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“We grow when we wade through murky waters” 
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Kurzfassung 
Das Einzugsgebiet des Olifants River befindet sich derzeit in einer umfassenden Entwicklung der 

landwirtschaftlichen Landnutzungsaktivität. Trotz verschiedener Schutzpraktiken und 

Schutzmaßnahmen führt die Veränderung der Landnutzung immer noch zu einer Verschiebung  im 

hydrologischen Regime. Als Treiber dieser rasanten Entwicklung in der Landnutzungsänderung durch 

landwirtschaftliche Nutzung sind der stetig steigende Nahrungsmittelbedarf und günstige klimatische 

Bedingung für die Landwirtschaft zu nennen. Ein stetiges Bevölkerungswachstum in Südafrika von 

etwa 1,4% pro Jahr weist auf eine kontinuierliche Nachfrage nach Nahrungsmitteln hin, die zu 

weiteren landwirtschaftlichen Expansionen und anschließend zu weiteren Veränderungen in der 

Hydrologie führen werden. Diese Situation könnte durch den Klimawandel und dadurch bedingte 

zunehmende Schwere extremer Phänomene wie Dürren und Überschwemmungen weiter verschärft 

werden. Diese Studie quantifiziert die Veränderungen des Klimas und der Landnutzung in den 

Teileinzugsgebieten Blyde River und Steelpoort River des Olifants Rivers, analysiert deren Einfluss auf 

die Hydrologie und schlägt eine Methode für die Landnutzungsplanung vor, mit der Änderungen im 

hydrologischen Regime abgemindert werden können. 

Historische Abflüsse, Temperatur und Niederschläge wurden mit statistischen Methoden 

ausgewertet, um das Vorhandensein von Veränderungen in den Zeitreihen für 37 Jahre ab dem Jahr 

1980 festzustellen. 1996 und 2012 wurden zwei abrupte Veränderungen im Abflussgeschehen 

festgestellt. Diese Veränderungen wurden auf die hohe Häufigkeit extremer Niederschläge (> 40 mm 

/ Tag) zwischen 1996 und 2012 zurückgeführt. Es wurde auch ein allmählicher Anstieg des Abflusses 

nachgewiesen, der jedoch nicht auf klimatische Faktoren zurückzuführen war. Darüber hinaus wurde 

ein allmählicher Temperaturanstieg festgestellt, der jedoch keinen nachweisbaren Einfluss auf die 

Evapotranspiration und andere hydrologische Faktoren hatte. 

Fernerkundliche Daten wurden zur Erkennung von Landnutzungsänderungen verwendet; vier Karten 

für 1992, 1998, 2002 und 2014 aus LANDSAT-Bildern. Die festgestellten signifikanten Veränderungen 

waren hauptsächlich auf die Urbanisierung und die landwirtschaftliche Entwicklung von etwa 169 

km2 und 514 km2 zurückzuführen. Das SWAT-Modell wurde basierend auf dem LULC von 1992 

kalibriert und zur Bewertung der Auswirkungen von Landnutzungsänderungen auf die Hydrologie 

verwendet. Basierend auf den LULC-Szenarien von 1992 und 2002 zeigten die Modellergebnisse eine 

Verringerung der Evapotranspiration um 6 mm, insbesondere in Gebieten, in denen Wälder durch 

Landwirtschaft ersetzt wurden, und eine allgemeine Erhöhung des Oberflächenabflusses um 3 mm, 

was auf die Verringerung der Oberflächenbedeckung zurückzuführen ist. Die weitere Ausdehnung des 

urbanen Bereichs und der Landwirtschaft zwischen 2002 und 2014 führte zu einer weiteren Erhöhung 

des Oberflächenabflusses um ca. 3 mm. 

Diese Studie schlägt einen Ansatz für die landwirtschaftliche Landnutzungsplanung vor, bei dem die 

Wechselwirkungen von Morphologie und Klima genutzt werden, um Gebiete zu identifizieren, die zu 
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minimalen Auswirkungen auf die Landwirtschaft führen werden. Grünland wurde als Landnutzung 

identifiziert, die engere hydrologische Eigenschaften als die Landwirtschaft aufwies. Das Grünland 

wurde als LULC-Klasse ausgewählt, die durch Landwirtschaft ersetzt werden kann. Morphologische 

Analysen zeigten, dass eine geringe Hangneigung, eine höhere Bodenschüttdichte und eine geringe 

Robustheit des Geländes die besten physikalischen Bedingungen für die landwirtschaftliche Praxis 

sind. 

Dies würde jedoch zu einem Verlust der Vegetationsvielfalt bei anhaltender landwirtschaftlicher 

Expansion führen. Daher sollte das Ausmaß der Umwidmung von Grünland auf Landwirtschaft 

begrenzt werden und es sollten zusätzliche Studien zu den Auswirkungen dieser Methode auf die 

biologische Vielfalt durchgeführt werden. 
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Abstract 
The Olifants River Basin is currently experiencing extensive evolution of agricultural landuse activities. 

Despite various conservation practices put in place, landuse development is still causing a shift in 

hydrological regimes. The drivers of this rapid evolution of agriculture in the river basin are a constant 

increase in food demand and conducive climatic conditions for agriculture. Steady population growth 

in South Africa of about 1.4% annum is indicative of continuous demand for food production, which 

would lead to further agricultural expansions and subsequently, further changes in hydrology; this 

situation could be further exacerbated by climate change through increased severity of extreme 

phenomena like droughts and floods. This research quantifies the changes in climate and landuse in 

Olifants’ sub-basins of Blyde and Steelpoort, analyzes their influence on hydrology, and proposes a 

method for landuse planning that would improve mitigating changes in hydrology. 

Historical river discharge, temperature, and rainfall were evaluated using statistical methods to detect 

the presence of changes in their time series for 37 years beginning 1980. Two abrupt changepoints 

were detected in the river discharge in 1996 and 2012; these changes were attributed to a high 

frequency of extreme rainfall, above  40 mm/day between 1996 and 2012. A gradual increase of 

discharge was also detected, but this change had no attributions to any climatic factors. A gradual 

increase in temperature was also detected, but this had no detectable influence on evapotranspiration 

and other hydrological factors. 

Remotely sensed images were used for landuse change detection; four maps for 1992, 1998, 2002, 

and 2014 from LANDSAT images. Significant changes detected were human-driven mainly by 

urbanization and agricultural development of about 169 km2 and 514 km2, respectively. SWAT Model 

was calibrated based on 1992 LULC and used to evaluate the impacts of landuse change on hydrology. 

Based on 1992 and 2002 LULC scenarios, the model outputs revealed a reduction in 

evapotranspiration by 6mm, especially in areas where forests were replaced with agriculture and a 

general increase in surface runoff by 3 mm, which is attributed to the reduction in surface cover. 

Further expansion of urban area and agriculture between 2002 and 2014 led to a further increase in 

surface runoff by about 3 mm. 

This research proposes an approach for agricultural landuse planning that utilizes the interactions of 

morphology and climate to identify areas that would result in minimal impacts under agriculture. 

Grassland was identified as landuse that exhibited closer hydrological characteristics to agriculture 

and was selected as the LULC class that can be replaced by agriculture. Morphological analysis 

indicated that low slope, higher soil bulk density, and low terrain ruggedness are the best physical 

conditions for the establishment of agriculture. 
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However, the shortcomings of this would be loss of vegetation diversity in case of sustained 

agricultural expansion. Therefore, there should be a limitation on the extent of grassland conversion 

to agriculture, and additional studies on the impacts of this method on biodiversity. 
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1 INTRODUCTION 

1.1 Background 

Water or hydrological partitioning refers to the separation of precipitation into various hydrological components 

and their pathways, as shown in Figure 1-1. It is mainly controlled by climatic factors, landuse/landcover (LULC), 

and physical (morphology) characteristics of the land; hence, LULC change and climate change/variability 

subsequently lead to shifting in water partitioning (Voepel et al., 2011). Observed patterns of change in climatic 

indices include the rise in global average temperature by about 0.85° C between 1880 and 2012, a general 

reduction in precipitation around the tropics, increased precipitation in higher latitude regions, increased 

droughts in semi-arid areas, and intensified hydrological events (IPCC, 2014). 

Figure 1-1: Schematic illustration of water partitioning (Source: www.virginiaplaces.org) 

LULC changes cause alterations in hydraulic conditions of watersheds and subsequently change water partitioning 

(Bosch, J.M. and Hewlett, 1982). Studies carried out by various researchers like Guzha et al. ( 2018)  Zhang et al. 

(2016) Nugroho et al. (2013)  Gyamfi, Ndambuki and Salim (2016) Shao et al. (2018), and  Zhu and Li (2014) 

demonstrate that urbanization and agricultural activities have generally lead to changes in surface runoff, 

baseflow, evapotranspiration and groundwater recharge with ncrease in surface runoff being a common 

observation (Guzha et al., 2018).  According to Bruijnzeel  (2004), Guzha et al. (2018), and Blanton (2014), the 

expansion of the agricultural area, loss of forests, and urbanization in most cases limits infiltration, subsequently 
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leading to reduced baseflow in dry seasons. Urbanization and agricultural development therefore pose 

detrimental hydrological impacts in semi-arid river basins where baseflow dominate streamflow regimes. 

Tropical semi-arid river basins experience extensive landuse activities, which eventually alter their hydrology; 

limited arable land in these regions has seen vast forested water towers rapidly converted to agricultural land 

(Rudel, 2013). The coupling effect of climate change and sustained human activities poses uncertainty in the future 

of our hydrological systems, thus necessitating the development of mitigation measures for sustainability. 

Morphology is a key factor that also controls hydrological regimes; according to Wang et al. (2018) and Price 

(2011), soil texture, geology, and topography largely influence the timing of streamflow generation, baseflow 

processes, evapotranspiration, and subsurface storage. Price (2011) also indicates that influences of land use on 

hydrological regimes can be mitigated or amplified by watershed’s physical conditions. Based on the analyses of 

these studies, it can, therefore, be concluded that the exploration of hydrological responses of different landuse 

classes under various morphological conditions could, therefore, inform the planning of landuse activities for the 

mitigation of hydrological variability. 

The objective of this research is to quantify hydrological impacts of climate change and landuse change in Blyde 

and Steelpoort River Basins, South Africa, and analyze the role of morphology in water partitioning under 

agricultural area LULC. The outcome of this research will serve as a base for developing an adapted landuse 

planning approach for mitigating changes in the hydrological regime. The research is undertaken within the 

context of the Integrated Water Governance (iWaGSS) Project. 

iWaGSS Project: The German Ministry of Education and Research (Bundesministerium für Bildungs und Forschung 

(BMBF)) has funded a research project, Integrated Water Governance support system (iWaGSS), to develop and 

test tools and techniques for relieving water-related stresses. The pilot project area is located in the Olifants River 

Basin in the North-Eastern region of South Africa, shown in Figure 1-2. 
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Figure 1-2: Location map of Olifants River Basin (Hijmans, Guarino and Mathur, 2012; Tadono et al., 2014; Takaku, Tadono, 
and Tsutsui, 2016; Takaku, Tadono, Tsutsui, et al., 2016, Processed and modified in ArcGIS) 

1.2 Overview of water resources in South Africa 

According to Hoffman and Todd (1999), South Africa is predominantly under arid and semi-arid conditions, as 

shown in Figure 1-3. It receives a mean annual rainfall of about 450 mm (Botai, Botai, and Adeola, 2018) and a 

mean annual Potential Evapotranspiration (PET) of 2164 mm (Jovanovic et al., 2015). As a result, water scarcity in 

South Africa is a prevalent and widespread problem Schulze and Lynch (2011. Inter-seasonal variability, intra-

seasonal variability, and occasional extreme rainfall events are observed in most parts of the county. As a result, 

river discharge is dominated by low flow, highly variable, with sporadic high flows (Basson and Rossouw, 2003). 
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Figure 1-3: Rainfall distribution in South Africa ((Schulze et al., 2011) 

To tackle the water scarcity issue, South Africa has developed extensive infrastructure for water harvesting with 

drought emergency plans. However, drought events have been exacerbated by climate change leading to extreme 

water shortages. For example,  variability in climate in the recent past has seen a continued reduction in water 

level in the Western Cape region, as shown in Figure 1-4, which created a prolonged drought crisis that nearly led 

to a shut-down of operations of the whole town (Alexander, 2019). 

Figure 1-4: Location of Western Cape Province (www.123rf.com) and constantly decreasing dam levels 
(source:www.economist.com) 

 

600 bn liters 

http://www.123rf.com/
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Table 1-1: Reconciliation of water availability and requirements for 2020 (million 𝑚3/a) (source:DWS, 2006) 

Water Management Area 
Reliable Local 

Yield 
Transfers in 

Local 

Requirement 
Transfers Out Balance 

1 Limpopo 282 19 325 0 -24 

2 Luvhuvhu/Letaba 310 0 334 13 -37 

3 Crocodile West & marico 693 656 1328 10 11 

4 Olifants 611 172 971 8 -196 

5 Inkomati 943 0 1048 148 -253 

6 Usuti to Mhlatuze 1010 32 693 114 235 

7 Thuleka 738 0 338 497 -97 

8 Upper Vaal 1723 1443 1204 1481 481 

9 Middle Vaal 201 791 389 605 -2 

10 Lower Vaal 50 651 653 0 48 

11 Mvoti to Unzikhulu 527 34 828 0 -267 

12 Mzimvubu to Keiskamma 855 0 375 0 480 

13 Upper Orange 4557 2 968 3105 486 

14 Lower Orange -1007 1886 834 54 -9 

15 Fish to Tsistikamma 437 571 902 0 106 

16 Goutitz 277 0 342 1 -66 

17 Olifants/Doring 335 3 373 0 -35 

18 Breede 868 1 637 203 29 

19 Berg 501 203 738 0 -34 

National Figure 13911 0 13280 124 540 

 

Water supply for domestic use in urban centres and industrial use is reliant on surface water with predominant 

reliance on groundwater in rural areas.  Water requirements in many parts of South Africa generally exceed 

availability, as shown in Table 1-1 (Department of Water and Sanitation, 2006). Due to population growth and 

climate change impacts, the gap between existing water supply and availability is projected to widen by 2030, as 

shown in Figure 1-5 (Department of Water and Sanitation, 2006; Boccaletti, Stuchtey, and van Olst, 2010). 
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Figure 1-5:Gap between existing water supply and projected demand by 2030 (Boccaletti et al., 2010) 

Apart from water scarcity, South Africa experiences water contamination due to the presence of industries, 

expanse agriculture, and human settlement. As a result, traces of various solutes generated from these activities 

and partially treated wastewater are often detected in the watercourses. Water scarcity aggravates water 

contamination problems since, in low flows, the rivers have a low hydraulic capacity for mass transport leading to 

high concentrations of pollutants in water (Kings, 2017). 

1.3 Problem Description 

South Africa has a steadily growing population that drives up food demand and subsequently increased the need 

for agricultural land. The current population of the country stands at 57 million, with an annual growth rate of 

about 1.4% (The World Bank, 2019); these statistics mean that the demand for food and agricultural land will 

continuously increase in the future. Because of an extensive spread of arid and semi-arid conditions, agricultural 

activities are predominant in areas with slightly higher rainfall and available water for irrigation like the Olifants 

River Basin. 

Olifants River Basin is one of the areas in the country that receives higher rainfall relative to many parts of the 

country, where that annual average rainfall is 660 mm relative to the national annual average of 450 mm. This 

presents relatively conducive conditions for farming activities. Hence, the extensive development of agriculture is 

a dominant economic activity in the river basin. Figure 1-6 shows the LULC map developed by GeoterrageImage 

(2015) and provided by the South African Department of Environmental Affairs (DEA), where the expanse of 
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agricultural activities covers about a fifth of the total area of the basin. Extensive agriculture is also conducted in 

the headwaters areas that receive relatively high rainfall, as indicated in Figure 1-7. 

The World Bank projects South Africa’s Population growth to be 67 million by 2035; this would translate to further 

demand for agricultural expansion and subsequently leading to further alteration of the basin’s hydrology. 

Research conducted by  Gyamfi et al. (2016) reveals that the expansion of agriculture in the Olifants River Basin 

has significant impacts on the hydrological regime, especially an increase in surface runoff, which in turn limits 

infiltration. 

Analysis of the work conducted by Gyamfi indicate that agricultural development between the year 2002 and 2013 

agricultural expansion was approximately19,000 𝑘𝑚2. Corresponding to this period, a distinctive reduction of 

discharge between 2012 and 2018 relative to 2001 and 2011 period, as shown in Figure 1-8. 

Figure 1-6:  LULC map showing the spatial distribution of agriculture in the Olifants River Basin (GeoterrageImage, 2015) 
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Figure 1-7: Rainfall distribution in the Olifants River basin 

Figure 1-8: Changes in discharge patter at station B7H015 (data source: DWS) 
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Changes in streamflow like reduced streamflow, as seen in Figure 1-8 and limited infiltration due to LULC change 

as reported by Gyamfi et al. (2016), can be very detrimental to the ecosystem and water users in general. In low 

flow seasons,  the concentration levels of chemicals and pollutants in the Olifants River increases due to 

insufficient water for dilution of wastewater effluent and other non-point sources of pollution. Figure 1-8 shows 

the concentration of sulfates at a downstream station of the Olifants River relative to seasonal flow, where the 

concentration increases with a decrease in flow volume. Siyabona Africa (2017) has also reported the mass death 

of fish due to extremely low flows in the Olifants River. 

Figure 1-9: Monthly trends of dissolved SO4-2 and volume of flow at KNP Station (de Villiers and Mkwelo, 2009) 

As reported by Gyamfi et al. (2016), expansion of agriculture increases surface runoff and limits infiltration, which 

in turn reduces the volume of baseflow generated. With anticipated further development of agriculture in the 

Olifants River Basin, changes in hydrological regimes are inevitable; the risk for pollution and water scarcity may 

be exacerbated since there may occur a reduction in baseflow, which dominates the flow regime throughout the 

winter season (from May-September). 

Climate change and variability also play a crucial role in water availability and distribution (Urama and Ozor, 2010; 

Sun et al., 2013; Voctor et al., 2014). Water stresses in South Africa are projected to worsen under climate change 

influence (Hoerling et al., 2006; Boccaletti et al., 2010; Urama et al., 2010). The pressure on water resources is 

exacerbated by the coupled effect of climate change and human activities like landuse changes (Menzel et al., 

2007; Bates et al., 2008). The Olifants River basin is already experiencing variability in climatic patterns; Figure 1-

10 shows the seasonal distribution of rainfall for three different periods (2001-2005, 2006-2011, and 2012-2017). 

It can be seen that the statistical properties of rainfall for each change throughout the season, especially in the 

rainy seasons beginning October until April. 

According to SADC et al. (2013), Science for Humanity's Greatest Challenges (CGIAR) classifies the Olifants region 

under arid to semi-arid, where water resources are under immense pressure from the environmental system 

alone, even before human development demands are factored in.  Therefore, water is seen as a limiting factor in 
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development in the region. Water resources are under pressure to sustain ecosystem demands as well as our 

human needs. Therefore, it is necessary to adapt the management and planning of water resources so as to 

sustainably meet the ecosystem’s demand as well as demands for economic development. Therefore, to ensure 

that the agricultural demands are met without compromising the hydrology of the river basin, it is necessary to 

evaluate the impacts of climate change and landuse change on the hydrologic regime in this river and develop 

adapted approaches for water resources management. 

Studies by Price (2011), Voepel et al. (2011), Kelleher, Wagener, and McGlynn (2015), and Wang et al. (2018) 

indicate that variation in morphology and landuse type are bound to produce a totally varied hydrologic condition 

in areas with similar climatic conditions. Based on their findings, it can be hypothesized that morphology can 

mitigate or augment the influence of landuse changes on hydrology. This research characterizes the hydrologic 

response of agricultural landuse under various morphological conditions in order to determine areas within the 

Blyde and Steelpoort River Basins that produce minimal reactions to landuse changes. 

Figure 1-10: Seasonal distribution of rainfall in the Olifants River Basin 

1.4 Research Questions and Objectives 

Based on the water resources state in Blyde and Steelpoort rivers highlighted herein, this research seeks to answer 

the following questions: 

i. How are climate and LULC changing in Blyde and Steelpoort River Basins? 

ii. What are the impacts of climate change/variability and LULC change on hydrological partitioning? 

iii. Which morphological conditions are “hydrologically suitable” for agricultural area use? 

Following the research questions identified, the objectives of this research are outlined as follows: 

i. To quantify LULC change and climate change patterns in Blyde and Steelpoort River Basins and analyze 

their impacts on hydrology? 
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ii. Adapt the LULC planning approach to enhance mitigation of changes in hydrological regimes based on 

morphology-landuse-hydrology interactions 

iii. Identification of morphological parameters to consider in Environmental Impact Assessments (EIA) in 

Agricultural landuse planning projects. 

iv. Based on the findings of objective (i) and (ii) develop/map potential agricultural landuse expansion 

scenarios and its corresponding future hydrological scenarios 

1.5 State of Art 

Most water-related problems originate from landuse activities; hence water resources planning can only be 

holistic once integrated with landuse planning (Mitchell, 2005). The agricultural sector is considered a key player 

in Integrated Water Resource Management (IWRM) since it is one of the major consumers of water and influences 

water availability through the modification of physical characteristics of land (African Development Bank, 2000; 

Lange et al., 2003; Food and Agriculture Organization, 2004; Mitchell, 2005). 

Implementation of IWRM is gradually gaining momentum in South Africa (Claassen, 2013) through still faced with 

many challenges. Lange et al., 2003, Claassen, 2013, and Jonker, 2014 highlight the status and advances of 

implementation of IRWM in South Africa based on legislation, institutional arrangements, and practices; in view 

of these collections of literature, discussions of IWRM in South Africa focus appears to be on water use and 

distribution with very little focus on land management practices. The agricultural sector is acknowledged in these 

studies as a key stakeholder with a focus on its water consumption with little or no mention of the impacts of 

agriculture on hydrology. 

Reconciliation of landuse activities and water resources is addressed by the Department of Environmental Affairs 

through the Environmental Act of 1998 and its successive amendments, which clearly stipulates that natural 

resources should be harnessed/developed in an environmentally sustainable manner (Department of 

Environmental Affairs, 1998). Through this act introduces the use of Environmental Impact Assessment (EIA) as a 

tool for evaluating the impacts of projects on various aspects of the environment, social and economic systems, 

both negative and positive impacts have to be evaluated and mitigation measures for anticipated impacts 

proposed. The guidelines developed by the Department of Environmental Affairs, 2010 for conducting EIA enlists 

various stakeholders who are to provide their technical expertise in their areas of jurisdiction, including actors in 

the agricultural sector and water resources like the Department of Agriculture, Forests, and Fisheries (DAFF) and 

Department of  Water and sanitation. 

During discussions with senior DAFF staff as part data collection, an exercise in May 2019, it emerged that some 

farms established did not conduct EIA prior to their establishment, especially farms practicing subsistence 

agriculture; this situation translates to modification of land with little or no mitigation of adverse impacts on 

environmental aspects like hydrology. During this meeting, DAFF outlined the aspects that it evaluates in an EIA 

study assessing the impacts of agricultural development as follows: 

• All agricultural land should be established on slopes under 20% 

• Various methods are adopted to reduce surface runoff speed, like contour farming, ridges, mulching, and 

planting crops in rows that are perpendicular to the flow direction of surface runoff, as shown in Figure 1-

11. 
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• Soil productivity and climate are also evaluated to assess the viability of the project 

  

Figure 1-11: (Left) Trenches and ridges on a farm and (right) farms are perpendicular to river flow in Olifants River basin 
(Source: Photograph taken during field survey) 

Other aspects of the EIA forbids the development of agriculture in protected areas like forests, game reserves, 

and wetlands.  The meeting at DAFF reveals that the only morphological aspect of the river basin in consideration 

is the slope and soil. However, there are other important morphological factors that are responsible for water 

partitioning, like surface roughness, terrain characteristics, groundwater-surface water interactions that are not 

considered in these assessments. As highlighted by Price, 2011, morphology can amplify or mitigate the impacts 

of landuse change on hydrology. 

According to Price (2011), Voepel et al. (2011), Kelleher et al. (2015), and Wang et al. (2018), the morphology of 

the river basin can mitigate or amplify the impacts of landuse changes on hydrology. Therefore, more 

morphological factors in EIA studies may help improve the analysis of hydrological impacts resulting from 

agriculture and subsequently aide in better site identification. 

Despite these measures put across, research carried out by Gyamfi et al., 2016 indicates that agricultural 

development still produces significant shifts in hydrological flows. Based on the background given herein, these 

changes may be attributed to the haphazard agricultural development that has no mitigation measures or 

insufficient mitigation measures in place.  Allocation of “hydrologically suitable” agricultural land prior to 

development could provide a solution for mitigating changes in hydrological regimes that are fueled by 

unauthorized developments; this can be achieved by conducting a basin-wide evaluating various agricultural. 

This research quantifies hydrological characteristics of agricultural areas under various morphologies at a basin-

wide scale in the river basin in order to identify conditions that limit changes in hydrological regimes. The initial 

output of the work is then utilized in adapting the landuse planning approach to mitigate changes in hydrological 

regimes. The outcome of this research will provide a basin-wide scenario that can be referenced in EIAs, therefore, 

providing an overview of a long-term plan and limiting the need for recurrent assessments in long-term reference. 

The outputs also include quantifiable hydrological components that can also be directly referenced in the EIAs. 

This research proposes an innovative idea for landuse planning for enhanced conservation of hydrological regimes 

in Blyde and Steelpoort; this will be achieved by evaluating morphology-landuse-hydrology interactions in order 
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to identify landuse classes that can be replaced by agriculture and morphological conditions under which 

agricultural land can be established with minimal hydrological impacts. 

Assumptions made in this study are that all crops in the river basin exhibit similar hydrological characteristics and 

have the same growing and maturity seasons; water uptake, evapotranspiration, and surface cover. In the 

establishment/expansion of farms in South Africa, several aspects like productivity potential, climate, water 

availability, and soil conditions are also considered. However, the scope of the current research is hydrological 

aspects, especially mitigation of hydrological changes resulting from agricultural activities. 

1.6 Description of the study area 

The Blyde and Steelpoort River Basins are located in the mid-southern section of the Olifants River Basin, as shown 

in Figure 1-2. The rivers rise from northern areas of Mpumalanga Province at an elevation of about 2,300 masl 

and flow into the Main Olifants River in Limpopo Province. Terrain analysis of the ALOS Digital Elevation Model 

(DEM) indicates that both rivers drain an area of approximately 10,000 km2; Blyde River Basin spans over 2,800 

km2 with a drainage length of 125km, whereas Steelpoort spans over 7,200 km2 having a drainage length of 230 

km. 

The study area has an elevation ranging between 370 and 2,300 masl. Mean annual rainfall in the study area 

ranges from 640 mm at lower elevations to 850 mm at higher elevations. Precipitation is seasonal and mainly 

occurs in Spring (September – November), Summer (December – February), and Fall (March – May). The highest 

rainfall occurs in Summer months, as indicated in Figure 1-9. Precipitation is controlled by air mass fluxes 

associated with the Iter-Tropical Convergence Zone (ITCZ), where high land temperature induces low pressure 

causing an inflow of moist, maritime air from the Indian Ocean. In winter, the sun moves north towards Tropic of 

Cancer, creating high-pressure zones in the southern hemisphere and causing hence reducing the inflow of moist 

air masses (McCartney, 2003). The approximate mean annual runoff of Blyde River is 9 m3/s, while that of 

Steelpoort is seven m3/s. 

Figure 1-12: Distribution of rainfall, minimum and maximum temperatures for the study area (Date source: CRU TS 4.0) 
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Though the river basin receives relatively high rainfall in comparison to many basins in the country, water scarcity 

is still a persistent problem; According to Turton, 2015, annual water demand in Olifants River was estimated by 

the National Water Strategy of 2004 to be 1,075 million m3 which exceeded annual availability of 840 million m3. 

According to McCartney and Arranz (2007), power generation, Irrigation, Forestry, domestic/industrial, and 

mining sectors are the major water users in the two basins. 

The Steelpoort and Blyde River Basins have complex groundwater system are defined by varied geological 

conditions. The geology is composed of various forms of sedimentary rocks, intrusive rocks, effusive rocks, and 

alluvium, as shown in Figure 1-12. The geological structure and composition of these sub-basins form different 

types of aquifers; fractured aquifers, intra-granular aquifer, karst aquifers, and a combination of fractured and 

inter-granular aquifers. 

The Olifants river contributes 5% of the national Gross Domestic Product (GDP) through a vast range of economic 

activities like mining, agriculture, hydropower generation, tourism, and manufacturing (Basson et al., 2003).  

Within the Steelpoort and Blyde River Basins, there are over 90 mines and 19,000 km2 of land under agriculture. 

The river basins have an approximate population of about 3 million persons, with the urban centres having a 

higher population in comparison to the population in rural areas (Crafford et al., 2011) 
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2 CLIMATE CHANGE AND ITS IMPACTS ON HYDROLOGY 

2.1 Background 

Climate change refers to an alteration in the normal weather conditions at a particular place over an extended 

period of time; these changes can be detected in the variability of mean values of climate parameters (UNFCCC, 

2011). According to Department for Business Energy & Industrial Strategy, 2014,  EPA, 2016,  IPCC, 2014, climate 

change results from changes in global energy balance resulting from both natural and human influences (UN CC: 

Learn, 2015). The global energy balance is influenced by variations in the sun's energy reaching earth, changes in 

the reflectivity of earth’s atmosphere and surface and changes in the greenhouse (GHG) effect, which affects the 

amount of heat retained by earth’s atmosphere (EPA, 2016). Climate changes prior to the Industrial Revolution in 

the 1700s can be explained by natural causes, whereas human factors in the post-industrialization are attributed 

to the recent climate changes, as shown in Figure 2-1. 

Figure 2-1: Global temperature trends due to natural and human influences 
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Climate change has devastating consequences on various sectors, including water resources (UN, 2018). 

Therefore, analysis of both spatial and temporal trends can provide information on the magnitudes of these 

impacts and how best to manage them. The objective of this chapter is to analyze climatic (temperature and 

precipitation) time series and assess its contributions to hydrological patterns and variability. 

In this research, three categories of statistical tests were carried out on temperature, rainfall, and streamflow for 

a period of 37 years from 1980 to 2016, as described in the following section. Streamflow was tested for a period 

of only 30 years based on data availability of naturalized flow. 

2.2 Data acquisition and pre-processing 

Temperature and precipitation: Precipitation, daily average minimum temperature, and daily average maximum 

temperature data were acquired from the University of East Anglia Climate Research Unit (CRU TS version 4.0) 

under the following link; https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.00/. The CRU TS v4.0 data was 

preferred since observed data from South African Weather Services (SAWS) is considered insufficient for the 

analysis; observed data has large data gaps at most stations, and only two stations at the headwaters are located 

within the basin.  CRU TS v4.0 data is in gridded format and is constructed from monthly observations from various 

meteorological stations around the world at a spatial resolution of 0.5° latitude/longitude grid cells (Harris et al., 

2014). 

CRU data has successfully been applied in hydrological analysis and simulations in different regions in the world 

with a good outcome. Examples of these studies include Vasel et al. (2015) and Eini, Javadi and Delavar, (2018), 

who successfully modelled basins in Iran and demonstrated that the data performed comparatively well to 

measured data. Abbaspour et al. (2015) uses CRU in hydrological simulations of 29 river basins and indicates 

minimal biases in the data. 

Time series of these data were then extracted from mid-locations (demoted by CRU met stations) of each CRU TS 

v4.0 grid cell, as shown in Figure 2-2. Daily precipitation data, daily maximum temperature, and daily minimum 

temperature are generated from monthly precipitation, number of wet days, and maximum and minimum 

temperature data from the Climatic Research Unit (CRU) using Monthly to Daily Weather Converter (MODAWEC) 

developed by Liu et al. (2008). 

Figure 2-3 shows the performance of CRU data in relation to the observed data from South Africa Weather Services 

(SAWS) at two different stations; the performance is above average at Belfast Met station, and very good at 

Hoedspruit Met Station. The location of Belfast and Hoedspruit Met Stations are indicated in Figure 2-2. 
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Figure 2-2: Data point locations from CRU TS 

  

Figure 2-3: correlation between CRU 4.0 TS rainfall and observed rainfall from SAWS 
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Streamflow: Naturalized streamflow data were utilized in this stage of analysis in order to remove the effects of 

human influence and hydraulic structures. The data was obtained from South Africa’s Water Research Commission 

(Bailey, 2012). The data is at a daily time step and has been extracted for the period beginning 1980 until 2009. 

2.3 Hydro-climatic change: detection and attributions 

Change detection and attributions play a significant role in assessing variation patterns in climatic parameters and 

their impacts on various hydrological parameters (Schipper, 2017). Change in time series occurs in various ways, 

for example, gradual change (trend), abrupt change (inhomogeneity), or in other complex forms leading to a shift 

in mean, variance, median, or any other aspect of the time series (Kundzewicz and Robson, 2004). In this research, 

the tests for abrupt changes, progressive change, and seasonal shifts are conducted. 

In order to test the hydro-climatic time series for changes, two hypotheses are put into consideration; null 

hypothesis (𝐻0), which means that there is no change in the statistical properties of the data, and the alternative 

hypothesis (𝐻1), which means that there exist changes in the time series. In the first step, an assumption is made 

that the null hypothesis is true and then checks whether the observed data are consistent with this hypothesis. 

The null hypothesis is rejected if the data are not consistent. When the null hypothesis is rejected, a significance 

test is carried out to express the probability that the null hypothesis is incorrectly rejected. This involves checking 

whether the test statistic is very different from the range of values that would typically occur under the null 

hypothesis (Kundzewicz et al., 2004). The significance test is expressed by p-value, which ranges between 0 and 

1; p-value <= 0.05 provides strong evidence that for accepting alternative hypothesis, as the p-value becomes 

larger, evidence of alternative hypothesis becomes weaker (Ramsey, 2016). 

2.3.1 Homogeneity Test 

Homogeneity implies that the mean of a given time series does not change with time. Therefore tests carried out 

to check homogeneity involve analyzing the mean for any significant abrupt shifts or breaks in a time series 

(Adeloye and Montaseri, 2002). Various methods, like Petitt’s Test, Buishand’s Test, T-test, Maximum Likelihood 

Test, and binary segmentation algorithms, have been adopted inhomogeneity test. In this research, the binary 

segmentation method is adopted because of its capability to detect multiple changepoints. 

Binary segmentation iteratively applies the single change-point detection procedure on the entire time series, i.e., 

if a changepoint is detected, the data is split into two segments at the changepoint location. The single 

changepoint procedure is then repeated on the two new time series segments; this procedure continues until no 

further changepoints are found in any segments of the time series. The single changepoint is readily formulated 

under an alternative hypothesis, and hence if a change is detected, there are no tests for the p-value or 

significance level required (Killick and Eckley, 2014). The same procedure is also described by (Raveendran and 

Sofronov, 2017). The binary segmentation process is as depicted in Figure 2-4. The test statistic is constructed 

using the Likelihood Ratio (LR) test to calculate the maximum log-likelihood (ML) under alternative hypotheses. 

For a given an ordered data sequence 𝑦1:𝑛 = (𝑦1, … , 𝑦𝑛), a single changepoint occurs at 𝑇1 , where 𝑇1 ∈ {1, 2,…n − 

1}, the maximum log likelihood at 𝑇1 is computed as follows: 

 𝑀𝐿(𝑇1) = log 𝑝(𝑦1:𝑇1|∅̂1) + log 𝑝(𝑦(𝑇(1+1):𝑛|∅̂2) (2.1) 
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Where 𝑝(·) is the probability density function of the time series and ∅̂ is the maximum likelihood estimate of the 

parameters. 

To detect the changepoint location in the time series, the maximum value of the maximum log-likelihood 

𝑚𝑎𝑥𝑇1𝑀𝐿𝑇1 is selected. The test statistic is computed as follows: 

 𝜆 = 2[𝑚𝑎𝑥𝑇1𝑀𝐿𝑇1 − log𝑝(𝑦(𝑦1:𝑛|∅̂)] (2.2) 

A threshold 𝛽 is chosen, such that the null hypothesis is rejected when 𝜆 > 𝛽. 

For a time series with multiple changepoints  𝑚 , having changepoints positions 𝑇1:𝑚 =(𝑇1, … , 𝑇𝑚) with 𝑇  ∈ {1, 

2,…n − 1}, the changepoints 𝑚 will split data into 𝑚 + 1 segments with the 𝑖𝑡ℎ segment containing data  

𝑦(𝑇𝑖−1+1):𝑇𝑖. When the method is extended to the detection of multiple changepoints, a search algorithm is used 

to identify the maximum of 𝑀𝐿𝑇1:𝑚. The search algorithm used to detect the changepoints is given by the following 

the test statistic: 

 ∑[𝐶(𝑦(𝑇𝑖−1+1):𝑇𝑖)]

𝑚+1

𝑖=1

+  𝛽𝑓(𝑚) (2.3) 

Where 𝐶 is loss function for a segment, and 𝛽𝑓(𝑚) is a threshold to check against overfitting. The significance 

test is not required with the binary segmentation method since the formulation is already under the alternative 

hypothesis. 

Figure 2-4: Illustration of changepoint detection using a binary segmentation algorithm 

A multiple changepoint search algorithm developed by Killick et al., 2014 based on the binary segmentation 

procedure described herein is adopted for this study. 

A statistical test is first carried out on rainfall, discharge, temperature, and evapotranspiration to detect the 

existence of abrupt changes in the time series. The resultant changepoints are then compared to detect if there 

exist matching patterns in the timing of changes in other hydro-climatic parameters; rainfall is compared with 

discharge and temperature compared with evapotranspiration. A limit of two changepoints for rainfall and 
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discharge was chosen based on the presence of two adjacent peaks that are distinctly higher than the rest (in 

1996 and 2000), as shown in Figure 2-5. 

Figure 2-5: Average annual discharge in Blyde and Steelpoort 

In the second step, if the rainfall time series is confirmed to have abrupt changes, further statistical analysis is 

carried out in order to determine to establish precipitation characteristics that are associated with the abrupt 

breaks. Two categories of tests are conducted on each identified segment in order to determine the percentage 

of the number of wet days and percentage of extreme rainfall events based on the rainfall frequency distribution: 

Rainfall distribution is conducted according to training module developed by  DHV CONSULTANTS BV & DELFT 

HYDRAULICS, 2002 on analysis of rainfall data. Computation of the number of wet days and extreme rainfall are 

conducted for each rainfall station in order to check for any spatial variations in rainfall. The number of wet days 

is formulated as follows: 

 % 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑡 𝑑𝑎𝑦𝑠 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑤𝑖𝑡ℎ 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 > 0 𝑚𝑚

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑
∗ 100% (2.4) 

2.3.1.1 Results: Changepoint Analysis 

Figure 2-6 shows the plots for mean annual discharge for both Blyde and Steelpoort Rivers. In both cases, two 

change points are detected in 1996 and 2002, dividing the time series into three segments (1980-1995, 1996-

2002, and 2003-2016). The source of these abrupt changes can be attributed to rainfall patterns, where the 

frequency of extreme rainfall events and the mean annual rainfall in the period 1996-2002 is much higher in 

comparison to the earlier period and later period; the variations in mean values are shown in Table 2-1 and the 

frequency distribution of rainfall shown in Figure 2-7. 

Table 2-2 shows changepoint locations in relation to the percentage of wet days within the period depicted by the 

segment. The number of wet days in all the stations during the central (1996-2002) period is slightly lower those 

of the outer segments (1980-1555 and 2003-2016); therefore, this can not describe the increase in annual rainfall 

between 1996 and 2002 as shown in Figure 2.6. 
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Table 2-3 shows changepoint locations in relation to the percentage of extreme rainfall events (> 40mm/day). The 

percentage of extreme rainfall events in all the stations during the central (1996-2002) period is comparatively 

higher than those of the outer segments (1980-1555 and 2003-2016); Increase in annual rainfall between 1996-

2002 as shown in Figure 2-6 can be attributed to the higher percentage of extreme rainfall events 

According to Figure 2-8, abrupt changes are detected in 2003, where the mean temperature shifted from 17.21 

to 17.84 in Blyde River Basin and from 17.02 to 17.64 in Steelpoort. However, these changes in temperature did 

not influence evapotranspiration at all since no changepoints are detected in both basins. 

Though temperature controls the water balance through evapotranspiration processes, the influence of 

temperature increase is not detected in discharge. In conclusion, the shift in discharge patterns can only be 

attributed to the shift in rainfall patterns. 

Figure 2-6: Abrupt changes in discharge in Blyde and Steelpoort Rivers; (black line shows the mean values for each segment) 

Changepoint 2,2002

Changepoint 2,2002
Changepoint 2,1996

Changepoint 1, 1996 
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Figure 2-7: Frequency distribution of rainfall in Blyde and Steelpoort River Basins based on segments of abrupt changes 

 

Table 2-1: Summary of changepoints in rainfall and discharge Blyde and Steelpoort 
Parameter Sub-basin Changepoint 

locations 

Mean values for each segment 

1980-1995 1996-2002 2003-2016 

Rainfall (mm) Blyde 1995, 2002 136 150 117 

Steelpoort 1995, 2002 8 22 12 

Discharge (m3/s) Blyde 1995, 2002 8 15 9 

Steelpoort 1995, 2002 120 137 104 
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Figure 2-8: Abrupt shift in temperature and evapotranspiration 

16

16.5

17

17.5

18

18.5

1980 1990 2000 2010 2020A
ve

ra
ge

 d
ai

ly
 t

e
m

p
er

at
u

re
 (

⁰C
) Average daily temperature for Blyde

Temperature Mean = 17.21

Mean = 17.84

0

200

400

600

800

1000

1980 1990 2000 2010A
n

n
u

al
 E

va
p

o
tr

an
sp

ir
at

io
n

 (
m

m
)

Annual evapotranspiration in Blyde

15.5

16

16.5

17

17.5

18

18.5

1980 1990 2000 2010 2020A
ve

ra
ge

 d
ai

ly
 t

e
m

p
e

ra
tu

re
 (

⁰C
)

Average daily temperature for Steelpoort

Temperature mean = 17.02

Mean = 17.64

0

200

400

600

800

1000

1980 1990 2000 2010

A
n

n
u

al
 E

va
p

o
tr

an
sp

ir
at

io
n

 
(m

m
)

Annual evapotranspiration in Steelpoort



CLIMATE CHANGE AND ITS IMPACTS ON HYDROLOGY 

43 

 

Table 2-2: Rainfall changepoint locations in relation to the number of wet days 
Station Sub-basin Changepoint 1 Changepoint 2 % number of wet days 

year % change in 

mean 

year % change in 

mean 

1980-

1995 

1996-

2002 

2003-

2016 

P-248303 Blyde 1995 28 2002 -24 21 19 21 

P-251303 Blyde 1995 35 2002 -27 25 22 25 

P-254297 Blyde 1995 19 2002 -20 22 20 22 

P-254300 Blyde 1995 35 2002 -27 24 23 23 

P-254303 Blyde 1995 35 2002 -27 24 23 23 

P-242309 Blyde 1995 32 2002 -26 18 17 18 

P-245306 Blyde 1995 30 2002 -26 24 22 24 

P-248306 Blyde 1995 30 2002 -26 24 22 24 

P-245303 Steelpoort 1995 28 2002 -24 24 22 24 

P-245309 Steelpoort 1995 30 2002 -26 21 19 21 

P-248300 Steelpoort 1995 28 2002 -24 24 22 24 

P-251300 Steelpoort 1995 35 2002 -27 21 19 21 

P-251306 Steelpoort 1995 35 2002 -27 24 23 23 
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Table 2-3: Changepoint locations in relation to the percentage of extreme rainfall events (> 40mm/day) 
 

 

 

Station Sub-basin Changepoint 1. Changepoint 2 Extreme events (% of the time) 

year % change in 

mean 

year % change in 

mean 

1980-

1995 

1996-

2002 

2003-

2016 

P-248303 Blyde 1995 28 2002 -24 1 8 1 

P-251303 Blyde 1995 35 2002 -27 2 13 2 

P-254297 Blyde 1995 19 2002 -20 2 9 2 

P-254300 Blyde 1995 35 2002 -27 2 10 3 

P-254303 Blyde 1995 35 2002 -27 2 10 3 

P-242309 Blyde 1995 32 2002 -26 2 9 2 

P-245306 Blyde 1995 30 2002 -26 2 9 2 

P-248306 Blyde 1995 30 2002 -26 2 9 2 

P-245303 Steelpoort 1995 28 2002 -24 2 5 3 

P-245309 Steelpoort 1995 30 2002 -26 2 9 2 

P-248300 Steelpoort 1995 28 2002 -24 1 8 1 

P-251300 Steelpoort 1995 35 2002 -27 2 10 3 

P-251306 Steelpoort 1995 35 2002 -27 2 10 2 

P-258300 Steelpoort 1995 30 2002 -26 2 13 2 
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2.3.2 Trend 

Time series is said to have a trend when the observations/data change with time; the change can be in downwards 

or upwards direction and expressed using a linear or a non-linear model (Machiwal and Jha, 2012).  There are 

various methods for testing the presence of a trend in time series, for example, Linear Regression, Mann-Kendall 

Test, Sum of First derivatives, LOESS, and Likelihood Ration Test (Gray, 2007). Mann-Kendall Test is adopted in this 

research to test annual and seasonal trends in rainfall, temperature, and discharge; this test analyzes the sign of 

the difference between later-measured data and earlier-measured data. Each value measured later is compared 

to all values measured earlier, resulting in a total of 𝑛 (
𝑛−1

2
) possible pairs of data, where 𝑛 is the total number of 

observations. Mann-Kendall Test statistic is given by: 

 𝑆 =  ∑ ∑ 𝑠𝑖𝑔𝑛(𝑦𝑗 − 𝑦𝑖)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (2.5) 

Where 𝑦  ∈ {1, 2,…, n},  𝑠𝑖𝑔𝑛(𝑦𝑗 − 𝑦𝑖)  < 0 implies a downward trend, 𝑠𝑖𝑔𝑛(𝑦𝑗 − 𝑦𝑖)  = 0 implies no trend and 

𝑠𝑖𝑔𝑛(𝑦𝑗 − 𝑦𝑖)  > 0 implies an upward trend. The null hypothesis (𝐻0) of no trend is rejected when 𝑆 is significantly 

different from zero  (Meals et al., 2011). Trend is considered statistically significant when the absolute value of  𝑍 

is above a given critical value 𝑍 (Meals et al., 2011). Mann-Kendall test is the test statistic 𝑍 is given by: 

 𝑍 =

{
 
 

 
 

𝑆 − 1

√𝑉𝐴𝑅(𝑆)
 𝑖𝑓 𝑆 > 0

0                 𝑖𝑓 𝑆 = 0
𝑆 + 1

√𝑉𝐴𝑅(𝑆)
 𝑖𝑓 𝑆 < 0

 (2.6) 

Where √𝑉𝐴𝑅(𝑆) is the variance of 𝑆. According to Helsel and Hirsch (1992), if a significant trend is found, the rate 

of change can be calculated using the Sen’s slope estimator; this is achieved by computing the median of slopes 

of all pairs of data used to compute 𝑆. For data with time Where 𝑇  ∈ {1, 2,…,n}, Sen’s Slope is given by: 

 𝛽1 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
𝑦𝑗 − 𝑦𝑖

𝑇𝑗 − 𝑇𝑖
) (2.7) 

Another statistic that is computed under the Mann-Kendall test is the test statistic Tau (τ), which measures the 

strength of the monotonic trend (Fathian et al., 2016). is given by: 

 τ =
𝑆

(
𝑛(𝑛 − 1

2 )
 (2.8) 

Kendall’s Tau (τ) has a range of –1 to +1 and is analogous to the correlation coefficient in regression analysis. The 

null hypothesis of no trend is rejected when S and τ are significantly different from zero 

Both Seasonal and annual trend test is conducted on Rainfall, discharge, and temperature time series. The seasons 

are divided into four; autumn (March-May), winter (June –August), spring (September- November), and summer 

(December –February). 

Mann-Kendall Trend Test was conducted using XLSTAT tool by Addinsoft (2019) 
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2.3.2.1 Results: Trend analysis 

Figure 2-9 shows the outcome of the annual trend tests for rainfall, discharge, and temperature; there is a 

significant downward trend in rainfall in both Steelpoort and Blyde River Basins.  Annual discharge, on the other 

hand, has an increasing trend. However, the trend from the Blyde River is not significant, as indicated by the p-

value ≥ 0.2.  Based on the annual trend results, downward rainfall trends cannot be directly linked to the 

increasing discharge trends. Temperature shows an increasing annual trend with high significance indicated by 

the p-value of 0.05 for Blyde and 0.01 for Steelpoort; these changes cannot also be attributed to any pattern of 

change in river discharge. 

In the summer season (December to February), the discharge has positive Mann Kendall Tau values. However, 

only Blyde River has a trend, though very marginal, as indicated by the p-value =  0.3. Steelpoort River has no 

trend in this season. Rainfall has a marginal downward trend, whereas temperature has a positive or upward 

trend. We concluded that in this season, the changes detected in the discharge of Blyde River could be attributed 

to neither temperature trends nor rainfall patterns 

In the fall season (March to May), only Steelpoort River exhibits a positive trend, though weak. For both rivers, 

rainfall has positive Mann Kendall’s Tau. However, the trend is present in only the Blyde River and absent in the 

Steelpoort River. Temperature exhibits upward trends in both river basins within this season. The trends detected 

in the discharge of the Steelpoort River cannot be explained by the lack of trend in rainfall and increasing 

temperature trends. Likewise, the rainfall trend detected in the Blyde River did not influence discharge trends of 

the river. 

In the winter season (June to August), the Blyde River has a negative trend, whereas Steelpoort has a positive 

trend. Rainfall has a negative trend in the Steelpoort River Basin and no trend in Blyde River Basin. Temperature 

exhibits positive trends in both river basins in the winter season. The negatibve trend in discharge in Blyde river 

basin cannot be attributed to rainfall patterns, which had no trend. Increase in temperature may lead to an 

increase in water losses through evapotranspiration and may therefore be attributed to decreasing trend 

discharge of Blyde River. The positive trend in the Steelpoort river basin can be explained by neither temperature 

nor rainfall trends. 

In spring (August – November), both Byde and Steelpoort Rivers had negative Mann Kendall’s Tau values. 

However, no trends were detected in rainfall based on the high p-values, whereas temperature had positive trends 

in both river basins. Discharge trends in this season cannot also be explained by the lack of trend in rainfall and 

increasing temperature trends. 

Graphical representation of various seasonal trends of temperature, rainfall, and discharge are in Appendix I. 
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Figure 2-9: Trend of rainfall, discharge, and temperature in Blyde and Steelpoort River Basins 
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Table 2-4: Summary of trend parameters for rainfall, discharge, and temperature in Blyde and Steelpoort 
Season Parameter Temperature Discharge Rainfall 

Blyde Steelpoort Blyde Steelpoort Blyde Steelpoort 

Annual Tau (τ) 0.04 0.40 0.10 0.16 -0.14 -0.14 

P-value < 0.05 < 0.05 0.4 0.05 0.20 0.20 

Sen’s Slope 0.03 0.03 0.06 0.2 -1.2 -0.9 

Dec-Feb Tau (τ) 0.20 0.20 0.10 0.01 -0.02 -0.02 

P-value < 0.05 < 0.05 0.30 0.90 0.10 0.03 

Sen’s Slope 0.00006 0.00006 0.0003 0.00001 0.006 -0.006 

Mar-May Tau (τ) 0.04 0.04 0.02 0.13 -0.02 -0.02 

P-value 0.06 0.2 0.80 0.15 0.10 0.70 

Sen’s Slope 0.00004 0.00004 0.00003 0.0003 -0.005 -0.006 

Jun-Aug Tau (τ) 0.04 0.2 -0.12 0.22 -0.006 -0.2 

P-value 0.06 0.06 0.20 0.1 0.90 0.03 

Sen’s Slope 0.00004 0.00009 -0.0001 0.0002 -0.00006 -0.00001 

Sep-Nov Tau (τ) 0.20 0.20 -0.20 -0.20 -0.02 -0.02 

P-value < 0.05 0.06 0.08 0.10 0.8 0.8 

Sen’s Slope 0.0001 0.0001 -0.0002 -0.0003 -0.0003 -0.0003 

 

2.3.3 Seasonality shift detection 

Seasonality in hydrologic time series refers to regular fluctuations in a time series at a defined time interval 

(Machiwal et al., 2012). Seasonality in hydrology studies is linked to the magnitude, timing, and duration of the 

associated hydro-climatic event like wet or dry season (Feng, Porporato and Rodriguez-Iturbe, 2013). Seasonality 

Index is used in this study for seasonality test; this method has been widely used in characterizing rainfall patterns 

and detecting shifts in seasonal patterns; for example, it has been used by Kumbuyo et al. (2014), Shamarti (2017), 

and Guhathakurta and Saji (2013). SI helps in identifying the rainfall regimes based on the monthly distribution of 

rainfall. It is computed using the following formula: 

 𝑆𝐼 =  
1

�̅�
∑ |𝑋𝑛 −

𝑅

12
|

12

𝑛=1

 (2.9) 

Where 𝑋𝑛 is the average rainfall of the month 𝑛 and 𝑅 is the annual rainfall. Seasonality Index (SI) is divided into 

various classes shown in Table 2-5 that describe the rainfall regime. 

Table 2-5: Seasonality index (SI) classes and the associated rainfall regimes 
Rainfall Regime Seasonality Index (SI) 

Rainfall spread throughout the year <0.19 

Rainfall spread throughout the year with a definite wetter season 0.2-0.39 

Rather seasonal with short drier periods 0.4-0.59 

Seasonal 0.6-0.79 

Markedly seasonal with long dry periods 0.8-0.99 

Most rain in 3 months or less 1.0-1.19 

Extreme seasonality with almost all rain in 2 months >1.20 
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For seasonal shift detection, the rainfall time series is divided into three sub-series based on the changepoints 

detected in section (2.3.1). The SI values for each period are then compared for any significant variations. This test 

is only applied to rainfall since it is the only known hydrological parameters with defined seasonality index classes 

during this research period. 

2.3.3.1 Results: Seasonality shift detection 

Figure 2-10 shows the Seasonality Index (SI) plot for rainfall in Steelpoort and Blyde River Basins, with the dotted 

blue lines indicating the boundaries of various sub-series. It can be seen that throughout the study period, the 

seasonality index falls under a 0.8-0.99 category, which is described as “markedly seasonal with long dry periods.” 

Based on this pattern, it can be concluded that there were no seasonal shifts of rainfall during the study period. 

 

Figure 2-10: Distribution of  seasonality Index over three sub-series (1980-1995, 1996-2002, 2003-2016) of rainfall 

2.4 Discussions 

The aim of this chapter is to quantify patterns of changes in climate regimes and attribute them to changes in 

streamflow and evapotranspiration. Climatic parameters under consideration in this research are rainfall and 
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temperature, whereas the resultant hydrological parameters are discharge and evapotranspiration. The period of 

this analysis was 37 years (1980 – 2016), and three statistical tests were adopted to detect abrupt shift 

(homogeneity test), progressive shift (trend test), and seasonal shifts (seasonality index). Analysis of the time 

series reveals the following: 

Homogeneity test: This test is conducted on discharge, rainfall, temperature, and evapotranspiration to detect 

abrupt changes in the time series.  Only temperature, discharge, and rainfall have abrupt changes in their time 

series, whereas evapotranspiration had none. To detect the source of these changes in discharge and 

evapotranspiration, the changepoint timing for discharge is compared to that of rainfall, whereas the changepoint 

for evapotranspiration is compared to that of temperature. Rainfall and discharge have two coinciding 

changepoints in 1995 and in 2002, which after further analysis, suggest that the source of these changes is extreme 

rainfall between 1996 and 2002. The temperature time series has only one changepoint in 2003, which cannot be 

directly linked to changes in discharge. 

Trend test: This test is conducted on discharge, rainfall, temperature, and evapotranspiration to detect 

progressive changes in the time series at seasonal scale and annual scale. Temperature exhibited an increasing 

trend at both annual and seasonal scales, where an increase in temperature is observed in all the four seasons. 

Rainfall has a downward trend at an annual scale and generally exhibited a decreasing trend through the four 

seasons, except for the winter season (June to August), where there was no trend in the Blyde River Basin, and in 

spring (September – November) where there was no trend. Discharge exhibited an increasing trend in both river 

basins apart from the Blyde River, which revealed a decreasing trend from June to November, and Steelpoort, 

which had decreasing trend between September and November. The rate of change in discharge is very low, as 

depicted by the low slope. Most trends observed in discharge cannot be directly linked to rainfall patterns, apart 

from a decrease in discharge trend in the Blyde River Basin from June to November. 

Seasonality shift detection test: this test is conducted on only rainfall to detect if there exists a shift in seasonal 

patterns of rainfall. The Seasonality Index (SI) ranges from 0.86 to 0.94, which falls into the “markedly seasonal 

with long dry periods” class. Based on this test, no seasonal shift was detected. 

The outputs of this chapter provide strong evidence of changing climate, which directly influences streamflow. 

Changes in discharge are directly linked to rainfall rather than changes in temperature. However, changes 

discharge trend cannot be totally described by shifting climatic patterns, which therefore necessitates 

investigation of human influence on streamflow patterns.
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3 QUANTIFICATION OF LULC CHANGE AND ITS IMPACTS ON HYDROLOGY 

3.1 Background 

LULC classification and change analysis is an important process in the quantification of the spatial distribution of 

various resources, physical features, and quantification of extents of human activities (Lam, 2008). Remotely 

sensed multi-spectral images had been widely applied in the classification of various LULC (Arveti and Etikala, 

1992); Boschetti et al., 2014, Qi et al., 2009; Onjira and Sayama, 2014 use satellite images in flood mapping.  

Gyamfi et al., 2016 and Butt et al., 2015 use remote sensing to map multiple landuse classes. 

LULC patterns and changes provide information about underlying human/natural processes, thus providing 

valuable information for monitoring and modelling various environmental processes (Song et al., 2011). Fluxes in 

surface water and various hydrological parameters resulting from LULC changes can be directly assessed using 

remotely sensed products as conducted by Razu Ahmed et al., 2017, Boschetti et al., 2014 and Uddin, Matin and 

Meyer, 2019 in flood mapping, by Avisse et al., 2017 and Pipitone et al., 2018 to monitor surface water storage. 

However, accurate estimation of streamflow at the local scale using coarse-resolution remotely sensed data is 

difficult (Carlier, 2000); hence when the river width is relatively smaller than the pixel values of the satellite 

images, errors are bound to arise.  Also highlighted by Carlier, 2000, critical hydrological processes like deep soil 

moisture, snow water equivalent, sub-surface water fluxes, and interactions between surface and groundwater 

cannot be directly analyzed using satellite images. As a result, assessments of impacts of LULC change on 

hydrology (streamflow, lateral subsurface flow, groundwater fluxes) have been investigated using hydrological 

models that capture physical processes with LULC data as an input (Li et al., 2018). 

The objective of this chapter is to quantify LULC changes using remote sensing images and quantify its impacts on 

hydrological partitioning in Steelpoort and Blyde River Basins. LULC maps for four epochs (1992, 1998, 2002, and 

2014) are prepared using remotely sensed land products and changes between the successive maps analyzed. 

These maps are then used as input into a hydrological model for simulation of their resultant hydrological 

scenarios and subsequent analysis of hydrological anomalies. 

Freely available and high-resolution images that cover the study period (1987-2014) and an open-source 

hydrological model that captures all physical processes and spatial variability of parameters are considered in this 

research. 
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3.2 LULC change mapping using remote sensing images 

3.2.1 Overview of satellite remote sensing techniques 

Remote sensing is the process of acquisition of information on physical characteristics of the earth using 

electromagnetic (EM) sensors onboard different platforms placed in space or air (Navalgund, Jararaman and Roy, 

2007). These EM measurements can provide information about the position of objects and clues on the 

characteristics of the earth’s surface material (Zhu et al., 2018). Remote sensing instruments are of two primary 

types - active and passive. Active sensors provide their own energy in order to scan objects and measure the 

amount of radiation that is reflected or backscattered. On the other hand, passive sensors gather radiation that is 

emitted or reflected by the object or surrounding areas (NASA, 2019) Figure 3-1 is a simple illustration of the 

operations of active and passive remote sensing. 

Figure 3-1: Illustration of active and passive remote sensing (Source: analytik.co.uk) 

Identification of objects from remotely sensed images is made possible by the unique surface reflectance 

properties of various objects on the earth (Onjira et al., 2014). Sensors record data in various sections of the 

electromagnetic spectrum (EMS) shown in Figure 3-2; the data is then stored in multi-band images (USGS, 2016). 

The EMS ranges from gamma rays to radio waves. However, the major application of remote sensing applications 

includes visible light, infrared, and microwave ranges (Zhu et al., 2018). 
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Figure 3-2: illustration of the electromagnetic spectrum (Source: Kiran, 2015) 

Remote sensing instruments fall into two classes of sensors; non-imaging and imaging sensors(Zhu et al., 2018). 

Table 3-1 summarizes the properties and typical remote sensing applications of the two classes of sensors. In this 

research, the interest is limited to LULC classification using remotely sensed images; hence only products from 

optical imaging sensors are selected because of their ability to recognize various objects. 

Table 3-1: Categories of Remote Sensing sensors, EMS ranges, and typical applications 

Remote sensing  

Instrument 

Sensor Type EMS Range Application 

Imaging Sensors Optical ~400 – 750  nm Object recognition, identification of material, 

detection of components of elements, 

Thermal 9 – 14 μm Minerology, volcanology, hydrothermal studies, 

climatology $ meteorology, DEM production, 

Radar 1 mm – 1 m Aviation, meteorology, sounding satellites, DEM 

production, monitoring of glaciers, volcanic 

activities, landslides, and earthquakes 

Non-Imaging 

sensors 

Spectroradiometers 

& Radiometers 

 Telecommunication, bathymetry, laser operations, 

medical diagnosis, vegetation measurements, 

spectroscopic measurements 

3.2.2 Data source selection 

Several remote sensing instruments with optical imaging sensors have been launched in the past decades (Zhu et 

al., 2018). Selection of data source for remotely sensed images for LULC classification under this research is based 

on the following criteria; data availability (covering period of study), acceptable spatial resolution, acquisition 

cost (freely available images), and revisit time (at least once per month) 

Table 3-2 shows commonly used remote sensing instruments and their characteristics adopted from Zhu et al. 

(2018). The spectral sensors have been upgrades with time denoted by the suffix numbers under the mission 

column. 
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Table 3-2: Major satellites used in remote sensing and their properties  

 Mission Launch year Spatial resolution (m) Availability Revisit time (days) 

1 LANDSAT 1-

8 

1972, 1975, 1978, 1982, 

1984, 1993, 1999,2013 

30 – 250 Free 16 

2 SPOT 1-6 1986, 1990, 1993, 1998, 

2002, 2012 

2.5 – 20 Commercial 1-3 

3 ASTER 2000 15 – 90 Free 16 

4 MODIS 1999, 2002 250 - 500 Free 8 

5 SENTINEL 1-

6 

2014, 2015, 2016, 2017, 

2021 

5 – 60 Free 12, 10, 27 

7 Quickbird 2000, 2001 0-61 – 2.62 Free 2.4-5.9 

8 Envisat 2002 30 – 300 Free 35 

9 GeoEye 2008 0.41 – 1.65 commercial 8.3 

10 WorldView 2007– present 0.34 – 1.84 Commercial 1.7 

 

According to Table 3-2, LANDSAT Mission meets all the four criteria set, and hence it is selected as the data source 

for this research. Images from LANDSAT 5, 7, and 8 are utilized in this research since they cumulatively have data 

covering the period of study; LANDSAT 4 has data from 1984 – 2013, LANDSAT 7 has data from 1999-2017, and 

LANDSAT 8 has data from 2013 to date (NASA, 2019). 

LANDSAT sensors stores data in multiple bands where each band is collects data under a different EMS range. 

Table 3-3 the spectral bands in LANDSAT 5, 7, their corresponding wavelengths and EMS range (USGS, 2017). 

Table 3-3: Properties of LANDSAT Images and their applications 

EMS LANDSAT 5 & 7 LANDSAT 8 

Band No. Wavelength Band No. Wavelength 

Coastal aerosol N/A N/A 1 0.43-0.45 

Blue 1 0.45-0.52 2 0.45-0.51 

Green 2 0.52-0.60 3 0.53-0.59 

Red 3 0.63-0.69 4 0.64-0.67 

NIR 4 0.77-0.90 5 0.85-0.88 

SWIR 1 5 1.55-1.75 6 1.57-1.65 

Thermal Infrared 6 10.40-12.50 N/A N/A 

SWIR 2 7 2.09-2.35 7 2.11-2.29 

Panchromatic 8 0.52-0.90 8 0.50-0.68 

Cirrus N/A N/A 9 1.36-1.38 

TIRS 1 N/A N/A 10 10.60-11.19 

TIRS 2 N/A N/A 11 11.50-12.51 
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3.2.3 Image acquisition 

LANDSAT 5, 7, and 8 satellite instruments orbit the earth at an altitude of 705 km (USGS, 2017). During the satellite 

revolves around the earth, the sensors “see” a portion of the earth, usually referred to as swath or scene, as shown 

in Figure 3-3. These satellites are stationary. Hence, the earth’s rotation enables them to scan the whole earth's 

surface within a given time (16 days). 

Figure 3-3: Illustration of a data collection plan of LANDSAT sensors (source: USGS, 2017) 

Data for each scene is referenced using a global notation system called Worldwide Reference System (WRS), which 

identifies each scene by path and row numbers (Natural Resources Canada, 2015). This referencing system 

facilitates the easy acquisition of data. The Blyde and Steelpoort River Basins fall under two scenes, which are 

referenced by 168-77 and 169-77, as shown in Figure 3-4. 168 and 169 refer to the path numbers, while 77 refers 

to the row number. 

Figure 3-4: Location of Blyde and Steelpoort River Basins in the LANDSAT WRS 
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Remotely sensed images for this research were acquired through the United States Geological Survey (USGS) 

website (https://earthexplorer.usgs.gov/).  The search criteria applied in selecting images include images obtained 

between the dry months of May and October with less than 10% cloud cover; this is because there is minimal 

cloud cover in dry periods. The disparity in vegetation type can be well distinguished. Table 3-4 gives details of the 

images that were downloaded and used in this study. 

Table 3-4: Summary of LANDSAT images acquired for LULC mapping 
 LANDSAT Sensor Path Row Acquisition Date Ground Resolution (m) % Cloud Cover 

1 L4-5 TM 168 77 05/13/1992 30 5 

2 L4-5 TM 169 77 05/20/1992 30 0 

3 L7 ETM+ 168 77 06/15/1998 30 0 

4 L7 ETM+ 169 77 06/22/1998 30 0 

5 L7 ETM+ 168 77 06/18/2002 30 0 

6 L7 ETM+ 169 77 06/09/2002 30 0 

7 L8 OLI/TIRS 168 77 06/27/2014 30 0.05 

8 L8 OLI/TIRS 169 77 06/18/2014 30 0 

 

3.2.4 LULC classification 

Various geospatial tools have been used in LULC classification using remote sensing data; Ansari and Golabi, 2019 

use ERDAS and ArcGIS, Lekha and Kumar, 2018 use ENVI, Simonetti, Marelli, and Hugh, 2015 demonstrate the use 

of IMPACT Tool in digital image processing and classification, and  Filipe and Correia, 2017 demonstrate the use 

of QGIS in LULC classification. IMPACT Tool, ENVI, and ArcGIS are used in this study since they are readily available. 

IMPACT Tool is used in pre-processing the images, ENVI is applied in the initial stages of classification, and features 

not well classified in ENVI are manually digitized in ArcGIS. 

LULC classification from digital satellite images can be classified into two categories; Supervised classification and 

unsupervised classification  (Mohammady et al., 2015). According to Lusch, 2015, good knowledge of the area is 

required in supervised classification, where the analyzer provides training statistics that identify each class; the 

image analyst supervises the pixel categorization process by specifying the computer algorithm and numerical 

descriptor representing various land cover types in a scene (Patil, Desai and Umrikar, 2012). Unknown pixels are 

assigned into various categories based on their spectral properties by manually sampling and delineating the 

pixels.  The spectral properties of those pixels are then extracted and used to classify unknown pixels in the whole 

image (Wai-Keung LAM and Lau, 2000). In unsupervised classification, prior knowledge of the area is not required 

(Mohammady et al., 2015).  LULC classes are automatically identified based on statistical structures or groups 

(Lusch, 2015). 

According to Mohammady et al., 2015, high accuracy in LULC classification is achieved in supervised classification, 

and therefore the method of LULC classification adopted in this study is supervised classification. Figure 3-5 shows 

the flowchart of the classification process used in this research. 

https://earthexplorer.usgs.gov/
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Figure 3-5: Flowchart for LULC Classification process 

 

Image pre-processing: IMPACT Tool is used to executing the following three processes: 

• layer stacking, where spectral bands are combined into one image with multiple bands 

• image sub-setting, where the multi-band images are clipped to the study area 

• atmospheric correction where raw digital number (DN) values to top-of-atmosphere (TOA) reflectance 

data are calibrated to a common radiometric scale to minimize spectral differences caused by acquisition 

time, sun elevation, and sun-earth distance (Simonetti et al., 2015). 

Identification of LULC classes: For image visualization in ArcGIS and ENVI, the following band combinations are 

used;  5-4-3 for Landsat 4-5 TM images, 5-4-3 for Landsat 7 images, and 6-5-4 for Landsat 8 images. Historical LULC 

maps, Google Earth imageries, and CCI LULC map of the 1998-2002 epoch (LAND_COVER_CCI Partnership, 2017) 

is then used as a baseline for the identification of various LULC classes. An example of a landuse class identification 

process is as shown in Figure 3-6 in which agricultural area features can be identified at the same location in the 

two base maps and correspondingly in the LANDSAT image. 
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Figure 3-6: Illustration of LULC class identification process 

 

By referencing these base maps, eight different landuse classes are identified in this research; agricultural area, 

waterbody, dense and sparse forest, shrubland, grassland and herbaceous vegetation (mixed vegetation), and 

urban areas (settlements). 

Definition of training sites and extraction of signatures: Training sites are areas that are known to be 

representative of a particular land cover class. The computer determines the spectral signature of the pixels within 

each training area and uses this information to define the mean and variance of each of the classes (Humboldt 

State University, 2015). These locations are identified through visual interpretation of the image or based on 

historical maps. 

After the creation of training sites, statistical characteristics of each class is created and stored for image 

classification (Rwanga and Ndambuki, 2017) 

Image classification (Supervised classification): This approach has several classification techniques like a 

parallelepiped, minimum distance, Mahalanobis distance, maximum likelihood, Spectral Angle Mapper (SAM), 

Spectral Information Divergence (SID), and binary encoding (ENVI, 2009). In this research, classification is first 

conducted in ENVI using the Maximum Likelihood technique; this algorithm assumes that statistics in each class 
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has a normal distribution and computes the probability that a given pixel belongs to a specific class. Based on the 

signatures created in the previous step, each pixel is then assigned to a class that has the maximum probability 

(the maximum likelihood). If the highest probability is smaller than the specified threshold, the pixel remains 

unclassified. The unclassified pixels can be assigned to an unknown class or to any class that they may fit into 

depending on the knowledge of the area or the base maps(Humboldt State University, 2015). 

Maximum likelihood classification is obtained by computing the following discriminating function: 

 𝑓(𝑥) − ln 𝑝(𝜔𝑖) −
1

2
ln|𝚺𝑖| − 

1

2
(𝑥 − 𝑚𝑖)

𝑇Σ𝑖
−1(𝑥 −𝑚𝑖) (3.1) 

Where 𝑖 is the class, 𝑥 is the dimensional data (𝑥), 𝑝(𝜔𝑖) is the probability that class 𝜔𝑖 occurs in the image and 

is assumed to be the same for all classes, |𝚺𝑖| is the determinant of the covariance matrix of the data in class 𝜔𝑖, 

Σ𝑖
−1 is the inverse matrix and 𝑚𝑖) is the mean vector. 

Once the classification is completed in ENVI, ArcGIS is used to enhance the quality of the classified data through 

the digitization process. The digitized data is converted to raster files and mosaicked with the data from ENVI. The 

data from this process is then adopted as interim LULC maps for the period and subjected verification process 

described under “Accuracy Assessment.” 

3.2.4.1 Classification Results and Discussions 

LULC maps are prepared for Blyde and Steelpoort River Basins for the years 1992, 1998, 2002, and 2014 as shown 

in Figure 3-7. The area of each class was calculated, taking into account the pixel count and the total area. Thus, 

allocations of each classified area (𝑘𝑚2). For a description of the LULC changes observed, the basins are divided 

into three areas shown in the black triangle and denoted by numbers 1, 2, and 3 in figure 3-7. The various changes 

under each area are described as follows: 

Area 1: There is an increase in agricultural land, which is very distinct between 1992 LULC and 1998 LULC. 

Area 2: There is a gradual loss of forest, which distinctly occurs between 1998 LULC and 2002 LULC. Forest in this 

area is majorly transitioned to agriculture land. Another change observed in this area is the transition of shrubland 

into agricultural land, and part of agricultural land is transitioned into urban are between 2002 LULC and 2014 

LULC. 

Areas 3: There is an increase in agricultural land, which is progressing from 1992 LULC through to 2014 LULC. The 

major LULC transition in this area if from grassland to agriculture land. 

Other changes observed include an increase in the water body, which is attributed to dam constriction in the 

Steelpoort River. 

Therefore, we can conclude that dominant LULC changes in Blyde and Steelpoort are mainly induced by human 

activities. In general, the change statistics are summarized in Table 3-5 with dominant changes detected in an 

agricultural area where an increase of 95% of its original size is detected, water body increased by 136% of its 

original size due to the construction of reservoirs, and increase of urban area by 169% of its original size. Dominant 

forest loss is realized between 1992 and 1998, whereas the expansion of agricultural area and urban area is 

dominant between 2002 and 2014. 
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Table 3-5: LULC change statistics, where (+) means increase and (-) means a decrease in respective LULC classes 

 LANDUSE TYPE 1992 LULC 

(km2) 

1998 LULC 

(km2) 

2002 LULC 

(km2) 

2014 LULC 

(km2) 

Overall change 

(km2) 

1 Agricultural area 539 710 788 1053 +513 

2 Water body 39 40 40 59 +20 

3 Forest 1127 1080 778 754 -373 

4 Grassland 2674 2662 2647 2510 -164 

5 Herbaceous 

Vegetation 

259 190 182 130 -129 

6 Sparse Forest 230 202 195 177 -53 

7 Shrubland 4716 4691 4916 4732 -16 

8 Urban Area 9 18 48 179 +169 
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Figure 3-7: LULC map series for Steelpoort and Blyde River Basins 
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3.2.5 Accuracy assessment of LULC Maps 

Accuracy of the LULC maps developed are evaluated to assess their accuracy; this is performed by comparing the 

degree at which the maps agree with the existing LULC maps or ground survey data. In this study, CCI LULC maps 

are used for verification of the results. This step is conducted in ArcGIS, where three geoprocessing tools are used 

to select assessment pixels randomly. Confusion matrix and Kappa coefficients are adopted as the metrics for 

accuracy assessment; this approach has been widely used in various research to verify LULC classification, for 

example, by Elsaid and Abdelkareem (2018), Patil et al. (2012), and by Rwanga et al. (2017). According to Pontius 

Jr., (2000), Kappa coefficient 𝐾 = 1  means a perfect agreement,  𝐾 > 0.5 is satisfactory, while a value close to 

zero means that the agreement is poor. 

Kappa coefficient 𝐾 is calculated using the following formula (Elsaid et al., 2018): 

 𝐾 =
𝑁∑ 𝑋𝑖𝑖 − ∑ (𝑋𝑖+𝑋+𝑖)

𝑟
𝑖=1

𝑟
𝑖=1

𝑁2 −∑ (𝑋𝑖+𝑋+1)
𝑟
𝑖=1

 (3.1) 

Where 𝑟 is the number of rows and columns in the confusion matrix, 𝑋𝑖𝑖  are the observation in row 𝑖 and column 

𝑖,  𝑁 is the total number of observations (pixels), 𝑋𝑖  is the number of rows and  𝑋+𝑖 is the number of columns 𝑖. 

Under accuracy assessments, several statistical elements like Overall Accuracy, Producer’s Accuracy, and User’s 

Accuracy are also computed. Overall, Accuracy is the percentage of correctly classified samples of an error 

(confusion) matrix. The producer's accuracy indicates the quality of the classification of training set pixels, and 

User's Accuracy indicates the probability that prediction represents reality. 

These statistical metrics are expressed by the following equations: 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑁
∑𝑎𝑘𝑘

𝑛

𝑘−1

 (3.2) 

Where 𝑎 is individual cell value, 𝑘 + 𝑎 is the row total and 𝑘𝑎 +is the column total, 𝑛 total number of classes, and 

𝑁 is the number of samples. 

 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑠𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑎𝑖𝑖

∑ 𝑎𝑖+
𝑛
𝑖−1

 (3.3) 

 𝑈𝑠𝑒𝑟′𝑠 𝑠𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑎𝑖𝑖

∑ 𝑎+𝑖
𝑛
𝑖−1

 (3.4) 

Where 𝑎𝑖𝑖 is the number of samples correctly classified, 𝑎𝑖+ is the column total for class 𝑖, 𝑎+𝑖 row total for class 𝑖 

confusion matrix, producer's and user's accuracy are calculated for each class, as well as the overall accuracy 

(Rwanga et al., 2017). 

3.2.5.1 Results: Accuracy assessment 

Table 3-7 summarizes the accuracy assessment results; the overall accuracy for each map indicates high accuracy 

at 78% in 1992, 76% in 1998, 80% in 2002, and 68% in 2014. Kappa Coefficients for all these three periods are 

above 0.5, which is also indicative of satisfactory classification. The user’s accuracy for the agricultural area was 

quite low in all the LULC maps; this is because the agricultural area is vastly identified as herbaceous vegetation 

on the base map and hence could not correspond to the classified map. 
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Based on Kappa statistics and overall accuracy, the LULC maps developed are considered to be a true 

representation of LULC evolution in Blyde and Steelpoort River Basins. 

Table 3-6: Summary of accuracy assessment of land use land cover classification of Blyde and Steelpoort River 
Basins 

Landuse 

Class  

1992 1998 2002 2014 

User's 

Accuracy 

Producer's 

accuracy 

User's 

Accuracy 

Producer's 

accuracy 

User's 

Accuracy 

Producer's 

accuracy 

User's 

Accurac

y 

Producer'

s 

accuracy 

Agricultural 

area 17 75 10 62 12 65 7 83 

water Body 42 50 43 60 62 80 28 50 

Forest 

dense 76 66 68 62 80 65 68 42 

Grassland 84 82 86 82 86 82 81 69 

Herbaceous 

Vegetation 46 30 43 18 57 26 41 12 

Sparse 

Forest 9 60 7 63 13 70 7 40 

Shrubland 89 84 88 81 91 86 84 78 

Urban Area 50 50 38 30 19 30 19 30 

Overall 

accuracy 78 76 80 68 

Kappa 

Coefficient 0.66 0.63 0.68 0.52 

 

3.3 Hydrological Modelling 

Modelling is an important aspect of hydrology for assessing the environmental well-being of our river basins and 

has, therefore, been vastly utilized in water resources planning and management (Jha, 2009). Development on 

hydrological modelling has seen an evolution from simplistic models which are capable of capturing the hydrologic 

cycle to models that capture various physical characteristics and are capable of simulating numerous physical 

processes like groundwater-surface water interactions, coupled hydrologic-atmospheric processes, and mass 

transport at various resolutions of time and space (Singh, 2018). 

Hydrological models can be classified based on the presence of random variables, their distribution in space, and 

temporal variation; these are lumped and distributed models which are classified based on model parameters as 

a function of space and time, and deterministic and stochastic models which are based on randomness/non-

randomness of variables.  Distributed models make predictions by taking into account the spatial variability of 

physical attributes of the catchment, whereas lumped models consider the whole river basin as a single unit where 

spatial variability of physical parameters is disregarded (Chow, Maidment, and Mays, 1988; Dwarakish and 

Ganasri, 2015a). 

Hydrological models can also be classified as empirical, conceptual, and physically based models based on the 

hydrological processes. Empirical models take into account the direct physical relationship between the input and 
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output without considerations for transformations functions. Conceptual models have the complex physical 

processes simplified and can have various processes represented empirically.  Physically-based models are able 

to represent the idealized real phenomenon by taking into account the principles of physical processes. 

Hydrological models may also give output at a different time step from the input data; the typically computational 

time steps range from hourly to monthly, which often is a function of the process representation and the models’ 

intended use. In relation to time, models can be event-based, which are short term and used to simulate individual 

storm events and continuous models which simulate catchment behavior over a long period of time  (Singh and 

Woolhiser, 2002). 

The ability of physically-based distributed models to capture spatially variable morphological and climatic 

parameters enhances their effectiveness in accounting for water dynamics in our environmental systems (Devia, 

Ganasri and Dwarakish, 2015; Krogh et al., 2015; Sitterson et al., 2017; Sun et al., 2017). Hydrological models 

under this category are considered ideal for modelling LULC changes impacts on hydrology. 

3.3.1 Model Selection 

Several hydrological models have been developed over the decades with varying capabilities, as highlighted in 

Section 3.3. Therefore, the desired process to be simulated and data availability informs model selection 

(Dwarakish and Ganasri, 2015b). A set of criteria was developed for selections of the model that can be effectively 

used to achieve the objectives of this research. Model selection is restricted to fully distributed or semi-distributed 

models for their ability to spatial variability of river basin characteristics. The following are the criteria used in 

model selection: 

• Must have complete landuse tools (interception, plant water uptake, vegetation growth) to enable 

assessment of the impacts of land-use changes on water resources. 

• It should be able to capture reservoir operation, water use, and irrigation processes. 

• Must be able to simulate hydrological processes at a large scale (equivalent to the study area, 

10,000 𝑘𝑚2). 

• It should be able to output baseflow, evapotranspiration, surface runoff, and groundwater recharge. 

• It should be able to output values at a daily time step 

• Must be a continuous model 

• The model must be freely available 

• Has a GIS interface for enhanced spatial visualization and analysis 

Six commonly used physically-based distributed and semi-distributed hydrological models are subjected to a 

selection process where the models are screened against the criteria.  Four Models (HEC-HMS, SWAT, HBV, and 

Pitman Model) meet the set criteria, as shown in Table 3-7. However, the SWAT Model is selected for this research 

because of readily available support 
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Table 3-7: Model screening against selection criteria 

Model Landuse 

Tools 

Water use & 

dam 

operation 

Large  

scale 

model 

BF, SR, 

ET, GW 

Outputs at 

daily time 

step 

Continuous 

time scale 

Freely 

Available 

GIS 

Interface 

Source 

HEC-

HMS 

Yes Yes Yes Yes Yes Yes Yes Yes (Arlen D. 

Feldman, 2000) 

MIKE-

SHE 

Yes: Yes Yes Yes Yes Yes No Yes (DHI, 2017) 

SWAT Yes Yes Yes Yes Yes Yes Yes Yes (Neitsch, J.G. 

Arnold, et al., 

2009; Neitsch et 

al., 2011) 

VIC Yes No Yes Yes Yes Yes Yes No (Hamman et al., 

2018) 

HBV Yes Yes Yes Yes Yes Yes Yes Yes (Pers, 2007) 

Pittman 

Model 

Yes Yes Yes Yes Yes Yes Yes Yes (HUGHES and 

METZLER, 

1998) 

 

3.3.2 Description of SWAT Model Processes 

Soil and Water Analysis Tool (SWAT) is a hydrologic and hydraulic model that is widely applied in modelling impacts 

of LULC changes on hydrology by many researchers like Muthuwatta (2014), Paudel et al. (2011), Guzha et al. 

(2018), Wang et al. (2018), Reeves and Mager  Daniel (2014) and Zhu et al. (2014) among others. The model is a 

physically-based semi-distributed hydrological model developed by the United States Department for Agriculture 

Research Service (USDA-ARS) for the purpose of predicting the impact of land management practices on water, 

sediment, and agricultural chemical yields in large watersheds with varying soil, land-use, and management 

conditions over long periods of time. It captures various physical processes like surface runoff, percolation, 

evapotranspiration, erosion, nutrient and pesticide loading/transport, crop growth and irrigation, groundwater 

flow, channel transmission losses, pond and reservoir storage, and channel routing (Neitsch, J.G. Arnold, et al., 

2009; Neitsch et al., 2011). 

The SWAT Model divides a basin into sub-basins, which are further into hydrological response units (HRUs) based 

on soil type distribution, LULC classes, and slope characteristics. The model works on the concept that a day’s 

rainfall can generate surface runoff, and a fraction can infiltrate into the soil depending on LULC and soil 

characteristics. Upon further water movements, a fraction of soil water content becomes available for evaporation 

plant evapotranspiration. The soil water is also partitioned into a sub-surface flow, which eventually enters a 

river/stream and groundwater recharge (Masud, Ferdous and Faramarzi, 2018). 
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Simulations of the hydrological processes in the SWAT model is divided into two phases;  land phase and routing 

phase. The land phase controls water balance, sediment, nutrients, and pesticide loadings to the main channel. 

The hydrologic cycle in this phase is based on the water balance equation, which is given as follows: 

 𝑆𝑡 = 𝑆𝑜 +∑𝑅𝑑 − 𝑄𝑠 − 𝐸𝑇 −𝑊𝑠 − 𝑄𝑔𝑤)

𝑡

𝑖=1

 (3.2) 

Where 𝑆𝑡 is final soil water content, 𝑆0 is initial water content on day 𝑖, 𝑅𝑑 is rainfall amount on day 𝑖, 𝑄𝑠 is the 

amount of surface runoff on day 𝑖 ,  𝐸𝑇 is the amount of evapotranspiration on day 𝑖, 𝑊𝑠 is the amount of water 

entering the vadose zone from the soil profile on day 𝑖 and  𝑄𝑔𝑤 is the groundwater return flow on day 𝑖 (Neitsch, 

J.G. Arnold, et al., 2009; Neitsch et al., 2011). 

3.3.2.1 Evapotranspiration estimation 

SWAT model has three methods of simulating potential evapotranspiration (PET); the Penman-Monteith, 

Priestley–Taylor, and Hargreaves method. In this research, the Hargreaves method is selected for 

evapotranspiration estimations. Hargreaves PET is formulated as follows: 

 𝑃𝐸𝑇 =  𝜆𝐸𝑜 = 0.0023 ∗ 𝐻𝑜 ∗ (𝑇𝑚𝑥 − 𝑇𝑚𝑛)
0.5 ∗ (�̅�𝑎𝑣 + 17.8) (3.3) 

Where 𝜆 is the latent heat of vaporization in (𝑀𝐽 𝑘𝑔−1), 𝐸𝑜 is the potential evapotranspiration (𝑚𝑚 𝑑−1), 𝐻𝑜 is 

the extraterrestrial radiation (𝑀𝐽 𝑚−2𝑑−1), 𝑇𝑚𝑥 is the maximum temperature for a given day (°𝐶), 𝑇𝑚𝑛 is the 

minimum temperature for a given day (°𝐶), �̅�𝑎𝑣 is the mean air temperature for a given day (°𝐶). The model 

simulates actual evapotranspiration (ET) based on PET, soil water availability, and the maximum amount of 

transpiration depending on the plant type and related daily above-ground and below-ground biomass production 

(Neitsch et al., 2011). 

3.3.2.2 Surface runoff estimation 

SWAT Model provides two methods for surface runoff volume estimations; the modified Soil Conservation Service 

Curve Number (SCS-CN) method and the Green & Ampt (GA) infiltration method. The modified Soil Curve Number 

(SCS-CN) method is used in this research. The SCS-CN method is based on a conceptual model that is aided by 

verified data (Ponce and Hawkins, 1997; Dile et al., 2016). SCS-CN is preferred since it only takes into account the 

total volume of rainfall, while the GA method takes into account factors like rainfall duration and intensity, which 

are not readily available in the water resources database for the study area. The SCS-CN Method is a function of 

LULC, land treatment, soil permeability, and antecedent soil water conditions (Neitsch et al., 2011). 

LULC represents the surface conditions with regard to the degree of cover. Land treatment includes anthropogenic 

practices that can compact the soil, modify surface conditions, and drainage characteristics. Soil properties also 

influence the amount of surface runoff generate. In the SCS-CN Method, these soil properties are represented by 

a hydrological parameter, which is indicative of the minimum rate of infiltration obtained for bare soil after 

prolonged wetting (Krishi, 2013). Therefore, the method includes both infiltration and horizontal transmission 

rates. This parameter, which defines the soils' surface runoff potential, is the qualitative basis of classification of 

soils into various groups known as Hydrological Soil groups (Chow et al., 1988; United States Natural Resources 

Conservation Service, 1997; Krishi, 2013) 
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According to NRCS (2007), Jin et al. (2015), Abraham et al. (2020), and Pancholi (2015), the SCS-CN method defines 

the Hydrological Soil Groups (HSGs) as summarized in Table 3-8. 

The soil texture classification is conducted based on the silt, sand, and clay content, as shown in Figure 3-8. 

Table 3-8: The USDA-NRCS Hydrologic Soil Group Classification 
HSG Soil type 

Texture class 
Runoff 

potential 

Infiltration 

rate (mm/h) 
Water transmission 

A Deep, well-drained soils Sand, loamy 

sand, or sandy 

loam 

Low 7.62‒11.43 
High rate 

(7.62 mm/hr) 

B Moderately deep, well-drained 

with moderately fine to coarse 

textures 

Silt loam or 

loam 
Moderate 3.81‒7.62 

Moderate rate 

(3.81-7.62 mm/hr) 

C Moderately fine to fine textures 

Sandy clay loam Moderate 1.27-3.81 

Low rate 

(1.27-3.81 mm/hr) 

 

D Soils which swell significantly 

when wet, heavy plasticity and 

with a high permanent water 

table 

Clay loam, silty 

clay, sandy clay, 

silty clay, and 

clay 

high 0-1,27 
Very low rate 

(0-1.27 mm/hr) 

 

Figure 3-8: Soil textural triangle used for soil texture classification and 
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The curve number varies non-linearly with soil moisture; the curve number drops as the soil approached the 

wilting point and increases as the soil approaches saturation (Neitsch et al., 2011). 

According to Krishi (2013), the SCS-CN method is based on the water balance equation and two basic hypotheses. 

The first hypothesis equates the ratio of the actual amount of direct surface runoff 𝑄𝑠 to the total rainfall for the 

day 𝑅𝑑, or the maximum potential surface runoff to the ratio of the amount of actual infiltration 𝐹 to the amount 

of the potential maximum water retention 𝑆 of soil. The second hypothesis relates to the initial abstraction (𝐼𝑎) to 

the potential maximum retention. Thus, the SCS-CN method is represented as follows: 

Water balance equation: 

 𝑅𝑑 = 𝐼𝑎 + 𝐹 + 𝑄𝑠 (3.4) 

Proportional Equality Hypothesis: 

 
𝑄𝑠
𝑅𝑑
− 𝐼𝑎 =

𝐹

𝑆
 (3.5) 

𝑰𝒂 − 𝑺  Hypothesis: 

 𝐼𝑎 =∝ 𝑆 (3.6) 

Upon combining equations 3.4 with 3.5, the SCS-CN equation becomes: 

 𝑄𝑠 =
(𝑅𝑑 − 𝐼𝑎)

2

(𝑅𝑑 − 𝐼𝑎 + 𝑆)
 (3.7) 

𝑄𝑠 is the amount of surface runoff on day 𝑖, 𝐼a is the initial abstraction on day 𝑖,  𝑅𝑑 is the rainfall amount on day 

𝑖, and 𝑆 is the water retention parameter (Neitsch, J.G. Arnold, et al., 2009; Neitsch et al., 2011).  Equation 3.7 is 

only valid when 𝑅𝑑 ≥ 𝐼𝑎. 

Water retention Parameter 𝑆  for a given curve number 𝐶𝑁 for the day is represented by the following equation: 

 𝑆 = 25.4 (
1000

𝐶𝑁
− 10) (3.8) 

The initial abstraction 𝐼a is commonly approximated as  0.2𝑆; thus, equation 3.7 becomes: 

 𝑄𝑠 =
(𝑅𝑑 − 0.2𝑆)

2

(𝑅𝑑 − 0.8𝑆)
 (3.9) 

The SWAT Model automatically assigns the SCS-CN based on soil type, landuse type, and treatment of surface 

conditions. However, the SCS-CN computed by the SWAT model is based on watershed conditions in the United 

States (US) and does not accurately represent conditions in other parts of the world (Kim et al., 2010). Therefore, 

the SWAT Model-assigned SCS-CN is adjusted to represent local conditions in Olifants during the calibration 

process, as described in sections 3.3.3 and 3.3.4. 

Antecedent Soil Moisture Condition (AMC) refers to the water content of the upper soil layer in a watershed at a 

given time prior to a precipitation event (Chow et al., 1988). The SCS defines three AMC conditions based on 

rainfall limits for dormant and growing season: 

• AMC I represents dry soils that have reached or about to reach wilting point 
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• AMC II represent soils having average soil moisture 

• AMC III represent wet soils that have reached field capacity 

The SCS-CN values assigned by SWAT represent the AMC II and is denoted by 𝐶𝑁2. The curve numbers for AMC 𝐼 

(denoted by 𝐶𝑁1) and AMC III (denoted by  𝐶𝑁3), are calculated using equations 3.10 and 3.11, respectively: 

 𝐶𝑁1 = 𝐶𝑁2 −
20 ∗ (100 − 𝐶𝑁2)

100 − 𝐶𝑁2 + 𝑒𝑥𝑝[2.533 − 0.636 ∗ (100 − 𝐶𝑁2])
 (3.10) 

 𝐶𝑁3 = 𝐶𝑁2 ∗ 𝑒𝑥𝑝[0.00673 ∗ (100 − 𝐶𝑁2] (3.11) 

According to Neitsch et al. (2011) and Pancholi (2015), the 𝐶𝑁2 provided by SWAT Model are for 5% slope. For 

slopes larger or smaller than 5%, the following formula is provided for adjustment: 

 𝐶𝑁2𝑠 = [1 − 2. exp (−13.86. 𝑠𝑙𝑝)] + 𝐶𝑁2 (3.12) 

Where 𝐶𝑁2𝑠 is the AMC II curve number adjusted for slope, 𝐶𝑁3 is the AMC III curve number for 5% slope, 𝐶𝑁2 is 

the AMC II curve number for 5% slope, and 𝑠𝑙𝑝 is the average slope for the particular subbasin. 

The Rational Method is used to compute the peak runoff rate at any location in the watershed. It is based on the 

assumption that a steady uniform rainfall rate in time and space will produce maximum runoff when all parts of 

the watershed are contributing to outflow. This condition is met when the storm duration exceeds the time of 

concentration. The rational formula is represented by the following equation: 

The SCS-CN method translates the rainfall to surface runoff using the following formulation: 

 𝑄 = 𝐾 ∗ 𝑄𝑠𝑐 ∗ 𝑖 ∗ 𝐴 (3.13) 

Where 𝑄 is the maximum runoff rate (m3/s), A is the watershed area (m2), 𝑖 is the rainfall intensity (mm/h), 𝑄𝑠𝑐 is 

the surface runoff coefficient, K is the attenuation factor (Hadadin, 2013). 

3.3.2.3 Channel flow routing 

Flow routing refers to a procedure used to determine the time and magnitude of flow at a point in the watershed 

based on a known or assumed hydrograph at one or more upstream locations (Chow et al., 1988). The routing 

phase in SWAT Model is divided into two major categories, namely main channel routing and reservoir routing. In 

this phase, the hydrologic cycle is defined by the movement of water, sediment, and solutes through the channels 

and reservoirs to the basin outlet. Channel routing is computed using the Muskingum routing method or variable 

storage coefficient method, which are estimated using various derivatives of the kinematic wave model (Neitsch, 

J.G. Arnold, et al., 2009). SWAT model uses steady-state simulations for channel routing. Steady-state refers to a 

condition where fluid properties like pressure, temperature, and velocity do not change over time (Julien, 2018). 

The kinematic wave model is computed using St. Venant continuity and momentum equations for 1-D flow (Chow 

et al., 1988; Goodrich, 1992). The continuity equation applies the mass conservation principle, which states, “in 

any control volume consisting of the fluid (water) under consideration, the net change of mass in the control 

volume due to inflow and outflow is equal to the net rate of change of mass in the control volume.” The continuity 

equation is represented as follows: 
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𝜕𝑄

𝜕𝑥
+ 
𝜕𝐴

𝜕𝑡
− 𝑞 = 0 (3.14) 

The momentum equation applies conservation of momentum laws, which states, “that the rate of change of 

momentum in the control volume is equal to the net forces acting on the control volume.” This equation considers 

external forces that contribute to water movement and is represented by the following formula: 

 
1

𝐴

𝜕𝑄

𝜕𝑡
+
1

𝐴

𝜕

𝜕𝑥
(
𝑄2

𝐴
) + 𝑔

𝜕𝑦

𝜕𝑥
− 𝑔(𝑆𝑜 − 𝑆𝑓) = 0 (3.15) 

Where Q is the discharge through the channel (m3/s), q is lateral inflow (m/s), A is cross-section areas of flow (m2), 

𝑆𝑜 is channel bed slope, g is the gravitational acceleration (m/s2) and 𝑆𝑓 is the friction slope. 

The kinematic wave model assumes that 𝑆𝑜 = 𝑆𝑓 and friction and gravity forces balance out each other; that is, it 

neglects local acceleration, convective acceleration, and pressure terms. Therefore, the equation is reduced to 

steady-state flow representation. (Chow et al., 1988) 

Variable Storage Routing Method: 

Variable storage routing is based on the continuity equation described by Williams (1975) and Nguyen et al. 

(2018). The equation is represented as follows: 

 𝐼 − 𝑂 = 
𝑑𝑆𝜔
𝑑𝑡

 (3.16) 

Where 𝐼 and 𝑂 respectively denote inflow and outflow rates (m3/s) for a river reach, 𝑡 is time, and 𝑆𝜔 is storage 

(m3). When equation 3.15 is discretized by time ∆𝑡 (s), it becomes: 

 ∆𝑡.
𝐼1 + 𝐼2
2

− ∆𝑡.
𝑂1 + 𝑂2

2
=  𝑆𝜔1 − 𝑆𝜔2 (3.17) 

Where subscripts 1 and 2 refer to start and end of the routing time interval ∆𝑡(s), respectively. Equation 3.16 can 

be rearranged to have the following terms: 

 𝐼𝑎 +
𝑆𝜔1
∆𝑡

−
𝑂1
2
=
𝑆𝜔2
∆𝑡

+
𝑂2
2

 (3.18) 

Equation 3.18 can be re-written as follows to obtain a relationship between the storage coefficient and travel time 

as follows: 

 
𝐼𝑎 +

𝑆𝜔1
∆𝑡
𝑇 .

𝑆1
𝑂1

−
𝑂1
2
= 𝐼𝑎 +

𝑆𝜔2
∆𝑡
𝑇 .

𝑆2
𝑂2

+
𝑂2
2

 
(3.19) 

 𝑂2 = (
2∆𝑡

2𝑇 + ∆𝑡
). 𝐼𝑎 − (1 −

2∆𝑡

2𝑇 + ∆𝑡
) . 𝑂2 (3.20) 

 𝑂2 = 𝑐. (𝐼𝑎 +
𝑆𝜔1
∆𝑡
) (3.21) 

Where C is the storage coefficient represented by the following equation: 

 𝐶 = 
2∆𝑡

2𝑇 + ∆𝑡
 (3.22) 
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Condition 𝑠 ≤ 1 must be satisfied in order to achieve a logical, physical representation (Nguyen et al., 2018). 

3.3.3 Model setup 

The setup is performed in QSWAT (SWAT version 2012 in the QGIS environment). The overall model set-up and is 

illustrated in Figure 3-10. Following the guide provided by  QSWAT User Manual by Arnold et al. (2012), Dile et al. 

(2015) Dile et al. (2017), SWAT Model was set-up in the following steps: 

• Watershed delineation, where QSWAT uses GIS tools and the DEM to define the drainage characteristics 

of the river basin and its boundaries. 

• Definition of  Hydrological Response Units (HRUs);  this refers to the sub-division of basins into smaller 

units, each of which has a particular soil, LULC class, and slope range. 

• Database building, which involves uploading and writing of hydro-meteorological data, and editing of 

various known parameters to reflect conditions of the study area. 

• Model calibration, validation, and sensitivity analysis 

Figure 3-9: Schematic illustration of Model setup 
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3.3.3.1 Data description 

The SWAT Model has five different categories of input data for purposes of hydrological modelling that is shown 

in Figure 3-9, and described as follows: 

Digital Elevation Model (DEM): It is a gridded digital representation of terrain, with each pixel value that 

corresponds to a height above a given datum (Hawker et al., 2018). DEM is used in SWAT Model in the watershed 

delineation phase to extract terrain information like slope and drainage pattern. DEM for this research was 

obtained from Advanced Land Observing Satellite (ALOS) (Earth Observation Research Center Japan Aerospace 

Exploration Agency (JAXA), 2019). The DEM has a spatial resolution of 30x30 m grid. Error correction, coordinate 

projection, and conditioning of the DEM is conducted using the watershed delineation Tool in SWAT Model. The 

DEM used in this research and the river network developed from it is shown in Figure 3-10. 

Figure 3-10: Elevation and river network map( Source: ALOS DEM) 

Soil distribution map: was obtained from the Food and Agriculture Organization (FAO). The mask for the study 

area has seven different soil classes, which are described in Table 3-9 and illustrated in Figure 3-10. The soil has a 

spatial resolution of 7x7 km grid, and its properties have been compiled from  UNESCO and FAO (1995, 2003), 

NRCS (2007), Jin et al. (2015), and Abraham et al. (2020). 
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Table 3-9: Soil classes in Steelpoort and Blyde River Basins with their corresponding texture classes and 
hydrologic group 

 

Soil Code in Fig 3-

10 Soil composition Texture HSG 

1 887 Chromic vertisols Clay D 

2 886 Orthic Acrisols Sandy_Loam C 

3 725 Chromic Luvisols Sandy_Clay_Loam C 

4 

722 Chromic Luvisols with traces of Orthic Luvisols, 

Ferric Luvisols, and Lithosols Sandy_Clay_Loam C 

5 

575 Cambic Arenosols with traces of Orthic Solonetz 

and Eutric Planosols Sandy_Loam C 

6 

434 Cambic Arenosols with traces of Luthosols, 

Chromic Luvisols, and Ferric Luvisols Sandy_Loam C 

7 262 Chromic Vertisols Clay D 

 

Figure 3-11: soil distribution map for Steelpoort and Blyde River Basins (Source: FAO) 



QUANTIFICATION OF LULC CHANGE AND ITS IMPACTS ON HYDROLOGY 

74 

 

LULC data:  it is prepared from LANDSAT 5, 7 & 8 satellite images as described in section 3.1. LULC is static during 

the modelling period. The LULC data have a spatial resolution of 30X30 m grid and are as shown in Figure 3-7 in 

section 3.2.4. 

Maximum temperature (℃), minimum temperature (℃), and precipitation (mm); these data sets were obtained 

from the University of East Anglia Climate Research Unit (CRU TS 4.0) database. The raw data is gridded, has a 

monthly temporal resolution and a spatial resolution of 0.5°. Since the required weather input in SWAT Model 

should be in daily time-step, the CRU data was decoupled to daily time steps using the MODAWEC program. The 

decoupling process is described in section 2.1. The data were interpolated to a resolution of 0.125° using Inverse 

Distance Weighting (IDW) tool in ArcGIS. 

IDW was developed by the U.S National weather Services in 1972 and is based on Tobler’s first law of geography, 

which states that “everything is related to everything, but near things are more related than distant things (Chen 

and Liu, 2012; Ahrens, 2005). The IDW is formulated as follows: 

 𝑅0 = 
∑ 𝑅∝𝑊∝
𝑛
∝=1

∑ 𝑊∝
𝑛
∝=1

 (3.23) 

 𝑊∝ = 
𝑑𝑖
−∝

∑ 𝑑𝑖
−∝𝑛

𝑖_1

 (3.24) 

Where 𝑅0 is the unknown rainfall data (mm), 𝑅∝ is the known rainfall data, 𝑛 is the number of rainfall stations, 

𝑊∝ is the weighting for each rainfall station, 𝑑𝑖  is the distance from each rainfall station with known data to the 

station with unknown data, 𝛾 is the power and control parameter. 

Relative humidity (%), wind speed (m/s), and solar radiation (𝑾𝒎−𝟐) were simulated from SWAT in-built 

weather generator (Neitsch, J.G. Arnold, et al., 2009). To simulate meteorological data in the SWAT Model, a 

weather database, which shows the average annual values of each type of data for at least ten years, should be 

created. Because of data scarcity, the Climate Forecast System Reanalysis (CFSR) data were used to prepare the 

weather database for using the SWAT Weather Database program. CFSR is a product of the National Centers for 

Environmental Prediction (NCEP) and has been successfully applied in hydrological modelling by many researchers 

like Fuka et al. (2014) and Dile et al. (2016). SWAT Weather Database is a tool developed by Essenfelder (2018) 

and is a recognized supporting tool for data preparation in SWAT Modelling. 

Reservoir operations and water use data were obtained from South Africa’s Department of Water and Sanitation 

(DWS) and WRSM2012/ Pitman database (Middleton and Bailey, 2008; Bailey, 2012). 

3.3.3.2 Definition of Hydrologic Response Units (HRUs) 

HRU definition phase allows the user to upload LULC and soil distribution files. The Model automatically subdivides 

the watershed into smaller areas based on soil type, slope class, and LULC class. SWAT Model allows the user to 

define six slope classes between 0-100%. Figure 3-12 shows the map of slope classes used in this research. 

http://rda.ucar.edu/pub/cfsr.html
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Figure 3-12: Slope classes derived from DEM 

3.3.3.3 Building of SWAT Model Database 

This step involves uploading of  meteorological time series, reservoir operation, water use  data, and  adjustment 

of 𝐶𝑁2 value to reflect the slope conditions of the study area.  𝐶𝑁2 is adjusted using equation 3.12. final 𝐶𝑁2 

values for the various slope classes are summarized in Table 3-9.
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Table 3-10:Summary of Hydrologic Soil Groups and their corresponding original and slope-adjusted  𝐶𝑁2 
LULC H

S
G 

AREA 
(𝒌𝒎𝟐) 

𝑪𝑵𝟐 𝑪𝑵𝟏 𝑪𝑵𝟑 𝑪𝑵𝟐 for various slope classes 

0-0.5% 
slope 

0.5-5% 
slope 

5-10% 
slope 

10-20% 
slope 

20-30% 
slope 

30-100% 
slope 

Agriculture  C 378 83 71 93 80 82 85 86 86 86 

D 182 87 76 95 85 86 88 89 90 90 

Dense 
Forest 

C 1076 70 55 86 65 68 73 75 75 75 

D 101 77 63 90 73 76 79 81 81 81 

Grassland C 2268 79 66 91 75 78 81 82 83 83 

D 514 84 72 94 81 83 86 87 87 87 

Herbaceous 
Vegetation 

C 159 79 66 91 75 78 81 82 83 83 

D 106 84 72 94 81 83 86 87 87 87 

Sparse 
Forest 

C 207 77 63 90 72 75 79 80 81 81 

D 33 82 70 93 79 81 84 85 85 86 

Shrubland C 3810 74 60 88 70 72 76 78 79 79 

D 1110 80 67 92 76 79 82 83 84 84 

Urban area C 8 72 57 87 67 70 74 76 77 77 

D 2 79 66 91 75 78 81 82 83 83 

3.3.4 Model Calibration and sensitivity analysis 

Hydrological simulations were conducted for 25 years (1990-2014), with a warm-up period of three years  

(1987-1989). Model calibration was based on a 13-year (1990-2002) simulations, while validation was 

based on a 12-year (2003-2014) simulations. To investigate the influence of LULC change on hydrology in 

the Steelpoort and Blyde River Basins, the SWAT Model is set-up for three scenarios based on 1992, 2002, 

and 2014 LULCs. The 1998 LULC was not used because of minimal differences from the preceding 1992 

LULC.  The 1992 LULC was selected as the baseline scenario, with which both calibration and validation of 

the model were conducted. 

The calibration process was done using both the manual approach and Sequential Uncertainties Fitting 

Algorithm, Ver-2 (SUFI-2). SUFI-2 is a semi-automated approach used for calibration, validation, 

uncertainty analysis, and sensitivity analysis (Abbaspour, Vaghefi, and Srinivasan, 2017; Kouchi et al., 

2017).  Calibration of the hydrologic model is conducted based on discharge data at eleven gauging 

stations; B6H005, B4H003, B6H001, B4H010, B4H003, B4H005, B4H007, B4H009, B42H, B60J, and B4H025 

shown in Figure 3-14. Simulated discharge data from WRSM/Pitman Model (Middleton et al., 2008) are 

used for discharge calibration at stations B42H and B60J, and for gap-filling of calibration data from station 

B4H025. 

The goodness fit of the model is then assessed using Nash-Sutcliffe Efficiency (NSE) and the coefficient of 

determination (𝑅2). Coefficient of determination measures the degree of linear association between 

modelled and observed values and is defined by the following equation: 

 
𝑅 = 

∑ (𝑥𝑡 − �̅�)((𝑦𝑡 − �̅�)
𝑛
𝑡=1

√∑ ((𝑥𝑡 − �̅�)
𝑛
𝑡=1

2
 √∑ (𝑦𝑡 − �̅�)

𝑛
𝑡=1

2

 
(3.25) 
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Figure 3-13: Location map of River gauging stations used for model calibration 

Where 𝑥𝑡 and 𝑦𝑡   are the modelled (GCM) and observed variable at 𝑡 time step (months), �̅� is the mean 

of observed data, �̅� is the mean of modelled data, and 𝑛 is the total number of observations. The 

coefficient of determination varies within the interval [−1, 1], where values close to 1 indicate a good fit 

(López et al., 2017). 

Nash-Sutcliffe Efficiency (NSE) was proposed by Nash and Sutcliffe (1970), it is a normalized statistic that 

describes the relative magnitude of the residual variance as compared to the observed and demonstrates 

how well the plot of observed versus simulated value fits the 1:1 line. The following formula represents 

NSE: 

 𝑁𝑆𝐸 = 1 − 
∑ [𝑥𝑡 − 𝑦𝑡]

2𝑛
𝑡=1

∑ [𝑦𝑡 − �̅�]
2𝑛

𝑡=1

 (3.26) 

Where 𝑥𝑡 and 𝑦𝑡   are the modelled (GCM) and observed variable at 𝑡 time step (months), �̅� is the mean 

of observed data, �̅� is the mean of modelled data, and 𝑛 is the total number of observations. NSE varies 

from −∞ to 1, with values close to 1 indicate a good fit (López et al., 2017). 

In SUFI-2, parameter uncertainty accounts for all sources of uncertainties, such as the model forcing and 

model processes. The level of uncertainty is measured by a statistical parameter referred to as ’p-factor,’ 

which is the percentage of measured data falling within the 95% prediction uncertainty (95PPU). The 
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95PPU is calculated at 2.5% and 97.5% of the cumulative distribution of an output variable obtained 

through Latin hypercube sampling (Singh et al., 2014).  The Latin hypercube sampling (LHS) is 

a statistical approach used to generate a near-random sample of parameter values from 

a multidimensional distribution. In SUFI-2, the LHS is used to generate the parameters that are selected 

for calibration with a specified parameter range (Yang et al., 2008).  

The p-factor is the fraction of measured data and its error, bracketed by the 95PPU band. The p-factor 

varies from 0 -1, where 1 indicates 100% of the measured data falls within the 95PPU bracket and 

represents a perfect model simulation (K.C. Abbaspour et al., 2015; López et al., 2017). According to K.C. 

Abbaspour et al. (2015), a p-factor > 0.7 is considered adequate for hydrological modelling 

The ‘r-factor’, also computed by SUFI-2; it is the ratio of the average width of the PPU band and the 

standard deviation of the measured variable. A value < 1 is a desirable measure for the r-factor. The 

degree to which the values deviate from these numbers can be used to judge the strength of the 

calibration (K.C. Abbaspour et al., 2015; López et al., 2017; Abbaspour et al., 2019; Rouholahnejad et al., 

2012; Vasel et al., 2015; López et al., 2017). The p-factor and the r-factor are used to measure the strength 

of the calibration 

K.C. Abbaspour et al., 2015 stresses the necessity of striving to balance the r-factor and p-factor, since a 

large value of p-factor can be achieved at the expense of the r-factor 

3.3.5 Results: Model calibration and validation 

Table 3-11 shows the calibration and validation results of river discharge at eleven various locations; 

satisfactory model performance is achieved at seven stations during the calibration period; out of these 

eleven stations, the model performed satisfactorily at eight stations during the validation period. The 

model had p-factor > 0.7 at four stations during the calibration period and r-factor < 1 at five stations. The 

r-factor and p-factor were only obtained during the calibration period with the best parameters obtained 

directly used in model validation. 

In conclusion, the model generally showed good capability to simulate streamflow at most locations of 

the river basins. 

Table 3-11: Discharge calibration and validation model performance statistics 
 Station Calibration (1990-2002) Validation (2003-

2014) 

NSE 𝑹𝟐 p-factor r-factor NSE 𝑹𝟐 

1 B6H005 0.67 0.67 0.55 0.94 0.65 0.68 

2 B6H003 0.55 0.69 0.24 0.37 0.52 0.63 

3 B6H001 0.75 0.81 0.53 0.8 0.71 0.80 

4 B6H025 0.5 0.5 0.46 0.46 0.42 0.4 

5 B4H010 0.50 0.58 0.76 1.99 0.46 0.60 

6 B4H009 0.23 0.4 0.73 1.87 0.20 0.2 

7 B4H007 0.64 0.6 0.52 0.37 0.62 0.62 

8 B4H005 0.63 0.7 0.92 2.62 0.63 0.72 

9 B4H003 0.36 0.41 0.86 6.5 0.3 0.40 

10 B42H 0.77 0.81 0.09 1.19 0.70 0.79 

11 B60J 0.79 0.79 0.1 1.51 0.81 0.77 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Multidimensional_distribution
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Table 3-12 summarizes the average values of parameters that were finally obtained after calibration of 

the SWAT Model. The calibrated parameters for the individual sub-basin are summarized in Appendix II. 

Table 3-12 also shows the ranking of parameter sensitivity as obtained from the SUFI-2 Algorithm. 

Nineteen parameters were used, where Curve Number (𝐶𝑁2) and Soil Available Water (SAW) exhibiting 

the highest overall sensitivity in all the sub-basins. 

Table 3-12: Average calibrated parameters’ values 

Rank Parameter Parameter description 
Allowable 

Range 
Calibrated values 

1 𝐶𝑁2 Curve number 35 - 98 61.05 

2 SOL_AWC Soil available water 0 - 1 0.20 

3 SOL_Z Active soil depth 0 - 3,500 456.90 

4 ALPHA_BF Baseflow factor 0 - 1 0.31 

5 GWQMN 
Water depth threshold in shallow aquifer 

required  for return flow to occur 
0 – 5,000 2013.32 

6 ESCO Soil evaporation compensation factor 0 – 1 0.33 

7 EPCO Plant uptake compensation factor 0 – 1 0.28 

8 SOL_K Saturated hydraulic conductivity 0 – 2,000 17.97 

9 CH_N2 Manning’s roughness for channel flow -0.01 – 0.3 0.18 

10 OV_N Manning’s roughness for overland flow 0.01 – 1 0.51 

11 GWHT Initial groundwater height 0 - 25 13.57 

12 HRU_SLP HRU slope 0 - 1 0.15 

13 GW_SPYLD Specific yield from shallow aquifer 0 – 0.4 0.20 

14 SURLAG Lag time of surface runoff 0 - 25 2.08 

15 GW_DELAY Groundwater delay 0 - 500 186.51 

16 REVAPMN 
Water depth threshold in shallow aquifer 

required for “revap” to occur 
0 – 1,000 475.65 

17 GW_REVAP 
Factor of water movement from shallow 

aquifer to top soil layer 
0.02 – 0.2 0.08 

18 CH_K2 Channel’s effective hydraulic conductivity -0-01 - 500 87.77 

19 SLSUBBSN Average slope length for flow saturation 10 - 150 55.44 

 

According to Abbaspour et al. (2019), Rafiei Emam et al. (2018), Liu and Gupta (2007), Renard et al. (2010), 

and Abbaspour et al. (2017), outputs of hydrological modelling are subject to uncertainty due to errors 

from different sources; these errors can arise from the data, model structure and model parameters. 

Evaluation of this uncertainty in hydrological modelling informs the consumers of the information the 

degree of reliability of the outputs (Rafiei Emam et al., 2018).  In this research, the potential sources of 

uncertainties in the hydrological outputs are as follows: 

Meteorological data:  

Rainfall and temperature data are obtained from the University of East Anglia Climate Research Unit. This 

data is in monthly time step but decoupled using the MODAWEC (Liu, Williams, et al., 2008) program; the 

program uses the probability of wet days tie series to produce daily rainfall and temperature data 

stochastically. While the outputs of MODAWEC in the current study and other in different studies by Liu, 
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Fritz, et al. (2008) Liu, Williams, et al. (2008) have shown good performance in producing the daily time 

series, some biases are still detected which could transfer to the hydrological simulations. 

The solar radiation, wind speed, and relative humidity belong to the Climate Forecast System Reanalysis 

data group; this data is from satellite sources, compiled by National Centers for Environmental. According 

to Tian et al. (2009 and Ramírez- Beltrán et al. (2019), satellite data are prone to bias errors, which are 

subsequently transferred to the model outputs. 

LULC data, Soil data, and Elevation data: 

LULC maps prepared in Section 3.2 are used in hydrological modelling; despite acceptable results during 

validation (Section 3.2.1), these maps are subject to errors as shown by the degree of accuracy. These 

errors are transferred to the model processes and subsequently to the output as well. The exact 

contribution of these errors to hydrological modelling cannot be single out. However, under the modelling 

process, all sources of errors are quantified using the SUFI-2 algorithm. 

The soil map has a very coarse resolution of 7 km grid, which presents a generalized classification; this 

does not present the actual variability that exists on the ground. This errors can be transferred to the 

mode leading to additional uncertainties. 

A DEM of 30 km grid has been used in the modelling exercise; this may be too coarse when defining 

features that have smaller widths. 

Quantification of uncertainties: 

The SUFI-2 algorithm, which is used in the SWAT Model calibration, also estimates parameter 

uncertainties. The indices that are used to measure the uncertainty in model prediction are the r-factor 

and the p-factor. Calibration was conducted at 11 stations, out of which four stations had p-factor > 0.7 

and had five stations r-factor < 1. Therefore, it can be concluded that the calibration outputs from 9 

stations are relatively reliable, whereas the output from two stations have high uncertainty and hence 

low reliability.  

These uncertainties have implications on the discharge and are also transferred to subsequent processes 

modelled using the calibrated model. 

3.3.6 Results: Hydrological impacts of LULC change 

Calibrated parameters were used to set-up the SWAT Model for two additional scenarios based on 2002 

and 2014 LULCs. The meteorological data was kept constant (data used in the calibration step was also 

applied in simulating the two new scenarios).  Hydrological change analysis due to LULC change was 

conducted by: 

Comparing the average annual values for evapotranspiration, surface runoff, and groundwater recharge, 

lateral flow, and groundwater flow. 

Assessing shifts in monthly discharge curves based in 1992 and 2014 LULC data. Discharge at four locations 

was analyzed; B4H025 (Outlet of Steelpoort River), B4H003 (Steelpoort mid-section), B42H outlet 

(Steelpoort mid-section), and B60J outlet of Blyde River. 

Figure 3-14 shows the graphical presentation of various hydrological parameters based on 1992, 2002, 

and 2014 LULC scenarios: Surface runoff is with continued LULC changes. There were slight changes in 
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aquifer recharge and lateral flow where there was a decrease throughout the season. There was variability 

in evapotranspiration with a general decrease from the initial state; the biggest changes were seen under 

2002_LULC where there were major loss of forests in the 

Figure 3-14: Changes in hydrological parameters due to LULC changes 

Figure 3-15 shows the shift discharge curves at various locations in the two river basins. Based on the 2014 

LULC data, there is an increase of discharge at stations B4H003, B4H025, B42H Outlet, and Blyde (B60J) 

outlet. The timing of these shifts and their magnitudes are different and could be attributed to the location 

and extent of LULC changes, which are shown in Figure 3-7. 

An upward shift in the discharge at station B4H003 can be attributed to an extensive expansion of 

agriculture in the upstream section (identified by Area 3 in Figure 3-7) of the station. The area lies in the 

headwaters; therefore, the increase in discharge is much larger in comparison to discharge at other 

locations. 

The smaller shift in discharge curves at station B42H can be attributed to a lesser expansion of agriculture 

in Area 2 in comparison to Area 3. Agricultural expansion in Area 2 also occurs closer to the sub-basin 

outlet and not headwaters; hence the impact on discharge can be lower. In Area 2, extensive loss of forest, 

which is usually responsible for high evapotranspiration rates, also occurs between 1992 and 2002 LULC; 

hence evapotranspiration rates are significantly reduced under the 2002 LULC scenario. 

In the Blyde River Basin, expansion of agriculture is in the lower areas; near the basin outlet, therefore 

the shift in discharge curve comes earlier in the season and normalize during the peak, as shown in Figure 

3-15. 

While the peak seasons (beginning of October until end of May) exhibit increase in discharge due to LULC 

changes in all the four stations, there were no distinct changes in low flow seasons (from May to 

September); this means that the impact on baseflow is very minimal 
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Figure 3-16 shows the spatial distribution of changes in various hydrological components resulting from 

LULC changes. Changes in surface runoff are prominent in areas where landuse is transitioned to 

agricultural land. There was a predominant decrease in evapotranspiration in areas where forest losses 

were observed and an increase in areas where agricultural land was expanded. Generally, there were 

minimal changes in lateral flow. 

 

  

  

Figure 3-15: Shift in mean monthly discharge curves in the basins due to 1992-2014 LULC change 
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3.4 Discussions 

The objective of this chapter is to quantify LULC changes using remote sensing images and quantify its impacts on 

hydrological partitioning in Steelpoort and Blyde River Basins. Remotely sensed images from LANDSAT 5, 7 & 8 

were used to prepare LULC maps for four different epochs (1992, 1998, 2002 and 2014). LULC change detection 

revealed that major changes were largely driven by agricultural landuse activities with an increase of 514 km2 from 

1992 to 2014. Other increments in LULC were in water bodies due to the construction of water storage facilities 

and in urban areas. Major losses in landuse are in forest cover, grassland, and shrubland; these losses are largely 

attributed to agriculture expansion. 

To assess the impacts of LULC on the hydrology of the Blyde and Steelpoort River Basins, SWAT Model was used 

in hydrological simulations for three scenarios based on 1992, 2002, and 2014 LULC data. 1998 LULC was not used 

since there were very minimal differences observed in this period, as seen in Figure 3-7 and Table 3-5.  1992 LULC 

was used as the baseline scenario, where calibration and validation of the model were conducted. 

Analysis of the hydrological outputs from the three scenarios of the SWAT Model revealed the following general 

changes: 

• Increase in peak discharge 

• Increase in surface runoff and decrease in aquifer recharge, especially in areas where agricultural 

expansion occurred. 

• Evapotranspiration decreased significantly, especially in the period (1992-2002) when the loss of forest 

cover was significant. 

The outcomes of this chapter have revealed that changes in landuse in the Blyde and Steelpoort River Basins have 

significant impacts on hydrology, especially on surface runoff patterns and evapotranspiration. Human activities 

like agriculture are the main drivers of LULC changes in the river basins; therefore, it should be undertaken with 

careful planning and moderation to conserve the ecosystem. 

In this LULC planning approach, the identification of morphological parameters is conducted at the sub-basin scale, 

which has a coarse spatial resolution. The output is then scaled down to a  higher resolution of 1200 m. Low-

resolution data can be a large cause of prediction uncertainty in hydrology (Hawker et al., 2018). 
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4 ADAPTATION OF AGRICULTURAL LANDUSE PLANNING TO IMPROVE 

MITIGATION OF IMPACTS ON HYDROLOGY 

4.1 Background 

Human’s effort to meet their livelihood needs has led to extensive modification of landscapes around the 

world. The ecological consequences of these actions include the translocation of nutrients, altered 

hydrological systems, and the loss/change of biodiversity. The increasing global population is driving up 

demand for land and therefore necessitating a careful balance between competing for landuse activities 

and ecological needs. Landuse planning, therefore, emerges from the societal aspiration to improve 

management, sustainably harness the land resources, and to prevent/mitigate negative environmental 

impacts of landuse activities (Food and Agriculture Organization, 1993). 

FAO, 1993 describes landuse planning as a structured evaluation of land and water potential, alternatives 

for landuse activities, and socio-economic conditions to identify and adopt ecologically sustainable 

options. The previous chapter of this research reveals extensive human-driven landuse changes in the 

Blyde and Steelpoort river basins, which subsequently lead to alteration of the hydrological regimes. An 

increase in surface runoff is the major change observed and is attributed to the expansion of agricultural 

activities. In this region where river flow is dominated by baseflow, an increase of surface runoff translates 

to a decrease in baseflow, potentially resulting in increased water scarcity in low flow seasons. The 

background of this research also highlights the susceptibility of this study area to further changes in 

landuse from agricultural development, which would subsequently magnify the impacts on the 

hydrological regime. 

The existing approach for identifying sites suitable for agriculture follows an on-demand and mostly site-

specific studies through Environmental Impacts Assessment. The shortcomings of this approach are that 

limited alternative sites are because of time and economic factors, whereas there could exist more 

suitable sites. 

Besides, the parameters used to assess impacts on hydrological flows are not extensively explored since 

they are limited to slope characteristics and soil drainage conditions. However, other morphological 

parameters define hydrological characteristics of the basin, and they could be utilized as additional 

analyzers in EIA studies. There is also a limited exploration of the role of morphology, which has the 

potential to limit or augment the hydrological reactions. 

Therefore, the objective of this chapter is to develop an approach for agricultural landuse planning to 

enhance mitigation of changes in the hydrological regime that result from agricultural expansion, identify 
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morphological parameters and their approximate thresholds to be utilized in site evaluation for 

agricultural use, and to develop future landuse scenarios and their corresponding hydrological scenarios. 

To achieve this, the entire study area is analyzed to identify the best areas for agricultural use following 

steps: 

• Identification of LULC classes that exhibit a similar hydrological response to agriculture; these 

LULC classes will be selected for replacement with agriculture to achieve minimal changes in 

hydrology. 

• Identification of “hydrologically suitable” morphological features for agricultural use; 

Morphological features that exhibit minimal anomalies under agricultural expansion are 

identified and selected as the best sites for agricultural land establishment. 

This approach will be developed and tested by recreating the 2014 LULC using the 1992 LULC as the 

baseline scenario. The target area for agricultural expansion is approximately 513 𝑘𝑚2, an equivalent to 

expansions observed in the actual scenario outlined in section 3.2.4. The hypothetical 2014 LULC will be 

used in hydrological simulations that will then be evaluated against the hydrological outputs from the 

actual 2014 LULC and 1992 LULC. 

4.2 Identification of LULC classes that exhibit similar hydrological responses to 

agriculture 

The hydrological response is highly sensitive to and dependent on landuse type; each landuse class has a 

unique hydrological response pattern (Schulze, 2016). To minimize changes in discharge following 

agricultural expansion, landuse class/classes that exhibit closer or similar hydrological characteristics with 

agricultural land could be cleared for agricultural use. Identification of landuse type with closer 

hydrological reactions is quite a complex matter since the influencing factors range from regional climate 

to underlying morphological conditions; 

Studies by Kabantu (2016), Alemayehu et al. (2017) and  Li et al. (2017)  indicate that evapotranspiration 

(ET) from agricultural land relative to ET from the forest, grassland, and shrubland differ in different 

regions of the world; Figure 4-1 summarizes the findings of this studies. 
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Figure 4-1: Evapotranspiration rates for various landuse categories in different regions 

The work of  Wang et al. (2018) also indicated that forests under steep slopes increase the volume of 

runoff generation and discharge variability; this pattern of discharge is also observed in gently sloping 

areas under agriculture.  The following are the various characteristics of vegetation that influences 

hydrological response: 

Canopy and Leaf Area Index (LAI): canopy can also refer to the portion of a plant community found above 

ground formed by the crowns of individual plants; LAI refers to the leaf area per unit ground area. In a 

vegetated environment,  canopy and LAI are responsible for partitioning rainfall into canopy storage (𝑆𝑐), 

throughfall (𝑅𝑇) and stemflow (𝑄𝑠𝑡), as shown in Figure 4-2. Larger canopies and LAI translate to higher 

evaporation rates and reduced surface wetting (Chow et al., 1988; O’connor et al., 2019; Li, Lin and Levia, 

2012; Kunert et al., 2015; Tarigan et al., 2018). 
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Figure 4-2:Conceptual illustration of canopy storage relationship with leaf area Index, and rainfall partitioning by 
vegetation canopy 

Root depth and density: Deep roots facilitate access to deep soil moisture, which helps to maintain 

photosynthesis even in dry seasons. Denser roots increase the surface area of water absorption, which 

results in increasing the water uptake ratio, as shown in Figure 4-3. Evapotranspiration from forests is 

always high year-round because of their deep and, in some cases, dense root system. Because of this 

feature, plants with deeper roots tend to cause more lowering of the water table (Kunert et al., 2015; 

Bates, 2017; Fan et al., 2017; O’connor et al., 2019). Flow-through the soil is also influenced by the root 

channels, which contribute to the preferential flow pathway (Ghestem, Sidle and Stokes, 2011). 
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Figure 4-3: conceptual illustration of water uptake relationship with root depth 

Surface cover: surface cover by vegetation influences hydrological aspects and surface runoff volume, 

peak flow rates, and infiltration (Loch, 2000; Boland-Brien, Basu, and Schilling, 2014; Gyamfi et al., 2016; 

Wang et al., 2017). Figure 4-4 illustrates how vegetation cover influences the volume of surface runoff 

generated from a rainfall event. 

Figure 4-4: Illustration of soil cover relationship with surface runoff (Marongiu and Cenceti, 2015) 
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4.2.1 Methods 

Hydrological responses of the various LULC classes in the Blyde and Steelpoort River Basins are analyzed 

to identify the LULC class that has minimal hydrological anomalies with agricultural land.  Only LULC 

classes that are selected for this step have to cover an area slightly larger than the targeted 513 𝑘𝑚2; 

these LULC classes are herein referred to as “dominant LULCs,”  and include forests (dense and sparse 

combined), grassland, shrubland, and agriculture land. The hydrological components that are considered 

are evapotranspiration, groundwater recharge, lateral sub-surface flow, and surface runoff. The following 

three steps are adopted in the process: 

STEP 1: Four homogeneous LULC scenarios  (with 100% coverage) are prepared based on the four 

dominant LULC classes (dense Forest, Shrubland, Grassland, and Agriculture land) identified during 

classification. Figure 4-5 shows the LULC scenarios with 100% coverage of each of the for LULC classes 

selected for analysis in this step 

Figure 4-5: Landuse Scenarios prepared with 100% coverage of Agriculture, Forest, Grassland and Shrubland 

STEP 2: Four scenarios of the SWAT Model are set-up based on the four homogeneous LULC prepared in 

STEP 1. Calibrated parameters’ values obtained in section 3.3.4 are applied in the parameterization of the 

four modelling scenarios. 

STEP 3: The hydrological outputs of these simulations are then assessed to establish LULC class with 

minimal hydrological anomalies from agricultural land. The landuse class that exhibits minimal difference 

with agricultural land is then selected as the most appropriate to be cleared for agricultural use; this is 

because the impact on hydrological flows will subsequently be minimal. Minimum hydrological anomaly 

rather than the “best” hydrological conserving LULC class is utilized in this step; since minimal anomaly is 

an indication of similarities in requirements for growth factors. For example, Brouwer and Heibloem, 

(1986) indicate that both climate and crop type influence crop water requirements which are reflected in 

crop evapotranspiration rates. During the field Survey, DAFF also indicated that areas having vegetation 

with similar crop water requirements as the intended crop to be planted, are considered most suitable. 

Therefore, the closeness in evapotranspiration rates from grassland and agricultural area demonstrate 

their similarities in crop water need and subsequently an indication of similarities in growth factor 

requirements. 
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4.2.2 Results 

Figure 4-6 illustrates the process flow used in the identification of landuse class that can be replaced by 

agriculture. The variations in simulated hydrological components from Agriculture LULC differs greatly 

with those from Forest and Grassland LULCs. Minimal anomalies in the simulated hydrological 

components are detected in Agriculture-Grassland anomalies (Output 1-Output 2) as shown in Figure 4-6 

The surface runoff generated from grassland is lower than that generated from agricultural land: Based 

on the surface runoff controls, this is attributed to the degree of surface cover in the study area, which is 

higher in grassland. Evapotranspiration from the agricultural area is much higher than that of grassland; 

this can be attributed to canopy storage, which is larger in agricultural crops because of higher crop 

heights. On the other hand, higher lateral flow and groundwater recharge are observed under grassland, 

this can be attributed to enhanced surface roughness that increased residence time of surface runoff and 

promotes increased infiltration. Grass, in comparison to major crops grown in the river basin, have 

shallower roots, and hence it does not quickly deplete soil water content. 

It can be seen in Figure 4-6 that shrubland appears to increase the hydrological conservation capacity of 

the basin. However, grassland is selected as the appropriate LULC class to be replaced since its closeness 

in hydrological characteristics also indicates physical and environmental suitability for agriculture. 

Hydrological outputs form the Forest LULC indicate very minimal surface runoff, extremely high 

evapotranspiration, which can be attributed to large canopy storage and minimized surface wetting. The 

simulated high groundwater recharge and lateral flow can be attributed to increased residence time. 
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4.3 Identification of “hydrologically suitable” morphological features for agricultural use 

Morphology is a key aspect that, in addition to LULC, controls hydrological regimes (Voepel et al., 2011). Studies 

carried out by Price (2011), Boland-Brien, Basu and Schilling (2014), and Wang et al. (2018) indicate that the 

physical characteristics of the river basin can influence the magnitude of hydrological to similar landuse classes. 

Boland-Brien et al. (2014) demonstrated that the baseflow ratio in agricultural fields is dependent on the size of 

the watershed, sub-surface formations, and slope; however, the magnitude of the response was also dependent 

on the cropping pattern and degree of surface cover. Therefore, in an environment or a region where landuse 

changes or development is prominent, quantification of the influence of morphology on the magnitude of 

hydrological reaction to landuse change could guide the landuse-planning process for mitigation of hydrological 

variability. 

The prediction of the hydrological response of agricultural LULC based on a single morphological parameter can 

be a simple task. However, the complexities in the prediction increase as the number of parameters increase. 

Figure 4-7. Uses three morphological parameters (soil structure, slope, and depth of water table) to illustrate how 

the number of parameters influences complexity in hydrological predictions. 

The SWAT Model is capable of capturing the roles each morphological parameter plays on hydrological 

partitioning. A river basin in its natural or modifies state has heterogeneous morphology, which varies spatially in 

the level of occurrence; these morphological parameters interact with each other and produce ta unique 

hydrological response. Some morphological parameters have a greater and spatially consistent pattern of 

influence in hydrological response, whereas some less significance in hydrological influence or a consistent pattern 

of influence cannot be detected across the entire river basins. Based on this description, identification of 

morphological parameters that can be utilized in EIA studies can only be based on dominant morphological 

parameters that best describe the hydrological response of the watershed. 

The SWAT Model is semi-distributed and outputs hydrological information at HRU and sub-basin scale (Neitsch et 

al., 2011). Therefore, the identification of hydrologically low impact areas will provide information at a larger 

scale, which may not be effective, considering the large area of the sub-basins (Figure 4-8) and their morphological 

heterogeneity. Therefore, statistical methods will be used to detect correlationships between various 

morphological parameters and the hydrological outputs; the statistical/mathematical relationships obtained in 

this step will be used to characterize the reaction of the entire basin from a small scale to a large scale. 
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Figure 4-7: Illustration of increasing complexity in hydrological prediction with an increase in controlling morphological 

features 
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4.3.1 Methods 

In Blyde and Steelpoort River Basins, grassland is already identified in the previous section as most suitable for 

replacement by agriculture. In this section seeks to identify the dominant morphological parameters that describe 

hydrological partitioning in the river basin, and also identify morphological conditions that produce minimum 

hydrological anomaly when transitioned from grassland to agricultural land. The following four steps are adopted 

in the process: 

Step 1: In this step, dominant morphological conditions that best describe hydrological partitioning of the river 

basin are first identified using correlation matrices and construction of scatterplots; Voepel et al. (2011) 

successfully used the method adopted here to characterize the role of morphology in hydrological partitioning. 

Voepel et al. (2011) correlation matrices and scatterplots construct to identify dominant climatic and 

morphological parameters that define water partitioning across the various watershed in the United States. 

To obtain enough sample size for correlation analysis, the river basins are split into 32 sub-basins based on water 

management areas as delineated by the Republic of South Africa as shown in Figure 4-3 

Figure 4-8: Sub-basins used in correlation analysis for identifying dominant morphological parameters 
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Morphological parameters that are tested are derived from terrain (DEM), soil properties, and geological 

conditions.  Only observed data is used since model-derived parameters may introduce further biases due to 

parameter uncertainty. The morphological parameters that are tested are as follows: 

Terrain derived parameters include: 

Terrain Ruggedness Index (TRI): Expresses the amount of elevation difference between adjacent cells of a DEM 

(Riley, DeGloria and Elliot, 1999; United States Naval Academy, 2016). The TRI is computed for each grid cell of 

the DEM by calculating the sum of elevation difference between the grid cell and the eight surrounding grid cells. 

According to the description provided by Riley et al. (1999), TRI is computed as follows: 

 𝑇𝑅𝐼 =  ∑𝐴𝐵𝑆(𝑋𝑖 − 𝑋𝑐)

8

𝑖=1

 4.1 

Where 𝑋 is the elevation for a particular DEM cell, 𝑋𝑐 is the elevation for the grid cell at the center (whose TRI is 

being computed), and 𝑖 is the index of the neighboring grid cell. 

Figure 4-9 shows various hypothetical DEMs and their corresponding TRI values as computed by equation 4.1 

Figure 4-9: Hypothetical square grids DEMs and their corresponding TRIs, where a) is peak type topography that is highly 
rugged, b) is pit type topography that is highly rugged, and c) is a gently undulating topography. 

According to Figure 4-10, high TRI values occur in areas with higher elevation. Low TRI corresponds to lower 

elevation areas and is continuous along the riverine.  TRI defines the rate of water evacuation from one grid cell 

to another and the storage capacity of a particular cell. 
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Figure 4-10: Terrain Ruggedness Index of Steelpoort and Blyde River Basins 

Terrain Convergence Index (TCI): A terrain parameter that shows the structure of the relief as a set of convergent 

areas (channels or ponds) and divergent areas (ridges). It represents the degree of agreement of aspect of 

surrounding cells with the theoretical matrix. Aspect is the orientation of slope, measured clockwise in degrees 

from 0° to 360°, where 0° is north-facing, 90° is east-facing, 180° is south-facing, and 270° is west-facing. The 

calculation uses the aspects of surrounding cells, i.e. it looks to which degree surrounding cells point to the center 

cell (Köthe and Lehmeier, 1996; Kiss, 2004). TCI for each grid cell computed as follows: 

 𝑇𝐶𝐼 =  [
1

8
∑∅

8

𝑖=1

] − 90° 4.2 

Where ∅ denotes the average angle between the aspect of adjacent cells and the aspect to the central cell. TCI 

values range from -90 to +90, where the extreme (-ve) values represent highly divergent areas, values around 0 

represent planar areas, and extreme (+ve) values represent highly convergent areas. 

Figure 4-10 illustrates the varied aspects for each grid cell, with their corresponding TCIs 
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Figure 4-11: Hypothetical  illustration of the varied aspects for each grid cell, with their corresponding TCI s (source: Kiss, 
2004) 

According to figure 4-12, the TCI of Blyde and Olifants River Basins indicate an almost uniformly distributed 

convergent and divergent areas. Slope aspect influences surface energy balance, hence influencing water balance 

at a particular point (Jackson, 1967; Faber, 2004) 

Figure 4-12: Terrain Convergences Index of Steelpoort and Blyde River Basins 
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Slope: it is the steepness or the degree of incline of a surface Slope for a given surface is calculated by computing 

the ratio of the vertical change (∆𝑦) to the horizontal change ∆𝑥 between two given points.  Slope influences 

surface runoff velocity and peak surface runoff rate and volume of surface runoff generated (Chow et al., 1988). 

It is represented as follows: 

 𝑠𝑙𝑜𝑝𝑒 =  
∆𝑦

∆𝑥
 4.3 

Elevation: it is the height of a particular grid cell above or below a fixed reference point (above sea level). The 

elevation of the river basins is shown in Figure 3-10. 

Figure 4-13: Illustration of slope classes for Steelpoort and Blyde River Basins 

Bulk density (𝒌𝒈/𝒎𝟑): Soil bulk density refers to the ratio of the dry mass of solids to bulk volume of a soil sample  

(Akker, JJ H Van ; Soane, 2005; Batjes et al., 2017). Bulk density influences the soil temperature and hence impacts 

on the distribution and decay of soil water content (Neitsch et al., 2011; Arnold et al., 2012).  Bulk density is 

calculated as follows: 
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 𝜌𝑏 =
𝑀𝑠
𝑉𝑆

 4.4 

Where 𝜌𝑏 is the soil bulk density (𝑘𝑔/𝑚3), 𝑀𝑠 is the dry mass of solid, and 𝑉𝑆 is the total volume of the soil sample. 

Higher Bulk density represents high compaction (Sandhage-Hofmann, 2016), which translates to low infiltration 

rates and high surface runoff generation. 

The temperature of a soil layer is a function of the surface temperature, mean annual air temperature and depth 

in the soil at which variation on temperature due to changes in climatic conditions no longer occur. This depth is 

referred to as damping depth. It is dependent on Bulk density. 

Soil temperature influences water movement and the soil and rate of decay of water residue 

Figure 4-14: Map of the Bulk density  of Steelpoort and Blyde River Basins 

Porosity: Measure of void spaces in the soil; this dataset was extracted from SWAT Tables.  Soils with higher 

porosity have high infiltration rates (USDA_NRCS, 2014) 
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SWAT Model assigns porosity values for each specific soils based on their textures. For the FAO, soil classes and 

corresponding textures have been pre-determined and input into the SWAT database. The raw values are used to 

prevent biases that may result from parameter changes in the calibration step. 

Soil Available Water (mm/m): maximum amount of plant-available water a type soil can provide. This dataset 

was extracted from SWAT Tables. The higher the field capacity, the higher the amount of water that can be drained 

from it. Figure 4-15 illustrates the SAW and FC of various soils. 

Field capacity (mm/m): the amount of soil moisture or water content held in the soil after excess water has 

drained away, and the rate of downward movement has decreased; this dataset was extracted from SWAT Tables. 

Figure 4-15:  illustration of Soul Available Water and Field Capacity (Utah State University, no date) 

Hydraulic conductivity (mm/hr): describes the ease with which water can move through pore spaces or fractures. 

This dataset was also extracted from SWAT Tables 

Borehole yield (l/s): in this research, borehole yield refers to the maximum rate at which a borehole can be 

pumped on a sustainable basis. The spatial illustration of the borehole yield is shown in Figure 1-13. 

The above morphological parameters are averaged over each sub-basin and tested for correlation with various 

hydrological indices. The indices used in this step refer to the fraction of mean annual rainfall that is partitioned 

to specific hydrologic components and is defined as follows: 

Surface runoff coefficient (𝑆𝑅𝑐), which is represented by the following formula: 

 𝑆𝑅𝑐 = 
𝑄𝑠
𝑅𝑎
∗ 100 4.5 

Where 𝑄𝑠 is the mean annual surface runoff and 𝑅𝑎 is the mean annual rainfall. 
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Groundwater recharge to rainfall ratio, which will be referred to as Groundwater Recharge Index and denoted by 

𝐺𝑊𝑅𝐼: 

 𝐺𝑊𝑅𝐼 =  
𝐺𝑊𝑅

𝑅𝑎
∗ 100 4.6 

Where 𝐺𝑊𝑅 is the mean annual groundwater recharge (mm) and 𝑅𝑎 is the mean annual rainfall (mm). 

Lateral flow to rainfall ratio, which will be referred to as Lateral Flow Index and denoted by 𝐿𝐹𝐼: 

 𝐿𝐹𝐼 =  
𝐿𝐹

𝑅𝑎
∗ 100 4.7 

Where 𝐿𝐹 is the mean annual lateral flow (mm) and 𝑅𝑎 is the mean annual rainfall (mm). 

Percolation to rainfall ratio, which will be referred to as Percolation Index and denoted by 𝑃𝐼: 

 𝑃𝐼 =  
𝑃

𝑅𝑎
∗ 100 4.8 

Where 𝑃 is the mean annual percolation (mm) and 𝑅𝑎 is the mean annual rainfall (mm). 

The morphological parameters that exhibit co-relationship with various hydrological indices are considered 

dominant. Coefficient of determination, R2 is used as the measure of correlation; when R2 >= 0.5, then a strong 

correlation exists. The (-) sign indicates that the variables are moving in opposite directions. 

Step 2: Once the dominant morphological parameters are identified, their influence on the magnitude of 

hydrological changes is then assessed as well using correlation analysis. In this step, correlation analysis is 

conducted between the morphological parameters and the anomalies of the various hydrological indices. Since 

the focus is on grassland to agriculture transition, only the hydrological outputs based on the two homogeneous 

LULC are used to calculate the indices. 

Statistical relationships that exist between the two variables tested indicate how each morphological parameter 

influences the magnitude of change in the hydrological components when grassland is converted to agricultural 

land. 

The anomalies of the hydrological indices are calculated for each sub-basin for enough statistical sampling and are 

represented by the following formulae: 

The anomaly of Surface Runoff Coefficient (𝑆𝑅𝑐𝑎𝑛): 

 𝑆𝑅𝑐𝑎𝑛  =  𝑆𝑅𝑐𝑎𝑔-𝑆𝑅𝑐𝑔𝑟 4.9 

Where 𝑆𝑅𝑐𝑎𝑔 is the Surface Runoff Coefficient from the homogeneous agriculture LULC and 𝑆𝑅𝑐𝑔𝑟 is the Surface 

Runoff Coefficient from the homogeneous grassland LULC. 

The anomaly of Groundwater Recharge Index (𝐺𝑊𝑅𝐼𝑎𝑛): 

 𝐺𝑊𝑅𝐼𝑎𝑛  =  𝐺𝑊𝑅𝐼𝑎𝑔-𝐺𝑊𝑅𝐼𝑔𝑟 4.10 

Where 𝐺𝑊𝑅𝐼𝑎𝑔 is the Groundwater Recharge Index from the homogeneous agriculture LULC and 𝐺𝑊𝑅𝐼𝑔𝑟 is the 

Groundwater Recharge Index from the homogeneous grassland LULC. 
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The anomaly of the Lateral Flow Index (𝐿𝐹𝐼𝑐𝑎𝑛): 

 𝐿𝐹𝐼𝑎𝑛  =  𝐿𝐹𝐼𝑎𝑔-𝐿𝐹𝐼𝑔𝑟 4.11 

Where 𝐿𝐹𝐼𝑎𝑔 is the Lateral Flow Index from the homogeneous agriculture LULC and 𝐿𝐹𝐼𝑔𝑟 is the Lateral Flow Index 

from the homogeneous grassland LULC. 

The anomaly of Percolation Index (𝑃𝐼𝑎𝑛): 

 𝑃𝐼𝑎𝑛  =  𝑃𝐼𝑎𝑔-𝑃𝐼𝑔𝑟 4.12 

Where 𝑃𝐼𝑎𝑔 is the Percolation Index from the homogeneous agriculture LULC and 𝑃𝐼𝑔𝑟 is the Percolation Index 

from the homogeneous grassland LULC. 

Step 3: The scatter plots of the dominant morphological parameters vs. anomalies of the hydrological indices are 

prepared and equations describing each relationship obtained. Only the dominant parameters that exhibit 

correlation with the hydrological anomaly ratios are utilized in this step. 

The thresholds for morphological parameters that would ensure minimal changes in hydrology are obtained by 

randomly setting the targeted change to a fraction of the mean annual basin value of the various ratios of the 

anomalies. 

Step 4: To identify the exact location for the expansion of agricultural land, the spatial properties of the river 

basins are then explored to identify areas that have a combination of the set of morphological parameters that 

are within the limits identified by the thresholds set. These areas are then checked for the following 

conformities/criteria: 

• Must have slope < 20% as stipulated by South Africa’s Department of Agriculture, Forestry and 

Fisheries (DAFF) 

• Must be covered by grassland 

• Must not be in protected areas like Forests and game reserves 

4.3.2 Results 

Step 1: Table 4-1 shows a set of morphological parameters that were tested and their corresponding values of 𝑅2. 

In the work of Kelleher et al. (2015), the high variability of parameters may result in low correlation, hence 

𝑅2 values of about 0.3 can be considered dominant: this approach is also employed in thi sstep. Most DEM-derived 

parameters (TCI, TRI, and slope) exhibited a correlation with some hydrological indices. 

Bulk density was the only soil parameter which exhibited a correlation with 𝐿𝐹𝐼 whereas geological parameter 

(groundwater yield) did not correlate with the hydrological rations. 

TCI, TRI, slope, Bulk density 𝜌𝑏, were adopted as the dominant morphological parameters and are therefore in 

combination with  𝑳𝑭𝑰 and  and 𝑺𝑹𝒄 adopted for the analysis in Step 2 and Step 3. 

Various scatterplots showing the statistical relationships established between the selected morphological 

parameters and various hydrological indices are outlined in Appendix III. 
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Step 2: The objective of this step is to reduce the anomalies in lateral flow and surface runoff; therefore, the 𝐿𝐹𝐼𝑎𝑛 

and 𝑆𝑅𝑐𝑎𝑛 are reducing by a random factor ranging between 
1

4
 to 

1

2
 to obtain the targeted  𝐿𝐹𝐼𝑎𝑛 and 𝑆𝑅𝑐𝑎𝑛. These 

targets values are denoted by 𝑇𝑎𝑟𝑔𝑒𝑡 𝐿𝐹𝐼𝑎𝑛 and 𝑇𝑎𝑟𝑔𝑒𝑡 𝑆𝑅𝑐𝑎𝑛. The target values are then applied in Step 3 to 

establish the morphological thresholds using equations that will result from the graphical relationships. 

Table 4-2 shows the simulated mean annual values of lateral flow and surface runoff obtained from the 

homogeneous LULC scenarios of grassland and agriculture and their corresponding anomalies 

Step 3: Figure 4-4 shows the scatter plots of the various indices of hydrological anomalies obtained in Step 2. 

The anomaly of the Lateral Flow Index 𝐿𝐹𝐼𝑎𝑛 exhibited an exponential relationship with bulk density, where 𝐿𝐹𝐼𝑎𝑛 

decreases exponentially with an increasing bulk density. 

The anomaly of Surface Runoff Coefficient 𝑆𝑅𝑐𝑎𝑛  exhibited an exponential relationship slope, where 𝑆𝑅𝑐𝑎𝑛  

increases exponentially with increasing slope. 

The anomaly of the Lateral Flow Index 𝐿𝐹𝐼𝑎𝑛 exhibited a polynomial relationship with slope and terrain Terrain 

Ruggedness Index (TRI), where 𝐿𝐹𝐼𝑎𝑛 increases with increasing slope and TRI. 

Figure 4-17 shows the maps of the dominant morphological parameters showing only the areas meeting the 

threshold values. 

Table 4-3 shows the equations obtained from the graphical plots in Figure 4-16; the 𝑦 value in the graphical 

equations are substituted by their respective targeted anomalies of Lateral Flow Index  𝑇𝑎𝑟𝑔𝑒𝑡 𝐿𝐹𝐼𝑎𝑛 and Surface 

Runoff Coefficient 𝑇𝑎𝑟𝑔𝑒𝑡 𝑆𝑅𝑐𝑎𝑛. The 𝑦 values represent the morphological thresholds. 

Table 4-1: Correlation of various morphological parameters and hydrological components 
S.No Morphological Parameters 𝐋𝐅𝐈 𝐒𝐑𝐜 𝐏𝐈 

1 Terrain Convergence Index (TCI) 0.69 0.30 No correlation 

2 Terrain Ruggedness Index (TRI) 0.52 No correlation No correlation 

3 Slope 0.37 No correlation No correlation 

4 Elevation No correlation No correlation No correlation 

5 Porosity No correlation No correlation No correlation 

6 Field capacity No correlation No correlation No correlation 

7 Hydraulic Conductivity (mm/hr) No correlation No correlation No correlation 

8 Bulk density (kg m-3) 0.6 No correlation No correlation 

9 Aquifer yield (l/s) No correlation No correlation No correlation 
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Table 4-2: Summary of hydrological components from grassland and agriculture LULC and the anomalies of their ratios 

Sub-basin 
Rainfall 

(mm) 

Agriculture Grassland 
Agriculture-Grassland 

anomaly 

Surface 

Runoff (mm) 

Lateral 

flow (mm) 

Surface 

Runoff (mm) 

Lateral 

flow (mm) 

𝑻𝒂𝒓𝒈𝒆𝒕
 𝑺𝑹 𝒄𝒂𝒏

 
𝑻𝒂𝒓𝒈𝒆𝒕 
𝑳𝑭𝑰 𝒂𝒏

 

1 908 31 36 9 39 2.44 -0.35 

2 1114 94 216 19 227 6.71 -0.98 

3 1081 78 108 34 117 4.03 -0.76 

4 999 295 42 185 54 11.00 -1.19 

5 921 38 81 17 87 2.28 -0.65 

6 821 581 1 267 4 38.32 -0.42 

7 1113 77 94 24 99 4.82 -0.50 

8 834 58 38 21 45 4.43 -0.84 

9 909 28 68 10 69 2.04 -0.11 

10 863 60 50 26 65 3.87 -1.72 

11 1019 70 16 55 18 1.54 -0.11 

12 946 38 390 10 402 2.89 -1.22 

13 958 102 47 58 55 4.66 -0.81 

14 947 306 49 135 78 18.08 -3.07 

15 1066 629 13 483 37 13.71 -2.21 

16 879 3 171 2 171 0.14 -0.05 

17 869 110 18 36 21 8.54 -0.38 

18 822 53 24 22 25 3.69 -0.17 

19 985 86 45 56 52 3.00 -0.70 

20 1019 180 56 45 76 13.20 -1.96 

21 1091 380 64 169 107 19.33 -3.94 

22 1017 107 50 59 52 4.75 -0.20 

23 1041 51 81 34 84 1.62 -0.26 

24 1048 174 168 65 183 10.40 -1.48 

25 902 136 63 44 73 10.20 -1.14 

26 1009 74 6 64 7 0.97 -0.10 

27 885 90 73 27 80 7.03 -0.79 

28 951 95 12 82 14 1.35 -0.27 

29 894 58 31 32 37 2.84 -0.68 

30 909 29 40 17 41 1.31 -0.08 

31 981 292 58 178 77 11.65 -1.93 

32 929 27 37 12 38 1.61 -0.08 

 Average 6.95 -0.91 

 Surface runoff targeted (𝑇𝑎𝑟𝑔𝑒𝑡 𝑆𝑅𝑐𝑎𝑛) change = 1/4 * (Average) 1.74  

 Lateral flow targeted change (𝑇𝑎𝑟𝑔𝑒𝑡 𝐿𝐹𝐼𝑎𝑛 )  = 1/3 * (Average)  -0.30 
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Figure 4-16:Graphs show relationship between morphological parameters and hydrological anomalies from grassland 
and agriculture LULC based simulations 

Table 4-3: Summary of morphological parameters, hydrological parameters and anomalies and equations used in the 
identification of limits morphological parameters 

Graph Equation Targeted change = 𝒚 Morphological 

parameter 

Morphological 

thresholds = 𝒙 

TRI Vs 𝐿𝐹𝐼𝑎𝑛 y = -0.0111x3 + 0.1319x2 - 

0.601x + 0.6351 

𝑇𝑎𝑟𝑔𝑒𝑡 𝐿𝐹𝐼𝑎𝑛 = 0.3 
TRI 

≤ 3 

Slope vs 𝐿𝐹𝐼𝑎𝑛 y = -0.003x3 + 0.046x2 - 

0.2906x + 0.3416 

𝑇𝑎𝑟𝑔𝑒𝑡 𝐿𝐹𝐼𝑎𝑛 = 0.3 slope ≤ 4.4 

Bulk Density 

and 𝐿𝐹𝐼𝑎𝑛 

y = 2E+12e-0.023x 𝑇𝑎𝑟𝑔𝑒𝑡 𝐿𝐹𝐼𝑎𝑛 = 0.3 Bulk density ≥ 1282 

Slope vs 𝑆𝑅𝑐𝑎𝑛 y = 0.5288e0.2343x 𝑇𝑎𝑟𝑔𝑒𝑡 𝑆𝑅𝑐𝑎𝑛 = 1,7 slope ≤ 4.9 

y = 2E+12e-0.023x

R² = 0.7391

0.0

1.0

2.0

3.0

4.0

5.0

1150 1200 1250 1300 1350 1400

A
n

o
m

al
y 

o
f 

La
te

ra
l F

lo
w

 In
d

ex
 *

 
-1

Bulk Density (Kg m-3 )

Soil Bulk Density and Lateral 
Flow Ration Anomaly

y = 0.5288e0.2343x

R² = 0.8285

0

5

10

15

20

25

0 5 10 15 20

A
n

o
m

al
y 

Su
rf

ac
e

 R
u

n
o

ff
 

C
o

ef
fi

ci
en

t

Slope (%)

Slope vs Surface Runoff 
Ratio Anomaly

y = -0.0111x3 + 0.1319x2 - 0.601x + 
0.6351

R² = 0.781
-9

-7

-5

-3

-1

1

0 5 10 15A
n

o
m

al
y 

o
f 

La
te

ra
l F

lo
w

 In
d

ex

TRI

TRI Vs Lateral Flow Ratio 
Anomaly

y = -0.003x3 + 0.046x2 - 0.2906x + 
0.3416

R² = 0.7788
-6

-5

-4

-3

-2

-1

1

0 5 10 15 20A
n

o
m

al
y 

o
f 

La
te

ra
l F

lo
w

 In
d

ex

Slope (%)

Slope vs Lateral Flow Ratio 
Anomaly



 

107 

 

  

  

Figure 4-17: Maps showing the spatial distribution of TRI that meet hydrological conservation thresholds 

Step 4: To identify the exact locations for the expansion of agricultural land, the morphological thresholds 

developed in the previous step are combined with criteria for agricultural land development described in 

section 4.3.1. These criteria stipulate that agricultural establishments must be on slopes < 20% (DAFF 

criterion), must only be expanded into grassland, and must not be in protected areas. Since the slope limit 

provided by DAFF is larger, the slope thresholds used in this step are the values identified in the previous step. 
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The map of protected area and grassland under the 1992 LULC are as shown in Figure 4-18 

The maps in Figure 4-17 are then intersected with the grassland map of 1992. Areas that fall under protected 

areas are then clipped out of this intersection to give the “suitable” agricultural areas, which is shown in Figure 

4-19. The area is considered suitable for agricultural use for its ability to mitigate impacts on hydrological 

regimes; this area is 657 𝑘𝑚2. 

 

Figure 4-18: map of grassland under 1992 LUL (a)C and protected areas (b) in Blyde and Steelpoort River Basins. 
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Figure 4-19: Map of suitable areas for agricultural use 

4.4 LULC scenario development 

The suitable agricultural area identified in the previous section is used to develop a hypothetical LULC scenario 

of 2014. The detected increase in agricultural land between 1992 and 2014 is 513 𝑘𝑚2, whereas the area 

identified as suitable for agricultural use is 657 𝑘𝑚2. In developing a hypothetical 2014 LULC scenario, the 

entire 657 𝑘𝑚2 is taken into account. 

This process involves only modifying the agricultural expansions that took place between 1992 and 2014 to 

take the form of the “suitable agricultural area.”  All other non-agricultural changes detected in this period, 

like the expansion of urban area and water body, are kept constant. 

The procedure is conducted in ArcGIS using the Mosaic Tool. 

4.4.1 Results 

Figure 4-20 (a) shows a mosaic of “suitable” agricultural area, water body, and urban area under the actual 

2014 LULC, which are kept constant in the hypothetical LULC scenario development process. The hypothetical 

2014 LULC scenario is as shown in Figure 4-20 (c), is prepared by mosaicking the map in Figure 4-20 (a) onto 

4-20 (b), which is the 1992 LULC (also the baseline LULC scenario).  
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Major differences between the actual 2014 LULC scenario  (Figure 4-20 b.) and the hypothetical 2014 LULC 

scenario occur mainly in three areas highlighted by dotted rectangles and denoted by numbers 1, 2, and 3. 

These changes are explained as follows: 

Area 1: The actual 2014 LULC (4-20 .b) has a slightly larger agricultural area in comparison to the hypothetical 

2014 LULC map (4-20 .c); this is because of the sparse forest, which has a very aerial small coverage, was 

cleared for agriculture use. However, this option has been blocked by the new landuse planning approach, 

which restricts expansion only to Grassland. Since Grassland does not occur in this area, the state of 

agricultural land remains as it was in the baseline LULC scenario of 1992 (4-20 .a). 

Area 2: Actual 2014 LULC scenario (4-20 .b) has larger tracts of agricultural land; this is because the large forest 

which was was found in this area under 1992 LULC was cleared to make room for. Agricultural activities in this 

area were also established in areas that initially had herbaceous vegetation and Shrubland. Since the 

agricultural expansion is limited to grassland LULC is very limited in the area, expansion of agricultural 

establishment under the hypothetical 2014 LULC is less (4-20 .c) in comparison to the actual 2014 LULC 

scenario. 

Area 3: The new approach breaks up agricultural areas into smaller discrete areas. There are also additional 

areas that have been identified as suitable for agriculture. The areas that have been used for agriculture under 

the actual 2014 LULC scenario (in Figure 4-20 .b) are quite suitable. However, there is room for improving the 

conservation of hydrological regimes using the new approach; this gives a higher resolution scenario. 
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Figure 4-20: Development of hypothetical 2014 LULC scenario and the difference maps of  the 1992 LULC baseline 
scenario (b), 2014 LULC real scenario and 2014 LULC scenario developed using the new approach 
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4.5 Evaluation of the proposed LULC planning approach 

The effectiveness of the agricultural LULC planning approach in mitigating changes in the hydrological regime 

in Blyde and Steelpoort River Basin is evaluated by using the SWAT Model; the model is set up using the 

hypothetical 2014 LULC scenario developed in the previous chapter (Figure 4-21 c.). The meteorological data 

is the same as that described and used in model set-up in Section 3.3.3. Model parameterization is based on 

calibrated parameters obtained in Section 3.3.4. 

Hydrological simulations were conducted for 25 years (1990-2014), with a warm-up period of three years  

(1987-1989). 

4.5.1 Results 

Figure 4-21 shows the various hydrological components under the 1992 LULC scenario, the actual 2014 LULC 

scenario, and the hypothetical 2014 LULC scenario. The surface under the hypothetical 2014 LULC is lower 

than that of the actual 2014 LULC scenario but higher than that of the 1992 LULC scenario; this is an indication 

that the new LULC planning approach is effective in mitigating changes in surface runoff. 

There are no changes in lateral flow under the actual 2014 LULC scenario and the hypothetical 2014 LULC 

scenario. 

Net aquifer recharge under the hypothetical 2014 LULC scenario is a little much higher than that of the actual 

2014 LULC and that of 1992 LULC; this is an indication that the developed agricultural LULC planning approach 

is effective in enhancing groundwater recharge. 

Figure 4-21: comparison of various hydrological components under the 1992 LULC,  the actual 2014 LULC, and the 
hypothetical 2014 LULC scenarios 

Figure 4-22 shows the various discharge curves under the 1992 LULC scenario, the actual 2014 LULC scenario, 

and the hypothetical 2014 LULC scenario. At station B4H003, the discharge under the hypothetical 2014 LULC  

is lesser than that of the actual 2014 LULC and more than that of the 1992 LULC; this illustrated that the newly 

developed LULC approach is reduced the volume of surface runoff generated despite the upstream area (Area 
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3 in Figure 4-20)  having larger agricultural development under the hypothetical 2014 LULC than that detected 

in the actual scenario. 

At the outlet of Blyde (B60J), the discharge curve under the hypothetical LULC scenario resembles the curve 

under the 1992 LULC scenario; this is because the upstream area (Area 1 in Figure 4-20) which underwent 

extensive agricultural development under the actual 2014 LULC scenario did not meet criteria for agricultural 

use under the new LULC planning approach, and hence the agricultural LULC impacts on hydrology do not exist 

under the hypothetical 2014 LULC. 

At the B42H Outlet, the discharge curve only shifts slightly downwards during the peak season; this can be 

attributed to the minimal agricultural development under Area 2 in Figure 4-20. Changes in discharge between 

the 1992 LULC scenario  (baseline) and those from the actual 2014 LULC scenario and the hypothetical 2014 

LULC scenarios are very minimal at this station.   

At station B4H025, the discharge curve under the hypothetical 2014 LULC shifts upwards at the beginning of 

the rain season in October with higher flows in the recession period (March, April, May); this discharge pattern 

can be attributed to factors like increase in the lateral flow which subsequently increases the baseflow. 

Figure 4-22: Illustration of the shift  in discharge curves under the 1992 LULC, the  actual 2014 LULC and the hypothetical 
2014 LULC 
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4.6 Discussions 

Hydrological regimes of many river basins are under threat due to constant landuse development. The Blyde 

and Steelpoort River Basins have experienced an extensive expansion of agriculture within a very short period, 

as shown in Chapter 3 of this research. The drivers of these LULC changes indicate that further changes in the 

future are inevitable.  

The EIA studies, which are in some cases employed when a developer/farmer wishes to establish agricultural 

activities, are conducted on a need-basin and cannot provide an overview of the whole river basin. The basin-

wide overview is necessary to improve IWRM planning and in the long term. A review of the EIA procedure 

indicates that in the quantification of the impacts of agricultural establishment on hydrology, the terrain slope 

is almost the only morphological parameter that is given consideration. However, numerous morphological 

features that contribute to hydrological partitioning that are not included in the EIAs can provide information 

to help enhance the mitigation of changes in hydrology.  

On the other hand, the existing agricultural LULC development approaches do not give much emphasis on the  

LULC class that can be replaced without much impact hydrology. EIA studies and small scale farmers. Providing 

these farmers and other stakeholders with a map designating the best areas for agricultural use can change 

the course of the resource management to promote conservation of the hydrological regimes and other 

services depending on it. 

This chapter proposes an agricultural LULC planning approach in which both morphological aspects and the 

hydrological characteristics of the LULC class to be replaced are taken into account. The method utilized 

morphology-landuse-hydrology interactions to identify LULC classes and physical conditions under which 

agriculture can be established with minimal hydrological implications. Hydrological characteristics of the 

dominant LULC classes in the study area were compared through hydrological simulations to identify LULC 

classes with closer response patterns to agricultural land. The findings revealed that grassland responds almost 

closely to agriculture and can be cleared for agricultural activities. 

Morphology, which is considered an essential element in water partitioning, was also assessed to establish 

the physical basin characteristics under which agriculture exhibits the least hydrological changes. Dominant 

morphological parameters that define water partitioning in these basins are first identified, and they are 

utilized to characterize their influence on the magnitude of hydrological changes between when landuse is 

transitioned from grassland to agriculture. Following a two-step analysis, anomalies in lateral flow ratio and 

surface runoff ratio were found to have a statistical correlation with Terrain Ruggedness Index, slope, and bulk 

density. The three criteria developed for identifying “hydrologically suitable” areas for agriculture are as 

follows: 

• Slope ≤ 4.4%, Terrain  Ruggedness Index (TRI) ≤ 3, and Bulk density ≥ 1282 kg/m3 

The results of  Chapter 3 indicate that at slopes > 4.4%, the volume of surface runoff generated is high; this 

figure is much lower than the value is stipulated by DAFF. The slope influences the velocity of surface runoff; 

therefore, a decrease in the surface cover through agriculture further increases the surface runoff velocity by 

reducing Manning’s roughness of the surface. 

High terrain ruggedness can indicate the presence of depression on the ground or crests on the ground; these 

depressions can be rivers or ponds, while the ridges can be cliffs or peaks of elevated areas. The high TRI areas 

are not suitable for agriculture since agriculture on the riverine is not recommended for conservation 

purposes, whereas the cresting grounds have high slopes, which result in high surface runoff. 
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High bulk density indicates high compaction of the ground; this usually results in poor infiltration, lateral flow, 

and high surface runoff generation. At higher bulk density, the changes in lateral flow due to agricultural LULC 

are very minimal; however, a field experiment may be required to determine to explain this phenomenon. 

The LULC class identified for replacement and the three morphological parameters identified as suitable for 

agricultural use can be adopted for use in EIA studies and in mapping out potential agricultural areas in other 

river basins with similar vegetation communities.  

The three morphological parameters and their statistical relationships (equations in Table 4-3) were adopted 

for the identification of “hydrologically suitable” areas for agriculture by applying a threshold that reduced the 

magnitude of hydrological changes 

The above criteria were then used to develop a hypothetical scenario of 2014 LULC. The difference map in 

Figure 4-20 indicated a large disparity in agricultural land, especially in Areas 1 and 2. This disparity was mainly 

brought about by insufficient grassland in this area that could be cleared for agricultural development. 

The hydrological output of the hypothetical 2014 LULC scenario was then compared that of 1992 LULC as the 

baseline scenario; in comparison to the actual 2014 LULC scenario, the general pattern revealed that most 

expansions in the upper section of the basin (Area 3 in Figure 4-20) were a little well sited with small 

exceptions. However, in the mid and lower parts, the significant disparity is brought about by the absence of 

grassland, which could be cleared for agricultural use. 

The effectiveness of the approach developed was also evaluated by setting up the SWAT model using the 

developed hypothetical 2014 LULC scenario. Comparison of the hydrological outputs from the hypothetical 

2014 LULC with those from the actual 2014 LULC and 1992 LULU revealed that the new LULC planning 

approach is capable of mitigating changes in various hydrological components like evapotranspiration and 

surface runoff. There was a slight increase in lateral flow and net groundwater recharge; these changes were, 

however, not so significant in comparison to minimized changes achieved in evapotranspiration and surface 

runoff. Therefore, the approach developed proved to be an effective landuse planning method with the aim 

of mitigation of changes in hydrological regimes. The reduction in lateral flow and net aquifer recharge could 

be an indication that various processes are connected and may depend on other parameters that could be 

further investigated. 

While the slope is the only major topographic aspect integrated into EIA studies in cases of agricultural land 

establishment, this study demonstrates that bulk density and terrain ruggedness index can well define the 

magnitude of hydrological changes when grassland is transitioned into agricultural land. Global raster data for 

bulk density is freely available, while slope and terrain ruggedness can be derived from freely available DEM 

in GIS application software. Therefore; it can be concluded that bulk density and terrain ruggedness can be 

used for preliminary mapping of potential agricultural areas for the safeguarding of hydrological regimes 

Based on the findings in this Chapter, water resources and land managers can adopt the morphological 

parameters identified herein and their corresponding thresholds for agricultural landuse planning so as to 

mitigate significant impacts on hydrological regimes. The LULC planning approach can be adopted for 

agricultural landuse planning in various parts of the world or be modified for a different type of landuse 

planning. However, the use of the morphological thresholds developed should be restricted to areas with 

similar vegetation communities and the same climatic pattern as the study.
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5 TRANSFER OF FINDINGS TO MAPPING SUITABLE AREA FOR FUTURE AGRICULTURAL 

USE AND PROJECTION OF ITS CORRESPONDING HYDROLOGICAL SCENARIOS UNDER 

CLIMATE CHANGE 

5.1 Background 

The previous chapters of this research have revealed the extensive expansion of agriculture in Blyde and 

Steelpoort River Basins. During the data collection exercise, discussions with Ms. Anneliza Collett of the 

Department of Agriculture Forestry and Fisheries (DAFF) indicated that population growth and food demand 

are the main drivers of agricultural landuse expansion. WWF (2016) indicate that South Africa had a population 

of about 49 million according to the 2009 census and projected that there would be 82 million people living in 

South Africa living in South Africa by 2035. The Olifants River Basin receives higher rainfall than most parts of 

the country (Figure 5-1), which is an indicator of relatively conducive conditions for agriculture; this 

environmental aspect, coupled with increasing demand for food, makes the basin prone to further expansions 

of agriculture. Also demonstrated in the previous chapters is the influence of these changes on the hydrology 

of the river basin, which in turn influences water availability and the ecology. 

Figure 5-1: Rainfall distribution in South Africa 
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The proposed agricultural landuse approach developed in the previous chapter has proved effective in 

minimizing changes in hydrology due to landuse changes. This method has also been utilized in the previous 

chapter to map out potential areas for future agricultural use, as shown in Figure 4-7. The main objective of 

proposing a new landuse planning approach being the minimization of hydrological changes. Therefore, it is 

also necessary to assess the future hydrological scenarios under this landuse expansion scenario (Figure 4-7) 

to aide a wholesome integrated water-landuse planning. 

According to Bates et al. (2008) and IPCC (2014), all scenarios of climate projections show significant changes 

in hydrological regimes and induce various water stresses in most parts of the world. 

The objective of this chapter is to apply the findings of the research to the preparation of future LULC maps 

with proposed areas for agriculture and simulating the resultant hydrological scenarios under the influence of 

climate change under various warming scenarios. The study period for the future hydrological scenarios is 

restricted to 21 years (until from 2015 to 2035). 

5.2 Climate change and global warming scenarios 

Climate change is a phenomenon that is brought about by global warming, which has accelerated since 

industrialization in the mid-20th Century (Department for Business Energy & Industrial Strategy, 2014; EPA, 

2016;  IPCC, 2014). Various stresses have been induced by climate change, and the desire to mitigate further 

changes and managed the risk triggered the scientific community to develop various future warming scenarios 

as a guide for developing target measures. These scenarios are developed by considering various factors like 

socio-economic development and their corresponding contribution of greenhouse gasses (GHG) and aerosols 

and chemically active gases concentration in the atmosphere (Moss et al., 2008; Wayne, 2013; IPCC, 2014). 

The increase of atmospheric gasses, including GHC concentration, alters the global energy balance by trapping 

more incoming energy. The measure of the influence the GHG and other gases have on the global energy 

balance is referred to as radiative forcing expressed in Watts per square meter (W/m2), while the amount of 

carbon emission is expressed as  Pentagram of Carbon per year (PgC yr-1)  (IPCC), 2008). 

The warming scenarios developed by the Intergovernmental Panel for Climate Change (IPCC) are referred to 

as Representative Concentration Pathways (RCPs) and are represented by various trajectories of radiative 

forcing.  Four different RCP scenarios of 2.6, 4.5, and 8.5 PgC yr-1 are developed as illustrated in Figure 5-2 and 

described as follows. 

RCP 2.6: Assumes a near-term and consistent decrease of CO2 emissions; the radiative forcing pathway leads 

to 2.6 W/m2 before 2100. Under this scenario, the change in global temperature is projected to be between 

0.4⁰ to 1.6⁰ C 

RCP 4.5 & RCP 6: This is intermediate scenarios where radiative forcings assume a gradual increase in 

emissions until mid to late century, followed by a gradual decrease until they are stabilized at approximately 

4.5 W/m2 and 6.0 W/m2 after 2100. Changes in average global temperature for RCP 4.5 is projected to be 

between 0.9⁰ to 2⁰ C, while that of RCP 6 is projected to range between 0.8⁰ to 1.8⁰ C 

RCP 8.5: This is the highest pathway for which radiative forcing reaches greater than 8.5 W/m2 by 2099 and 

continues to rise for some amount of time 

In this research, hydrological assessments are based on only three radiative forcing scenarios; RCP 2.6, RCP 

4.5, and RCP 8.5. 
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Figure 5-2:Illustration of RCPs (Intergovernmental Panel for Climate Change (IPCC), 2013) 

5.2.1 Data acquisition and pre-processing 

General Circulation Models (GCMs) are important tools that are used to investigate the past and future 

climatic patterns. The CIMP5 has forty GCMs that have been developed from various research groups around 

the world (Taylor, Stouffer, and Meehl, 2011). According to Kamworapan and Surussavadee (2019), GCMs 

perform differently in different regions. Therefore, in this research, data from four GCMs are evaluated to 

identify GCM that simulates the local climatic conditions well before applications in hydrological modelling 

and assessments. Projected climate data has been provided Water, Weather Energy, and Ecosystem (WWEE) 

supported by Coupled Model Intercomparison Project 5 (CMIP5) (Abbaspour et al., 2019). The GCMs are as 

described in Table 5-1. 

Table 5-1: Sources and resolutions of databases provided by WWEE 

 

All four GCMs have historical (1970-2005) and future data (2005-2099). Because of continuously dynamic 

environmental conditions highlighted in previous chapters, analysis of future climatic and hydrological 

conditions are only limited to the year 2035. Historical data was also obtained in addition to projected data to 

support the correction of bias errors. The type of data acquired includes temperature and precipitation in daily 

Data Type Period 

extracted 

Spatial 

Resolution 

Temporal 

Resolution Scenarios Source 

GFDL-ESM2M 1979–2035 0.5° Daily 2.6, 4.5 & 8.5 
NOAA/Geophysical Fluid 

Dynamics Laboratory 

HadGEM2-ES 1979–2035 0.5° Daily 2.6, 4.5 & 8.5 Met Office Hadley Center 

IPSL-CM5A-L 
1979–2035 0.5° Daily 2.6, 4.5 & 8.5 

L’Institut Pierre-Simon 

Laplace 

MIROC 
1979–2035 0.5° Daily 2.6, 4.5 & 8.5 

AORI, NIES and 

JAMSTEC 
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time steps with a grid resolution of 0.5⁰x 0.5⁰. According to  Ehret et al. (2012), GCM data is too coarse for 

realistic representation, especially in hydrological applications; therefore, correction of GCM data before use 

in hydrological analysis is necessary. 

Climate Change Toolkit (CCT), which is also provided by WWEE, is used to check and correct the bias errors in 

the data and interpolate the data to a higher resolution of 0.25⁰x 0.25⁰ (Vaghefi, Abbaspour, and Kamali, 

2017). Bias correction utilizes a transformation algorithm to adjust GCM data. The algorithm identifies biases 

between observed and simulated historical climate data, which parameterize the algorithm for correcting 

historical data. The parameterized algorithm is also applied to the correction of future climate data (Rathjens 

et al., 2016). CCT Model presents two bias correction methods; the Ratio Method, which employs 

multiplicative factors for the correction of precipitation, and Additive Method for the correction of 

temperature (Abbaspour et al., 2019). 

The baseline period for bias correction has been selected based on time coverage of historical data (from 

1979-2005). 

5.2.2 Results: Bias correction of rainfall and temperature 

Figure 5-3 shows the comparison of monthly distribution of raw historical rainfall from four GCM with 

observed rainfall and bias-corrected GCM rainfall. Raw rainfall data from GFDL-ESM2M has a minimal variation 

between in winter (May-September) when it is drier. The pattern changes in October until the end of January, 

where GFDL-ESM2M rainfall is much higher than observed rainfall. Thereafter slight variations in rainfall are 

observed in March and April. After corrections, GFDL-ESM2M rainfall data exhibits almost similar seasonal 

patterns with observed data but with only very little variations during the peak season. 

Raw HadGEM2-ES exhibit closer patterns with observed rainfall between May and September. The peak of the 

raw data comes in November with a very quick recession soon after. The CCT algorithm well corrected the 

smaller variations in the rising and receding limbs of the rainfall curves. However, the algorithm introduced 

some variations in the peak that did not match the observed data. 

Raw IPSL-CM5A-L data has much closer patterns with observed rainfall between February and September. The 

seasonal pattern deviates from observed data from October to January, where the raw GCM data is much 

higher than the observed data. The timing of the highest peak coincides with that of the observed data. After 

corrections, the high peaks in the data are much reduced, with very little variations still observed at the peaks. 

Raw MIROC data starts to deviate from observed data very early in the season (July), where the GCM data in 

much higher. The deviation is highest at the peak. After corrections, the deviations in the rising limb are 

corrected, the higher peak is reduced and becomes slightly lower than that of observed in January. 

Based on the results presented herein, it can be seen that the bias correction algorithm employed generally 

improved rainfall distribution in all the GCMs apart from HadGEM2-ES, where the peak was more distorted. 
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Figure 5-3: comparison of monthly distribution of raw historical rainfall from four GCM with observed rainfall and bias-
corrected 

Figure 5-4 shows the monthly distribution of raw historical average daily temperature from four GCM in 

comparison with observed and bias-corrected GCM temperature. Raw temperature data from all the four 

GCMs is generally higher than that of observed data most of the time. Bias correction algorithm improves the 

temperature data in all the four GCMs with best curve improvement observed under GFDL-ESM2M and IPSL-

CM5A-L GCMs 
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Figure 5-4: comparison of monthly distribution of raw historical average daily rainfall from four GCM with observed and 
bias-corrected temperatures (average daily) 

5.2.3 GCM selection 

Evaluation of GCMs’ performance before applications in further studies is becoming a widely accepted 

scientific practice (Shi et al., 2018). Statistical tests have been in the past utilized to evaluate the performance 

of GCMs, for example, by Ruan et al. (2018), Shi et al. (2018), Bokke et al. (2017), and Fu et al. (2013). In this 

research, multiple statistical tests are selected as criteria in assessing the performance of the selected GCMs. 

This includes percentage bias (PBIAS), Pearson's correlation coefficient (𝑅), Kling Gupta efficiency (KGE), Index 

of Agreement (IA), Nash-Sutcliffe Efficiency (NSE) , and root mean square error (RMSE). 
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The rainfall and temperature data used in this step are from the four GCMs and have already been bias-

corrected and interpolated to a grid size of 0.25⁰. 

The statistical tests are applied to monthly time series, and each statistical test is assigned an equal weight. 

Therefore, a simple ranking of each test across the four GCMs is conducted. Based on the ranking scores, the 

overall ranks are computed for each GCM. GCM with the highest rank is then selected for further applications. 

The statistical tests are described as follows: 

Pearson's correlation coefficient (R) measures the degree of linear association between modelled and 

observed values and is defined by: 

 
𝑅 = 

∑ (𝑥 − �̅�)((𝑦𝑡 − �̅�)
𝑛
𝑡=1

√∑ ((𝑥𝑡 − �̅�)
𝑛
𝑡=1

2
 √∑ (𝑦𝑡 − �̅�)

𝑛
𝑡=1

2

 
5.1  

Where 𝑥𝑡and 𝑦𝑡   are the modelled (GCM) and observed variable at 𝑡 time step (months), �̅� is the mean of 

observed data, �̅� is the mean of modelled data, and 𝑛 is the total number of observations. The coefficient of 

determination varies within the interval [−1, 1], where values close to 1 indicate a good fit (López et al., 2017). 

Nash-Sutcliffe Efficiency (NSE) describes the relative magnitude of the residual variance as compared to the 

observed and demonstrates how well the plot of observed versus simulated value fits the 1:1 line. The 

following formula represents NSE: 

 𝑁𝑆𝐸 = 1 − 
∑ [𝑥𝑡 − 𝑦𝑡]

2𝑛
𝑡=1

∑ [𝑦𝑡 − �̅�]
2𝑛

𝑡=1

 5.2  

Where 𝑥𝑡and 𝑦𝑡 are the modelled (GCM) and observed variable at 𝑡 time step (months), and 𝑛 is the total 

number of observations. NSE varies from −∞ to 1, with values close to 1 indicate a good fit (López et al., 2017). 

PBIAS is used to estimate the average bias between observed and GCM values. PBIAS (%) is computed as 

follows: 

 𝑃𝐵𝐼𝐴𝑆(%) =
1

𝑛
∑𝑥𝑡 − 𝑦𝑡

𝑛

𝑡=1

 5.3  

Where 𝑥and 𝑦𝑡   are the modelled (GCM) and observed variable at 𝑡 time step (months) and 𝑛 is the total 

number of observations. A positive bias error indicates that the GCM dataset is overestimated, whereas a 

negative error indicates an underestimation of the GCM dataset (von Storch and Zwiers, 1999; Fikre, 2017; 

Ruan et al., 2018). 

The Root Mean Square Error (RMSE) is used to measure the error between model (GCM) predicted values and 

the observed value. These individual differences are also called residuals, and the RMSE aggregates them into 

a single measure of predictive power. It is computed as follows: 

 𝑅𝑀𝑆𝐸 =  
∑ [𝑦𝑡 − 𝑥𝑡]

2𝑛
𝑡=1

n
 5.4  

Where 𝑥𝑡 and 𝑦𝑡are the modelled (GCM) and observed variable at 𝑡 time step (months), and 𝑛 is the total 

number of observations. RMSE varies from 0 to +∞.  Lower values of RMSE are associated with the best results 

(von Storch et al., 1999; Fikre, 2017; Ruan et al., 2018). 

KGE This goodness-of-fit measure was first developed by Gupta et al., (2009 ) to provide a diagnostically 

interesting decomposition of the NSE. It facilitates the analysis of the relative importance of correlation, bias, 
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and variability in the context of hydrological modelling. Kling, Fuchs, and Paulin (2012), proposed a revised 

version of this index, to ensure that the bias and variability ratios are not cross-correlated. KGE is computed 

as follows: 

 𝐾𝐺𝐸 =  1 − √(𝑅 − 1)2 + (
𝛿𝑥
𝛿𝑦
− 1)2 + (

�̅�

�̅�
− 1)2 5.5  

Where 𝑥 and 𝑦  are modelled (GCM) and observed variables, �̅� is the mean of observed data, �̅� is the mean of 

modelled data, and 𝑛 is the total number of observations. KGE ranges from -∞ to 1. Essentially, the closer to 

1, the more accurate the model is (Gupta et al., 2009). 

Index of Agreement (d) is a standardized measure of the degree of model prediction error. 𝑑 is computed 

using the following formula: 

 𝑑 =  1 −
∑ [𝑦𝑡 − 𝑥]

2𝑛
𝑡=1

∑ [|𝑥 − �̅�| + |𝑦𝑡 − �̅�|]
2𝑛

𝑡=1

, 0 ≤ d ≤ 1 5.6  

Where 𝑥 and 𝑦𝑡   are the modelled (GCM) and observed variable at 𝑡 time step (months), �̅� is the mean of 

observed data, �̅� is the mean of modelled data, and 𝑛 is the total number of observations. Index of Agreement 

(d) varies between 0 and 1. A value of 1 indicates a perfect match, and 0 indicates no agreement at all 

(Willmott, 1981). 

5.2.3.1 Results: GCM selection 

Figure 5-5 shows the performance evaluation of the seasonal distribution of bias-corrected rainfall data from 

the four GCMs.  Rainfall is well represented by the four GCMS between March until October when the 

simulated rainfall deviates from observed. HadGEM2-ES and PPSL-CM5A-L exhibited the largest deviations and 

variability at the peaks relative to the observed data. The rainfall patterns from GFDL-ESM2M and MIROC 

exhibited closer seasonal patterns with observed data at the peak, though with some variations. 

Figure 5-5: GCM performance evaluation of the seasonal distribution of bias-corrected rainfall over the study area. 
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Table 5-2 shows the values of each statistical tests conducted for each bias-corrected GCM rainfall and their 

rankings in terms of their performance in simulating rainfall in the study area. The overall performance of bias-

corrected rainfall data indicates that IPSL-CM5A-L and MIROC performed best (rank 1), having each of the test 

interchangeably taking the first and the second ranks.  HadGEM2-ES and GFDL-ESM2M had relatively lower 

performance in each of the tests carried out. 

Table 5-2: Ranking of criteria used for selection of GCM source for rainfall data 

Figure 5-6 shows the performance evaluation of the seasonal distribution of bias-corrected temperature data 

from the four GCMs.  Bias corrected temperature form HadGEM2-Es is higher than the observed temperature 

throughout the season. Bias corrected temperature from GFDL-ESM2M and IPSL-CM5A-L closely represent 

the observed data throughout the season. Bias corrected temperature from MIROC is underestimated. 

Figure 5-6: GCM performance evaluation of the seasonal distribution of bias-corrected temperature over the study area. 

Table 5-3 Summarizes the output of each statistical test carried out on bias-corrected GCM temperature and 

their corresponding ranks in terms of their performance in simulating the temperature of the study area. The 

overall rank of bias-corrected rainfall data indicates that HadGEM2-ES performed best, followed by IPSL-

CM5A-L. MIROC and GFDL-ESM2M had a relatively lower performance with poor performance, especially in 

RMSE, PBIAS, and NSE. 
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Statistical Test 
GFDL-ESM2M HadGEM2-Es IPSL-CM5A-L MIROC 

Value Rank Value Rank Value Rank Value Rank 

R 0.59 3 0.57 4 0.67 1 0.64 2 

PBIAS(%) 2.83 4 2.50 3 0.39 2 0.30 1 

NSE 0.23 4 0.14 4 0.35 2 0.36 1 

KGE 0.56 3 0.56 3 0.70 1 0.57 2 

Index of Agreement (d) 0.74 3 0.72 4 0.8 1 0.78 2 

RMSE 56.03 3 59.90 4 51.64 2 51.30 1 

Total Points  20  22  9  9 

Overall Rank  3  2  1  1 
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Table 5-3: Ranking of criteria used for selection of GCM source for temperature data 

StatisticalTest 

GFDL-ESM2M HadGEM2-ES IPSL-CM5A-L MIROC 

Value Rank Value Rank Value Rank Value Rank 

R 0.16 3 0.19 2 0.16 3 0.57 1 

PBIAS(%) -2.82 3 -1.01 1 -1.28 2 -9.09 4 

NSE 0.90 3 0.92 1 0.91 2 0.12 4 

KGE 0.55 1 0.55 1 0.55 1 0.54 2 

Index of Agreement (d) 0.71 3 0.72 2 0.74 1 0.71 3 

RMSE 3.88 3 3.66 1 3.78 2 4.33 4 

Total Points  16  8  11  18 

Overall Rank  3  1  2  4 

 

Since the time series used in statistical analysis are at monthly time steps, the results obtained using this 

approach provides a better representation of the whole dataset in comparison to the evaluation of the 

monthly distribution of rainfall and temperature curves. Therefore, bias-corrected data from IPSL-CM5A-L is 

selected for further analysis and subsequent application studies in the next steps. 

5.2.4 Analysis of projected climate data 

Patterns of projected rainfall and temperature under the three warming scenarios that are under 

consideration in this study are analyzed to identify patterns of variability from observed historical datasets.  In 

the first step, curves of long-term seasonal distribution of projected rainfall and temperature are evaluated to 

identify anomalies from each other and observed datasets. Figure 5-7 shows curves of long-term seasonal 

distribution of projected rainfall and temperature vs. observed data; the mean monthly rainfall curves under 

RCP 2.6, 4.5, and 8.5 indicate minimum anomaly from each other and observed rainfall between April and 

September. The three scenarios of projected rainfall highly vary from each other and observed data at the 

peak. 

On the other hand, projected temperatures under each RCP are much higher than the observed temperature 

with RCP 2.8, having the highest temperatures and RCP 2.6 the lowest temperatures. 
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Figure 5-7: comparison of long-term seasonal distribution of projected rainfall (RCP 2.6, 4.5 & 8.5) with observed rainfall 
data 

Figure 5-8 shows box plots of long-term seasonal distribution of projected rainfall under RCPs 2.6, 4.5, and 8.5 

(blue) and observed historical (red). Under RCP 2.6, there is an indication that the beginning of the rainy season 

(September, October, and November) will experience reduced and variable rainfall, whereas the peak season 

(December, January, and February) will experience higher rainfall relative to the observed data. Under RCPs 

4.5 and 8.5, average monthly rainfall is projected to be generally lower than observed data most of the season. 

There is no shift in peak season or dry season under the three future scenarios. 
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Figure 5-8: Box plots of long-term seasonal distribution of projected rainfall under RCP 2.6, 4.5 and 8.5 (2015-2035; in 
blue) and observed historical (1979-2005; in red). (x) represents monthly mean and (-) monthly median rainfall values 

In the second step, the mean monthly rainfall distribution for each year under the three RCPs was compared 

against the long-term mean of observed data, as shown in Figure 5-9. There is a dominant interannual 

variability of rainfall under all three scenarios. The long-term monthly average rainfall marked by the red 

dotted line is 62mm, and it appears above the mean values of monthly rainfall under the three RCPs for most 

of the time in the year.  

The projected long-term monthly average rainfall is 61mm under RCP 2.6, 58mm under RCP 4.5, and 57mm 

under RCP 8.5.  The low average values in projected rainfall may indicate exacerbated drought conditions in 

the future and subsequently increased water scarcity in the study area. 
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Figure 5-9: Box plots of 31 years (2015-2035) mean monthly  rainfall under RCP 2.6, 4.5, and 8.5;(x) represents monthly  
mean and (-)  monthly rainfall values for each year 
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Figure 5-10 shows box plots of long-term seasonal distribution of projected temperature under RCPs 2.6, 4.5, 

and 8.5 (blue) and observed historical (red). The graphs indicate that under all the three RCPs, temperatures 

will be much higher than the observed historical temperature. Figure 5-11indicates that the future average 

daily temperature under the three RCP scenarios will be slightly higher than that of the observed data 

throughout the year. 

  

 

 

 

Figure 5-10: Box plots of long-term seasonal distribution of projected temperature under RCP 2.6, 4.5 and 8.5 (2015-
2035; in grey) and observed historical (1979-2005; in red). (x) represents mean and (-) represents median temperature 
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Figure 5-11: Box plots of 31 years (2015-2035) mean monthly  rainfall under RCP 2.6, 4.5, and 8.5;(x) represents monthly  
mean and (-)  monthly rainfall values for each year 
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5.3 Future LULC scenario 

In view of the future expansion of agriculture with 2014 LULC as the baseline scenario, there is still room for 

additional expansion of approximately 422 𝑘𝑚2areas. The agricultural area under the 2014 LULC scenario (in 

Figure 5-13) and the suitable (recommended) areas for agriculture use are shown in figure 5-12.  

With a focus only on agricultural expansion, the development of the future LULC scenario is achieved by 

mosaicking available 422 𝑘𝑚2 onto the actual 2014 LULC scenario. The Mosaic procedure is conducted in 

ArcGIS using the Mosaic Tool. The Map developed from this process is shown in Figure 5-14. 

If major expansions exceeding 422 km2 are desired, then shrubland would be the next LULC for consideration. 

Shrubland which also exhibits little hydrological anomaly with agriculture after grassland 

Figure 5-12: Map of Agricultural areas under 2014 LULC and the recommended areas for future agricultural use 
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Figure 5-13: The actual 2014 LULC map 
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Figure 5-14:  LULC map showing combined current (2014 LULC) and  recommended  future agricultural development 

5.4 Simulations of hydrological scenarios future scenarios 

Simulation of future hydrological scenarios is conducted using SWAT Model. The model is set up for three 

scenarios are based on projected climatic data of the bias-corrected RCP 2.6, RCP 4.5, and RCP 8.5 obtained in 

the previous step. Model setup for 21 years (from 2015 until 2035) and parameterization are based on 

calibrated parameters obtained in Chapter 3. The general procedure adopted in this step is as outlined in 

Figure 5-15. The operating rules of various reservoirs in the river basin and other water management 

operations for the future projections are based on the water management practices of the year 2015. 

In this step, the hydrological outputs from the actual LULC of 2014 are used as the baseline for comparison of 

the expected future anomalies. 
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Figure 5-15: Flow process for hydrological modelling 

5.4.1 Results: Simulations of hydrological scenarios future scenarios 

Figure 5-16 shows graphs of the monthly distribution of discharge at various stations in the Blyde and 

Steelpoort Rivers. The peak discharge is highest under RCP 2.6 in comparison to baseline scenario and RCPs 

4.5 and 8.5; The upward shift in peak under RCP 2.6 is also reflected in the rainfall pattern shown in Figure 5-

8, where mean monthly rainfall in December, January, and February are slightly higher than the observed 

rainfall used in simulation of the baseline scenario. In comparison to discharge under the baseline scenario, 

discharge under RCPs 4.5 and 8.5 appear to have a slightly lower peak at three stations. 

Discharge at three (B4H003, B4H025, and Blyde Outlet (B60J)) out of the four stations evaluated indicate the 

deviation of discharge from the baseline scenario early in the season; this may be as a result of the new landuse 

scenario and also changes in rainfall and temperature. 

Minimal changes are noted in the low flow months of July, August, and September of the two rivers; however, 

the high peaks appearing in February under RCP 2.6 may be a potential indicator of floods in the future. Station 

B4H015 and Blyde outlet (B60J) are located downstream of large dams, which also play a role in regulating 

flow. Therefore, to avoid the negative impacts of changing flow patterns, the operating rules of reservoirs and 

the effectiveness of water management practices should be evaluated. 
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Figure 5-16: Monthly distributions of observed and bias-corrected projected (RCP 2.6, 4.5 & 8.5) discharge at four 
gauging stations in Blyde and Steelpoort River Basins. 

Figure 5-15 shows a comparison of the spatial distribution of evapotranspiration, surface runoff, rainfall, and 

groundwater recharge under historical scenario and future projections under RCP 2.6, RCP 4.5, and RCP 8.0.  

Future projections indicate a general increase of rainfall across the whole river basins under all the three RCPs 

with the highest increase projected under RCR 2.6 at the higher elevations. Under RCPs 4.5 and 8.5, there are 

sections of the river basin that will experience reduced rainfall, whereas some areas indicate an increase in 

rainfall. Evapotranspiration, on the other hand, is projected by the simulations to increase under the three 

warming scenarios, with the highest increase under RCP 2.6. 

The simulations outputs also indicate that surface runoff is bound to slightly increase under RCP 2.6 and 

significantly reduce under RCP 4.5 and RCP 8.5.   Figure 5-15 also shows that groundwater flow will increase 

under all the three RCPs, with the highest increase noted under RCP 2. 6. 
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Figure 5-17: Spatial distribution of evapotranspiration, surface runoff, rainfall, and groundwater recharge 

5.5 Discussions 

The objective of this chapter is to apply the findings of the research to the preparation of future LULC maps 

with proposed areas for agriculture and simulating the resultant hydrological scenarios under the influence of 

climate change. Projected temperature and rainfall are obtained from four GCMs; GFDL-ESM2M GFDL-

ESM2M, IPSL-CM5A-L, and MIROC GCMs. 

Climate Change Toolkit is then used to correct bias errors and downscale the data to a resolution of 0.125°. 

The correction of bias errors was based on the observed CRU data and GCMs’ data of the overlapping period 
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(1979 to 2005). Rainfall from the four GCMs showed biases from observed rain, mainly in the peak seasons, 

where higher peaks are observed, as shown in Figure 5-4. The temperature generally had slight deviations 

from observed data. The errors or differences identified during this stage were also successfully corrected by 

the CCT tool to an acceptable level of application in hydrological modelling. 

It has been demonstrated in the previous chapter that available land for future agricultural development is 

approximately 422 𝑘𝑚2.  . With a focus on agricultural expansion, the development of future LULC maps is 

achieved by mosaicking the map of proposed future agricultural areas onto the actual 2014 LULC map 

(obtained in Chapter 3) in the ArcGIS environment as illustrated in Figure 5-12. 

To simulate future scenarios of hydrology with climatic projections and projected expansions in agriculture, 

the SWAT model was set up using the bias-corrected climate data and a scenario of future LULC map. The LULC 

map was developed with the actual 2014 scenario as the baseline with a mosaic of proposed future agricultural 

areas (422 𝑘𝑚2).  The simulated future scenarios revealed that under the three warming scenarios, there 

would be an increase in precipitation, an increase in surface runoff in peak season, an increase in groundwater 

recharge, but also with an increase in losses through evapotranspiration. The changes that are detected in the 

hydrology of the two river basins are indicative of surplus water relative to the baseline scenario; this shift is 

bound to influence seasonal availability of water and may render reservoir operation rules and management 

practices ineffective. Water managers should, therefore, revise the management practices in the river basins 

based on the hydrological projections. 

The output of this chapter can be adopted in future planning for water resources; hydrological flows can 

provide information that can be used for reservoir planning and operations, flood and drought management 

planning. The study also provides information on the spatial distribution of various hydrological components, 

which is useful for water balancing. The morphological parameters that explain the hydrological anomaly 

patterns when agricultural land is expanded can be utilized in hydrological assessments under EIA studies in 

projects where agriculture establishment is desired. 

The shortcomings of this approach are that if the future agricultural expansion of 422 𝑘𝑚2 is made as 

proposed, changes in hydrological will be minimized, but there is a looming danger of loss of biodiversity since 

all grassland will be replaced. Hence, stakeholder involvement will still be required to ensure moderation in 

the implementation of the approach. 

Bias correction of GCM data is an acceptable way of improving data accuracy; however, the lack of physical 

means of verification. Therefore, there exists no means of quantifying the uncertainties in the climatic 

projections (Ehret et al., 2012). 
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6 RESEARCH CONCLUSIONS 
Climate change/variability and anthropogenic activities have continued to exert pressure on water resources 

globally. South Africa is one of the countries that are currently experiencing negative climatic impacts with 

predominantly prolonged droughts and occasional extreme rainfall events. The impacts of climate change, 

coupled with anthropogenic activities, are exacerbating the already stressed water resources. The Olifants 

River Basin, which has plenty of discharge in comparison to other river basins in the country, is vulnerable to 

the hazards posed by human activities and climate change. This situation necessitates water resources 

managers to develop an adapted approach to water resources management. 

This research is conducted in the Blyde and Steelpoort Sub-basins of Olifants River Basin, where sustained 

agricultural activities and their subsequent impacts on hydrology are reported. The most impacted 

hydrological component being surface runoff, where there is a record increase in discharge, particularly in the 

peak rainfall season. The drivers of agricultural development and expansion in Blyde and Steelpoort River 

Basins indicate that further growth in agriculture; this is bound to further alter hydrological flows in the river 

basins. Therefore, to meet human demand for agricultural development without significant alteration of the 

hydrology, water managers must assess how physical features, landuse, and climatic conditions interact to 

influence hydrological partitioning. The findings of these studies can be used to inform planning activities in 

water resources management. 

Rainfall and temperature data were acquired from CRU 4.0 TS, which is in gridded format and monthly time 

steps. A code was developed in R programming language to extract the data by point location from NetCDF 

format into ASCII file format (in Appendix IV); this code/approach can be used by other researchers in the 

extraction and preparation of climate time series data from NetCDF (Network Common Data Form) files. The 

data in ASCII format was decoupled from monthly to daily time steps using Daily Weather Converter 

(MODAWEC). The MODAWEC algorithm produced acceptable output that was successfully used in 

hydrological simulations; this indicated that the CRU 4.0 TS data could effectively be used in data-scarce 

situations to fill gaps or to represent the complete time series required 

The evaluation conducted in Chapter 3 indicates that the river discharge experienced abrupt and gradual 

changes. Abrupt changes were attributed to the high frequency of extreme rainfall events that persisted for 

seven years from 2006 to 2012.  Sources of gradual changes in discharge were not detected in climate patterns, 

but rather in landuse activities, which are also presented in Chapter 3. A gradual increase in temperature is 

detected, but this had no detectable influence on the shifts in hydrological patterns 

Quantification of LULC changes in the river basins highlighted revealed that dominant changes were human-

driven where forest, shrubland, grassland were mainly transformed into agriculture land over the years with 

a very small increase in urban area/settlement; this demonstrated the necessity for active participation of 

farmers in water resources and environmental planning activity. 
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SWAT Model was in simulating the hydrology of the study area and detecting shifts resulting from these 

changes; the capability of SWAT to uniquely capture growth parameters of each vegetation class, water use, 

and reservoir operations make it an essential tool in hydrological modelling, with LULC change as a factor 

under evaluation. The model has produced acceptable results based on measured river discharge at eight 

different locations in the study area. The parameter ranges obtained during this research can feed into the 

SWAT model that is currently under setup for the whole of the Olifants River Basin. Simulation output from 

SWAT Model revealed a reduction in evapotranspiration, especially in areas where forests were replaced with 

agriculture and a general increase in surface runoff, which is attributed to a reduction in surface cover. 

The research explores the interactions of morphology, hydrology, and landuse in order to develop an approach 

for identification of areas that are “hydrologically suitable” for agriculture; this was achieved by identifying 

which landuse classes can be replaced without significant impacts on hydrology, and under which 

morphological conditions would minimal changes be met. A model-based comparative analysis of the 

hydrological reaction of the various LULC classes is conducted in order to obtain LULC class with minimum 

anomalies in hydrological components to agricultural land. A fraction of hydrological anomalies between 

grassland and agricultural LULC scenarios is used as the targeted hydrologic change in the event of agricultural 

development. This threshold is applied to statistical relationships established between morphological 

parameters and hydrological anomalies between grassland and agricultural land in order to find threshold 

values for Morphological parameters under which agricultural development with minimal hydrological 

impacts can be undertaken. This procedure can be followed in agricultural LULC planning in other river basins. 

The thresholds of morphological parameters and the relationship between grassland and agricultural land can 

be adopted in first-hand assessment of large areas for “hydrological suitability” under agricultural use. 

Analysis of historical climatic variables revealed an increase in temperature, which had no impacts on 

evapotranspiration rates, and increased river discharge, which resulted from the high frequency of extreme 

rainfall events. The simulated future scenarios revealed that under the three warming scenarios, there would 

be an increase in precipitation, an increase in surface runoff in peak season, an increase in groundwater 

recharge, but also with an increase in losses through evapotranspiration. The changes that are detected in the 

hydrology of the two river basins are indicative of surplus water relative to the baseline scenario; this shift is 

bound to influence seasonal availability of water and may render reservoir operation rules and management 

practices ineffective. Planners can use this information for hydraulic investigations and planning, reservoir 

operation planning, and future flood management planning 

This study proposes a scientific approach for landuse planning in the Blyde and Steelpoort River Basins to 

mitigate changes in hydrology. The research has also revealed the shortcomings of the approach where there 

would be a loss of vegetation diversity. Therefore, further studies are recommended to investigate the 

environmental impacts of the transformation of the whole grassland to agriculture; this would provide a 

complete overview of the hydrological state and impacts of the new planning procedure on the ecosystem. 

Various outputs of this research are subject to uncertainties resulting from data, model structure, and 

methodology. Coarse-resolution data, especially the DEM and soil distribution map, do not represent the 

spatial distribution of parameters. The LULC maps developed in Chapter 3 have an acceptable level of 

accuracy; however, the errors they possess can be transferred to hydrological simulations, causing further 

uncertainties. These uncertainties that are transferred to hydrological simulations are estimated using the 

SUFI-2 Algorithm during model calibration. Eleven stations were used in model calibration; the SUFI-s 

Algorithm indicated that nine out of the eleven stations had reliable outputs.
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8 APPENDICES 

APPENDIX I.  is related to Chapter 2 of this thesis. It contains graphical representation of various seasonal 

trends of temperature, rainfall, and discharge are in Blyde and Steelpoort River Basins 

APPENDIX II is related to Chapter 3 of this thesis and it contains calibrated parameter values for the sub-basins 

within the Blyde and Steelpoort River Basins. 

APPENDIX III is related to Chaper 4 of this thesis and it shows scatterplots for selected morphological 

parameters and various hydrological indices 

APPENDIX IV is related to Chapter 2 andChapter 3 of this thesis. It shows the R-code used to extract data from 

NetCDF files to time-series in csv format: data extraction is based on point location coordinates. 
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Calibrated parameters for sub-basins 1 - 12 

Parameters 

Sub-basin ID 

BSN_1 BSN_2 BSN_3 BSN_4 BSN_5 BSN_6 BSN_7 BSN_8 BSN_9 BSN_10 BSN_11 BSN_12 

CN2 83.02 73.26 56.30 68.53 53.24 79.97 53.53 57.25 78.83 58.17 50.00 59.72 

SOL_AWC 0.30 0.32 0.29 0.13 0.28 0.11 0.29 0.15 0.28 0.15 0.20 0.34 

SOL_Z 711.2 174.3 174.3 300.0 610.3 576.0 174.3 324.8 646.4 324.8 535.3 170.3 

ALPHA_BF 1.00 0.29 0.29 0.29 0.11 0.77 0.29 0.76 0.06 0.76 0.28 0.60 

GWQMN 764.2 2683 2683 2683 4125 2530 2683 801 550 801 3121 3912 

ESCO 0.31 0.62 0.62 0.62 0.15 0.47 0.62 0.01 0.14 0.01 0.11 0.68 

EPCO 0.32 0.28 0.30 0.31 0.27 0.32 0.23 0.26 0.26 0.28 0.30 0.32 

SOL_K 11.50 20.27 30.55 9.71 40.08 6.48 26.71 16.64 13.85 18.01 13.04 34.77 

CH_N2 0.10 0.13 0.13 0.13 0.05 0.22 0.13 0.06 0.29 0.06 0.29 0.20 

OV_N 0.08 0.93 0.86 0.53 0.36 0.44 0.76 0.50 0.41 0.50 0.16 0.60 

GWHT 3.89 6.58 6.58 6.58 14.29 9.45 6.58 19.38 13.18 19.38 16.61 7.31 

HRU_SLP 0.15 0.15 0.13 0.16 0.14 0.23 0.12 0.15 0.13 0.15 0.11 0.13 

GW_SPYLD 0.02 0.39 0.39 0.39 0.29 0.12 0.39 0.19 0.11 0.19 0.01 0.32 

SURLAG 2.65 2.59 2.59 2.59 0.65 1.05 2.59 0.86 2.03 0.86 3.49 2.49 

GW_DELAY 89.71 385.3 385.3 385.3 32.50 329.00 385.33 67.52 301.1 67.52 20.57 161.25 

REVAPMN 284.2 550.0 550.0 550.0 81.7 614.00 550.0 430.4 47.14 430.44 935.71 27.50 

GW_REVAP 0.05 0.12 0.12 0.12 0.08 0.03 0.12 0.03 0.06 0.03 0.11 0.13 

CH_K2 7.14 122.0 122.0 122.0 180.33 120.40 122.00 0.13 36.29 0.13 17.43 363.75 

SLSUBBSN 67.89 58.82 60.14 52.32 55.06 47.81 65.08 44.56 54.53 43.92 62.28 60.85 
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Calibrated parameters for sub-basins 13 - 24 

Parameters 
Sub-basin ID 

BSN_13 BSN_14 BSN_15 BSN_16 BSN_17 BSN_18 BSN_19 BSN_20 BSN_21 BSN_22 BSN_23 

CN2 50.08 69.37 83.33 39.00 68.14 59.82 51.23 50.19 70.71 51.10 53.65 

SOL_AWC 0.10 0.15 0.13 0.30 0.28 0.16 0.20 0.20 0.17 0.11 0.28 

SOL_Z 459.82 156.08 653.82 607.65 190.50 324.79 535.33 535.33 156.08 459.82 610.35 

ALPHA_BF 0.09 0.26 0.36 0.40 0.13 0.76 0.28 0.28 0.26 0.09 0.11 

GWQMN 1862.5 162.50 450.00 4025.0 3492.8 801.6 3121.4 3121.4 162.50 1862.5 4125.0 

ESCO 0.37 0.55 0.67 0.16 0.31 0.01 0.11 0.11 0.55 0.37 0.15 

EPCO 0.29 0.29 0.26 0.29 0.29 0.27 0.30 0.27 0.27 0.30 0.32 

SOL_K 18.24 11.63 18.62 51.84 5.19 3.51 12.87 17.49 12.74 17.22 29.67 

CH_N2 0.16 0.27 0.20 0.08 0.28 0.06 0.29 0.29 0.27 0.16 0.05 

OV_N 0.85 0.44 0.69 0.40 0.65 0.48 0.15 0.14 0.39 0.85 0.42 

GWHT 17.94 7.81 24.25 1.63 24.46 19.38 16.61 16.61 7.81 17.94 14.29 

HRU_SLP 0.17 0.19 0.16 0.17 0.13 0.16 0.13 0.14 0.19 0.16 0.14 

GW_SPYLD 0.10 0.30 0.26 0.23 0.30 0.19 0.01 0.01 0.30 0.10 0.29 

SURLAG 1.17 2.45 2.89 3.07 2.59 0.86 3.49 3.49 2.45 1.17 0.65 

GW_DELAY 213.75 101.25 40.80 302.50 358.29 67.52 20.57 20.57 101.25 213.75 32.50 

REVAPMN 372.50 552.50 766.00 65.00 958.57 430.44 935.71 935.71 552.50 372.50 81.67 

GW_REVAP 0.06 0.11 0.14 0.13 0.07 0.03 0.11 0.11 0.11 0.06 0.08 

CH_K2 46.50 32.50 100.40 362.50 116.86 0.13 17.43 17.43 32.50 46.50 180.33 

SLSUBBSN 47.26 65.17 60.66 59.85 40.00 44.75 59.91 58.36 64.66 47.90 55.88 
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Calibrated parameters for sub-basins 25 - 32 

Parameters Sub-basin ID 

BSN_24 BSN_25 BSN_26 BSN_27 BSN_28 BSN_29 BSN_30 BSN_31 BSN_32 

CN2 64.61 50.85 46.97 89.86 62.39 49.76 52.17 67.54 51.13 

SOL_AWC 0.24 0.10 0.08 0.11 0.19 0.20 0.30 0.13 0.28 

SOL_Z 387.21 459.82 912.56 459.82 861.64 535.33 646.41 300.00 646.41 

ALPHA_BF 0.00 0.09 0.18 0.09 0.52 0.28 0.06 0.06 0.06 

GWQMN 117.14 1862.50 735.71 1862.50 4550.00 3121.43 550.00 550.00 550.00 

ESCO 0.68 0.37 0.34 0.37 0.51 0.11 0.14 0.14 0.14 

EPCO 0.27 0.29 0.26 0.27 0.29 0.28 0.29 0.29 0.27 

SOL_K 22.25 17.08 14.10 12.27 12.67 17.49 9.57 15.02 13.85 

CH_N2 0.01 0.16 0.19 0.16 0.13 0.29 0.29 0.29 0.29 

OV_N 0.55 0.84 0.67 0.81 0.43 0.15 0.43 0.50 0.38 

GWHT 10.46 17.94 16.32 17.94 16.89 16.61 13.18 13.18 13.18 

HRU_SLP 0.18 0.17 0.13 0.20 0.15 0.12 0.11 0.17 0.12 

GW_SPYLD 0.21 0.10 0.32 0.10 0.32 0.01 0.11 0.11 0.11 

SURLAG 2.31 1.17 1.41 1.17 2.09 3.49 2.03 2.03 2.03 

GW_DELAY 219.29 213.75 265.71 213.75 48.57 20.57 301.14 301.14 301.14 

REVAPMN 615.71 372.50 710.00 372.50 998.57 935.71 47.14 47.14 47.14 

GW_REVAP 0.15 0.06 0.07 0.06 0.09 0.11 0.06 0.06 0.06 

CH_K2 176.29 46.50 50.00 46.50 196.29 17.43 36.29 36.29 36.29 

SLSUBBSN 63.95 48.26 60.87 46.32 47.45 58.77 60.97 52.55 57.32 
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APPENDIX III 

Correlation and scatter plots of morphological parameters and hydrological components 
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APPPENDIX IV 

The following is a sample R code use to extract temperature data at specific point locations: 
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