averaging time
during the field sweep. As expected, since the ratio ω2

1=jc
in the expression forK remains constant, we do not observe
a change in K within the measurement accuracy.

APPENDIX H: INTERACTIONS WITH OTHER
MESOSCOPIC SYSTEMS

Unwanted interactions between superconducting qubits
and other mesoscopic systems are commonly observed
[76–79]. Although the nature of the mesoscopic system is
difficult to identify, and depends on the architecture of the
qubit in general, among the most prominent suspects are
defects present in the nonstoichiometric oxide of the JJ
barrier and other interfaces [79,80], adsorbates and organic
residuals from the fabrication process [81], nonequilibrium
quasiparticles [82–85], and magnetic vortices [86]. The
interaction can be either transversal, causing a change of
the underlying eigenbase due to a hybridization between the
two systems, or longitudinal, inducing a frequency shift of
the qubit that depends on the state of the mesoscopic system.
For a true longitudinal coupling, the state-dependent fre-
quency shift does not depend on the frequency detuning
between the systems. In the transversal case, the hybridiza-
tion becomes visible in the form of an avoided level crossing,
when the two systems are tuned on resonance [87].
We can tune the grAl transmon qubit transition fre-

quency by more than 150 MHz by applying an external
magnetic field in plane. Figure 14(a) shows the qubit

Shielded

Unshielded

FIG. 13. Measured nonlinear coefficients Kð5Þ (shielded) and
Kð6Þ (unshielded) versus in-plane field.

(a) (b)

run no. 5

run no. 6

FIG. 14. Interactions with other mesoscopic systems. (a) Qubit
transition frequency f1 as a function of the applied in-plane
magnetic field By measured in two different cooldowns. The
black dashed lines indicate fits to Eq. (G1). (b) Frequency
difference Δf1 between the measured transition frequency
f1;meas and the fit result f1;fit [see Eq. (G1)] in three different
field ranges. On this scale, discrete jumps in the qubit frequency
become visible for the data taken in run no. 5. The jumps remain
qualitatively unchanged over a 150 MHz span covered by the
qubit frequency versus By, and in neither of the runs did we
observe signatures of avoided level crossings.
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transition frequency as a function of the in-plane magnetic
field By measured in two consecutive cooldowns (run no. 5
and run no. 6), as well as numerical fits according to
Eq. (G1) (black dashed lines). Each frequency value is
extracted from a fit to the resonance fluorescence response
of the qubit similar to Fig. 2. In both measurements shown,
and in any other measurement of the same kind, we do not
observe avoided level crossings. Figure 14(b) depicts the
frequency difference Δf1 between the measured transition
frequency f1;meas and the fitted transition frequency f1;fit, in
three different field ranges. In run no. 5, the qubit frequency
is observed to jump between two metastable states, while it

shows no significant discontinuity in run no. 6. The fact
that the observed frequency difference between the two
metastable states during run no. 5 is independent of the
transition frequency of the qubit suggests that the coupling
is longitudinal.

APPENDIX I: SUMMARY OF CIRCUIT
PARAMETERS IN ALL COOLDOWNS

In Table II we summarize the circuit parameters mea-
sured in each of the seven cooldowns. The time intervals
between subsequent runs, during which the sample is at
room temperature and atmospheric pressure, therefore
subjected to aging, are the following: run 1–2, 20 days;
run 2–3, 50 days; run 3–4, 20 days; run 4–5, 176 days; run
5–6, 3 days; run 6–7, 102 days.

APPENDIX J: FILM HEIGHT PROFILE

Figure 15 shows an atomic force microscopy (AFM)
image of the film height around the grAl volume for a
sample fabricated in the same batch. The height profile
shows several steps which originate from the three-angle
evaporation process with angles 0° (grAl, tgrAl ¼ 10 nm)
and �35° (Al, tAl ¼ 40 nm each). The metal deposition
parameters are summarized in Table III. The main features
are the leads connecting the grAl volume. Close to the edge
of the image, all three layers overlap and the total film
height is around 90 nm. The inset in Fig. 15 shows a cross

TABLE II. Summary of circuit parameters from all measurement runs: qubit frequency f1, external quality factor
(zero field) Qc;0, internal quality factor (zero field) Qi;0, external coupling rate (zero field) κ0, internal decay rate
(zero field) γ0, outer shielding configuration.

Run no. 1 Run no. 2 Run no. 3 Run no. 4 Run no. 5 Run no. 6 Run no. 7

f1 (GHz) 7.6790 7.4887 7.5156 7.4778 7.672 7.7292 7.4749
α=2π (MHz) 3.90 4.48 � � � � � � � � � 3.35 4.5
Qc;0ð×105Þ 1.7 1.9 1.8 1.5 1.9 1.9 1.5
Qi;0ð×103Þ 900 750 95 100 130 51 750
κ0=2π (kHz) 45 40 42 50 40 40 51
γ0=2π (kHz) 8.5 10 78 75 58 150 10
Outer shield:
Cu Yes Yes Yes Yes Yes Yes Yes
Al Yes Yes No Yes No No Yes
μ metal Yes Yes No No No No Yes
Magnetic field No No Yes Yes Yes Yes No

grAI
AI

FIG. 15. Film height profile. Atomic force microscope image
of the film height z in the area around the grAl inductor, measured
on a sample fabricated on the same wafer as the sample presented
in the main text. The inset shows the cross section along x (black)
and y (gray), as indicated by the arrows and overlay lines in
the 3D plot. The cross section along the grAl inductor (gray)
confirms the tgrAl ¼ 10 nm grAl thickness and tAl ¼ 40 nm for
each Al layer.

TABLE III. Metal deposition parameters: film thickness t,
evaporation angle β, deposition rate r, absolute pressure in
deposition chamber p.

Layer t (nm) βð°Þ r ðnm=sÞ p (mbar)

grAl 10 0 0.3 ∼10−5
Al 40 þ35 1.0 ∼6 × 10−8

Al 40 −35 1.0 ∼6 × 10−8
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section along the short (black) and the long (gray) edge of
the grAl volume. The AFMmeasurement confirms the grAl
film thickness of tgrAl ¼ 10 nm.
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