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In historical or archaeological terms, the iron age began around the 12th century
BC and lasted for over a millennium, up to the onset of historiographical records.
The key role of iron in improving the life of human beings was established with
the production of tools by ferrous metallurgy. According to Greek mythology,
among the five Ages of Man representing the stages of human existence on Earth,
the last one is the mythological iron age, where moral values and well-being
eventually decline.

Moving away from such awesome themes and blurred chronology, we instead
focus on the well-defined era of iron superconductivity: it started in early 2008,
with the discovery of a superconducting transition at 26 K in the LaFeAsO1-xFx
compound by the Hideo Hosono group [1] and has now passed its tenth
anniversary, with no sign of fading vitality. Also in this context, it was clear since
the very beginning that iron was bound to play a primary role: On one hand it
defied the shared belief about the antagonistic relationship between magnetism
and superconductivity, and on the other hand it reignited new excitement about
the mechanisms and perspectives of unconventional superconductivity, over
30 years after the discovery of high-Tc in copper oxides [2].

Such a ten-year period may represent infancy from a commercial and
technological application perspective, though early maturity from the scientific
research point of view. Certainly, it is a milestone, which first of all deserves
celebration, secondly calls for an assessment of the worldwide status of research
on this topic and finally allows a realistic, yet still tentative evaluation of the
prospective potential in specific applications. This multifold aim is addressed by
this focus issue, whose scope is to collect contributions from acknowledged
researchers in the scientific community about the most relevant topics related to
iron-based superconductors, including state-of-the-art results and reviews
covering fundamental issues, applications, physical mechanisms, properties, and
compounds.

1. Fe-based superconductors: a 10-year story

After an early report on superconductivity in Fe-based LaFePO and LaFeP(O,F)
at low temperature Tc ≈ 5 K [3], high-temperature superconductivity was
discovered in the so called 1111 [1], 122 [4] and 11 [5, 6] main Fe-based families.

The most accredited scenario for pairing effects and wave symmetry are those
related to antiferromagnetic spin fluctuation and s ± symmetry, with a sign
change in the phase of the order parameter in different sheets of the Fermi
surface, yet the debate on this is still open [7–10].

Pretty soon it was clear that these compounds exhibited interesting properties in
view of potential applications, namely high Tc’s up to 58 K in 1111 [11] and up to
38 K in 122 [12] groups, large upper critical fields Hc2 [13, 14], moderate-to-low
Hc2 and Jc anisotropies [15–19], especially low at low temperatures and in the
122 and 11 families [16, 17]. Their small coherence lengths in the nm scale and
related weak link behavior of the critical current at grain boundaries made them
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similar to high-Tc cuprates, however their critical intergrain misalignment angle
was found to be larger than that of cuprates [20–23].

These findings triggered large scale application-oriented research, whose
progress has evolved to demonstrate remarkable technological achievements and
shows no sign of slowing down. Reports have appeared about the effectiveness of
introducing pinning centers [24, 25], fabrication of wires and tapes [26] with Jc
exceeding the application threshold of 105 A cm−2 [27, 28], even at high fields
[29, 30], fabrication of a 100 m long powder-in-tube (PIT) wire with Jc exceeding
104 A cm−2 at 4.2 K and 10 T via a scalable rolling process [31], demonstration
of bulk compact magnet trapping over 1 T [32], fabrication of 122 and 11 coated
conductors, with Jc ~ 106 A cm−2 at 4.2 K and 9 T [33–35], as well as
proof-of-principle experiments regarding coated conductor architectures [36].
Also, potential electronic applications have been addressed, with deposition of
films [37] and fabrication of electronic devices, such as functional multilayers
[37], Josephson junctions [38, 39] and quantum interference devices [40].

In parallel, fundamental research has proceeded, investigating topics and
mechanisms in these compounds, such as phase diagrams [41], quantum
criticality [42], Lifshitz transitions, nesting, multiband character [43],
pressure/strain effects [44, 45], and disorder effects [46]. Deep understanding of
such topics could not only cast light on fundamental issues of superconductivity
and condensed matter physics in general, but also provide useful hints to drive the
application-oriented and technological research.

Ever new iron-based superconductor families have been discovered such as
111 [47], 32225 [48], 21311 [49], 22438 [50], 112 [51], 12442 [52] and 1144
[53]. High-temperature superconductivity at impressively enhanced temperatures
has been discovered in single-layer or electric-field-applied FeSe films [54–57].

Research is continuing, more intensively than ever, stimulated by the potential
large-scale applications at low-to-moderate temperatures (up to 20 K) and
high-to-very-high fields (up to 30 T), where these compounds can be
advantageous compared to cuprates thanks to their lower anisotropies and
fabrication costs.

2. This focus issue

10 years after the discovery of superconducting properties in iron-based
compounds, this special issue of Superconductor Science and Technology is
focused on research development toward applications, with particular attention to
the inter- and intra-granular critical current density [58–66] and the exploration of
strategies to improve it [59, 60, 67, 68].

Soon after the discovery of unconventional high-temperature superconductivity
in iron-based compounds, the richness of possibilities to synthesize such
compounds became apparent. Different families of iron-based superconductors
are represented in this focus issue, both the most commonly studied ones, such as
122 chalcogenides [69] and pnictides [59–62, 67], 1111 oxypnictides [66, 70] and
11 chalcogenides [64, 67, 71], as well as the less-studied 21311 pnictides [72].

A decade since the seminal work by the Hideo Hosono group, the technology
is maturing in the fabrication of different kinds of samples, all of which are
considered in this focus issue, namely thin films [58, 59, 66, 70, 71], coated
conductors [64], single crystals [61, 67, 69], polycrystals [60, 72] and tapes [62].

Thin films are arguably a good platform for both fundamental and applied
superconductivity research, as they offer the possibility of studying intrinsic
anisotropic physical properties, just like single crystals, with the further benefit of
macroscopic size and mechanical robustness. Indeed, high-quality epitaxial thin
films of the main iron-based families are grown by pulsed laser ablation (PLD)
and molecular beam epitaxy (MBE). The extensive studies carried out to



investigate the influence of substrates or buffered templates in determining the
key superconducting properties (like critical temperature Tc, upper critical fields
Hc2, and critical current density Jc) are reviewed in the opening paper of this
focus issue [58], where the roles of misfit, thermal expansion, and chemical
stability are discussed.

Thin-film technology also offers multifold tuning possibilities, such as building
artificial heterostructures that combine multiple phases, stabilizing metastable
phases, relying on the optimization of growth parameters and on epitaxial
constraints, enhancing pinning properties by nanoparticle inclusion and growth
defects, as well as studying the weak-link behavior as a function of the intergrain
misorientation angle in films on bicrystal substrates. Regarding the possibility of
fabricating artificial heterostructures, in the work by Haindl and coworkers [70],
by simply varying the temperature and deposition time in SmFeAsO1−xFx thin
films grown by PLD, the fluorine diffusion process was controlled and a fluorine
content gradient along the thickness was created. In such samples, Tc’s up
to ~ 43 K and high upper critical fields with low anisotropy (γ < 2.25 at low
temperature) were obtained. Regarding the use of non-equilibrium film growth
techniques to stabilize metastable phases, tetragonal iron sulfide (FeS) films were
deposited by Hanzawa and coworkers on different substrates and characterized in
terms of structural and transport properties under high-density carrier doping by
ionic liquid gating [71]. Regarding the strategies to improve pinning properties,
Miura et al demonstrated further enhancement of Jc, decreased Jc anisotropy, and
limited creep rates by incoherent BaZrO3 nanoparticles with tunable density and
size in BaFe2(As0.66P0.33)2 films over a wide range of temperatures and magnetic
field. They achieved a self-field Jc ~ 7.2 MA cm−2 at 5 K, which is a sizeable
15% of the depairing current, and Jc ~ 2.1 MA cm−2 at 5 K and 9 T (µ0 H||c)
[59]. Regarding the grain boundary angle θGB dependence of transport properties,
Iida and coworkers [66] carried out a study on NdFeAs(O,F) films on MgO
bicrystals. By limiting the extrinsic effects related to damage by excess
F-diffusion along the grain boundaries, they determined a critical angle of 8.5◦,
above which Jc starts to decrease exponentially for this 1111 compound, similar
to the values of other iron-based superconductor families.

Thin film technology deploys its application potential in the fabrication of
coated conductors. Fe(Se,Te) deposited on a CeO2 buffered rolling-assisted
biaxially textured substrate (RABiTS) template by Sylva et al exhibited an almost
isotropic Jc of 1.7 × 105 A cm−2, which is reduced by less than one order of
magnitude in fields of 18 T [64]. Considering the moderate Tc of 16 K, the high
upper critical fields, the relative ease of fabrication and the absence of the more
toxic arsenic compared to selene, this compound is particularly interesting,
extending the application ranges of MgB2 and Nb3Sn at low-temperatures and
high-to-very-high fields (T < 30 K and µ0 H > 10 T).

Extensive experimental studies have been carried out on samples of different
form and composition in order to explore the effects of many factors on the
critical current density Jc and to develop strategies to improve it. Effects of
chemical doping [61, 67], irradiation [67], fabrication parameters [60, 62], defects
[60], external pressure [61] and weak links at grain boundaries [63, 64] are
featured in this focus issue.

Nanometric defects induced by fast neutron irradiation in (Ba,K)Fe2As2 single
crystals drastically change the pinning landscape that dominates the flux pinning
properties, enhancing Jc toward the depairing current density limit and modifying
the doping dependence of Jc, as shown by Kagerbauer et al [67]. Critical currents
and pinning mechanisms were studied on Ba(Fe1−xNix)2As2 single crystals as a
function of doping x and applied pressure p by Bioletti and coworkers [61]. The
richness of physical mechanisms in play is apparent in the non-monotonic
dependence of Jc on pressure and in a possible role of the proximity to a quantum



critical point in the phase diagram. Uhrig and coworkers found that annealing of
FeSe1−xTex single crystals in air was a very simple strategy to increase Tc from 7
to 14 K and the critical current density Jc by up to one order of magnitude at all
the applied magnetic fields [67]. The optimized annealing conditions were
thickness dependent, and the related changes were attributed to the control of the
interstitial excess iron by annealing, as well as to the emergence of a surface
barrier, related to structural changes and oxide formation at the sample surface. In
the study by Shimada et al [60], the microstructure of Ba(Co,Fe)2As polycrystals
was controlled by the preparation parameters in terms of grain size and formation
of defects, such as stacking faults, intra- and inter-granular cracks, and secondary
phases at the grain boundaries, with a sizeable effect on the inter- and
intra-granular current.

The role of weak links at the grain boundaries in quasi-two-dimensional
(quasi-2D) superconductors with low coherence length was addressed by
Talantsev and Crump [63]. They proposed a criterion to reveal the presence or
absence of weak links based on Tc and self-field Jc and comparatively applied it
to different families of iron pnictides and cuprates. With this criterion, a number
of iron based compounds were identified as promising weak-link free
superconductors for the fabrication of tapes with Jc values in the range
1–3 MA cm−2, including BaFe2(As1.72P0.28)2, Ba(Co,Fe)2As2, (Ba,K)Fe2As2,
(Ba,La)Fe2As2, and CaKFe4As4, as well as intercalated FeSe [64].

For samples in the form of tapes, the research target is not only enhancing the
current carrying capability, but also the development of cost-effective fabrication
recipes. Ba0.6K0.4Fe2As2 tapes fabricated via a hot isostatic pressing method by
Liu et al [62] exhibited Jc’s up to 5.8 × 104 A cm−2 at 10 T and low temperature,
thanks to their phase purity, homogeneous element distribution, oriented grains,
and good grain connectivity, despite the sheath material being a Cu/Ag composite
rather than the optimal but expensive Ag.

In this focus issue, further specific aspects are addressed. Dudin et al [69]
present investigations of the local chemical, electronic, and magnetic structure of
the co-existing superconducting and antiferromagnetic phases in RbxFe2–ySe2
single crystals by scanning microscopy techniques. Wakimura and coworkers
studied the effect of electron doping by Cr substitution in Sr2VFeAsO3 and
observed a moderate suppression of Tc and an increase in the residual resistivity
ratio (RRR) due to the introduction of disorder in the blocking layer [72].
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