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Chapter 1

Introduction

The study of torsion invariants, which this thesis is devoted to, has been a driving force in the advance

of modern mathematics in the last 100 years. To provide the necessary context, we aim to give a

comprehensive, yet by no means exhaustive, summary of important foundational works and key results

in that field. Being a prime motivation behind the development and main results of this thesis, the

summary will have a strong focus on the close connection between torsion invariants and L2-invariants,

as well as the relationship between their respective cellular, topological and analytical versions.

At the beginning of the last century, the primary invariants of topological spaces, such as the fundamental

group, the (co-)homology groups, as well as derived quantities such as the Betti-numbers and the Euler

characteristic, had already been well-known and put to great use. A commonality of all these objects

(and simultaneously a reason for their naming) is that they are homotopy invariants, i.e. they agree on

homotopy equivalent spaces, and thus they can be used to distinguish between non-homotopy equivalent

spaces. As such, they alone are however insufficient in classifying spaces up to more rigid transformations,

such as homeomorphisms, diffeomorphisms or isometries. In fact, little was known at that time on

elaborate methods that could distinguish between homotopy equivalent, yet non-homeomorphic spaces.

1.1 Brief history on classical torsion invariants

The first prominent result in this vein was established by Kurt Reidemeister [80] in 1935. Given a finite

simplicial complex K with K̃ its universal cover and a unitary representation ρ : π1(K)→ U(n), one can

form the twisted cellular cochain complex

C∗(K, ρ) := C∗(K̃)⊗ρ Cn (1.1.1)

σ.γ ⊗ v = σ ⊗ ρ(γ)v.

Together with a choice of homology bases µ ⊆ H∗(K, ρ), one can define a positive real number

T (K, ρ, µ) ∈ R>0

nowadays called Reidermeister-Torsion (shortly R-torsion) in honor of its inventor. Provided that ρ is

additionally acyclic, i.e. the twisted cohomology H∗(K, ρ) vanishes (so no choice of µ is necessary), it
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can be computed as follows: Choosing a representative lift for a given oriented basis of cocells in C∗(K),

we obtain linearly independent elements in C∗(K̃). Together with the canonical basis of Cn, this set of

representatives tensors up to become a complex, finite basis for the twisted complex C∗(K, ρ). Choosing

the unique inner product on C∗(K, ρ) with respect to which this basis is orthonormal, we can further

construct (combinatorial) Laplacians ∆c
p : Cp(K, ρ)→ Cp(K, ρ) for each degree 0 ≤ p ≤ dim(M). Since

ρ was assumed to be acyclic, each ∆c
p is a positive, invertible endomorphism, and we get an equality

log(T (K, ρ)) =
1

2

dim(M)∑
p=0

(−1)pp log(det(∆c
p)). (1.1.2)

Using R-torsion, Reidemeister was able to give a complete combinatorial classification of 3-dimensional

lens spaces. While he defined the torsion only for complexes on lens spaces, Franz [37] generalized

the definition of R-torsion to arbitrary finite simplicial complexes. In the same process, he generalized

Reidemeister’s classification result onto higher-dimensional lens spaces. Both authors implicitly used

the important fact that the R-torsion associated to acyclic representations is a combinatorial invariant:

Two simplicial structures of the same space admitting isomorphic subdivisions have the same acyclic

R-torsion, a fact that was later proven rigorously in a more general fashion by Whitehead in a series

of papers [100], [99], [98], [97]. Namely, he proved that R-torsion is invariant under a special class of

homotopy equivalences, so-called simple homotopy equivalences. In the same body of work, he also gave

the homotopy classification of lens spaces and provided examples of homotopy equivalent lens spaces

with different R-torsions, thus showing that not every homotopy equivalence is simple. All of this he

achieved by introducing a new torsion invariant, called the Whitehead torsion, which provided an effective

new tool in analyzing two homotopy equivalent spaces. Lastly, he also raised the question whether all

homeomorphims are simple homotopy equivalences. Combined with his previous result, this would imply

that R-torsion for acyclic representations is a homeomorphism invariant.

Arguably the decade in which Whitehead torsion was used most beneficially, the 1960’s began with a

satisfying completion of the earlier mentioned classification results by Reidemeister, Franz and Whitehead,

obtained by Brody [17] in 1960. Namely, he proved that the simple homotopy class, the combinatorial class

and the homeomorphism class of lens spaces all agree. Shortly afterwards in 1961, Milnor [67] prominently

applied a relative version of R-torsion to disprove the ”Hauptvermutung”, one of the famous topological

conjectures of its time which stated that two homeomorphic finite-dimensional simplical complexes always

would always have isomorphic subdivisions. He was also the one to define another torsion invariant, called

the Milnor torsion, which would generalize Whitehead torsion even further. Thirdly (and perhaps most

famously), Whitehead torsion played an important part in the proof of the s-cobordism theorem, shown

independently by Mazur [65], Stallings [93], and Barden [5] for the category of piecewise-linear and smooth

manifolds, later extended to the category of topological manifolds by Kirby and Siebenmann [49, Essay II].

It says that for n ≥ 5, given a topological/PL/smooth inclusion Mn ↪→ Nn+1 of a closed n-manifold into

a compact (n+1)-manifold that is a homotopy equivalence, one has N ∼= M×[0, 1] (here, ∼= stands for the

isomorphism in the respective category) if and only if the inclusion is a simple homotopy equivalence. Most

notably, the s-cobordism theorem has as an (almost) immediate consequence the generalized Poincaré

conjecture for dimensions n ≥ 5: Any n-manifold homotopy equivalent to the n-sphere Sn must in fact

be homeomorphic to Sn. To close off the decade, it was shown by Kirby and Siebenmann [50] in 1969 for

simplicial structures on manifolds, later by Chapman [24] in 1975 for arbitrary simplicial complexes, that

all homeomorphisms are simple homotopy equivalences, thereby confirming Whitehead’s old conjecture

that R-torsion for acyclic representations indeed is a homeomorphism invariant.
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Among the most influential mathematical achievements that were brought forth in the 60’s also ranks

the Atiyah-Singer index theorem. Roughly stated, this deep result relates the index of certain elliptic

differential operators defined over a manifold M to various of its topological properties. In the aftermath

of the proof, more and more people became interested in discovering new sophisticated analytic quantities

on manifolds that could possibly shed light on equally sophisticated topological properties.

One of the quantities discovered this way was the analytic torsion, first appearing in a paper by Ray and

Singer [78] in 1971, where they rigorously defined it and proved some of its basic properties (therefore, it

is sometimes called Ray-Singer torsion):

Given a closed Riemannian manifold (M, g), and a unitary representation ρ : π1(M) → U(n), one

obtains the flat, complex vector bundle Eρ ↓ M over M associated to ρ, with Eρ the total space of

the bundle and M the base space (this notation will be used throughout the thesis). Eρ ↓ M comes

equipped with a canonical flat bundle metric hρ, since ρ is unitary. If Ω•(M,Eρ) denotes the de Rham

complex of Eρ-valued differential forms over M , then the pair of metrics (g, hρ), together with the

differential dρ : Ω•(M,Eρ) → Ω•+1(M,Eρ) give rise for each 0 ≤ p ≤ dim(M) to the p-th Hodge-

Laplacian ∆p := (dpρ)
∗dpρ + dp−1

ρ (dp−1
ρ )∗ : Ωp(M,Eρ) → Ωp(M,Eρ). In that situation, it is due to the

classic de Rham theorem that ker(∆p), the space of harmonic p-forms, is a finite-dimensional complex

vector space isomorphic to the twisted singular cohomology Hp(M,ρ). Moreover, ∆p is a non-negative,

elliptic operator with discrete spectrum spec(∆p). One can therefore at least formally define the ζ-

function of ∆p as the series

ζ∆p
(s) :=

∑
0 6=λ∈spec(∆p)

λ−s

for varying s ∈ C. In analogy with the classical Riemannian ζ-function, this expression determines a

convergent series for <(s) >> 0 sufficiently large that extends to a meromorphic function on all of C with

0 being a regular point. The extension is also denoted by ζ∆p
(s). As such, the ζ-regularized determinant

of ∆p can now be defined as

detζ(∆p) := e
−ζ′∆p (0)

and the analytic/Ray-Singer torsion TAn(M,ρ, g) ∈ R>0 as

log(TAn(M,ρ, g)) =
1

2

dim(M)∑
p=0

(−1)pp log(detζ(∆p)).

Of course, the naming ”determinant” is not without reason: It is easy to check that, replacing ∆p by an

invertible n×n-matrix A, one recovers the classical determinant of A in the process previously described.

Inspired by the de Rham theorem and the Atiyah-Singer-index theorem, Ray and Singer believed that

for unitary representations ρ : π1(M) → U(n), the resulting analytic torsion TAn(M,ρ, g) must have

a topological interpretation. Indeed, further substantiating their conjecture, they showed that, if ρ is

unitary, TAn(M,ρ, g) is always independent of the choice of g and for even-dimensional M always equal

to 1. The precise statement of their conjecture is as follows: If K is a smooth simplicial structure on M ,

then the integration over simplices map determines a cochain map I : Ω∗(M,Eρ) → C∗(K, ρ), so that

its restriction to harmonic forms, post-composed with the projection map, induces by Hodge-de Rham’s

theorem for each 0 ≤ p ≤ m an isomorphism Φ : ker(∆p)→ Hp(K, ρ). Choosing a basis µ ⊆ ker(∆∗) of

harmonic forms that is orthonormal with respect to the inner product on Ω∗(M,Eρ) defined by g and

hρ, we obtain by push-forward a basis Φ(µ) ⊆ H∗(K, ρ) for twisted simplicial homology. Then Ray and

Singer conjectured that

TAn(M,ρ, g) = T (K, ρ,Φ(µ)). (1.1.3)
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In particular, provided that ρ is acyclic, it would follow that TAn(M,ρ, g) is a homeomorphism invariant.

The conjecture was proven independently by Müller in 1978 [27], and by Cheeger in 1979 [27], and is

nowadays consequently referred to as the Cheeger-Müller theorem.

Since then, the result has been extended and generalized in multiple different directions – there are

versions for manifolds with singularities as well as for families of representations, all of which are often

referred to as Cheeger-Müller (type) theorems. For the purpose of this thesis, we restrict our attention

on the versions for manifolds with boundary and unimodular representations. The table below collects

all relevant results in this vein.

Cheeger-Müller ρ unitary ρ arbitrary & unimodular

M closed Cheeger, 1979 [27] Bismut/Zhang, 1992 [12]

Müller, 1978 [74] Müller, 1993 [73]

M compact with boundary Vishik, 1987 [96] Brüning/Ma, 2013 [18]

Lück, 1993 [58]

M non-compact Müller/Rochon, 2019 [68]

Observe that in the construction of both the Reidemeister torsion and the Ray-Singer torsion of a pair

(M,ρ), the deck group action of π1(M) on the universal cover M̃ is already a key ingredient. For the

former torsion element, it was used to construct the relevant cellular cochain complex C∗(M,ρ), while

for the latter, it allowed us to construct the flat bundle Eρ ↓ M associated to ρ. In the construction of

an L2-torsion, which is the subject of the next section and generalizes the ordinary torsion invariants we

have introduced, the deck group action will also play an important role, although in a slightly different

manner.

1.2 L2-torsion on finite CW-complexes and compact manifolds

Let K be a finite, d-dimensional connected CW-complex, let p : K̃ → K be the universal cover and let

Γ := deck(p) ∼= π1(K) be the corresponding deck group. The associated cellular cochain complex C∗(K̃)

with integer coefficients then has the structure of a finitely generated, free Z[Γ]-module cochain complex.

A preferred admissible Z[Γ]-basis E ⊆ C∗(K̃, ρ) is given by a choice of lifts of oriented cocells of K, one

for each Γ-orbit of cocells.

Now assume that we are given a complex, finite-dimensional representation ρ : Γ→ GL(V ). This allows

us to form the twisted cochain complex C∗(K̃, ρ) := C∗(K̃)⊗ZV . The diagonal action of Γ on elementary

tensors, given by γ.(ω⊗ v) := (γ.ω)⊗ (ρ(γ) · v) intertwines with the natural C-multiplication on the right

factor, endowing C∗(K̃, ρ) with the structure of a finitely-generated free C[Γ]-module.

Observe that C∗(K̃, ρ) differs from the cochain complex C∗(K, ρ) that was defined in Equation 1.1.1 (in

case that Γ is infinite, C∗(K̃, ρ) is not a finite-dimensional complex vector space, unlike C∗(K, ρ)).

The tensor product of a basis B ⊂ V with an admissible basis of C∗(K̃) produces a C[Γ]-basis E ⊗ B
of C∗(K̃, ρ), so that the Γ-orbit Γ.(E ⊗B) forms a C-basis for C∗(K̃, ρ) (infinite whenever Γ is infinite).

Equipping C∗(K̃, ρ) with the unique inner product with respect to which the C-basis Γ.(E ⊗ B) is

orthonormal and taking the L2-completion, we obtain a cochain complex of Hilbert spaces C∗(2)(K̃, ρ),

which is in fact a finite Hilbert N (Γ)-module cochain complex (cf. Definition 4.1.28). As such, the resulting

boundary operators ∂pρ : Cp(2)(K̃, ρ)→ Cp+1
(2) (K̃, ρ) can further be regarded as bounded morphisms of finite-

dimensional Hilbert N (Γ)-modules, thus admitting a Fuglede-Kadison determinant detΓ(∂pρ) ∈ R≥0 (see

7



Definition 4.1.9). Now assume that

• the representation ρ is unimodular, i.e. one has |det(ρ(γ))| = 1 for each γ ∈ Γ,

• the pair (M,ρ) is combinatorially L2-acyclic (shortly: c-L2-acyclic), which means that ker(∂p+1
ρ ) =

im(∂pρ), and

• the pair (M,ρ) is of combinatorial determinant class (shortly: c-determinant class), which means

that detΓ(∂pρ) > 0 for each 0 ≤ p ≤ d.

In this case, one can define the topological L2-torsion element TTop(2) (K, ρ) ∈ R>0 as

log(TTop(2) (K, ρ)) =

∞∑
p=0

(−1)p+1 log(detΓ(∂pρ)). (1.2.1)

It does not depend on the explicit choices of bases E and B that we have made (Corollary 5.2.10).

Most importantly, however, it is a homeomorphism invariant of the pair (K, ρ): If f : L → K is a

(not necessarily cellular) homeomorphism between finite CW-complexes and ρ : π1(K) → GL(V ) is a

representation as above, then we obtain a pullback representation ρ ◦ f∗ : π1(L)→ GL(V ) (unique up to

conjugation), so that TTop(2) (L, ρ◦f∗) = TTop(2) (K, ρ). In fact, provided that the Whitehead group Wh(Γ) of

Γ vanishes, TTop(2) (K, ρ) is even a homotopy invariant of the pair (K, ρ). Crucially, the latter observation

allows us to define a topological L2-torsion TTop(2) (X, ρ) for any space X that is not necessarily compact,

but modeled on some finite CW-complex and satisfying Wh(π1(X)) = 0. The proofs of these statements

are carried out in Sections 5.1− 5.2.

Any smooth, compact d-dimensional manifold M admits a finite CW-structure. Therefore, given some

CW-structure K on M and a unimodular, L2-acyclic representation ρ : π1(K) ∼= π1(M) → GL(V ) of

determinant class, we can define the topological L2-torsion TTop(2) (M,ρ) = TTop(2) (K, ρ) ∈ R>0. By what we

have said before, this depends only on M and the representation ρ itself, but not on the specific choice

of K. This suggests that there must be a way to compute the quantity TTop(2) (M,ρ) without employing

any CW-structures at all:

Indeed, assume that ρ : π1(M) → GL(V ) is an arbitrary finite-dimensional, complex representation

(not necessarily c-L2-acyclic or unimodular). Then we can always form the Γ-equivariant vector bundle

Ẽρ := M̃ × V ↓ M̃ over the universal cover M̃ of M , on the total space of which Γ acts diagonally via

γ.(v, x) := (ρ(γ)v, γ.x). Note that Ẽρ ↓ M̃ is precisely the pullback under the covering map p : M̃ →M

of the flat, canonical bundle Eρ ↓M over M associated to ρ.

By acting fiberwise, this Γ-action extends in natural fashion to a C[Γ]-action on the associated de Rham

complex of Ẽρ-valued forms Ω∗(M̃, Ẽρ). Picking a Γ-invariant Riemannian metric g on M , as well as

a Γ-invariant Hermitian form h on Ẽρ further gives rise to a natural inner product structure on the

subcomplex Ω∗c(M̃, Ẽρ) ⊆ Ω∗(M̃, Ẽρ) of compactly supported forms. The choice of g and h guarantees

that the complex Ω∗(2)(M̃, Ẽρ) obtained by L2-completion is a Hilbert space with isometric Γ-action, so

that the closures of the exterior differentials dp : Ωp(2)(M̃, Ẽρ)→ Ωp+1
(2) (M̃, Ẽρ) are Γ-equivariant, densely

defined operators. In fact, more is true:

1. Ω∗(2)(M̃, Ẽρ) is a Hilbert N (Γ)-module. In fact, if F is an arbitrary fundamental domain for the

Γ-action of M̃ , then Ω∗(2)(M̃, Ẽρ) is Γ-equivariantly isomorphic to the Hilbert space tensor product

L2(Γ)⊗̂Ω∗(2)(F , Ẽρ|F ).
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2. The Hodge-Laplacian ∆p := (dp)∗dp+dp−1(dp−1)∗ is an elliptic differential operator of order 2 (with

certain boundary conditions if ∂M 6= ∅), as well as a positive, self-adjoint unbounded morphism of

Hilbert N (Γ)-modules.

3. For each t > 0, the heat operator e−t∆p : Ωp(2)(M̃, Ẽρ) → Ωp(2)(M̃, Ẽρ) defined via Borel functional

calculus on ∆p is a positive, bounded morphism of Hilbert N (Γ)-modules. Moreover, for fixed p ∈ N,

the assignment t 7→ trΓ(e−t∆p) determines a smooth, real-valued non-negative function in t.

Here, as everywhere else, trΓ denotes the von Neumann trace. It can be viewed as a generalization of the

usual trace of positive bounded operators onto the realm of positive, bounded Γ-equivariant operators.

We refer to Section 4.1 for a precise definition, as well as a list of its most important features. All this

permits us to define the p-th analytic L2-Betti number b
(2)
p := limt→∞ trΓ(e−t∆p) ∈ R≥0. We say that

the pair (M,ρ) is analytically L2-acyclic (shortly: a-L2-acyclic) if b
(2)
p = 0 for each 0 ≤ p ≤ n.

We wish to define the L2-Torsion of the complex Ω∗(2)(M̃, Ẽρ) using suitable determinants of the Γ-

equivariant Laplacians ∆p. However, since M̃ is in general non-compact, spec(∆p) is in general not dis-

crete, which is why a different approach than in the construction of ordinary analytic torsion is needed.

Remedy comes in form of the von Neumann trace trΓ(e−t∆p). Namely, with the aid of trΓ(e−t∆p), we

will essentially mimic the regularization procedure used in the previous section to define the ζ-regularized

determinant. First, under the assumptions made on g and h, the small-time asymptotics of the function

trΓ(e−t∆p) are sufficiently well understood. This is why there exists ε > 0 small, so that the formal

expression ζp(s) :=
∫ ε

0
ts−1(trΓ(e−t∆p) − b(2)

p )dt determines a holomorphic function for <(s) >> 0 large

that extends to a meromorphic function on all of C with 0 being a regular point.

On the other hand, the large-time asymptotics can potentially be complicated. We say that (M,ρ) is of

analytic determinant class (short: a-determinant class) if the expression trΓ(e−t∆p) − b(2)
p decays suffi-

ciently fast as t→∞, in the sense that
∫∞
ε
t−1(trΓ(e−t∆p)− b(2)

p )dt <∞ for each 0 ≤ p ≤ n. Just as the

L2-Betti numbers, the determinant class property is independent of the particular choices of g and h.

Provided that (M̃, Ẽρ) is of a-determinant class, we can now define the L2-analytic torsion TAn(2) (M,ρ, g, h) ∈
R>0 as

log(TAn(2) (M,ρ, g, h)) :=
1

2

d∑
p=0

(−1)p+1p

(
d

ds
ζp(s)|s=0 +

∫ ∞
ε

t−1 trΓ(e−t∆p − b(2)
p )dt

)
. (1.2.2)

As outlined before, the right-hand side of the equation should be understood as an alternating weighted

sum of (logarithms of) ζ-regularized determinants of the Laplacians. Further, as already indicated in

the notation, TAn(2) (M,ρ, g, h) depends in general on g and h, even if M is compact. However, in case

that M is compact and odd-dimensional, the metric anomaly, i.e. the difference log(TAn(2) (M,ρ, g, h)) −
log(TAn(2) (M,ρ, g′, h′)) equals a sum of integral expressions over only the boundary ∂M . Assume addi-

tionally that χ(M) = χ(∂M) = 0 (which is true whenever M is odd-dimensional with empty or toroidal

boundary, for example) and that the representation ρ and the metrics h, h′ are unimodular (cf. Section

5.3.1). In this case, the anomaly further reduces to an integral expression depending only on dim(ρ) and

the metrics g, vanishing whenever both g and g′ are product near ∂M , as shown by Ma and Zhang [60].

Its relative rigidity under metric transformations raises the suspicion that TAn(2) (M,ρ, g, h) must in fact

be a topological quantity.

Many partial results in that spirit have been obtained in the past. The case when ρ is a unitary represen-

tation and h is the flat canonical metric associated to ρ was famously covered by Burghelea, Friedlander,

Kappeller and MacDonald in [22] and [21]. The case when ρ is unimodular and M is closed was dealt
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with by Zhang [102]. All of these results, however, have in common that they do not relate TAn(2) to

its natural counterpart, TTop(2) . Instead, they employ the L2-Morse-Smale torsion TMS
(2) , a variant of the

topological torsion which we will define in Section 5.3. Although probably known to the authors, they do

not explicitly establish a relation between TMS
(2) and TTop(2) . This, along with generalizing the techniques

of [21] to our setting, is what goes into the proof of two main theorems of this thesis, to be proven in

Chapter 6:

Theorem A (Theorem 6.3.5). Let M be a compact manifold and ρ : π1(M)→ GL(V ) a complex, finite-

dimensional representation, and let K be a CW-structure on M . Then there is an L2-chain homotopy

equivalence of Hilbert N (Γ)-module cochain complexes Ω∗(2)(M̃, Ẽρ) ' C∗(2)(K̃, ρ). In particular

1. (M,ρ) is c-L2-acyclic if and only if (M,ρ) is a-L2-acyclic.

2. (M,ρ) is of c-determinant class if and only if (M,ρ) is of a-determinant class.

Theorem B (Theorem 6.1.8). Let (M, g) be a compact, odd-dimensional, oriented Riemannian manifold

with Wh(π1(M)) = {0}. There exists a form B(g) ∈ Ωn−1(∂M) depending only on the restriction of g to

a neighborhood of ∂M and vanishing whenever g is a product near ∂M , so that the following holds: Let

ρ : π1(M)→ GL(V ) be any complex, finite-dimensional, unimodular representation so that

• ρ is L2-acyclic and of determinant class,

• the pair (∂M, ρ|π1(∂M)) is of determinant class.

Then, for a choice of Γ-invariant, unimodular metric h on Ẽρ ↓M , one has

log

(
TAn(2) (M,ρ, g, h)

TTop(2) (M,ρ)

)
=

1

2
dim(ρ)

∫
∂M

B(g). (1.2.3)

Remark 1.2.1. Via methods different from the ones we will employ, Theorem B has recently also been

proven by Guangxiang Su in a currently unpublished paper.

Recall that under certain circumstances, there is a reasonable topological L2-torsion for non-compact

spaces. On the other hand, in our definition of analytic L2-torsion, as well as all results mentioned so

far, we have restricted our attention exclusively to compact manifolds. In what follows, we will introduce

a realm of spaces, many of them non-compact, in which an analytic L2-torsion is always defined: Locally

symmetric spaces.

1.3 L2-torsion on locally symmetric spaces

Throughout this section, we assume that we are given a linear algebraic group G defined over Q, by

which we mean a subgroup of GL(n,C) for some n ∈ N that is the zero locus of a set of polynomials in

the n2 variables with coefficients in Q. We set G to be the identity component of G(R) = G∩GL(n,R).

Then G is a real Lie group, which we assume from now on to be semi-simple without compact factors.

For K ⊆ G a maximal compact subgroup, the quotient space X := G/K then has the natural structure
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of a non-positively curved globally symmetric space: As a smooth manifold, X is diffeomorphic to Rd

for appropriate d ∈ N and there exists a canonical Riemannian metric g on X of non-positive sectional

curvature, unique up to a positive scalar, turning the transitive action of G on X into an action by isome-

tries. In the sequel, we will often employ the fundamental rank δ(G) of G, defined as the non-negative

integer δ(G) := rankC(G)− rankC(K) ∈ N0.

Let ρ : G→ GL(V ) be a complex, finite-dimensional irreducible representation. Consider theG-equivariant

bundle Eρ := X × V ↓ X, on the total space of which G acts diagonally via γ.(x, v) := (γ.x, ρ(γ)v). Due

to a result by Matsushima and Murakami [64, Lemma 3.1], Eρ can be equipped with a canonical G-

equivariant Hermitian metric hρ, unique up to a positive scalar. For each degree 0 ≤ p ≤ d, the pair

of metrics (g, hρ) induce on the associated Eρ-valued de Rham complex Ω∗(X,Eρ) Hodge-Laplacians

∆p : Ωp(X,Eρ)→ Ωp(X,Eρ). Crucially, for each t > 0, ∆p possesses a smooth heat kernel e−t∆p(x, y) :

X × X → End(V ). Due to G-equivariance of the pair (g, hρ), one has e−t∆p(x, y) = e−t∆p(γ.x, γ.y)

for each γ ∈ G. It follows that there exists a smooth, non-negative, monotonically decreasing function

Hp(ρ, t) in t > 0 which satisfies tr(e−t∆p(x, x)) ≡ Hp(ρ, t). Therefore, we can define for each 0 ≤ p ≤ d

the non-negative real number

bp(ρ) := lim
t→∞

Hp(ρ, t). (1.3.1)

It vanishes precisely when there are no harmonic, L2-integrable p-forms in Ωp(X,Eρ). We say that ρ is

L2-acyclic if and only if bp(ρ) = 0 for each 0 ≤ p ≤ d.

Remark 1.3.1. With the aid of some uniform lattice Γ < G, it is easily verified that there exists a

constant χ = χ(G) ∈ Z, such that for all representations ρ : G→ GL(V ) under consideration, one has

d∑
p=0

(−1)pbp(ρ) = dim(ρ) · χ. (1.3.2)

Furthermore, in case that ρ = 11C is the trivial complex representation, it was shown by Olbrich [76] that

ρ is not L2-acyclic if and only if both δ(G) = 0 and d is even, in which case bp(ρ) > 0 precisely when

p = d/2. The main idea of his proof was to establish a correspondence between L2-harmonic forms in

Ω∗(X,E11C) and discrete series representations of the ambient Lie group G. It is a classic result that

there exist such representations if and only if δ(G) = 0.

Together with Equation 1.3.2, we now conclude that there exists a positive constant c > 0, such that for

any representation ρ : G→ GL(V ), we have

d∑
p=0

(−1)pbp(ρ) =

0 if δ(G) 6= 0 or d odd,

(−1)d/2 · dim(ρ) · c else.
(1.3.3)

Consequently, we can conclude that a representation ρ : G → GL(V ) can be L2-acyclic only if either

δ(G) 6= 0 or d is odd. In fact, the same methods applied in [76] should still be applicable in order to

prove the equivalence of the two conditions for any arbitrary irreducible representation ρ, namely that ρ

is L2-acyclic if and only if either δ(G) 6= 0 or d = odd. To the author’s knowledge, this is not explicitly

written down anywhere in its full generality. However, partial results in that direction, which are also

relevant for the results of this thesis, can be found in the literature (cf. [30]).

As we briefly explain here, analogous to the construction of the analytic L2-torsion as in the previous

paragraph, one can construct from the collection of functionsHp(ρ, t) an L2-torsion element τ(2)(ρ) ∈ R>0.
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For this, one first needs to consider to small-time asymptotics of Hp(ρ, t), which are sufficiently well-

understood. Namely, it was shown by Bergeron and Venkatesh [9, Lemma 3.8] that for t → 0, one

has Hp(ρ, t) ∈ O(t− dim(X)/2). It follows that for s ∈ C with <(s) >> 0, there exists ε > 0 such the

expression ζpρ (s) := Γ(s)−1
∫ ε

0
ts−1(Hp(ρ, t) − bp(ρ))dt determines a holomorphic function, that extends

to a meromorphic function on all of C which is regular at 0.

However, to define an L2-torsion element, one also needs information about the large-time asymptotics

of Hp(ρ, t). Assuming that these are sufficiently well-behaved, so that
∫∞
ε
t−1(Hp(ρ, t) − bp(ρ))dt < ∞

for each 0 ≤ p ≤ d, we can define the L2-torsion element τ(2)(ρ) ∈ R of ρ as

τ(2)(ρ) :=
1

2

dim(X)∑
p=0

(−1)p+1p

(
d

ds
ζρ(s)|s=0 +

∫ ∞
ε

t−1(Hp(ρ, t)− bp(ρ))dt

)
,

and the analytic L2-torsion of a given lattice Γ < G as

TAn(2) (Γ, ρ) := exp
(
Vol(Γ) · τ(2)(ρ)

)
.

Here, Vol(Γ) denotes the (finite) Riemannian volume of a fundamental domain F ⊆ X for the Γ-action

on the symmetric space X. It was proven [9, Proposition 5.2] that τ(2)(ρ) (and therefore also TAn(2) (Γ, ρ)

for each Γ < G) is indeed always well-defined. In fact, using representation theory, the authors were able

to provide a very explicit description of a positive number c(ρ) > 0 depending on ρ, so that

τ(2)(ρ) =

0 if δ(G) 6= 1,

(−1)
d−1

2 c(ρ) if δ(G) = 1.
(1.3.4)

We now sketch how these torsion elements relate to the L2-analytic torsion of the corresponding locally

symmetric quotient spaces. For this, first observe that for each torsion-free lattice Γ < G, the bundle

Eρ ↓ X descends to a flat bundle Γ\Eρ ↓ Γ\X, which is precisely the flat bundle associated to the

restricted representation ρ|Γ. Furthermore, since both g and hρ are G-equivariant, they descend to

metrics gΓ and hΓ
ρ on Γ\X and Γ\Eρ, respectively. It is now easily verified from the definitions that the

flat bundle (Γ\Eρ ↓ Γ\X) is det-L2-acyclic if and only if ρ is det-L2-acyclic, in which case the equality

TAn(2) (Γ\X, ρ|Γ, gΓ, hΓ
ρ ) = TAn(2) (Γ, ρ) (1.3.5)

holds.

Remark 1.3.2. The importance of τ(2)(ρ) becomes apparent in the far-reaching conjecture by Bergeron

and Venkatesh: Namely, given a congruence lattice Γ < G, one always finds a basis B ⊆ V , such that the

free abelian group A := Z.B ⊂ V generated by B is an arithmetic Γ-module, meaning that the Γ-action

on V induced by ρ leaves A invariant. Now let (ΓN )N∈N be a nested sequence of finite-index congruence

subgroups of Γ with trivial intersection. Since A is an arithmetic Γ-module, it follows that for each

n ∈ N, A is a Z[ΓN ]-module. Thus, we can consider for each 0 ≤ p ≤ d the singular homology group

Hp(ΓN\X,A) := Hp(C∗(X) ⊗Z[ΓN ] A) with coefficients in A. Observe that Hp(ΓN\X,A) is a finitely

generated abelian group, and thus splits as a direct sum of its free and its torsion part. The conjecture

by Bergeron and Venkatesh [9, Conjecture 1.3] now predicts a growth estimate of the (finite) torsion part,

with the asymptotic limit being the twisted L2-torsion

lim
N→∞

log |Hp(ΓN\X,A)tors|
[Γ : ΓN ]

=

0 if 2p 6= d− 1,

log(TAn(2) (Γ, ρ)) if 2p = d− 1.
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For a detailed discussion on this conjecture, as well as proofs on partial results, we refer to the original

paper [9]. For an overview on its various possible ramifications, we refer to the survery article [10] instead.

The torsion element τ(2)(ρ) does not depend on the normalization constant of the Hermitian form

hρ, and changes by the factor C−d when scaling the Riemannian metric g by the factor C > 0. In

particular, TAn(2) (Γ, ρ) does not depend on the normalization constants of g and hρ, but only on Γ and the

given representation ρ. Just like in the previous instances, this suggests that there must be a topological

counterpart to TAn(2) (Γ, ρ). Indeed, if G is a connected semi-simple Lie group with finite center and no

compact factors and Γ < G is a torsion-free lattice, the quotient manifold Γ\X, although not necessarily

compact, is always a CW-model for the classifying space BΓ. That is because X ∼= Rd is contractible.

Notably, however, it is not finite CW-model whenever Γ is not uniform. Regardless, it is known, cf.

[4, Theorem 13.1], that Γ\X is always the interior of a compact manifold with boundary, which we

denote by Γ\X. As such, a given CW-structure on Γ\X always serves as a finite CW-model for BΓ.

Identifying Γ with the fundamental group of Γ\X under the homotopy equivalent inclusion Γ\X ↪→ Γ\X,

choosing a finite CW-structure on Γ\X and some basis on the representation space V , we can form the

L2-cochain complex C∗(2)(Y, ρ). In this instance, Y denotes a preferred universal cover of Γ\X, equipped

with the Γ-CW structure induced by the chosen CW-structure on Γ\X. Since Y is a finite Γ-CW complex,

it follows that C∗(2)(Y, ρ) is a finite cochain complex of Hilbert N (Γ)-modules. We say that the pair (Γ, ρ)

is det-L2-acyclic if the combinatorial complex C∗(2)(Y, ρ) is det-L2-acyclic. This property neither depends

on choice of basis on V nor the specific CW-structure on Γ\X. Crucially, semi-simplicity of G implies

that the representation ρ must in fact be unimodular (see for example [73, Lemma 4.3]). As such, if (Γ, ρ)

is det-L2-acyclic, we can define the topological L2-torsion

TTop(2) (Γ, ρ) = TTop(2) (Γ\X, ρ) ∈ R>0 . (1.3.6)

The choice of Γ\X as the finite model of Γ\X might seem arbitrary. However, it was proven by Farrell and

Jones [36, Proposition 0.10] that the Whitehead group Wh(Γ) (cf. Equations 5.3.5,5.3.18) of Γ vanishes.

From this, it follows in fact that TTop(2) (Γ, ρ) is a homotopy invariant, in the sense that we may have

chosen any finite CW -model of BΓ to define the same number TTop(2) (Γ, ρ) in the above fashion (this will

be explained in Definition 5.3.14).

Since we speculate the equality between the two torsion invariants TAn(2) and TTop(2) , let us first of all specify

the realm of Lie groups and representations, in which both torsion invariants could be reasonably defined.

For this, recall that the L2-analytic torsion TAn(2) (Γ, ρ) is always defined, while the L2-topological torsion

TAn(2) (Γ, ρ) is only defined if the pair (Γ, ρ) is det-L2-acyclic.

In view of Remark 1.3.1, it is therefore reasonable to restrict our attention to the case that either δ(G) 6= 0

or d odd. In fact, the next result, to be proven in Section 6.6, is an almost immediate consequence of the

preceding two Theorems A and B:

Corollary C. In the above situation, suppose that ρ is L2-acyclic and that Γ < G is a uniform lattice.

Then the pair (Γ, ρ) is det-L2-acyclic. Moreover, if d is odd, we have an equality of L2-torsion elements

TTop(2) (Γ, ρ) = TAn(2) (Γ, ρ). (1.3.7)

However, if Γ is not uniform, no such relation is known to hold in full generality. All in all, this

motivates the next conjecture:

13



Conjecture D. Let G be a connected, semi-simple Lie group with no compact factors, let K ⊆ G be a

maximal compact subgroup and let d := dim(G/K). Suppose that either δ(G) 6= 0 or that d is odd. Let

ρ : G → GL(V ) be an irreducible, finite-dimensional, complex representation and Γ < G a torsion-free

lattice. Then the following holds:

1. The pair (Γ, ρ) is det-L2-acyclic.

2. One has

TAn(2) (Γ, ρ) = TTop(2) (Γ, ρ). (1.3.8)

Example 1.3.3. Suppose that ρ = 11C : G → C× is the trivial representation. Then the first assertion

is well-known to hold in full generality for all lattices, while the second assertion holds true for uniform

lattices by the first assertion and the celebrated result in [22]. Namely, it was shown by Olbrich [76] that

L2-acyclicity of the pair (Γ, 11C) always holds whenever δ(G) 6= 0 and Γ < G is uniform. By Gaboriau’s

proportionality principle [38, Corollary 0.2], this results extends to arbitrary lattices in G.

Moreover, it is under the correct basis identification that the boundary operators of the corresponding

L2-cochain complex C∗(2)(Γ\X, ρ|Γ) are elements of Mat(k, l,Z[Γ]) for appropriate integers k, l ∈ N. Since

Γ is residually finite as a finitely generated linear group by the classic result of Malcev [62], it follows

from [54, Lemmas 13.6, 13.11] that any matrix in Mat(k, l,Z[Γ]) has Fuglede-Kadison determinant ≥ 1.

In particular, the complex C∗(2)(Γ\X, ρ|Γ), thus also the pair (Γ, ρ), is of determinant class as stated. We

remark that the det ≥ 1-property we have employed here is much stronger than the determinant class con-

jecture from above. In fact, it cannot be used to prove the conjecture for arbitrary representations, since

the corresponding boundary operators are in general elements of Mat(k, l,C[Γ]), and we find elements

inside Mat(k, l,C) ⊆ Mat(k, l,C[Γ]) with arbitrarily small non-zero Fuglede-Kadison determinant.

Example 1.3.4. For ρ = 11C and G = SO(n, 1) with n odd, the conjecture is known to hold for all

lattices Γ < G by the main result of [55], established by Lück and Schick.

The last main theorem of this thesis, proven in Section 6.6 and generalizing the main result of [55],

can now be stated as follows:

Theorem E. Conjecture D holds true in full generality for G = SO0(n, 1) with n ∈ N odd.

Remark 1.3.5. An analogous comparison result for the ordinary (i.e. non-L2) versions of analytic and

topological torsions for hyperbolic lattices was achieved very recently by Müller and Rochon in [68].

We emphasize that the proof of the above theorem strongly relies on the well-understood end structure

of complete, finite-volume hyperbolic manifolds (see Section 2.3). In fact, this is also what allowed Lück

and Schick to achieve their original result in [55], and a good part of this thesis will be devoted to

generalizing their methods. However, aside from the geometry itself, another key ingredient of the proof

is derived from the fact that the fundamental group of each such end is finitely generated free abelian.

This allows us to take advantage of two recent results by Lück on finite-dimensional representations

factoring over Zd [52,53], both of which play an essential part in the proof that (Γ, ρ) is always c-det-L2-

acyclic, even if Γ is not uniform.

To the author’s knowledge, none of these ingredients do admit straightforward generalizations onto non-

hyperbolic lattices.
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Putting the results of this thesis into perspective, the table below collects all versions of the L2-

Cheeger-Müller theorem known to date.

L2-Cheeger-Müller ρ unitary ρ arbitrary & unimodular

M closed Burghelea et al., 1996 [22] Burghelea et al., 2001 [20]

Zhang, 2005 [102]

M compact with boundary Burghelea et al., 1999 [21] Su, 2019 (unpublished)

Theorem B

M non-compact Lück/Schick, 1999 [55] Theorem E
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Chapter 2

Equivariant Hermitian bundles

In this chapter, we will carefully introduce the fundamental complex, with aid of which all analytic

L2-invariants to be studied in this thesis are defined: The twisted De Rham complex associated to an

equivariant Hermitian bundle. This will take up Sections 2.1 − 2.2. In Section 2.3, we introduce for

G = Isom+(Hn), the group of orientation-preserving hyperbolic isometries, and for a given torsion-free

lattice Γ < G an exhaustion {MR}R∈R of Hn of complete manifolds-with-boundary. The isometric action

of Γ on Hn leaves each MR invariant and restricts on each MR to a cocompact action. We will then

apply the theory from the previous two sections to the finite-volume, hyperbolic manifolds Γ\MR and

Γ\Hn and certain types of finite-dimensional, complex representations ρ : Γ→ GL(V ) of their (common)

fundamental group. As a consequence of results on uniform ellipticity of associated Hodge-Laplacians,

shown in Chapter 3, we can define analytic L2-torsions TAn(2) (Γ\MR, ρ), TAn(2) (Γ\Hn) and finally state two

of the theorems, which will be proven in later chapters.

2.1 The twisted De Rham complex

We will commence by introducing some of the fundamental frameworks this thesis builds upon. Detailed

introductions, discussions, and proofs of the well-established theory about to be presented can be found,

for example, in [48].

Let (M, g) be an n-dimensional complete oriented Riemannian manifold, possibly with boundary. Let

E ↓ M be a m-dimensional complex vector bundle over M and denote by Γ(E) the space of smooth

sections into E.

For 0 ≤ k ≤ n, we define the space of E-valued k-forms over M as

Ωk(M,E) := Ωk(M)⊗C∞(M,R) Γ(E) = Γ(ΛkT ∗M ⊗R E),

and the twisted de Rham complex of E-valued differential forms as

Ω•(M,E) :=

n⊕
k=0

Ωk(M,E).

Since ΛkT ∗M ⊗R E has the natural structure of a complex vector space induced by C-multiplication on

the left factor, it follows that Ω•(M,E) has the natural structure of a graded C∞(M,C)-module with the
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obvious grading coming from the individual summands Ωk(M,E), 0 ≤ k ≤ n.

The wedge product on ordinary differential forms gives naturally rise to a C∞(M,C)-bilinear pairing

∧ : Ωk(M,E)× Ωl(M)→ Ωk+l(M,E), 0 ≤ k, l ≤ n.

Moreover, by intertwining the ordinary wedge product with the evaluation pairing with E and its dual

bundle E∗, we also obtain a natural C∞(M,C)-bilinear pairing

∧ : Ωk(M,E)× Ωl(M,E∗)→ Ωk+l(M), 0 ≤ k, l ≤ n.

Observe that, if either the first or the second factor in the pairing is compactly supported, the resulting

form is also compactly supported.

A connection on E is a C-linear map ∇ : Γ(E)→ Γ(T ∗M ⊗R E), satisfying the Leibnitz-rule:

∇(f · ω) = df ⊗ ω + f · ∇ω, ∀f ∈ C∞(M,R) and ∀ω ∈ Γ(E).

Here, df ∈ Ω1(M) denotes the ordinary exterior derivative of the smooth function f . A choice of

connection ∇ on E ↓M gives rise to a C-linear operator d∇ : Ω•(M,E)→ Ω•+1(M,E), that is uniquely

determined by its behavior on elementary tensors: For σ ∈ Ωk(M) and ω ∈ Γ(E), we have

d∇(σ ⊗ ω) := dσ ⊗ ω + (−1)kσ ∧∇ω ∈ Ωk+1(M,E). (2.1.1)

d∇ is called the covariant exterior derivative induced by ∇.

Definition 2.1.1. ∇ is called a flat connection if d2
∇ = 0, i.e. if d∇ takes the form of a differential

on Ω•(M,E). A complex vector bundle E ↓ M , equipped with a fixed flat connection is called a flat

bundle.

Since it will always be made clear from the context which derivative is used, we simplify the notation

and drop the subscript ∇ from the covariant exterior derivative d∇, from now on.

The differential d canonically induces a dual differential d∗ : Ω•(M,E∗) → Ω•+1(M,E∗), which is com-

pletely determined by the following Leibnitz-identity:

d(ω ∧ σ) = dω ∧ σ + (−1)kω ∧ d∗σ, ∀ω ∈ Ωk(M,E) and ∀σ ∈ Ωl(M,E∗). (2.1.2)

In this instance, d(ω ∧σ) denotes the ordinary exterior derivative of the C-valued differential form ω ∧σ.

If f : N →M is a smooth embedding between smooth manifolds, and if f∗(E) ↓ N denotes the (smooth)

pullback bundle of E ↓M over N , then any connection ∇ on E ↓M pulls back to a connection f∗∇ on

the pullback bundle f∗(E) ↓ N . This connection is uniquely determined by the identity

(f∗∇)X (f∗s) = f∗
(
∇df(X)s

)
, ∀s ∈ Γ∞(E). (2.1.3)

Here, f∗(s) ∈ Γ(f∗(E)) denotes the smooth pullback section induced by a section s ∈ Γ(E), X ∈
Γ(TN) = Ω0(N) is a vector field over N and df : TN → TM denotes the differential induced by f . This

determines a connection over f∗(E), since every section in Γ(f∗(E)) is the pullback under f of some

section in Γ(E). Assuming that ∇ is flat, the above equation implies that the pullback connection f∗∇
gives rise to a degree-1 differential df∗∇ on the complex Ω∗(M,f∗(E)), so that f∗ extends to a C-linear

map between cochain complexes

f∗ : (Ω•(M,E), d∇)→ (Ω•(N, f∗(E)), df∗∇),

f∗(d∇ω) = df∗∇f
∗(ω) ∀ω ∈ Ω•(M,E). (2.1.4)
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Now let g be a Riemannian metric on M . Together with the chosen orientation on M , it gives rise to

the classical Hodge ∗-operator ∗g, a bundle isomorphism ∗g : ΛkT ∗M → Λn−kT ∗M for each 0 ≤ k ≤ n

uniquely determined by the identity

v ∧ ∗gw = 〈v, w〉g(x) · dµg(x), v, w ∈ (ΛkT ∗M)x

for each x ∈M . 〈 , 〉g(x) denotes the inner product on the fiber (Λ•T ∗M)x induced by the metric g(x)

on TM , while dµg ∈ Ωn(M) denotes the volume form on M induced by g and the fixed orientation on

M .

By letting it act on the first factor, ∗g extends for each k ∈ N to two smooth bundle isomorphisms

ΛkT ∗M ⊗ E ∼= Λm−kT ∗M ⊗ E and ΛkT ∗M ⊗ E∗ ∼= Λm−kT ∗M ⊗ E∗, and therefore to two C∞(M,C)-

linear isomorphisms ∗g : Ω•(M,E) → Ωm−•(M,E) and ∗g : Ω•(M,E∗) → Ωm−•(M,E∗) (in both cases,

we use by slight abuse of notation the same symbol). Here, as everywhere else in the paper, E∗ denotes

the conjugate dual bundle of E.

Our intermediate goal is to define a formal adjoint of the differential operator d, which can be established,

in the case that E is the trivial complex line bundle over M , purely by means of the previously defined

Hodge ∗-operator. For general flat complex vector bundles, however, we will also need a way to canonically

identify E-valued forms with E∗-valued forms. This is done via means of a fixed Hermitian form h ∈
Γ(GLC(E,E∗)). Recall that a section h ∈ Γ(GLC(E,E∗)) is called an Hermitian form (or Hermitian

metric), if for each x ∈M , the isomorphism of complex vector spaces

hx : Ex
∼=→ E∗x (2.1.5)

is conjugate-symmetric, i.e. hx(v)(w) = hx(w)(v) for any pair v, w ∈ Ex, and non-degererate, i.e.

hx(v)(v) 6= 0 for 0 6= v ∈ Ex. Equipped with h, we call (E, h) ↓ M an Hermitian bundle (whenever

clear from the context, h will be left out from the notation and we simply write E ↓M). In the obvious

manner, the isomorphism described in 2.1.5 induces a degree-0 C∞(M,C)-linear isomorphism between

graded modules

#h : Ω•(M,E)→ Ω•(M,E∗).

Note that, however, since h is in general not parallel with respect to the chosen connection ∇, #h is

in general not a map between cochain complexes, i.e. one generally does not have d∗ ◦ #h = #h ◦ d.

Nevertheless, we obtain a bundle isomorphism that further gives rise to a C∞(M,C)-linear isomorphism

#: = ∗g ◦#h = #h ◦ ∗g : Ω•(M,E)→ Ωm−•(M,E∗),

called the Hermitian Hodge ∗-operator on (E, h) ↓ (M, g). The underlying bundle isomorphism is uniquely

determined by the identity

v ∧#w = 〈v, w〉h(π(v)) · dµg(x), v, w ∈ (ΛkT ∗M ⊗R E)x (2.1.6)

for each x ∈M . Here, as everywhere else in this paper, 〈 , 〉h(x) denotes the inner product on the fiber

(E ⊗ Λ•T ∗M)x induced by g(x) and h(x), where g is implicit and left out from the notation.

Finally, we can define for each 0 ≤ k ≤ n a C-valued pairing on compactly supported forms

〈 , 〉 : Ωkc (M,E)× Ωkc (M,E)→ C, (2.1.7)

〈ν, σ〉 :=

∫
M

ν ∧#σ =

∫
M

〈ν(x), σ(x)〉h(x)dµg(x). (2.1.8)
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Just like for the trivial bundle, one verifies that this pairing is C-linear in the first argument, conjugate-

symmetric and positive definite. Therefore, it defines an inner product on each module of compactly

supported k-forms

Ωkc (M,E) := {ω ∈ Ωk(M,E) : supp(ω) compact}.

Endowing the subcomplex of compactly supported forms Ω•c(M,E) :=
⊕n

k=0 Ωkc (M,E) with the direct

sum inner product structure, we obtain a cochain complex of pre-Hilbert spaces. This further allows us

to define the Hilbert space

Ω•(2)(M,E) =

n⊕
k=0

Ωk(2)(M,E), (2.1.9)

obtained by L2-completion of Ω•c(M,E) with respect to the inner product previously defined. In order

to set it apart from the other summands, we denote the space of L2-sections into E by

L2(E) := Ω0
(2)(M,E).

Also, if there two or more pairs of metrics (g, h) at play, we will denote the corresponding L2-de-Rham

complex by Ω•(2)(M,E, g, h).

As announced, the Hodge ∗-operator induced from g and h is also used to construct a formal adjoint δ

to d, defined as the following degree −1 differential:

δ := (−1)•+1#−1 ◦ d∗ ◦#: Ω•(M,E)→ Ω•−1(M,E).

Since M might have non-empty boundary, we do not have 〈dω, σ〉 = 〈ω, δσ〉 for arbitrary compactly

supported forms that do not vanish at the boundary. To deal with that issue, we start by considering the

boundary inclusion map i : ∂M →M and define for any bundle E ↓M the restriction bundle E|∂M ↓ ∂M
simply to be the pullback i∗E ↓ ∂M . Note that a metric h on E pulls back to a metric on i∗E = E|∂M ,

which we fittingly denote by h|∂M . As in 2.1.4, there is a flat connection on E|∂M ↓ M , whose induced

differential on Ω∗(∂M,E|∂M ) is also denoted by d, so that the inclusion map i naturally gives rise, as in

2.1.4, to a degree-0 C-linear map of cochain complexes i∗ : Ω•(M,E)→ Ω•(∂M,E|∂M ). This means that

d ◦ i∗ = i∗ ◦ d. (2.1.10)

i∗ is called the tangential boundary projection. It is a pseudo-differential operator of order 1/2.

Lastly, observe that the pair of restricted metrics g|∂M and h|∂M gives rise to a Hodge -operator #̂ :

Ω•(∂M,E|∂M )→ Ωn−1−•(∂M,E∗|∂M ) and to an inner product 〈 . , . 〉 on Ω∗(∂M,E|∂M ). Using Stokes’

theorem, one can now easily verify the following:

Lemma 2.1.2. Let 0 ≤ k ≤ n and suppose that ω ∈ Ωk−1(M,E) and σ ∈ Ωk(M,E) are forms, so that

either ω or σ is compactly supported. Then

〈dω, σ〉 = 〈ω, δσ〉+ 〈i∗ω, #̂−1i∗#σ〉.

Proof. Stokes’ theorem says that for any compactly supported n− 1-form ω ∈ Ωn−1
c (M), one has∫

M

dω =

∫
∂M

i∗ω. (2.1.11)

It is also easily verified that the tangential boundary projection respects wedge products, i.e. we have for

any bundle E ↓M and any pair of differential forms ω ∈ Ωk(M,E), σ ∈ Ωl(M,E∗) the equality

i∗(ω ∧ σ) = i∗ω ∧ i∗σ ∈ Ωk+l(∂M). (2.1.12)
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Using 2.1.2, 2.1.11 and 2.1.12, one now computes

〈dω, σ〉 =

∫
M

dω ∧#σ =

∫
M

d(ω ∧#σ) + (−1)k
∫
M

ω ∧ d∗#σ

=

∫
∂M

i∗ω ∧ i∗#σ +

∫
M

ω ∧#

=δ︷ ︸︸ ︷
(−1)k#−1d∗#σ

=

∫
∂M

i∗ω ∧ #̂#̂−1i∗#σ + 〈ω, δσ〉 = 〈i∗ω, #̂−1i∗#σ〉+ 〈ω, δσ〉.

From now on, we fix two smooth submanifolds ∂1M and ∂2M of ∂M (either of which could be

empty), so that ∂M decomposes as the topological disjoint union ∂M = ∂1M ∪̇∂2M . With respect to the

corresponding differentials induced by the flat connection on E ↓ M , this yields a natural isomorphism

of cochain complexes

Ω•(∂M,E|∂M ) ∼= Ω•(∂1M,E|∂1M )⊕ Ω•(∂2M,E|∂2M ).

Here, the right-hand direct sum is orthogonal with respect to the induced pair of metrics g|∂M and h|∂M .

Throughout the rest of the thesis, ∂1M constitutes the part of the boundary on which relative (Dirichlet)

boundary conditions are imposed, and ∂2M the part on which we impose absolute (Neumann) boundary

conditions. For j = 1, 2, denote by ij : ∂iM → M the respective smooth inclusion maps and by

i∗j : Ω•(M,E)→ Ω•(∂iM,E|∂iM ) the tangential boundary projections. We define subspaces of compactly

supported forms satisfying certain boundary conditions

Ω•(M,∂1M,E) := {ω ∈ Ω•c(M,E) : i∗1ω = 0},

Ω•(M,∂2M,E) := {ω ∈ Ω•c(M,E) : i∗2#ω = 0},

Ω•(M,∂M,E) := {ω ∈ Ω•c(M,E) : i∗1ω = i∗1δω = i∗2#ω = i∗2#dω = 0}

and (graded) linear maps

d1 = d•1 := d|Ω•(M,∂1M,E) : Ω•(M,∂1M,E)→ Ω•+1
c (M,E), (2.1.13)

δ1 = δ•1 := δ|Ω•(M,∂2M,E) : Ω•(M,∂2M,E)→ Ω•−1
c (M,E), (2.1.14)

∆ = ∆• := δ1d1 + d1δ1 : Ω•(M,∂M,E)→ Ω•c(M,E). (2.1.15)

Observe that 2.1.10 shows that, in fact, we have both im(d1) ⊆ Ω•(M,∂1M,E) and im(δ1) ⊆ Ω•(M,∂2M,E).

We regard the operators 2.1.13–2.1.15 as unbounded, densely defined operators over the L2-completion

Ω•(2)(M,E).

Lemma 2.1.3. The unbounded, densely defined operators d1, δ1,∆: Ω•(2)(M,E) → Ω•(2)(M,E) are clos-

able. Moreover, the closure of the operator ∆ is symmetric.

Proof. Since the proof is completely analogous for all operators under consideration, we will only show

that d1 is closable. For that purpose, let ωn ∈ Ωkc (M,∂1M,E) be a sequence satisfying both limn→∞ ωn =

0 and limn→∞ d1ωn = σ ∈ Ωk+1
(2) (M,E). To show that d1 is closable, we must verify that σ = 0. For that

purpose, let x ∈ Ωk+1
c (M,E) be a k + 1-form with x ≡ 0 on a neighborhood U ⊃ ∂M . Then, applying

Lemma 2.1.2 and L2-continuity of the inner product, it follows that

〈σ, x〉 = lim
n→∞

〈d1ωn, x〉 = lim
n→∞

〈ωn, δx〉 = 0.
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Since the subset of compactly supported forms vanishing on a neighborhood of the boundary is L2-dense

in Ω•(2)(M,E), it follows that 〈σ, y〉 = 0 for all y ∈ Ω•(2)(M,E), hence σ = 0 as desired.

Using Lemma 2.1.2, it is also easily verified that ∆ is symmetric. Since closures of symmetric operators

are always again symmetric, the second assertion follows.

Remark 2.1.4. The (closure of) the operator ∆ is called the Bochner-Laplace operator on Ω•(M,E).

In case that ∂M 6= ∅, we say that ∆ satisfies relative, respectively absolute boundary conditions if

∂M = ∂1M , respectively if ∂M = ∂2M . Often, we will employ the symbol E of the total space in the

notation and write ∆[E] instead of ∆. This will be helpful in order to distinguish between two or more

Laplacians arising from distinct Hermitian bundles.

From now on, as a consequence of the previous lemma, we can, and will, identify each of the respective

unbounded operators with their minimal closure inside Ω•(2)(M,E).

We want to retrieve meaningful numerical quantities from these operators. First, equipped with (the

minimal closure of) the differential d1, we call Ω•(2)(M,E) the L2-de-Rham cochain complex of E ↓M .

Although not apparent in the notation, note that Ω•(2)(M,E) depends on the choice of Riemannian metric

g on M , the choice of Hermitian form h on E ↓M , as well as on the decomposition ∂M = ∂1M ∪̇∂2M of

the boundary. For notational convenience, these quantities are mostly left out from the notation, but will

be included whenever it becomes necessary. Also, observe that since d2 = 0, we have im(d1) ⊆ ker(d1).

Moreover, since d1 is a closed operator, ker(dk1) ⊆ Ωk(2)(M,E) is a closed subspace for each 0 ≤ k ≤ n, so

that we have

im(dk−1
1 ) ⊆ ker(dk1). (2.1.16)

This permits the next definition:

Definition 2.1.5 (L2-de-Rham cohomology). For 0 ≤ k ≤ n, the k-th L2-de-Rham cohomology is

defined as the quotient Hilbert space

Hk
(2)(M,E) = ker(dk1)/im(dk−1

1 ). (2.1.17)

As for the L2-de-Rham complex, if there are more than one pair of metrics (g, h) at play, we will

denote the corresponding L2-de-Rham cohomology by Hk
(2)(M,E, g, h). In general, i.e. if M is non-

compact, Hk
(2)(M,E) need not be a finite-dimensional complex vector space. However, the main focus

of this thesis will be bundles with the property that Hk
(2)(M,E) has finite von Neumann dimension (see

4.1.3).

To derive this, a key concept we will take advantage of are so-called smoothing operators:

If E ↓M is a Hermitian bundle, then its induced homomorphism bundle is defined as the complex vector

bundle

hom (π∗2(E), π∗1(E)) ↓M ×M,

where πi : M×M →M denotes the projection onto the i-th factor for i = 1, 2. The fiber hom(π∗2(E), π∗1(E))(x,y)

at a point (x, y) ∈ M × M is precisely the space hom(Ey, Ex) of C-linear homomorphisms from Ey

to Ex. Observe that any Hermitian form h on E ↓ M extends naturally to an Hermitian form on

hom(π∗2(E), π∗1(E)) ↓ M ×M . With respect to this form, we can and will regard hom(π∗2(E), π∗1(E)) ↓
M ×M also as an Hermitian bundle.
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Definition 2.1.6 (Smoothing operator). Let E ↓ M be a Hermitian bundle. A bounded operator

A : L2(E) → L2(E) is called smoothing if A (Γc(E)) ⊆ Γ∞(E) ∩ L2(E) and if there exists a smooth,

integrable section

A(x, y) ∈ Γ∞ (hom(π∗2(E), π∗1(E))) ∩ L2 (hom(π∗2(E), π∗1(E)) ,

such that, for each φ ∈ Γc(E) and each x ∈M , we have

Aφ(x) =

∫
M

A(x, y)φ(y)dy.

The section A(x, y) is called the (integral) kernel of the operator A.

In the next chapter, we will introduce the notion of a bundle of bounded geometry. The class of such

bundles is quite large, including for example all Hermitian bundles E ↓ M over compact Riemannian

manifolds M and all lifts Ẽ ↓ M̃ thereof (here, M̃ is an arbitrary covering space of the compact manifold

M). As two main results, we will obtain the following:

Theorem 2.1.7. Let E ↓M be a flat Hermitian bundle that is the lift of a flat Hermitian bundle Ê ↓ M̂
over a compact normal quotient M̂ of M (under the corresponding covering map and with lifted Hermitian

metric). Then, in the notation established as above, we have for each 0 ≤ k ≤ n, that

1. The (closed) unbounded operator ∆k : Ωk(2)(M,E)→ Ωk(2)(M,E) is positive and self-adjoint.

2. Let f ∈ B(R+) be a rapidly-decreasing Borel function, that is, we have for all j ∈ N0, that

sup
λ∈R+

|λj · f(λ)| ≤ Cj

for some constant Cj ≥ 0. Furthermore, let

f(∆k) : Ω•(2)(M,E)→ Ω•(2)(M,E)

be the bounded operator defined via Borel functional calculus of the self-adjoint ∆k. Then f(∆k) is

a smoothing operator.

3. One has d∗1 = δ1 and δ∗1 = d1, i.e. the Hilbert-space adjoint of the exterior derivative d1 is precisely

the (closure of) the formal adjoint δ1, and vice versa. In particular, since both d1 and δ1 are closed

and densely defined, one has

ker(d1)⊥ = im(δ1), (2.1.18)

ker(δ1)⊥ = im(d1). (2.1.19)

4. For each 0 ≤ k ≤ n, we have the orthogonal Hodge-decomposition

Ωk(2)(M,E) = ker(∆k)⊕ im(dk−1
1 )⊕ im(δk1 )

3
= ker(∆k)⊕ im(dk−1

1 )⊕ ker(dk1)⊥. (2.1.20)

5. With respect to the above decomposition, the Laplacian ∆k decomposes as the orthogonal direct sum

(of unbounded operators)

∆k = 0⊕ dk−1
1 δk−1

1 ⊕ δk1dk1 . (2.1.21)
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Moreover, assertions 1 and 2 are also true for the operator (∆k)⊥, which is defined as the restriction of

∆k onto ker(∆k)⊥.

Proof. Assertions 1–4 are proven in Theorem 3.4.1, Proposition 3.4.2 and Proposition 3.4.6. To see that

assertions 1 and 2 hold also for (∆k)⊥, we only need to observe that

(∆k)⊥ = ∆k − χ{0}(∆k), (2.1.22)

and that by assertion 2, χ{0}(∆k) is a bounded, self-adjoint, smoothing operator.

Corollary 2.1.8. Let E ↓ M be a flat bundle satisfying the assumptions of Theorem 2.1.7. Then, for

each 0 ≤ k ≤ n, we have ker(∆k) ⊆ ker(dk1). Moreover, the restriction of the canonical projection

π : ker(dk1)→ Hk
(2)(M,E) onto ker(∆k) is an isometry of Hilbert spaces.

2.2 Flat bundle isometries

Until the end of this section, we will use the results from Theorem 2.1.7. They allow us to effectively

compare the Laplace operators of two flat bundles of bounded geometry.

For that purpose, let (M, g) and (M ′, g′) be two Riemannian manifolds and let (E, h) ↓M and (E′, h′) ↓
M ′ be Hermitian bundles. A bundle map

E E′

M M ′

πE

F

πE′

f

is called a bundle isomorphism, if

1. f : M →M ′ is a diffeomorphism, and

2. for any x ∈M , Fx := F |Ex is a linear isomorphism between the vector spaces Ex and E′f(x).

To simplify and streamline notation, we will from now on identify M ⊆ E with the zero section and

simply write E ↓ M F−→E′ ↓ M for a bundle isomorphism. Each such bundle isomorphism naturally

induces an isomorphism F ∗ : Ωk(M ′, E′)→ Ωk(M,E) for each 0 ≤ k ≤ n, defined on elementary tensors

ω ⊗ s ∈ Ωk(M ′)⊗C∞(M ′,C) Γ(M ′, E′) = Ωk(M ′, E′) via

F ∗(ω ⊗ s)(x) := Df∗(ω)(x)⊗ F−1
x · s(F (x)).

Observe that F ∗ identifies Ωkc (M,∂M ;E) with Ωkc (M ′, ∂M ′;E′).

If f = F |M is additionally a Riemannian isometry between M and M ′, and Fx : (Ex, hx)→ (E′F (x).h
′
F (x))

is a linear isometry for each x ∈M , then E ↓M F−→E′ ↓M ′ is called a bundle isometry. Note that, if

F is a bundle isometry, the induced map F ∗ satisfies for each σ ∈ Ωkc (M ′, ∂M ′;E′)∫
M

||F ∗(σ(x))||hxdµg(x) =

∫
M ′
||σ(x)||h′xdµg′(x).
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Hence, F ∗ extends to an isometry between L2-completions F ∗ : Ωk(2)(M
′, E′)→ Ωk(2)(M,E).

Lastly, suppose that both E ↓M and E′ ↓M ′ come equipped with flat connections, giving rise to degree-

1 differentials dE : Ω•(M,E) → Ω•+1(M,E) and dE′ : Ω•(M ′, E′) → Ω•+1(M ′, E′) as explained above.

A bundle isomorphism E ↓M F−→E′ ↓M ′ is called flat if

dE ◦ F ∗ = F ∗ ◦ dE′ ,

i.e. if F ∗ extends to a morphism of complexes F ∗ : Ω•(M ′, E′)→ Ω•(M,E). Equivalently, F is flat if and

only if

∇E(F ∗(ω)) = F ∗(∇E′ω)

for any ω ∈ Γ(E′), where ∇E ,∇E′ are the connections inducing dE and dE′ (as in 2.1.1).

Let (E, h) ↓M F−→(E′, h′) ↓M be a flat bundle isometry between flat Hermitian bundles. For 0 ≤ k ≤ n,

denote by ∆k[E], respectively ∆k[E′], the p-th Bochner Laplace operator on Ωk(M,∂M ;E), respectively

Ωk(M ′, ∂M ′;E′). Furthermore, let φ : R+ → C be a rapidly decreasing Borel function. Then the

respective operators φ(∆k[E]) and φ(∆k[E′]), defined via Borel functional calculus, have integral kernels

φ(∆k[E′])(x, y) and φ(∆k[E])(x, y) by Theorem 2.1.72

Proposition 2.2.1. In the above situation, we have for any pair x, y ∈M the equality

φ(∆k[E′])(F (x), F (y)) = Fx · φ(∆k[E])(x, y) · F−1
y .

In particular, we have

tr(φ(∆k[E])(x, x)) = tr(φ(∆k[E′])(F (x), F (x))),

|| φ(∆k[E])(x, y) || = || φ(∆k[E′])(F (x), F (y)) ||.

Here, as everywhere else in this paper, tr denotes the complex trace of finite-dimensional endomorphisms

and || . || denotes the norm on the bundles hom(π∗2(E), π∗1(E)) ↓M×M , respectively hom(π∗2(E′), π∗1(E′)) ↓
M ′ ×M ′, induced by the pair of Hermitian forms h and h′.

Proof. We prove the result only for k = 0, the methods employed here can easily be extended to higher

degrees. Denote by dE , respectively dE′ , the differential on Ω•(M,E), respectively Ω•(M ′, E′), in-

duced by the flat connections. Similarly, denote by #E : Ω•(M,E) → Ωm−•(M,E∗), respectively by

#E′ : Ω•(M ′, E′) → Ωm−•(M ′, (E′)∗), the isomorphism as defined in Equation 2.1, induced by the cor-

responding Riemannian metric and Hermitian form.

By assumption, F is a flat isomorphism, therefore F ∗◦dE′ = dE◦F ∗. Secondly, the fact that F is a bundle

isometry implies that #E ◦ F ∗ = F ∗ ◦#E′ . Taken together, we obtain that ∆0[E] ◦ F ∗ = F ∗ ◦∆0[E′],

which, by the spectral theorem, further implies that

φ(∆0[E]) ◦ F ∗ = F ∗ ◦ φ(∆0[E′]).

Now let ω ∈ Ω0(M ′, ∂M ′;E′) be arbitrary. Then, for any x ∈M , we compute∫
M ′

φ(∆0[E])(x, F−1(z)) · F−1
F−1(z) · ω(z)dz =

∫
M

φ(∆0[E])(x, y) · F−1
y · ω(F (y))dy

= (φ(∆0[E]) ◦ F ∗ω)(x) = (F ∗ ◦ φ(∆0[E′])ω)(x) =

∫
M ′

F−1
x · φ(∆0[E′])(F (x), z) · ω(z)dz.
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Fixing y ∈ M and a vector v ∈ E′F (y), we can choose a sequence of smooth functions (ωm)m∈N ⊆
Ω0(M ′, ∂M ′;E′) that converge as distributions to δF (y) · v, where δF (y) is the Dirac delta function,

centered at F (y). Then, using the Transformation formula, the previous equation implies that for any

x ∈M , we have

F−1
x · φ(∆0[E′])(F (x), F (y)) · v = lim

m→∞

∫
M ′

F−1
x · φ(∆0[E′])(F (x), z) · ωm(z)dz

lim
m→∞

∫
M ′

φ(∆0[E])(x, F−1(z)) · F−1
F−1(z) · ωm(z)dz = φ(∆0[E])(x, y) · F−1

y · v.

Since v and y were chosen arbitrarily, the result follows.

Definition 2.2.2. Let (M, g) be a Riemannian manifold, let (E, h) ↓M be a flat Hermitian bundle over

M and let G ⊆ Isom(M, g) be a subgroup. If (E, h) ↓ M is equipped with an G-action by flat bundle

isometries that extends the isometric G-action on M , we say that the bundle (E, h) ↓M is G-equivariant

and the group G is compatible with E ↓M .

In the following, we will fix a subgroup G < Isom(M, g) of isometries on (M, g).

Definition 2.2.3. Let (M, g) be a Riemannian manifold and let (E, h) ↓ M a flat Hermitian bundle.

We say that (E, h) ↓M is of trace class if

sup
x∈M
|| tr(e−t∆k[E](x, x)|| <∞ (2.2.1)

for each t > 0 and each 0 ≤ k ≤ n. If (E, h) ↓ M is additionally G-equivariant for some subgroup

G < Isom(M, g), we can define for any lattice Γ < G < Isom(M, g) the Γ-regularized trace of e−t∆k[E]

as

trΓ(e−t∆k[E]) :=

∫
F

tr(e−t∆k[E](x, x))dµg(x),

where F is an arbitrary fundamental domain for the Γ-action on M and dµg is the volume element on

M induced by g.

Observe that if G contains a uniform lattice Γ, then (E, h) ↓M is automatically of trace class. Namely,

we can choose in that case a compact Γ-fundamental domain F ⊂M and obtain from Proposition 2.2.1,

that supx∈M || tr(e−t∆k[E](x, x))|| = supx∈F || tr(e−t∆k[E](x, x))|| <∞. In particular, any flat Hermitian

bundle (E, h) ↓ M over a compact manifold M is always of trace class. Furthermore, Proposition 2.2.1

also shows that the above definition of trΓ(e−t∆k[E]) makes sense, i.e. does not depend on the choice of

Γ-fundamental domain F on M .

Remark 2.2.4. We will employ the same notation trΓ for the von Neumann trace, to be introduced in

Section 4.1. This will be no cause of confusion, since these two traces coincide in all instances relevant

for this thesis (see Proposition 4.2.2).

2.3 The flat, canonical ρ-bundle over Hn

For n ∈ N odd, we set G := SO0(n, 1) be and let K := SO(n) ⊆ G. Then K is a maximal compact

subgroup of G and we can identify the quotient G/K with the n-dimensional hyperbolic space Hn.
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Conversely, we can identify G with Isom0(Hn), the identity component of the hyperbolic isometry group.

Let Γ ⊆ G be a non-uniform lattice. Here, as everywhere else in this paper, lattices are always assumed

to be torsion-free (this way, the induced quotient map Hn → Γ\Hn is an honest covering projection).

It is well-known (see for example [8, Chapter 4] or [45] embedded within a more general context) that,

associated to Γ, we then find a totally ordered set

{MR ⊆ Hn : R ∈ [0,∞)} (2.3.1)

of complete Γ-invariant submanifolds of Hn (with MR ⊂MR′ if R < R′ ), such that, additionally,

1. Hn =
⋃
R>0MR,

2. Γ acts cocompactly on each MR,

3. the complete submanifold

CR := clos(Hn \MR) (2.3.2)

is also Γ-invariant. Moreover, there exists an integer k ∈ N and, for each 1 ≤ j ≤ k, complete,

connected submanifolds Cj0 of C0 with CjR := CR ∩Cj0 complete, connected submanifolds of CR for

each R ≥ 0, such that the following holds:

(a) Cj0
∼= [0,∞)× Rn−1 under a diffeomorphism that identifies CjR with [R,∞)× Rn−1. Further-

more, under the aforementioned identification, the hyperbolic metric restricted to Cj0 is of the

form

dt2 + e−2tdx2, (2.3.3)

where dt2 is the Euclidean metric on [0,∞) and dx2 the Euclidean metric on Rn−1.

(b) For each R ≥ 0, we have an equality of stabilizer subgroups Γj0 := ΓCj0
= ΓCjR

< Γ. The action

of Γj0 on Cj0
∼= [0,∞)× Rn−1 is the product of the trivial action on the first factor [0,∞) and

a cocompact, free, properly discontinuous action by Euclidean isometries on the second factor

Rn−1 of Cj0 . In particular, Γj0 is isomorphic to Zn−1.

(c) For each R ≥ 0, we have an isometric diffeomorphism of principal Γ-bundles

CR ∼=
k∐
j=1

Γ×Γj0
CjR. (2.3.4)

Remark 2.3.1. In fact, the above decomposition of Hn into Γ-invariant parts still holds true if Γ is

uniform (i.e. Γ acts cocompactly on Hn) for trivial reasons. Namely, in this instance, we can simply

define MR := Hn for all R ≥ 0.

Example 2.3.2. Below left, we have sketched the decomposition of H2 as defined above, along with

a fundamental domain for the lattice Γ < Isom+(H2) (freely) generated by the matrices

(
1 0

2 1

)
and(

1 2

0 1

)
(the action on H2 is by Moebius transformations). In this instance, we have k = 3. The

colors indicate which horoballs are identified in the quotient space Γ\H2, sketched below right, which is

homeomorphic to a three-holed sphere.
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For each R ≥ 0 and each 1 ≤ j ≤ k, we further define the complete submanifolds

TR := CR ∩MR+1, (2.3.5)

T jR := CjR ∩ TR. (2.3.6)

From the above, it follows that each TR is Γ-invariant, and that the stabilizer of T jR inside Γ equals Γj0.

Moreover, we can identify T jR with [R,R + 1] × Rn−1 and the hyperbolic metric correspondingly with

dt2 + e−2tdx2. Finally, it follows that also TR is a principal Γ-bundle, isometrically diffeomorphic to∐k
j=1 Γ×Γj0

T jR.

0

R

R+ 1

MR+1 ∩ C0
0

T 0
R

C0
R

Consider an irreducible representation ρ : GC → GL(V ) of the complexification GC of G on some

complex, finite-dimensional vector space V . Observe that ρ gives rise to a diagonal action of G on the

product Hn×V . Evidently, this determines an action on the vector bundle Hn×V ↓ Hn by flat bundle

isomorphisms, so that the projection map becomes G-equivariant (with respect to the G-actions on the
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base space and the total space). Here, we choose as flat connection ∇ the trivial one on Hn×V , defined

by

∇f :=

n∑
k=0

∂f

∂xi
⊗ dxi ∈ Ω1(Hn, V ) (2.3.7)

for any function f ∈ C∞(V ) = Γ(Hn×V ).

Our next result is concerned with the existence of a special Hermitian metric hρ on that bundle.

Lemma 2.3.3. There exists a distinguished Hermitian metric hρ : Hn → GL(V, V ∗), so that the resulting

Hermitian bundle (Hn×V, hρ) ↓ M is G-equivariant (in the sense of Definition 2.2.2). The Hermitian

bundle (Hn×V, hρ) ↓ Hn is called the flat, canonical ρ-bundle over Hn and is denoted by Eρ ↓ Hn.

Proof. First, consider the trivial vector bundle G × V ↓ G and define both a left G-action and a right

K-action of bundle isomorphisms on it via

γ.(g, v) := (γg, v) γ ∈ G,

(g, v).k := (gk−1, ρ(k)v) k ∈ K.

Clearly, any one action commutes with the other one. It follows that the G-action descends onto an

action of bundle isomorphisms on the homogeneous quotient bundle G×K V ↓ G/K = Hn.

Moreover, since K is compact and the representation ρ : GC → GL(V ) is assumed to be irreducible, there

exists by [64, Lemma 3.1] a canonical K-invariant inner product 〈 , 〉 on V , i.e. we have

〈ρ(k)v, ρ(k)w〉 = 〈v, w〉,

for any k ∈ K and any two v, w ∈ V . Consequently, we obtain a canonical G-equivariant bundle metric

〈 , 〉 on the quotient bundle G ×K V over Hn, i.e. we have for any p ∈ Hn, any γ ∈ G and any pair of

vectors v, w ∈ (G×K V )p, that

〈v, w〉p = 〈γ · v, γ · w〉γ.p.

Next, observe that (the trivial) bundle Hn×V ↓ Hn is an obvious quotient bundle of G×V ↓ G obtained

by dividing out the K-action on the first factor. Moreover, it is easy to see that the bundle automorphism

(g, v) 7→ (g, ρ(g)v) of G × V ↓ G descends to a G-equivariant bundle isomorphism from G ×K V ↓ Hn

to Eρ ↓ Hn. Under this isomorphism, the canonical G-equivariant Hermitian metric on G ×K V → Hn,

as constructed above, pushes forward to a Hermitian bundle metric on Eρ ↓ Hn, which we denote by

hρ : Hn → GL(V, V ∗) and which satisfies for any p ∈ Hn, any pair of vectors v, w ∈ V and any γ ∈ G the

desired equality

〈v, w〉hρ(p) = 〈ρ(γ) · v, ρ(γ) · w〉hρ(γ.p).

In other words, the action of G on Eρ is by flat bundle isometries. This fact will be of central importance

throughout this paper.

For X ⊆ Hn a complete, codimension 0 hyperbolic submanifold, we let EρX ↓ X be the Hermitian re-

striction bundle of Eρ over X, obtained by pulling back the Hermitian bundle Eρ through the inclusion

X ↪→ Hn.

Let Ω•(X,EρX) be the de Rham complex of EρX -valued differential forms over X (with pulled-back differ-

ential and inner product). Also, we set GX := {γ ∈ G : γ.X = X} < G to be the subgroup of G leaving

X invariant. We will show the following:
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Lemma 2.3.4. If X is connected, then the Hermitian bundle EρX ↓ X is GX-equivariant.

This is an immediate consequence of Corollary 2.3.6, which is in turn the immediate consequence of

the next result:

Lemma 2.3.5. Let X,Y ⊆ Hn be connected Riemannian codimension-0 submanifolds and let f : X → Y

be an orientation-preserving isometry. Then there exists a global isometry γ ∈ Isom+(Hn), such that

f = γ|X .

Proof. Let p ∈ X̊. Since X has codimension 0, we find an open subset U 3 p contained in X, which

is diffeomorphic to an open subset V ⊂ TpX = TpHm via the Riemannian exponential map expXp =

expHn
p : TpX → Hn. Let f∗p : TpHm → Tf(p) Hn be the differential of f at p. Since expHn

q : Tq Hm → Hn

is a diffeomorphism for any q ∈ Hn, we can define a global isometry γ : Hn → Hn as

γ := expHn
f(p) ◦f

∗
p ◦ (expHn

p )−1.

One now easily verifies that the subset {q ∈ X : f(q) = γ(q)} ⊆ X is non-empty, open and closed in X.

Since X is assumed to be connected, the result now follows.

Corollary 2.3.6. Let X,Y ⊆ Hn be two connected, codimesion 0 Riemannian submaifolds of Hn and

let f : X → Y be an isometry. Then f extends to a flat bundle isometry F : EρX → EρY . Namely, there

exists a unique element γf ∈ G, such that f = γf |X and that for any pair (x, v) ∈ X × V = EρX , we have

F (x, v) = (γf .x, ρ(γf ) · v).

For any R ≥ 0, we introduce the following notational conventions

EρR− := EρMR
, (2.3.8)

EρR+ := EρCR , (2.3.9)

EρR := EρTR = EρR+ ∩ Eρ(R+1)− . (2.3.10)

Here, MR, CR and TR are the complete submanifolds of Hn as defined in Equations 2.3.1,2.3.2 and 2.3.5.

As before, we let, for each 1 ≤ j ≤ k, Cj0
∼= [0,∞)× Rm−1 be a connected component of C0, so that for

any R ≥ 0, CjR := Cj0 ∩ CR and T jR := TR ∩ Cj0 are connected components of CR, respectively TR.

Lemma 2.3.7. For each 1 ≤ j ≤ k and any R ≥ 0, the collection of hyperbolic isometries

f jR : CjR
∼= [R,∞)× Rm−1 → Cj0

∼= [0,∞)× Rm−1,

(t, x) 7→ (t−R, e−Rx)

extend to a flat bundle isometry

FR : EρR+ ↓ CR → Eρ0+ ↓ C0, (2.3.11)

which induces by restriction a flat bundle isometry

FR|EρR : EρR ↓ TR → Eρ0 ↓ T0. (2.3.12)
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Proof. By Corollary 2.3.6, there exists a unique hyperbolic isometry γjR ∈ G extending f jR and a flat

bundle isometry F jR : Eρ
CjR
↓ CjR → Eρ

Cj0
↓ Cj0 of the form F jR((t, x), v) = (γjR.(t, x), ρ(γjR) · v). Notice that

we have obvious identifications
∐k
j=1 Γ×Γj0

Eρ
Cj0

∼= Eρ0+ and likewise
∐k
j=1 Γ×Γj0

Eρ
CjR

∼= EρR+ (as bundles

over C0, respectively CR). Lastly, observe that the diffeomorphism

FR :

k∐
j=1

Γ× Eρ
CjR
→

k∐
j=1

Γ× Eρ
Cj0
,

∐
j

(γ, (t, x), v) 7→
∐
j

(
γ(γjR)−1, γjR.(t, x), ρ(γjR) · v

)
descends to a flat bundle isometry FR :

∐k
j=1 Γ×Γj0

Eρ
CjR

∼=−→
∐k
j=1 Γ×Γj0

Eρ
Cj0

. The result follows.

Let us now take advantage of these geometric results within the framework developed in the previous

section. For that purpose, we consider the four L2-cochain complexes Ω•(2)(MR, E
ρ
R−), Ω•(2)(CR, E

ρ
R+),Ω•(2)(TR, E

ρ
R)

and Ω(2)(Hn, Eρ) as defined in Section 2.1, with inner product induced by the hyperbolic metric g and the

Hermitian form hρ constructed above, all with absolute boundary conditions (that is, we set ∂M = ∂2M

for M = MR, TR, CR). Let

∆[EρR− ] : Ω•(2)(MR, E
ρ
R−)→ Ω•(2)(MR, E

ρ
R−), (2.3.13)

∆[Eρ] : Ω•(2)(H
n, Eρ)→ Ω•(2)(H

n, Eρ). (2.3.14)

be the respective Bochner-Laplace operators. Due to Theorem 2.1.7, it then follows that both opera-

tors are self-adjoint. In particular, for any rapidly decreasing Borel function f ∈ B(R+), the bounded

operators f(∆k[EρR− ]) and f(∆[Eρ]) are well-defined via Borel functional calculus and have well-defined

smooth integral kernels. Combining Lemma 2.3.3, Lemma 2.3.4 and Proposition 2.2.1, we also obtain

the following:

Lemma 2.3.8. The bundle Eρ ↓ Hn is G-equivariant, so that for all 0 ≤ k ≤ n and any rapidly decreasing

Borel function f ∈ B(R+), we have

tr(f(∆k[Eρ])(x, x)) = tr(f(∆k[Eρ])(γ.x, γ.x)), ∀x ∈ Hn and ∀γ ∈ G. (2.3.15)

Moreover, for all R > 0, the bundle EρR− ↓ MR is Γ-equivariant, so that for all 0 ≤ k ≤ n and all t > 0

we have

tr(f(∆k[EρR− ])(x, x)) = tr(f(∆k[EρR− ])(γ.x, γ.x)), ∀x ∈MR and ∀γ ∈ Γ. (2.3.16)

The main takeaway from Lemma 2.3.8 is that for each rapidly-decreasing Borel function f ∈ B(R+),

the bounded operators f(∆k[EρR− ]) and f(∆k[Eρ]) are both of trace class, as according to Definition

2.2.3. Consequently, if F ⊆ Hn is a fundamental domain for the Γ-action on Hn and, for each R ≥ 0,

FR ⊆MR a fundamental domain for the Γ-action on MR, the Γ-regularized heat traces

trΓ(e−t∆k[Eρ]⊥) =

∫
F

tr(e−t∆k[Eρ]⊥(x, x)) dµg(x), (2.3.17)

trΓ(e−t∆k[Eρ
R−

]⊥) =

∫
FR

tr(e−t∆k[Eρ
R−

]⊥(x, x)) dµg(x) (2.3.18)

are convergent integrals for each t > 0, whose respective values do not depend on the explicit choice of

F , respectively FR.
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Observe that, since G acts transitively on Hn (i.e. Hn is a homogeneous space), the first result of Lemma

2.3.8 in fact implies the existence of a smooth function Hρ(t) : R>0 → R, satisfying

tr(e−t∆k[Eρ]⊥(x, x)) ≡ Hρ(t). (2.3.19)

Using the Plancherel Formula, Hρ(t) can actually be explicitly computed, as done in [72, Section 9]. The

conclusion to be drawn from this observation that is relevant for our purposes is the following:

Corollary 2.3.9. Let Λ,Γ < Isom+(Hn, g) be two hyperbolic lattices. Then, for all t > 0, we have

trΓ(e−t∆k[Eρ]⊥)

trΛ(e−t∆k[Eρ]⊥)
=

Vol(Γ)

Vol(Λ)
. (2.3.20)

Here, as everywhere else, Vol(Γ) denotes the hyperbolic volume of the quotient Γ\Hn.

An important result of this paper, proven in Corollary 4.3.4, can now be stated:

Theorem 2.3.10. For each 0 ≤ k ≤ n and s ∈ C with Re(s) >> 0 the integral expressions

ζk(s) := Γ(s)−1

∫ 1

0

ts−1 trΓ(e−t∆k[Eρ]⊥) dt, (2.3.21)

ζRk (s) := Γ(s)−1

∫ 1

0

ts−1 trΓ(e−t∆k[Eρ
R−

]⊥) dt, R ≥ 0 (2.3.22)

determine holomorphic functions, each admitting meromorphic extensions on all of C which are regular

at 0.

Remark 2.3.11. The meromorphic extensions will also be denoted by ζk(s) and ζRk (s), respectively.

Another key result of this paper, obtained from Proposition 4.2.11 and Corollary 4.2.18, is as follows:

Theorem 2.3.12. For each 0 ≤ k 6= n, we have∫ ∞
1

t−1 trΓ(e−t∆k[Eρ]⊥)dt <∞.

Similarly, for all R > 0, we have ∫ ∞
1

t−1 trΓ(e−t∆k[Eρ
R−

]⊥)dt <∞.

We will follow the strategy developed in [55] for the case of the trivial bundle (i.e. the bundle Eρ ↓ Hn

associated to the trivial representation ρ : G→ C) and show that it extends to the general case that we

are concerned with here. The integrals from Theorem 2.3.10 will be investigated in Section 4.3, while

the integrals from Theorem 2.3.12 will be the main focus of Section 4.2. In each of the previously men-

tioned sections, the key results will be extracted from a thorough inspection of the asymptotic behavior

of trΓ(e−t∆k[Eρ]⊥) and trΓ(e−t∆k[Eρ
R−

]⊥) for small time t → 0 (Section 4.3), respectively for large time

t→∞ (Section 4.2).

The respective methods involved in the inspection will actually be quite distinct, since the small time

asymptotics depend only on the local geometry of Hn, while for the large time asymptotics, the large

scale geometry of the quotients Γ\MR, Γ\Hn comes into play.
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As a consequence of Theorems 2.3.10 and 2.3.12, we can finally define the analytic L2-torsion TAn(2) (Γ\MR, ρ)

and TAn(2) (Γ\Hn, ρ) of the Hermitian bundles EρR− ↓MR and Eρ ↓ Hn as

log
(
TAn(2) (Γ\Hn, ρ)

)
:=

n∑
k=0

k

2
(−1)k+1

(
d

ds
ζk(s)|s=0 +

∫ ∞
1

t−1 trΓ(e−t∆k[Eρ])dt

)
(2.3.23)

log
(
TAn(2) (Γ\MR, ρ)

)
:=

n∑
k=0

k

2
(−1)k+1

(
d

ds
ζRk (s)|s=0 +

∫ ∞
1

t−1 trΓ(e−t∆k[Eρ
R−

])dt

)
. (2.3.24)

Observe that from 2.3.19, it actually follows that there exists a number τ(ρ) ∈ R depending only on the

representation ρ, such that for any lattice Γ < Isom+(M, g), one has

log
(
TAn(2) (Γ\Hn, ρ)

)
= Vol(Γ) · τ(ρ).

For a detailed description of the element τ(ρ), we refer again to [72, Section 9]. The two main results of

Chapter 4, Theorems 4.2.21 and 4.3.7, can now be summarized:

Theorem 2.3.13. For each 0 ≤ k ≤ n, one has

lim
R→∞

d

ds
ζRk (s)|s=0 =

d

ds
ζk(s)|s=0, (2.3.25)

lim
R→∞

∫ ∞
1

t−1 trΓ(e−t∆k[Eρ
R−

])dt =

∫ ∞
1

t−1 trΓ(e−t∆k[Eρ])dt. (2.3.26)

In particular

lim
R→∞

TAn(2) (Γ\MR, ρ) = TAn(2) (Γ\Hn, ρ). (2.3.27)

Remark 2.3.14. The quantities TAn(2) (Γ\MR, ρ) and TAn(2) (Γ\Hn, ρ) both depend on the pair of met-

rics (g, hρ), which is why we will often write TAn(2) (Γ\Hn, ρ, g, hρ), respectively TAn(2) (Γ\Hn, ρ, g, hρ), to

emphasize this dependency.
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Chapter 3

Analysis on bundles of bounded

geometry

Throughout this chapter, we will investigate in Sobolev spaces of sections over certain Riemannian man-

ifolds M and metric bundles E ↓M over them, so-called manifolds/bundles of bounded geometry. These

generalize bundles over compact manifolds. On the basis of the classic theory around uniformly elliptic

differential operators over compact manifolds, one derives that the Hodge-Laplacians ∆∗ defined over

space of differential forms Ω∗(M,E) with values in certain flat bundles E ↓M are essentially self-adjoint,

even if M is not necessarily compact. This works even if M has boundary – one then has to add certain

boundary conditions to the domain space of ∆∗, coming from either the Dirichlet, Neumann, or from

mixed boundary conditions on the complex Ω∗(M,E) itself. Firstly, this allows us to give a coordinate-

free description of the associated Sobolev spaces. Secondly, and perhaps most importantly, we can apply

spectral theory to ∆∗ and define for each t > 0 the heat operator e−t∆∗ . It is an L2-bounded operator,

defined over the L2-completion Ω∗(2)(M,E) and taking values in smooth, L2-integrable sections. Inter-

preting an input function f ∈ Ω∗(2)(M,E) as an initial assignment of heat along the closed system M , we

can further interpret e−t∆f as the heat distribution on M after time t has passed. Crucially, e−t∆ admits

an integral kernel e−t∆(x, y), the so-called heat kernel. Given a manifold M and a complete, codimension

0 submanifold N ⊆M , we will also compare the heat kernels coming from a flat bundle E ↓M with the

ones coming from the restriction E|N ↓ N of E to N and derive pointwise estimates. These comparison

results will be fundamental for the convergence results of the next chapter.

3.1 Bundles of bounded geometry

For the sequel, we will denote for m ∈ N by Rn≥0 := {(x1, . . . , xm) ∈ Rn : xm ≥ 0} the upper half-space

of Rn.

Definition 3.1.1. [Normal coordinates on a manifold with boundary] Let (M, g) be a complete Rieman-

nian manifold. For r > 0 and x0 ∈M , we say that x0 admits r-normal coordinates if either
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1. x0 ∈M \ ∂M and the Riemannian exponential map expMx0
: Rn ∼= Tx0M →M maps the Euclidean

ball Br(0) ⊆ Rn diffeomorphically onto its image, denoted by N(r, x0), or

2. x0 ∈ ∂M and the boundary exponential map ∂ expMx0
: Tx0

∂M × [0, r)→M , defined via

∂ expMx0
(v, t) := expMexp∂Mx0

(v)(tµ(exp∂Mx0
(v))). (3.1.1)

maps the Euclidean cylinder Br(0) × [0, r) ⊆ Rn≥0 (with Br(0) ⊂ Rn−1 the m − 1-dimensional

Euclidean ball) diffeomorphically onto its image, also denoted by N(r, x0). Here, exp∂M is the

exponential map of the Riemannian submanifold (∂M, g|∂M ) and µ is the inward unit normal field.

From now on, we will denote such a normal chart at a point x0 ∈ M simply by κx0
: Rn≥0 ⊃ Ux0

→
N(x0, rx0

).

Throughout, we will use the letter α = (α1, . . . , αn) ∈ Nn0 for a general multi-index (of size n) and

set its length to be

|α| :=
n∑
j=1

αi ∈ N0.

Further, for an open subset O ⊆ Rn≥0 and an integer K ∈ N, we set CK(O,Fm) to be the space of all

K-times continuously differentiable vector fields over O. For a function f ∈ CK(O,Fm) and a multi-index

α with |α| ≤ K, we define

∂αf := ∂α1
x1
. . . ∂αmxm f ∈ C

K−|α|(O,Fm). (3.1.2)

Also, for f ∈ C0(O,Fm), we define its ∞-norm

||f ||∞ := sup
x∈O
|f(x)|. (3.1.3)

In this instance, |f(x)| denotes the norm of the vector f(x) ∈ Fm induced by the standard orthonormal

basis of Fm.

Definition 3.1.2 (Uniformly bounded sets of functions). Let n,m ∈ N and let I be an index set. For

each i ∈ I, let Oi ⊆ Rn≥0 be an open subset and fi ∈ C0(Oi,Fm) be a continuous function. For K ∈ N0,

we say that the set of functions U := {fi : i ∈ I} is K-uniformly bounded if fi ∈ CK(Oi,Fm) and if

there exist a universal upper bound for the ∞-norm of all fi and all their partial derivatives up to order

K. More explicitly, this means that there exists a constant CK > 0, such that for each non-negative

integer k ≤ K, one has

sup
i∈I

sup
|α|=k

||∂αfi||∞ < CK . (3.1.4)

U is ∞-uniformly bounded if it is K-uniformly bounded for each K ∈ N.

Definition 3.1.3 (Manifold of bounded geometry). A Riemannian manifold (M, g) is said to be of

bounded geometry if there exists constants RI , RC > 0, such that each of the following conditions

hold:

(1) The injectivity radius of ∂M is bounded from below by RC .
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(2) The geodesic collar

∂M × [0, RC)→M,

(x, t) 7→ expMx (tµ(x))

is a diffeomorphism onto its image, denoted by N . As before, µ denotes the inward unit normal

field on ∂M . For 0 < q ≤ 1, we set Nq ⊆ N to be the image of ∂M × [0, q ·RC) under the geodesic

collar map.

(3) Each p ∈M \N2/3 admits RI -normal coordinates.

(4) The set of functions consisting of all Riemannian metric tensors and their inverses induced by g,

pulled back via sufficiently small normal normal charts, is ∞-uniformly bounded.

Up N(p, r)

TM ⊗ TM∗|N(p,r)

Rn
2

N(p, r)× Rn
2

κp

g

κ̃p⊗κ̃∗p

pr2

Here, κ̃p : TM |N(p,r) → N(p, r) × Rn denotes the local trivialization of the tangent bundle TM

over N(p, r) that is naturally induced by the smooth normal chart κp, and r ≤ min{2RC , RI}.

Although not necessary for this particular paper, we remark that there is an equivalent, coordinate-

free characterization for a Riemannian manifold (M, g) to be of bounded geometry. Namely, one may

replace condition (4) by uniform bounds on the covariant derivative of the curvature tensor and the

second fundamental form on M with respect to the Levi-Civita connection induced by g, compare for

example with [25, Page 33] or [84, Definition 3.1] (the equivalence to the above definition was shown in

[85, Proposition 3.7, Appendix A]). For the sequel, we introduce the letter F, which will stand for both

the field R of real numbers or the field C of complex numbers.

Definition 3.1.4 (Bundle of bounded geometry). Let (E, h)↓M be a m-dimensional metric F-vector

bundle over a Riemannian manifold (M, g) of bounded geometry, with h either a Riemannian metric, for

F = R, or an Hermitian metric, for F = C. Let π : E → M denote the projection map, and let I be an

index set. Further, let R > 0 and assume that {xi}i∈I is a set of points, each of which admits R-normal

coordinates. A set P := {ti : N(xi, R)× Fm → π−1(N(xi, R)) : i ∈ I} of local trivializations, covering all

of E ↓M , is called bounded, if both of the following two properties are satisfied:

1. The corresponding set of all transition functions between overlapping trivializations, regarded in

normal coordinates, is ∞-uniformly bounded.

Uxi × Fm ⊇ κ−1
xi (N(xi, R) ∩N(xj , R))× Fm N(xi, R) ∩N(xj , R)× Fm

E|N(xi,R)∩N(xj ,R)

Uxj × Fm ⊇ κ−1
xj (N(xi, R) ∩N(xj , R))× Fm N(xi, R) ∩N(xj , R)× Fm

κxi×11

t−1
i

tj

κ−1
xj
×11
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2. The corresponding set of all metric tensors and their inverses induced by h, pulled back via the

trivializations and regarded in normal coordinates, is ∞-uniformly bounded.

Uxi N(xi, R)

E ⊗ E∗|N(xi,R)

Fm
2

N(xi, R)× Fm
2

κxi

h

ti⊗ti∗

pr2

If E ↓M comes also equipped with a flat connection, we say that the covering P is flat, if

1. for any i ∈ I, the pullback t∗i∇ of the flat connection ∇ on E ↓ M is the trivial connection on

N(xi, R)× Fm ↓ N(xi, R), and

2. every transition function between two overlapping trivializations of P is locally constant.

(E, h) ↓ M is a (flat) bundle of bounded geometry if it admits a bounded (and flat) set P of

trivializations.

Example 3.1.5. 1. Every compact Riemannian manifold M and every (flat) metric F-bundle E ↓M
over it are of bounded geometry. This is easily verified, taking a finite cover {Ui} of M , so that

E|Ui is trivial (and flat), and (with the aid of Lebesgue’s lemma) choosing an appropriate R > 0,

so that each x ∈M admits R-normal coordinates and each normal chart of size R lies in some Ui.

2. From this, it also follows that, if (M, g) is a non-compact Riemannian manifold admitting a uniform

(i.e. cocompact) lattice Γ < Isom(M, g), then (M, g) is of bounded geometry. If, moreover, E ↓M
is a (flat) metric F-bundle over M that is Γ-equivariant, then E ↓ M is a (flat) metric bundle of

bounded geometry.

3. If (M, g) is a Riemannian manifold of bounded geometry, then for any m ∈ N, the trivial F-bundle

M×Fm ↓M with trivial flat connection and constant (canonical) metric is a flat bundle of bounded

geometry over M .

4. If (M, g) is a Riemannian manifold of bounded geometry, then its tangent bundle TM ↓ M , with

obvious metric and trivializations given by normal charts, is a bundle of bounded geometry.

5. The class of bundles of bounded geometry over a fixed Riemannian manifold (M, g) is closed under

all common algebraic operations, including (but not limited to) taking duals, Whitney sums, tensor

products and exterior powers.

3.2 Sobolev spaces

Our goal for this subsection is to define Sobolev spaces on bundles E ↓M of bounded geometry. Naively,

we would like to take the same local-to-global approach as it is available for flat Hermitian bundles over

compact manifolds: Choose some boundedly flat trivialization P of E ↓ M of bounded geometry and
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define the Sobolev norm on compactly supported (or measurable) sections simply in the usual fashion, via

passing to Euclidean charts, taking the standard Sobolev norm there, and patching everything together

using an appropriate partition of unity (cf. [51, Chapter III, 2]).

However, unlike in the case for compact manifolds, a different choice of trivialization P ′ might result in a

non-equivalent norm. Fortunately, we do not have to steer too far away from this naive approach, since

there is always a class so-called admissible trivializations on a bundle of bounded geometry that all give

rise to equivalent norms:

Lemma 3.2.1 (Admissible triple). Let E ↓M be a (flat) bundle of bounded geometry. Then there exists

a constant RE > 0, such that for any r ∈ (0, RE ], we find a countable subset {bi}i∈Z ⊂M , along with

1. a bounded (and flat) set {ti : N(bi, r)× Fm → π−1(N(bi, r)) : i ∈ Z} of trivializations,

2. associated normal coordinate charts {κi : Rn≥0 ⊃ Ui
∼=→ N(bi, r) : i ∈ Z}, and

3. a smooth partition of unity {ψi ∈ C∞(M) : i ∈ Z} with supp(ψi) ⊆ N(bi, r/2),

such that all of the following additional properties are satisfied:

• For any s ∈ [r/2, r], the trivialization {ti : N(bi, s)× Fm → π−1(N(bi, s)) : i ∈ Z} still covers all of

E ↓M .

• bi ∈ ∂M for i < 0, while N(bi, r/2) ∩ ∂M = ∅ for i ≥ 0.

• The underlying covering of M is uniformly locally finite: There exists some DE > 0, such that for

any b ∈M , the index set {i ∈ Z : ∃s < RE with N(b, s)∩N(bi, r) 6= ∅} has cardinality at most DE.

• The set of real-valued functions {ψi ◦ κj : N(bj , r/2) ∩N(bi, r/2) 6= ∅} is ∞-uniformly bounded.

The resulting sequence of triples (ti, κi, ψi)i∈Z will be called an admissible triple for the bundle E ↓M .

The underlying, boundedly flat bundle trivialization (ti)i∈Z is called an admissible trivialization.

Proof. See [85, Lemma 3.22] for the elementary, but technical proof.

Suppose that an admissible triple (ti, κi, ψi)i∈Z for a bundle E ↓ M of bounded geometry is fixed.

Then, for any smooth section f ∈ Γ(E) and any i ∈ Z, we obtain a smooth vector field

fi ∈ Γ(Rn≥0,F
m),

fi(x) =

pr2 ◦ t−1
i ◦ (ψi · f) ◦ κi(x) x ∈ Ui

0 x /∈ Ui
. (3.2.1)

Below is the schematic commutative diagram, highlighting the general situation:

Fm N(bi, r)× Fm π−1(N(bi, r))

Rn≥0 ⊃ Ui N(bi, r)

pr2 t−1
i

κi

fi ψi·f
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Having established this notation, we can now finally define the natural Sobolev Spaces on bundles of

bounded geometry:

Definition 3.2.2 (Sobolev Spaces). Let E ↓ M be a bundle of bounded geometry. Further, let s ≥ 0

and let (ti, κi, ψi)i∈Z be an admissible triple for E ↓ M . Let L(E) be the space of equivalence classes

of measurable sections of E, where as usual, two sections are identified if they agree almost everywhere.

For s ≥ 0, we define the Sobolev space of sections as the subspace

Ws(E) := {f ∈ L(E) : fi ∈ Ws(Rn≥0,F
m) ∀i ∈ Z ∧

∑
i∈Z
||fi||2Ws(Rn≥0

,Fm) <∞}. (3.2.2)

Here, Ws(Rn≥0
,Fm) denotes the standard Sobolev norm of vector fields on the upper half-plane, i.e. we

have

||fi||2Ws(Rn≥0
,Fm) =

∫
Rn≥0

(1 + |ξ|2)s · |f̂i(ξ)|2 dξ,

where f̂i(ξ) denotes the Fourier transform of the vector field fi. On Ws(E), we define an inner product

〈 , 〉s via

〈f, g〉s :=
∑
i∈Z
〈fi, gi〉Ws(Rn≥0

,Fm). (3.2.3)

The induced norm will be denoted by || . ||s. Sometimes, we will use the abbreviation L2(E) =W0(E).

Lastly, we define the s-th local Sobolev space

Ws,loc(E) :=
⋂
K

Ws(E|K), (3.2.4)

where K ranges over all compact, codimension-0 Riemannian submanifolds K ⊆M .

One can show that the definition of Ws(E), as well as the equivalence class of norm || . ||s, does not

depend on the particular choice of admissible triple (ti, κi, ψi)i∈Z, see [85, Lemma 3.24]. Equipped with

the inner product 〈 , 〉s, Ws(E) becomes a Hilbert space. Moreover, completeness of M ensures that

Γ∞c (E) ⊆ Ws(E) is a dense subspace. Lastly, note that if E ↓ M is a bundle of bounded geometry,

so is ΛpT ∗M ⊗ E ↓ M for any 0 ≤ p ≤ m (with respect to the natural induced (intertwined) metric).

Therefore, we can define the s-th Sobolev space of differential p-forms as

Wp
s(E) :=Ws(Λ

pT ∗M ⊗ E), (3.2.5)

Wp
s,loc(E) :=

⋂
K⊆M

Wp
s(E|K). (3.2.6)

From the definition, it becomes obvious that for any ω ∈ Ωpc(M,E) and any pair s > k, we have

||ω||s ≥ ||ω||k. Furthermore, it is clear to see that on Ωc(M,E), the norm || ||0 is equivalent to the norm

|| ||, as defined in 2.1.7 via means of the wedge product and the Hermitian Hodge #-operator. These

two observations allow us to think of Sobolev spaces of differential forms as naturally sitting boundedly

nested inside Ω•(2)(M,E), i.e. we have in particular

· · · ⊆ W•2(E) ⊆ W•1(E) ⊆ W•0(E) = Ω•(2)(M,E), (3.2.7)

and each inclusion is a continuous embedding of Hilbert spaces with dense image. Lastly, this further

allows us to define the infinite order Sobolev space of differential forms as

W•∞(E) :=

∞⋂
k=1

W•k(E) ⊂ Ω•(2)(M,E). (3.2.8)
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Definition 3.2.3 (Bounded differential operator). Let E ↓ M and E′ ↓ M be two bundles of bounded

geometry over a Riemannian manifold M . A differential operator A : Ω•(M,E) → Ω•(M,E′) is called

bounded if the set of all complex valued coefficient functions of A, obtained via an arbitrary admissible

trivialization, is ∞-uniformly bounded. A bounded boundary differential operator B : Ω•(M,E) →
Ω•(∂M,E′|∂M ) is the composition of a bounded differential operator A : Ω•(M,E) → Ω•(M,E′) with

the tangential boundary projection i∗ : Ω•(M,E′)→ Ω•(∂M,E′|∂M ).

Lemma 3.2.4. Let E ↓M be a flat bundle of bounded geometry. Then all of the operators 11,#, d, δ and

∆ = dδ + δd are bounded differential operators.

Proof. Boundedness for 11 is on the nose, while boundedness for d is also obvious, since any admissible

trivialization of E ↓ M is also always a flat trivialization by requirement. # is bounded, since its

coefficient functions in an admissible trivialization involve only the Riemannian and Hermitian metric

tensors, which are∞-uniformly bounded by assumption. Finally, both δ and ∆ are by definition sums and

compositions of the bounded differential operators # and d, and therefore also bounded themselves.

Definition 3.2.5. Let E ↓M be a bundle of bounded geometry, let (ti, κi, ψi)i∈Z be an admissible triple

and let K ∈ N. We define the normed vector space

ΓKb (E) := {f ∈ ΓK(E) : {fi, i ∈ Z} is K-uniformly bounded}

with norm

|f |K := sup
i∈Z

sup
|α|≤K

||∂αfi||∞.

The next proposition is a collection of all the results on Sobolev spaces of bundles of bounded geometry

that, using an admissible trivialization, easily extend from well-known classic results in the Euclidean

setting. The proofs, or at least clear guidelines of such, can be found in [85, Proposition 3.23].

Proposition 3.2.6 (Elementary properties of Sobolev spaces). Let E ↓ M and E′ ↓ M be two bundles

of bounded geometry over a Riemannian manifold M , A : Ω•(M,E)→ Ω•(M,E′) a bounded differential

operator of order µ, and s, k ∈ R≥0. Then,

1. for any K ∈ N0 and any s ∈ R with s > m/2 +K, we have a bounded embedding of normed vector

spaces Ws(E) ↪→ ΓKb (E). In particular, we have W•∞(E) ⊆ Ω•(M,E) ∩ Ω•(2)(M,E).

2. If s ≥ µ, then A extends to a bounded operator A :W•s (E)→W•s−µ(E′).

3. For any 0 ≤ t ≤ RC , identify ∂M × {t} with its image in M under the geodesic collar map, see

Definition 3.1.3. Further, let i∗(t) : Ω•(E′) → Ω•(E′|∂M×{t}) be the pullback-map induced by the

inclusion. Then if s > µ+ 1/2, the operator i∗(t)A : Ω•(E) → Ω•(E′|∂M×{t}) extends to a bounded

operator i∗(t)A :W•s (E)→W•s−µ−1/2(E′|∂M×{t}) (the corresponding norm depends continuously on

t).

Together with Lemma 2.1.2, we obtain a generalized version of Stokes’ theorem for Sobolev 1-forms:
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Corollary 3.2.7. Let E ↓ M be a flat bundle of bounded geometry, 1 ≤ k ≤ n, ω ∈ Wk−1
1 (E) and

σ ∈ Wk
1 (E). Then dω ∈ Wk

0 (E), δσ ∈ Wk−1
0 (E), i∗ω, #̂−1i∗#σ ∈ Wk−1

1/2 (E|∂M ), and

〈dω, σ〉 = 〈ω, δσ〉+ 〈i∗ω, #̂−1i∗#σ〉.

For the next technical lemma, we define for an admissible triple (ti, κi, φi), any f ∈ Ws(E) and any

measurable subset N ⊆M the restricted Sobolev norm

||f |N ||2s :=
∑
i∈Z

∫
κ−1
i (N)

(1 + |ξ|2)s · |f̂i(ξ)|2 dξ (3.2.9)

Evidently, if N is a set of measure zero, then we have ||f |N ||2s = 0. In particular, if N = ∂M , the

restricted Sobolev norm should not be confused with the Sobolev norm of the pull-back section i∗f on

∂M , where i : ∂M →M denotes the boundary inclusion.

Lemma 3.2.8. Suppose that N1 ⊇ N2 ⊇ N3 ⊇ . . . is a nested sequence of measurable subsets of M with

N :=
⋂∞
k=0Nk. Let s ∈ R and f ∈ Ws(E). Then we have

lim
k→∞

||f |Nk ||2s = ||f |N ||2s

Proof. For i ∈ Z and k ∈ K, we define the positive real numbers

a(i, k) :=

∫
Rn≥0

χ(κ−1
i (Nk)) · (1 + |ξ|2)s · |f̂i(ξ)|2 dξ,

a(i) :=

∫
Rn≥0

χ(κ−1
i (N)) · (1 + |ξ|2)s · |f̂i(ξ)|2 dξ,

b(i) :=

∫
Rn≥0

(1 + |ξ|2)s · |f̂i(ξ)|2 dξ.

Then ||f |Nk ||2s =
∑
i∈Z a(i, k), ||f |N ||2s =

∑
i∈Z a(i) and ||f ||2s =

∑
i∈Z b(i). Since a(i, k) ≤ b(i) < ∞ for

all i and all k, and since gi(k) := χ(κ−1
i (Nk)) converges point-wise to gi := χ(κ−1

i (N)) for each i, we

can apply the dominated convergence theorem to obtain that limk→∞ a(i, k) = a(i) for each i. Since

moreover
∑
i∈Z b(i) <∞, we can apply the same theorem a second time to obtain that

lim
k→∞

||f |Nk ||2s = lim
k→∞

∑
i∈Z

a(i, k) =
∑
i∈Z

lim
k→∞

a(i, k) =
∑
i∈Z

a(i) = ||f |N ||2s.

The result follows.

Lemma 3.2.9. Let E ↓M be a bundle of bounded geometry, let N ∼= ∂M× [0, 1] be a collar neighborhood

of ∂M and let 0 ≤ p ≤ m. For 0 ≤ t ≤ 1, let i∗(t) :Wp
1(E)→Wp

0(E∂M×{t}) be the (continuous) tangential

boundary projection induced by the smooth inclusion i(t) : ∂M × {t} ↪→ M . Then there exists constants

C, ε > 0, such that for all ω ∈ Wp
1(E) and all 0 < t < ε, it holds that

||i∗(t)ω||
2
0 ≤ C

(
||i∗(0)ω||

2
0 + t||ω|∂M×[0,t]||21

)
. (3.2.10)

Proof. Because of theW1-continuity of all operators involved (Proposition 3.2.6) it suffices to prove these

statements for elements of Ωpc(M,E). Choose an admissible triple (ti, κi, ψi)i∈Z for E ↓ M . Recall that,

by definition, the indexing is chosen in such a way that i ≤ 0⇔ bi ∈ ∂M . We can choose 0 < ε < 1 small

enough such that for any i > 0, we have κ−1
i (Nε) = 0, where Nε ∼= ∂M × [0, ε) is the collar neighborhood
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of ∂M as in Definition 3.1.3.

Choose some i ≥ 0 and let ωi be the vector field on Br(0) × [0, r) derived from ω with the aid of the

triple (ti, κi, φi) as explained in Equation 3.2.1 . In this way, we have a decomposition

ωi(x, t) = ωi,1(x, t) + ωi,2(x, t) ∧ dt (3.2.11)

with ωi,1(x, t) a tangential form with image in Fm⊗Λp Rn−1 and ωi,2(x, t) a normal form with image in

Fm⊗Λp−1 Rn−1. Now applying the fundamental theorem of Calculus, we have for any 0 ≤ t ≤ r and any

x ∈ B(0, r), that

ωi,1(x, t) = ωi,1(x, 0) +

∫ t

0

d

du
ωi,1(x, u)du. (3.2.12)

Using the triangle inequality, the fact that 2ab ≤ a2 +b2 for any two real numbers a, b, along with Hölder’s

inequality, we therefore obtain

|ωi,1(x, t)|2 ≤ 2

(
|ωi,1(x, 0)|2 + t

∫ t

0

| d
du
ωi,1(x, u)|2du

)
. (3.2.13)

Integrating over Br(0) then yields∫
Br(0)

|ωi,1(x, t)|2dx ≤ 2

(∫
Br(0)

|ωi,1(x, 0)|2dx+ t

∫
Br(0)

∫ t

0

| d
du
ωi,1(x, u)|2du

)

≤ 2

(∫
Br(0)

|ωi,1(x, 0)|2dx+ t

∫
Br(0)

∫ t

0

|Dωi(x, u)|2dudx

)

≤ C ·

(∫
Br(0)

|ωi,1(x, 0)|2dx+ t

∫
Br(0)×[0,t]

(1 + |ξ|2) · |ω̂i(ξ)|2 dξ

)

for a constant C > 0 that depends only on the H1-norm on Rn≥0, but not on i. For any t < ε, we then

have

||i∗(t)ω||
2
0 =

0∑
i=−∞

∫
Br(0)

|ωi,1(x, t)|2dx

≤ C

(
0∑

i=−∞

∫
Br(0)

|ωi,1(x, 0)|2 + t

∫
Br(0)×[0,t]

(1 + |ξ|2) · |ω̂i(ξ)|2 dξ

)
= C

(
||i∗(0)ω||

2
0 + t||ω|∂M×[0,t]||21

)
.

3.3 Uniformly elliptic boundary value problems

Definition 3.3.1 (Elliptic boundary value problem). Let M be a manifold of bounded geometry and let

E ↓M , F ↓M and, for each i = 0, . . . , n, Xi ↓M be bundles over M of bounded geometry. A system of

operators A := (A, p0, . . . , pn) : Γ(E) → Γ(F ) ⊕
⊕n

i=0 Γ(Xi|∂M ) is called an elliptic boundary value

problem of order µ, if

1. A is a bounded differential operator of order µ ≥ n+ 1/2,

2. pi are bounded boundary differential operators of order at most i,
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3. A is elliptic in the sense of Schwartz [88, Definition 1.6.1].

In [84, Definition 4.3], systems of operators satisfying properties (1) and (2) are defined to be boundary

value problems, while boundary values problems that additionally satisfy condition (3) are called elliptic

in slight distinction. However, for the purpose of this work, we will exclusively look at elliptic boundary

value problems, which is why we include this particular property already in the basic definition. Note that

we have refrained from explicitly writing down the complicated definition of ellipticity for a boundary

value problem, which involves delving deep into local coordinates at the boundary. Instead, we will focus

on one of the main applications of ellipticity, the one that motivates the extensive study behind such

problems: Elliptic regularity. To begin with, observe that, because of assertion (1) and (2) in the above

definition and Proposition 3.2.6, we have:

Corollary 3.3.2. Any elliptic boundary value problem

A = (A, p0, . . . , pn) : Γ(E)→ Γ(F )⊕
n⊕
i=0

Γ(Xi|∂M )

of order µ extends for each s ≥ 0 to a bounded operator

A :Ws+µ(E)→Ws(F )⊕
n⊕
i=0

Ws+µ−i− 1
2
(Xi|∂M ). (3.3.1)

Definition 3.3.3 (Formally self-adjoint boundary value problem). In the situation as in the previous

definition, an elliptic boundary value problem A := (A, p0, . . . , pn) : Γ(E) → Γ(E) ⊕
⊕n

i=0 Γ(Xi|∂M ) is

called formally self-adjoint if there exists a system (~q1, . . . , ~qn) : Γ(E) →
⊕n

i=0 Γ(Xi|∂M ) of bounded

boundary differential operators, such that, for any pair ω, σ ∈ Γ(E) with either ω or σ compactly

supported, we have

〈Aω, σ〉 − 〈ω,Aσ〉 =

n∑
i=0

〈~piω, ~qiσ〉 − 〈~qiω, ~piσ〉. (3.3.2)

An important feature of formally self-adjoint boundary value problems is that they give rise to a

Hodge-Decomposition as follows:

Theorem 3.3.4. [84, Corollary 4.20] Let M be a manifold of bounded geometry and let E ↓M , and, for

each i = 0, . . . , n, Xi ↓ M be bundles over M of bounded geometry. Further, let A := (A, p0, . . . , pn) :

Γ(E) → Γ(E) ⊕
⊕n

i=0 Γ(Xi|∂M ) be an elliptic, formally self-adjoint boundary value problem. Consider

the subspace Γ(E,~t) := {f ∈ Γc(E) : p0f = · · · = pnf = 0} of compactly supported functions satisfying

certain boundary conditions. Then we get an orthogonal decomposition

L2(E) = {f ∈ Γ(E) ∩ L2(E) : Af = p0f = . . . pnf = 0} ⊕AΓ(E,~t). (3.3.3)

A classical problem in the field of partial differential equations, translated into the language of linear

operators, asks whether such an A has a (bounded) inverse, a so-called solution. As a matter of fact,

ellipticity ensures that this is always locally the case. More precisely, a classic result by Hörmander

[44, 7.3.1, 10.4.1] states that, for any elliptic boundary value problem A = (A, p0, . . . , pn) as above, one

has the following properties:
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1. For each x ∈M , there exists constants Dx > 0, and 0 < εx < RC depending continuously on x and

a bounded linear operator

Sx :W0(EN(x,εx))⊕
n∑
l=0

Wµ−l−1/2(EN(x,εx)∩∂M )→Wµ(EN(x,εx)), (3.3.4)

called a local fundamental solution of A, satisfying

(a) N(x, εx) ∩ ∂M = ∅, if x /∈ ∂M , in which case we set
∑n
l=0Wµ−l−1/2(EN(x,εx)∩∂M ) := 0.

(b) One has ||Sx|| ≤ Dx.

(c) The restriction A|Wµ(EN(bx,εx)) of A to Wµ(EN(bx,εx)) is a left inverse for Sx, i.e.

A|Wµ(EN(bx,εx)) ◦ Sx = 11W0(EN(x,εx)⊕
∑n
l=0Wµ−l−1/2(EN(x,εx)∩∂M ).

(d) For any f ∈ Wµ(E) that is compactly supported inside N(x, εx), it also holds that Sx ◦A(f) =

f .

Definition 3.3.5 (Uniformly elliptic boundary value problem). In the above situation, an elliptic bound-

ary value problem A = (A, p0, . . . , pn) is called uniformly elliptic if

1. there exists a global constant CA > 0, bounding Dx from above for all x ∈ ∂M and, and

2. there exists a global constant rA > 0, bounding εx from below for all x ∈M .

3. The differential operator A is uniformly elliptic, that is

(a) the matrix a(x, ξ), representing the principal symbol of A at x in admissible normal coordinates

of E and F , is invertible [ellipticity].

(b) There exists a constant C > 0 independent of x or ξ, such that

|a−1(x, ξ)| · |ξ|µ ≤ C,

where µ ∈ N0 is the order of A. Here, the (matrix-)norms used are the ones induced by the

chosen admissible trivialization.

Remark 3.3.6. As shown in [85, 4.10, 4.11] a consequence of uniform ellipticity of a boundary value

problem is that the regularity of local fundamental solutions scales proportionally with the regularity of

the initial problem. Precisely, this means that for each s ∈ R and each x ∈ M , the bounded map Sx

as in 3.3.4 can be chosen with domain space Ws(EN(x,εx))⊕
∑n
l=0Ws+µ−l−1/2(EN(x,εx)∩∂M ) and target

space Wµ+s(EN(x,εx)).

Example 3.3.7. Any elliptic boundary value problem A := (A, p0, . . . , pn) over a compact manifold

M is automatically uniformly elliptic. The existence of the global constants CA > 0, rA > 0 are direct

consequences of compactness and Lebesgue’s lemma.

What might be less obvious is the existence of the constant C bounding |a−1(x, ξ)| · |ξ|µ from above for

all relevant pairs (x, ξ). Note that, because of compactness of M , it suffices to prove the existence of

such a constant Cx for any fixed x ∈ M . To this effect, first observe that ellipticity of A implies that

one finds a constant cx > 0 such that sup|ξ|=1 |a(x, ξ)| > cx. Now observe that for fixed x, a(x, ξ) is a

homogeneous (matrix-valued) polynomial in ξ of degree µ, which is why we obtain for any ξ ∈ T ∗xM that

|a(x, ξ)| = |ξ|µ|a(x, ξ/|ξ|)| > |ξ|µcx. Setting Cx := c−1
x , the previous arguments imply that |a(x, ξ)−1| <

|ξ|−µCx for any 0 6= |ξ| as desired.
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Example 3.3.8. More generally, if M̃ is a normal covering of a compact manifold M and if A is a system

of differential operators on M , we can lift A to a system Ã of differential operators over M̃ , defined on

sections of corresponding lifted bundles. Then, as the lift of a uniformly elliptic boundary value problem,

it is evident that Ã itself must be uniformly elliptic.

Example 3.3.9. For an elliptic boundary value problem A = (A, p0, . . . , pn) over a Riemannian manifold

(M, g) of bounded geometry to be uniformly elliptic, it is not necessarily required that A by itself is the

lift of a boundary value problem over a compact manifold. Indeed, suppose that there exists Riemannian

manifolds X,Y of bounded geometry and the same dimension as M , such that

1. both M and Y are complete Riemannian submanifolds of X,

2. there exists a uniformly elliptic boundary value problem AX = (AX , . . . ) over X with the property

that A = AX |M , i.e. the elliptic operator A is the restriction of the uniformly elliptic operator AX

to M ,

3. ∂M is a connected component of ∂Y . Moreover, there exists a neighborhood U ⊆ M ∩ Y of

∂M inside both M and Y and a uniformly elliptic boundary value problem AY over Y so that

A|U = AY |U .

Then it is easily verified that A itself must be uniformly elliptic.

We will apply three essential results on general uniformly elliptic boundary value problems, whose

proofs can be found in [84, Theorem 4.14, Theorem 4.23, Theorem 4.26] (in that order):

Proposition 3.3.10 (Elliptic regularity). Let E ↓ M be a flat bundle of bounded geometry and A =

(A, p0, . . . , pl) a uniformly elliptic boundary value problem of order µ. Then, for any s ∈ R, there exists a

constant C(s, µ) > 0, such that if ω ∈ Ws(E)∩Γ(E) and Aω ∈ Ws(E)⊕
⊕l

j=0Ws+µ−j−1/2(Xi) :=Ms,µ,

then ω ∈ Ws+µ(E) and

||ω||2s+µ ≤ C(s, µ) ·
(
||Aω||2Ms,µ

+ ||ω||2s
)
.

Proposition 3.3.11 (Self-adjoint closures). Let E ↓ M be a bundle of bounded geometry and let

(A, p0, . . . , pn) : Γ(E) → Γ(E)
⊕n

k=1 Γ(Xi|∂M ) be a uniformly elliptic, formally self-adjoint boundary

value problem of order µ. Consider the subspace Γ(E,~t) := {f ∈ Γc(E) : p0f = · · · = pnf = 0} of

compactly supported functions with boundary conditions and define the unbounded operator

A0 := A|Γ(E,~t) :W0(E)→W0(E). (3.3.5)

Then A0 is essentially self-adjoint, i.e. A0 admits a minimal closure with the property that A0 = A∗0.

Moreover,

dom(A0) = {ω ∈ Wµ(E) : p0ω = · · · = pnω = 0},

ker(A0) = {ω ∈ W∞(E) : A0ω = p0ω = . . . pnω = 0}.

Last but not least, if A = (A, p0, . . . , pn) and B = (B, q0, . . . , qm) are two elliptic boundary value

problems, and if the individual composite operators A ◦B, as well as qi ◦A (1 ≤ i ≤ m) are well-defined,

we can consider the composite system of operators

A ◦ B := (A ◦B, q1 ◦A, . . . , qm ◦A, p1, . . . , pn). (3.3.6)
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Observe that we may rearrange the boundary differential operators in the system A◦B, such that (after

possibly filling up with some zero operators) the i-th boundary operator has order at most i. In this

way, it becomes natural to ask whether the composition of two elliptic boundary value problems remains

elliptic. Schick gives a partial positive answer which is sufficient for our purposes.

Proposition 3.3.12. [84, Proposition 4.15] Let A and B be uniformly elliptic boundary problems of order

µ, respectively ν. Then, if it is well-defined, A◦B is a uniformly elliptic boundary value problem of order

µ+ ν.

3.3.1 The standard boundary value problem on flat bundles

Throughout this section, we will fix an n-dimensional manifold (M, g) of bounded geometry and a flat

Hermitian bundle (E, h) ↓ M of bounded geometry over M . Just like in Section 2.1, we fix a (possibly

empty) decomposition ∂M = ∂1M ∪̇∂2M of ∂M into its Dirichlet boundary ∂1M and Neumann boundary

∂2M . Denote by i1 : ∂1M → M and i2 : ∂2M → M the respective smooth inclusion maps. Our goal of

this section is to define elliptic boundary value problems over M of varying degrees that depend only on

the flat bundle structure, the choice of bounded metrics, and the boundary decomposition of ∂M .

As before, we let Ω•(M,E) = Γ(M,
⊕n

k=0 ΛkT ∗M⊗RE) ∼=
⊕n

k=0 Ωk(M,E) and define bounded boundary

differential operators

t0, n0, t1, n1 : Ω•(M,E)→ Ω•(∂M,E|∂M ), (3.3.7)

t0(ω) := i∗1ω + #̂−1i∗2#ω, n0(ω) := #̂−1i∗1#dω − i∗2δω, (3.3.8)

t1(ω) := i∗1δω + #̂−1i∗2#dω, n1(ω) := #̂−1i∗1#ω − i∗2ω, . (3.3.9)

As usual, # denotes the Hermitian Hodge ∗-operator on E ↓M and #̂ the (invertible) Hermitian Hodge

∗-operator on the restriction bundle E ↓ ∂M . Note that, as boundary differential operators, t0 and

n1 both have order 0, while t1 and n0 both have order 1. Combining them produces further boundary

differential operators

~t, ~n : Ω•(M,E)→ Ω•(∂M,E|∂M )2, (3.3.10)

~t(ω) := t0ω ⊕ t1ω, ~n(ω) := n0ω ⊕ n1ω. (3.3.11)

Lastly, for fixed 0 ≤ p ≤ n, we let ~tp be the restriction of ~t onto p-forms and define a (sub)bundle im(~tp)

over ∂M of bounded geometry via

im(~tp) := (ΛpT ∗∂M ⊕ Λp−1T ∗∂M)⊗R E.

We consider the first-order differential operator

d+ δ : Ω•(M,E)→ Ω•(M,E),

along with, for 0 ≤ p ≤ n, the second-order differential operator

∆p : δp+1dp + dpδp−1 = (d+ δ)2|Ωp(M,E) : Ωp(M,E)→ Ωp(M,E).

Taken together, we can define systems of differential operators on M that depend only on the flat bundle

E ↓M and the choice of boundary decomposition ∂M = ∂1M ∪̇∂2M :
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Definition 3.3.13 (Standard boundary value problem). Let E ↓ M be a bundle of bounded geometry

and let ∂M = ∂1M ∪̇∂2M be a decomposition of ∂M . We set

A := (d+ δ, t0) : Ω•(M,E)→ Ω•(M,E)⊕ Ω•(∂M,E|∂M ).

Further, for fixed 0 ≤ p ≤ n, we define a system of differential operators Bp
k for any k ∈ N as follows:

Bp1 :=
(
∆p,~t

)
: Ωp(M,E)→ Ωp(M,E)⊕ Γ(im(~tp)),

Bp
k := Bp1 ◦ B

p
1 ◦ · · · ◦ B

p
1︸ ︷︷ ︸

k times

k ∈ N.

Explicitly, this means that for k ∈ N, we have

Bp
k :=

(
∆k
p,~t, . . . ,~t∆

k−1
p

)
: Ωp(M,E)→ Ωp(M,E)⊕ Γ(im(~t))k.

A and Bp
k are called the standard boundary value problems over M , associated to E and the decomposition

∂1M ∪̇∂2M .

Lemma 3.3.14. The system A, as well as the systems Bp
k for each 0 ≤ p ≤ n and each k ∈ N are elliptic,

formally self-adjoint boundary value problems of order 1, respectively 2k. Whenever ω, σ ∈ Ω•(M,E) are

forms (of the correct degree), so that either ω or σ is also compactly supported, we get

〈(d+ δ)ω, σ〉 − 〈ω, (d+ δ)σ〉 = 〈p0ω, n1σ〉 − 〈n1ω, p0σ〉, (3.3.12)

〈∆k
pω, σ〉 − 〈ω,∆k

pσ〉 =

k−1∑
i=0

〈~t∆i
pω,~n∆k−1−i

p σ〉 − 〈~n∆k−1−iω,~t∆iσ〉. (3.3.13)

Proof. Equations 3.3.12 and 3.3.13 both follow from an iterative application of Lemma 2.1.2. It is a well-

known classic result that the systems A and Bp1 are elliptic boundary value problems, see for example

[88, Lemma 1.6.5] or [51, Page 169]. Since compositions of elliptic boundary value problems, whenever

they can be defined, remain elliptic boundary value problems [85, Proposition 4.16], the result follows for

Bp
k with k ≥ 2.

Together with the arguments laid out in Examples 3.3.7–3.3.9, we obtain the two following important

results:

Corollary 3.3.15. Let E ↓ M be a flat, Hermitian bundle of bounded geometry over a manifold of

bounded geometry. Further, suppose that there exists manifolds X,Y of bounded geometry and of the

same dimension as M , as well as flat bundles EX ↓ X, EY ↓ Y of bounded geometry, such that

1. both M and Y are Riemannian submanifolds of X and both E and EY are the restrictions of EX

to M , respectively Y ,

2. EX is Γ-equivariant with respect to some uniform lattice Γ < Isom+(X),

3. EY is Λ-equivariant with respect to some uniform lattice Λ < Isom+(Y ),

4. the intersection M ∩ Y is a codimension 0-submanifold containing ∂M ⊂ ∂Y ∪ ∂M .

Then the the standard elliptic boundary value problems A and Bp
k derived from E ↓ M , constructed as

above with respect to a decomposition ∂M = ∂1M ∪̇∂2M , are uniformly elliptic.
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Remark 3.3.16. Note that bundles E ↓ M that are themselves Γ-equivariant for some uniform lattice

Γ < Isom+(M), the most common case appearing throughout this thesis, trivially satisfy the assumptions

of the above corollary (apparent from choosing X = Y = M).

3.4 Applications to the De Rham complex

From now on, until the end of this chapter, we will now make the following global assumption: All

appearing (metric) bundles E ↓M satisfy the assumptions of Corollary 3.3.15.

This is because all the examples presented in forthcoming chapters are exclusively of this shape and the

derived standard boundary value problems A and Bp
k are then uniformly elliptic. Together with Theorem

3.3.11, we first obtain:

Theorem 3.4.1. For each 0 ≤ p ≤ n and each k ∈ N, the operator ∆k
p[E], defined as the unbounded

operator ∆k
p on Wp

0 (E) with domain {ω ∈ Ωpc(M,E) : ~tω = · · · = ~t∆k−1ω} is essentially self-adjoint. Its

minimal, self-adjoint closure, also denoted by ∆k
p[E], has domain {ω ∈ Wp

2k(E) : ~tω = · · · = ~t∆l−1ω = 0}.

Among many other things, Theorem 3.4.1 now guarantees the existence of several smoothing smooth-

ing operators constructed via the spectral theory of the self-adjoint ∆p[E]:

Proposition 3.4.2 (Kernel). Let E ↓ M be a bundle of bounded geometry and let 0 ≤ p ≤ n. For

f ∈ R+ → R+ a rapidly-decreasing, positive Borel function, let f(∆p[E]) : L2(E) → L2(E) be the

bounded, self-adjoint operator defined via Borel functional calculus of ∆p[E]. Then f(∆p[E]) is a smooth-

ing operator.

Proof. We claim that, for each k ∈ N, f(∆p[E]) has image in dom(∆k
p[E]) ⊆ Wp

2k(E). To see how the

result follows from the claim, we get as an immediate consequence that f(∆p[E]) has image in Wp
∞(E).

By Proposition 3.2.6, it follows that f(∆p[E]) has image in Γb(E). Since f(∆p[E]) is self-adjoint, the

existence of a smooth integral Kernel, hence the result, then follows from [85, Lemma 13.6].

It therefore remains to prove the claim. For n ∈ N, let χ[0,n] be the characteristic function of the interval

[0, n] ⊆ R+ and let x · χ[0,n] : R+ → R+ ∈ B(R) be the bounded, positive Borel function, defined for

n ∈ N. Moreover, let φ : B(R) → B(Ωp(2)(M,E)) be the Borel functional calculus of the self-adjoint

∆p[E]. In particular, we have f(∆p[E]) = φ(f) in that notation. Since ∆k
p[E] is simply the k-th power

of the self-adjoint operator ∆p[E], we get from the spectral theorem for all ω ∈ Ωp(2)(E), that

ω ∈ dom(∆k
p[E])⇔ lim

n→∞
φ(xk · χ[0,n])ω exists. (3.4.1)

Since f ∈ B(R) is rapidly decreasing, we get both that xk · f ∈ B(R) and that xk+1 · f ∈ B(R). In

particular, we find for any ε > 0 an index N ∈ N, such that for all n ≥ N , we get |xk ·f ·(1−χ[0,n])|2∞ < ε.

From the spectral theorem, we therefore obtain that

lim
n→∞

φ(xk · χ[0,n])φ(f)ω = φ(xk · f)ω, (3.4.2)

implying that φ(f)ω ∈ dom(∆k
p[E]) for any ω ∈ Ωp(2)(M,E).

Applying [85, Theorem 4.26] to the uniformly elliptic boundary value problem Bp1 , we further obtain:
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Theorem 3.4.3 (Hodge decomposition). For 0 ≤ p ≤ m, define the space of harmonic integrable

p-forms with boundary conditions

Hp(M,∂M,E) := {ω ∈ Ωp(M,E) ∩ Ωp(2)(M,E) : ∆ω = 0, i∗1ω = i∗2(#ω) = 0}.

Then Hp(M,∂M,E) = ker(∆p[E]). Moreover, for each k ∈ N we obtain the following orthogonal decom-

position of the Sobolev space W p
0 (E) called Hodge decomposition

W p
0 (E) = Hp(M,∂M,E)⊕ dp−1Ωp−1(M,∂1M,E)⊕ δpΩp+1(M,∂2M,E). (3.4.3)

Theorem 3.4.4 (Elliptic regularity). Let E ↓ M be a bundle of bounded geometry. We consider the

elliptic boundary value problem A as an unbounded operator between Hilbert spaces

A :W•0(E)→W•0(E)⊕W•1/2(E|∂M ) (3.4.4)

with initial domain Ω•c(M,E). Moreover, for each k ∈ N, we consider the elliptic boundary value problem

Bp
k = Bp

k as an unbounded operator between Hilbert spaces

Bp
k :W∗0(E)→W∗0(E)⊕

k−1⊕
j=0

W∗2k−2j−1/2(E|∂M )⊕W∗2k−2j−3/2(E∂M ) (3.4.5)

with initial domain Ωpc(M,E). Then

1. both A and Bp
k are closable. We set dom(A), respectively dom (Bp

k), to be the domain of its minimal

closed extension.

2. The bilinear forms 〈̃ω, σ〉1 := 〈(11 +A)ω, (11 +A)σ〉, respectively 〈̃ω, σ〉2k := 〈(11 +Bp
k)ω, (11 +Bp

k)σ〉
for k ∈ N, define complete inner products on dom(A), respectively dom (Bp

k). In fact, the identity

map 11 : Ωpc(M,E)→ Ωpc(M,E) extends to isomorphisms of Hilbert spaces

dom(A) ∼=W•1(E), (3.4.6)

dom (Bp
k) ∼=Wp

2k(E). (3.4.7)

Proof. 1: For the sake of brevity, we will prove this statement explicitly only for A, the remaining cases

follow by analogous arguments: Let xn ∈ Wp
0(E) be a sequence with lim0

n→∞ xn = 0 and limn→∞Axn = y

for some y = (y1, y2) ∈ Wp
0(E) ⊕ Wp

1/2(E). Therefore, we have both limn→∞(dp + δp−1)xn = y1 and

limn→∞ p0xn = y2. We must show that both y1 and y2 vanish, starting with the former: For every

σ ∈ Ω•c(M,E) with σ ≡ 0 on a neighborhood of ∂M , we get by Equation 3.3.12, that

〈y1, σ〉 = lim
n→∞

〈(dp + δp−1)xn, σ〉 = lim
n→∞

〈xn, (dp−1 + δp)σ〉 = 0. (3.4.8)

Since the subspace of all such σ forms an L2-dense subspace of Ω•(2)(M,E), we must have y1 = 0. Now

y2 = 0 in Wp
1/2(E|∂M ) if and only if y2 = 0 in Wp

0(E|∂M ). Hence, we can use same trick of testing y2

against an appropriate, L2-dense subspace of Wp
0(E|∂M ). Note that we have p0xn = i∗1xn + #̂−1i∗2#xn.

We show separately that both limn→∞ i∗1xn = 0 and limn→∞ #̂−1i∗2#xn = 0, which then implies that

y2 = 0. For the first equality, it suffices to show that limn→∞〈i∗1xn, z〉 = 0 for any z ∈ Ωpc(∂1M,E|∂1M ).

Therefore, we may also assume that z|∂2M = 0. We can construct a p + 1-form ω ∈ Ω1
c(M,E), whose

normal component equals z near ∂1M , vanishes near ∂2M , and whose tangential component vanishes on
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all of ∂M . Explicitly, this means that p0ω = 0 = i∗2ω and n1ω = #̂−1i∗1#ω = z. Using Equation 3.3.12,

we therefore have

lim
n→∞

〈i∗1xn, z〉 = lim
n→∞

〈i∗1xn, #̂−1i∗1#ω〉 i
∗
2ω=0
= lim

n→∞
〈p0xn, n1ω〉

= lim
n→∞

(〈n1xn, p0ω︸︷︷︸
=0

〉+ 〈
(
dp + δp−1)xn, ω〉 − 〈xn, (dp−1 + δp)ω〉

)
= 0.

The identity limn→∞ #̂−1i2#xn = 0 can be proven similarly, finally showing that y2 = 0 and, hence,

that Ap is closable.

2: From Corollary 3.3.1, we obtain that both A and Bp
k are uniformly elliptic. Proposition 3.3.10 then

provides us with constants C,Ck > 0, such that

C−1 |̃|ω||1 ≤ ||ω||1 ≤ C |̃|ω||1,

C−1
k |̃|ω||2k ≤ ||ω||2k ≤ Ck |̃|ω||2k

for any ω ∈ Ωpc(M,E), from which the result immediately follows.

Beginning with the proof of the next lemma, we will make use of the the following notational conven-

tions for subsets A ⊆ W•s(E) and subspaces V ⊆ W•s(E):

A
s

:= Ws -closure of A inside W•s(E), (with A := A
0
),

V ⊥s := Ws -orthogonal complement of V inside W•s(E) (with V ⊥ := V ⊥0).

We say that a subspace A ⊆ W•0(E) is s-closed if A = A
s
. Recall also that, for each p ∈ N, we have

previously (cf. Section 2.1) defined the subspaces of forms satisfying certain boundary conditions, as well

as closed, densley defined operators over their respective L2-completions:

Ωp(M,∂M1, E) = {ω ∈ Ωpc(M,E) : i∗1ω = 0} (3.4.9)

Ωp(M,∂M2, E) = {ω ∈ Ωpc(M,E) : i∗2#ω = 0}, (3.4.10)

dp1 := d|Ωp(M,∂1M,E) : W p
0 (E)→W p+1

0 (E), (3.4.11)

∂p1 := ∂|Ωp+1(M,∂2M,E) : W p+1
0 (E)→W p

0 (E). (3.4.12)

With aid of the results on elliptic regularity and Hodge decomposition, our intermediate goal is now to

show that the two operators dp1 and ∂p+1
1 are mutually adjoint for each 0 ≤ p ≤ n− 1. In order to do so,

we need the following auxiliary lemma:

Lemma 3.4.5 (Sobolev functions with boundary conditions). Let E ↓ (M, g) be a bundle of bounded

geometry. For p ≥ 0, define the subspaces

Wp
1(E, ∂1M) := {ω ∈ Wp

1(E) : i∗1ω = 0} ⊆ Wp
1(E),

Wp
1(E, ∂2M) := {ω ∈ Wp

1(E) : i∗2#ω = 0} ⊆ Wp
1(E),

Wp
2(E, ∂M) := {ω ∈ Wp

2(E) : i∗1ω = i∗1δω = i∗2#ω = i∗2#dω = 0}.

Then

1. Wp
1(E, ∂1M) and Wp

1(E, ∂2M) are 1-closed subspaces of Wp
1(E),
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2. Wp
1(E, ∂1M) = Ωp(M,∂1M,E)

1
⊆ dom(dp1),

3. Wp
1(E, ∂2M) = Ωp(M,∂2M,E)

1
⊆ dom(δp1),

4. dom(∆p[E]) =Wp
2(E, ∂M).

Proof. 1 : follows from Theorem 3.4.4.

2 : First, we prove the inclusion Ωp(M,∂1M,E)
1
⊆ dom(dp1). Therefore, let ω ∈ Ωp(M,∂1M,E)

1
and

choose a sequence ωn ∈ Ωp(M,∂1M,E) with limn→∞ ||ω − ωn||21 = 0. By Proposition 3.2.6, we get

both 0 = limn→∞ ||ω − ωn||20 and 0 = limn→∞ ||dpω − dpωn||20 = limn→∞ ||dpω − dp1ωn||20. Therefore,

ω ∈ dom(dp1) (and dp1ω = dpω). The inclusion Ωp(M,∂1M,E)
1
⊆ Wp

1(E, ∂1M), now follows directly from

1. The non-trivial part is to show the inclusions Wp
1(E, ∂1M) ⊆ Ωp(M,∂1M,E)

1
.

For that purpose, let N ∼= ∂M × [0, 1] be a regular neighborhood of ∂M . For any form ω ∈ Ωp(M,E),

we can write

ω|U (x, t) = ω1(x, t) + ω2(x, t) ∧ dt (3.4.13)

for a tangential form ω1 ∈ Ωpc(M,E) and a normal form ω2 ∈ Ωp−1
c (M,E) that both contain no dt-factor.

Since ||ωi||2r ≤ ||ω||2r for i = 1, 2 and any r ≥ 0, such a decomposition into tangential and boundary

parts still exists for forms in Wp
r(E) and varies continuously within Wp

r(E) (in Wr-norm). We can write

N = N1∪̇N2, where for i = 1, 2, Ni is a regular neighborhood of ∂iM . For the course of the proof, we

will define for i = 1, 2 the subspaces

Ωp0(M,∂iM,E) := {ω ∈ Ωpc(M,E) : ωi = 0 in a neighborhood of ∂Mi}, (3.4.14)

Wp
1,0(E, ∂iM) := Ωp0(M,∂iM,E)

1
⊆ Wp

1(E, ∂iM). (3.4.15)

Since Ωp0(M,∂iM,E) ⊂ Ωp(M,∂iM,E), 3 and 4 will be a consequence of the inclusions Wp
1(E, ∂1M) ⊆

Wp
1,0(E, ∂1M) and Wp

1(E, ∂2M) ⊆ Wp
1,0(E, ∂2M).

Let φ : R → [0, 1] be a smooth function with φ ≡ 0 on [0, 1], φ ≡ 1 on (2,∞) and ||φ′|| ≤ 1. For each

n ∈ N, we set φn(t) := φ(2nt) and define a linear map

Fn : Ωpc(M,E)→ Ωpc(M,E)

Fn(ω) =

ω on M \N,

φn(t) · ω1(x, t) + ω2(x, t)dt on N.

Clearly, it holds that Fn(Ωpc(M,E)) ⊆ Ωp0(M,∂1M,E). Moreover, it is also clear that there exists a

constant Cn > 0, such that ||Fn(ω)||1 ≤ Cn||ω||1. Therefore, Fn extends to a continuous map from

Wp
1(E) to Wp

1,0(E, ∂1M). We claim that limn→∞ ||ω − Fn(ω)||1 = 0 for any ω ∈ Wp
1(E, ∂1M). This

implies in particular the inclusion Wp
1(E, ∂1M) ⊆ Wp

1,0(E, ∂1M).

For 0 < t ≤ 1, set N t
1 := ∂1M × [0, t]. Then, for any smooth form ω ∈ Ωpc(M,E), we easily see that

||ω − Fn(ω)||20 ≤ ||ω|Nn1 ||
2
0. (3.4.16)

In order to properly estimate the remaining terms of ||ω − Fn(ω)||21, we temporarily assume that g|N1

is of the form dt2 + g∂1M , i.e. g is a a product near the boundary component ∂1M . First, we establish

an upper bound on ||dφn ∧ ω1||20. For 0 < t < 1, let i1,(t) : ∂1M × {t} ↪→ M be the smooth boundary
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inclusion at level t. Then, using Lemma 3.2.9, we can further compute

||dφn ∧ ω1||20 =

∫ 1
n

0

∫
∂1M

|dφn ∧ ω1(x, t)|2dxdt ≤ 4n2

∫ 1
n

0

∫
∂1M

|ω1(x, t)|2dxdt

= 4n2

∫ 1
n

0

||i∗1,(t)ω||
2
0dt ≤ 4Cn2

∫ 1
n

0

||i∗1ω||20 + t||ω|Nn1 ||
2
1dt = 4C

(
n||i∗1ω||20 + ||ω|Nn1 ||

2
1

)
for some constant C > 0 independent of n and ω. This implies that

||d(ω − Fn(ω))||20 = ||d(ω − Fn(ω))|N ||20 ≤ ||(1− φn) · dω||20 + ||dφn ∧ ω1||20
≤ ||dω|Nn1 ||

2
0 + 4C

(
n||i∗1ω||20 + ||ω|Nn1 ||

2
1

)
. (3.4.17)

Moreover, if #̂ denotes the Hodge ∗-operator on the bundle E|∂1M ↓ ∂1M , we find that

#ω|N1
= #̂ω2 + #̂ω1dt.

Using this, one computes further

||δ(ω − Fn(ω))||20 ≤ ||d#̂ω1|Nn1 ||
2
0. (3.4.18)

By continuity of all maps involved, inequalities 3.4.16, 3.4.17 and 3.4.18 also hold true for any form

ω ∈ Wp
1(E). Furthermore, since any metric g on M of bounded geometry contains in its bounded

conformal class a metric that is a product near the boundary (see [84, Proposition 7.3]), these same

inequalities hold true for any metric of bounded geometry (up to some constant factor).

Summarizing, we therefore obtain the following limits

lim
n→∞

||ω − Fn(ω)||20 ≤ lim
n→∞

||ω|Nn1 ||
2
0 = 0, (3.4.19)

lim
n→∞

||∂ (ω − Fn(ω)) ||0 ≤ lim
n→∞

||d#̂ω1|Nn1 ||
2
0 ≤ lim

n→∞
||ω|Nn1 ||

2
1 = 0. (3.4.20)

Moreover, if ω ∈ Wp
1(E, ∂1M), we have i∗1ω = 0, hence

lim
n→∞

||d(ω − Fn(ω))||20 ≤ lim
n→∞

(
||dω|Nn1 ||

2
0 + 4C||ω|Nn1 ||

2
1

)
≤ lim
n→∞

(1 + 4C) · ||ω|Nn1 ||
2
1 = 0.

The equality limn→∞ ||ω − Fn(ω)||21 = 0 follows now from Corollary 3.4.4, from which we finally obtain

the inclusion Wp
1(E, ∂1M) ⊆ Wp

1,0(E, ∂1M).

3 : is proven in the same way as 2.

4 : follows directly from Theorem 3.4.1

Proposition 3.4.6. Let E ↓ M be a bundle of bounded geometry and 0 ≤ p ≤ m. Then the following

holds true:

1. One has (dp1)∗ = δp1 and (δp1)∗ = dp1.

2. One has 〈∆p[E]ω, ω〉 = ||dp1ω||2 + ||δp−1
1 ω||2 for any ω ∈ dom(∆p[E]). In particular, ∆p[E] is a

positive operator.

3. With respect to the Hodge-decomposition 3.4.3, we can write the orthogonal complement ∆p[E]⊥ as

the direct sum of self-adjoint operators ∆p[E]⊥ = ((dp1)∗ ◦ dp1)
⊥ ⊕ (dp−1

1 ◦ (dp−1
1 )∗)⊥.
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Proof. 1 : Let ω ∈ dom(δp1). By definition, there exists then a sequence ωn ∈ Ωp+1(M,∂2M,E) with

L2-limits

lim
n→∞

ωn = ω,

lim
n→∞

δpωn = δp1ω.

Therefore, we have for any σ ∈ Ωp(M,∂1M,E), that

〈dp1σ, ω〉 = 〈dpσ, ω〉 = lim
n→∞

〈dpσ, ωn〉 = lim
n→∞

〈σ, δpωn〉+ 〈 i∗1σ︸︷︷︸
=0

, #̂−1i∗1#ωn〉

+ 〈i∗2σ, #̂−1 i∗2#ωn︸ ︷︷ ︸
=0

〉 = 〈σ, δp1ω〉.

By definition of the adjoint, we obtain that ω ∈ (dp1)∗ with (dp1)∗ω = δp1ω, showing that δp1 < (dp1)∗ (in

the sense of unbounded operators).

The inequality (dp1)∗ < δp1 is considerably more difficult to show. We will proceed as in [55, Lemma 5.16].

Throughout, we will use the Hodge decomposition

Ω∗(2)(M,E) = H∗(M,∂M,E)⊕ d1Ω∗−1(M,∂1M,E)⊕ δ1Ω∗+1(M,∂2M,E).

Since dp1 is closed and densely defined, it follows that im(dp1)⊥ = ker((dp1)∗). From this and the fact that

im(dp1) ⊆ dp1Ωp(M,∂1M,E), it now follows that

Hp(M,∂M,E)⊕ δp+1
1 Ωp+2(M,∂2M,E) ⊆ ker((dp1)∗).

Next, observe that δp+1Ωp+2(M,∂2M,E) ⊆ Ωp+1(M,∂2M,E)∩ ker(δp), from which immediately follows

that δp+1Ωp+2(M,∂2M,E) ⊆ ker(δp1) (here, we have used Equation 2.1.10 and that ker(δ1) is L2-closed

in Ω∗(2)(M,E)). By Theorem 3.4.1 and the previous lemma, we obtain that

Hp+1(M,∂M,E) = ker(∆p+1[E]) ⊆ Ωp+1(M,∂2M,E)
1
∩ ker(δp) ⊆ ker(δp1).

Summarizing, we have

Hp+1(M,∂M,E)⊕ δp+1Ωp+2(M,∂2M,E) ⊆ ker(δp1) ∩ ker((dp1)∗). (3.4.21)

Therefore, to show that (dp1)∗ < δp1 , it now remains to show that

(dp1)∗|
d1Ω∗−1(M,∂1M,E)

< δp1 |d1Ω∗−1(M,∂1M,E)
. (3.4.22)

For this, let ω ∈ d1Ω∗−1(M,∂1M,E) ∩ dom((dp1)∗) and let σ ∈ Ω∗p,0(M,E) = {ω ∈ Ω∗c(M,E) : i∗1ω =

i∗2#ω = 0} be arbitrary. We decompose σ into its harmonic, exact and coexact parts, according to the

Hodge decomposition

σ = σ∆ + σd + σδ. (3.4.23)

Observe that σ ∈ dom(d1) ∩ dom(δ1) = dom(d1 + δ1). Since σ∆ + σd ∈ ker(d1) and σ∆ + σδ ∈ ker(δ1),

we obtain both σd ∈ dom(δ1) and σδ ∈ dom(d1). Therefore, we compute

〈(dp1)∗ω, σ〉 = 〈ω, d1σ〉 = 〈ω, d1σ∆〉+ 〈ω, d1σd〉+ 〈ω, d1σδ〉

= 〈ω, (d1 + δ1)σ∆︸ ︷︷ ︸
=0

〉+ 〈ω, (d1 + δ1)σd︸ ︷︷ ︸
⊥ω

〉+ 〈ω, (d1 + δ1)σδ︸ ︷︷ ︸
=0

〉 = 〈ω, (d+ δ)σ〉.
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From [84, Theorem 4.18], we obtain that ω is locally integrable with a local weak derivative, i.e. ω ∈
Wp+1

1,loc(E), that dp+1ω, δpω ∈ W∗0,loc(E) and both i∗#ω, i∗ω ∈ W∗0,loc(E|∂M ), and finally, that (dp1)∗ω =

(dp+1 + δp)ω ∈ Ωp(2)(M,E). Furthermore, for any x ∈ Ωpc(M,E), the equality

〈x, δpω〉 = 〈dpx, ω〉+ 〈i∗x, #̂−1i∗#ω〉 (3.4.24)

holds. We claim that ω ∈ Wp
1(E, ∂2M) and that (dp1)∗ω = δpω. By the previous lemma, this implies that

ω ∈ dom(δp1), that δpω = δp1ω and hence the desired equality of operators δp1 = (dp1)∗.

For this, we need to show by elliptic regularity that both dp+1ω, δpω ∈ Ω∗(2)(M,E), i∗1ω ∈ Ω∗(2)(M,E)

and i∗2#ω = 0. Now,

ω ∈ im(dp) ⊆ ker(dp+1) =⇒ dp+1ω = 0,

δpω = (dp+1 + δp)ω = (dp1)∗ω ∈ Ωp(2)(M,E),

ω ∈ im(dp1) =⇒ i∗1ω = 0.

Therefore, it remains to show that i∗2#ω = 0. For this, let σ ∈ Ωp+1
0 (M,∂1M,E) (so that σ = 0 in a

neighborhood of ∂1M). Then δpω ∈ dom(dp1) and

〈dp1δpσ, ω〉 = 〈δpσ, (dp1)∗ω〉 = 〈δpσ, δpω〉 = 〈dp1δpσ, ω〉+ 〈i∗2δpσ, #̂−1i∗2#ω〉.

Since i∗2δ
p(Ωp+1

0 (M,∂1M,E)) is L2-dense in Ωp(2)(∂2M,E|∂2M ), we finally obtain that i∗2#ω = 0 as desired.

Now since dp1 is closed and densely defined, and δp1 = (dp1)∗, we also get

(δp1)∗ = ((dp1)∗)∗ = dp1. (3.4.25)

This finally proves 1.

2 : By the previous lemma, we have dom(∆p[E]) =Wp
2(M,∂M),Wp

1(M,∂1M) ⊆ dom(dp1) andWp+1
1 (M,∂2M) ⊆

dom(δp1). In particular, we get from 1 that

dom(∆p[E]) ⊆ dom(dp−1
1 δp−1

1 ) ∩ dom(δp1d
p
1) ∩ dom(dp1) ∩ (δp−1

1 )

= dom(dp−1
1 δp−1

1 ) ∩ dom(δp1d
p
1) ∩ dom((δp1)∗) ∩ dom((dp−1

1 )∗).

Therefore, we can write

〈∆p[E]ω, ω〉 = 〈(dp−1
1 δp−1

1 + δp1d
p
1)ω, ω〉 = 〈dp−1

1 δp−1
1 ω, ω〉+ 〈δp1d

p
1ω, ω〉

〈δp−1
1 ω, δp−1

1 ω〉+ 〈dp1ω, d
p
1ω〉 = ||δp−1

1 ω||20 + ||dp1ω||20.

3 : We have

∆p[E] = δp1d
p
1 + dp−1

1 δp−1
1

1
= (dp1)∗dp1 + dp−1

1 (dp−1
1 )∗.

From this, it is clear that ker(dp1) ∩ ker(δp−1
1 ) ⊆ ker(∆p[E]). The reverse inclusion is an immediate

consequence of 2. Therefore ker(∆p[E]) = ker(dp1) ∩ ker(δp−1
1 ) and the result follows from the Hodge

decomposition 3.4.3.

3.5 Heat kernel estimates

In this section, we will generalize the important Sobolev estimates and heat kernel comparison results

from [55, Theorems 2.4, 2.26] onto differential forms with values in a general flat bundle E ↓ M of
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bounded geometry that satisfy the assumptions of Corollary 3.3.15. To this effect, we will closely follow

the methods employed there.

Throughout, we fix a bundle E ↓ M of bounded geometry and a constant R > 0 such that for any

0 < r ≤ R and any x ∈ M , we find normal coordinates N(2r, x) around x and a bundle trivialization

N(2r, x)× Fm ∼= E|N(2r,x) around x that is contained in an admissible trivialization of the whole bundle

E ↓M . For the remainder of this section, let us fix some notation: For numbers a, b, c ∈ R, we will write

a
c
≤ b, (3.5.1)

if a ≤ c · b holds and

a
c' b, (3.5.2)

if both a
c
≤ b and b

c
≤ a hold.

Lemma 3.5.1. Let E ↓ M be a flat bundle of bounded geometry and let 0 < r ≤ RE, where RE

is the constant from Lemma 3.2.1. Furthermore, let φ, ψ : M → [0, 1] be two smooth functions with

supp(ψ) ⊆ supp(φ) ⊂ N(r, x0) and φ ≡ 1 on supp(ψ). Via an admissible normal trivialization around

x0, we identify E|N(r,x0) with Ur(x0)× Fm, where Ur(x0) ⊆ Rn+ is some open, relatively compact subset.

Let k, l ∈ N. Then there exists a constant Cr(k, l) > 0, depending only on k, l, and the partial derivatives

of φ in Ur(x0) up to order 2l, such that for each ω ∈ Ω•(M,E) ∩ dom(∆l[E]), we have

||φ · ω||2Hk+2l(Rn≥0
,Fm)

Cr(k,l)

≤ ||φ ·∆lω||2Hk(Rn≥0
,Fm) + ||φ · ω||2Hk(Rn≥0

,Fm) + ||ψ · ω||2Hk+2l−1(Rn≥0
,Fm). (3.5.3)

Proof. Without loss of generality, we may assume that for each s ∈ R, the Sobolev norm || . ||s defined

on E ↓M satisfies

||σ||s
C' ||σ||Hs(Rn+,Fm) (3.5.4)

for an appropriate constant C > 0 depending only on the geometry of the bundle and for any form

σ ∈ Ω(M,E) with supp(σ) ⊆ N(r, x0) ∼= Ur(x0). This follows because there is only one equivalence class

of Sobolev norms on E ↓M (and by extension on E⊗Λ∗T ∗M ↓M) induced by admissible trivialization,

and by assumption on r, we can find via Lemma 3.2.1 an admissible trivialization of E ↓ M , whose

induced Sobolev norm satisfies the above equality. Therefore, the assertion of the lemma will follow once

we show that

||φ · ω||k+2l

Cr
≤ (||φ ·∆lω||2k + ||φ · ω||2k + ||ψ · ω||2k+2l−1). (3.5.5)

By Proposition 3.3.10, we find a constant C1 = C1(k, l), depending only on k and l, such that

||φω||2k+2l

C1

≤ ||∆l(φω)||2k + ||φω||2k +

l−1∑
j=0

||(i∗1∆j + i∗2#∆j)φω||2k+2(l−j)−1/2

+ |(i∗1δ∆j + i∗2#d∆j)φω||2k+2(l−j)−3/2.

Since ω ∈ dom(∆l[E]), we have

i∗1∆jω = i∗2#∆jω = i∗1δ∆
jω = i∗2#d∆jω = 0

for all 0 ≤ j ≤ l − 1. Therefore, the right-hand side of the above inequality can be further estimated

from above by the term

||φ∆lω|2k + ||[∆l, φ]ω||2k + ||φω||2k +

l−1∑
j=0

||(i∗1[∆j , φ] + i∗2[#∆j , φ])ω||2k+2(l−j)−1/2

+ ||(i∗1[∂∆j , φ] + i∗2[#d∆j , φ])ω||2k+2(l−j)−3/2. (3.5.6)
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For 0 ≤ j ≤ l, the commutators [∆j , φ] and [#∆j , φ], respectively [∂∆j , φ] and [#d∆j , φ], are bounded

differential operators of order 2j− 1, respectively 2j, whose norms depend only on the partial derivatives

of φ, as well as on the partial derivatives of the metric and Hermitian tensors, pulled back from M

through the admissible normal trivialization. Since E ↓ M is a bundle of bounded geometry, the latter

two terms can be estimated from above by a uniform constant, depending only on φ and the degree of

differentiation (but neither on x0 nor r). Also, since φ ≡ 1 on supp(ψ), it follows that ω by ψω have the

same image under any of the aforementioned four differential operators. Using Proposition 3.2.6, we can

therefore find a constant C2(r) > 0, depending only on the partial derivatives of the pullback of φ onto

Ur(x0) (up to some finite order), such that Term 3.5.6 is bounded from above by C2(r)-times:

||φ∆lω||2k + ||ψω||2k+2l−1 + ||φω||2k. (3.5.7)

The result now follows.

Lemma 3.5.2. In the setting of the previous lemma, with σr := σ|N(r,x0) for any σ ∈ Ω∗(2)(M,E), there

exists a constant Cr > 0, depending only on k and the partial derivatives of φ and ψ on Ur(x0), such that

we have for any k ≥ 1 and any ω ∈ Ω•(M,E) ∩ dom(∆l[E]).

||φω||H2k(Rn≥0
,Fm) (3.5.8)

Cr(k)

≤

||(∆kω)r||20 + ||(∆k−1ω)r||20 + ||(∆ω)r||20 + ||ωr||20 + ||ψω||H2k−2(Rn≥0
,Fm) k > 1

||(∆kω)r||20 + ||(∆k−1ω)r||20 + ||(∆ω)r||20 + ||ωr||20 + ||ψω||0 k = 1
(3.5.9)

Proof. Firstly, one verifies via elementary computations (cf. [55, Lemma 2.5]) that

||d(f · σ)||20 + ||δ(f · σ)||20 = 〈∆σ, f2σ〉+ ||df ∧ σ||20 + ||df ∧#σ||20 (3.5.10)

for any σ ∈ Ω•(M,E) ∩ dom(∆[E]) and any f ∈ C∞(M,C). Choose an intermediate smooth cut-off

function φ̂ : M → [0, 1] with φ ≡ 1 on supp(φ̂), φ̂ ≡ 1 on supp(ψ) and such that the partial derivatives of

φ̂ can be estimated from above and below by the partial derivatives of φ and ψ (on Ur(x0)). Using the

previous lemma twice, we obtain

||φω||2H2k(Rn≥0
,Fm)

C(0,k)

≤ ||φω||20 + ||φ∆kω||20 + ||φ̂ω||2H2k−1(Rn≥0
,Fm)

C(1,k−1)

≤ ||ωr||20 + ||(∆kω)r||20 + ||φ̂ω||21 + ||φ̂∆k−1ω||21 + ||ψω||2H2k−2(Rn≥0
,Fm)

for constants Cr(0, k) and Cr(1, k − 1) depending only on the partial derivatives of φ and ψ on Ur(x0).

Furthermore, we compute

||φ̂ω||21
D
≤ ||φ̂ω||20 + ||d(φ̂ω)||20 + ||δ(φ̂ω)||20

≤ ||ωr||20 + 〈∆ω, φ̂2ω〉+ ||dφ̂ ∧ ω|||20 + ||dφ̂ ∧#ω||20
1+2·sup |φ̂|1
≤ ||ωr||20 + ||(∆ω)r||0 · ||φ̂2ω||0 ≤ 2||ωr||20 + ||(∆ω)r||20.

Here, we have used (in order) Proposition 3.3.10 for the constant D > 0 that depends only on the geometry

of the bundle E ↓M , Equation 3.5.10, the Cauchy-Schwarz inequality and the fact that ab ≤ a2 + b2 for

any two real numbers a, b. The resulting constant C ′r therefore depends only on first partial derivatives

of φ and ψ. Analogously, one obtains an estimate

||φ̂∆k−1ω||21
C′′r
≤ ||(∆k−1ω)r||20 + ||(∆kω)r||20.

Putting all of the inequalities together yields the desired result.
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Lemma 3.5.3. Let m, k ∈ N be fixed integers. Then, for each 1 ≤ l ≤ k, there exists a smooth 1-

parameter family of bump functions φl[r] ∈ C∞(Rn, [0, 1]), varying smoothly in r ∈ R+ and satisfying for

each r > 0:

1. If 1 ≤ l ≤ k − 1, we have supp(φl+1[r]) ⊆ supp(φl[r]) and φl[r] ≡ 1 on supp(φl+1[r]).

2. φk[r](0) = 1, and

3. supp(φ1[r]) ⊆ Br(0).

Proof. Denote by | . | the standard Euclidean norm on Rn. For fixed k ∈ N, each r > 0 and each

1 ≤ l ≤ k, define

φl[r](x) :=


1 |x| ≤ r

l+1 ,

1−
(

1 + exp(− l2

l2|x|2−r2 + (l+1)2

(l+1)2|x|2−r2 )
)−1

r
l+1 < |x| <

r
l ,

0 |x| ≥ r
l .

(3.5.11)

It is clear that the family (φl[r])
r∈R+

1≤l≤k has the required properties.

Theorem 3.5.4 (Sobolev estimates). Let (E, h) ↓ (M, g) be a flat bundle of bounded geometry. Then

there exists a smooth, monotonically decreasing function C : R+ → R+, such that for each r > 0, each

x0 ∈ M with the property that x0 admits r-normal coordinates, and each form ω ∈ Ω•(M,E) satisfying

relative boundary conditions, we have

|ω(x0)|2h(x0)

C(r)

≤
m∑
i=0

||(∆iω)|N(x0,r)||
2
0. (3.5.12)

Proof. Again, we will use the abbreviation ωr := ωN(x0,r). Also, denote by | . | the standard norm on

Fm. Since E ↓ M is of bounded geometry, there exists a universal constant Ch > 0, such that for any

x0 ∈ M , any admissible normal trivialization of the bundle E ↓ M around x0 and any form ω ∈ Ω(E),

we have

|ω(x0)|2h(x0) ≤ Ch|ω(x0)|2, (3.5.13)

where ω is regarded as a Fm-valued form via the aforementioned trivialization. Identifying N(r, x0) with

B(r, 0) ⊆ Rn, let φ1[r], . . . , φ2m[r] be the family of smooth bump functions from the previous lemma,

each supported on a neighborhood of x0, so that supp(φ1) ⊆ supp(φ2) ⊆ · · · ⊆ supp(φ2m) ⊆ N(r, x0),

satisfying φi+1 ≡ 1 on supp(ti) for each 0 ≤ i ≤ 2m. Then we first obtain be the Sobolev lemma on

Euclidean space the following inequality

|ω(x0)|2 = |φ2mω(x0)|2
C1

≤ ||φ2mω||2H2m(Rn,Fm) (3.5.14)

with a constant C1 > 0 depending only on the dimension m of M . Now, by an inductive application of

the previous corollary to ω, φi+1 and φi, we obtain

||φ2mω||2H2m(Rn,Fm)

C2[r]

≤
m∑
i=0

||(∆iω)r||20, (3.5.15)

where the constant C2[r] > 0 depends only on the ∞-norm of the φi[r]
′s and their respective partial

derivatives. Now since φi[r] varies smoothly in r (for fixed i), it is apparent that the constant C2[r] also

varies smoothly (and monotonically decreasing) in r. The result now follows.
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Theorem 3.5.5 (Properties of the solution to the wave equation). Let (M, g) be a Riemannian manifold

of bounded geometry and let (E, h) ↓M be a flat Hermitian bundle of bounded geometry over M . Further,

let u ∈ Ωp(M ;E) be a smooth p-form, compactly supported in M̊ . Then, for any s ∈ R≥0, the p-form

cos(s
√

∆p[E])u ∈ Ωp(2)(M ;E), defined via the spectral theorem, is sufficiently smooth in R≥0×M and the

unique (sufficiently smooth) solution to the wave equation

∂2

∂s2
v + ∆p[E]v = 0, (3.5.16)

v(0, x) = u(x), (3.5.17)

∂

∂s
v(0, x) = 0. (3.5.18)

Moreover, the support of the solution propagates at unit speed in time from supp(u). Explicitly, this

means that we have

supp(cos(s∆p[E])u) ⊆ Bs(supp(u)). (3.5.19)

Proof. It is well-known that v(s, x) := cos(s
√

∆p[E])u is the unique sufficiently smooth solution for the

wave equation, see for example [25], with the unit propagation speed being also well-established in the

case that u is a function, see [95, Theorem 6.1]. What remains to be shown is that the unit-propagation

speed property of a solution v(s, x) which we assume to be twice continuously differentiable in s, also

holds for forms. For notational convenience, we will abbreviate vs := ∂
∂sv. In this notation, the solution

v satisfies

vss + ∆pv ≡ 0, (3.5.20)

v(0, x) = u(x), (3.5.21)

vs(0, x) = 0 (3.5.22)

for all (s, x) ∈ R≥0×M . Let x0 ∈ M̊ and let RM > 0 denote the positive injectivity radius of the complete

manifold (M, g). Further, let 0 < r < RM , so that expx : TxM ⊃ Br(0) → B(x0, r) is a diffeomorphism

onto the geodesic ball B(x0, r) of radius r around x0.

Claim 1: Let 0 < r < RM and suppose that v(t0, y) = 0 for all y ∈ B(x0, r) and some t0 ∈ R≥0.

Then v ≡ 0 on the cone C(x0, r, t0) := {(s, y) ∈ R≥0×M : t0 ≤ s ≤ t0 + r and y ∈ U(x0, r + t0 − s)}.
Proof of Claim 1: We may assume without loss of generality that t0 = 0. Define 0 ≤ s ≤ r the energy

functional

E(s) :=
1

2

∫
B(x0,r−s)

||vs(s, y)||2h(y) + ||dv(s, y)||2h(y) + ||δv(s, y)||2h(y) dvolg.

Then E ∈ C2([0, r],R). Moreover, note that s-differentiation commutes with both d and δ, i.e. we have

both

(dv)s = d(vs) =: dvs,

(δv)s = δ(vs) =: δvs.

For notational simplicity, we will set Bs := B(x0, r− s), ∂Bs := ∂B(x0, r− s) and denote by dV ol∂Bs the

Riemannian volume form on the submanifold ∂Bs induced by the restriction of g. Using Green’s theorem
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and Equation 3.5.20, one now computes that

∂

∂s
E(s) = <(

∫
Bs

〈vs, vss〉+ 〈dvs, dv〉+ 〈δvs, δv〉 dV olM

− 1

2

∫
∂Bs

||vs||2 + ||dv||2 + ||δv||2dV ol∂Bs) = <(

∫
Bs

〈vs, vss + ∆pv〉dV olM

+

∫
∂B(x0,r−s)

i∗svs ∧ #̂−1i∗s#dv − #̂−1i∗s#vs ∧ i∗sδv −
1

2

(
||vs||2 + ||dv||2 + ||δv||2

)
dV ol∂Bs)

= <
(∫

∂Bs

i∗svs ∧ #̂−1i∗s#dv − #̂−1i∗#vs ∧ i∗sδv −
1

2

(
||vs||2 + ||dv||2 + ||δv||2

)
dV ol∂Bs

)
.

Here, as before, # : Ω•(M,E)→ Ωn−•(M,E∗) and #̂ : Ω•(∂Bs, E∂Bs)→ Ωn−1−•(∂Bs, E
∗
∂Bs

) denote the

isometric Hodge-∗ operators on the respective twisted de Rham complexes induced by the Riemannian

metric g and the Hermitian metric h of E. Furthermore, i∗s : Ω•(M,E) → Ω•(∂Bs, E∂Bs) denotes the

tangential boundary projection induced by the smooth inclusion ∂Bs ⊂M . By Gauss’s lemma, one has

for any ω ∈ Ω•(M,E), that

||ω||2 = ||i∗sω||2 + ||i∗s#ω||2 (3.5.23)

on all of ∂Bs. Next, note that for any two differential forms ω, σ of complementary dimensions, one

has ||ω ∧ σ|| = |〈ω,#−1σ〉| ≤ ||ω|| · ||#−1σ|| = ||ω|| · ||σ||. Along with the triangle inequality and the

elementary fact that ab ≤ 1
2 (a2 + b2) for any two real numbers a, b ∈ R, one obtains that

||i∗svs ∧ #̂−1i∗s#dv − #̂−1i∗s#vs ∧ i∗sδv|| ≤ ||i∗svs|| · ||#̂−1i∗s#dv||+ ||#̂−1i∗s#vs|| · ||i∗sδv||

= ||i∗svs|| · ||i∗s#dv||+ ||i∗s#vs|| · ||i∗sδv|| ≤
1

2

(
||i∗svs||2 + ||i∗s#vs||2 + ||i∗s#dv||2 + ||i∗sδv||2

)
≤ 1

2

(
||vs||2 + ||dv||2 + ||δv||2

)
.

Therefore, ∂
∂sE(s) ≤ 0 for all 0 ≤ s ≤ r. Since vs(0, y) = 0 = v(0, y) for all y ∈ B(x0, r), we obtain that

E(0) = 0, and therefore also E(s) = 0 for all 0 ≤ s ≤ r. This in return implies that vs(s, y) = 0 for all

y ∈ B(x0, r − s), from which then also follows that v(s, y) = 0. This finally proves Claim 1.

Now let B(x0, r) denote a general geodesic ball of some positive radius r ≥ RM around some point x0.

Claim 2: Let r ≥ RM and suppose that v(0, y) = 0 for all y ∈ B(x0, r). Then v ≡ 0 on the

cone C(x0, r, 0) := {(s, y) ∈ R≥0×M : 0 ≤ s ≤ r and y ∈ B(x0, r − s)}. Observe that Claim 2 obviously

immediately implies the unit propagation speed of the solution.

Proof of Claim 2: First, observe that for any 0 ≤ s < r, we have equality of sets

B(x0, r) =
⋃

x∈B(x0,r−s)

B(x, s). (3.5.24)

The inclusion B(x0, r) ⊆
⋃
x∈B(x0,r−s)B(x, s) follows from the fact that, due to completeness of M , any

y ∈ B(x0, r) can be connected to x0 by a minimizing geodesic γ. By the intermediate value theorem,

we therefore find some x ∈ γ with d(y, x) < s and d(x, x0) < r − s. The reverse inclusion immediately

follows from the triangle inequality.

Now choose some fixed 0 < τ < RM ≤ r and an integer k ∈ N so that 0 < r − kτ < RM ≤ r − (k − 1)τ .

For 1 ≤ l ≤ k, set Ul :=
⋃
x∈B(x0,r−lτ) C(x, τ, (l − 1)τ). Equation 3.5.24 now implies all of the following
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equalities of sets

C(x0, r, 0) =

k⋃
l=1

Ul ∪ C(x0, r − kτ, kτ),

Ul+1 ∩ Ul =
⋃

x∈B(x0,r−(l+1)τ)

{lτ} ×B(x, τ),

Uk ∩ C(x0, r − kτ, kτ) = {kτ} ×B(x0, r − kτ).

Therefore, using the assumption of the claim and starting with U1, an iterative application of Claim 1

can be used to show that u ≡ 0 on all Ul and C(x0, r − kτ, kτ), and therefore also on C(x0, r, 0).

Theorem 3.5.6 (Heat kernel estimates). Let (M, g) be a Riemannian manifold of bounded geometry and

E↓M a flat trivial bundle of bounded geometry over M . Further, let N ⊆ M be a (topologically) closed

submanifold and let Ẽ↓N be the flat bundle over N , obtained by restriction of E to N . For p ≥ 0, let

∆p[EM ] and ∆p[EN ] be the corresponding Bochner-Laplace operators on twisted p-forms on the restriction

bundles EM , respectively EN . For t > 0, k ∈ N0 and x, y ∈ N , denote by

∆k
p[EM ]e−t∆p[EM ](x, y) : Ex → Ey, (3.5.25)

∆k
p[EN ]e−t∆p[EN ](x, y) : Ex → Ey (3.5.26)

the respective smooth heat kernels.

Then the following two results hold true:

1. There exists a constant κ > 0 depending only on the dimension of M , and, for each k ∈ N and any

D > 0, a constant Ck(D) > 0, depending only on the bundle geometry of (E, h) ↓ M (but not on

N), such that for any pair x0, y0 ∈ N with dN (x0) := d(x0,M \N) ≥ D and dN (y0) ≥ D, we have

the inequality

||∆p[EM ]ke−t∆[M ](x0, y0)−∆p[EN ]ke−t∆[N ](x0, y0)|| ≤ Ck(D)e−
dM (x0)+dM (y0)+2d(x0,y0)

κt . (3.5.27)

2. For any t0 > 0, there exists a constant c(t0), such that for all t ≥ t0, we have

||e−t∆p[EM ](x, y)|| ≤ c(t0), (3.5.28)

||e−t∆p[EN ](x, y)|| ≤ c(t0). (3.5.29)

Proof. 1: We will proceed as in the proof of [55, Theorem 2.26]. An elementary, yet essential observation

we will take advantage of is the fact that, for E-valued p-forms ω, compactly supported inside N̊ (so

that, in particular, ω lies in the domain of both ∆p[EN ] and ∆p[EM ]), we have

∆p[EN ]ω = ∆p[EM ]ω in N̊ . (3.5.30)

Throughout this proof, the symbol ∆ stands for both ∆p[EM ] and ∆p[EN ]. By well-known properties

of the Fourier Transform of complex-valued functions and the spectral theorem, we have for any triple

m, l, k of non-negative integers and any t > 0 the following equality:

∆m∆l∆ke−t∆ =
(−1)m+l+k

√
πt

·
∫ ∞

0

d2(m+l+k)

ds2(m+l+k)
e−s

2/4t cos(s∆)ds. (3.5.31)
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Now let x0 and y0 be two points satisfying the assumptions of the theorem. Then the geodesic ball

BD/4(y0) of radius D/4 around y0 is the same for M and N , and we have BD/4(y0) ⊆ N̊ . Choose a p-

form u with compact support inside BD/4(y0), so that u lies in the domain of both ∆p[EN ] and ∆p[EM ].

Then, by the previous equation, there exists for any triple m, l, k of integers a universal polynomial

P : R2 → R, independent of x0, y0 and N , such that for

f := (∆[N ]ke−t∆[N ] −∆[M ]ke−t∆[N ])u, (3.5.32)

we have

∆m∆lf =

∫ ∞
0

t−2(m+l+k)−1/2P (
√
t, s)e−s

2/4t(cos(s
√

∆p[EM ])− cos(s
√

∆p[EN ]))u ds. (3.5.33)

Next, we will need to find a good upper bound for ||∆m∆lf ||BD/4(x0). For that precise purpose, we first

prove the following:

Claim 1: For any 0 ≤ s < L(x0, y0) := max{d(x0, y0)/2, dN (y0)/2}, we have

(cos(s
√

∆p[EM ])− cos(s
√

∆p[EN ]))u = 0 on BD/4(x0). (3.5.34)

Proof of Claim 1: By definition, we have that for any s < dN (y0)/2 the geodesic ball Bs(supp(u))

satisfies Bs(supp(u)) ⊆ Bs+D/4(y0) ⊆ B 3
4dN (y0)(y0) ⊆ N̊ since D ≤ dN (y0) by assumption. From the

unit propagation speed property of Theorem 3.5.5 and Equation 3.5.30, it follows that

∆p[EM ] cos(s
√

∆p[EM ])u = ∆p[EN ] cos(s
√

∆p[EM ])u 0 ≤ s < dN (y0)/2. (3.5.35)

This implies that cos(s
√

∆p[EM ])u satisfies the wave equation on [0, dN (y0)/2] ×N , given by Theorem

3.5.5 with ∆p = ∆p[EN ], which, by the first part of that theorem, is uniquely solved on that domain

by cos(s
√

∆p[EN ])u (and vice versa). It follows that cos(s
√

∆p[EM ])u = cos(s
√

∆p[EN ])u for 0 ≤ s <

dN (y0)/2. If d(x0, y0) ≥ dN (y0) ≥ D, we have BD/4(x0) ∩ Bs(supp(u)) = ∅ for any s < d(x0, y0)/2,

so by the unit propagation speed property of Theorem 3.5.5, applied to both cos(s
√

∆p[EM ])u and

cos(s
√

∆p[EN ])u, we have cos(s
√

∆p[EM ])u = cos(s
√

∆p[EN ])u ≡ 0 on BD/4(x0), finally proving Claim

1.

Together with the observation that | cos(r)| ≤ 1 for all r ∈ R and the spectral theorem, we can now

compute

||∆m∆lf ||BD/4(x0) ≤ 2(

∫ ∞
L(x0,y0)

t−2(m+l+k)−1/2P (
√
t, s)e−s

2/4tds) · ||u||0

≤ 2Cm,l,ke
−L(x0,y0)2/4t · ||u|| (3.5.36)

for an appropriate constant Cm,l,k > 0 independent of x0, y0 or N . We further obtain a pointwise

estimate

|∆lf(x0)| ≤ C ′l,k(D)e−L(x0,y0)2/4t · ||u||0, (3.5.37)

for an appropriate constant C ′l,k(D) independent of x0, y0 or N . This follows from the previous estimate,

along with the Sobolev estimates from Theorem 3.5.4 and the assumption that (M, g) is of bounded

geometry. Now, the definition of f , together with the equality ∆ne−t∆ = e−t∆∆n for any n ∈ N, and an

iterative application of Stokes’ theorem imply that

∆lf(x0) =

∫
M

∆l
y(∆[N ]ke−t∆[N ](x0, y)−∆[M ]ke−t∆[N ](x0, y))u(y)dy, (3.5.38)
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where ∆l
y denotes the appropriate Laplacian in y-coordinates. Choosing a sequence of smooth functions

(un)n∈N ⊂ L2(BD/4(y0)), with compact support inside BD/4(y0) and converging in L2-norm to the

restriction of ∆l(∆[N ]ke−t∆[N ](x0, y) − ∆[M ]ke−t∆[N ](x0, y)) ∈ L2(BD/4(y0)), we obtain from 3.5.37,

that

||∆l(∆[N ]ke−t∆[N ](x0, y)−∆[M ]ke−t∆[N ](x0, y))||L2(BD/4(y0)) ≤ C ′l,k(D)e−L(x0,y0)2/4t.

In the very same way as above, we use Theorem 3.5.4 and the assumption that (M, g) is of bounded

geometry (and therefore, also the associated bundle π∗1E
∗ ⊗ π∗2E ↓ M × M) to pass from the above

L2-estimate to a point-wise estimate

|(∆[N ]ke−t∆[N ](x0, y0)−∆[M ]ke−t∆[N ](x0, y0))| ≤ Ck(D)eL(x0,y0)2/4t (3.5.39)

for a constant Ck(D) as in the original assertion of the theorem. Analogously, swapping the roles of x0

and y0 and using the fact that the heat kernel is adjoint-symmetric, i.e ∆ke−t∆(x, y) = (∆ke−t∆(y, x))∗

holds for any appropriate pair x, y, we obtain

|(∆[N ]ke−t∆[N ](x0, y0)−∆[M ]ke−t∆[N ](x0, y0))| (3.5.40)

= |(∆[N ]ke−t∆[N ](y0, x0)−∆[M ]ke−t∆[N ](y0, x0))∗| (3.5.41)

= |(∆[N ]ke−t∆[N ](y0, x0)−∆[M ]ke−t∆[N ](y0, x0))| ≤ Ck(D)eL(y0,x0)2/4t, (3.5.42)

where L(y0, x0) := max{d(x0, y0)/2, dN (x0)/2}. Since

max{L(x0, y0), L(y0, x0)} ≥ 1
8 (dN (x0) + dN (y0) + 2d(x0, y0)), the result follows.

2 : is proven using the same methods as in 1, cf. [55, Theorem 2.35].

61



Chapter 4

Analytic torsion

Applying the technical results from the previous chapter, we can finally define in general the analytic

L2-invariants associated to a (not necessarily compact) given manifold-with-boundary M and a repre-

sentation ρ : π1(M)→ GL(V ) of its fundamental group, cf. Definition 4.2.3. As the title of this chapter

indicates, of particular interest is the analytic L2-torsion TAn(2) (M,ρ) ∈ R>0, which can only be defined if

the pair (M,ρ) satisfies the technical det-L2-acyclicity condition.

Regarding the main results of this thesis, we will then focus on a torsion-free lattice Γ < G := Isom+(Hn)

of orientation-preserving isometries on odd-dimensional hyperbolic n-space and an irreducible representa-

tion ρ : G→ GL(V ). Recall from Section 2.3 the associated exhaustion (MR)R∈R≥0
of Hn by Γ-invariant

submanifolds. From Section 4.2.3 onwards, we will show that the pair (Γ\Hn, ρ) as well as each pair of

the family {(Γ\MR, ρ) : R ∈ R≥0} meets the det-L2-acyclicity condition. Thus, we obtain L2-torsion

elements TAn(2) (Γ\Hn, ρ) and TAn(2) (Γ\MR, ρ). The two main results of this chapter, Theorem 4.2.21 and

Theorem 4.3.7, then establish the large-time convergence and the small-time convergence of the respective

summands in the function TAn(2) (Γ\MR, ρ) as R→∞. Taken together, these then imply the fundamental

convergence result limR→∞ TAn(2) (Γ\MR, ρ) = TAn(2) (Γ\Hn, ρ) from Theorem 2.3.13.

First of all, however, we will introduce in Section 4.1 the algebraic foundation of general L2-invariants:

Hilbert N (Γ)-Modules and Hilbert N (Γ)-cochain complexes. This way, we also provide the framework,

with the aid of which the combinatorial L2-invariants of the next chapter are defined.

4.1 Hilbert N (Γ)-modules

Throughout, we fix a countable group Γ. We denote by L2(Γ) the complex Hilbert space with orthonormal

basis the set Γ. It comes equipped with a natural left, linear Γ-action by isometries, arising as the extension

of the left multiplication by Γ on itself.

Definition 4.1.1. A Hilbert N (Γ)-module is a complex Hilbert space H, equipped with a left, linear

Γ-action by isometries, such that there exists a separable Hilbert space H and an isometric, Γ-equivariant

embedding H ↪→ L2(Γ)⊗̂H. Here, ⊗̂ denotes the tensor product of complex Hilbert spaces and the Γ-

action on L2(Γ)⊗̂H is the natural one induced by the canonical isometric Γ-action on the left factor (as
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described above). H is called finitely generated if we can chose H = Cn in the above identification.

A (not necessarily bounded) linear operator f : H → H′ between two Hilbert N (Γ)-modules is called a

morphism of Hilbert N (Γ) modules if it is closed, densely defined and Γ-equivariant. Here, Γ-equivariant

means that Γ.dom(f) = dom(f) and g.f(x) = f(g.x) for any x ∈ dom(f) and g ∈ Γ.

If f is, additionally, bounded, we say that f is a bounded morphism (of Hilbert N (Γ)-modules). Observe

that by the closed graph theorem, any bounded morphism is automatically everywhere defined, from which

immediately follows that the composition of two bounded morphisms is again a bounded morphism.

Since the property of being closed and densely defined is preserved under taking adjoints, the Hilbert

space adjoint f∗ : H′ → H of a morphism f : H → H′ is also again a morphism. Less trivial, but still

true, is the following important result:

Theorem 4.1.2. Let f : H → H be a morphism between Hilbert N (Γ)-modules. Then the composition

f∗f : H → H with dom(f∗f) := f−1(dom(f∗)) is a positive, self-adjoint morphism.

Proof. It is easily verified that f∗f is Γ-equivariant, positive and symmetric. The proof of the fact that

f∗f is self-adjoint and still densely defined can be found, for example, in [47, Page 275, Theorem 3.24].

For the purpose of this paper, the most important consequence of this theorem is that for any mor-

phism f : H → H′ of Hilbert N (Γ)-modules, the induced operator f∗f has a functional calculus, and

that, since f∗f is a morphism of Hilbert N (Γ)-modules, the same is true for any operator constructed

via functional calculus of f∗f .

We denote by BΓ(H) to be the space of all bounded endomorphisms of H and by PΓ(H) the sub-monoid

of positive bounded endomorphisms. Note that PΓ(H) includes in particular all projections onto closed,

Γ-invariants subspaces of H: Perhaps the essential feature of Hilbert N (Γ)-modules is the existence of

a particular positive function trΓ : PΓ(H) → [0,∞], the so-called von Neumann trace. As indicated by

its properties below, trΓ can be viewed as a generalization of the standard trace of finite-dimensional

endomorphisms:

1. trΓ(A) = 0⇔ A = 0 [Faithfulness],

2. trΓ(A∗A) = trΓ(AA∗) for all A ∈ BΓ(H) [Adjoint Symmetry].

3. If A,B ∈ PΓ(H) with A ≤ B (as positive operators), then trΓ(A) ≤ trΓ(B). [Monotonicity].

4. For any λ ≥ 0 and all A,B ∈ PΓ(H), we have trΓ(A+ λB) = trΓ(A) + λ trΓ(B) [Linearity].

5. trΓ is ultra-weakly continuous.

6. If H is a finitely generated Hilbert N (Γ)-module, then trΓ(A) <∞ for any A ∈ PΓ(H).

In fact, as shown [54, Definition 1.8], the von Neumann trace trΓ has the following explicit description:

Let e ∈ L2(Γ) be the unit element. Further, let Ψ : H ↪→ L2(Γ)⊗̂H be some Γ-equivariant, isometric

embedding and {xi}i∈I ⊆ H some (countable) orthonormal basis of H. Then, for any A ∈ PΓ(H), one

has

trΓ(A) =
∑
i∈I
〈AΨ∗(e⊗ xi),Ψ∗(e⊗ xi)〉 ∈ [0,∞]. (4.1.1)

Here, as everywhere else, e ∈ Γ denotes the unit of Γ.
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Definition 4.1.3. A bounded morphism f ∈ PΓ(H) is said to be of trace class if

trΓ(|f |) <∞, (4.1.2)

where |f | :=
√
f∗f is the positive, self-adjoint square root of f defined via Borel functional calculus of

f∗f . We denote by BΓ(H)1 ⊆ BΓ(H) the subset of trace class operators.

One can show that BΓ(H)1 is, in fact, a subspace of BΓ(H) and that trΓ extends to a linear functional

trΓ : BΓ(H)1 → C that still satisfies Identity 4.1.1. The well-known proof in the case Γ = {0}, see for

example [79, Section VI.6], can be adapted to the case of general countable groups Γ without difficulty.

Observe that BΓ(H) = BΓ(H)1 whenever H is finitely generated.

Finally, we can define the von Neumann Dimension of a Hilbert N (Γ)-module as

dimN (Γ)(H) = trΓ(11H) ∈ [0,∞]. (4.1.3)

The von Neumann dimension is an isomorphism invariant of finitely-generated Hilbert N (Γ)-modules,

see [54, Theorem 1.12]. We also remark that for a generic infinite group Γ, any real Number can occur

as the von Neumann dimension of an appropriate Hilbert N (Γ)-module, and that there exists infinitely-

generated Hilbert N (Γ)-modules that are still have finite von Neumann-dimension, see [54, Examples

1.11,1.14].

Lemma 4.1.2 now permits the next definition:

Definition 4.1.4. The spectral density function of a morphism f : H → H′ between two Hilbert

N (Γ)-modules is defined as

F (f, λ) := trΓ(χ[0,λ](|f |)) ∈ [0,∞], (4.1.4)

where χ[0,λ] is the indicator function of the corresponding closed set in R and χ[0,λ](|f |) is the associated

positive, bounded morphism defined via Borel functional calculus of |f |. If F (f, 0) <∞, we also define

F̂ (f, λ) = F (f, λ)− F (f, 0) ∈ [0,∞]. (4.1.5)

For a closed, Γ-invariant subspace L ⊆ H, we denote by pL : H → H the orthogonal projection onto

L. It is easy to see that pL is a bounded, positive morphism of Hilbert N (Γ)-modules (with ||pL|| = 1).

Lemma 4.1.5. [54, Section 2.1] Let f : H → H′ and g : H′′ → H′ be two morphisms of Hilbert N (Γ)-

modules. Then, for any λ ≥ 0, the following holds true:

1. We have F (f∗f,
√
λ) = F (f, λ) = F (|f |, λ).

2. We have F (f ⊕ g, λ) = F (f, λ) + F (g, λ).

3. We have F (f, λ) = sup{trΓ(pL) : L ∈ L(f, λ)}, where

L(f, λ) := {L ⊆ H closed, Γ-invariant subspace : ||f(x)|| ≤ λ||x|| ∀x ∈ L}.

Definition 4.1.6. A morphism f : H → H′ between Hilbert N (Γ)-modules is said to be Fredholm if

F (f, λ) <∞ ∀λ < ||f ||. (4.1.6)

f : H → H′ is called left Fredholm if the weaker condition F (f, λ) < ∞ for some λ > 0 holds. Here, we

use the convention ||f || =∞ whenever f is unbounded.
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Using Lemma 4.1.5, we find:

Corollary 4.1.7. Let f : H → H′ and g : H′′ → H be two morphisms of Hilbert N (Γ)-modules. Then

1. f is (left) Fredholm ⇔ f∗f is (left) Fredholm ⇔ |f | is (left) Fredholm.

2. f and g are (left) Fredholm ⇔ f ⊕ g is (left) Fredholm.

Note that any morphism f : H → H′ between Hilbert N (Γ) is automatically Fredholm whenever H
has finite von Neumann dimension. This follows since χ[0,λ](|f |) ≤ 11H (as positive operators), and hence

also F (f, λ) = trΓ(χ[0,λ](|f |)) ≤ trΓ(11H) = dimN (Γ)(H) <∞.

If f is Fredholm, it follows from the monotonicity of the trace and Lemma 4.1.5,(3) that F (f, . ) is

a non-decreasing, right-continuous function. Therefore, it defines a Borel measure Ff on R≥0 that is

uniquely determined by the identity

Ff ((a, b]) := F (f, b)− F (f, a) (4.1.7)

for any half-open interval (a, b] ⊆ R>0. From its definition, it is evident that the support of the measure

Ff equals the spectrum of f∗f , i.e.

supp(Ff ) = σ(|f |).

Moreover, under the convention that ||f || :=∞ whenever f is unbounded, we have σ(|f |) ⊆ [0, ||f ||]. In

particular, if f is a bounded morphism, Ff is a compactly supported measure.

Definition 4.1.8 (Determinant class). Let f : H → H′ be a Fredholm morphism. Then f is of deter-

minant class if
∫ 1

0+
log(λ)dFf (λ) > −∞.

Definition 4.1.9 (Fuglede-Kadison determinant). Let f : H → H′ be a bounded morphism with H
finite-dimensional. Define the Fuglede-Kadison determinant detΓ(f) ∈ R≥0 of f as

detΓ(f) =

exp(
∫∞

0+
log(λ)dFf (λ)) ∈ R>0 if f is of determinant class,

0 else.
(4.1.8)

Remark 4.1.10. As stated above, any bounded morphism f over a finite-dimensional Hilbert N (Γ)-

module is automatically Fredholm and has compactly supported measure Ff . That is why we have

an equality
∫∞

1
log(λ)dFf (λ) =

∫ ||f ||
1

log(λ)dFf (λ), i.e.
∫∞

1
log(λ)dFf (λ) is always a convergent integral.

Provided that f is also of determinant class, the integral
∫∞

0+
log(λ)dFf (λ) therefore also always converges.

Example 4.1.11. Assume that Γ = {0}. In this instance, any finitely generated Hilbert N (Γ)-module

H is simply a finite-dimensional complex inner product space, and trΓ becomes the usual trace for linear

endomorphisms of finite-dimensional spaces. This means that for any f ∈ BΓ(H), trΓ(f) is just the sum

of all eigenvalues of f , counted with multiplicity. This implies that the spectral density function of f is

a step function taking the form

F (f, x) =
∑

λ∈E(|f |)≤x2

jλ,

where E(|f |) the set of all (positive) eigenvalues of |f | and jλ is the geometric multiplicity of λ. In

particular, the measure Ff is simply the finite sum of Dirac measures, which is why f is of determinant

class and

log detΓ(f) =
∑

06=λ∈E(|f |)

jλ log(λ). (4.1.9)
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Since for any invertible matrix, the eigenvalues of |f | are just the absolute values of the eigenvalues

of f (with same geometric multiplicities), we deduce from this example, that:

Lemma 4.1.12. Let Γ = {0} be the trivial group and let f ∈ GLn(C). Then

detΓ(f) = |det(f)|, (4.1.10)

where det denotes the usual algebraic determinant.

Note that unlike the algebraic determinant, the appearance of the adjoint in the definition of detΓ

suggest that for general (non-invertible) operators f ∈ BΓ(H,H′), the function detΓ ∈ BΓ(H,H′) does

depend of the choice of inner products on H and H′.

Example 4.1.13. That this is indeed the case can already be witnessed in the basic case Γ = {0}: For

i = 1, 2 , let Hi := (C2, 〈· , ·〉i), where 〈· , ·〉i is the inner product induced by the positive matrix Ai with

A1 =

(
1 0

0 1

)
, A2 =

(
1 0

0 4

)
.

Then the endomorphism

B :=

(
0 0

1 0

)
,

when regarded as an element of BΓ(H1) satisfies detΓ(B) = 1, since

B∗ =

(
0 1

0 0

)

in this case, so that the matrix B∗B has 1 as its unique non-zero eigenvalue. However, when regarded as

an element of BΓ(H2), we compute that

B∗ =

(
0 4

0 0

)
,

which is why we obtain detΓ(B) = 2 in that case.

Conversely, while the algebraic determinant is only well-defined for finite-dimensional endomorphisms,

the Fuglede-Kadison determinant has the added advantage of being defined for all bounded morphisms

between any two arbitrary finitely-generated Hilbert N (Γ)-modules. Moreover, it has various natural

and useful properties, many of which are (slightly modified) generalizations of properties of the algebraic

determinant.

Proposition 4.1.14. [54, Theorem 3.14, Lemma 3.15] Let H, H′, H′′ and H′′′ be finitely generated

Hilbert N (Γ)-module. Further, let f : H → H′, g : H′′ → H′′′ and h : H′′ → H′ be bounded morphisms.

Then:

1. One has detΓ(λ · f) = |λ| · detΓ(f) for any λ ∈ C×.

2. If f : H → H′ is a partial isometry, then detΓ(f) = 1.

3. If f : H → H′ has dense image and g : H′ → H′′ is injective, then detΓ(g ◦ f) = detΓ(g) · detΓ(f).
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4. Let

(
f h

0 g

)
: H⊕H′ → H′′⊕H′′′ be a morphism, such that f : H → H′′ has dense image and

g : H′ → H′′′ is injective. Then detΓ

(
f h

0 g

)
= detΓ(f) · detΓ(g).

Any morphism f : H → H′ admits an orthogonal complement

f⊥ := f |ker(f)⊥ : ker(f)⊥ → im(f). (4.1.11)

It is an injective morphism with dense image that satisfies (f⊥)∗ = (f∗)⊥ and (f⊥)∗f⊥ = (f∗f)⊥. From

this, it follows that f⊥ is Fredholm whenever f is Fredholm. The converse direction need not necessarily

hold, since f⊥ doesn’t ”see” the kernel of f , which could be of infinite von Neumann dimension. In

general, if f has finite-dimensional kernel, we have the correspondence

F (f⊥, λ) = F̂ (f, λ) = F (f, λ)− F (f, 0) (4.1.12)

for any λ > 0, showing that, in this case, f is Fredholm if and only if f⊥ is Fredholm. In this case, it

follows that Ff (λ) = Ff⊥(λ) for all λ > 0, which implies that detΓ(f) = detΓ(f⊥), if f : H → H′ is

bounded and H finite-dimensional.

Lemma 4.1.15. Let H be a finite-dimensional complex vector space and let H := L2(Γ) ⊗C H be the

Hilbert N (Γ)-module with its obvious (left) Γ-action. Then, for any bounded morphism f ∈ BΓ(L2(Γ))

that is injective with dense image and any invertible endomorphism A ∈ GL(H), the tensor product f⊗A
lies in BΓ(L2(Γ)⊗C H) and satisfies

detΓ(f ⊗A) = detΓ(f)dimC(H)|det(A)|. (4.1.13)

Proof. We can write (f ⊗A) = (f ⊗ 11H) ◦ (11L2(Γ) ⊗A) = (11L2(Γ) ⊗A) ◦ (f ⊗ 11H). Since A is invertible

and f is injective with dense image, we obtain from Proposition 4.1.14,(2), that

detΓ(f ⊗A) = detΓ(f ⊗ 11H) detΓ(11L2(Γ) ⊗A). (4.1.14)

To compute detΓ(f ⊗ 11H), we observe that under a linear isometry H ∼= Cn with n = dimC(H), we

can identify (f ⊗ 11H) with a diagonal matrix over L2(Γ)n with diagonal entries f . Consequently, by

Proposition 4.1.14,(2)–(4), we get

detΓ(f ⊗ 11H) = detΓ(f)dimC(H). (4.1.15)

From [54, Theorem 3.14,(6)] and Lemma 4.1.12, we also get

detΓ(11l2(Γ) ⊗A) = det{0}(A) = |det(A)|. (4.1.16)

The result now follows from 4.1.14–4.1.16.

We wish to extend the concept of the Fuglede-Kadison determinant onto unbounded Fredholm op-

erators over infinite-dimensional Hilbert N (Γ)-modules. However, although the notion of determinant

class, i.e. the question of convergence of the integral
∫ 1

0+
log(λ)dFf (λ) still makes sense in this scenario,

the measure Ff of an unbounded operator is not compactly supported anymore. Therefore, if f is un-

bounded, the integral
∫∞

1
log(λ)dFf will never converge, which is why a different method is needed in
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order to define a reasonable determinant of f .

For an arbitrary Borel measure µ on R≥0, we introduce the space of essentially bounded Borel functions

B(R≥0, µ) := {φ : R≥0 → C Borel : ||φ||∞ := sup
x∈supp(µ)

|φ(x)| <∞}.

Lemma 4.1.16. Let (µn)n∈N be a sequence of Borel measures on R≥0. Further, assume that there exists

a Borel measure µ on R≥0 with the property that, for every measurable subset O ⊆ R+

1. µn(O) ≤ µ(O), and

2. if µ(O) <∞, we have limn→∞ µn(O) = µ(O).

Then, for any positive function φ ∈ B(R≥0, µ), we have an equivalence

φ ∈ L1(R≥0, µ)⇐⇒ φ ∈
⋂
n∈N

L1(R, µn) and lim inf
n→∞

∫
R≥0

φ dµn <∞. (4.1.17)

Finally, if one of the two equivalent conditions hold, then

lim
n→∞

∫
R≥0

φ dµn =

∫
R≥0

φ dµ. (4.1.18)

Proof. First, we show that φ ∈ L1(R≥0, µ) implies both φ ∈
⋂
n∈N L

1(R, µn) and

limn→∞
∫
R≥0

φ dµn =
∫
R≥0

φ dµ. The weaker property lim infn→∞
∫
R≥0

φ dµn <∞ then clearly follows.

Since φ ∈ B(R≥0, µ) ∩ L1(R≥0, µ) by assumption, the containment φ ∈ B(R≥0, µn) ∩ L1(R, µn) for each

n ∈ N follows immediately from assertion 1. Now let ε > 0. As φ ∈ L1(R, µ), there exists some large

K >> 0, so that |
∫∞
K
φdµ| < ε/4. From assertion 1, it follows that also |

∫∞
K
φdµn| < ε/4 for each n ∈ N.

Moreover, by assertion 2, we find N ∈ N such that for all n ≥ N , we have |µ([0,K)) − µn([0,K))| <
1
2ε/||φ||∞. Therefore, for all n ≥ N , we get

|
∫
R≥0

φ dµ−
∫
R≥0

φ dµn| ≤ |
∫

[0,K)

φ dµ−
∫

[0,K)

φ dµn|+ |
∫ ∞
K

φ dµ|+ |
∫ ∞
K

φ dµn|

≤ ||φ||∞|µ([0,K))− µn([0,K))|+ ε/2 ≤ ε.

Letting ε > 0, the result follows.

Conversely, if φ ∈
⋂
n∈N L

1(R, µn) and lim infn→∞
∫
R≥0

φdµn <∞, then the containment φ ∈ L1(R≥0, µ)

follows from assertion 2 and Fatou’s lemma, since∫
R≥0

φ dµ ≤ lim inf
n→∞

∫
R≥0

φ dµn <∞,

completing the proof.

Lemma 4.1.17. Let f : H → H′ be a Fredholm morphism, and let φ ∈ B(R≥0, Ff ) be positive. Then the

bounded morphism φ(|f |) is of trace class if and only if φ ∈ L1(R≥0, Ff ), in which case we get

trΓ(φ(|f |)) =

∫ ∞
0

φ(λ) dFf (λ). (4.1.19)

In particular, φ(|f |) is of trace class if either

1. φ or Ff is compactly supported, or
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2. φ ∈ C1(R), φ′(λ) · F (f, λ) ∈ L1(R) and limλ→+∞ φ(λ) · F (f, λ) = 0.

Proof. From spectral theory, it follows that φ(|f |) is bounded with norm estimate ||φ(|f |)|| ≤ ||φ||∞ <∞.

Recall from 4.1.1 that we find a countable subset {ei}∞i=1 ⊆ H (with ej := 0 for all j > dimN (Γ)(H)),

such that the von Neumann trace trΓ(g) for any positive, bounded morphism g ∈ P(H) can be written

as

trΓ(g) =

∞∑
i=1

〈gei, ei〉 ∈ [0,∞].

In particular, we get

Ff ((a, b]) = trΓ(χ(a,b](f)) =

∞∑
i=1

〈χ(a,b](|f |)ei, ei〉 <∞.

This observation allows us to define for any n ∈ N the right-continuous Borel measure Ff,n on R+ via

Ff,n((a, b]) :=

n∑
i=1

〈χ(a,b](|f |)ei, ei〉

for any half-open interval (a, b] ∈ R+. By spectral theory, any bounded Borel function φ ∈ B(R≥0, Ff )

lies in L1(R≥0, Ff,n) for any n ∈ N and satisfies∫ ∞
0

φ · dFf,n =

n∑
i=1

〈φ(|f |)ei, ei〉.

Now observe that the pair ((Ff,n)n∈N, Ff ) satisfies the assumptions of Lemma 4.1.16. Using the results

of the same lemma, we have the following chain of equivalences

trΓ(φ(|f |)) = lim
n→∞

∫ ∞
0

φ(λ) · dFf,n(λ) <∞⇔ φ ∈ L1(R≥0, dFf )

and

∫ ∞
0

φ(λ)dFf (λ) = lim
n→∞

∫ ∞
0

φ(λ) · dFf,n(λ).

Next, under the additional assumptions made on φ, we show that the integral
∫∞

0
φ(λ) ·dFf (λ) converges.

This is immediately obvious if φ or Ff is compactly supported, since then, one finds a compact subset

K ⊆ R≥0, so that
∫∞

0
φ(λ) · dFf (λ) ≤ ||φ||∞Ff (K) <∞. Under the the second assumption, we have∫ ∞

0

φ(λ) · dFf (λ) = lim
k→∞

(
−
∫ k

0

φ′(λ) · F (f, λ)dλ+ φ(k) · F (f, k)− φ(0) · Ff (0)

)
∈ R . (4.1.20)

We refer to [57, Lemma 4.1] for a proof of the above identity. In other words, we also have φ ∈ L1(R, dFf ).

Suppose that f is a Fredholm homomorphism with the property that for each t > 0, the heat evolution

operator e−t|f |
⊥

is of trace class. At least formally, we can now consider the (truncated/small-time) zeta-

function of f as

ζf (s) := Γ(s)−1

∫ 1

0

ts−1 trΓ(e−t|f |
⊥

)dt, (4.1.21)

for any s ∈ C. Here, Γ(s) :=
∫∞

0
ts−1e−tdt denotes the complex Gamma function.

Definition 4.1.18 (ζ-regular). A Fredholm morphism f : H → H′ is said to be ζ-regular if the following

two conditions hold:
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1. For each t > 0, the operator e−t|f |
⊥

is of trace class.

2. There exists some constant C > 0, such that ζf,sm(s) is a holomorphic function on {s ∈ C : <(s) >

C}, extending to a meromorphic function on all of C that is regular (i.e. holomorphic) at s = 0.

Remark 4.1.19. Observe that for any morphism f : H → H′ with the property that trΓ(e−t|f |
⊥

) is of

trace class for each t > 0, it actually follows that f⊥ is Fredholm. Indeed, notice that χ[0,λ](|f |⊥) =

χ[0,λ](|f |⊥) ·e|f |⊥ ·χ[0,λ](|f |⊥) ·e−|f |⊥ for each λ > 0. Together with the fact that Γ-trace class morphisms

form an ideal inside the algebra of bounded endomorphisms over a Hilbert N (Γ)-module, it follows that

χ[0,λ](|f |⊥) is of Γ-trace class, i.e. that f⊥ is Fredholm. Provided that F (f, 0) = dimN (Γ)(ker(f)) < ∞,

it also now follows that F (f, λ) = F (f⊥, λ) + F (f, 0) <∞ for each λ ≥ 0, i.e. that f is Fredholm.

For a ζ-regular morphism f : H → H′, the (complex) derivative d
dsζf (s)|s=0 ∈ C of ζf at 0 is well-

defined. In fact, we must have d
dsζf (s)|s=0 ∈ R. This follows since ζf (s) is of the integral shape as in

4.1.21 for any s ∈ C with sufficiently large real part, from which one deduces that ζf (s) = ζf (s) for all

sufficiently large s. Therefore, the same equality holds true for the meromorphic extension, which is why

in particular ζf (s) ∈ R for all s ∈ R near 0, proving that d
dsζf (s)|s=0 ∈ R.

Proposition 4.1.20. [54, Lemma 3.139] Let f : H → H′ be a Fredholm morphism, such that trΓ(e−t|f |
⊥

) <

∞ for all t > 0. Then f is of determinant class if and only if∫ ∞
1

t−1 trΓ(e−t|f |
⊥

)dt <∞. (4.1.22)

Definition 4.1.21 (ζ-regularized Determinant). Let f : H → H′ be a Fredholm morphism that is

ζ-regular. Then its ζ-regularized determinant detζΓ(f) ∈ R≥0 is defined as

detζΓ(f) :=

exp
(
−ζ ′f (0)−

∫∞
1
t−1 trΓ(e−t|f |

⊥
)dt
)
∈ R>0 if f is of determinant class,

0 else.
(4.1.23)

Remark 4.1.22. Observe that by definition, one has detζΓ(f) = detζΓ(f⊥).

Before we unwind this complicated definition and relate it to the Fuglede-Kadison determinant, let us

first address one of the main problems that we will frequently encounter, namely the question of whether

or not a given Fredholm morphism f : H → H′ is of determinant class. The quantity we will introduce

next will play an important part in that.

Definition 4.1.23 (Novikov-Shubin invariant). Let f be a morphism that is left Fredholm. The

Novikov-Shubin invariant α(f) ∈ [0,∞]∪̇{∞+} of f is defined via

α(f) :=

sup{α ∈ [0,∞] : F̂ (f, λ) ∈ O(λα) for λ→ 0} if F̂ (f, λ) > 0 ∀λ > 0,

∞+, else.
(4.1.24)

Observe that α(f) will attain the value of the formal symbol∞+ precisely when f⊥ has a spectral gap

at zero, i.e. when f⊥ is has a bounded inverse (with norm exactly the size of the spectral gap). Using

[54, Lemma 3.139,(6)], it can be checked that for morphism satisfying trΓ(e−t|f |
⊥

) <∞ for all t > 0, one

has

α(f) =

sup{α ∈ [0,∞] : trΓ(e−t|f |
⊥

) ∈ O(t−α) for t→∞} if F̂ (f, λ) > 0 ∀λ > 0

∞+ else.
(4.1.25)
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Proposition 4.1.24. [54, Theorem 3.14,(4)] Let f : H → H′ be a Fredholm morphism, such that

trΓ(e−t|f |
⊥

) <∞ for all t > 0 and α(f) 6= 0. Then f is of determinant class.

For the next proposition that relates the Fuglede-Kadison determinant to the ζ-regularized deter-

minant, we introduce the complete zeta-function and the large time zeta-function of f as the formal

expressions

ζf,cp(s) := Γ(s)−1

∫ ∞
0

ts−1 trΓ(e−t|f |
⊥

)dt, (4.1.26)

ζf,la(s) := Γ(s)−1

∫ ∞
1

ts−1 trΓ(e−t|f |
⊥

)dt. (4.1.27)

Proposition 4.1.25. Let f : H′ → H be a bounded morphism on a finite-dimensional Hilbert N (Γ)-

module H′, such that α(f) = ∞+. Then f is ζ-regular. In fact, the integral expression for ζf,cp(s)

determines a holomorphic function on the half-plane {<(s) > 0}, which extends to an entire function on

all of C. Moreover, we have

detΓ(f) = exp(− d

ds
ζf,cp(s)|s=0) = detζΓ(f), (4.1.28)

i.e. the Fuglede-Kadison determinant agrees with the ζ-regularized determinant of f .

Proof. First, recall that α(f) =∞+ is just equivalent to the statement that f⊥ has a spectral gap at 0.

In other words, there exists an ε > 0, so that σ(|f |⊥) ⊆ [ε, ||f ||]. Together with Lemma 4.1.17, we obtain

that

trΓ(e−t|f |
⊥

) =

∫ ||f ||
ε

e−tλdFf (λ) ≤ dimN (Γ)(H)e−tε.

We use the well-known identity∫ ∞
0

ts−1e−tzdt = Γ(s)z−s = Γ(s) · e−s log(z)

for any pair of complex numbers z, s ∈ C with z ∈ C \(−∞, 0] and <(s) > 0. Observe also that for t > 0,

one has |ts−1| = t<(s)−1.

This way, we obtain for any s ∈ C with <(s) > 0 that∫ ∞
0

t<(s)−1 trΓ(e−t|f |
⊥

) dt ≤ dimN (Γ)(H)

∫ ∞
0

t<(s)−1e−tεdt

= dimN (Γ)(H)Γ(<(s))ε<(s) <∞.

We may therefore apply the Fubini-Tonelli theorem and obtain for <(s) > 0 that

ζf,cp(s) = Γ(s)−1

∫ ∞
0

ts−1 trΓ(e−t|f |
⊥

) dt =

∫ ||f ||
ε

Γ(s)−1

∫ ∞
0

ts−1e−tλ dt dFf (λ)

=

∫ ||f ||
ε

λ−sdFf (λ). (4.1.29)

It is well-known that for fixed λ > 0, the function λ−s is an entire functions on s ∈ C. Conversely, fixing

s ∈ C and varying λ, the function λ−s, as well as its s-derivative − log(λ)λ−s, is uniformly bounded on

the interval [ε, ||f ||], which is why both are integrable over [ε, ||f ||] with respect to the spectral measure

Ff .

From the dominated convergence theorem, we now conclude that the integral expression of ζf,cp(s)
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determines a holomorphic function on the half-plane {s ∈ C : <(s) > 0} and extends via the formula

4.1.29 to an entire function on all of C, such that

d

ds
ζf,cp(s)|s=s0 = −

∫ ||f ||
ε

log(λ)λ−s0dFf . (4.1.30)

In particular, one has

log detΓ(f) = − d

ds
ζf,cp(s)|s=0. (4.1.31)

Furthermore, as the integral
∫∞

1
ts−1e−tz converges absolutely for any s ∈ C and any z ∈ C with <(z) > 0,

the same holds true for
∫∞

1
ts−1 trΓ(e−t|f |

⊥
)dt, since∫ ∞

1

|ts−1 trΓ(e−t|f |
⊥

)|dt =

∫ ∞
1

t<(s)−1 trΓ(e−t|f |
⊥

)dt ≤ dimN (Γ)(H)

∫ ∞
1

t<(s)−1e−tεdt <∞.

Therefore, the expressions
∫∞

1
ts−1 trΓ(e−t|f |

⊥
)dt and ζf,la(s) actually are entire functions for s ∈ C (no

regularization is required here).

Together with the above, we conclude that the expression ζf,sm(s) = ζf,cp(s)−ζf,la(s) determines a holo-

morphic function on the half-plane {s ∈ C : <(s) > 0} and extends via the expression
∫ ||f ||
ε

λ−sdFf (λ)−
ζf,la(s) to an entire function on all of C. In particular, f is ζ-regular and we get

d

ds
ζf,cp(s)|s=0 =

d

ds
ζf,sm(s)|s=0 +

d

ds
ζf,la(s)|s=0. (4.1.32)

Lastly, it is well-known that for any complex-valued function h(s) holomorphic at 0, it holds that
d
ds (Γ(s)−1h(s))|s=0 = h(0). Applied to h(s) =

∫∞
1
ts−1 trΓ(e−t|f |

⊥
), we therefore obtain

d

ds
ζf,la(s)|s=0 =

∫ ∞
1

t−1 trΓ(e−t|f |
⊥

). (4.1.33)

The equality exp(− d
dsζf,cp(s)|s=0) = detζΓ(f) now follows from 4.1.31–4.1.33.

Remark 4.1.26. In order to justify the introduction of the ζ-regularized determinant, one has to provide

examples of unbounded operators (for which detΓ cannot be defined, as already mentioned) that are still

ζ-regular and of determinant class. In fact, many such examples exist and will be thoroughly studied in

the next chapters.

Although the previous lemma shows that they agree in some instances, detζΓ is in general not as well-

behaved as detΓ. For example, a multiplicativity formula as in Lemma 4.1.14 does in general not hold

for detζΓ. We refer to [33] for more details on this phenomenon. In spite of this, the crucial additivity

property from detΓ still extends to detζΓ.

Lemma 4.1.27. Let f : H → H′ and g : H′′ → H′′′ be morphisms of Hilbert N (Γ)-modules. Then the

direct sum f ⊕ g : H⊕H′′ → H′⊕H′′′ is a Fredholm morphism if and only if f and g are Fredholm

morphisms. Moreover, for each t > 0, e−t|f⊕g|
⊥

is of trace class if and only if both e−t|f |
⊥

and e−t|g|
⊥

are of trace class, in which case we get

trΓ(e−t|f⊕g|
⊥

) = trΓ(e−t|f |
⊥

) + trΓ(e−t|g|
⊥

). (4.1.34)

In particular, if both f and g are ζ-regular, so is f ⊕ g, in which case we get

detζΓ(f ⊕ g) = detζΓ(f) detζΓ(g) ∈ R≥0 . (4.1.35)
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Proof. First, observe first that (f ⊕ g)⊥ = f⊥ ⊕ g⊥. Together with Lemma 4.1.5, we deduce that

∀λ ∈ R≥0 : F ((f ⊕ g)⊥, λ) = F (f⊥, λ) + F (g⊥, λ) =⇒ F(f⊕g)⊥ = Ff⊥ + Fg⊥ . (4.1.36)

Applying Proposition 4.1.17, it follows that for any t > 0, e−t|f⊕g|
⊥

is of trace class if and only if both

trΓ(e−t|f |
⊥

) and trΓ(e−t|g|
⊥

) are of trace class

trΓ(e−t|f⊕g|
⊥

) =

∫ ∞
0

e−tλdF(f⊕g)⊥(λ) =

∫ ∞
0

e−tλ
(
dFf⊥(λ) + dFg⊥(λ)

)
= trΓ(e−t|f |

⊥
) + trΓ(e−t|g|

⊥
).

4.1.1 Hilbert N (Γ)-cochain complexes

Definition 4.1.28. A Hilbert N (Γ)-cochain complex (C∗, c∗) is a sequence

(C∗, c∗) : 0→ C0
c0−→ C1

c1−→ C2
c2−→ . . . , (4.1.37)

where Cp is a Hilbert N (Γ)-module, each cp is a morphism between Hilbert N (Γ)-modules, satisfying

cp+1 ◦ cp = 0. (C∗, c∗) is called finite if additionally, Cp = 0 for all but finitely many p’s, each cp is

bounded, and each Cp is a finitely-generated Hilbert N (Γ)-module.

A morphism f∗ : (C∗, c∗) → (D∗, d∗) of Hilbert N (Γ)-cochain complexes is a family fp : Cp → Dp

of bounded morphisms, satisfying for each p ∈ N0

• fp(dom(cp)) ⊆ dom(dp),

• fp+1cp = dpfp on dom(cp).

We say that two morphisms f∗, g∗ : C∗ → D∗ between Hilbert N (Γ)-cochain complexes are L2-chain

homotopic (written f ' g) if there exists a collection of bounded morphisms K∗ : C∗ → D∗−1, satisfying

for each p ∈ N0

• Kp(dom(cp)) ⊆ dom(dp−1),

• fp − gp = Kp+1cp + dp−1Kp on dom(cp).

K∗ is called an chain homotopy between f∗ and g∗. Two Hilbert N (Γ)-cochain complexes (C∗, c∗)

and (D∗, d) are called chain homotopy equivalent (written C∗ ∼ D∗) if there exists morphisms

f∗ : C∗ → D∗ and g∗ : D∗ → C∗ such that f∗g∗ ' 11D∗ and g∗f∗ ' 11C∗ . f∗ is called a chain homotopy

equivalence between C∗ and D∗ with chain homotopy inverse g∗.

A cochain complex (C∗, c∗) is said to be contractible if it is chain homotopy equivalent to the trivial

complex ({0}∗, 0∗) = {0} → {0} → {0} → . . . . Equivalently, (C∗, c∗) is contractible if the identity map

11C∗ : C∗ → C∗ and the trivial map 0C∗ : C∗ → C∗ are chain homotopic.

Since cp is by requirement closed and Γ-equivariant, it follows that for each p ∈ N0, ker(cp) ⊆ Cp is a

closed, Γ-equivariant subspace. Since im(cp−1) ⊆ ker(cp), we must therefore also have im(cp−1) ⊆ ker(cp),

so that the next definition makes sense.
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Definition 4.1.29 (L2-cohomology). Let (C∗, c∗) be a cochain complex of Hilbert N (Γ)-modules. For

p ∈ N0, the p-th L2-cohomology of (C∗, c∗) is defined to be the Hilbert N (Γ)-module (with induced

inner product and Γ-action)

Hp(C) := ker(cp)/im(cp−1). (4.1.38)

Similarly, the p-th (unreduced, ordinary) cohomology of (C∗, c∗) is defined to be the (not necessarily

complete) quotient space

Ĥp(C) := ker(cp)/ im(cp−1). (4.1.39)

Definition 4.1.30. The p-th L2-Betti-number of a Hilbert N (Γ)-cochain complex (C∗, c∗) is defined

as

b(2)
p (C∗) := dimN (Γ)(Hp(C∗)) ∈ [0,∞]. (4.1.40)

we say that (C∗, c∗) is (weakly) acyclic if b
(2)
p (C∗) = 0 (equivalently, if Hp(C∗) = {0}) for all p ∈ N0.

Using the definitions, the next lemma can be proven straightforwardly:

Lemma 4.1.31. Let (C∗, c∗) and (D∗, d∗) be two Hilbert N (Γ)-cochain complexes. Then any morphism

f∗ : C∗ → D∗ induces for each p ∈ N0 a bounded morphism of Hilbert N (Γ) modules H∗(f∗) : H∗(C) →
H∗(D) that is natural in the sense that

1. if g∗ : D∗ → E∗ is a another morphism of Hilbert N (Γ)-cochain complexes, then H∗(f∗g∗) =

H∗(f∗)H∗(g∗),

2. H∗(1C∗) = 1H∗(C) for 1C∗ : C∗ → C∗ the identity, and

3. if f ' g, then H∗(f∗) = H∗(g∗).

Immediately, we obtain

Corollary 4.1.32. If C∗ ∼ D∗ via the chain homotopy equivalences f∗ : C∗ → D∗ and g∗ : D∗ → C∗,

then H∗(f∗) : H∗(C) → H∗(D) is an isomorphism of Hilbert N (Γ)-modules with inverse H∗(g∗). In

particular, we get b
(2)
p (C∗) = b

(2)
p (D∗) for any p ∈ N0.

Given a chain complex (C∗, c∗) and p ∈ N0, we define its p-th Laplacian

∆p := cp−1c
∗
p−1 + c∗pcp (4.1.41)

simply as the sum of two self-adjoint operators. Since both dom(cp−1c
∗
p−1) and dom(c∗pcp) are Γ-

equivariant by Theorem 4.1.2, it follows that ∆p is a Γ-equivariant operator. That ∆p is, in fact, a

self-adjoint morphism will follow from the next proposition:

Proposition 4.1.33. For each p ∈ N0, we have

ker(∆p) = ker(cp) ∩ ker(c∗p−1) (4.1.42)

and an orthogonal Hodge decomposition

Cp = ker(∆p)⊕ ker(c∗p−1)⊥ ⊕ im(c∗p) = ker(∆p)⊕ im(cp−1)⊕ ker(cp)
⊥. (4.1.43)
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In particular, we have a natural isomorphism of Hilbert N (Γ)-modules

ker(∆p) ∼= Hp(C∗).

Moreover, with regards to the above Hodge decomposition, ∆p decomposes as the diagonal operator

∆p := 0⊕ c⊥p−1(c⊥p−1)∗ ⊕ (c⊥p )∗c⊥p (4.1.44)

and is therefore self-adjoint (as the direct sum of self-adjoint operators).

Proof. The inclusion ker(cp) ∩ ker(c∗p−1) ⊆ ker(∆p) follows directly from the definition. For the opposite

inclusion, observe first that, by the definition of sum and composition of unbounded operators, we have

dom(∆p) = dom(cp−1c
∗
p−1) ∩ dom(c∗pcp) = (c∗p−1)−1 dom(cp−1) ∩ c−1

p dom(c∗p) ⊆ dom(c∗p−1) ∩ dom(cp) =

dom(c∗p−1) ∩ dom((c∗p)
∗). Therefore, if x ∈ ker(∆p), we can make the following algebraic simplifications

0 = 〈∆px, x〉 = 〈cp−1c
∗
p−1x, x〉+ 〈c∗pcpx, x〉 = ||c∗p−1x||2 + ||cpx||2, (4.1.45)

implying that x ∈ ker(c∗p−1) ∩ ker(cp), therefore 4.1.42 as desired.

Using the inclusion im(cp−1) ⊆ ker(cp) and the equality im(cp−1)⊥ = ker(c∗p−1), we can now compute

Cp = ker(cp)⊕ ker(cp)
⊥ =

(
ker(cp) ∩ im(cp−1)⊥

)
⊕ im(cp−1)⊕ ker(cp)

⊥

=
(
ker(cp) ∩ ker(c∗p−1)

)
⊕ im(cp−1)⊕ ker(cp)

⊥ = ker(∆p)⊕ im(cp−1)⊕ ker(cp)
⊥.

For a Hilbert N (Γ)-cochain complex (C∗, c∗) and p ∈ N0, we set

Fp(C∗, λ) := F (cp|im(cp−1)⊥ , λ) ∈ [0,∞]. (4.1.46)

If Fp(C∗, 0) <∞, we can further define

F̂p(C∗, λ) := Fp(C∗, λ)− Fp(C∗, 0). (4.1.47)

Such a complex (C∗, c∗) is called Fredholm at p if the restricted morphism cp|im(cp−1)⊥ is Fredholm.

(C∗, c∗) is called a Fredholm complex if it is Fredholm at p all p ∈ N0, i.e. if all of its restricted boundary

maps are Fredholm operators. Observe that any finite Hilbert N (Γ)-cochain complex is automatically

Fredholm.

For p ∈ N0, define the p-th Novikov-Shubin invariant of (C∗, c∗) that is Fredholm at p via

αp(C∗) := α(cp|im(cp−1)⊥). (4.1.48)

Observe that the inclusion im(cp−1) ⊆ im(cp−1) induces a canonical embedding of vector spaces Hp(C) ⊆
Ĥp(C). Therefore, Ĥp(C) = 0 certainly also implies Hp(C) = 0. A more precise relation is formulated

next:

Lemma 4.1.34. [54, Lemma 2.18] Let (C∗, c∗) be a cochain complex of Hilbert N (Γ)-modules. Then the

following properties are equivalent:

1. (C∗, c∗) is strongly acyclic, that is Ĥp(C∗) = 0 for all p ∈ N0,
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2. ∆p is boundedly invertible for all p ∈ N0,

3. (C∗, c∗) is Fredholm, acyclic and satisfies αp(C∗) =∞+ for all p ∈ N0.

Given a sequence of Hilbert N (Γ)-cochain complexes

0→ C∗
f∗−→ D∗

g∗−→ E∗ → 0 (4.1.49)

that is exact (i.e. fp : Cp → Dp is injective, gp : Dp → Ep is surjective and ker(gp) = im(fp) for each

p ∈ N), we obtain a sequence of morphisms in reduced cohomology

· · · → Hp(C∗)
Hp(f∗)−−−−→ Hp(D∗)

Hp(g∗)−−−−→ Hp(E∗)
∂p−→ Hp+1(C∗)→ . . . , (4.1.50)

which is weakly exact whenever all three complexes C∗, D∗, E∗ are Fredholm, see [54, Theorem 1.21].

∂p : Hp(E∗) → Hp+1(C∗) is the connecting homomorphim induced be the above short exact sequence.

A central result that relates the spectral density functions of cochain complexes in a given short exact

sequence is the following:

Proposition 4.1.35. [55, Theorem 4.11] Let (C∗, c∗), (D∗, d∗) and (E∗, e∗) be three Hilbert N (Γ)-cochain

complexes, and

0→ C∗
f∗−→ D∗

g∗−→ E∗ → 0 (4.1.51)

a short exact sequence of morphisms between them. Suppose that C∗ and E∗ are both Fredholm at p.

Then D∗ is also Fredholm at p and the connecting homomorphism ∂p : Hp(E) → Hp+1(C), induced by

the above short exact sequence, is left Fredholm. Moreover, we have

F̂p(D∗, λ) ≤ F̂p(C∗, cC · λ1/2) + F̂ (∂p, c∂ · λ1/4) + F̂p(E∗, cE · λ1/2) for 0 ≤ λ < c1, (4.1.52)

where

cC := ||f−1
p+1||1/2 · ||fp||, (4.1.53)

cE := (4 + 2||dp||)||gp+1|| · ||g−1
p ||, (4.1.54)

c∂ := ||f−1
p+1||1/2(4 + 2||f−1

p+1|| · ||dp||) · ||g−1
p ||, (4.1.55)

c1 := (4 + 2||dp||)−1/2. (4.1.56)

Definition 4.1.36. A Hilbert N (Γ)-cochain complex (C∗, c∗) is of determinant class if all of its boundary

morphisms cp are of determinant class.

The next central result, due to Gromov and Shubin, states that near 0, the spectral densities of

homotopy equivalent complexes decay at essentially the same speed. More precisely, the spectral densities

are said to be dilatationally equivalent.

Theorem 4.1.37. [42, Proposition 4.1] Let (C∗, c∗) and (D∗, d∗) be two Hilbert N (Γ)-cochain complexes,

f∗ : C∗ → D∗ a chain homotopy equivalence with chain homotopy inverse g∗ : D∗ → C∗, and K∗ : C∗ →
C∗−1 a chain homotopy between g∗f∗ and 11C∗ . Then, for each p ∈ N0, we have

Fp(C∗, λ) ≤ Fp(D∗, ||fp+1||2||gp||2λ) for 0 ≤ λ < ||2Kp+1||−2. (4.1.57)

The most important consequence that will be frequently used throughout this thesis is the following:
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Corollary 4.1.38. Let (C∗, c∗) and (D∗, d∗) be two Hilbert N (Γ)-cochain complexes with C∗ ∼ D∗. Then

1. For all p ∈ N0, C∗ is left Fredholm at p if and only if D∗ is left Fredholm at p. In this case, we

have αp(C∗) = αp(D∗).

2. In case that both complexes are Fredholm, C∗ is of determinant class if and only if D∗ is of deter-

minant class.

Definition 4.1.39 (L2-torsion of finite-type chain complexes). Let (C∗, c∗) be a Hilbert N (Γ)-module

cochain complex of finite type and of determinant class. We define the L2-torsion T (C∗) ∈ R+ of C∗

by

log T (C∗) :=

∞∑
p=0

(−1)p log(detΓ(cp)). (4.1.58)

The L2-torsion of finite-type chain complexes behaves nicely with respect to chain homotopy equiva-

lences, as shown in the next proposition:

Proposition 4.1.40. [54, Lemma 3.44] Let (C∗, c∗) and (D∗, d∗) be two finite-type cochain complexes of

Hilbert N (Γ)-modules and let f∗ : C∗ → D∗ be a chain isomorphism. Then, for any p ∈ N0, Hp(f∗) :

Hp(C∗) → Hp(D∗) is an isomorphism of Hilbert N (Γ)-modules. Moreover, (C∗, c∗) is of determinant

class if and only if (D∗, d∗) is of determinant class, in which case we get

log(T (C∗))− log(T (D∗)) =

∞∑
p=0

(−1)p log(detΓ(fp))−
∞∑
p=0

(−1)p log (detΓ(Hp(fp))) . (4.1.59)

Using the ζ-regularized determinant, we wish to extend the notion of L2-torsion onto Hilbert N (Γ)-

cochain complexes (C∗, c∗) that are not necessarily of finite type, but still of finite length (that is, Cn = 0

for all but finitely many n ∈ N). To motivate the definition, we remark that one can easily verify directly

with aid of Proposition 4.1.33 that a Hilbert N (Γ)-cochain complex is Fredholm and of determinant class

if and only if all of its Laplacians ∆p are Fredholm and of determinant class. Moreover, it is shown in

[54, Lemma 3.30] that on a finite type Hilbert N (Γ)-cochain complex (C∗, c∗) of determinant class, one

has

log T (C∗) =

∞∑
p=1

1

2
p (−1)p+1 log(detΓ(∆p)).

For practical purposes yet to be established, it will be convenient in many instances to consider the

determinant of the Laplacians instead of the determinant of the boundary operators.

Definition 4.1.41 (Regularized L2-torsion for finite-length chain complexes). Let (C∗, c∗) be a Hilbert

N (Γ)-cochain complex of finite length that is Fredholm and of determinant class. We say that C∗ is

ζ-regular if all of its Laplacians ∆p are ζ-regular. In this case, we define the regularized L2-torsion

Tζ(C∗) ∈ R+ of C∗ as

log Tζ(C∗) :=

∞∑
p=1

1

2
p (−1)p+1 log(detζΓ(∆p)). (4.1.60)

As already mentioned, the ζ-regularized determinant is not as well behaved as the Fuglede-Kadison

determinant, which is among the reasons why we cannot expect a similar formula as in 4.1.40 to hold for

the ζ-regularized torsion in general. In spite of this, using Proposition 4.1.14 and Lemma 4.1.27, we still

get sum formulas for both torsion elements.
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Proposition 4.1.42 (Sum formula). Let (C∗, c∗) and (D∗, d∗) be two Hilbert N (Γ)-cochain complexes,

and let (C∗ ⊕D∗, c∗ ⊕ d∗) be the direct sum complex. Then,

1. if (C∗, c∗) and (D∗, d∗) are of finite type, then so is (C∗ ⊕ D∗, c∗ ⊕ d∗). Moreover, (C∗, c∗) and

(D∗, d∗) are of determinant class if and only if (C∗⊕D∗, c∗⊕ d∗) is of determinant class, in which

case we get

log T (C∗ ⊕D∗) = log T (C∗) + log T (D∗). (4.1.61)

2. If (C∗, c∗) and (D∗, d∗) are of finite length, ζ-regular and of determinant class, then the same

properties hold for (C∗ ⊕D∗, c∗ ⊕ d∗), in which case we get

log Tζ(C∗ ⊕D∗) = log Tζ(C∗) + log Tζ(D∗). (4.1.62)

4.2 The De Rham and Sobolev complexes

Throughout the whole section, we assume that (E, h) ↓ (M, g) is a flat Hermitian bundle of bounded

geometry over a complete Riemannian manifold (M, g) of dimension n and of bounded geometry. We also

assume absolute boundary conditions, that is ∂M = ∂2M throughout. This allows us to draw algebraic

conclusions out of the next geometric constructions.

Definition 4.2.1 (The de Rham and Sobolev complexes). Let E ↓M be as above and let 0 ≤ p ≤ n.

1. The Sobolev chain complex at level p, denoted by Dp[E] is the cochain complex of Hilbert

spaces, defined as

· · · → 0→Wp−1
2 (M,E)

d−→Wp
1(M,E)

d−→Wp+1
0 (M,E) = Ωp+1

(2) (M,E)→ 0→ . . . . (4.2.1)

2. The absolute Sobolev chain complex at level p, denoted by Dp,abs[E] is the cochain complex

of Hilbert spaces, defined as

· · · → 0→Wp−1
2,abs(M,E)

d−→Wp
1,abs(M,E)

d−→Wp+1
0 (M,E)→ 0→ . . . , (4.2.2)

where

Wp−1
2,abs(M,E) := {ω ∈ Wp−1

2 (M,E) : i∗(#ω) = 0 = i∗(#dω)}, (4.2.3)

Wp
1,abs(M,E) := {ω ∈ Wp

1(M,E) : i∗(#ω) = 0}. (4.2.4)

and the inner product on each space is the one induced by Wp−1
2 (M,E), respectively Wp

1(M,E).

3. The de Rham complex at level p, denoted by Lp[E] is the cochain complex of Hilbert spaces,

defined as

· · · → 0→ Ωp−1
(2) (M,E)

d−→ Ωp(2)(M,E)
d−→ Ωp+1

(2) (M,E)→ 0→ . . . . (4.2.5)

Observe that by Theorem 3.4.4, we have an inclusion of cochain complexes Dp,abs[E] ⊆ Dp[E] ⊂
Lp[E] ⊆ Ω∗(2)(M,E) for any 0 ≤ p ≤ n, so that that Dp,abs[E] ⊆ Dp[E] is a closed subcomplex. Note

also by Proposition 3.2.6 that the differentials on Dp[E] are bounded and everywhere defined as linear

operators. Using the machinery developed in the previous section, we get:
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Proposition 4.2.2. Let (E, h) ↓ (M, g) be as above. Suppose that Γ ⊆ Isom+(M) is a lattice (not

necessarily uniform) compatible with (E, h) ↓ (M, g). Then the following holds:

1. For each 0 ≤ p ≤ n, there exists a linear Γ-action on Ωp(M,E), so that, with respect to this action,

the differential d : Ωp(M,E) → Ωp+1(M,E) is Γ-equivariant. Moreover, the action restricts to an

action on Ωpc(M,E) by bundle isometries.

2. Ω∗(2)(M,E) and Lp[E] are Hilbert N (Γ)-cochain complexes,

3. Dp[E] and Dp,abs[E] are bounded Hilbert N (Γ)-cochain complexes.

4. Assume also that that there exists some uniform lattice Λ < Isom+(M, g) compatible with (E, h) ↓
M . Then:

(a) The Laplacian ∆p[E] : Ωp(2)(M,E) → Ωp(2)(M,E), defined as the minimal closure of the op-

erator δpdp + dp−1δp−1 with initial domain {ω ∈ Ωpc(M,E) : i∗(#ω) = i∗(#dω) = 0} is a

self-adjoint morphism of Hilbert N (Γ)-modules.

(b) Let f : [0,∞] → R≥0 be a rapidly decreasing Borel function, let f(∆p[E]) : Ωp(2)(M,E) →
Ωp(2)(M,E) be the positive, bounded operator defined via the spectral theorem applied to ∆p[E].

Then f(∆p[E]) is a positive, bounded, trace class morphism of Hilbert N (Γ)-modules, that

is moreoever an integral operator: Let f(∆p[E])(x, y) be its smooth Schwartz kernel and let

F ⊆ M be a fundamental domain for the Γ-action on M . Then the von Neumann trace of

f(∆p[E]), as introduced at the beginning of Section 4.1, coincides with its Γ-regularized trace

from Definition 2.2.3, i.e.

trΓ(f(∆p[E])) =

∫
F

tr(f(∆p[E])(x, x))dx <∞ (4.2.6)

holds. In particular, both Ω∗(2)(M,E) and Lp[E] are Fredholm complexes of Hilbert N (Γ)-

modules.

Proof. 1: Since Γ acts on E ↓M by bundle isomorphisms, we obtain a C-linear Γ-action on the space of

sections Γ(E) = Ω0(M,E), defined for f ∈ Γ(E), γ ∈ Γ and x ∈M via

(γ.f)(x) := γ · f(γ−1(x)) ∈ Ex. (4.2.7)

Similarly, for p ≥ 1 and Ωp(M,E) = Ωp(M)⊗C∞(M) Γ(E), we define the linear Γ-action to be the induced

tensor product action (on Ωp(M), Γ acts by the standard pullback). Flatness of the Γ-action on E ↓M
implies that the action thus defined commutes with the differential d : Ωp(M,E) → Ωp−1(M,E). It

is clear that, with respect to this action, the subspace Ωpc(M,E) is Γ-invariant. We will prove that Γ

acts isometrically on Ω0
c(M,E) = Γc(E), for p ≥ 1, the proof works completely analogous. Let h be

the Hermitian form on E ↓ M . Using the transformation formula and the fact that Γ acts by bundles

isometries on E ↓M , we compute for any f ∈ Γc(E) and any γ ∈ Γ, that

||γ.f ||20 =

∫
M

||γ.f(x)||2h(x)dx =

∫
M

||γ · f(γ−1(x))||2h(x)dx

=

∫
M

||f(γ−1(x))||2h(γ−1(x))dx =

∫
M

||f(x)||2h(x)dx = ||f ||20.
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2: The Γ-action, defined in (1), extends to an action on Ω∗(M,E) and Lp[E] by isometries. We claim

that for each 0 ≤ p ≤ m and for F ⊆M a closed fundamental domain for the Γ-action on M , there exists

a Γ-equivariant isometry of Hilbert spaces Ωp(2)(M,E) ∼= L2(Γ)⊗̂Ωp(2)(F , E|F ). (2) then follows from the

claim. To prove the claim, we only need to show that the C-linear map

G : Ωpc(M,E)→ C[Γ]⊗C Ωpc(F , E|F ),

f 7→
∑
γ∈Γ

γ ⊗ (γ−1.f)|F

of inner product spaces is Γ-equivariant, isometric and has dense image. Observe that left-hand sum is

finite, since f is compactly supported, so G is well-defined. Since

G(γ′.f) =
∑
γ∈Γ

γ ⊗ ((γ−1 · γ′).f)|F
γ̂:=γ′−1·γ

=
∑
γ̂∈Γ

γ′ · γ̂ ⊗ (γ̂−1.f)|F

= γ′.
∑
γ∈Γ

γ ⊗ (γ−1.f)|F = γ′.G(f),

G is Γ-equivariant. Moreover, considering the image of forms having compact support in γ.F with γ

ranging over all of Γ, one sees that, with respect to the inner product defined on C[Γ] ⊗C Ωpc(F , E|F ),

=(G) is also dense. Finally, we calculate

||f ||20 =

∫
M

||f(x)||2h(x)dx =
∑
γ∈Γ

∫
γ.F
||f(x)||2h(x)dx =

∑
γ∈Γ

∫
F
||f(γ.x)||2h(γ.x)dx

=
∑
γ∈Γ

∫
F
||(γ.f)(x)||2h(x)dx = ||G(f)||2.

3: The Γ-action, defined in (1), extends to an action on Dp[E] by isometries. Here, one additionally

needs the fact that the differential, the Hodge-# operator and the restriction to the boundary ∂M

commute with the Γ-action. Now for any r > 0, one establishes a Γ-equivariant, isometric isomorphism

Wp
r(M,E) = L2(Γ)⊗̂Wp

r(F , E|F ) just like in assertion (2). The assertion for Dp[E] then follows. The

assertion for Dp,abs[E] follows, since it is a closed, Γ-invariant subspace of Dp[E].

(4a): By our initial assumption, there exists some uniform lattice Λ that is compatible with E ↓ M .

Therefore, E ↓M is the lift of a flat bundle over the compact quotient M/Λ. By Theorem 3.4.1, it follows

that ∆p[E] is self-adjoint. Recall that ∆p[E] is the minimal closure of the symmetric Hodge-Laplacian

with initial domain Ωp(M,∂M,E) = {ω ∈ Ωpc(M,E) : i∗#ω = i∗#dω = 0}, where i : ∂M → M

denotes the smooth inclusion map. Since Ωp(M,∂M,E) is obviously Γ-invariant, the same holds true

for dom(∆p[E]). We have already mentioned that Γ commutes with the differential and the Hodge-#

operator. Therefore, γ ·∆p[E] = ∆p[E] · γ and the assertion follows.

(4b): That f(∆p[E]) is a morphism of Hilbert N (Γ)-modules follows from (4) and the spectral theorem,

while the result that f(∆p[E]) posseses a smooth integral kernel follows from Proposition 3.4.2. Finally,

the equality trΓ(f(∆p[E])) =
∫
F tr(f(∆p[E](x, x))dx is shown in [1, Proposition 4.16, pp. 63-65].

Definition 4.2.3. Let E ↓M be a flat bundle over a Riemannian manifold (M, g) associated to a finite-

dimensional, complex representation ρ : π1(M) =: Γ→ GL(V ) and let Ẽ ↓ M̃ be the Γ-equivariant lift of

E ↓M onto the universal cover M̃ of M . Further, let g be a Riemannian metric on M , h a Hermitian form

on E and g̃,h̃ their respective lifts. We say that (E, h) ↓ (M, g) is L2-acyclic/Fredholm/ζ-regular/of

analytic determinant class, if the corresponding L2-cochain complex Ω(2)(M̃, Ẽ) = Ω(2)(M̃, Ẽ, g̃, h̃)

of Hilbert N (Γ)-modules with absolute boundary conditions is L2-acyclic/Fredholm/ζ-regular/of deter-

minant class.
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For 0 ≤ k ≤ dim(M), we define the k-th analytic L2-Betti Number bAn(2),k(M,ρ) ∈ [0,∞] as

bAn(2),k(M,ρ) := b
(2)
k (Ω(2)(M̃, Ẽ)). (4.2.8)

In case that (E, h) ↓ (M, g) is Fredholm, we define for k ∈ N the k-th analytic Novikov Shubin

invariant αAnk (M,ρ) ∈ [0,∞] ∪ {∞+} as

αAnk (M,ρ) := αk(Ω•(2)(M̃, Ẽ)). (4.2.9)

If (E, h) ↓ (M, g) is also ζ-regular and of determinant class, we define the analytic L2-torsion TAn(2) (M,ρ) ∈
R as

log(TAn(2) (M,ρ)) := log(Tζ(Ω
•
(2)(M̃, Ẽ)) =

∞∑
p=1

1

2
p (−1)p+1 log(detζΓ(∆p)). (4.2.10)

Remark 4.2.4. Suppose that M is compact. Then, if g′ is another metric on M and h′ another metric

on E, the identity map 11 : Ω•(2)(M̃, Ẽ, g̃, h̃) → Ω•(2)(M̃, Ẽ, g̃′, h̃′) is an isomorphism of Hilbert N (Γ)-

modules. Together with Proposition 4.1.35, as well as Corollaries 4.1.32 and 4.1.38, it follows that the

Fredholm and determinant class properties of E ↓ M , as well as the L2-Betti numbers bAn(2),k(M,ρ) and

Novikov-Shubin invariants αAnk (M,ρ), don’t actually depend on the specific choice of metrics, and can

thus be seen as invariants and properties of the tuple (M,ρ), as indicated in the notation. On the other

hand, the term TAn(2) (M,ρ) does depend on the pair of metrics (g, h), which is why we will sometimes

write TAn(2) (M,ρ, g, h), respectively TAn(2) (M,E, g, h) in order to highlight this dependency.

Remark 4.2.5. In the notation, if the group Γ := π1(M) is clear from the context, we will also often

replace M by its universal cover M̃ and write bAn(2),k(M̃, ρ), αAnk (M̃, ρ) and TAn(2) (M̃, ρ) instead.

4.2.1 Estimates for the spectral density function

Throughout this subsection, we fix a lattice Γ ⊆ Isom+(M) compatible with E ↓M and also assume that

there exists some uniform lattice Λ ⊆ Isom+(M) compatible with E ↓M . Proposition 4.2.2 allows us to

consider the spectral density functions of the Hilbert N (Γ)-cochain complexes Ω∗(2)(M,E), Lp[E], Dp[E]

and Dp,abs[E]. This section is devoted to comparing their respective behavior near 0. Our first result in

that vein is the following:

Proposition 4.2.6. Let E ↓ M be as before and 0 ≤ p ≤ m, let ∆⊥p [E] : Ωp(2)(M,E) → Ωp(2)(M,E) the

orthogonal Laplacian. Suppose that Ωp(2)(M,E) has trivial L2-cohomology. Then we have

F (∆p[E],
√
λ) = F (∆⊥p [E],

√
λ) = Fp(Lp[E], λ) + Fp−1(Lp−1[E], λ) (4.2.11)

for all λ ≥ 0.

Proof. Since there is no L2-cohomology, we have both ∆p[E] = ∆⊥p [E], as well as Fp(Lp[E], λ) =

F ((dpabs)
⊥, λ) for each p. Using Proposition 3.4.6 and Lemma 4.1.5, we now compute:

F (∆⊥p [E],
√
λ) = F

(
((dpabs)

∗dpabs)
⊥ ⊕ (dp−1

abs (dp−1
abs )∗)⊥,

√
λ
)

= F (((dpabs)
∗dpabs)

⊥,
√
λ) + Fp((d

p−1
abs (dp−1

abs )∗)⊥,
√
λ) = F ((dpabs)

⊥, λ) + F ((dp−1
abs )⊥, λ)

= Fp(Lp[E], λ) + Fp−1(Lp−1[E], λ).
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For the next result, we assume that the underlying vector bundle of E ↓M is trivial, i.e, of the form

M × Cn for some n ∈ N (however, we do not assume that the Hermitian form is constant on the fibers)

and that Γ ⊆ Isom+(M) is uniform. Triviality of E ↓M allows us to identify smooth sections of E with

smooth maps from M to Cn, which further leads to an identification of C∞(M,C)-modules

Ωp(M,E) ∼= Ωp(M)n, (4.2.12)

Ωp(∂M,E) ∼= Ωp(∂M)n. (4.2.13)

Assume that ∂M 6= ∅. For appropriate w > 0, let ∂Mw
∼= [0, w) × ∂M be the geodesic collar around

∂M of width w. Under this identification, we therefore find for any ω ∈ Ωpc(M,E) appropriate smooth

1-parameter families of forms ω1(t) ⊂ Ωpc(∂M)n and ω2(t) ⊂ Ωp−1
c (∂M)n, such that

ω(t, x) = ω1(t)(x) + dt ∧ ω2(t)(x), ∀(t, x) ∈ [0, w)× ∂M ∼= ∂Mw. (4.2.14)

Denote by ∆̂p[E] the p-th Laplacian on the flat Hermitian restriction bundle E ↓ ∂M . Let φ : [0, w]→ R+

be a smooth map identically 1 near 0 and identically 0 for all t > w/2. With this data in mind, define

Kp : Ωpc(M,E)→ Ωp−1(M,E), (4.2.15)

Kpω :=

φ(u) ·
∫ u

0
e−te

1+∆̂p[E]

ω2(t)( . )dt on ∂Mw,

0 elsewhere.
(4.2.16)

An immediate, but important consequence is that Kpω depends only on the restriction ω|∂Mw
and that

the support of Kpω lies in ∂Mw. Just as in the case with for the trivial bundle, one can now proceed line

by line as in [56, Lemma 5.5, Proposition 5.6] to show the following:

Proposition 4.2.7. Let p ∈ N. Then, for r = 0, 1, 2, the map Kp extends to a bounded operator.

Kp
r :Wp

r(M,E)→Wp−1
r+1(M,E). (4.2.17)

The norm ||Kp
r || depends only on r and flat isometry class of the restriction bundle E|∂Mw

↓ ∂Mw.

Setting Kp
−1 := 0 for all p ∈ N, we furthermore obtain

1. For ∗ = 0, 1, 2 and each p ∈ N, the map

jp+1−∗
p = 1− dKp+1−∗

∗ +Kp+2−∗
∗−1 d :Wp+1−∗

∗ (M,E)→Wp+1−∗
∗ (M,E) (4.2.18)

has image in Wp+1−∗
∗,abs (M,E) and extends to a morphism of Hilbert N (Γ)-cochain complexes jp :

Dp[E]→ Dp,abs[E].

2. The reduced complexes

Dp[E] := . . . 0→Wp
1(E)/im(d)→Wp+1

0 (E)→ 0 . . . ,

Dp,abs[E] := . . . 0→Wp
1,abs(E)/im(d)→Wp+1

0 (E)→ 0 . . .

are chain homotopy equivalent. More precisely, the map jp descends to a map jp : Dp[E] →
Dp,abs[E], that is the chain homotopy inverse to the induced inclusion ip : Dp,abs[E]→ Dp[E]. The

respective null-homotopies are induced from i∗ ◦K∗∗ and K∗∗ ◦ i∗.

From this, we now obtain the following important, intermediate result:
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Proposition 4.2.8. Let E ↓ M be a bundle of bounded geometry over M and Γ a lattice, compatible

with E ↓ M , so that, if ∂M 6= ∅, we additionally assume that Γ is uniform and that E ↓ M is trivial.

Then we find constants C1, C2 > 0, depending only on the flat isometry class of the restriction bundle

E|∂Mw
↓ ∂Mw, (with ∂Mw := ∅ if ∂M = ∅) such that all of the following hold:

1. We have

Fp(Dp,abs[E], C−1
1 λ) ≤ Fp(Dp[E], λ) ≤ Fp(Dp,abs[E], C1λ)

for all λ ≤ C2.

2. We have

Fp(Lp[E], λ) ≤ Fp(Dp,abs[E], λ) ≤ Fp(Lp[E],
√

2λ)

for all λ ≤ 1√
2

.

3. We have

Fp(Lp[E], C−1
1 λ) ≤ Fp(Dp[E], λ) ≤ Fp(Lp[E], C1

√
2λ).

for all λ ≤ min{C2,
1

C2

√
2
}.

Proof. (1): Follows from Proposition 4.2.7 and Theorem 4.1.37.

(2): Throughout the proof, we will use the equalities

ker(dp|W1,p
abs(E))

⊥1 = D(dp) ∩ ker(dp)⊥ =W1,p
abs(E) ∩ δpΩp+1

abs (M,E), (4.2.19)

as established in the proof of Proposition 3.4.6, as well as the identity

F (f, λ) = sup{trΓ(pL) : L ⊆ H closed, Γ-invariant subspace : ||f(x)|| ≤ λ||x|| ∀x ∈ L}, (4.2.20)

as established in Lemma 4.1.5. Recall that for a subspace A ⊆ W1,∗(E), A⊥1 ⊆ W1,∗(E) denotes the

orthogonal complement of A with respect to the Sobolev 1-inner product.

We will first show that

Fp(Lp[E], λ) ≤ Fp(Dp,abs[E], λ).

For this, we let L ⊆ D(dp) ∩ ker(dp)⊥ be a 0-closed, Γ-invariant subspace, such that each v ∈ L satisfies

||dv||0 ≤ λ||v||0. By the left-hand equality of 4.2.19, and the fact that the 1-topology is stronger than the

0-topology, it follows that L ⊆ W 1,p
abs(E) is a 1-closed, Γ-invariant subspace. Since ||v||0 ≤ ||v||1, we also

have ||dv||0 ≤ λ||v||1. All in all, this implies that Fp(Lp[E], λ) ≤ Fp(Dp,abs[E], λ).

In order to show that

Fp(Dp,abs[E], λ) ≤ Fp(Lp[E],
√

2λ),

we let L ⊆ ker(dp|W1,p
abs(E))

⊥1 be a 1-closed, Γ-invariant subspace, satisfying ||dv||0 ≤ λ||v||1 for any

v ∈ L. Now observe that by the equality of the first and the last term in Equation 4.2.19, we also have

||v||21 = ||v||20 + ||dv||20 for any v ∈ L, which implies that

||v||0 ≤ ||v||1 ≤
√

1− λ2||v||0, (4.2.21)
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for any v ∈ L. Therefore, L is also 0-closed inside D(dp) ∩ ker(dp)⊥. Moreover,

||dv||20 ≤ λ2||v||21 ≤ λ2||v||20 +
1

2
||dv||0

=⇒ ||dv||0 ≤
√

2λ||v||0,

from which the inequality Fp(Dp,abs[E], λ) ≤ Fp(Lp[E],
√

2λ), and therefore the desired claim, follows.

(3): This follows immediately from (1) and (2).

4.2.2 Comparison with the combinatorial complex

For the purpose of the next important result, we introduce the notion of a Γ-CW-cochain, further details

will be developed in Chapter 5: Let X be a CW-complex, on which a countable group Γ acts freely,

cellularly and co-compactly with a finite number of cell orbits. Such X is called a free, finite Γ-CW

complex. The associated cellular cochain complex C∗(X,C) with complex coefficients then has the

structure of a complex of free and finitely generated C[Γ]-bimodules, with C[Γ]-bases given by explicit

representatives of orbits Γ.e for each cocell e of X.

Now assume that there exists a complex, finite dimensional representation ρ : Γ → GL(V ). Such a

representation naturally endows V with the structure of a left C[Γ]-module. We therefore can form the

cochain complex

C∗(X, ρ) := C∗(X,C)⊗C V (4.2.22)

with (left) diagonal Γ-action given by γ.(e ⊗ v) := γ.e ⊗ ρ(γ)v on elementary tensors. It is still a

complex of free, finitely generated left C[Γ]-modules. Let E ⊆ C∗(X,C) the set of all cocells, each

equipped with some orientation. Additionally fixing a C-basis B ⊆ V , the Γ-orbit Γ. (E ⊗B) of the

subset E ⊗B := {e⊗ b : e ∈ E, b ∈ B} ⊆ C∗(X, ρ) is a C-basis for C∗(X, ρ), which is infinite whenever Γ

is infinite. Equipping C∗(X, ρ) with the unique inner product, with respect to which the set Γ. (E ⊗B) is

orthogonal, and forming the corresponding L2-completion, we obtain a cochain complex of Hilbert spaces

C∗(2)(X, ρ). As a matter of fact, it is a finite Hilbert N (Γ)-cochain complex.

Let (M, g) is a Riemannian manifold and let Γ ⊂ Isom(M, g) be a uniform lattice. Choose on the quo-

tient manifold M/Γ a (finite) CW structure X̄, so that, additionally, the restriction to the boundary

∂X̄ = X̄ ∩ ∂(M/Γ) is a CW-structure on ∂(M/Γ). The lift X of X̄ onto M is then a free, finite Γ-CW

structure on M , so that X ∩ ∂M is a free, finite Γ-CW structure on ∂M . Any CW-structure X on M

obtained this way is called an admissible Γ-CW structure on M . The next important theorem is shown

in Chapter 6:

Theorem 6.3.5 Let (M, g) be a simply-connected Riemannian manifold and let Γ ⊂ Isom+(M, g)

be a uniform lattice. Further, let ρ : Γ→ GL(V ) be some finite-dimensional, complex representation and

let E := M ×V ↓M be the associated flat, Γ-equivariant bundle over M . Choose some (finite) admissible

Γ-CW structure X on M and let Ω∗(2)(M,E) be the L2-cochain complex with absolute boundary conditions

(constructed with respect to some choice of Γ-equivariant Hermitian form h). Then there is a L2-chain

homotopy equivalence of Hilbert N (Γ)-cochain complexes

Ω∗(2)(M,E) ' C∗(2)(X, ρ). (4.2.23)

Remark 4.2.9. In Section 5.1, we will define the notion of combinatorial determinant class (short:

c-determinant class). Namely, a pair (X, ρ), where X is a finite Γ-CW-complex and ρ : Γ → GL(V )
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is a finite-dimensional representation is said to be of c-determinant class if the corresponding cellular

L2-cochain complex of Hilbert N (Γ)-modules C∗(2)(X, ρ) is of determinant class. In case that X is the

Γ-CW structure of a smooth Riemannian manifold (M, g) and Γ ⊆ Isom+(M, g) is a uniform lattice,

then the above theorem, along with Proposition 4.2.2 and Corollary 4.1.38, shows that the pair (M,ρ) is

of analytic determinant class (short: a-determinant class) if and only if (X, ρ) is of c-determinant class.

Throughout this thesis, both notions will be used interchangeably.

4.2.3 Applications to the representation bundle Eρ ↓ Hn

Recall the following notions and facts from Section 2.3: For Hn the hyperbolic n-space with n odd, set

G := Isom+(Hn) and let Eρ ↓ Hn be the flat, canonical, Hermitian bundle associated to an irreducible,

complex, finite-dimensional representation ρ : GC → GL(V ). For a fixed non-uniform lattice Γ ⊂ G and

R ≥ 0, let MR, CR and TR be the complete, Γ-invariant submanifolds associated to it. Equip Eρ with the

canocial bundle metric hρ. We’ve seen that Γ is compatible with Eρ ↓ Hn, in the sense that the action

of Γ on M extends to an action on Eρ ↓ Hn by bundle isometries. Hence, Γ is also compatible with the

restriction of Eρ over each MR, CR and TR, which we have denoted respectively by EρR− , EρR+ and EρR.

Because of Proposition 4.2.2, the associated four L2-de Rham cochain complexes are Hilbert N (Γ)-

module cochain complexes. Moreover, since Γ acts cocompactly on MR and TR and is compatible with

the overlying bundles, the bundles EρR− ↓ MR and EρR ↓ TR are Fredholm by Proposition 4.2.2. The

same result holds true for the cochain complex induced by Eρ ↓ Hn, using that Eρ is G-equivariant.

The ultimate goal of this section is to find a uniform polynomial upper bound for the spectral density

functions of the complex Ω∗(MR, ER), independent of R, which will then easily imply the desired

large-time convergence.

Proposition 4.2.10. There exists constants C1, C2 > 0 independent of R ≥ 1, such that for all p =

0, . . . ,m and all λ ≤ min{C2,
1

C2

√
2
}, we have

Fp(Lp[E
ρ], C−1

1 λ) ≤ Fp(Dp[E
ρ], λ) ≤ Fp(Lp[Eρ], C1

√
2λ),

Fp(Lp[E
ρ
R− ], C−1

1 λ) ≤ Fp(Dp[E
ρ
R− ], λ) ≤ Fp(Lp[EρR− ], C1

√
2λ),

Fp(Lp[E
ρ
R], C−1

1 λ) ≤ Fp(Dp[E
ρ
R], λ) ≤ Fp(Lp[EρR], C1

√
2λ).

Proof. Since Eρ ↓ Hn is a bundle of bounded geometry and Γ acts cocompactly on both MR and TR,

we get the above inequalities from Proposition 4.2.8, choosing w = 1/3 (the width of the geodesic collar

around the boundary), with constants C1(R), C2(R), depending a priori on R > 1, but only on the flat

isometry classes of the restrictions Eρ|∂(MR)1/3
↓ ∂(MR)1/3 and Eρ|∂(TR)1/3

↓ ∂(TR)1/3. Let ∂(MR)0
1/3 be

a connected component of ∂(MR)1/3 and let ∂(TR)0
1/3 be the intersection of ∂(TR)1/3 with a connected

component of TR. Then, from the explicit end structure laid out in Section 2.3, there are isometric

diffeomorphisms

∂(MR)0
1/3
∼= [R− 1/3, R]× Rn−1,

∂(TR)0
1/3
∼= ([R,R+ 1/3]∪̇[R+ 2/3, R+ 1])× Rn−1,

each sending the hyperbolic metric to the warped product metric dt2 + e−2tdx2. Using the very same
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local isometries and following the same arguments as in Lemma 2.3.7, we obtain two bundle isometries

Eρ|∂(MR)1/3
↓ ∂(MR)1/3

∼= Eρ|∂(M1)1/3
↓ ∂(M1)1/3,

Eρ|∂(TR)1/3
↓ ∂(TR)1/3

∼= Eρ|∂(T1)1/3
↓ ∂(T1)1/3.

Consequently, we get C1(R) = C1(1) =: C1 and C2(R) =: C2(1) =: C2 for any R > 1 and the result

follows.

Proposition 4.2.11. [30, Theorem 1.1, Proposition 1.2] The Hilbert N (Γ)-cochain complex Ω∗(2)(H
n, Eρ)

has trivial cohomology and positive Novikov-Shubin invariants.

We want to show that the same holds true for the Hilbert N (Γ)-cochain complex Ω∗(2)(T1, E
ρ
1 ). For

that purpose, we need some additional preparation:

Let Γ be a countable group, equipped with some finite-dimensional representation ρ : Γ → GL(V ).

Further, let Γ0 < Γ be a subgroup and denote by ρ0 the restriction of ρ to Γ0. Choose X be a finite

Γ0-CW complex and let C∗(X, ρ0) be the associated free, finite Hilbert N (Γ0) cochain complex, whose

construction was laid out in the previous section. We now explain how C∗(X, ρ0) gives rise to a free,

finite Hilbert N (Γ)-cochain complex via the principle of induction: Since Γ0 < Γ, we can naturally regard

the group ring C[Γ] as a right C[Γ0]-module. Hence, we can define the following cochain complex of free,

finitely generated left C[Γ]-modules

C∗(X, ρ0,Γ) := C[Γ]⊗C[Γ0] C
∗(X, ρ0). (4.2.24)

Similarly as before, the canonical inner product on the group ring C[Γ] turns C∗(X, ρ0,Γ) into a complex

of inner product spaces, whose L2-completion we denote by C∗(2)(X, ρ0,Γ). It is a free, finite Hilbert

N (Γ)-cochain complex. It follows from [54, Lemma 1.24] that, for each p ∈ N, we have

bp(2)(C
∗
(2)(X, ρ0,Γ),Γ) = bp(2)(C

∗
(2)(X, ρ),Γ0), (4.2.25)

αp(C
∗
(2)(X, ρ0,Γ),Γ) = αp(C

∗
(2)(X, ρ0),Γ0). (4.2.26)

Now consider the principal Γ-bundle Y := Γ ×Γ0
X. The CW -structure on X then extends to a free,

finite Γ-CW structure on Y . Just as above, form the twisted L2-cochain complex C∗(2)(Y, ρ). It is proven

in [52, Lemma 1.1, Theorem 6.7,(5)] that there is an isomorphism of Hilbert N (Γ)-cochain complexes

C∗(2)(Y, ρ) ∼= C∗(2)(X, ρ0,Γ). (4.2.27)

Using Corollary 4.1.38, along with equations 4.2.25 and 4.2.26, we thus obtain for each p ∈ N the

Equalities

bp(2)(C
∗
(2)(Y, ρ),Γ) = bp(2)(C

∗
(2)(X, ρ0),Γ0), (4.2.28)

αp(C
∗
(2)(Y, ρ),Γ) = αp(C

∗
(2)(X, ρ0),Γ0). (4.2.29)

Proposition 4.2.12. The Hilbert N (Γ)-cochain complex Ω∗(2)(T1, E
ρ
1 ) has trivial cohomology and positive

Novikov-Shubin invariants.

Proof. For each 1 ≤ j ≤ k, let T j1 be the complete submanifolds of T1 with Γj0 := {γ ∈ Γ : γ.T j1 = T j1 }
the stabilizer of T j1 , so that we have a decomposition

T1
∼=

k∐
j=1

Γ×Γj0
T j1 ,
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as detailed in Section 2.3. In the same section, we have shown that Γj0 ⊂ Isom+(T j1 ) is a uniform lattice,

isomorphic to Zd−1. Therefore, we can choose a finite Γj0-CW-structure on T j1 , giving rise to the free,

finite Hilbert N (Γj0)-complex C∗(2)(T
j
1 , ρ

j
0), where ρj0 denotes the restriction of ρ to Γj0. Moreover, since

we have an identification T1
∼=
∐k
j=1 Γ ×Γj0

T j1 , the free, finite Γj0-CW structure on each T j1 naturally

extends to a free, finite Γ-CW structure on T1. In particular, we can form the associated free, finite

Hilbert N (Γ)-cochain complex C∗(2)(T1, ρ), so that we have an orthogonal direct sum decomposition

C∗(2)(T1, ρ) =

k⊕
j=1

C∗(2)(Γ×Γj0
T j1 , ρ). (4.2.30)

By Theorem 6.3.5, we have a chain homotopy equivalence of Hilbert N (Γ)-cochain complexes

Ω∗(2)(T1, E
ρ
1 ) ' C∗(2)(T1, ρ). (4.2.31)

Applying Corollary 4.1.38, along with the Equalities 4.2.30, 4.2.28 and 4.2.29, Ω∗(2)(T1, E
ρ
1 ) is a Fredholm

complex and we have for each 0 ≤ p ≤ m

bp(2)(Ω
∗
(2)(T1, E

ρ
1 ),Γ) =

k∑
j=1

bp(2)(C
∗
(2)(T

j
1 , ρ

j
0),Γj0), (4.2.32)

αp(Ω
∗
(2)(T1, E

ρ
1 ),Γ) ≥ k · min

j=1,...,k
αp(C

∗
(2)(T

j
1 , ρ

j
0),Γj0). (4.2.33)

For the remainder of the proof, the isomorphism Γj0
∼= Zd−1 will be of central importance. Firstly,

[52, Theorem 7.7] implies that

bp(2)(C
∗
(2)(T

j
1 , ρ

j
0),Γj0) = dimC(V ) · bp(2)(C(2)(T

j
1 , 11),Γj0), (4.2.34)

where 11 : Γj0 → C× denotes the trivial representation. From the multiplicativity of ordinary L2-Betti

numbers under coverings, see [54, Example 1.37], it follows that any G-CW complex X, whose quo-

tient space X/G admits non-trivial self-coverings, satisfies bp(2)(C(2)(X, 11), G) = 0 for all p ≥ 0. Since

the quotient space T j1 /Γ
j
0
∼= [1, 2] × (S1)m−1 clearly admits non-trivial self-coverings, we obtain that

bp(2)(Ω
∗
(2)(T1, E

ρ
1 ),Γ) = 0 as well, so the complex Ω∗(2)(T1, E

ρ
1 ) has trivial cohomology.

Secondly, observe that the boundary operators of C∗(2)(T
j
1 , ρ

j
0) are matrices over C[Γ0] ∼= C[Zd] (acting by

right-multiplication). It is shown in [53, Theorem 1.2], that any such matrix has positive Novikov-Shubin

invariant. Therefore

αp(C
∗
(2)(T

j
1 , ρ

j
0),Γj0) > 0 (4.2.35)

for each 1 ≤ j ≤ k and each 0 ≤ p ≤ m, finishing the proof.

In view of Remark 4.2.9, note that in the course of the previous proof, we have in fact also shown the

following:

Corollary 4.2.13. For each R > 0, the pair (∂MR, ρ) is L2-acyclic and of determinant class.

Proposition 4.2.14. There exists constants ε, α > 0, such that for all R ≥ 1 and all 0 ≤ p ≤ m the

following hold true

1. For all R ≥ 1 we have

F (∆p[E
ρ
R], λ) ≤ F (∆p[E

ρ
1 ], λ). (4.2.36)
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2. For all λ < ε−1, we have

Fp(Dp[E
ρ], λ) < ε · λα,

Fp(Dp[E
ρ
R], λ) < ε · λα.

In particular, both Dp[E
ρ] and Dp[E

ρ
R] are Fredholm at p and have vanishing p-th cohomology.

Proof. 1. There is a flat bundle isometry FR : EρR ↓ TR → Eρ1 ↓ T1, as defined in Lemma 2.3.7.

Consequently, by Proposition 2.2.1, we have for any x ∈ TR and any λ ≥ 0, that

tr(χ[0,λ2](∆p[E0])(FR(x), FR(x))) = tr(χ[0,λ2](∆p[ER])(x, x)). (4.2.37)

We may choose fundamental domains DR ⊆ TR and D1 ⊆ T1 for the respective Γ-actions, satisfying

FR(DR) ⊆ D1. Therefore, we have

F (∆p[ER], λ) = trΓ(χ[0,λ2](∆p[ER])) =

∫
DR

tr(χ[0,λ2](∆p[ER])(x, x)))dx

=

∫
FR(DR)

tr(χ[0,λ2](∆p[E1])(FR(x), FR(x)))dx

≤
∫
D1

tr(χ[0,λ2](∆p[E1])(FR(x), FR(x)))dx = F (∆p[E1], λ).

2. Define β := min{α(∆p[X]) : 0 ≤ p ≤ m,X ∈ {Eρ, Eρ1}}. Propositions 4.2.11 and 4.2.12 imply that

we have β > 0, as well as both ∆p[E
ρ] = ∆⊥p [Eρ] and ∆p[E

ρ
1 ] = ∆⊥p [Eρ1 ]. For Eρ, we can apply

Propositions 4.2.10 and 4.2.6 to find a constant c ≥ 1, such that for all 0 ≤ p ≤ m, and all λ < c−1

we have

Fp(Dp[E
ρ], λ) ≤ Fp(Lp[Eρ], cλ) ≤ F (∆p[E

ρ],
√
cλ) < cαλα.

For EρR, we can use the same argument, along with assertion (2), similarly yielding

Fp(Dp[E
ρ
R], λ) ≤ Fp(Lp[EρR], cλ) ≤ Fp(∆p[E

ρ
R],
√
cλ)

≤ Fp(∆p[E
ρ
1 ],
√
cλ) ≤ cα/2λα/2.

Setting ε := max{cα/2, c} and β = α/2 > 0, we obtain the result.

For R > 1, denote by

iMR
: MR → Hn, (4.2.38)

iCR : CR → Hn, (4.2.39)

i(TR,−) : TR →MR+1, (4.2.40)

i(TR,+) : TR → CR. (4.2.41)

the respective smooth inclusion maps. Each of these induces a Γ-invariant map between the corresponding

twisted de Rham complexes, bounded with norm 1. Moreover, the following important result holds true.

The proof for the scalar-values case, presented in the reference, carries over to our situation of bundle-

valued forms without further modification:
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Lemma 4.2.15. [56, Lemma 5.14] For any R > 1 and any 0 ≤ p ≤ m, the sequence of morphisms of

Hilbert N (Γ)-cochain complexes

0→ Dp[E
ρ]

jR−→ Dp[E
ρ
R− ]⊕Dp[E

ρ
(R−1)+ ]

qR−−→ Dp[E
ρ
R−1]→ 0 (4.2.42)

is exact. Here, for smooth forms, we have

jRω := i∗MR
ω ⊕ i∗CR−1

ω, (4.2.43)

qR(ω1 ⊕ ω2) := i∗T(R−1,−)
ω1 − i∗T(R−1,+)

ω2. (4.2.44)

Lemma 4.2.16. There exists a constant C > 0, such that for all R > 1 and all 0 ≤ p ≤ m, we have

Fp(Dp[E
ρ
R− ], λ) ≤ Fp(Dp[E

ρ], C · λ1/4) + Fp(Dp[E
ρ
R−1], C · λ1/2) for 0 ≤ λ ≤ C−1. (4.2.45)

Proof. Consider the exact sequence

0→ Dp[E
ρ]

jR−→ Dp[E
ρ
R− ]⊕Dp[E

ρ
(R−1)+ ]

qR−−→ Dp[E
ρ
R−1]→ 0 (4.2.46)

from Lemma 4.2.15. Because of Proposition 4.2.14, the outer two complexes are Fredholm at p and,

moreover, have vanishing p-cohomology. In particular, we can apply Proposition 4.1.35 to obtain that

Fp(Dp[E
ρ
R− ], λ) ≤ Fp(Dp[E

ρ], c1(R) · λ) + Fp(Dp[E
ρ
R−1], c1(R) · λ), (4.2.47)

for all λ < c2(R), where c1(R) and c2(R) are constants given by rational expressions of the norms of

qR, jR, the differential on Dp[E
ρ
R− ] ⊕ Dp[E

ρ
(R−1)+ ], and their respective inverses. Using the flat bundle

isometries given in Lemma 2.3.7, one can now proceed analogously as in [55, Lemma 6.6] to show that

these norms are bounded from above by universal constants independent of R > 1, thus proving the

lemma.

Proposition 4.2.17. There exists constants C, β > 0, such that for all 0 ≤ p ≤ m, the following hold:

1. The Hilbert N (Γ)-cochain complex Ω∗(2)(MR, E
ρ
R−) has vanishing p-th homology. Equivalently, we

have

∆p[E
ρ
R− ] = ∆⊥p [EρR− ]. (4.2.48)

2. For all R > 1, we have a uniform bound on the spectral density functions as follows

Fp(∆p[ER− ], λ) ≤ Cλβ for 0 ≤ λ ≤ C−1. (4.2.49)

Proof. First, observe that the p-th cohomology of Ω∗(MR, E
ρ
R−) is isomorphic to the p-th cohomology of

Lp[E
ρ
R− ]. To show that the latter is trivial, we only need to show that

Fp(Lp[E
ρ
R− ], 0) = 0. (4.2.50)

Using Lemma 4.2.16, together with both Proposition 4.2.10 and Proposition 4.2.6, we obtain constants

α, c, C1, C2 > 0 independent of R > 1, such that

Fp(Dp[E
ρ
R− ], λ) ≤ Fp(Dp[E

ρ], cλ1/4) + Fp(Dp[E
ρ
R−1], cλ1/2)

≤ Fp(Lp[Eρ], cC1

√
2λ1/4) + Fp(Lp[E

ρ
R−1], cC1

√
2λ1/2)

≤ Fp(∆⊥p [Eρ],

√
cC1

√
2λ1/8) + Fp(∆

⊥
p [EρR−1],

√
cC1

√
2λ1/4).

≤ 2(cC1

√
2)α/2λα/8
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for λ ≤ min{1, c−1, C−1
1 , C2,

1√
2C2
} and all 0 ≤ p ≤ m. In particular, since F (Lp[E

ρ
R− ], 0) ≤ Fp(Dp[E

ρ
R− ], 0)

by Proposition 4.2.8, Equation 4.2.50 immediately follows from the above computation.

Applying now again Proposition 4.2.6 and Proposition 4.2.10 together with the above inequality, we

compute

Fp(∆p[E
ρ
R− ], λ) = Fp(∆

⊥
p [EρR− ], λ) ≤ Fp(Dp[E

ρ
R− ], C1λ

2) + Fp−1(Dp−1[EρR− ], C1λ
2)

≤ 4(cC
3/2
1

√
2)α/2λα/4

for λ ≤ min{1, c−1, C−1
1 , C2,

1√
2C2

, C−1
1 C2,

1
C1C2

√
2
} := C ′.

Setting C := max{(C ′)−1, 4(cC
3/2
1

√
2)α/2} and β := α/4, we obtain the desired result.

Neatly summarized, we get the following result:

Corollary 4.2.18. For each R > 0, the pair (MR, ρ|MR
) is L2-acyclic and of determinant class. In

fact, there exists a uniform constant β > 0 independent of R, so that for each 0 ≤ k ≤ n, one has

αAnk (MR, ρ) ≥ β.

4.2.4 Proof of large-time convergence

For the next result, choose a nested sequence

· · · ⊂ FR−1 ⊂ FR ⊂ FR+1 ⊂ . . . (4.2.51)

inside Hn, where FR is a compact fundamental domain for the Γ-action on MR and F :=
⋃
R>1 FR is a

finite-volume fundamental domain for the Γ-action on Hn. Thus, we have in particular

Vol(FR) < Vol(F) <∞, (4.2.52)

lim
R→∞

Vol(F \ FR) = 0. (4.2.53)

Proposition 4.2.19. For all t ≥ 1, we have

lim
R→∞

trΓ(e−t∆
⊥
p [Eρ

R−
]) = trΓ(e−t∆

⊥
p [Eρ]). (4.2.54)

Proof. Propositions 4.2.11 and 4.2.17 tell us that both ∆⊥p [EρR− ] = ∆p[E
ρ
R− ] and ∆p[E

ρ]⊥ = ∆p[E
ρ].

Moreover, since R ≥ 2, we may apply Theorem 3.5.6 to find appropriate constants c, C1, C2 > 0 indepen-

dent of R and t, so that

| tr(e−t∆p[Eρ
R−

])(x, x)− tr(e−t∆p[Eρ])(x, x)| ≤ C1e
− R2

C2t

for all x ∈ FR/2. Together with 4.2.52 and 4.2.53, this implies that

| trΓ(e−t∆p[Eρ
R−

])− trΓ(e−t∆p[Eρ])| = |
∫
FR

tr(e−t∆p[Eρ
R−

])(x, x)dx−
∫
F

tr(e−t∆p[Eρ])(x, x)|

≤
∫
FR/2

| tr(e−t∆p[Eρ
R−

])(x, x)− tr(e−t∆p[Eρ])(x, x)|dx+

∫
FR−FR/2

| tr(e−t∆p[Eρ
R−

])(x, x)|dx

+

∫
F−FR/2

| tr(e−t∆p[Eρ])(x, x)|dx ≤ Vol(FR/2)C1e
− R2

C2t + Vol(F \ FR/2)c.
R→∞−−−−→ 0.

90



Lemma 4.2.20. There exists a positive function G ∈ C0(1,∞) ∩ L1(1,∞), such that for all t ≥ 1 and

all sufficiently large R >> 0, we have

t−1 trΓ(e−t∆
⊥
p [ER− ]) ≤ G(t). (4.2.55)

Proof. Throughout the proof, we will abbreviate

F pR(λ) := Fp(∆p[E
ρ
R− ], λ). (4.2.56)

Since ∆⊥p = ∆p is Fredholm by Proposition 4.2.2, we can apply Lemma 4.1.17 to conclude that one has

for any R > 0, any t ≥ 1 and arbitrary ε > 0

trΓ(e−t∆
⊥
p [ER

−
]) =

∫ ∞
0

e−tλdF pR(λ) =

∫ ε

0

e−tλdF pR(λ) +

∫ ∞
ε

e−tλdFR(λ)

FpR(0)=0
= t

∫ ε

0

e−tλF pR(λ)dλ+ e−tεF pR(ε) +

∫ ∞
ε

e−tλdFR(λ)

t>1
≤ t

∫ ε

0

e−tλF pR(λ)dλ+ e−tεF pR(ε) + e−tε
∫ ∞
ε

e−λ+εdFR(λ)

= t

∫ ε

0

e−tλF pR(λ)dλ+ e−tεF pR(ε) + e−tεeε trΓ(e−∆⊥p [ER
−

]),

and therefore in particular

t−1 trΓ(e−t∆
⊥
p [Eρ

R−
]) ≤

∫ ε

0

e−txF pR(λ)dλ+
e−tε

t
(F pR(ε) + eε trΓ(e−∆⊥p [Eρ

R−
])). (4.2.57)

By Proposition 4.2.19 we find some δ > 0, such that for all R >> 0, we have trΓ(e−∆⊥p [Eρ
R−

]) ≤
trΓ(e−∆⊥p [Eρ]) + δ. Similarly, by Proposition 4.2.17, we can choose ε, β > 0 independently of R and

small enough, such that F pR(λ) ≤ ε−1λβ for all λ ≤ ε. From this, it becomes obvious that the function

G(t) := ε−1

∫ ε

0

e−tλλβdλ+
e−tε

t
(ε−1+β + eε(trΓ(e−∆⊥p [Eρ]) + δ)) (4.2.58)

satisfies the assertions of our lemma.

Using Proposition 4.2.19, Lemma 4.2.20 and Lebesgue’s theorem of dominated convergence, we finally

obtain the main result of this section:

Theorem 4.2.21 (Large-time convergence). We have

lim
R→∞

∫ ∞
1

t−1 trΓ(e−t∆p[Eρ
R−

])dt =

∫ ∞
1

t−1 trΓ(e−t∆p[Eρ])dt. (4.2.59)

In particular, we obtain

lim
R→∞

n∑
p=0

∫ ∞
1

t−1 trΓ(e−t∆p[Eρ
R−

])dt =

n∑
p=0

∫ ∞
1

t−1 trΓ(e−t∆p[Eρ])dt. (4.2.60)
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4.3 Small-time convergence

4.3.1 Small-time asymptotics on bundles of bounded geometry

In this section, we will deal with the small time asymptotics of the heat equation on a vector bundle over

a manifold. As a start, we will provide the physical context, out of which these investigations originally

arose:

If we interpret a Riemannian manifold (M, g) as a closed system, we can further interpret a smooth func-

tion f : M → R as a momentary assignment of heat to each point of x ∈M . The natural physical question

of how the initial heat f distributes over time inside the closed system M translates in mathematical

terms to finding a solution F : M × [0,∞)→ R to the partial differential equation

∂

∂t
F (x, t)|t=t0 = −∆F (x, t0), (4.3.1)

F (x, 0) = f(x), (4.3.2)

the so-called heat equation. Here, ∆ is the Hodge-Laplacian on functions C∞(M,R) constructed from

the Riemannian metric g. Roughly speaking, this equation sheds light on the fact that the rate of change

over time of the temperature at any given point x ∈ M is proportional to the difference of the average

temperature in a neighborhood of x ∈ M to the value of the temperature at x. The latter difference is

encoded in the Laplacian, which in turn depends on the Riemannian metric g. Below we have sketched

the heat evolution on a closed system, modeled on a euclidean disc with absolute boundary conditions (in

physical terms, with vanishing outward heat flow at the boundary), after applying heat to three different

areas. As t approaches∞, the heat will evenly distribute among the manifold, i.e. converge to a constant

function.

t = 0 0 < t < ε t2 � ε t =∞

Spectral theory then tells us that, provided that ∆ is essentially self-adjoint, the heat equation is uniquely

solved by F ( . , t) = e−t∆f . Moreover, the theory of elliptic operators tells us that e−t∆ has an integral

kernel e−t∆(x, y), the so-called heat kernel, which means that the solution F (x, t) can be written in more

concrete terms as the integral expression F (x, t) = (e−t∆f)(x) =
∫
M
e−t∆(y, x)f(y)dy. Classically, the

heat kernel is constructed from a parametrix of the elliptic differential operator ∆ + ∂
∂t on M × R, cf.

[26].

It should be noted that finding an explicit expression for the heat kernel e−t∆(x, y), (i.e. for a parametrix

for ∆+ ∂
∂t ), and thus an explicit formula for the solution F , is a fruitless endeavor on a general Riemannian

manifold M . In this section, we are only interested in rough asymptotics of the heat distribution for small

time t > 0. With that in mind, the heat equation tells us that the rate of change over time depends on

the previous values of F and on the local geometry. In fact, one can derive that for small time t > 0,

the solution F (x, t) is essentially only influenced by f and local geometric data on supp(f). Namely,
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although the heat equation does not have the finite propagation property of the wave equation 3.5.19,

it holds that for small time t > 0, the contribution to the heat flow at a given x ∈ M coming from the

temperature at another y ∈ M is negligible if the Riemannian distance dg(x, y) is not small. At least

theoretically, one should therefore be able to approximate the heat operator e−t∆ for small time t > 0

sufficiently well by local quantities. This is adequately reflected in the small-time asymptotics of the heat

kernel near the diagonal, stated in the forthcoming result.

Replacing f by a general differential form with values in a flat, Hermitian vector bundle E ↓ M and

the Laplacian of functions by the corresponding Hodge-Laplacian yields the generalized heat equation

that we have implicitly already studied to a great extend. Provided that M is compact, the locality

of the resulting heat operator e−t∆p[E] for small time t > 0 is made precise by the following result,

originally due to Greiner, see [41, Theorem 2.6.1]. In the form stated below, the proof can be found in

[40, Theorem 1.11.4].

Theorem 4.3.1 (Asymptotic expansion: Compact case). Let (M, g) be an n-dimensional compact, ori-

ented Riemannian manifold and let E ↓M be a flat Hermitian vector bundle over M .

Then, for each 0 ≤ p ≤ n and each i ∈ N, there exist forms αi[E] ∈ Ωn(M) and βi[E|∂M ] ∈ Ωn−1(∂M),

such that the following holds

For each t > 0 and each f ∈ C∞(M,R), the (modified) heat operator f · e−t∆p[E] is of trace class.

Additionally, for small time t→ 0, it has the following asymptotic expansion.

tr(f · e−t∆p[E]) =

n∑
i=0

t−(n−i)/2
(∫

M

f · αi[E] +

∫
∂M

f · βi[E∂M ]

)
+O(t1/2). (4.3.3)

Furthermore, both αi[E] and βi[E] are invariant under local bundle isometries in the way described

as follows: Suppose that (M ′, g′) is another n-dimensional compact, oriented Riemannian manifold and

E′ ↓M ′ a flat Hermitian bundle over M ′. Then, if U ⊆M and V ⊆M are open subsets, such that there

exists a flat bundle isometry EU ↓ U
F−→E′V ↓ V , we have for all i ∈ N

αi[E] ≡ αi[E′] ◦ F on U,

βi[E∂M ] ≡ βi[E′∂M ′ ] ◦ F on U ∩ ∂M.

We wish to extend the result onto the non-compact setting.

Theorem 4.3.2 (Asymptotic expansion: Cocompact case). Let (M, g) be an n-dimensional oriented

Riemannian manifold, let (E, h) ↓M be a flat trivial Hermitian bundle over M . Suppose that (E, h) ↓M
is H-equivariant for some subgroup H ⊆ Isom+(M, g) that contains a uniform lattice.

Then, for each 0 ≤ p ≤ n and each i ∈ N, there exists forms αi[M ] ∈ Ωn(M) and βi[E∂M ] ∈ Ωn−1(∂M),

such that the following holds:

For each t > 0, each uniform lattice Γ ⊆ H and each Γ-invariant function f ∈ C∞(M,R), the operator

f · e−t∆p[E] is of Γ-trace class. Additionally, for t→ 0, we have the following asymptotic expansion:

trΓ(f · e−t∆p[EM ]) =

n∑
i=0

t−(n−i)/2
(∫
F
f · αi[E] +

∫
∂F

f · βi[E∂M ]

)
+O(t1/2), (4.3.4)

where

• F is a fundamental domain for the Γ-action on M , and
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• ∂F is a fundamental domain for the induced Γ-action on ∂M .

Furthermore, both αi[E] and βi[E] are invariant under local bundle isometries in the same way as de-

scribed in Theorem 4.3.1.

Proof. Let (M̂ := M/Γ, ĝ) be the compact quotient Riemannian manifold, with ĝ the quotient metric

induced by g (which is well-defined, since the action of Γ leaves g invariant). Similarly, let Ê ↓ M̂ be the

flat complex vector bundle with total space Ê := E/Γ, obvious projection map and the induced (flat)

connection. Denote by π : E ↓ M → Ê ↓ M̂ the corresponding quotient map. Since Γ was assumed to

be compatible with E ↓M , the Hermitian form h descends to a Hermitian form ĥ on Ê ↓ M̂ .

The metric structure that we endowed Ê ↓ M̂ with now ensures that there exists a constant K > 0 such

that, for any x ∈M , the restriction

π : E|B2K(x) ↓ B2K(x) → Ê|B2K(π(x)) ↓ B2K(π(x)) is a flat bundle isometry. Here, B2K(x) denotes the

metric ball around x of Radius 2K, similarly B2K(π(x)). For fixed x ∈M and x̂ := π(x), let N ⊆M be

a closed connected Riemannian submanifold, satisfying BK(x) ⊆ N ⊆ B2K(x) and let N̂ := π(N) ⊆ M̂

be its diffeomorphic image in M̂ . Then π : E|N ↓ N → Ê|N̂ ↓ N̂ is a flat bundle isometry. In particular,

we obtain

|| tr(e−t∆[E|N ](x, x))− tr(e−t∆[Ê|N̂ ](x̂, x̂))|| = 0. (4.3.5)

Moreover, we have dN (x) = dN̂ (x̂) ≤ 2K. Therefore, by Theorem 3.5.6, we obtain constants C1, C2 > 0

independent of x and N , such that following equations hold.

|| tr(e−t∆[E] − e−t∆[E|N ])(x, x)|| < C1/2e
− 1
C2t , (4.3.6)

|| tr(e−t∆[Ê] − e−t∆[Ê|N̂ ])(x̂, x̂)|| < C1/2e
− 1
C2t . (4.3.7)

Therefore, by the triangle inequality, we obtain

|| tr(e−t∆[E])(x, x)− tr(e−t∆[Ê])(x̂, x̂)|| < C1e
− 1
C2t . (4.3.8)

Applying Theorem 4.3.1 to Ê ↓ M̂ yields density functions αi[Ê] and βi[Ê] for each i ∈ N, such that for

t→ 0, we have the expansion

tr(e−t∆p[Ê]) =

k∑
i=0

t−(n−i)/2
(∫

M̂

αi[Ê](x) dx+

∫
∂M̂

βi[Ê∂M ](x) dx

)
+O(t(k−n+1)/2). (4.3.9)

Defining αi[E] := αi[Ê] ◦ π, βi[E] := βi[Ê] ◦ π and using the fact that e−
1
C2t ∈ O(t(k−n+1)/2) for any

k ∈ N yields the asymptotic expansion for trΓ(e−t∆p[Ê]).

We have to show that the densities defined this way do not depend on the particular choice of compatible

uniform lattice in H. For that purpose, let Λ ⊂ H be another such lattice, let E ↓ M be the Hermitian

quotient bundle over M := M/Λ constructed as above, with densities αi[E] and βi[E] corresponding to the

p-th Laplacian ∆p[E], provided by Theorem 4.3.1. For π : M →M the quotient map, αi[E] := αi[E] ◦ π
and βi[E] := βi[E] ◦ π, our goal is to show that

αi[E] = αi[E], (4.3.10)

βi[E] = βi[E]. (4.3.11)

For fixed x ∈M , we can choose a neighborhood U 3 x such that both π : E|U ↓ U → Êπ(U) ↓ π(U) and

π : E|U ↓ U → Eπ(U) ↓ π(U) are flat bundle isometries. Therefore, the composition π ◦ π−1 : Ê|π(U) ↓

94



π(U) → E|π(U) ↓ π(U) is also a well-defined flat bundle isometry. Applying the local bundle isometric

invariance properties to αi[Ê] and αi[E], as stated in Theorem 4.3.1, Equations 4.3.10 and 4.3.11 now

directly follow. The local bundle isometric invariance of αi[E] and βi[E] is shown similarly, finishing the

proof.

This proofs the result in case that f ≡ 1. The case for general Γ-invariant f ∈ C(M,R) follows from

observing that the integral kernel of f ·e−t∆p[E] is given by f(x)·e−t∆p[E](y, x) and repeating the argument

from above.

4.3.2 The asymptotic expansion of the hyperbolic heat kernel

Recall the following notions from Section 2.3: Let Hn be hyperbolic n-space, G := Isom+(Hn) the group

of orientation-preserving isometries on Hn and let

Γ ⊂ G (4.3.12)

a torsion-free, non-uniform lattice. Let ρ : G → GL(V ) be a complex, finite-dimensional irreducible

representation of G and let Eρ ↓ Hn be the associated flat bundle over Hn, equipped with the canoncial

G-equivariant metric hρ. For each R > 0, recall the associated, Γ-invariant bundles

EρR− ↓MR,

EρR+ ↓ CR,

EρR ↓ TR,

obtained by restriction of Eρ to the respective base space, and the Γ-regularized traces

trΓ(e−t∆p[Eρ]) =

∫
F

tr(e−t∆p[Eρ](x, x))dµg(x), (4.3.13)

trΓ(e−t∆p[Eρ
R−

]) =

∫
FR

tr(e−t∆p[Eρ
R−

](x, x))dµg(x), (4.3.14)

where as before, dµg(x) denotes the volume form on Hn induced by the hyperbolic metric g. Here, we

can and have chosen the Γ-fundamental domains F , respectively FR for the Γ-action on Hn, respectively

MR, so that for each R > 0

1. MR ∩ F = FR, so that F =
⋃
R≥0 FR.

2. ∂MR ∩ F = ∂FR is a fundamental domain for the Γ-action on ∂MR.

3. There exists a finite family (Gj)j∈J with each Gj ⊆ Rn−1 a compact euclidean submanifold, such

that for 0 ≤ R < S <∞, we have

(a) FS \ FR = [R,S]×
∐
j∈J Gj ,

(b) ∂FR = {R} ×
∐
j∈J Gj .

Corollary 4.3.3. For fixed p ∈ N and each i = 0, . . . , n, there exist constants ai, bi ∈ C, such that for

t→ 0, we have

trΓ(e−t∆p[Eρ]) = Vol(F)

n∑
i=0

t−(n−i)/2ai +O(t1/2), (4.3.15)
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and, for each R > 0, we have for t→ 0

trΓ(e−t∆p[Eρ
R−

]) =

n∑
i=0

t−(n−i)/2(Vol(FR)ai + Vol(∂FR)bi) +O(t1/2). (4.3.16)

Proof. Since Γ acts cocompactly on each MR, the previous theorem provides us with asymptotic ex-

pansions of trΓ(e−t∆p[Eρ
R−

]) for t → 0, with respective density functions αi[E
ρ
R− ] and βi[E

ρ
R− ] which a

priori are non-constant and depend on R. However, Hn is a homogeneous space. In particular, any

two points x, y ∈ Hn have arbitrarily small isometric neighborhoods. Hence, by Corollary 2.3.5, there

exists arbitrarily small neighborhoods U 3 x and V 3 y and a bundle isometry F : EρU ↓ U → EρV ↓ V
such that y = F (x). Since αi[E

ρ
R− ] and βi[E

ρ
R− ] are invariant under local bundle isometries, we obtain

both αi[E
ρ
R− ] ≡ ai and βi[E

ρ
R− ] ≡ bi, with constants ai, bi ∈ C independent of R. Equation 4.3.16 now

follows. To obtain Equation 4.3.15, we apply the previous theorem to Eρ ↓ Hn and some uniform lattice

Λ ⊂ Isom(Hn) (note that Γ ⊂ Isom(Hn) is not uniform, by assumption). The same argument as before

then yields

trΛ(e−t∆p[Eρ]) = Vol(F̂)

n∑
i=0

t−(n−i)/2ai +O(t1/2), (4.3.17)

where F̂ is some fundamental domain for the Λ-action on Hn. From Corollary 2.3.9, we obtain

trΓ(e−t∆p[Eρ]) = Vol(F)/Vol(F̂) trΛ(e−t∆p[Eρ]). (4.3.18)

Equation 4.3.15 now immediately follows from the previous two Equations.

In order to streamline the notation, we will set

αi := Vol(F)ai , αRi := Vol(FR)ai , βRi := Vol(∂FR)bi. (4.3.19)

whenever p = 0, . . . , n is clear from the context.

Corollary 4.3.4. The Γ-equivariant Fredholm bundles Eρ ↓ Hn and EρR− ↓ MR for each R > 0 are

ζ-regular. Namely, for any fixed 0 ≤ p ≤ n the integral expressions

ζRp (s) := Γ(s)−1

∫ 1

0

ts−1 trΓ(e−t∆p[Eρ
R−

]⊥)dt, (4.3.20)

ζp(s) := Γ(s)−1

∫ 1

0

ts−1 trΓ(e−t∆p[Eρ]⊥)dt, (4.3.21)

determine holomorphic functions for sufficiently large s >> 0, each admitting a meromorphic extension

onto all of C that is regular at 0. In fact, it holds that

d

ds
ζRp (s)|s=0 =

∫ 1

0

(
trΓ(e−t∆p[Eρ

R−
])−

n∑
i=0

t−(n−i)/2(αRi + βRi )

)
dt

t

+

n∑
i=0

c(i, n)(αRi + βRi ), (4.3.22)

d

ds
ζp(s)|s=0 :=

∫ 1

0

(
trΓ(e−t∆p[Eρ])−

n∑
i=0

t−(n−i)/2αi

)
dt

t
+

n∑
i=0

c(i, n)αi, (4.3.23)

where

c(i, n) :=

−n−i2 i 6= n,

dΓ
ds |s=1 i = n.

(4.3.24)
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Proof. First, Propositions 4.2.11 and 4.2.17 imply that we have ∆p[E
ρ] = ∆p[E

ρ]⊥, as well as ∆p[E
ρ
R− ] =

∆p[E
ρ
R− ]⊥ for each R > 0. Then the result follows from the asymptotic expansions as outlined in Corollary

4.3.3, along with elementary complex analysis and well-known properties of the inverse Gamma function,

see [55, Lemma 2.36] for additional details.

Since tr(e−t∆p(x, x)) is constant on Hn, we obtain from Equation 4.3.15 the following

Corollary 4.3.5. There exists a constant C > 0, such that for all x ∈ Hn, we have for t→ 0

| tr(e−t∆p[Eρ](x, x))−
n∑
i=0

t−(n−i)/2ai| ≤ Ct1/2. (4.3.25)

Corollary 4.3.6. For R ≥ 1 and t→ 0, we have∫
FR\FR−1

tr(e−t∆p[Eρ
R−

](x, x)) dµg(x)−
n∑
i=0

t−(n−i)/2(Vol(FR \ FR−1)ai + Vol(∂FR)bi)

∈ O(t1/2). (4.3.26)

Proof. We can write∫
FR\FR−1

tr(e−t∆p[Eρ
R−

](x, x)) dµg(x)−
n∑
i=0

t−(n−i)/2(Vol(FR \ FR−1)ai + Vol(∂FR)bi)

= trΓ(e−t∆p[Eρ
R−

])−
n∑
i=0

t−(n−i)/2(Vol(FR)ai + Vol(∂FR)bi) (4.3.27)

−
∫
FR−1

tr(e−t∆p[Eρ
R−

](x, x))−
n∑
i=0

t−(n−i)/2ai dµg(x). (4.3.28)

4.3.27 is in O(t1/2) by Corollary 4.3.3. Next, observe that dMR
(x) ≥ 1 for any x ∈ FR−1. Therefore,

applying Theorem 3.5.6 to M = Hn, N = MR and D = 1, we find constants C, κ > 0, such that for all

x ∈ FR−1, we have

| tr(e−t∆p[Eρ
R−

] − e−t∆p[Eρ])(x, x)| < Ce−2/(κt) (4.3.29)

Since e−2/(κt) ∈ O(t1/2), we can apply Corollary 4.3.5 and obtain that 4.3.28 is also in O(t1/2). The

result follows.

Proof of small-time convergence

Theorem 4.3.7 (Small-time convergence). For each 0 ≤ p ≤ n, we have

lim
R→∞

d

ds
ζRp (s)|s=0 =

d

ds
ζp(s)|s=0. (4.3.30)

Proof. First, observe that limR→∞Vol(FR) = Vol(F) and, since ∂FR is a flat subspace of ∂MR
∼= Rn−1

which is equipped with the flat metric e−2Rdx, we also have limR→∞Vol(∂FR) = 0. We deduce that

limR→∞(αi − αRi ) = limR→∞ βRi = 0 for each i = 0, . . . , n. Therefore, the statement of the theorem will

follow once we show that for

Σ[R] :=

∫ 1

0

trΓ(e−t∆p[Eρ])− trΓ(e−t∆p[Eρ
R−

])−
n∑
i=0

t−(n−i)/2(αi − αRi − βRi )
dt

t
, (4.3.31)
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we have

lim
R→∞

Σ[R] = 0. (4.3.32)

Recall that trΓ(e−t∆p[Eρ]) = Vol(F) tr(e−t∆p[Eρ](x, x)) for any x ∈ F . For fixed R > 2, we can therefore

decompose Σ[R] = Σ1[R] + Σ2[R] + Σ3[R]− Σ4[R], with

Σ1[R] := Vol(F \ FR−1)

∫ 1

0

tr(e−t∆p[Eρ](x, x))−
n∑
i=0

t−(n−i)/2αi
d

dt
, (4.3.33)

Σ2[R] :=

∫ 1

0

∫
FR/2

tr((e−t∆p[Eρ] − e−t∆p[Eρ
R−

])(x, x))dµg(x)
d

dt
, (4.3.34)

Σ3[R] :=

∫ 1

0

∫
FR−1\FR/2

tr((e−t∆p[Eρ] − e−t∆p[Eρ
R−

])(x, x))dµg(x)
d

dt
, (4.3.35)

Σ4[R] :=

∫ 1

0

∫
FR\FR−1

tr((e−∆p[Eρ
R−

])(x, x))dµg(x) (4.3.36)

−
n∑
i=0

t−(n−i)/2(Vol(FR \ FR−1)ai + Vol(∂FR)bi)
dt

t
. (4.3.37)

This splitting is allowed, since each one of these integrals converges. Convergence of Σ1[R] follows

from Corollary 4.3.5, convergence of Σ2[R] and Σ3[R] each follows from Theorem 3.5.6, and finally,

convergence of Σ4[R] follows from Corollary 4.3.6. Our strategy now is to show that limR→∞ Σi[R] for

each i = 1, . . . , 4. For this purpose, observe first that we may apply Corollary 4.3.5 to obtain a constant

C > 0 independent of R, such that

|Σ1[R]| ≤ C Vol(F \ FR−1)

∫ 1

0

t−1/2dt = 2C Vol(F \ FR−1)
R→∞−−−−→ 0. (4.3.38)

Secondly, observe that for any R > 0, the bundle map

tr : π∗1(E∗)⊗ π∗2(E) ↓MR ×MR → C×MR ×MR ↓MR ×MR (4.3.39)

is uniformly bounded (with respect to the canonical constant Hermitian metric on C × MR × MR ↓
MR ×MR) by a constant independent of R. Now dFR(x) ≥ 1 for any x ∈ FR−1 and dFR(x) ≥ R/2 > 1

for any x ∈ FR/2. Thus, we can now apply Theorem 3.5.6.(2) with D = 1 and obtain constants C1, C2,

independent of R, such that

| tr((e−t∆p[Eρ] − e−t∆p[Eρ
R−

])(x, x))| < C1e
−R2/(2tC2) ∀x ∈ FR/2, (4.3.40)

| tr((e−t∆p[Eρ] − e−t∆p[Eρ
R−

])(x, x))| < C1e
−2/(tC2) ∀x ∈ FR−1. (4.3.41)

Heuristically, these estimates imply that the integrand in Σ2[R] decays exponentially fast in R, while the

volume of the domain of integration FR/2 is, of course, uniformly bounded by the volume of F . On the

other hand, the integrand in Σ3[R] is uniformly bounded for all R, while the volume of the domain of
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integration, FR−1 \ FR/2 decays exponentially fast. Put into action, we obtain

|Σ2[R]| ≤ C1 Vol(FR/2)

∫ 1

0

e−R
2/(2tC2) dt

t
≤ C1 Vol(FR/2)

∫ 1

0

e−R
2/(2tC2) dt

t2
(4.3.42)

≤ Vol(F)
2C1C2

R2
e−R

2/(2C2) R→∞−−−−→ 0,

|Σ3[R]| ≤ C1 Vol(FR−1 \ FR/2)

∫ 1

0

e−2/(tC2) dt

t
≤ C1C2

2
Vol(FR−1 \ FR/2)e−2/C2 (4.3.43)

≤ C1C2

2
e−(2+R)/C2(R/2− 1)

R→∞−−−−→ 0.

The proof of limR→∞ |Σ4[R]| = 0 requires a little more work. For that purpose, first define the horoball

HnR := (−∞, R] × Rn−1 ⊂ Hn, so that the restriction of the hyperbolic metric on HnR is of the warped

product form dr2 + e−2rdx2. Denote by ∆p[HnR] the Bochner-Laplace operator corresponding to the

flat restriction bundle Eρ|HnR over HnR. Observe now that Eρ|HnR ↓ H
n
R still satisfies the assumptions of

Corollary 3.3.15. We may therefore apply Proposition 3.4.2 and obtain for each t > 0 a heat kernel

e−t∆p[HnR](x, y). This allows us to decompose Σ4[R] as the sum of the following convergent integrals

Σ4[R] =

Σ4,1[R]︷ ︸︸ ︷∫ 1

0

∫
FR\FR−1

tr((e−t∆p[Eρ
R−

] − e−t∆p[MR\MR−2])(x, x))dµg(x)
dt

t
, (4.3.44)

+

Σ4,2[R]︷ ︸︸ ︷∫ 1

0

∫
FR\FR−1

tr((e−t∆p[MR\MR−2] − e−t∆p[HnR])(x, x))dµg(x)
dt

t
, (4.3.45)

+

Σ4,3[R]︷ ︸︸ ︷∫ 1

0

∫
FR\FR−1

tr(e−t∆p[HnR](x, x))dµg(x)−
n∑
i=0

t−(n−i)/2(Vol(FR \ FR−1)ai + Vol(∂FR)bi)
dt

t
. (4.3.46)

The first two summands converge, as is shown in the course of the next paragraph, and therefore also

the third. To deal with the first two summands, we can apply Theorem 3.5.6 in the following fashion:

For Σ4,1[R], we put MR in the role of the ambient Manifold and regard MR \MR−2 as a submanifold.

In this setting, we have dMR\MR−2
(x) ≥ 1 for any x ∈ FR \ FR−1. Therefore, Theorem 3.5.6 provides us

with constants D1, D2 > 0, such that

| tr((e−t∆p[Eρ
R−

] − e−t∆p[MR\MR−2])(x, x))| < D1e
2
D2t . (4.3.47)

Moreover, as MR and M0 have isometric neighborhoods (in Hn), both D1 and D2 can be chosen inde-

pendently of R. This implies that

|Σ4,1[R]| ≤ Vol(FR \ FR−1)
D1D2

2
e

2
D2

R→∞−−−−→ 0. (4.3.48)

Replacing MR by HnR in the role of the ambient manifold, an analogous argument yields

lim
R→∞

|Σ4,2[R]| = 0. (4.3.49)

Next, observe that by our choice of FR, we have

Vol(FR \ FR−1) = e−2R+2 Vol(F1 \ F0), (4.3.50)

Vol(∂FR) = e−2R+2 Vol(∂F1). (4.3.51)
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Secondly, recall that Rn−1 has transitive isometry group, and observe that any isometry i : Rn−1 → Rn−1

extends to an isometry i× 11 : HnR → HnR. Moreover, we have an isometry

IR : HnR → Hn1 ,

IR(u, y) := (u+ 1−R, eR−1y). (4.3.52)

Using Corollary 2.3.6 and Proposition 2.2.1, we therefore obtain a smooth map h : (0,∞)× (−∞, 1]→ C,

such that for x = (u, v) ∈ (−∞,∞)× Rn−1, we have

tr(e−t∆[Hn1 ](x, x)) = h(t, u), if x ∈ Hn1 , (4.3.53)

tr(e−t∆[HnR](x, x)) = h(t, u+ 1−R), if x ∈ HnR . (4.3.54)

This implies that ∫
FR\FR−1

tr(e−t∆[HnR](x, x))dx =

∫
G

∫ R

R−1

h(t, u−R+ 1)e−2ududy

=

∫
G

∫ 1

0

h(t, u)e−2(u+R−1)dudy = e−2R+2

∫
G

∫ 1

0

h(t, u)e−2ududy

= e−2R+2

∫
F1\F0

tr(e−t∆[Hn1 ])(x, x)dx. (4.3.55)

Equations 4.3.50, 4.3.51 and 4.3.55 now yield the equality

Σ4,3[R] = e−2R+2

(∫ 1

0

∫
F1\F0

tr(e−t∆p[M1](x, x)))dx

−
n∑
i=0

t−(n−i)/2(Vol(F1 \ F0)ai + Vol(∂F1)bi)
dt

t

)
R→∞−−−−→ 0. (4.3.56)

Therefore, limR→∞ Σ4[R] = 0 follows from Equations 4.3.48, 4.3.49 and 4.3.56 and Corollary 4.3.6, finally

finishing the proof of the theorem.
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Chapter 5

Combinatorial torsion

In this chapter, we will shed light on the combinatorial L2-Torsion invariants that one can assign to a

reasonable space and a representation of its fundamental group: Given a finite connected CW-complex

K with Γ := π1(K) its fundamental group, the associated cellular cochain chain complex C∗(K̃) of the

universal cover K̃ (cf. Section 5.1) can be seen as the algebraic foundation for all (known) combinatorial

L2-invariants that can reasonably be assigned to K. Crucially, the action of Γ on K̃ by deck trans-

formations endows C∗(K̃) with the structure of a free, finitely-generated Z[Γ]-module cochain complex.

Therefore, given any finite-dimensional, complex representation ρ : Γ → GL(V ), the twisted complex

C∗(K̃, ρ) := C∗(K̃) ⊗C V can be regarded as a free, finitely-generated C[Γ]-module cochain complex.

Moreover, there is a designated class of Γ-invariant complex basis for C∗(K̃, ρ), so called admissible pairs

(see Definition 5.2.1), each giving rise to a unique inner product structure. Taking the corresponding

L2-completion C∗(2)(K̃, ρ) and employing the theory of group von Neumann algebras, one is now able to

define for each p ∈ N the p-th twisted L2-Betti number bTop(2),p(K̃, ρ) ∈ R≥0. It is invariantly defined, in

the sense that it does not depend on the specific choice of inner product structure that was made in the

process. Furthermore, provided that (M,ρ) is det-L2-acyclic, meaning that all L2-Betti numbers vanish

and the boundary operators fulfill the technical determinant class condition, one can define an L2-torsion

element T(2)(C
∗(K̃, ρ)) ∈ R>0 of the associated complex. Although det-L2-acyclicity is again an invariant

property, we show that T(2)(C
∗(K̃, ρ)) itself does, in general, depend on the choice of inner product. How-

ever, provided that ρ is unimodular, we prove that the cellular L2-torsion TCW(2) (K, ρ) := T(2)(C
∗(K̃, ρ))

is invariantly defined, see Corollary 5.2.10. In this manner, it was also considered in earlier publications,

such as in a joint work by Carey, Braverman and Farber [16]. However, unlike in previous publications,

we establish that this twisted L2-torsion is a homeomorphism invariant (Corollary 5.3.12) and, under the

assumption that Γ satisfies the Farrell-Jones conjecture, even a homotopy invariant (Definition 5.3.14).

As such, we obtain a topological L2-torsion TTop(2) (K, ρ). It can be seen as a strict generalization of ordinary

topological L2-torsion TTop(2) (K,1C), defined with respect to the trivial representation 1C : Γ → C, and

first introduced by Mathai in [63]. As a prime application, the latter statement allows one to naturally

define a twisted topological L2-torsion for locally symmetric spaces and unimodular representations of

their fundamental group, as will be done in Section 5.5.
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5.1 Preliminaries

Throughout this chapter, we will study different quantities attached to a finite, connected CW-complex

X and a complex, finite-dimensional representation ρ : π1(X) → GL(V ). Many of these quantities will

prove to be quite rigid under certain transformations of X. As a key intermediate step in all of these

instances, the fundamental group π1(X) will always be identified with the deck group deck(pX) =: ΓX

of a universal covering map pX : X̃ → X. Although there is no canonical universal covering space, and

thus also no canonical representative of π1(X) as the deck group of such covering, the quantities yet to

be defined will turn out to be unaffected by different choices of universal cover.

As a first general step, it is essential that we analyze the following situation (all spaces are assumed to

be path-connected, locally path-connected and semi-locally simply connected). Given a map f : X → Y

between spaces, elementary covering theory tells us that, picking some x ∈ X and setting y := f(x),

there is a surjection from the set of pairs {(x̃, ỹ) : x̃ ∈ p−1
X (x) and ỹ ∈ p−1

Y (y)} to the set of maps

{f̃ : X̃ → Ỹ : f̃ is a lift of f}. Namely, the surjection assigns to each pair (x̃, ỹ) the unique lift f̃ : X̃ → Ỹ

of f with the property that f̃(x̃) = ỹ. Since the deck groups are in one-to-one correspondence to, and act

transitively on each fiber, any choice of lift f̃ : X̃ → Ỹ of f therefore gives rise to a group homomorphism

f̃∗ : ΓX → ΓY , (5.1.1)

whose image is uniquely determined by the identity

f̃∗(γ) ◦ f̃ = f̃ ◦ γ γ ∈ ΓX . (5.1.2)

For a different lift f ′ : X̃ → Ỹ , it also follows from the above correspondence that we find an element

α ∈ ΓX such that f̃ = f ′ ◦ α. This is clearly equivalent to f ′ = f̃ ◦ α−1 = f̃∗(α)−1 ◦ f̃ , therefore also

equivalent to f̃ = f̃∗(α) ◦ f ′. Consequently, we obtain that f ′∗ = f̃∗(α)−1 · f̃∗ · f̃∗(α) : ΓX → ΓY , i.e.

the homomorphisms f ′∗ and f̃∗ are the same up to conjugacy. Less trivial to see, but still true, is the

following statement:

Lemma 5.1.1. Let ft : X → Y be a (not necessarily based) homotopy between path-connected, locally

path-connected and semi-locally simply connected spaces. Let f̃t : X̃ → Ỹ be a lift of ft onto the universal

covering space. Then, for all t ∈ [0, 1], we have

(f̃t)∗ = (f̃0)∗ : ΓX → ΓY (5.1.3)

Proof. It suffices to show that the assignment t 7→ (f̃t)∗ is locally constant. Assuming the contrary, we

find s ∈ [0, 1] and a sequence (sn)n∈N ⊆ [0, 1] with limn→∞ sn = s and (f̃sn)∗ 6= (f̃s)∗ for all n ∈ N. This

means that for each n ∈ N, there exists some γn ∈ deck(pX) with δn := (f̃s)∗(γn) 6= (f̃sn)∗(γn) =: δ′n.

By the defining Property 5.1.2 of the deck group elements δn and δ′n, we have δ′n ◦ f̃s 6= δn ◦ f̃s = f̃s ◦ γn.
Because all of the above maps are lifts of the same map fs : X → Y and each such lift is uniquely

determined by the image of one point, it follows from the above that for any arbitrary fixed x ∈ X, one

has (δ′n ◦ f̃s ◦ γ−1
n )(x) 6= f̃s(x) for all n ∈ N.

Since the subset
⋃
n∈N(δ′n ◦ f̃s ◦ γ−1

n )(x) ⊆ Y is discrete and does not contain f̃s(x), and since the

assignment t 7→ f̃t is continuous, one finds an ε > 0 and open subsets U ⊇
⋃
n∈N(δ′n ◦ f̃(s−ε,s+ε) ◦ γ−1

n )(x)

and V 3 f̃s(x) with U ∩ V = ∅.
Note that there exists some N ∈ N, such that sn ∈ (s−ε, s+ε) for all n ≥ N , hence also (δ′n◦f̃sn◦γ−1

n )(x) ∈

102



U for all n ≥ N . However, since δ′n = (f̃sn)∗(γn), we must have (δ′n ◦ f̃sn ◦ γ−1
n )(x) = f̃sn(x)

n→∞−−−−→ f̃s(x),

implying that (δ′n ◦ f̃sn ◦ γ−1
n )(x) ∈ V for sufficiently large n, a contradiction.

These results allow us for extract from any given map f : X → Y a group homomorphsim f∗ :=

f̃∗ : ΓX → ΓY , where f̃ : X̃ → Ỹ is any lift of f . Note that f∗ is only well-defined up to conjugacy,

which is why for any representation ρ : ΓY → GL(V ), the pull-back ρ ◦ f∗ is also only well-defined up

to conjugacy. However, this will not affect any of the results yet to be stated, as we will show that the

invariants yet to be defined are impervious to conjugacy of the underlying representation. From Lemma

5.1.1, we now also deduce:

Corollary 5.1.2. Let f, g : X → Y be two homotopic maps. Then, up to conjugacy, we have f∗ =

g∗ : ΓX → ΓY .

5.2 Cellular torsion of a pair

Let (X,Y ) be a CW-pair. Throughout, we assume X to be finite of dimension n and connected. Let

p : X̃ → X be a universal covering map (fixed throughout, unless stated otherwise) and set Ỹ := p−1(Y ).

Then (X̃, Ỹ ) is also a CW-pair (with the obvious lifted CW-structure). Let

Γ := deck(p)

be the deck group of the covering projection. Then Γ acts freely and cellularly on the pair (X̃, Ỹ ).

Consider the relative cellular chain complexes C∗(X̃, Ỹ ) and C∗(X,Y ), whose underlying modules can be

identified with the free abelian groups generated by all cells of X̃, respectively X, not entirely contained

in Ỹ , respectively Y . Observe that the cellular Γ-action on (X̃, Ỹ ) endows C∗(X̃, Ỹ ) with a canonical

Z[Γ]-module structure, under which the differential ∂ : C∗(X̃, Ỹ ) → C∗−1(X̃, Ỹ ) becomes Z[Γ]-linear.

This allows us to define the equivariant cellular cochain complex

C∗(X̃, Ỹ ) = homZ[Γ](C∗(X̃, Ỹ ),Z[Γ]) (5.2.1)

with differential δ : C∗(X̃, Ỹ )→ C∗+1(X̃, Ỹ ) the map dual to ∂.

For each 0 ≤ k ≤ n, we choose a subset Ek ⊆ Ck(X̃, Ỹ ) of oriented representatives of k-cells not entirely

contained in Ỹ , one for each Γ-orbit. It is easy to see that this forms a Z[Γ]-basis for the module Ck(X̃, Ỹ ).

We let Ek ⊆ Ck(X̃, Ỹ ) be the dual basis to Ek, and define

E :=

n⋃
k=0

Ek ⊆ C∗(X̃, Ỹ ) , jk := |Ek| = # k-cells in X not entirely contained in Y ,

j := |E| =
n∑
k=0

jk. (5.2.2)

We call such graded Z[Γ]-basis E constructed this way an admissible basis for the Z[Γ]-cochain complex

C∗(X̃, Ỹ ). In particular, we see that each Z[Γ]-module Ck(X̃, Ỹ ) is free of rank jk.

Now consider additionally a representation ρ : Γ → GL(V ) of Γ over some finite-dimensional complex

vector space V . A choice of basis B ⊆ V (which we assume to always be ordered, from now on) yields an

isomorphism

φB : V → Cm, (5.2.3)
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where m = dimC(V ), identifying B with the (ordered) standard basis of Cm, as well as a unique inner

product 〈 , 〉B on V , with respect to which B is an orthonormal basis and so that ψB , (V, 〈 , 〉B) →
(Cm, 〈 , 〉m) is an isometry of Hilbert spaces. Here, as everywhere else, 〈 , 〉m denotes the canonical

inner product on Cm, which we will always assume Cm to be equipped with, unless specifically stated

otherwise.

With this in mind, consider the twisted cochain complex

C∗(X̃, Ỹ , ρ) := C∗(X̃, Ỹ )⊗Z V (5.2.4)

with twisted differentials

δ ⊗Z 11V : C∗(X̃, Ỹ , ρ)→ C∗+1(X̃, Ỹ , ρ). (5.2.5)

Note that the C-multiplication of the left factor turns each Ck(X̃, Ỹ , ρ) into a complex vector space. This

and the representation ρ allow us to define a left-C[Γ]-module structure on C∗(X̃, Ỹ , ρ) via the natural

C[Γ]-extension of the Γ-action, as defined below on elementary tensors

g.(σ ⊗ v) := (g.σ)⊗ ρ(g)v. (5.2.6)

We wish to define an inner product on C∗(X̃, Ỹ , ρ) compatible with the previously defined Γ-action. For

this, picking an admissible basis [E,B] will be essential:

Definition 5.2.1. Let (X,Y ) be a CW -pair with X finite and connected, and let ρ : Γ → V be a

finite-dimensional complex representation. A tuple [E,B], where

• B ⊂ V is a C-basis for V , and

• E =
⋃n
k=0E

k is an admissible basis for C∗(X̃, Ỹ )

is called an admissible pair for C∗(X̃, Ỹ , ρ).

Let [E,B] be an admissible pair for C∗(X̃, Ỹ , ρ) and consider the unique inner product 〈 , 〉B on V ,

with respect to which B is an orthonormal basis. Together with E, we define 〈 . 〉[E,B] to be the unique

inner product on the complex vector space C∗(X̃, Ỹ , ρ), with respect to which the set

{g.(e⊗ b) : g ∈ G, e ∈ E, b ∈ B} (5.2.7)

is an orthonormal basis. On the resulting inner product space, denoted by

C∗(X̃, Ỹ , ρ, [E,B]), (5.2.8)

it is clear that the Γ-action defined in 5.2.6 is by isometries.

We wish to compare the norms coming from two different choices of admissible pairs [E,B] and [E′, B′].

For this, we first observe that

||g.e⊗ ρ(g) · v||[E,B] = ||v||B (5.2.9)

for any v ∈ V , any e ∈ E and any g ∈ Γ. Without loss of generality, we may assume that Ek =

{e1, . . . , ejk} and (Ek)′ = {e′1, . . . , e′jk} are ordered in such a way that for each 1 ≤ i ≤ jk, ei ∈ Ek and

e′i ∈ (Ek)′ lie in the same Γ-orbit. In other words, for each 1 ≤ i ≤ jk, there exists a unique hi ∈ Γ

satisfying

ei = ±hi.e′i. (5.2.10)
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Consequently, we get for any ei ∈ Ek and any v ∈ V , that

||ei ⊗ v||[E′,B′] = ||hi.e′i ⊗ v||[E′,B′] = ||ρ(h−1
i )v||B′

≤ c · |ρ(h−1
i )| · ||v||B = c · |ρ(h−1

i )| · ||ei ⊗ v||[E,B],

where c > 0 is an appropriate constant depending only on the equivalent norms || , ||B and || , ||B′ on

the finite-dimensional vector space V and | , | is an appropriate norm on GL(V ). Analogously, we get

for any e′i ∈ (Ek)′, that

||e′i ⊗ v||[E,B] ≤ c · |ρ(hi)| · ||e′i ⊗ v||[E′,B′]. (5.2.11)

As X is compact, we have |E| = |E′| <∞, and so

sup{|ρ(hi)|, |ρ(h−1
i )| : 1 ≤ i ≤ jk , 0 ≤ k ≤ n} <∞, (5.2.12)

from which we finally deduce the following important property:

Lemma 5.2.2. For any two admissible pairs [E,B] and [E′, B′], the identity map

11 : C∗(X̃, Ỹ , ρ, [E,B])→ C∗(X̃, Ỹ , ρ, [E′, B′]) (5.2.13)

is a bounded morphism of inner product spaces.

A fixed admissible pair [E,B] also gives rise to isometric isomorphism of inner product spaces and

left-C[Γ]-modules

ΨE,B :

n⊕
k=0

Ck(X̃, Ỹ , ρ, [E,B])→
n⊕
k=0

⊕
e∈Ek

C[Γ]e ⊗C Cm ∼= (C[Γ])j·m, (5.2.14)

as the unique C[Γ]-linear extension of the assignment

ΨE,B(e⊗ v) := 1e ⊗ φB(v) ∈ C[Γ]e ⊗C Cm, (5.2.15)

with e ∈ E and v ∈ V , where now

• C[Γ]e := C[Γ] is a copy of C[Γ] with 1e = 1 its unit element, and

• the C[Γ]-action on
⊕n

k=0

⊕
e∈Ek C[Γ]e⊗CCm ∼= (C[Γ])j·m is the direct sum of the left-factor actions

given by g.(h⊗ v) := (gh)⊗ v on elementary tensors. Moreover,

• the inner product structure on
⊕n

k=0

⊕
e∈Ek C[Γ]e ⊗C Cm is the direct sum of the canonical inner

products on each factor.

We wish to apply to C∗(X̃, Ỹ , ρ, [E,B]) the theory of Hilbert N (Γ)-cochain complexes of finite type

that we have developed in Section 4.1. However, although C∗(X̃, Ỹ , ρ, [E,B]) is already a complex inner

product space, equipped with an isometric Γ-action, it is only complete as a metric space if Γ is a finite

group. To remedy this, we construct the following twisted cochain complex:

C∗(2)(X̃, Ỹ , ρ, [E,B]) := l2(Γ)⊗C[Γ] C
∗(X̃, Ỹ , ρ, [E,B]), (5.2.16)

δ∗ρ := 11l2(Γ) ⊗C[Γ] (δ ⊗Z 11Cm) : C∗(2)(X̃, Ỹ , ρ, [E,B])→ C∗+1
(2) (X̃, Ỹ , ρ, [E,B]). (5.2.17)
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With the choice of [E,B], as before, and equipped with the left N (Γ)-module structure inherited from

l2(Γ), each Ck(2)(X̃, Ỹ , ρ, [E,B]) becomes a finitely generated free Hilbert N (Γ)-module, isometrically

isomorphic to l2(Γ)jk ⊗C Cm ∼= l2(Γ)jk·m via

Ψ
(2)
E,B := 11l2(Γ) ⊗C[Γ] ΨE,B : C∗(2)(X̃, Ỹ , ρ)→ l2(Γ)⊗C[Γ]

jk⊕
i=1

C[Γ]i ⊗C Cm ∼= l2(Γ)jk ⊗C Cm . (5.2.18)

Furthermore, it is apparent that under the identification ΨE,B , the twisted differential δ∗ρ becomes an

element of Mat(l ·m,C[Γ]) with l :=
∑n
k=0 lk. In particular, δ∗ρ is a bounded morphism of Hilbert N (Γ)-

modules and C∗(2)(X̃, Ỹ , ρ, [E,B]) is a Hilbert N (Γ)-cochain complex of finite type. Observe that, although

the specific Hilbert space structure on C∗(X̃, Ỹ , ρ, [E,B]) depends on the particular choice of [E,B], the

underlying Hilbertian N (Γ)-module structure does not. Namely, it follows directly from Lemma 5.2.2 that

the identity map is an isomorphism of Hilbert N (Γ)-cochain complexes

11 : C∗(2)(X̃, Ỹ , ρ, [E,B])→ C∗(2)(X̃, Ỹ , ρ, [E
′, B′]), (5.2.19)

which is of course generally not an isometry. Together with Corollary 4.1.38, Corollary 4.1.32 and

Proposition 4.1.40, we conclude that all of the following objects and features are well-defined invariants

of the triple (X,Y, ρ).

Definition 5.2.3. Let (X,Y ) be a CW-pair and let ρ : Γ → V be a complex, finite-dimensional repre-

sentation of Γ := π1(X). Further, let 0 ≤ k ≤ n.

• The number bTop(2),k(X,Y, ρ) := b
(2)
k (C∗(2)(X̃, Ỹ , ρ, [E,B])) ∈ R≥0 is called the k-th topological L2-Betti

number of (X,Y, ρ). We set bTop(2),k(X, ρ) := bTop(2),k(X, ∅, ρ).

• The element αTopk (X,Y, ρ) := αk(C∗(2)(X̃, Ỹ , ρ, [E,B])) ∈ R≥0 ∪{∞+} is called the k-th topological

Novikov-Shubin invariant of (X,Y, ρ). We set αTopk (X, ρ) := αTopk (X, ∅, ρ).

• (X,Y, ρ) has the determinant class property if the cochain complex Ck(2)(X̃, Ỹ , ρ; [B,E]) is of de-

terminant class, i.e. if for any 0 ≤ k ≤ n and all boundary morphisms δkρ : Ck(2)(X̃, Ỹ , ρ, [E,B]) →
Ck+1

(2) (X̃, Ỹ , [E,B]), we have

detΓ(δkρ) 6= 0. (5.2.20)

• (X,Y, ρ) is det-L2-acyclic if it has the determinant class property and bTop(2),k(X,Y, ρ) = 0 for all

0 ≤ k ≤ n. We say that the tuple (X, ρ) is det-L2-acyclic if the triple (X, ∅, ρ) is det-L2-acyclic.

Here, [E,B] is an arbitrary choice of admissible pair for (X,Y, ρ).

The index Top for bTop(2),∗ and aTop instead of CW is used in order to underline the fact that these

quantities are in fact homotopy invariants of spaces admitting a finite CW-structure, as shown in Corollary

5.3.7. We remark that, although the det-L2-acyclicity property is in general hard to verify, it is the

immediate consequence of stronger properties that are somewhat easier to verify, and will be satisfied in

many of our applications. The whole situation is summarized in the next lemma:

Lemma 5.2.4. Let (X,Y ) be a CW-pair and let ρ : Γ→ V be a finite-dimensional, complex representa-

tion. Consider the following properties
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1. The cellular cochain complex C∗(X̃, Ỹ ) of Z[Γ]-modules is algebraically acyclic, that is

ker(δ∗) = im(δ∗). (5.2.21)

2. For each 0 ≤ k ≤ n, we have both bTop(2),k(X,Y, ρ) = 0 and αTopk (X,Y, ρ) > 0.

3. (X,Y, ρ) is det-L2-acyclic.

Then

(1)⇒ (2)⇒ (3). (5.2.22)

Proof. (1)⇒ (2) : Because C∗(X̃, Ỹ ) is algebraically acyclic and it is a free Z[Γ]-module-cochain complex,

it is also contractible. This means that there exists a chain contraction

c∗ : C∗(X̃, Ỹ )→ C∗−1(X̃, Ỹ ), (5.2.23)

a Z[Γ]-linear map satisfying

cn+1 ◦ δn + δn−1 ◦ cn = 11Cn(X̃,Ỹ ) (5.2.24)

for every n ∈ N. For any admissible pair [E,B] of (X,Y, ρ), the map

c∗ρ := 11l2(Γ) ⊗C[Γ] (c⊗C 11V ) : C∗(2)(X̃, Ỹ , ρ, [E,B])→ C∗−1
(2) (X̃, Ỹ , ρ, [E,B]) (5.2.25)

is bounded and C[Γ]-linear. Moreover, as the two functors involved in transforming C∗(X̃, Ỹ ) into

C∗(2)(X̃, Ỹ , ρ, [E,B]) are both additive, we must have

cn+1
ρ ◦ δnρ + δn−1

ρ ◦ cnρ = 11Cn
(2)

(X̃,Ỹ ,ρ,[E,B]) (5.2.26)

for every n ∈ N. In other words, C∗(2)(X̃, Ỹ , ρ, [E,B]) is contractible as a cochain complex of Hilbert

N (Γ)-modules. The conclusion (1)⇒ (2) then follows from [54, Lemma 2.18].

(2)⇒ (3) follows from Proposition 4.1.24.

Just like the Betti-numbers and Novikov-Shubin invariants, the next number will involve a choice of

[E,B] and, unlike the previous quantities, will in general depend on the choice of [E,B].

Definition 5.2.5. Let (X,Y ) be a CW -pair, let ρ : Γ → V be a representation and let [E,B] be an

admissible pair for (X,Y, ρ). Suppose that (X,Y, ρ, [E,B]) is det-L2-acyclic. Then, we define the cellular

L2-torsion TCW(2) (X,Y, ρ)[E,B] the quintuple (X,Y, ρ, [E,B]) as

log(TCW(2) (X,Y, ρ))[E,B] := log
(
T (C∗(2)(X̃, Ỹ , ρ, [E,B]))

)
=

n∑
k=0

(−1)k+1 log(detΓ(δkρ)) ∈ R . (5.2.27)

As before, we set TCW(2) (X, ρ)[E,B] := TCW(2) (X, ∅, ρ)[E,B].

As hinted towards in the introduction, these numerical invariants are unaffected when replacing a

representation ρ by some conjugate.

Lemma 5.2.6 (Invariance under conjugacy). Let (X,Y ) be a CW -pair, and let ρ, ρ′ : Γ → V be two

conjugate representations, that is, there exists some α ∈ GL(V ), such that ρ′ = α−1 · ρ ·α. Then, for any

0 ≤ k ≤ n, we have
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1. bTop(2),k(X,Y, ρ) = bTop(2),k(X,Y, ρ′),

2. αTopk (X,Y, ρ) = αTopk (X,Y, ρ′),

3. (X,Y, ρ) is det-L2-acyclic if and only if (X,Y, ρ′) is det-L2-acyclic,

4. In case that (X,Y, ρ) is det-L2-acyclic, we have for any choice of admissible pair [E,B], that

TCW(2) (X,Y, ρ)[E,B] = TCW(2) (X,Y, ρ′)[E,B].

Proof. The isomorphism F ∗ : C∗(X̃, Ỹ , ρ) → C∗(X̃, Ỹ , ρ′), defined on elementary tensors e ⊗ v via

F (e⊗v) := e⊗(α·v ·α−1) is obviously Γ-equivariant, and extends in the obvious fashion to an isomorphism

of HilbertN (Γ)-modules F ∗ : C∗(2)(X̃, Ỹ , ρ, [E,B])→ C∗(2)(X̃, Ỹ , ρ
′, [E,B]). To verify 1−3, we now simply

apply Proposition 4.1.32 and Corollary 4.1.38. To verify 4, we use Proposition 4.1.40 together with the

fact that detΓ(F k) = 1 for all 0 ≤ k ≤ n.

Our intermediate goal is to provide a large class of examples (X,Y, ρ), for which such an L2-torsion

can be defined also independently of a choice [E,B]. To do so, we first need to quantify the quotient

log

(
TCW(2) (X,Y,ρ)[E,B]

TCW
(2)

(X,Y,ρ)[E′,B′]

)
for two distinct admissible pairs [E,B], [E′, B′] of (X,Y, ρ). The following aux-

iliary lemma is essential:

Lemma 5.2.7. Let [E,B] and [E′, B′] be two admissible pairs for (X,Y, ρ) and let MB′

B := ψB′ ◦ ψ−1
B ∈

GLm(C) be the basechange isomorphism from B to B′. For fixed 0 ≤ k ≤ n, denote by

11 : Ck(2)(X̃, Ỹ , ρ, [E,B])→ Ck(2)(X̃, Ỹ , ρ, [E
′, B′])

the identity map to the underlying Hilbertian N (Γ)-module. Then, for each 1 ≤ i ≤ jk, there exists group

elements gi ∈ Γ, such that

detΓ(11) =

jk∏
i=1

|det(MB′

B )| · | det(ρ(gi))| = |det(MB′

B )|jk ·
jk∏
i=1

|det(ρ(gi))|,

where det denotes the usual determinant of endomorphisms over finite-dimensional complex vector spaces.

Proof. Consider the following diagram

jk⊕
i=1

l2(Γ)i⊗̂Cm
(φ

(2)

[E,B]
)−1

−−−−−−−→ Ck(2)(X̃, Ỹ , ρ, [E,B])
11−→ Ck(2)(X̃, Ỹ , ρ, [E

′, B′])
φ

(2)

[E′,B′]−−−−−→
jk⊕
i=1

l2(Γ)i⊗̂Cm .

(5.2.28)

Here, both the left-hand and the right-hand arrow are isometries of Hilbert N (Γ)-modules. Setting

F
[E′,B′]
[E,B]

:= φ
(2)
[E′,B′] ◦ 11 ◦ (φ

(2)
[E,B])

−1, we therefore obtain by Proposition 4.1.14 (1) and (2), that

detΓ(11) = detΓ(F
[E′,B′]
[E,B] ). (5.2.29)

For 1 ≤ i ≤ jk, v ∈ Cm arbitrary and e ∈ Γ the unit, consider the tensor e⊗ v ∈ l2(Γ)i ⊗Cm. Then, one

verifies by direct computation that there exists some element hi ∈ Γ and some 1 ≤ li ≤ jk, such that

F
[E′,B′]
[E,B] (ei ⊗ v) = hi ⊗ (ψB′ ◦ ρ(h−1

i ) ◦ ψ−1
B (v)) ∈ l2(Γ)li ⊗ Cm, (5.2.30)

and li 6= li′ for i 6= i′ (compare with the arguments preceding Equation 5.2.10). After reordering

summands (which is done via some matrix of determinant 1), we may assume without loss of generality
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that li = i for all 1 ≤ i ≤ jk. Consequently, with respect to the direct sum decomposition described

above, we get that

F
[E′,B′]
[E,B] =


i∗
(
rh1
⊗ ψB′ ◦ ρ(h−1

1 ) ◦ ψ−1
B

)
0 0 . . .

0 i∗
(
rh2 ⊗ ψB′ ◦ ρ(h−1

2 ) ◦ ψ−1
B

)
0 . . .

... . . .
. . .

...

0 . . . . . . i∗
(
rhjk ⊗ ψB′ ◦ ρ(h−1

jk
) ◦ ψ−1

B

)
.


Here, rhi ∈ BΓ(l2(Γ)i) denotes right-multiplication by the group element hi, while

i∗(rhi⊗ψB′◦ρ(h−1
1 )◦ψ−1

B ) denotes the extension onto BΓ(l2(Γ)i⊗̂Cm) of the tensor product of morphisms

inside the parentheses. Applying Proposition 4.1.14 (1) and (3), Lemma 4.1.15 (with Γ := Γ and Λ :=

{0} ⊆ Γ), along with Lemma 4.1.12, and setting gi := h−1
i , we then compute

detΓ(F
[E′,B′]
[E,B] ) =

jk∏
i=1

detΓ

(
i∗(rg−1

i
⊗ ψB′ ◦ ρ(gi) ◦ ψ−1

B )
)

=

jk∏
i=1

detΓ(rg−1
i

) · det{0}(ψB′ ◦ ρ(gi) ◦ ψ−1
B )

=

jk∏
i=1

det{0}(ψB′ ◦ ρ(gi) ◦ ψ−1
B ) =

jk∏
i=1

|det(ψB′ ◦ ρ(gi) ◦ ψ−1
B )| =

jk∏
i=1

|det(MB′

B )| · | det(ρ(gi))|.

Together with Proposition 4.1.40, we arrive at the central comparison result of this section.

Proposition 5.2.8. Let [E,B] and [E′, B′] be two choices of admissible pairs on C∗(2)(X̃, Ỹ , ρ). Assume

that (X,Y, ρ) is det-L2-acyclic. Then, for each 0 ≤ k ≤ n and each 0 ≤ i ≤ jk, there exist elements

gik ∈ Γ, such that

log

(
TCW(2) (X,Y, ρ)[E,B]

TCW(2) (X,Y, ρ)[E′, B′]

)
=

n∑
k=0

jk∑
i=1

(−1)k log(|det(ρ(gik))|). (5.2.31)

Proof. Using Lemma 5.2.7, together with Proposition 4.1.40 and the fact that ρ is L2-acyclic, we obtain

log

(
TCW(2) (X,Y, ρ)[E,B]

TCW(2) (X,Y, ρ)[E′, B′]

)
=

n∑
k=0

(−1)kjk log(|det(MB′

B )|) +

n∑
k=0

jk∑
i=1

(−1)k log(|det(ρ(gik))|) (5.2.32)

for appropriate gik ∈ Γ. Again, because ρ is L2-acyclic, we have 0 =
∑n
k=0(−1)kbTop(2),k(X,Y, ρ) =

dim(ρ) · χ(X,Y ). Therefore

0 = χ(X,Y ) =

n∑
k=0

(−1)kjk. (5.2.33)

Combined with the previous equation, the result now follows.

The result highlights the fact that TCW(2) (X,Y, ρ)[E,B] does not depend on the choice of basis B.

However, with no conditions on the representation ρ itself, choosing different lifts of cells E and E′

might produce a non-trivial anomaly of torsion elements, which is due to the the possibly non-trivial

sum
∑n
k=0

∑jk
i=1(−1)k log(|det(ρ(gik))|). In order to achieve vanishing of this sum, we must also impose

additional conditions on ρ, motivating the next definition.

Definition 5.2.9. A finite-dimensional, complex representation ρ : Γ→ V is called unimodular if

|det(ρ(g))| = 1 ∀g ∈ Γ. (5.2.34)
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Summarizing this investigation now readily yields:

Corollary 5.2.10. Let (X,Y ) be a CW-pair and let ρ : Γ→ V be a unimodular representation, so that

(X,Y, ρ) is det-L2-acyclic. Then, for any two bases B,B′ ⊆ V and any two admissible bases E,E′ of

C∗(X̃, Ỹ ), we get TCW(2) (X,Y, ρ)[E,B] = TCW(2) (X,Y, ρ)[E′, B′] . We call

TCW(2) (X,Y, ρ) := TCW(2) (X,Y, ρ)[E,B] (5.2.35)

the cellular L2-torsion of the triple (X,Y, ρ).

Remark 5.2.11. Notice that the existence of a det-L2-acyclic representation ρ : Γ→ GL(V ) on (X,Y )

requires the vanishing of the relative Euler Characteristic χ(X,Y ). That is why we will assume χ(X,Y ) =

0 from now on, until the end of the chapter and unless explicitly stated otherwise.

Remark 5.2.12. It should be said that cellular L2-torsion, at least the way it is defined above, is studied

almost exclusively for unitary representations ρ : Γ→ O(V ), cf. [23], [22], [21], [55], [54] or [46]. In fact,

all L2-invariants of pairs (X, ρ) = (X, ∅, ρ) with ρ an arbitrary finite-dimensional, unitary representation

can directly be derived from the basic pair (X, 11C), where 11C : Γ → C× is the trivial representation.

Namely, in this instance, it is well-known (see e.g [52, Theorem 4.1]) that

1. one has bTop(2),k(X, ρ) = dim(ρ) · bTop(2),k(X, 11C), and

2. (X, ρ) is det-L2-acyclic if and only if (X, 11) is det-L2-acyclic. In this case, one obtains that

TCW(2) (X, ρ) = dim(ρ) · TCW(2) (X, 11C). (5.2.36)

Remark 5.2.13. For any fixed t ∈ R+ and any group homomorphism φ : Γ → (R,+), we obtain a

1-dimensional representation ρφ[t] : Γ → C× over C via γ 7→ tφ(γ), which is of course in general not

unimodular. However, under the assumption that χ(X,Y ) = 0 and that the triple (X,Y, ρφ[t]) is det-L2-

acyclic, Proposition 5.2.8 tells us that for any two admissible basis pairs [E,B], [E′, B′] the corresponding

L2-torsion elements satisfy TCW(2) (X,Y, ρφ[t])[E,B] = tr · TCW(2) (X,Y, ρφ[t])[E′, B′] for some r ∈ R. Thus,

if one declares two functions in t to be equivalent if they satisfy a relation as above, one obtains a well-

defined equivalence class TCW(2) (X,Y, ρφ[t]) of cellular torsion functions in t, independent of the choice of

admissible basis. If (X,Y ) = (X, ∅) is a CW -structure on a prime 3-manifold with empty or toroidal

boundary, the corresponding torsion function is called the L2-Alexander torsion function. Originally

introduced by Dubois, Friedl and Lück, the study of its properties as well as relations to other 3-manifold

invariants has attracted some attention in recent years, see for example [31] and [32].

5.3 Topological torsion

So far, we have been able to construct an invariant TCW(2) (X,Y, ρ), called the cellular L2-torsion of a

finite CW -pair (X,Y ) with χ(X,Y ) = 0 and a finite-dimensional complex representation ρ : π1(X) :=

Γ → GL(V ). This should raise the question of whether in certain instances, the dependency of a spe-

cific CW-structure can be dropped entirely. For example, one could ask whether for a given compact

topological space M admitting two CW-structures X and Y , one always has TCW(2) (X, ρ) = TCW(2) (Y, ρ).

This would allows us to define a topological L2-torsion TTop(2) (M,ρ) for any compact topological space
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M admitting some CW-structure and a finite-dimensional complex, det-L2-acyclic unimodular represen-

tation ρ : π1(X) → GL(V ). Indeed, we will show the more general statement that for any two finite

CW-complexes X, Y with χ(X) = 0 and a (not necessarily cellular) homeomorphism f : X → Y ,

one has TCW(2) (X, ρ ◦ f∗) = TCW(2) (Y, ρ), where ρ : π1(Y ) → GL(V ) is a representation as before and

f∗ : π1(X)→ π1(Y ) is the induced map on fundamental groups.

A fundamental tool for dealing with this and related kinds of problems comes in form of a classic in-

variant, the so-called Whitehead Torsion, which will be the subject of the next section, first defined for

cochain complexes, then for cellular homotopy equivalences.

5.3.1 Whitehead torsion of a cochain complex

Let R be a ring with unit 1R. Throughout, we also assume that R has the IBN (invariant basis number)

property, that is, we have Rm ∼= Rn if and only if n = m. Let n ∈ N and let GL(n,R) be the group of

invertible n× n-matrices over R. We obtain an induced diagram of embeddings

R× = GL(1, R)→ GL(2, R)→ GL(3, R)→ . . . , (5.3.1)

where each arrow sends a matrix A ∈ GL(n,R) to the matrix(
A 0

0 1R

)
∈ GL(n+ 1, R).

We set GL(R) := lim−→GL(n,R) to be the colimit group of this sequence. Let E(R) be the subgroup

generated by all elementary matrices of GL(R), that is, all matrices of the form 11 + r · Eij for i 6= j,

with r ∈ R. Here, Eij is the matrix with every entry zero except for the (i, j)’th entry which equals 1R.

Observe that every upper, respectively lower triangular matrix with 1′Rs on the diagonal lies in E(R).

More generally, it is well-known, see for example [66, Lemma 1.1], that

E(R) = [GL(R) : GL(R)]. (5.3.2)

Define the first K-group of R by

K1(R) := GL(R)/E(R), (5.3.3)

as well as the reduced first K-group of R

K̃1(R) := K1(R)/ < −1R > . (5.3.4)

where < −1R > is the subgroup generated by the image of −1R ∈ R× ∼= GL(1, R) in K1(R).

Consider the special case R = Z[Γ] for some countable group Γ. Observe that there is a natural homo-

morphism ι : Γ→ K̃1(Z[Γ]) with image

ι(Γ)E K̃1(Z[Γ]), (5.3.5)

which arises by post-composing the projection GL(Z[Γ]) � K̃1(Z[Γ]) to the canonical map ι̃ : Γ →
GL(Z[Γ]), identifying each element γ ∈ Γ with the invertible 1× 1 matrix (γ).

A cochain complex . . .
c−1

−−→ C−1 c0−→ C0 → C1 c1−→ . . . , where each Cn is a finitely generated free

R-module and each map cn is R-linear is called an free R-module cochain complex. Any such cochain

complex gives to a unique differential graded R-module (C∗, c∗), where C∗ :=
⊕

k∈Z C
k with degree-1
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differential c∗ :=
⊕

k∈Z c
k : C∗ → C∗+1. From now on, we will identify a free R-module cochain complex

with its corresponding differential graded R-module (C∗, c∗). We call (C∗, c∗) finite if there exists some

K ∈ N such that Ck = 0 whenever |k| ≥ K.

We call (C∗, c∗) based if it is equipped with an (ordered) graded R-basis E ⊆ C∗, such that Ek := E ∩Ck

is an ordered R-basis for the free submodule Ck. Via the fixed choice of E, we find for each k ∈ N some

jk ∈ N0, so that we can identify Ck with Rjk and consequently ck : Rjk → Rjk+1 with an appropriate

matrix over R (acting by right multiplication). We will write C∗[E] for the corresponding based cochain

complex Let (C∗, c∗) = (C∗[E], c∗) now be such a based cochain complex (with fixed basis E throughout)

that is additionally acyclic, i.e. satisfies ker(c∗) = im(c∗). Then, one can define a torsion element τ(C∗) ∈
K̃1(R), which can be constructed as follows: Since (C∗, c∗) is acyclic, of finite length and the underlying

R-modules are free, there exists an R-linear chain contraction γ∗ : C∗ → C∗−1, i.e. a left-multiplication

matrix satisfying γ∗+1c∗+c∗−1γ∗ = 11C∗ . Set Codd :=
⊕

k∈NR
j2k+1 and Ceven :=

⊕
k∈NR

j2k and observe

that we have matrices

(γ2∗+1 + c2∗+1) : Codd → Ceven,

(γ2∗ + c2∗) : Ceven → Codd.

Then (γ2∗+1 + c2∗+1)(γ2∗+ c2∗)− 11Ceven = γ2∗+1γ2∗ and (γ2∗+ c2∗)(γ2∗+1 + c2∗+1)− 11Codd = γ2∗γ2∗+1.

It follows that the endomorphisms (γ2∗+1 + c2∗+1)(γ2∗ + c2∗) and (γ2∗ + c2∗)(γ2∗+1 + c2∗+1) are upper

triangular matrices with 1’s on their diagonal, and therefore determine elements in E(R). Moreover, the

matrix (γ2∗+1 + c2∗+1) must be invertible as well, and therefore determines an element in GL(R).

Definition 5.3.1. The Whitehead torsion of C∗ is then defined to be the class

τ(C∗) := [γ2∗+1 + c2∗+1] = −[γ2∗ + c2∗] ∈ K̃1(R). (5.3.6)

Since there is no canonical choice of chain contraction, we must show that [γ2∗+1 + c2∗+1] = [δ2∗+1 +

c2∗+1] for any other choice of chain contraction δ∗ : C∗ → C∗−1. For this purpose, define

µ∗ := (γ∗−1 − δ∗−1)γ∗ : C∗ → C∗−2.

Analogously as before, one computes that both 11Codd+µ2∗+1 and (γ2∗+1+c2+1)(11Codd+µ2∗+1)(δ2∗+c2∗)

are triangular square matrices with 1’s on the diagonal, and therefore elements of E(R), from which follows

that

[γ2∗+1 + c2+1] = −[δ2∗ + c2∗] = [δ2∗+1 + c2∗+1].

5.3.2 Whitehead torsion of a homotopy equivalence

Let X and Y be two connected CW-complexes, let f : X → Y be a cellular map between them, and let

f∗ : C∗(X) → C∗(Y ) be the map of chain complexes induced by f . The mapping cylinder Cyl∗(f) is

defined to be the Z-module chain complex with k-th differential

Ck(Y )⊕ Ck(X)⊕ Ck−1(X)


δYk 0 fk−1

0 δXk 11

0 0 −δXk−1


−−−−−−−−−−−−−−−→ Ck−1(Y )⊕ Ck−1(X)⊕ Ck−2(X). (5.3.7)
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Further, the mapping cone Cone∗(f) (relative to X) is defined to be the quotient of Cyl∗(f) by the

copy of C∗(X). Therefore, its k-th differential is of the form

Ck(Y )⊕ Ck−1(X)

δYk fk−1

0 −δXk−1


−−−−−−−−−−−→ Ck−1(Y )⊕ Ck−2(X). (5.3.8)

There are obvious split exact sequences of Z-chain complexes

0→ C∗(X)
iX∗−−→ Cyl∗(f)

pX∗−−→ Cone∗(f)→ 0, (5.3.9)

0→ C∗(Y )
iY∗−→ Cyl∗(f)

pY∗−−→ Cone∗(11X)→ 0. (5.3.10)

Observe that the map

γ∗ :=

(
0 0

1 0

)
: Cone∗(11X)→ Cone∗+1(11X)

defines a chain contraction on Cone∗(11X). Thus, Cone∗(11X) is always algebraically acyclic. More

generally, the following correspondence is well-known:

Proposition 5.3.2. [66, Section 7] Let f : X → Y be a cellular map between CW -complexes. Then, if

f is a homotopy equivalence, Cone∗(f) is algebraically acyclic.

Now assume that X and Y are finite, connected CW -complexes and that f : X → Y is a cellular

homotopy equivalence. Let pX : X̃ → Y and pY : Ỹ → Y be the corresponding universal covering maps

and set

Γ := deck(pX) , ΓY := deck(pY ). (5.3.11)

Then f lifts (non-uniquely) to a cellular homotopy equivalence f̃ : X̃ → Ỹ , further inducing a group

isomorphism f̃∗ : Γ→ ΓY as defined in the beginning of this chapter. In particular, Γ acts both cellularly

on X̃ and (by push forward through f∗) on Ỹ with finitely many orbits. Permutation of cells then gives

rise to both on C∗(X̃) and on C∗(Ỹ ) a structure of free and finite Z[Γ]-module chain complexes, so that

the map f̃∗ : C∗(X̃)→ C∗(Ỹ ) becomes Z[Γ]-linear. By the definitions laid out in 5.3.7 and 5.3.8, each of

the three chain complexes Cyl∗(X̃), Cone∗(f̃) and Cone∗(11X̃) inherits the structure of a free and finite

Z[Γ]-module chain complex, so that, with respect to those structures, the maps from 5.3.9 and 5.3.10 are

Z[Γ]-linear.

We denote by C∗(X̃), C∗(Ỹ ), Cyl∗(f̃), Cone∗(f̃) and Cone∗(11X̃) the free and finite Z[Γ]-cochain com-

plexes that are obtained by applying the contravariant dualization functor homZ[Γ]( . ,Z[Γ]) to the

corresponding chain complexes. Observe that, since homZ[Γ]( . ,Z[Γ]) is an additive functor, the split

exact sequences 5.3.9 and 5.3.10 dualize to split exact sequences of Z[Γ]-cochain complexes

0→ Cone∗(f̃)
p∗
X̃−−→ Cyl∗(f̃)

i∗
X̃−−→ C∗(X̃)→ 0, (5.3.12)

0→ Cone∗(11X̃)
p∗
Ỹ−−→ Cyl∗(f̃)

i∗
Ỹ−→ C∗(Ỹ )→ 0. (5.3.13)

Let EX =
⋃nX
k=0E

k
X , respectively EY =

⋃nY
k=0E

k
Y be a fixed admissible Z[Γ]-basis for the cellular complex

C∗(X̃), respectively a fixed admissible Z[ΓY ] for the cellular complex C∗(Ỹ ), constructed as in 5.2.2

. Since f̃∗ : Γ → ΓY is an isomorphism, EY will there automatically also be a Z[Γ]-basis of C∗(Ỹ ).
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Formulas 5.3.7 – 5.3.8, along with the canonical isomorphism homZ[Γ](A⊕B,Z[Γ]) ∼= homZ[Γ](A,Z[Γ])⊕
homZ[Γ](B,Z[Γ]) for each pair of Z[Γ]-modules A and B, allow us construct out of EX and EY Z[Γ]-bases

Efcyl =

nX+nY⋃
k=0

EkX ∪̇EkY ∪̇Ek−1
X ⊆ Cyl∗(f̃) , Efcone =

nX+nY⋃
k=0

EkY ∪̇Ek−1
X ⊆ Cone∗(f̃), (5.3.14)

E11
cone =

nX+1⋃
k=0

EkX ∪̇Ek−1
X ⊆ Cone∗(11X̃) (5.3.15)

on Cyl∗(f̃), Cone∗(f̃) and Cone∗(11X̃), called the bases compatible with [EX , EY ]. We denote by Cyl∗(f̃)[Efcyl],

Cone∗(f̃)[Efcone] and Cone∗(11X̃)[E11
cone] the corresponding based complexes.

By Proposition 5.3.2, the relative chain complex Cone∗(f̃) is algebraically acyclic. Since it is a free and

finite Z[Γ]-chain complex, we can find a Z[Γ]-linear chain contraction γ∗ : Cone∗(f̃)→ Cone∗−1(f̃). Using

again the additivity of the functor homZ[Γ]( . ,Z[Γ]) the dual

γ∗ : Cone∗(f̃)→ Cone∗+1(f̃) (5.3.16)

determines a Z[Γ]-linear chain contraction on Cone∗(f̃), proving that also Cone∗(f̃) is also algebraically

acyclic. With all this in mind, we can define the based Whitehead torsion τ(f)[EX , EY ] ∈ K̃1(Z[Γ]).

Definition 5.3.3. Let f : X → Y be a cellular homotopy equivalence between two finite, connected

CW-complexes. Further, let EX and EY be two admissible pairs for C∗(X̃), respectively C∗(Ỹ ). The

(based) Whitehead torsion τ(f) of f is defined as the Whitehead-torsion

τ(f)[EX , EY ] := τ(Cone∗(f̃)[Efcone]) ∈ K̃1(Z[Γ]), (5.3.17)

where Efcone is the basis on Cone∗(f̃) compatible with [EX , EY ].

For completion, we remark that there also is a (probably more commonly used) unbased version of

Whitehead torsion of a cellular homotopy equivalence f : X → Y , living in the Whitehead group

Wh(Γ) := K̃1(Z[Γ])/ι(Γ) (5.3.18)

of Γ. Here, ι(Γ)E K̃1(Z[Γ]) is the subgroup described in the paragraph containing Equation 5.3.5. This

torsion is well-defined, since any admissible pair [ĒX , ĒY ] can be, up to sign, translated via appropriate

elements of Γ to any other admissible pair [Ē′X , Ē
′
Y ], implying that the corresponding based Whitehead

torsion elements of f differ by an element in ι(Γ) (See [66, Section 7] for more details). Together with

the fact that homotopic cellular homotopy equivalences f, g : X → Y satisfy τ(f) − τ(g) ∈ ι(Γ), we can

now make the following:

Definition 5.3.4. A (not necessarily cellular) homotopy equivalence f : X → Y between finite CW-

complexes is simple if τ(fcell) ∈ ι(Γ) (i.e. if the unbased τ(fcell) = 0 ∈ Wh(Γ)), where Γ = π1(X)

and fcell is some cellular approximation of f . Two finite CW-complexes X and Y are simple homotopy

equivalent if one can finite a simple homotopy equivalence between them.

Within our current context of comparing homotopy equivalent CW-complexes via appropriate maps,

let us also shortly talk about the topological importance of simple homotopy equivalences. Namely, it

is well-established (see [28]) that two finite CW-complexes X and Y are simple homotopy equivalent if

and only if that Y can be constructed out of X by a finite composition of very explicit cellular maps,
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so-called elementary expansions and elementary collapses of cells. To provide examples of homotopy

equivalent, yet not simple homotopy equivalent spaces, we construct for a pair (p, q) of coprime integers

the 3-dimensional lens space L(p, q), which arises as a quotient of the 3-sphere S3 ⊂ C2 by the free

Zp-action generated by the map

(z1, z2) 7→ (e2πi/pz1, e
2πiq/pz2).

Notice that π1(L(p, q)) ∼= Zp.
Then, it is known that

• L(p, q) and L(p, q′) are homotopy equivalent iff qq′ ≡ ±n2 mod p for some n ∈ N, and

• L(p, q) and L(p, q′) are simple homotopy equivalent, in fact homeomorphic, iff q ≡ ±(q′)±1 mod p,

see [80] and [17]. Implicitly in this classification also lies a criterion for the non-vanishing of Wh(Γ) if Γ

is finite-cyclic of a certain type. Indeed, we see that for any integer p, for which there exist two integers

q and q′ both coprime to p, satisfying qq′ ∼= ±n2 mod p for some n, but are not related by q ≡ ±(q′)±1

mod p, we must have Wh(Zp) 6= 0. For example, we see by the above that the spaces L(7, 3) and L(7, 1)

are homotopy equivalent (since 3 · 1 = 3 ≡ −22 mod 7) but not simple homotopy equivalent, which

implies that Wh(Z7) 6= 0.

Let us also remark that all known examples of homotopy equivalent CW-complexes X and Y that are

not simple homotopy equivalent contain torsion in their fundamental group. Indeed, it is a well-known

conjecture, confirmed for a large class of groups and a consequence of the stronger Farrell-Jones Conjec-

ture, that Wh(Γ) = 0 for any torsion-free group Γ, which would imply that any two homotopy equivalent

finite CW-complexes with torsion-free fundamental group are in fact simple homotopy equivalent. We

refer to [6] for a comprehensive summary of the current status of this and closely related problems.

Perhaps not surprisingly, though highly non-trivial to prove is the following celebrated theorem by Chap-

man, which will be one of the main two ingredients in establishing the topological invariance of L2-Torsion:

Theorem 5.3.5. [24] A homeomorphism f : X → Y between finite CW-complexes is a simple homotopy

equivalence.

5.3.3 L2-Whitehead torsion of a homotopy equivalence

Now assume that we are given a finite-dimensional, complex representation ρ : ΓY → V . Given some

choice of admissible pairs EX on X̃ and EY on Ỹ , as well as basis B ⊆ V , our goal now is to obtain an

explicit formula for the anomaly of the twisted L2-torsion TCW(2) (X, ρ ◦ f∗)[EX , B]− TCW(2) (Y, ρ)[EY , B] in

terms of a twisted L2-torsion defined over Cone∗(f̃).

For this, first consider the twisted cochain complexes C∗(X̃, ρ◦f∗) and C∗(Ỹ , ρ), constructed as in 5.2.4-

5.2.5. Recall that they are both cochain complexes of free, finitely-generated C[Γ]-modules (the diagonal

action of Γ on C∗(Ỹ , ρ) is given by g.(e ⊗ v) := f∗(g).e ⊗ ρ(f∗(g)) · v for g ∈ Γ, e ∈ C∗(Ỹ ) and v ∈ V ).

Further, define the twisted cochain complexes of C[Γ]-modules

Cyl∗(f̃ , ρ) := Cyl∗(f̃)⊗Z V, (5.3.19)

Cone∗(f̃ , ρ) := Cone∗(f̃)⊗Z V, (5.3.20)

Cone∗(11X̃ , ρ) := Cone∗(11X̃)⊗Z V, (5.3.21)
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with differentials twisted by ⊗Z11V and diagonal Γ-action defined on elementary tensors by

γ.(e⊗ v) := γ.e⊗ ρ(f∗(γ)) · v. (5.3.22)

Since ⊗Z11V is an additive functor and since both C∗(X̃, ρ ◦ f∗) and C∗(Ỹ , ρ) are free and finite C[Γ]-

module cochain complexes, the same properties hold true for the complexes 5.3.19–5.3.21. Moreover, the

split exact sequences 5.3.12 and 5.3.13 tensor up to split exact sequences of C[Γ]-cochain complexes

0→ Cone(f̃ , ρ)
p∗X−−→ Cyl(f̃ , ρ)

i∗X−−→ C∗(X̃, ρ ◦ f∗)→ 0, (5.3.23)

0→ Cone(11X̃ , ρ)
p∗Y−−→ Cyl(f̃ , ρ)

i∗Y−→ C∗(Ỹ , ρ)→ 0. (5.3.24)

Given admissible pairs EX on C∗(X̃), respectively EY on C∗(Ỹ ), consider the induced compatible bases

Efcyl ⊆ Cyl(f̃), E11
cone ⊆ Cone(11X̃) and Efcone ⊆ Cone(f̃). Together with a fixed C-basis B ⊆ V , these

determine C[Γ]-bases

[Efcyl, B] := {e⊗ b : e ∈ Efcyl, b ∈ B} ⊆ Cyl(f̃ , ρ),

[E11
cone, B] := {e⊗ b : e ∈ E11

cone, b ∈ B} ⊆ Cone∗(11X̃ , ρ),

[Efcone, B] := {e⊗ b : e ∈ Efcone, b ∈ B} ⊆ Cone∗(f̃ , ρ)

for the respective C[Γ]-cochain complexes. Each of these bases determines a unique Γ-invariant complex

inner product on the underlying complex vector spaces, with respect to which the corresponding Γ-

invariant subsets Γ.[Efcyl, B], Γ.[E11
cone, B] and Γ.[Efcone, B] form an orthonormal basis. We denote the

resulting inner product spaces by Cyl∗(f̃ , ρ)[Efcyl, B], Cone∗(f̃ , ρ)[Efcone, B] and Cone∗(11X̃ , ρ)[E11
cone, B].

Note that, after endowing each cochain complex with the previously described inner products, the chain

maps from 5.3.23–5.3.24 are all partial isometries.

Finally, we tensor up to our inner product spaces to obtain the three the Hilbert N (Γ)-cochain complexes

of finite type

Cyl∗(2)(f̃ , ρ)[Efcyl, B] := l2(Γ)⊗C[Γ] Cyl∗(f̃ , ρ)[Efcyl, B], (5.3.25)

Cone∗(2)(f̃ , ρ)[Efcone, B] := l2(Γ)⊗C[Γ] Cone∗(f̃ , ρ)[Efcone, B], (5.3.26)

Cone∗(2)(11X̃ , ρ)[E11
cone, B] := l2(Γ)⊗C[Γ] Cone∗(11X̃ , ρ)[E11

cone, B], (5.3.27)

with differentials twisted by 11l2(Γ)⊗C[Γ]. Because l2(Γ)⊗C[Γ] is also an additive functor, the next propo-

sition is an immediate consequence of the previous discussion:

Proposition 5.3.6. In the notation established above, the following results hold true:

1. The Hilbert N (Γ)-module cochain complexes Cone∗(2)(f̃ , ρ)[Efcone, B] and Cone∗(2)(11X̃ , ρ)[E11
cone, B]

are contractible. Moreover,

2. there are split exact sequences of Hilbert N (Γ)-module cochain complexes

0→ Cone∗(2)(f̃ , ρ)[Efcone, B]
ι1−→ Cyl∗(2)(f, ρ)[Efcyl, B]

π1−→ C∗(2)(X̃, ρ ◦ f∗)[EX , B]→ 0, (5.3.28)

0→ Cone∗(2)(11X̃ , ρ)[E11
cone, B]

ι1−→ Cyl∗(2)(f, ρ)[Efcyl, B]
π1−→ C∗(2)(Ỹ , ρ)[EY , B]→ 0, (5.3.29)

where all maps involved are partial isometries.
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Corollary 5.3.7. Let f : X → Y be a cellular homotopy equivalence between finite, connected CW-

complexes and let ρ : ΓY → V be a finite-dimensional, complex representation. Then, for all k ∈ N0, it

holds that

bTop(2),k(X, ρ ◦ f∗) = bTop(2),k(Y, ρ), (5.3.30)

αTopk (X, ρ ◦ f∗) = αTopk (Y, ρ). (5.3.31)

Proof. In the situation of the previous proposition, we use the simplified notation

A∗ := Cone∗(2)(f̃ , ρ)[Efcone, B] , B∗ := Cyl∗(2)(f, ρ)[Efcyl, B] , C∗ := C∗(2)(X̃, ρ ◦ f∗, [EX , B]),

D∗ := Cone∗(2)(11X̃ , ρ)[E11
cone, B] , E∗ := C∗(2)(Ỹ , ρ, [EY , B]).

Recall that we have short exact sequences of Hilbert N (Γ)-cochain complexes

0→ A∗
ι1−→ B∗

π1−→ C∗ → 0 (5.3.32)

0→ D∗
ι2−→ B∗

π2−→ E∗ → 0, (5.3.33)

which by [54, Theorem 1.21] each induce long, weakly exact sequences in L2-cohomology

. . .
∂k−1

1−−−→ Hk(A∗)
Hk(ι1)−−−−→ Hk(B∗)

Hk(π1)−−−−−→ Hk(C∗)
∂k1−→ Hk+1(A∗) . . . , (5.3.34)

. . .
∂k−1

2−−−→ Hk(D∗)
Hk(ι2)−−−−→ Hk(B∗)

Hk(π2)−−−−−→ Hk(E∗)
∂k2−→ Hk+1(D∗) . . . . (5.3.35)

Since both A∗ and D∗ are contractible, we have Hk(A∗) = Hk(D∗) = 0 for each k. In particular, both

Hk(π1) and Hk(π2) are weak isomorphisms, implying that

b
(2)
k (C∗) = b

(2)
k (B∗) = b

(2)
k (E∗) (5.3.36)

for each k ∈ N.

Secondly, observe that since Hk(A∗) = Hk+1(A∗) = 0 for each k ∈ N, both maps Hk(ι1), ∂k1 are trivial,

so that α(Hk(ι1)) = α(∂k1 ) = ∞+ for each k ∈ N0. Moreover, since A∗ is contractible, we also have

αk(A∗) =∞+ by [54, Lemma 2.18]. Applying [54, Theorem 2.20] to 5.3.32, we obtain that

αk(B∗) = αk(C∗)

for each k ∈ N0. Analogously, one shows that αk(B∗) = αk(E∗) for each k ∈ N0, finishing the proof.

Most importantly, Proposition 5.3.6 also allows us to make the next definition:

Definition 5.3.8. Let f : X → Y be a cellular homotopy equivalence between finite, connected CW-

complexes and let ρ : ΓY → V be a finite-dimensional, complex representation. For an admissible pair EX

and EY on X̃, respectively Ỹ , as well as C-basis B ⊆ V , we define the (based) twisted L2-Whitehead

Torsion of f as

τ(2)(f, ρ, [EX , EY , B]) := T
(

Cone∗(2)(f̃ , ρ)[Efcone, B]
)
, (5.3.37)

where Efcone is the basis on Cone∗(2)(f̃ , ρ) compatible with [EX , EY ].

Lemma 5.3.9. In the above situation, one has

T
(

Cone∗(2)(11X̃ , ρ)[E11
cone, B])

)
= 1. (5.3.38)
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Proof. One easily verifies that, under the identification Conek(2)(11X̃ , ρ ◦ f∗)[E
11
cone, B] ∼= Ck(X̃, ρ ◦ f∗) ⊕

Ck−1(X̃, ρ ◦ f∗), the k-th differential δk : Conek(2)(11X̃ , ρ ◦ f∗)[E
11
cone, B] → Conek+1

(2) (11X̃ , ρ ◦ f∗)[E
11
cone, B]

takes the form

δk =

(
(−1)k+1δkX 0

11Ck(X̃,ρ◦f∗) δk−1
X

)
, (5.3.39)

where δkX := δkρ◦f∗ : Ck(X̃, ρ ◦ f∗)→ Ck+1(X̃, ρ ◦ f∗) is the corresponding twisted differential.

Consequently, one sees that the map γ∗ : Cone∗(2)(11X̃ , ρ ◦ f∗)[E
11
cone, B] → Cone∗−1

(2) (11X̃ , ρ ◦ f∗)[E
11
cone, B]

defined by

γk :=

(
0 11Ck−1(X̃,ρ◦f∗)

0 0

)
(5.3.40)

is an explicit chain contraction for Cone∗(2)(11X̃ , ρ ◦ f∗)[E
11
cone, B].

To streamline the notation, we will abbreviate by

C∗ := C∗(X̃, ρ ◦ f∗) , D∗ := Cone∗(2)(11X̃ , ρ ◦ f∗)[E
11
cone, B].

Define

Dodd :=
⊕

k∈2N−1

Dk , Dev :=
⊕
k∈2N0

Dk,

(γ∗ + δ∗)odd := (γ∗ + δ∗)|Dodd : Dodd → Dev.

From the isometric isomorphism Dk ∼= Ck ⊕ Ck−1, one obtains isometric isomorphisms

Dodd
∼= Dev

∼=
n⊕
k=0

Ck. (5.3.41)

Under this identification, one computes that

(γ∗ + δ∗)odd =



11Cn δn−1
X 0 0 . . .

0 11Cn−1 δn−2
X 0 . . .

0 0 11Cn−2 δn−3
X

. . .

...
. . .

. . .
. . .

. . .

0 . . . . . . 0 11C0


. (5.3.42)

The result now follows from Proposition 4.1.14 and [54, Lemma 3.41], since

T (D∗) = detΓ((γ∗ + δ∗)odd) = 1. (5.3.43)

The relevance of the L2-Whitehead torsion lies in the fact that it precisely describes the anomaly of

L2-torsion between homotopy equivalent complexes, as highlighted in the next central result:

Corollary 5.3.10. Let f : X → Y be a cellular homotopy equivalence between finite, connected CW-

complexes and let ρ : ΓY → V be a finite-dimensional, complex representation. Then, the tuple (X, ρ◦f∗)
is det-L2-acyclic if and only if (Y, ρ) is det-L2-acylic. In this case, one gets for any pair of admissible

pair EX and EY on X̃, respectively Ỹ , that

TCW(2) (Y, ρ, [EY , B])

TCW(2) (X, ρ ◦ f∗, [EX , B])
= τ(2)(f, ρ, [EX , EY , B]). (5.3.44)
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Proof. Recall from Proposition 5.3.6 that there are split exact sequences of Hilbert N (Γ)-module cochain

complexes

0→ Cone∗(2)(f̃ , ρ)[Efcone, B]
ι1−→ Cyl∗(2)(f, ρ)[Efcyl, B]

π1−→ C∗(2)(X̃, ρ ◦ f∗, [EX , B])→ 0, (5.3.45)

0→ Cone∗(2)(11X̃ , ρ)[E11
cone, B])

ι2−→ Cyl∗(2)(f, ρ)[Efcyl, B]
π2−→ C∗(2)(Ỹ , ρ, [EY , B])→ 0, (5.3.46)

where all maps involved are partial isometries. The same proposition also yields that both C∗(2)(Mf̃ , X, ρ, [E
f
cone, B])

and Cone∗(2)(11X̃ , ρ)[E11
cone, B] are always det-L2-acyclic. From [54, Theorem 3.35], we then conclude that

(X, f∗ ◦ ρ) is det-L2-acyclic ⇔ C∗(2)(X̃, ρ ◦ f∗, [EX , B]) is det-L2-acyclic

⇔ Cyl∗(2)(f, ρ)[Efcyl, B] is det-L2-acyclic⇔ C∗(2)(Ỹ , ρ, [EY , B]) is det-L2-acyclic

⇔ (Y, ρ) is det-L2-acyclic.

Moreover, along with Proposition 5.3.9, we also get in the det-L2-acyclic case, that

T
(

Cyl∗(2)(f, ρ)[Efcyl, B]
)

= TCW(2) (Y, ρ, [EY , B]) · T
(

Cone∗(2)(11X̃ , ρ)[E11
cone, B])

)
= TCW(2) (Y, ρ, [EY , B]),

T
(

Cyl∗(2)(f, ρ)[Efcyl, B]
)

= TCW(2) (X, ρ ◦ f∗, [EX , B]) · τ(2)(f, ρ, [EX , EY , B]).

The result now follows.

With regards to topological invariance, the last component that we need is the concrete connection

between the L2-Whitehead torsion of a homotopy equivalence f : X → Y complexes X and Y and its

ordinary Whitehead torsion as described in the previous section.

For that purpose, let ρ : Γ → GL(V ) be a finite-dimensional, complex representation and let B ⊆ V be

an ordered basis of V , which gives rise to the isomorphism φB : V → Cm and the based representation

ρB : Γ→ GL(m,C). Out of ρB , we construct a the group homomorphsim

ΛρB : GL(Z[Γ])→ GL(C[Γ]), (5.3.47)

(
∑
g∈Γ

λgij · g)l=1...s
i=1...r 7→ (

∑
g∈Γ

λgij · ρB(g) · g)j=1...s
i=1...r . (5.3.48)

In view of the canonical group embedding GL(C[Γ]) ↪→ GL(N (Γ)), let detΓ : GL(C[Γ]) → R>0 be

the group homomorphism, obtained by restricting the Fuglede-Kadison determinant onto elements of

GL(C[Γ]). From the definition of ΛρB , it is evident that ΛρB (E(Z[Γ])) ⊆ E(C[Γ]). Since also detΓ(A) =

detΓ(−A) for any A ∈ GL(C[Γ]), we obtain a homomorphism Λ
ρB

: K̃1(Z[Γ]) → R>0 that fits into the

commutative diagram below

GL(Z[Γ]) K̃1(Z[Γ])

GL(C[Γ]) R>0

π

ΛρB ΛρB

detΓ

. (5.3.49)

Let Cone∗(f̃)[E11
cone] be the finite, based, acyclic Z[Γ]-module cochain complex that we have defined

previously. Further, let δ∗ : Cone∗(f̃)[E11
cone] → Cone∗+1(f̃)[E11

cone] be the boundary operator and let

γ∗ : Cone∗(f̃)[E11
cone] → Cone∗−1(f̃)[E11

cone] be a choice of chain contraction. With aid of the basis

E11
cone, both morphisms can be identified with appropriate square matrices in Mat(Z[Γ]). Now let

Cone∗(2)(f̃ , ρ)[E11
cone, B] be the other finite, acyclic Hilbert N (Γ)-module cochain complex that was pre-

viously defined. Using the admissible basis [EY , B], it is clear that the matrix ΛρB (δ∗) is the boundary
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operator on Cone∗(2)(f̃ , ρ)[E11
cone, B] and that ΛρB (γ∗) ∈ Mat(C[Γ]) determines a chain contraction on

Cone∗(2)(f̃ , ρ)[E11
cone, B]. By [54, Lemma 3.41], we therefore get

τ(2)(f, ρ, EX , EY .B) = detΓ (ΛρB (γ∗ + δ∗)|odd) . (5.3.50)

Combining 5.3.49 and 5.3.50 with Definitions 5.3.1 and 5.3.4, we arrive at the following relation between

the ordinary based and the L2-Whitehead Torsion.

Lemma 5.3.11. In the notation as above, the equality

τ(2)(f, ρ, EX , EY , B) = ΛρB (τ(f,EX , EY )) (5.3.51)

holds. In particular, if f is a simple homotopy equivalence, there exists some g ∈ Γ, such that

τ(2)(f, ρ, EX , EY , B) = |det(ρB(g))|. (5.3.52)

Theorem 5.3.12. Let M be a connected topological space admitting a finite CW-structure and let ρ :

Γ := π1(M)→ V be a unimodular representation of Γ. Then,

1. for any two CW-structures X,Y on M , the tuple (X, ρ) is det-L2-acyclic if and only if (Y, ρ) is

det-L2-acyclic. In this case, one obtains that

TCW(2) (X, ρ) = TCW(2) (Y, ρ), (5.3.53)

allowing us to define

TTop(2) (M,ρ) := TCW(2) (X, ρ) (5.3.54)

to be the topological L2-torsion of the tuple (M,ρ).

2. If N is another space admitting a finite CW -structure and f : N → M either a homeomorphism

or a general simple homotopy equivalence, then (M,ρ) is det-L2-acyclic if and only if (N, ρ ◦ f∗)
det-L2-acylic. In this case, we obtain

TTop(N, ρ) = TTop(N, ρ ◦ f∗).

Proof. 1 : First, note that since X and Y are cell-structures of the same ambient space M , lifting to

cell-structures X̃ and Ỹ on M̃ , we have a canonical identification of deck groups Γ = ΓY = ΓX . Now

choose for the identity homeomorphism idM : X → Y some cellular approximation f ' idM : X → Y , of

which we further pick a lift f̃ : X̃ → Ỹ . Let f̃∗ : Γ → Γ be the induced group automorphism, as defined

in Equation 5.1.1. Since f ' 11M , we must also have (up to conjugacy) f̃∗ = (11
M̃

)∗ = 11Γ by Corollary

5.1.2. Corollary 5.3.10 therefore implies that (X, ρ) is det-L2-acyclic if and only if (Y, ρ) is det-L2-acyclic.

In this case, since ρ is unimodular, we can further apply Corollary 5.2.10 to obtain for any choice EX

and EY of admissible pairs on C∗(X̃), respectively C∗(Ỹ ), that

TCW(2) (X, ρ)

TCW(2) (Y, ρ)
=
TCW(2) (X, ρ, [EX , B])

TCW(2) (Y, ρ, [EY , B])

5.3.37
= τ(2)(f, ρ, EX , EY , B)

5.3.51
= ΛρB (τ(f,EX , EY )). (5.3.55)

By definition of ΛρB , we have ΛρB (τ(f,EX , EY )) = detΓ(ΛρBA) for any representative A ∈ GL(Z[Γ])

of τ(f,EX , EY ) ∈ K̃1(Z[Γ]). Since f is the cellular approximation of a homeomorphim, it follows from
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Theorem 5.3.5 that we may choose A as a 1× 1 matrix of the form (g) for some g ∈ Γ. Applying Lemma

5.3.11, we therefore obtain

ΛρB (τ(f,EX , EY )) = |det(ρB(g))| = 1, (5.3.56)

since ρB is unimodular. The result readily follows.

2 : Choosing CW-structures X and Y on M and N respectively, the argument is completely analogous

as the one presented in 1.

Remark 5.3.13. Observe that assertion 2 of the above theorem shows in particular that TTop(2) (M,ρ)

does not depend on the particular choice of universal cover p : M̃ → M , i.e. on the particular choice of

representative of the fundamental group π1(M) as the deck group of such covering map. That is why

henceforth, we will simply talk about a representation ρ : π1(M) → GL(V ) of the fundamental group

without specifying a representative deck group for π1(M).

As it will become relevant later on, we now also introduce a topological L2-torsion for certain non-

compact spaces. Explicitly:

Definition 5.3.14. Suppose that M is a connected topological space, such that

1. Wh(π1(M)) = 0, and

2. M has the homotopy type of a finite CW-complex.

Given any unimodular representation ρ : π1(M)→ GL(V ), let K be a finite CW-complex and i : K →M

a homotopy equivalence. Assuming that the pair (X, ρ ◦ i∗) is det-L2-acyclic, we define the topological

L2-torsion of the Tuple (M,ρ) as

TTop(2) (M,ρ) := TTop(2) (X, ρ ◦ i∗). (5.3.57)

Remark 5.3.15. The large pool of spaces satisfying these assumptions contains in particular all non-

positively curved locally symmetric spaces of finite volume, cf. [36, Theorem 0.10] and [4, Theorem 13.1].

Of course, we have to show that these definitions do not depend on the choice of i : X →M . Therefore,

assume that Y is another space admitting a finite CW-structure and homotopy equivalent to M via a

map j : Y → M . In choosing a homotopy inverse k : M → Y of j, we obtain a homotopy equivalence

f := k ◦ i : : X → Y , whose induced map on fundamental groups fits into a diagram that is commutative

up to conjugation

GL(V )

π1(M)

π1(X) π1(Y ).

ρ

i∗

f∗
j∗

Observe that the condition Wh(π1(M)) = 0 ensures that f is a simple homotopy equivalence. We may

therefore apply Theorem 5.3.12 and Lemma 5.2.6 to obtain that

TTop(2) (X, ρ ◦ i∗) = TTop(2) (X, ρ ◦ j∗ ◦ f∗) = TTop(2) (Y, ρ ◦ j∗).

If M is compact, both notions of topological torsions TTop(2) (M,ρ) introduced this section coincide.
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5.4 The Morse-Smale torsion

We now return to the realm of smooth, compact manifolds. On such a manifold M , given a det-L2-acyclic

representation ρ : π1(M) → V , a choice of bundle metric h on the flat bundle Eρ ↓ M associated to ρ,

as well as a smooth Morse function f : M → R satisfying the Morse-Smale transversality conditions,

we will define the so-called L2-Morse-Smale torsion TMS
(2) (M,ρ, h, f) ∈ R>0. Although its definition is

more involved than the topological torsion, it has the advantage of being more easily compared to the

L2-analytic torsion TAn(2) (M,ρ, g, h) that we studied in previous chapters. This comparison will be the

subject of the next chapter. Moreover, in all our relevant instances, namely when ρ is unimodular and h

is a unimodular metric, we show that it coincides with the corresponding topological torsion TTop(2) (M,ρ),

defined in the previous section.

For a given smooth function f : M → R, we introduce the following objects:

1. We set Cr(f) = {p ∈M : Dfp = 0} ⊆M to be the subset of all critical points of f , and

2. for each p ∈ Cr(f), the index ind(p) ∈ {0, . . . ,m} is defined as the number of negative eigenvalues

of its Hessian Hfp (independent of the choice of coordinates at p). Lastly,

3. for each 0 ≤ k ≤ m, we set Crk(f) = {p ∈ Cr(f) : ind(p) = k} ⊆ Cr(f) to be the subset of critical

points of index k.

f is non-degenerate at a point p ∈ M if the corresponding Hessian Hfp has (in an arbitrary choice of

coordinates) only non-zero eigenvalues.

Definition 5.4.1 (Morse function). Let M be a smooth manifold, a, b ∈ R with a ≤ b. A smooth

function f : M → [a, b] is called a Morse-function if f is non-degenerate at each of its critical points.

In case that ∂M 6= ∅, we demand that additionally one of the following two (mutually exclusive) conditions

hold:

1. f is of type I, that is

(a) the restriction f |∂M of f to ∂M is non-degenerate at each of its critical points.

(b) There exists a collar neighborhood U ⊃ ∂M of ∂M , a parametrization G : ∂M × [0, ε)→ U of

∂M satisfying G(x, 0) = x, such that (f ◦G)(x, t) = f |∂M (x) + t2.

2. f is of type II, that is,

(a) one has ∂M ⊆ f−1({a, b}) with ∂−M := f−1(a) ∩ ∂M and ∂+M := f−1(b) ∩ ∂M , and

(b) There exists a collar neighborhood U ⊃ ∂M of ∂M , a parametrization G : ∂M × [0, ε)→ U of

∂M satisfying G(x, 0) = x, such that

(f ◦G)(x, t) =

b− t x ∈ ∂+M,

a+ t x ∈ ∂−M.

Observe that for a type I Morse-function f on M , the restriction f |∂M is a Morse-function on the

(closed) boundary, such that Cr(f |∂M ) = Cr(f) ∩ ∂M . Conversely, for a type II Morse-function, the
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restriction f |∂M is locally-constant and Cr(f) is a subset of the interior of M . If f is a Morse-function,

it follows easily that Cr(f) is a discrete subset of M . In particular, if M is compact, this means that

Cr(f) must be finite.

Now assume additionally that M comes equipped with some Riemannian metric g. Recall that the

gradient ∇gf ∈ Γ(M,TM) of f with respect to g is the vector field uniquely determined by

〈∇gf,X〉g = Df(X)

for any other vector field X ∈ Γ(M,TM). For an appropriate neighborhood U ⊆M ×R of M ×{0}, the

gradient then generates the negative gradient flow φ : U → M of f . It is the unique 1-parameter family

of diffeomorphisms of M whose infinitesimal generator is the negative gradient −∇gf . This means that

it is the unique solution on U to the differential equation

∂

∂t
φ(t, x)|t=t0 = −∇gf(φ(t0, x)),

φ(0, x) = x

for each x ∈ M . By construction, one can show that the set Cr(f) of critical points is precisely the set

of stationary points for the gradient flow φ.

Assuming that φ can be extended globally, so that U = M ×R (automatically true if M is compact), the

requirement that f has compact range guarantees that for any y ∈ M , the limits limt→±∞ φ(y, t) exist,

are distinct, and lie Cr(f) if f is of type I and in Cr(f)∪ ∂M if of f is of type II. Visually speaking, this

means that Cr(f) (respectively Cr(f)∪∂M , if f is of type II) is precisely the set of sources and sinks for

the gradient flow φ, that the source of each non-constant flow line is always different from its sink and

that any point in M emanates from a source and eventually flows into a sink. For fixed y ∈M , the flow

line at y is the map γy := φ( . , y) : R → M . Observe that for p ∈ Cr(f), γp is the constant map. This

allows us to further define define for each p ∈ Cr(f) the stable manifold W+(p) ⊆ M and the unstable

manifold W−(p) ⊂M via

W+(p) := {x ∈M : lim
t→∞

γx(t) = p}, (5.4.1)

W−(p) := {x ∈M : lim
t→−∞

γx(t) = p}. (5.4.2)

If f is of type I, it follows that

M =
⋃̇

p∈Cr(f)

W+(p) =
⋃̇

p∈Cr(f)

W−(p), (5.4.3)

i.e. the stable, respectively unstable, manifolds form a partition of M .

Example 5.4.2. Below, we have sketched the gradient vector fields coming from a type I Morse function

(left), as well as a type II Morse function (right) on the closed unit disc D2 = {|x| ≤ 1} ⊂ C. In the first

case, there are precisely three critical points, 0, 1 and −1. The corresponding unstable manifolds are the

interior of D2, {1}, and ∂D2 \ {1} (as such, they form a partition of D2). In the second case, 0 is the

only critical point, with corresponding unstable manifold being only {0} itself and ∂D2 = ∂+D
2.
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Intuitively, W+(p), respectively W−(p), may be regarded as the set of points that, under the negative

gradient flow φ, flow into, respectively away from, p. As their name suggests, both W+(p) and W−(p)

are indeed submanifolds of M . Specifically, it is well-known, see for example [91], that

1. in case that f is of type I and p /∈ ∂M , or if f is of type II and ∂+M = ∅, W+(p) is diffeomorphic

to Rn−ind(p) and disjoint from ∂M , while

2. W−(p) is always diffeomorphic to Rind(p) if either f is of type I (in this case, W−(p) ⊆ ∂M if

p ∈ ∂M) or f is of type II and ∂−M = ∅ (in this case, one always has W−(p) ∩ ∂M = ∅).

Since limt→−∞ γy(t) 6= limt→∞ γy(t) for every y ∈ M \ Cr(f), we get that W−(p) ∩ W+(p) = {p},
which can be phrased as follows: The stable and unstable manifold of the same critical point p intersect

precisely at the 0-dimensional submanifold {p}. More generally, we would like for any pair p, q ∈ Cr(f)

a non-empty intersection W−(p) ∩W+(q) (i.e. the set of all flow lines between a fixed source and sink)

always to be a submanifold. While this is false in the very general setting, it will always be fulfilled if φ

satisfies the so-called Smale-transversality condition, which is part of the next definition

Definition 5.4.3. Let M be a smooth manifold. A pair (f, g), where f : M → R is a Morse function

and g is a Riemannian metric on M is called a Morse-Smale pair if

1. the gradient flow φ of −∇gf is globally defined over M × R,

2. for each p ∈ Crk(f), there exist only finitely many y ∈ Crk+1(f) such that W−(y) ∩W+(p) 6= ∅,

3. (local triviality) Each p ∈ Crk(f) ∩ int(M) admits a coordinate chart φp : Up → Rn, such that

(a) The pull-back φ∗p(geucl) of the euclidean metric on Rn equals g,

(b) f has normal form on Up, that is f◦φ−1
p (p1, . . . , pn) = f(p)−p2

1−· · ·−p2
ind(p)+p

2
ind(p)+1+· · ·+p2

n.

4. φ satisfies the Smale-transversality condition, that is, for any two p, q ∈ Cr(f) and any x ∈W−(q)∩
W+(p), one has

TxW
+(p) + TxW

−(q) = TxM. (T)

5. If f is of type I, the restriction (f |∂M , g∂M ) also satisfies assertions (1)− (4),

6. The parametrization G : ∂M × [0, ε)→ U of the collar neighborhood U of ∂M from Definition 5.4.1

is the Riemannian exponential boundary map induced by g, so that the pull-back metric G∗(g) is

of product form g|∂M ⊕ dt2.
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Finally, a Morse-Smale pair (f, g) is of type I/II if f is of type I/II.

It is a classic result that any compact manifold admits a Morse-Smale pair (f, g), both of type I and

type II, see for example [92], [75] or [3]. By considering appropriate lifts, the same is therefore true for

any manifold M that admits a compact manifold quotient.

The essential property of a Morse-Smale pair (f, g) is that for any pair p, q ∈ Cr(f), the intersection

N (p, q) := W−(p) ∩W+(q) (5.4.4)

is a (possibly empty) submanifold of of dimension ind(p) − ind(q). In the case ind(p) = ind(q) + 1,

this means that the union of all flow lines emanating from p and flowing into q form the 1-dimensional

submanifold N (p, q).

We now describe the construction of the (ordinary) Morse-Smale complex on a compact manifold M ,

provided that we have fixed a Morse-Smale pair (f, g) on M . Namely, choosing orientations Op on W (p)

for each p ∈ Cr(f), we explain now how such a choice gives rise to numbers

n(p, q) ∈ Z (5.4.5)

for each pair p, q ∈ Cr(f), such that the following is satisfied:

n(p, q) = 0 if N (p, q) = ∅ or ind(p) 6= ind(q) + 1. (MS1)

∀ 0 ≤ k ≤ m, ∀ p ∈ Crk(f), ∀ q ∈ Crk+2(f) :
∑

z∈Crk+1(f)

n(q, z) · n(z, p) = 0. (MS2)

If either N (p, q) = ∅ or ind(p) 6= ind(q) + 1, we set n(p, q) := 0, so that MS1 is automatically satisfied. In

the remaining case, it follows by compactness of M that N (p, q) is the non-empty disjoint union of finitely

many flow lines of φ, the gradient flow determined by the pair (f, g). Let Γ(p, q) to be the set of those

flow lines and fix one such γ ∈ Γ(p, q). Recall that it is an embedding γ : R→ M with limt→∞ γ(t) = q

and limt→−∞ γ(t) = p. Observe that for each t ∈ R, the negative gradient −∇gfγ(t) is non-vanishing,

and therefore a basis for the 1-dimensional vector space Tγ(t)γ ⊆ Tγ(t)M . In particular, it determines a

natural orientation [−∇gfγ(t)] on Tγ(t)γ.

To proceed, we need the following auxiliary lemma:

Lemma 5.4.4. Let

0→ V1 ↪→ V2
π−→ V3 → 0 (5.4.6)

be a short exact sequence of finite-dimensional R-vector spaces. Then, two choices of orientations on two

of the vector spaces canonically determine an orientation on the third. Namely, given two orientations [Bi]

of Vi and [Bj ] ∈ Vj for i, j ∈ {1, 2, 3}, there exists a unique orientation [Bk] ∈ Vk with k ∈ {1, 2, 3}\{i, j},
such that, for any choice of split ι : V3 → V2, we have [B1 ∪ ι(B3)] = [B2].

Proof. This is an immediate consequence from the observation that any two splits ι, ι′ : V3 → V2 of Γ

differ by a translation along the subspace V1. In particular, for any two bases B1 ⊆ V1, B3 ⊆ V3, the

sets B1 ∪ ι(B3) and B1 ∪ ι′(B3) both are bases of V2, such that the corresponding base change matrix

M
B1∪ι′(B3)
B1∪ι(B3) is a transvection. We conclude that [B1∪ ι(B3)] = [B1∪ ι′(B3)], from which the result readily

follows.
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Observe that we have a for each t ∈ R a short exact sequence

0→ Tγ(t)γ ↪→ Tγ(t)W
−(p)→ Tγ(t)W

−(p)/Tγ(t)γ → 0.

By the previous lemma, the orientations [−∇gf(γ(t))] on Tγ(t)γ and Opγ(t) ⊆ Tγ(t)W
−(p), the restriction

of our initial global choice Op on W−(p), canonically determine a compatible orientation O1γ(t) on

Tγ(t)W
−(p)/Tγ(t)γ.

Due to the transversality condition T, the inclusions Tγ(t)W
−(p) ↪→ Tγ(t)M and TqW

−(q) ↪→ TqM induce

canonical isomorphisms

Tγ(t)W
−(p)/Tγ(t)γ ∼= Tγ(t)M/Tγ(t)W

+(q), (5.4.7)

TqW
−(q) ∼= TqM/TqW

+(q). (5.4.8)

Moreover, since W+(q) is contractible, the bundle TM/TW+(q) ↓W+(q) trivial. Using this, along with

the canonical isomorphisms 5.4.7 and 5.4.8, we see that the orientation Oq(q) of TqW
−(q) canonically

determines an orientation O2γ(t) on Tγ(t)M/Tγ(t). We define

nγ(p, q) :=

+1 if O1γ(t) = O2γ(t),

−1 if O1γ(t) 6= O2γ(t),
(5.4.9)

n(p, q) =
∑

γ∈Γ(p,q)

nγ(p, q). (5.4.10)

The number nγ(p, q), and therefore also n(p, q), does not depend on the choice of t ∈ R. It is a classic

result, shown for example in [87, Chapter 4], that the numbers n(p, q) satisfy MS2. Also, it is clear from

the construction that choosing the opposite orientation −Op has the effect of changing the sign of n(p, q).

For p ∈ Cr(f), we denote by [Op] the free abelian group generated by the orientation Op on W−(p).

Definition 5.4.5. The Morse-Smale complex C∗(M,∇gf) associated to a Morse-Smale pair (f, g) is

defined as the following cochain complex of free abelian groups

C∗(M,∇gf) :=
⊕

p∈Cr(f)

[Op] , C
k(M,∇gf) :=

⊕
p∈Crk(f)

[Op] (5.4.11)

with boundary map

∂ : C∗(M,∇gf)→ C∗+1(M,∇gf)

being the unique Z-linear extension of the assignment

∂[Op] :=
∑

q∈Cr(f)

n(q, p) · [Oq]. (5.4.12)

Due to MS1-MS2, it is evident that ∂ is well-defined and satisfies ∂2 = 0. Note that C∗(M,∇gf) is

independent of the explicit choice of Op.

Let M̃ be the universal cover of a compact manifold M with covering map π : M̃ → M and let Γ :=

deck(p) ∼= π1(M). For a choice of Morse-Smale pair (f, g) on M , let f̃ := f ◦ π, let g̃ be the pull back of

g, and define for each pair p, q ∈ Cr(f̃) the integer

n(p, q) := n(π(p), π(q)), (5.4.13)
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where n(π(p), π(q)) is defined with respect to (f, g) as in 5.4.10. Clearly, the integers n(p, q) then also

satisfy properties (MS1) and (MS2), along with the additional invariance property

n(p, q) = n(γ.p, γ.p) ∀γ ∈ Γ. (MS3)

Lastly, for each p ∈ Cr(f̃), let Op be the orientation on W−(p) that is the pullback of the orientation

Oπ(p) on W−(π(p)) via π.

Definition 5.4.6. The lifted Morse-Smale complex C∗(M̃,∇g̃ f̃) is the cochain complex of free

abelian groups

C∗(M̃,∇g̃ f̃) :=
⊕

p∈Cr(f̃)

[Op] , C
k(M̃,∇g̃ f̃) :=

⊕
p∈Crk(f̃)

[Op] (5.4.14)

with boundary map

∂ : C∗(M̃,∇g̃ f̃)→ C∗+1(M̃,∇g̃ f̃)

being the unique Z-linear extension of the assignment

∂[Op] :=
∑

q∈Cr(f̃)

n(q, p) · [Oq]. (5.4.15)

It follows from MS1 and MS2 that the corresponding differential δ is still well-defined and satisfies

δ2 = 0. Also, observe that the assignment Op 7→ Oπ(p) for each p ∈ Cr(f) gives rise to a Z-linear map of

cochain complexes

C∗(M̃,∇g̃ f̃)→ C∗(M,∇gf). (5.4.16)

Observe that whenever Γ is infinite, the modules Ck(M̃,∇g̃ f̃) are not finitely generated over Z, in contrast

to the modules Ck(M,∇gf). That is why the ordinary Morse-Smale complex C∗(M,∇gf) might seem

better suited for direct computations. However, the essential feature that sets C∗(M̃,∇g̃ f̃) apart from

C∗(M,∇gf) is the intrinsic Γ-action on it, given by permutation of the fibers.

Definition 5.4.7. Given a finite-dimensional, complex representation ρ : Γ→ GL(V ), the twisted Morse-

Smale complex is the following cochain complex of complex vector spaces:

C∗(M̃,∇g̃ f̃ , ρ) := C∗(M̃,∇g̃ f̃)⊗Z V (5.4.17)

∂ρ := ∂ ⊗ 11V : C∗(M̃,∇g̃ f̃ , ρ)→ C∗+1(M̃,∇g̃ f̃ , ρ). (5.4.18)

This complex comes equipped with a natural Γ-action, given by

γ.([Op]⊗ v) := [Oγ.p]⊗ ρ(γ)v (5.4.19)

on elementary tensors.

With respect to this action, it is due to property MS3 that the differential ∂ρ is Γ-equivariant, which

allows us to regard C∗(M̃,∇g̃ f̃ , ρ) as a C[Γ]-module cochain complex. Moreover, it is easily verified that a

choice of basis B ⊆ V , together with a choice of representatives P , one for each Γ-orbit of each p ∈ Cr(f)

yields a C[Γ]-basis {q ⊗ b : q ∈ P, b ∈ B} of C∗(M̃,∇g̃ f̃ , ρ). We have thus shown that C∗(M̃,∇g̃ f̃ , ρ) is

a free and finite C[Γ]-module cochain complex.
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We wish to define an inner product on C∗(M̃,∇g̃ f̃ , ρ) that is compatible with the Γ-action. Although

there are several ways to proceed, we will derive an inner product on C∗(M̃,∇g̃ f̃ , ρ) from a choice of

Hermitian form h on the flat quotient bundle M × V/Γ ↓ M/Γ. This way, one is able to efficiently

compare the L2-Morse-Smale torsion yet to be defined with the corresponding L2-analytic torsion, as will

be done in the next chapter.

Recall that the metric h lifts to a unique Γ-equivariant metric h̃ on the bundle M × V . This means that

we can identify h̃ with a smooth map h̃ : M → GL(V, V ∗) such that

1. for each p ∈M , h̃(p) := h̃p is a Riesz-Isomorphism. Equivalently, for each p ∈M , the map

〈v, w〉h̃p := h̃p(w)(v) (5.4.20)

is a complex inner product on V .

2. For each γ ∈ Γ and each pair v, w ∈ V , one has

〈v, w〉h̃p = 〈ρ(γ)v, ρ(γ)w〉h̃γ.p . (5.4.21)

For each p ∈M , we choose an orthonormal basis

Bp[h] := {b(p)1 , . . . , b(p)m } ⊂ V (5.4.22)

of the inner product space (V, h̃p).

Since h̃ is Γ-equivariant, we may assume without loss of generality that we have chosen the bases Bp[h]

to satisfy a compatibility of the form

Bγ.p[h] = ρ(γ) ·Bp[h]. (5.4.23)

This allows us to define an inner product 〈 , 〉h on C∗(M̃,∇g̃ f̃ , ρ), which is uniquely determined by speci-

fying its orthonormal basis as the set {[Op]⊗ b(p)i : p ∈ Cr(f), i = 1, . . . , n}. We declare C∗(M̃,∇g̃ f̃ , ρ, h̃)

to be the inner product space (C∗(M̃,∇g̃ f̃ , ρ), 〈 , 〉h). Again because of Γ-equivariance of h̃, is evident

that the Γ-action on C∗(M̃,∇g̃ f̃ , ρ, h̃) it inherits from C∗(M̃,∇g̃ f̃ , ρ) is by isometries. Set

j := #Cr(f) , jk := #Crk(f) (5.4.24)

and fix a choice of representatives

P ⊆ Cr(f), (5.4.25)

Pk := P ∩ Crk(f), (5.4.26)

one for each Γ-orbit for each p ∈ Cr(f̃). For each p ∈ Cr(f̃), we let

ψp[h] : V → Cm (5.4.27)

be the isometric isomorphism of inner product spaces that sends the (ordered) basis Bp[h] to the (ordered)

standard basis of Cm. Because of 5.4.23, it is clear that

ψp[h] = ψγ.p[h] ◦ ρ(γ) (5.4.28)
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for each γ ∈ Γ. This further allows us to construct a C[Γ]-isomorphism and an isometry of inner product

spaces

ΨP [h] :

n⊕
k=0

Ck(M̃,∇g̃ f̃ , ρ, h̃)→
n⊕
k=0

⊕
p∈Pk

C[Γ]p ⊗ Cm ∼= C[Γ]jm, (5.4.29)

determined by the assignment

[Oγ.p]⊗ v 7→ γ · 1p ⊗ ψγ.p[h](v) ∈ C[Γ]p ⊗ Cn, (5.4.30)

for each p ∈ P , each γ ∈ Γ and each v ∈ V . Evidently, this assignment satisfies the identity γ.ΨP [h]([Op]⊗
v) = ΨP [h]([Oγ.p] ⊗ ρ(γ) · v) for each p ∈ Cr(f̃) and each v ∈ V because of 5.4.28, and is therefore

extendable to a unique C[Γ]-linear bijection. Here,

1. for each p ∈ P , C[Γ]p is a copy of C[Γ], with 1p = 1 its unit element,

2. the inner product on
⊕n

k=0

⊕
p∈Pk C[Γ]p⊗Cm is the canonical one, i.e. the direct sum of the tensor

products of the respective canonical inner products on each factor, and

3. the Γ-action on
⊕n

k=0

⊕
p∈Pk C[Γ]p ⊗ Cm is the direct sum of the left-factor actions, given on

elementary tensors by γ.(g ⊗ v) := (γg)⊗ v.

It is easy to see that under the identification ΨP [h], the differential ∂ρ becomes a square matrix over C[Γ]

of size j ·m, that is

ΨP [h] ◦ ∂ρ ◦ΨP [h]−1 ∈ Mat(jm,C[Γ]). (5.4.31)

Note that the inner product structure on C∗(M̃,∇g̃ f̃ , ρ, h̃) only depends on h, and not the choice of P

and basis Bp[h] ⊆ V .

Just as for the cellular complex, we wish to apply to C∗(M̃,∇g̃ f̃ , ρ, h̃) the theory of Hilbert N (Γ)-modules

of finite type. However, just as for the cellular complex, C∗(M̃,∇g̃ f̃ , ρ, h̃) is complete as an inner product

space if and only if Γ is a finite group. To remedy this, we proceed as in the case of the cellular complex:

Definition 5.4.8. The L2-Morse-Smale complex C∗(2)(M̃,∇g̃ f̃ , ρ, h̃) is defined as

C∗(2)(M̃,∇g̃ f̃ , ρ, h̃) := l2(Γ)⊗C[Γ] C
∗(M̃,∇g̃ f̃ , ρ, h̃), (5.4.32)

∂ρ(2)
:= 11l2(Γ) ⊗ ∂ρ : C∗(2)(M̃,∇g̃ f̃ , ρ, h̃)→ C∗+1

(2) (M̃,∇g̃ f̃ , ρ, h̃). (5.4.33)

Using 5.4.31 and the isometry

Ψ
(2)
P [h] := 11l2(Γ) ⊗ΨP [h] : C∗(2)(M̃,∇g̃ f̃ , ρ, h̃)→ l2(Γ)⊗C[Γ] C[Γ]lm ∼= l2(Γ)lm, (5.4.34)

it becomes apparent that C∗(2)(M̃,∇g̃ f̃ , ρ, h̃) is a Hilbert N (Γ)-cochain complex of finite type.

Definition 5.4.9. Let M be a compact manifold, (f, g) a Morse-Smale pair on M , ρ : Γ := π1(M) →
GL(V ) a finite-dimensional, complex representation and h a Γ-equivariant Hermitian form on M̃×V ↓ M̃ .

Further, suppose that the Hilbert N (Γ)-cochain complex C∗(2)(M̃,∇g̃ f̃ , ρ, h̃) is det-L2-acyclic. Then, the

L2-Morse-Smale torsion associated with the quadruple (M̃,∇g̃ f̃ , ρ, h̃) is defined as

log
(
TMS

(2) (M,∇gf, ρ, h)
)

:= log
(
T
(
C∗(2)(M̃,∇g̃ f̃ , ρ, h̃)

))
=

n∑
k=0

(−1)k+1 log(detΓ(∂ρ(2))). (5.4.35)
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This L2-cochain complex, along with its induced torsion element, has made numerous appearances

throughout the literature, see for example [22],[21], where only unitary representations ρ were considered,

or [102] for a detailed study of C∗(2)(M̃,∇g̃ f̃ , ρ) for arbitrary representations ρ.

However, what lacks in the existing literature is a direct comparison of the twisted L2-Morse-Smale torsion

TMS
(2) (M,∇gf, ρ, h) with the based/unbased topological L2-torsion of (M,ρ) that we have previously

defined. The relations between the non-L2-versions of the respective torsion elements are well-known, see

for example [12, Chapter 1] or [66, Theorem 9.3]. Our comparison result will be based on the fact that

a Morse-Smale pair (f, g) naturally determines a CW-structure on the compact quotient M , whose open

cells are in 1 : 1-correspondence to Cr(f) and such that its cell-attaching maps are completely determined

by the integers n(p, q) defined in 5.4.5.

Theorem 5.4.10. [77, Theorems 3.8, 3.9] Let M be a compact manifold and (f, g) a Morse-Smale pair

on M . Then,

1. if (f, g) is of type I, the unstable manifolds {W−(p) : p ∈ Cr(f)} are the open cells of a CW-

structure Xf on M , so that ∂Xf := Xf ∩ ∂M is a CW-structure on ∂M . Moreover, the Z-linear

extension of the assignment W−(p) 7→ [Op] induces isomorphisms of (relative) Z-cochain complexes

Ff,g : C∗(Xf )→ C∗(M,∇gf), (5.4.36)

F ∂Mf,g : C∗(Xf , ∂Xf )→
⊕

p∈Cr(f) p/∈∂M

[Op]. (5.4.37)

2. If (f, g) is of type II and Y is any CW-structure on ∂−M , the open cells of Y , together with the

unstable manifolds {W−(p) : p ∈ Cr(f)} form a CW-complex Xf := Y t
⋃
p∈Cr(f)W

−(p) with

Y a subcomplex, so that the inclusion of pairs (Xf , Y ) ↪→ (M,∂−M) is a homotopy equivalence.

Moreover, the Z-linear extension of the assignment W−(p) 7→ [Op] induces isomorphisms of Z-

cochain complexes

Ff,g : C∗(Xf , Y )→ C∗(M,∇gf). (5.4.38)

Remark 5.4.11. For the comparsion results of the next chapter, we will exclusively focus on type II

Morse-Smale pairs. This is because the techniques that we will employ require that the critical points of

the relevant Morse function f all lie in the interior of M .

Throughout the rest of this section, we assume that f is either of type I or of type II

with ∂−M = ∅. Let X̃f ⊆ M̃ be the lift of the CW-complex Xf on M̃ , so that the open cells of X̃f

are precisely the unstable manifolds {W−(p) : p ∈ Cr(f̃)}. Because of the previous Theorem, 5.4.13

and the subsequent Definition 5.4.15 of the boundary operator ∂ : C∗(M̃,∇g̃ f̃) → C∗+1(M̃,∇g̃ f̃), it is

clear that the assignment [Op] 7→W−(p) extends uniquely to an isomorphism of Z[Γ]-cochain complexes

F̃f,g : C∗(M̃,∇g̃ f̃) → C∗(X̃f ). Note that F̃f,g also fits into the commutative diagram of Z-cochain

complexes

C∗(M̃,∇g̃ f̃) C∗(X̃f )

C∗(M,∇gf) C∗(Xf )

[Op] 7→[Oπ(p)]

F̃f,g

W−(p)7→W−(π(p))

Ff,g

.
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Choosing an admissible basis pair [E,B] for the twisted cellular complex C∗(X̃f , ρ) (cf. Definition 5.2.1),

the map

F ρf,g := F̃f,g ⊗ 11V : C∗(M̃,∇g̃ f̃ , ρ, h̃)→ C∗(X̃f , ρ)[E,B], (5.4.39)

is therefore an isomorphism of C[Γ]-cochain complexes. We claim that it is also bounded, when regarded as

a linear map between the underlying inner product spaces. Consequently, we would obtain an isomorphism

of Hilbert N (Γ) cochain-complexes

F
ρ,(2)
f,g : 11l2(Γ) ⊗ F ρf,g : C∗(2)(M̃,∇g̃ f̃ , ρ, h̃)→ C∗(2)(X̃f , ρ)[E,B], (5.4.40)

F
ρ,(2)
f,g [k] := F

ρ,(2)
f,g |Ck

(2)
(M̃,∇g̃ f̃ ,ρ,h̃)

. (5.4.41)

To prove the claim, first observe that by Lemma 5.2.2, we are free to choose whatever set E of cell-orbit

representatives we like. Specifically, we choose a fundamental domain F ⊆ M̃ for the Γ-action on M̃ ,

representatives P := Cr(f̃) ∩ F and cell representatives Ef := {W−(p) : p ∈ P} that induce by 5.2.14

and 5.4.29 isometries of inner product spaces

ΨEf ,B : C∗(X̃f , ρ)[Ef , B]→
n⊕
k=0

⊕
p∈pk

C[Γ]⊗ Cm,

ΨP [h] : C∗(M̃,∇g̃ f̃ , ρ, h̃)→
n⊕
k=0

⊕
p∈pk

C[Γ]⊗ Cm .

From the explicit formulas of ΨP [h] and ΨE,B , one easily sees that the map ΨEf ,B ◦ F
ρ
f,g ◦ (ΨP [h])−1 is

a diagonal matrix of the form

ΨEf ,B ◦ F
ρ
f,g ◦ (ΨP [h])−1 =

(
11C[Γ] ⊗MB

Bp[h]

)
p∈P

, (5.4.42)

which proves our claim. Together with Proposition 4.1.14 and Lemma 4.1.15, we conclude that

log
(

detΓ(F
ρ,(2)
f,g )

)
=
∑
p∈P

log |det(MB
Bp[h])|, (5.4.43)

log
(

detΓ(F
ρ,(2)
f,g [k])

)
=
∑
p∈Pk

log |det(MB
Bp[h])|. (5.4.44)

Due to Proposition 4.1.40, we can now summarize our investigation as follows

Corollary 5.4.12. Let M be a compact manifold, (f, g) a Morse-Smale pair on M , ρ : Γ := π1(M) →
GL(V ) a finite-dimensional, complex representation and h a Γ-equivariant Hermitian form on M̃×V ↓ M̃ .

Further, let B ⊆ V be a fixed basis for V . Then, there exists a Γ-CW-complex X̃f ⊆ M̃ , along with a

choice of representatives Ef of cells for X̃f , one for each Γ-orbit, such that the following results hold:

1. If f is of type I with, one has X̃f = M̃ .

2. If f is of type II with ∂−M = ∅, the inclusion X̃f ↪→ M̃ is a Γ-homotopy equivalence.

3. The Hilbert N (Γ)-cochain complexes C∗(2)(M̃,∇g̃ f̃ , ρ, h̃) and C∗(2)(X̃f , ρ)[Ef , B] are isomorphic.

4. The complex C∗(2)(M̃,∇g̃ f̃ , ρ, h̃) is det-L2-acyclic if and only if C∗(2)(X̃f , ρ)[Ef , B] is det-L2-acyclic.

In this case, one has

log

(
TMS

(2) (M,∇gf, ρ, h)

TCW(2) (Xf , ρ)[Ef , B]

)
=

n∑
k=0

(−1)k
∑
p∈Pk

log |det(MB
Bp[h])|. (5.4.45)
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This result emphasizes the fact that the anomaly of (based) cellular torsion and the Morse-Smale

torsion is trivial if one can find an Hermitian form h and a fixed basis B ⊆ V that are appropriately

compatible with each other:

Lemma 5.4.13. Let V be a finite-dimesional real vector space of dimension m and let h ∈ GL(V, V ∗).

For a fixed (ordered) basis B ⊆ V and its dual basis B∗ ⊆ V ∗, let φB : Rm → V and φB∗ : Rm → V ∗ be

the isomorphisms identifying the ordered standard basis with the ordered basis B, respectively B∗. Set

hB := φ−1
B∗ ◦ h ◦ φB ∈ GL(m,R). (5.4.46)

Then, for any other basis C ⊆ V , it holds that

det(hC) = det(hB) · det(MB
C )2, (5.4.47)

Here, as everywhere else, MB
C := φ−1

B ◦ φC ∈ GL(m,R) denotes the base change matrix.

Proof. Immediately follows from the identities (MC∗

B∗ )t = (MB
C ) and hC = MC∗

B∗ ◦ hB ◦MB
C .

Definition 5.4.14 (Unimodular metric). Let M be a compact Riemannian manifold and let ρ : Γ :=

π1(M) → V be a representation on M . Further, let f be a Morse function on M and let M̃ be the

universal cover of M . A metric h on the associated flat bundle Eρ ↓ M is called unimodular, if for any

basis B ⊆ V one has

det(h̃B) ≡ c, (5.4.48)

for some constant c > 0. Here, h̃ is the lift of h on the trivial bundle M̃ × V ↓ M̃ .

Observe that by the previous lemma, unimodularity of a form h needs only be checked for some

arbitrary basis B ⊆ V . In the next subsection, we will show that any unimodular bundle admits a

unimodular metric. For now, let us formulate the most important consequence that can be derived from

the existence of a unimodular metric.

Theorem 5.4.15. Let M be a compact Riemannian manifold, and let ρ : Γ = π1(M)→ V be a det-L2-

acyclic unimodular representation on M . Further, let (f, g) be a Morse-Smale pair on M and let h be a

unimodular metric on the associated flat bundle Eρ ↓M . Lastly, assume either that

(a) f is of type I, or

(b) Wh(Γ) = 0 and f is of type II with ∂−M = ∅.

Then, we get an equality of torsion elements

TMS
(2) (M,∇gf, ρ, h) = TTop(2) (M,ρ). (5.4.49)

Proof. (1): Choose as B an orthonormal basis on the inner product space (V, h̃p0
), where p0 ∈ Cr(f̃) is

arbitrarily picked. Since h is unimodular, it follows that

det(h̃Bp ) = det(h̃Bp0
) = 1
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for any other p ∈ Cr(f̃). Lemma 5.4.13 then further implies that

det(MB
Bp[h])

2 = det(h̃Bp )−1 det(h̃Bp[h]
p ) = 1.

Choose as in Theroem 5.4.10 and Corollary 5.4.12 the CW-complex Xf ⊆ M , its Γ-equivariant lift

X̃f ⊆ M̃ and the Z[Γ]-basis of cells Ef on C∗(X̃f ). It then follows that

log

(
TMS

(2) (M,∇gf, ρ, h)

TCW(2) (X, ρ)[Ef , B]

)
=

n∑
k=0

(−1)k
∑
p∈Pk

log |det(MB
Bp[h])| = 0.

Assuming either one of the conditions (a) or (b), it further follows that the Γ-homotopy equivalence

X̃f ↪→ M̃ is simple. Now since ρ : Γ→ GL(V ) is unimodular, we may apply Theorem 5.2.10, followed by

Theorem 5.3.12 to conclude that

TCW(2) (X, ρ)[Ef , B] = TTop(2) (M,ρ).

5.4.1 Unimodular metrics

The goal of this subsection is to show that any flat bundle Eρ ↓M over a compact manifold M , associated

to a unimodular representation ρ : π1(M)→ GL(V ), admits a unimodular metric, and to give equivalent

characterizations for such metrics in terms of differential forms. The latter part will prove to be very

valuable when comparing the L2-analytic with the L2-topological torsion of the pair (M,ρ), as will be

done in the last chapter.

Unless specifically stated otherwise, all appearing complex vector bundles/vector spaces are considered as

real bundles/vector spaces with regards to their natural underlying real scalar multiplication: Let M be

a compact manifold, ρ : Γ := π1(M)→ GL(V ) a finite-dimensional, complex representation of dimension

m and Eρ ↓ M the associated flat bundle over M associated to ρ (of real dimension 2m). Let E∗ρ ↓ M
be the dual bundle and let Λ2mE∗ρ ↓ M the real 2m-th exterior power of E∗ρ . Observe that since Eρ is

the underlying real bundle of a complex bundle, it is orientable. Equivalently Λ2mE∗ρ ↓ M is the trivial

R-bundle over M .

Given a Riemannian metric h ∈ GL(Eρ, E
∗
ρ) and a fixed orientation, we obtain an oriented atlas of Eρ (i.e.

a cover of M by local trivializations of Eρ so that the transitions functions have positive determinant),

further allowing us to construct the volume form

σh ∈ Γ(M,Λ2mE∗ρ) (5.4.50)

induced by h. It is the section uniquely determined by the equality

(Φ−1
U ◦ σh)(x) = det

(
h
φxU (B)
x

)
b1 ∧ · · · ∧ b2m (5.4.51)

for each x ∈ M . Here, B = {b1, . . . , b2m} ⊆ V is a basis of V with B∗ = {b1, . . . , b2m} ⊆ V ∗ its dual

basis,

U × V (Eρ)|U

U

φU

pr1 φyU := φU (y, . ) : V → (Eρ)y (5.4.52)

133



is a flat trivialization of Eρ over U , which naturally induces a flat trivialization on Λ2mE∗ρ over U

U × Λ2mV ∗ (Λ2mE∗ρ)|U

U

ΦU

pr1

To see that σh is well-defined, one has to show that a different choice of basis C ⊆ V , as well as a different

choice of flat trivialization over a point x yields the same element σh(x). This follows from Lemma 5.4.13,

together with the fact that, due to orientability of Eρ, the determinant of a (locally constant) transition

function of two flat trivializations, which have been chosen to lie in the same orientation class, is positive.

Let ∇ be the flat canonical connection on Eρ. Observe that the ∇ canonically induces a flat dual

connection ∇∗ on the dual bundle E∗ρ ↓ M , which in turn induces a flat connection Λ2m∇∗ on the real

line bundle Λ2mE∗ρ , the 2m-th exterior power of E∗ρ .

The connection ∇, along with its dual connection ∇∗, together also induce a canonical connection ∇Hom

on the homomorphism bundle Hom(Eρ, E
∗
ρ) ↓ M . For a Hermitian form h on Eρ ↓ M , this allows us

to define a 1-Form ω(ρ, h), taking values in the endomorphism bundle End(Eρ), as well as a C-valued

1-form θ(h) = θ(ρ, h) via

ω(ρ, h) := h−1∇Homh ∈ Ω1(M,End(Eρ)), (5.4.53)

θ(ρ, h) := tr (ω(ρ, h)) ∈ Ω1(M). (5.4.54)

As highlighted in the next lemma, θ(h) measures precisely the flatness of the volume form σh.

Lemma 5.4.16. Let Eρ ↓M be the flat bundle over a compact manifold associated to a finite-dimensional,

complex representation ρ : Γ := π1(M) → GL(V ). Let h be a Hermitian form on Eρ ↓ M and let

h̃ : C∞(M̃,GL(V, V ∗)) be its lift to M̃ . Then, the following assertions are equivalent

1. The volume form σh is flat, i.e. one has Λm∇∗σh = 0

2. θ(ρ, h) = 0,

3. h is unimodular.

Proof. (1) ⇔ (3) : Observe that the condition Λm∇∗σh = 0 can be checked locally. Since the flat

connection ∇ on Eρ pulls back to the trivial connection on M̃ × V ↓ M̃ , the condition Λm∇∗σh = 0 is

equivalent to the equality Dσh̃ ≡ 0, where σh̃ ∈ C
∞(M̃,Λ2mV ∗), denotes the volume form of the lifted

metric h̃. Fixing a real basis B = {b1, . . . , b2m} with B∗ = {b1, . . . , b2m} the dual basis, one has by

definition

σh̃(x) = det(h̃B(x)) · b1 ∧ · · · ∧ b2m

for each x ∈ M̃ , from which the equivalence Dσh̃ ≡ 0⇔ det(h̃B(x)) ≡ c readily follows.

(1) ⇔ (2) : The vanishing of the two forms is a local condition. Therefore, similar as in the previous

paragraph, we will fix a flat (local) trivialization φU : U ×V → Eρ|U and identify σh, respectively θ(h, ρ)

with their corresponding pullbacks under φU , i.e. elements in C∞(U,Λ2mV ∗), respectively Ω1(U). This

way, if U ∼= Rn is additionally a coordinate neighborhood of M (so that Ω1(U) can further be identified

with C∞(U,Rn)), one verifies via direct computation that for x = (x1, . . . , xn) ∈ U and B ⊆ V a fixed
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basis with B∗ = {b1, . . . , b2m} its dual basis, one has

σh(x) = det(hB(x)) · b1 ∧ · · · ∧ b2m ∈ C∞(U,Λ2mV ∗), (5.4.55)

θ(h, ρ)(x) =

n∑
i=1

tr(hB(x)−1 ∂

∂xi
hB(x)) · dxi ∈ Ω1(U) ∼= C∞(U,Rn). (5.4.56)

The result, i.e. the equivalence Dσh ≡ 0⇔ θ(h, ρ) ≡ 0 now follows from Jacobi’s formula

∂

∂xi
det(A(x)) = det(A(x)) · tr(A(x)−1 ∂

∂xi
A(x)) (5.4.57)

[61, pp. 149-150], which holds true for any smooth function A ∈ C∞(Rn,GL(m,R)).

Lemma 5.4.17. Any flat bundle Eρ ↓ M over a connected manifold M induced by a unimodular rep-

resentation ρ : Γ → GL(V ) admits a unimodular metric h. In fact, for any basepoint x0 ∈ M and any

choice of Hermitian metric h ∈ GL(Eρ, E∗ρ), there exists a smooth function fx0
∈ C∞(M,R>0) with the

property that

(a) fx0
(x0) = 1,

(b) for y ∈M with h unimodular in a connected neighborhood U 3 y of y, one has f |U ≡ fx0
(y),

(c) f · h is unimodular.

Proof. Consider the volume form σh ∈ Γ(Λ2mE∗ρ) induced by h. For any point y ∈M , choose a smooth

curve γy : [0, 1]→ M with γy(0) = x0 and γy(1) = 1. Let Pγy : Λ2mE∗ρ(x0)→ Λ2mE∗ρ(y) be the parallel

transport along γy with respect to the flat connection Λ2m∇∗. Since σh is nowhere-vanishing and Pγy

preserves orientations, it follows that there exists some constant c(y) > 0, such that

Pγy (σh(x0)) = c(y) · σh(y). (5.4.58)

We claim that the choice of c(y) does only depend on y, and not on the explicit path γy. Assuming

the claim, multiplying the function fx0
: M → R>0 with fx0

(y) := c(y) to h, the induced volume form

σf ·h = f ·σh then clearly is flat, which is why f ·h is unimodular by the previous lemma, so that (a)− (c)

are satisfied.

To prove the claim, assume that γ′y : [0, 1] → M is another path with initial point x0 and end point y.

Let (γ′y)−1 · γy be the concatenation of the two paths. It is a loop based at x0, and therefore determines

an element β ∈ π1(M,x0). The corresponding parallel transports Pγ′y : Λ2mE∗ρ(x0) → Λ2mE∗ρ(y) and

P(γ′y)−1·γy : Λ2mE∗ρ(x0)→ Λ2mE∗ρ(x0) then fit into a diagram of isomorphisms

Λ2mE∗ρ(y)

Λ2mE∗ρ(x0) Λ2mE∗ρ(x0)

Pγy

P(γ′y)−1·γy
Pγ′y

Moreover,

P(γ′y)−1·γy (ωh(x0)) = |det(ρ(β))|2 · ωh(x0)
ρ unimodular

= ωh(x0).

It follows that we have an equality of parallel transports Pγ′y = Pγy , readily implying the claim.

135



For the last chapter, we will also need the existence of the following, more refined version of con-

structing a unimodular metric out of a given, partially defined metric.

Corollary 5.4.18. Let E ↓ M be a flat, unimodular bundle over a connected manifold M and U =⊔
i∈I Ui ⊆M a subset with each Ui open and connected. Let x0 ∈ Int(M \ U) and xi ∈ Ui for each i ∈ I

be chosen basepoints with curves ci ⊆ M connecting x0 to xi. Further, let h̃0 be a Hermitian metric on

Ex0 and h̃i a Hermitian metric on Exi satisfying

det(h̃i · P ∗ci(h̃0)−1) = 1, (5.4.59)

where Pci : GL(Ex0
, E∗x0

)→ GL(Exi , E
∗
xi) denotes the parallel transport along the curve ci. Then, for any

unimodular metric
⊔
hi on E|U extending

⊔
h̃i, there exists a global unimodular metric h on E further

extending
⊔
hi t h̃0.

Proof. Choose some extension h′ of
⊔
hi t h̃0 on M . With fx0

: M → R>0 the smooth function defined

as in the previous lemma, the form h := fx0
· h′ is the desired unimodular extension of

⊔
hi t h̃0.

5.5 Applications to the representation bundle Eρ ↓ Hn

Let Hn be hyperbolic n-space for n odd, let G := Isom+(Hn) and let Eρ ↓ Hn be the flat, canonical,

Hermitian bundle associated to an irreducible, complex, m-dimensional representation ρ : GC → GL(V ).

For a fixed non-uniform lattice Γ ⊂ G, R ≥ 0 and w > 0, let MR, CR and TR be the complete, Γ-invariant

submanifolds associated to it, as constructed in Section 2.3. In the same section, we have constructed a

G-equivariant metric hρ on Eρ ↓ Hn.

Lemma 5.5.1. The metric hρ is unimodular.

Proof. For a point x ∈ Hn and a fixed ordered basis B ⊆ V , the matrix hBρ (x) ∈ GLm(C) ∼= GL2m(R) is

defined as

hBρ (x) = φ−1
B∗ ◦ hρ(x) ◦ φB ∈ GLm(C) ∼= GL2m(R), (5.5.1)

where φB : Cn → V is the isomorphism identifying the ordered standard basis of Cm with the ordered

basis B. In order to show that hρ is unimodular, it suffices to show by definition that for any two points

x, y ∈ Hn, one has

det(hBρ (x)) = det(hBρ (y)). (5.5.2)

To this effect, since G acts transitively on Hn, there exists γ ∈ G with y = γ.x. Since hρ is G-equivariant,

it follows that

hρ(x) = ρ̇(γ) ◦ hρ(y) ◦ ρ(γ), (5.5.3)

where ρ̇ : GC → GL(V ∗) is the representation contragredient to ρ. As ρ is unimodular, one has

|det(ρ(γ))| = |det(ρ̇(γ))| = 1. (5.5.4)

The desired result 5.5.2 now can readily be derived from 5.5.1, 5.5.3 and 5.5.4.
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Theorem 5.5.2. The unbased topological L2-torsion of the pair (Γ\Hn, ρ) can be defined. The same is

true for (Γ\MR, ρ), for any fixed (arbitrary) R > 0.

Further, let (f, g) be a Morse-Smale pair on the compact quotient Γ\MR which is either of type I or of

type II with ∂−MR = ∅. Let (f̃ , g̃) be the lift of (f, g) to MR. Then, the associated L2-Morse-Smale

cochain complex C∗(2)(MR,∇g̃ f̃ , ρ, hρ) is det-L2-acyclic. Finally, we have an equality of L2-torsions

TMS
(2) (Γ\MR,∇gf, ρ, hρ) = TTop(2) (Γ\MR, ρ) = TTop(2) (Γ\Hn, ρ). (5.5.5)

Proof. LetX be some CW -structure on Γ\MR and X̃ its lift ontoMR. Corollary 4.2.18 and Theorem 6.3.5

together show that the the associated cellular L2-cochain complex C∗(2)(X̃, ρ) is det-L2-acyclic. Moreover,

since Γ is the fundamental group of the complete, non-positively curved, locally symmetric space Γ\Hn,

one has Wh(Γ) = 0 by [36, Proposition 0.10]. Now observe that the inclusion Γ\MR ↪→ Γ\Hn is a

homotopy equivalence, which is why χ(Γ\Hn) = χ(Γ\MR) = 0, since Γ\MR is odd-dimensional with

toroidal boundary. Therefore, the pair (Γ\Hn, ρ) satisfies all assumptions of Definition 5.3.14, which is

why the unbased topological L2-torsion TTop(2) (Γ\Hn, ρ) can be defined, so that

TTop(2) (Γ\Hn, ρ) = TTop(2) (Γ\MR, ρ). (5.5.6)

Finally, recall that have shown in the previous lemma that hρ is unimodular. Together with Wh(Γ) = 0

and χ(Γ\MR) = 0, it follows by Theorem 5.4.15 that for a Morse-Smale pair (f, g) on Γ\MR, such that

f either of type I or of type II with ∂−M = ∅, one has

TMS
(2) (Γ\MR,∇gf, ρ, hρ) = TTop(2) (Γ\MR, ρ), (5.5.7)

as desired.
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Chapter 6

The L2-Cheeger-Müller theorem on

manifolds with boundary

The goal of this chapter is to prove that for a compact manifold-with-boundary M and a unimodular

representation ρ : π1(M)→ GL(V ), the combinatorial L2-invariants that we have defined in the previous

chapter essentially agree with their analytic counterparts, as introduced in Chapter 4. For the associated

Betti-Numbers and Novikov-Shubin invariants, the relevant result is Theorem 6.3.5, which states an

honest equality of the combinatorial and analytic versions without any further conditions, holding even

if ρ is not unimodular. For the associated L2-torsions, however, unimodularity of the representation ρ

becomes essential. Only then, we can find a unimodular metric h on the associated flat bundle Eρ ↓ M
with associated flat volume form σh. Given some Riemannian metric g on M , we will show that flatness of

this form implies that the anomaly log(TAn(2) (M,ρ, g, h))− log(TTop(2) (M,ρ)) depends only on the restriction

of g near ∂M and the dimension of the representation ρ. This will also provide us with the final ingredient

in the proof of Corollary C and Theorem E, which are carried out in the last section of this chapter.

6.1 Preliminaries

By a system D = (E ↓M, g, h,X), we will always mean a set of data consisting of a flat, complex vector

bundle E ↓M over a smooth manifold M , along with a Riemannian metric g on M , a Hermitian form h

on E and X either a vector field or a complex-valued function over M .

Given a uniform lattice Γ < Isom(M, g), such a system D is called Γ-invariant if in addition, the

isometric action of Γ on (M, g) leaves X invariant and extends to an action of bundle isometries on the

metric bundle (E, h) ↓ (M, g). Observe that Γ-invariant systems on M are precisely the lifts of systems

defined over the compact quotient M/Γ.

Throughout this chapter, we will frequently form products of systems: Given for i = 1, 2 two systems

(Ei ↓ Mi, gi, hi, Xi) with Xi either both vector fields or functions, one obtains a new system (E1⊗̂E2 ↓
M1 ×M2, g1 ⊕ g2, h1⊗̂h2, X1 +X2), where M1 ×M2 is the product manifold equipped with the (direct)

sum metric g1 ⊕ g2, X1 +X2 is the sum of the two vector fields or functions, and
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• E1⊗̂E2 ↓M1 ×M2 is defined to be the flat tensor product bundle π∗1E1 ⊗ π∗2E2 ↓M1 ×M2, where

πi : M1 ×M2 →Mi denotes the projection onto the i-th factor. Here, the flat structure we choose

is the canonical one induced by its flat factors π∗iEi. Moreover,

• h1⊗̂h2 := π∗1h1 ⊗ π∗2h2 is the tensor product of the respective pullback Hermitian forms.

The main focus of our attention will be Morse-Smale systems, which are by definition systems D =

(E ↓M, g, h,∇g′f) with (f, g′) a Morse-Smale pair.

Definition 6.1.1. A Morse-Smale system of the form D = (E ↓ M, g, h,∇g′f) will be called a type II

Morse-Smale system if (f, g′) is a type II Morse-Smale pair with absolute boundary conditions. Recall

from Definitions 5.4.1 and 5.4.3 that this means that the following conditions are satisfied:

(II1) For any 0 ≤ k ≤ n and any p ∈ Crk(f), there exists (pairwise disjoint) coordinate neighborhoods

φp : Up→Rn of p disjoint from ∂M , with φp(p) = 0 and such that we have (f ◦ φ−1
p )(x1, . . . , xn) =

f(p)− 1
2 (x2

1 + . . . x2
k) + 1

2 (x2
k+1 + · · ·+ x2

n).

(II2) The pullback metric φ∗p(gRn) of the standard Euclidean metric on Rn equals g′|Up .

(II3) There exists a collar neighborhood U of ∂M , disjoint from
⋃
p∈Cr(f) Up, along with a diffeomorphism

ψg′ : ∂M×[0, ε)→ U , coming from the normal exponential map induced by g′, so that (f ◦φ)(p, t) =

b− t with b = max(f) ∈ Z (In particular ∂M ⊆ f−1(b) and Cr(f) ∩ ∂M = ∅).

A type II Morse-Smale system is of product form, if

(P1) g is a product near ∂M : There exists a collar neighborhood V of ∂M that is the diffeomorphic image

of the normal exponential map ψg : ∂M × [0, ε)→ V induced by g, such that ψ∗g(g|V ) = g|∂M ⊕dt2,

where dt2 denotes the standard Euclidean metric on R.

(P2) The isometry ψg further extends to a flat bundle isometry

Ψ : (E|∂M ⊗̂EC ↓ ∂M × [0, 1), h|∂M ⊗̂1C)→ (E|V ↓ V, hV ).

Here, EC ↓ [0, 1) is the trivial 1-dimensional vector bundle over [0, 1) (with trivial connection),

E|∂M ⊗̂EC ↓ ∂M × [0, 1) denotes the flat, complex product bundle as introduced in the previous

paragraph and hC denotes the canonical constant Hermitian form on EC.

A type II Morse-Smale system of product form is called weakly admissible, if

(A1) M is compact.

(A2) One has g ≡ g′ near Cr(f) and outside from a neighborhood of ∂M .

(A3) For each p ∈ Cr(f), the isometric embedding φp : (Up, g
′|Up) → (Rn, g′Rn) extends to flat bundle

isometry Φp : (E|Up , h|Up)→ (Cm×Rn, hCm). Here, as everywhere else, hCm denotes the ordinary

(constant) inner product on Cm.
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Finally, a weakly admissible system D is called admissible if the following extra compatibility condition

is satisfied:

(A4) h|∂M is unimodular.

A Γ-invariant system D = (E ↓M, g, h,∇g′f) that is the lift of an admissible, respectively weakly admis-

sible system on the compact quotient M/Γ is called Γ-admissible, respectively weakly Γ-admissible.

Observe that a weakly admissible system is a Morse-Smale system on a compact manifold M with

special local conditions on the Riemannian metric g and Hermitian form h near ∂M and the critical

points of f , while for an admissible system, we additionally demand a global condition on h|∂M . In

particular, it follows from the discussion laid out the previous chapter that any flat bundle E ↓M over a

compact manifold fits into some weakly admissible system D = (E ↓M, g, h,∇g′f), which can be chosen

admissible if and only if the restriction bundle E|∂M ↓ ∂M is unimodular.

We now describe for a general Morse-Smale system D = (E ↓ M, g, h,∇g′f) with M compact the

construction of the relative L2-torsion R(D) ∈ R, provided that E ↓M is determinant class. Let

C∗(2)(M̃,∇g̃′ f̃ , Ẽ, h̃) := C∗(2)(M̃,∇g̃′ f̃ , ρ, h̃) (6.1.1)

be the L2-Morse-Smale complex defined as in Lemma 5.4.6 (because the comparsion with the analytic

torsion is key for this chapter, we suppress the representation ρ from the notation and replace it by the

flat bundle Ẽ associated to ρ). Assuming that f has range [a, b], we define

∂−M : =

f−1(a) ∩ ∂M f is of type II,

∅ else.
(6.1.2)

Note that ∂−M = ∅ whenever D is admissible. We now let W ∗l−∗(M̃, ∂̃−M, Ẽ, g̃, h̃) be the (relative)

Sobolev cochain complex defined in as Proposition 4.2.2 for l > 3n/2 + 1 and set

Int∗ :W∗l−∗(M̃, ∂̃−M, g̃, Ẽ, h̃)→ C∗(2)(M̃,∇g̃′ f̃ , Ẽ, h̃), (6.1.3)

Intk(σ) :=
∑

p∈Crk(f̃)

(∫
W−(p)

σ

)
⊗ [p] σ ∈ Wk

l−k (6.1.4)

to be the C[Γ]-equivariant map given by integration of Sobolev forms over unstable manifolds. Here, the

integral
∫
W−(p)

σ ∈ Ep makes sense, since

• ω ∈ C1 ∩ L2 by the Sobolev inequality, which is why the left-hand side is finite. Moreover,

• we can, and do, identify σ|W−(p) with an Ep-valued C1-form over W−(p) under a flat, canonical

bundle trivialization E|W−(p)
∼= Ep ×W−(p). This trivialization is induced by parallel transports

along curves starting at p and entirely contained within W−(p) (since W−(p) is contractible, the

result does not depend on the explicit choice of curves).

By a result of Laudenbach [12, Appendix, Proposition 6], Int∗ is a cochain map. Let π∗ : ker(δ∗MS) →
H∗(2)(M̃,∇g̃′ f̃ , Ẽ, h̃) be the projection of the kernel of the L2-Morse-Smale boundary operator onto the
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corresponding L2-Morse-Smale homology. By a theorem of Dodziuk [29], extended by Schick [85] to

manifolds with boundary and by Shubin [90] to non-unitary bundles, the map

Θ∗ : H∗(2)(M̃, ∂̃−M, g̃, Ẽ, h̃)→ H∗(2)(M̃,∇g̃′ f̃ , Ẽ, h̃), (6.1.5)

defined as the restriction of π∗◦Int∗ onto the closed subspace ofW∗l−∗(M̃, Ẽ, g̃, h̃) of (relative) L2-harmonic

forms is an isomorphism of finitely generated Hilbert N (Γ)-modules. Define the metric L2-torsion

TMet
(2) (E ↓M, g, h,∇g′f) ∈ R≥0 of the system (E ↓M, g, h,∇g′f) as

log TMet
(2) (E ↓M, g, h,∇g′f) :=

∞∑
k=0

(−1)k log detΓ(Θk) =
1

2

∞∑
k=0

(−1)k log detΓ((Θk)∗Θk). (6.1.6)

Note that since Θk is an isomorphism, log detΓ(Θk) is always well-defined. Assuming that E ↓ M is of

analytic determinant class, we define the Ray-Singer L2 Torsion TRS(2) (E ↓M, g, h,∇g′f) ∈ R≥0 as

log TRS(2) (E ↓M, g, h,∇g′f) := log

(
TAn(2) (E ↓M,∂−M, g, h)

TMet
(2) (E ↓M, g, h,∇g′f)

)
, (6.1.7)

where TAn(2) (E ↓ M,∂−M, g, h) ∈ R>0 is the analytic torsion that was introduced in 4.2.3. Of course,

if H∗(M̃, ∂̃−M, g̃, Ẽ, h̃) = 0, i.e. if E ↓ M is L2-acyclic, then TMet
(2) (E ↓ M, g, h,∇g′f) = 1, so that

TRS(2) (E ↓ M, g, h,∇g′f) = TAn(2) (E ↓ M,∂−M, g, h). Assuming that E ↓ M is also of combinatorial

determinant class, the L2-Morse-Smale Torsion TMS
(2) (E ↓ M,h,∇g′ , f) (see 5.4.9) is well-defined. This

allows us to define the relative L2-torsion R(D) ∈ R of the corresponding Morse-Smale system D =

(E ↓M, g, h,∇g′f) as

R(D) : = log

(
TRS(2) (E ↓M, g, h,∇g′f)

TMS
(2) (M,∇g′f,E, h)

)
. (6.1.8)

We will show in Theorem 6.3.5 that the condition E ↓M being of analytic determinant class is equivalent

to E ↓ M being of combinatorial determinant class. Therefore, we are justified to say that E ↓ M is of

determinant class whenever either determinant class condition (and therefore both) is satisfied.

Remark 6.1.2. It should be mentioned that the relative torsion R(D) ∈ R can be defined even if the

corresponding bundle E ↓ M is not of determinant class. In that case, the individual terms TRS(2) (E ↓
M, g, h,∇g′f) and TMS

(2) (E ↓ M, g, h,∇g′f) are not real numbers, but non-vanishing vectors in the same

orientation class of a particular 1-dimensional real vector space. Therefore, their quotient yields a positive

real number, which is why R(D), the logarithm of the quotient as above, is still well-defined. It can be

shown that the main Theorem 6.1.5 still holds in this case. We refer to [20], [102] and [16] for a detailed

study of L2-torsion without the determinant class conditions.

Our goal is to derive an explicit formula the relative torsion R(D) of a given Morse-Smale System

D = (E ↓ M, g, h,∇g′f) for which h is a unimodular metric. We will do so by first finding a formula in

case that h is not necessarily unimodular, but D is admissible.

In order to formulate these results, we need to introduce the notion of a local quantity: Let M be a smooth

manifold of dimension n. The orientation bundle OM ↓ M is the real line bundle, whose fiber OMx at

a given x ∈ M is the real vector space generated by the set of two orientations on the tangent space

TxM , subject to the (sole) relation [−B] + [B] = 0 ∈ OxM for any basis B ⊆ TxM . It has the natural

structure of a flat vector bundle over M and is isomorphic to the trivial line bundle if and only if M is

orientable. In particular, we obtain a twisted de Rham complex Ω∗(M,OM ). The top-dimensional forms
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in Ωn(M,OM ) are called densities over M . Perhaps the essential feature of the orientation bundle is

that densities can be integrated over M . Namely, there exists a well-defined R-linear integration map∫
M

: Ωn(M,OM )→ R (6.1.9)

that coincides with the usual integration whenever M is orientable (and thus OM ∼= R×M), cf. [15, pp.

85-88]. Moreover, given any smooth embedding f : M → N between two manifolds, the pullback

bundle f∗ON can canonically be identified with OM . Therefore, any such map induces a pullback

f∗ : Ω∗(N,ON )→ Ω∗(M,OM ) that is in fact even a chain map.

Given two systems Di = (Ei ↓Mi, gi, hi, Xi), an isometry φ : (M1, g1)→ (M2, g2) between the underlying

Riemannian manifolds that satisfies φ∗X2 = X1 and extends to a flat bundle isometry Φ : (E1, h1) →
(E2, h2) is called an isomorphism between the systems.

Definition 6.1.3 (Local Quantity). An assignment of a form α = α(D) ∈ Y , where either Y =

Ωn(M,OM ), or Y = Ωn−1(∂M,O∂M ) for any system D = (E ↓ M, g, h,X) is called a local quan-

tity of D if it satisfies the following compatibility conditions:

1. For any open subset U ⊆M , it holds that α(D|U ) = α(D)|U .

2. If φ : M1 → M2 is an isomorphism between two systems Di = (Ei ↓ Mi, gi, hi, Xi) (for i = 1, 2),

then φ∗α(D2) = α(D1).

For any system D = (E ↓M, g, h,∇g′f) with (f, g′) a Morse-Smale pair, we will now construct a local

quantity of the derived system D = (E|M\Cr(f) ↓M \Cr(f), g, h,∇g′f) that constitutes an integral part

in the analysis of the anomaly between L2-Ray Singer and Morse-Smale torsion.

First off, as carefully explained and constructed by Bismut and Zhang in [12, Section 3], the Levi-Civita

connection of the Riemannian metric g gives rise to the Mathai-Quillen Current

Ψ(M, g) ∈ Ωn−1(TM \M,OTM ). (6.1.10)

Here, we have identified M ⊆ TM with its zero section inside TM . For the Morse-Smale pair (f, g′),

the corresponding gradient ∇g′f thus determines a smooth embedding ∇g′f : M \ Cr(f) → TM \M .

As explained in the previous paragraph, it follows that the pullback ∇g′f∗Ψ(M, g) yields an element of

Ωn−1(M \Cr(f),OM ). Wedging with the 1-form θ(h) ∈ Ω1(M) as defined in 5.4.53, we obtain a density

over M \ Cr(f)

θ(h) ∧∇g′f∗Ψ(M, g) ∈ Ωn(M \ Cr(f),OM ). (6.1.11)

This allows us to, at least formally, define the integral∫
M

θ(h) ∧∇g′f∗Ψ(M, g) :=

∫
M\Cr(f)

θ(h) ∧∇g′f∗Ψ(M, g). (6.1.12)

Note that since M\Cr(f) is not compact (unless Cr(f) = ∅), the integral need a priori not converge. That

this indeed always case has been shown in [12], as an immediate consequence of their main result. More-

over, one can verify either from its explicit construction as done in [12] or immediately from [20, Section

4], that θ(h) ∧ ∇g′f∗Ψ(M, g) is a local quantity of the system D = (E|M\Cr(f) ↓ M \ Cr(f), g, h,∇g′f),

as claimed. The theorem that we wish to generalize is the following result by Zhang:
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Theorem 6.1.4. [102, Zhang, ’04] Let D = (E ↓ M, g, h,∇g′f) be a system with (f, g′) a Morse-Smale

pair and M closed. Then

R(D) = −1

2

∫
M

θ(h) ∧∇g′f∗Ψ(M, g). (6.1.13)

With aid of the above theorem, we will derive a similar result in case that M is odd-dimensional with

non-empty boundary:

Theorem 6.1.5. Let D = (E ↓ M, g, h,∇g′f) be a type II Morse-Smale system of product form, where

M is an odd-dimensional manifold and h|∂M is unimodular. Further, assume that both E ↓ M and

E|∂M ↓ ∂M are of determinant class. Then

R(D) = − log 2

4
χ(∂M) dim(E)− 1

2

∫
M

θ(h) ∧∇g′f∗Ψ(TM, g). (6.1.14)

Remark 6.1.6. Similarly as in the unitary case (cf. [21, Theorem 4.1]), there is also a version of Theorem

6.1.5 for relative/mixed, instead of absolute boundary conditions as we assume here throughout. The

proof presented here carries over to this case with only minor modifications. Although not relevant for

this thesis, this generalization will provide to be useful when one wants to extend the glueing formula

[21, Theorem 4.3] to non-unitary bundles, which could in turn be used for future computational purposes.

Example 6.1.7. Set I = [a, b], and let EC := C×I be the trivial 1-dimensional complex vector bundle

over I. As metrics, we choose g0 to be the standard Euclidean metric and h0 the canonical constant

Hermitian form, i.e 〈z, z′〉h0(x) := zz′ for any x ∈ I and any pair z, z′ ∈ C. Further, we choose as

Morse-function a smooth map f0 : [a, b]→ R satisfying

• f0(x) := 1
2 (x− (b+ a)/2)2 away from a neighborhood of {a, b},

• f0(a+ tε) = f0(b− tε) = b− tε for all t ∈ [0, 1] and some small ε > 0, and so that

• (b+ a)/2 is the only critical point of f0.

One now easily verifies that DI := (EC ↓ I, g0, h0,∇g′0f0) is an admissible system and that EC ↓ I is of

determinant class. In fact, we can directly compute the corresponding analytic and combinatorial torsion

elements. This computation will also be essential for the proof of Theorem 6.1.5. Firstly, since f0 has

by construction only one critical point, the corresponding Morse-Smale complex has only one non-trivial

chain module, immediately implying that

log TMS
(2) (I, g0, h0,F , f0) = 0. (6.1.15)

Similarly, it follows that the de Rham integration map

Int∗ : Ω∗(I,F)→ C∗MS(I, g0, h0,F , f0) = C⊗
[
b+ a

2

]
is only non-trivial on Ω0(I,F) ∼= C∞(I,C), on which it is defined by

Int0(f) = f

(
b+ a

2

)
⊗
[
b+ a

2

]
.

Therefore, the isomorphism

Θ0 : H0(I,F)→ C⊗
[
b+ a

2

]
,
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obtained by simply restricting Int0 to the space of harmonic, i.e. constant, functions, maps the function

f ≡ c to c⊗ [ b+a2 ]. Since the inner product on C⊗[ b+a2 ] in the canonical one determined by h0 and the

inner product H0(I,F) is induced by integration over the interval I = [a, b], it follows that the adjoint

(Θ0)∗ : C⊗
[
b+ a

2

]
→ H0(I,F)

sends c · [ b+a2 ] to the constant function f ≡ c(b − a)−1. Therefore, the composition (Θ0)∗Θ0 is simply

scalar multiplication by (b− a)−1, from which we deduce that

log TMet
(2) (DI) =

1

2
log
(
det((Θ0)∗Θ0)

)
= −1

2
log(b− a). (6.1.16)

In order to compute the analytic torsion, observe first that, under the isometric identification Ω1(I,F) ∼=
C∞(I,C) with f(x)dx 7→ f(x), the Laplacian ∆1 defined over Ω1(I,F) corresponds to the closure of the

elliptic operator − ∂2

∂x2 with initial domain {g ∈ C∞ : g′ ≡ 0 on {a, b}}. It is well-known, see for example

[94, Section 4.2] for each n ∈ N0 that

spec(∆1) = spec(− ∂2

∂x2
) = {n

2π2

l2
: n ∈ N0},

with l := b− a (and eigenspace of n2π2/l2 the C-span of cos(nπ/l(x− a)). Therefore, the Zeta function

ζ∆1
(s) of ∆1 satisfies

ζ∆1
(s) =

∞∑
n=1

(
l

nπ

)2s

=

(
l

π

)2s ∞∑
n=1

(
1

n

)2s

=

(
l

π

)2s

· ζ(2s),

where ζ denotes the ordinary Riemann Zeta-function. Applying the well-known equalities ζ(0) = − 1
2 and

ζ ′(0) = − 1
2 log(2π), we can thus compute

log TAn(2) (DI) =
1

2
ζ ′∆1

(0) = −1

2
(log(2) + log(b− a)) . (6.1.17)

From 6.1.15–6.1.17, we get

R(DI) = − log 2

2
= − log 2

4
χ({a, b})− 1

2

∫ b

a

=0︷ ︸︸ ︷
θ(h0)∧(∇g′0f0)∗Ψ(TI, g0). (6.1.18)

The main part of this chapter is devoted to the proof of 6.1.5. We will adapt the techniques and

strategy developed by Burghelea, Friedlander and Kappeler in [21] to our situation of non-unitary bundles,

together with employing several known anomaly results that have been shown since. We remark that

Theorem 6.1.5 has also recently been verfied in an (as of now) unpublished paper by Guangxiang Su,

employing techniques and methods different from the ones that we are using. Theorem 6.1.5, together

with the main results established by Brüning and Ma in [18], Zhang and Ma in [60], and Zhang in [102],

are then used to prove the next key result of this thesis:

Theorem 6.1.8. Let (M, g) be a compact, connected, odd-dimensional Riemannian manifold with Wh(π1(M)) =

0. Then there exists a density B(g) ∈ Ωn−1(∂M,O∂M ) with B(g) ≡ 0 when g is product-like near ∂M ,

such that the following holds:

Let ρ : π1(M)→ GL(V ) be a complex, finite-dimensional representation, such that

(a) ρ is unimodular and det-L2-acyclic,
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(b) the restriction Eρ|∂M ↓ ∂M of the flat bundle Eρ ↓M associated to ρ is of determinant class.

Then, for any choice of unimodular metric h on Eρ, one has

log

(
TAn(2) (Eρ ↓M, g, h)

TTop(2) (M,ρ)

)
=

1

2
dim(ρ)

∫
∂M

B(g). (6.1.19)

In particular, for i = 1, 2 and any two representations ρi : π1(M) → GL(Vi) satisfying the above asser-

tions, it follows that

dim(ρ2) log

(
TAn(2) (Eρ1 ↓M, g, h1)

TTop(2) (M,ρ1)

)
= dim(ρ1) log

(
TAn(2) (Eρ2 ↓M, g, h2)

TTop(2) (M,ρ2)

)
, (6.1.20)

for any choice of unimodular metric hi on Eρi ↓M .

Remark 6.1.9. Observe that the statement is vacuous in the case that M possesses no such represen-

tations. In particular, this is true whenever χ(M) 6= 0, since then, no representation can be L2-acyclic

(cf. [54, Theorem 1.35]).

Proof. Let ρ be a representation satisfying the assumptions from the theorem. By the previous remark,

we must have

0 = χ(M) =
1

2
χ(∂M), (6.1.21)

where the last equality follows since M is odd-dimensional and compact.

Choose a Morse function f on M of type II, along a Riemannian metric g′ on M that is a product near

∂M and so that (f, g′) is a Morse-Smale pair. By Lemma 5.4.18, we may also choose a unimodular

metric h′ with h′|∂M ≡ h|∂M and so that D = (Eρ ↓ M, g′, h′, f) becomes an admissible system (in

particular, h′ is of product form near ∂M). First, since h′ is unimodular, Eρ ↓ M is det-L2-acyclic and

Wh(π1(M)) = 0, we obtain from Theorem 5.4.15 that

TMS
(2) (Eρ ↓M,h′,∇g′f) = TTop(2) (M,ρ). (6.1.22)

Furthermore, we can apply 6.1.21 and Theorem 6.1.5 to this situation and obtain

log

(
TAn(2) (Eρ ↓M, g′, h′, f)

TMS
(2) (Eρ ↓M,h′,∇g′f)

)
= R(D) = 0. (6.1.23)

.

Next, choose a type I Morse function f ′ : M → R on M . As Eρ ↓ M is by assumption L2-acyclic,

we have TAn(2) (Eρ ↓ M, g, h) = TRS(2) (Eρ ↓ M, g, h, f ′) and analogously TAn(2) (Eρ ↓ M, g′, h′) = TRS(2) (Eρ ↓
M, g′, h′, f ′). Moreover, by the main result of [60], we have the equality of Ray-Singer anomalies

log

(
TAn(2) (Eρ ↓M, g, h)

TAn(2) (Eρ ↓M, g′, h′)

)
= log

(
TRS(2) (Eρ ↓M, g, h, f ′)

TRS(2) (Eρ ↓M, g′, h′, f ′)

)
= log

(
TRS(Eρ ↓M, g, h, f ′)

TRS(Eρ ↓M, g′, h′, f ′)

)
. (6.1.24)

Here, TRS(Eρ ↓ M, g′, h′) is the (ordinary) Ray-Singer-metric as originally introduced in [12, Definition

2.2] and first extended to manifolds with boundary in [19]. Further, it is shown in [18, Theorem 3.4] that

there exists a density B(g) ∈ Ωn−1(∂M,O∂M ) with B(g) ≡ 0 whenever g is also product-like near ∂M ,

so that

log

(
TRS(Eρ ↓M, g, h, f ′)

TRS(Eρ ↓M, g′, h′, f ′)

)
=

1

2
dim(ρ)

∫
∂M

B(g). (6.1.25)
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The density B(g) is constructed as in [18, Page 1103]. It depends only on the local geometry of (∂M, g|∂M )

inside (M, g).

Using 6.1.22 – 6.1.25 , we finally obtain

log

(
TAn(2) (Eρ ↓M, g, h)

TTop(2) (M,ρ)

)
= log

(
TAn(2) (Eρ ↓M, g, h)

TAn(2) (Eρ ↓M, g′, h′)

)
+ log

(
TAn(2) (Eρ ↓M, g′, h′)

TMS
(2) (Eρ ↓M,h′,∇g′f)

)

= log

(
TRS(Eρ ↓M, g, h, f ′)

TRS(Eρ ↓M, g′, h′, f ′)

)
=

1

2
dim(ρ)

∫
∂M

B(g), (6.1.26)

as desired.

6.2 Product formulas, determinant class and subdivisions

As hinted towards in the introduction, given two Morse-Smale systems Di = (Ei ↓ Mi, gi, hi,∇g′ifi) for

i = 1, 2, an integral part of our methods will involve considering the product system D1×D2 = (E1⊗̂E2 ↓
M1 ×M2, g1 × g2, h1⊗̂h2,∇g′1×g′2(f1 + f2)) and derive meaningful information of D1 ×D2 in terms of D1

and D2, and vice versa. Throughout, we assume exclusively that M1 has non-empty boundary and M2

has empty boundary. In this case, a problem that we have to address is that a product of two type II

Morse-Smale systems need not be a type II Morse-Smale system anymore.

The problem is due to the fact that the Morse function f1 + f2 is not necessarily of shape (II3) as in

Definition 6.1.1 anymore (in particular, it is not necessarily constant on the boundary ∂(M1 ×M2) =

∂M1×M2). This can be remedied by deforming f1 +f2 in a sufficiently small neighborhood of ∂M1×M2

to be of the type II shape as described in Definition 6.1.1, which can be arranged in such a way that the

resulting Morse function, denoted henceforth by f1 + f2, equals f1 + f2 outside of a small neighborhood

of ∂M1×M2, has the same critical points as f1 +f2, the same gradient trajectories with respect to ∇g′1+g′2

and the same unstable cells. We denote the resulting modified product system by

D1 ×D2 := (E1⊗̂E2 ↓M1 ×M2, g1 × g2, h1⊗̂h2,∇g′1×g′2(f1 + f2)), (6.2.1)

and observe that D1 ×D2 is of product form, respectively weakly admissible whenever both D1 and D2

are of product form, respectively weakly admissible. Moreover, under the assumption that both M1 and

M2 are compact, it follows immediately from the construction of f1 + f2 that the Morse-Smale cochain

complexes corresponding to D1 ×D2 and D1 × D2 are the same (as Hilbert N (Γ)-cochain complexes).

This immediately implies that

log TMet
(2) (D1 ×D2) = log TMet

(2) (D1 ×D2). (6.2.2)

In case that E ↓M is of determinant class, we also get

log TMS
(2) (D1 ×D2) = log TMS

(2) (D1 ×D2), (6.2.3)

log TAn(2) (D1 ×D2) = log TAn(2) (D1 ×D2). (6.2.4)

Still, to obtain an admissible system from two admissible systems D1 and D2, we need to ensure that

h1⊗̂h2 is unimodular near ∂M1×M2, which can only be guaranteed if we assume additionally that h2 is

(globally) unimodular. For our purposes, this will provide no restriction at all, since we will always form

products, where E2 ↓ M2 is in fact a unitary bundle and h2 is an associated unitary (and flat) metric.

Summarizing, we have the following:
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Lemma 6.2.1. For, i = 1, 2, let Di = (Ei ↓ Mi, gi, hi,∇g′ifi) be two type II Morse-Smale systems with

∂M1 6= ∅ and ∂M2 = ∅. Then the modified product system system D1 ×D2 as in 6.2.1 is also a type II

Morse-Smale system. Moreover, if both D1 and D2 are additionally of product form/weakly admissible,

then also D1 ×D2 is of product form/weakly admissible. Lastly, if both D1 and D2 are admissible, so that

h2 is globally unimodular, then D1 ×D2 is also admissible.

The first product formula that we state is as follows:

Proposition 6.2.2 (Product Formula 1). For i = 1, 2, let Di = (Ei ↓ Mi, gi, hi,∇g′ifi) be two type II

Morse-Smale systems with M1 compact, ∂M1 6= ∅ and with M2 closed. Then the type II Morse-Smale

system D1 ×D2 is also of determinant class and we get

1. log TAn(2) (D1 ×D2) = χ(M1, E1) log TAn(2) (D2) + log TAn(2) (D1)χ(M2, E2),

2. log TMet
(2) (D1 ×D2) = χ(M1, E1) log TMet

(2) (D2) + log TMet
(2) (D1)χ(M2, E2),

3. log TMS
(2) (D1 ×D2) = χ(M1, E1) log TMS

(2) (D2) + log TMS
(2) (D1)χ(M2, E2),

4. R(D1 ×D2) = χ(M1, E1)R(D2) +R(D1)χ(M2, E2).

Proof. (1)− (3): If we replace D1 ×D2 by the genuine product system D1 ×D2, the equalities are well-

known. Namely, the proofs presented in [21, Proposition 1.21, Proposition 4.2] can be copied line by line,

after changing the definition of Λ−,q(M,E) to be the C∞-closure of d∗q
(
Ωq+1(M,∂M,E)

)
. Now apply

6.2.2-6.2.4. (4) is an immediate consequence of (1)− (3).

In addition, we will need to analyze the behavior under taking products of the local quantities in-

troduced in the previous section. Here, the assumption that the Hermitian forms are unimodular at the

boundary becomes essential.

For this, note first that we have a natural embedding Ω∗(M1)⊗Ω∗(M2) ↪→ Ω∗(M1×M2) (which is dense

under the natural C∞-topology). By passing to local trivializations over coordinate charts, one easily

sees that the 1-form θ(h1⊗̂h2) lies in Ω∗(M1)⊗ Ω∗(M2) and is of the form

θ(h1⊗̂h2) = θ(h1)⊗ dim(E2) + dim(E1)⊗ θ(h2). (6.2.5)

Furthermore, it has been shown in [20, pages 63-64] (see also [12, Chapter 4] or [13, Theorem 2.7] for

additional details) that

∇g′1×g′2(f1 + f2)∗Ψ(T (M1 ×M2), g1 × g2)) = (∇g′1f1)∗Ψ(TM1, g1)⊗ e(TM2, g2)

+ e(TM1, g1)⊗ (∇g′2f2)∗Ψ(TM2, g2) (6.2.6)

on M1×M2\Cr(f1 +f2) = M1×M2\Cr(f1)×C(f2). Here, for a Riemannian manifold (M, g), the Euler

form e(M, g) ∈ Ωdim(M)(M,OM ) is a density defined using Chern-Weil theory. It has the property that

e(M, g) ≡ 0 whenever M is odd-dimensional. Moreover, if M is closed, it is a representative of the Euler

class of the tangent bundle TM ↓M . By the Gauss-Chern-Bonnett theorem, it then follows that∫
M

e(M, g) = χ(M), (6.2.7)

147



if M is closed. We refer [18, Page 1103] for an explicit formula for e(M, g).

Combining 6.2.5 with 6.2.6, we get

θ(h1⊗̂h2) ∧∇g′1×g′2(f1 + f2)∗Ψ(T (M1 ×M2), g1 × g2) = θ(h1) ∧ (∇g′1f1)∗Ψ(TM1, g1)⊗ dim(E2)e(TM2, g2)

+ dim(E1)e(TM1, g1)⊗ θ(h2) ∧ (∇g′2f2)∗Ψ(TM2, g2) (6.2.8)

on M1 ×M2 \Cr(f1 × f2). Here, we have used that θ(hi)∧ e(TMi, gi) ∈ Ωdim(Mi)+1(Mi,OMi
) = {0} for

both i = 1, 2.

Lemma 6.2.3 (Product Formula 2). For i = 1, 2, let Di := (Ei ↓ Mi, gi, hi,∇g′ifi) be two type II

Morse-Smale systems of product form, so that both h1|∂M and h2 are unimodular. Then it holds that

θ(h1⊗̂h2) ∧∇g′1×g′2(f1 + f2)∗Φ(T (M1 ×M2), g1 × g2),

= θ(h1) ∧ (∇g′1f1)∗Ψ(TM1, g1)⊗ dim(E2) · e(TM2, g2) (6.2.9)

on all of M \ Cr(f1 + f2). In particular, if either M2 is odd-dimensional or h1 is also unimodular, then

θ(h1⊗̂h2) ∧∇g′1×g′2(f1 + f2)∗Φ(T (M1 ×M2), g1 × g2) = 0. (6.2.10)

Proof. Due to the assumption that h1|∂M1
and h2 both are unimodular, it follows from 6.2.5 that

h1|∂M1⊗̂h2 determines a unimodular metric on the restriction bundle E|∂(M1×M2) = E|∂M1×M2 . Since

the system D1 is of product form, this allows us to choose a small neighborhood U of ∂M1, so that

θ(h1) ≡ 0 on U . Together with Equation 6.2.5 and θ(h2) ≡ 0 everywhere on M2, we deduce that

θ(h1⊗̂h2) ≡ 0 on U ×M2. (6.2.11)

By choosing U smaller, if necessary, we also have by construction f1 + f2 = f1 + f2 on (M1 \ U) ×M2,

and therefore the equality of gradients

∇g′1×g′2(f1 + f2) = ∇g′1×g′2(f1 + f2) on (M1 \ U)×M2. (6.2.12)

The result now follows from 6.2.11, 6.2.12 and the product formula 6.2.8.

Apart from considering products of systems, we will also have to investigate in the anomaly of the

relative torsion that arises when changing the metrics of a given system. In fact, we will only look at

anomalies under the assumption that the metrics are left unchanged in a neighborhood of ∂M . The propo-

sition below covers this situation, generalizing [20, Proposition 5.1,5.2] onto odd-dimensional Manifolds

with boundary with product metrics near ∂M .

Proposition 6.2.4 (Metric anomaly with boundary conditions). Let Di = (E ↓ M, gi, hi,∇gf) for

i = 1, 2 be two Morse-Smale Systems with M odd-dimensional, such that either

1. near ∂M , g1 ≡ g2 are of product form and h1|∂M ≡ h2|∂M , or

2. near ∂M , g1 and g2 are of product form (although possibly distinct) and h1|∂M ≡ h2|∂M is unimod-

ular.

Then

R(D1)−R(D2) =
∑

p∈Cr(f)

(−1)ind(p) log
(
det(h1(p)−1 ◦ h2(p))

)
. (6.2.13)
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Proof. First, observe that

R(D1)−R(D2) = log

(
TAn(2) (D1)

TAn(2) (D2)

)
+ log

(
TMet

(2) (D2)

TMet
(2) (D1)

)
+ log

(
TMS

(2) (D2)

TMS
(2) (D1)

)
. (6.2.14)

Furthermore, we have

TMet
(2) (D2)

TMet
(2) (D1)

=

n∑
k=0

(−1)k log

(
detΓ(Θk

2)

detΓ(Θk
1)

)
, (6.2.15)

where Θ∗i : H∗(M̃, g̃i, Ẽ, h̃i) → H∗(2)(M̃,E, hi,∇gf) are the isomorphisms of finitely generated Hilbert

N (Γ)-modules as defined in 6.1.5. We let

11∗[h1,h2] : H∗(2)(M̃,∇g̃ f̃ , Ẽ, h̃1)→ H∗(2)(M̃,∇g̃ f̃ , Ẽ, h̃2) (6.2.16)

be the isomorphism of Hilbert N (Γ)-modules induced by the (not necessarily unitary) identity map

11∗[h2,h1] : C∗(2)(M̃,∇g̃ f̃ , Ẽ, h̃2)→ C∗(2)(M̃,∇g̃ f̃ , Ẽ, h̃1). Also, we let

τ∗ : H∗(M̃, g̃2, Ẽ, h̃2)→ H∗(M̃, g̃1, Ẽ, h̃1) (6.2.17)

be the isomorphism of Hilbert N (Γ)-modules making the diagram below commute.

H∗(M̃, g̃1, Ẽ, h̃1) H∗(2)(M̃,∇g̃ f̃ , Ẽ, h̃1)

H∗(M̃, g̃1, Ẽ, h̃2) H∗(2)(M̃,∇g̃ f̃ , Ẽ, h̃2)

Θ∗1

11∗[h1,h2]τ∗

Θ∗2

(6.2.18)

By Proposition 4.1.14, it follows that

detΓ(τ∗) detΓ(11∗[h1,h2]) = detΓ(Θ∗1)−1 detΓ(Θ∗2). (6.2.19)

Therefore, Equation 6.2.15 decomposes into

log

(
TMet

(2) (D2)

TMet
(2) (D1)

)
=

n∑
k=0

(−1)k log det(τk) +

n∑
k=0

(−1)k log det(11k[h1,h2]). (6.2.20)

By Proposition 4.1.40, we have

n∑
k=0

(−1)k log det(11k[h1,h2]) + log

(
TMS

(2) (D2)

TMS
(2) (D1)

)
=

∑
p∈Cr(f)

(−1)ind(p) log
(
det(h1(p)−1 ◦ h2(p))

)
. (6.2.21)

For the remaining term, it is due to the main Theorem of [60] that we have an equality

log

(
TAn(2) (D1)

TAn(2) (D2)

)
+

n∑
k=0

(−1)k log det(τk) = log

(
TRS(D1)

TRS(D2)

)
. (6.2.22)

Here, TRS(Di) denotes the Ray-Singer Torsion element as originally defined in [12, Definition 2.2]. It is

shown in [18, Theorem 3.4] that, under the conditions that M is odd-dimensional and either one of the

two assertions mentioned in the statement of the proposition is satisfied, one has

log

(
TRS(D1)

TRS(D2)

)
= 0. (6.2.23)

The result direct follows from 6.2.14 and 6.2.20-6.2.23.
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Definition 6.2.5 (Subdivision). Let M be a compact manifold and for i = 0, 1, let (fi, gi) be a Morse-

Smale pair. Then (f1, g1) is called a subdivision of (f0, g0) if all of the following conditions are satisfied

1. Crp(f0) ⊆ Crp(f1) ⊆
⋃
x∈Cr(f0)W

−
x (f0) for each 0 ≤ p ≤ n,

2. W−x (f1) ⊆W−x (f0) for each x ∈ Cr(f0),

3. W−x (f0) =
⋃
y∈Cr(f1)∩W−x (f0)W

−
y (f1), and

4. g0 ≡ g1 near Cr(f0) ∪ ∂M and and f0 ≡ f1 near ∂M .

We now describe the effect on the relative torsion under taking taking subdivisions. For that, let M be

a compact manifold, let (fi, gi) be a Morse-Smale pair on M for i = 0, 1, so that (f1, g1) is a subdivision of

(f0, g0). Let h be Hermitian form on a flat bundle E ↓M . By definition, there exists for each y ∈ Cr(f1)

a unique x ∈ Cr(f0) satisfying y ∈ W−x (f0). Let h̃(y) ∈ GL(Ey, E∗y) be the Hermitian metric on Ey

obtained by parallel transport of the metric h(x) ∈ GL(Ex, E∗x) along a curve connecting x and y that

is entirely contained within W−x (f0). Note that since W−x (f) is simply-connected, the resulting metric

doesn’t depend on the particular choice of curve. Note also that h̃(y) = h(y) whenever h is a unitary

metric.

For each y ∈ Cr(f1), define

ω(y) := log det(h̃(y)−1 ◦ h(y)) ∈ R≥0 . (6.2.24)

Observe that ω ≡ 0 whenever h is a unimodular metric. The proof of the following statement for closed

manifolds is laid out in [20, Proposition 5.3] and carries over to general compact manifolds without further

modification:

Proposition 6.2.6. In the above situation, we have

R(E ↓M, g, h,∇g0
f0)−R(E ↓M, g, h,∇g1

f1) =
∑

y∈Cr(f1)

(−1)ind(y)ω(y). (6.2.25)

Corollary 6.2.7 (Relative Torsion under subdivision). Let D0 = (E ↓ M, g0, h0,∇g′0f0) be a weakly

admissible system with M odd-dimensional and let (f1, g
′
1) be a subdivision of (f0, g

′
0). Then one finds a

Riemannian metric g1 on M and an Hermitian form h1 with g1 ≡ g0 and h1 ≡ h0 near ∂M on E, so

that D1 = (E ↓M, g1, h1,∇g′1f1) is a weakly admissible system, satisfying

R(D0) = R(D1). (6.2.26)

Proof. For each y ∈ Cr(f1), there exists by the definition of a subdivision a unique x ∈ Cr(f0), such that

y ∈W−x (f0). As above, we let h̃1(y) ∈ GL(Ey, Ey
∗
) be the Hermitian metric on the fiber Ey obtained by

parallel transport of the Hermitian metric h0(x) ∈ GL(Ex, E∗x) along a curve between x and y contained

entirely within W−x (f). With

ω(y) := log det(h̃1(y)−1 ◦ h0(y)),

we obtain from Proposition 6.2.6

R(E ↓M, g0, h0,∇g′0f0) = R(E ↓M, g0, h0,∇g′1f1) +
∑

y∈Cr(f1)

(−1)ind(y)ω(y). (6.2.27)
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In order to construct the metric h1, choose small disjoint open coordinate neighborhoods Uy ⊃ Vy 3 y
around each y ∈ Cr(f1), each also disjoint from a neighborhood of the boundary, such that Vy ⊂ Uy.

Define the Hermitian form h1 ∈ GL(E,E∗) to be an extension of the metrics
⋃
y∈Cr(f1) h̃1(y) that is

parallel on
⋃
y∈Cr(f1) Vy and equal to h0 on M \

⋃
y∈Cr(f1)\Cr(f0) Uy. Lastly, choose a Riemannian metric

satisfying g1 ≡ g′1 near Cr(f1) and g1 ≡ g0 near ∂M (in particular, g1 is also of product form near ∂M).

By construction of the metrics h1 and g1, the system D1 = (E ↓ M, g1, h1,∇g′1f1) is weakly admissible.

Moreover, an application of Proposition 6.2.4 gives

R(E ↓M, g0, h0,∇g′1f1) = R(E ↓M, g1, h1.∇g′1f1) +
∑

y∈Cr(f1)

(−1)ind(y)+1ω(y). (6.2.28)

The result now follows from 6.2.27 and 6.2.28.

The proof of the last result of this section can be found in [21, Proposition 3.7]

Proposition 6.2.8 (Determinant Class under Glueing). For i = 1, 2, let (Ei ↓Mi) be two flat, complex

bundles over a compact manifold, satisfying E1|∂M1
↓ ∂M1 = E2|∂M2

↓ ∂M2. Assume that both Ei ↓ Mi

and Ei|∂Mi
↓ ∂Mi are of determinant class. Then the flat bundle E ↓ M with E := E1 ∪∂E1

E2 and

M := M1 ∪∂M1 M2 is of determinant class as well.

6.3 Witten-deformation of the De Rham complex

Throughout this section, we fix a Morse-Smale system D = (E ↓ M, g, h,∇g′f). For any parameter

t ∈ R≥0, the Witten-deformation dt of the exterior derivative d on Ω∗(M,E) is defined as

dt := e−tfdetf = d+ tdf∧ : Ω•(M,E)→ Ω•+1(M,E). (6.3.1)

Observe that d2
t = 0 for any t ∈ R≥0, which is why we can regard the pair Ω•t (M,E) := (Ω•(M,E), dt)

as a cochain complex. In this context, it is evident that the multiplication map ω 7→ etf · ω becomes an

isomorphism of cochain complexes

etf : Ω•t (M,E)→ Ω•0(M,E) = Ω•(M,E). (6.3.2)

Fixing a Riemannian metric g on M and an Hermitian form h on E ↓ M allows us to further construct

the formal adjoint

δt = −#−1 ◦ d∗t ◦# : Ω∗(M,E, g, h)→ Ω•−1(M,E, g, h), (6.3.3)

of dt, where

d∗t : Ω•(M,E∗)→ Ω•−1(M,E∗) (6.3.4)

is the differential on Ω∗(M,E∗) dual to dt and

# : Ω•(M,E, g, h)→ Ωn−•(M,E∗, g, h) (6.3.5)

is the Hodge-#-operator constructed from the metrics g and h. For the remainder of this subsection, the

Riemannian metric g and Hermitian form h are fixed, which is why we will simply denote by Ω•(M,E)
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the inner product space Ω•(M,E, g, h). With i : ∂M →M the inclusion map, we further set

∆∗,t := δ∗+1
t d∗t + d∗−1

t δ∗t : Ω∗(M,E)→ Ω∗(M,E), (6.3.6)

Ω∗(M,∂M,E) := {ω ∈ Ω∗c(M,E) : i∗#ω = 0}, (6.3.7)

Ω∗2,t(M,∂M,E) : {ω ∈ Ω∗c(M,E) : i∗#ω = i∗#dtω = 0}, (6.3.8)

H∗t (M,∂M,E) := {ω ∈ Ω∗(M,E) ∩ Ω∗(2)(M,E) : i∗#ω = dtω = δtω = 0}, (6.3.9)

∆∗,t[E] := ∆t|Ω∗2,t(M,∂M,E). (6.3.10)

As shown in [12, Proposition 5.5], one has

∆k,t = ∆k,0 + t2|∇gf |+ tLk, (6.3.11)

where Lk is a degree-0 differential operator (i.e. a bundle endomorphism) on Ωk(M,E). Observe that for

any t ≥ 0, dt and δt are all elliptic differential operators of order 1, while ∆∗,t[E] is an elliptic differential

operator of order 2 that is symmetric with respect to the inner product on Ω∗t (M,E) induced by g and

h. Moreover, just as in the case t = 0, one verifies that all three operators are closeable when regarded

as unbounded operators on the L2-completion Ω•(2)(M,E). We define the L2-Witten-de Rham complex

of the system D as

Ω•(2),t(M,E) := (Ω•(2)(M,E), dt), (6.3.12)

where we identify dt with its minimal L2-closure. Similarly, for fixed l ≥ n/2+1, we define the Witten-de

Rham-Sobolev complex of the system D as

W•l−•,t(M,E) := (W•l−•(M,E), dt), (6.3.13)

where now, we identify dt with its bounded extension dt : W •l−•(M,E) → W •+1
l−•−1(M,E). The closed,

symmetric operator ∆t[E] : Ω∗(2),t(M,E)→ Ω∗(2),t(M,E) is called the Witten-Laplacian associated to the

system D = (E ↓M, g, h,∇′g′f).

In the situations relevant for our results, namely if D is a Γ-invariant Morse-Smale system, ∆t[E] will

also always be a self-adjoint operator, which is established as follows: For fixed m ∈ N, we define the a

bounded boundary differential operator

ιt : Ω•t (M,E)→ Ω•(∂M,E|∂M )

ιt(ω) := #̂−1i∗#ω + #̂−1i∗#dtω.

One now verifies that these differential operators all fit together to define an elliptic, formally self-adjoint

boundary value problem of order 2m (compare with [21, Page 50])

Bm,t := (∆m
t , ιt, . . . , ιt∆

m−1
t ). (6.3.14)

Since all operators involved are Γ-equivariant, Bm,t is the lift of a unique elliptic boundary value problem

over the compact quotient M/Γ. Thus, Bm,t is therefore uniformly elliptic, cf. Corollary 3.3.15. Using

the very same methods and arguments as in Section 3.4, we can conclude as follows:

Proposition 6.3.1. Let D = (E ↓ M, g, h,∇g′f) be a Γ-invariant Morse-Smale system. Then, for any

t ≥ 0, the following holds:

1. The cochain complex Ω•(2),t(M,E) is a Hilbert N (Γ)-cochain complex. Moreover, the multiplication

map from 6.3.2 extends to an isomorphism of Hilbert N (Γ)-cochain complexes

etf : Ω•(2),t(M,E)→ Ω•(2)(M,E). (6.3.15)
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2. For l ≥ n/2 + 1, the cochain complex W•l−•,t(M,E) is a Hilbert N (Γ)-module cochain complex with

bounded differentials. Moreover, the multiplication map from 6.3.2 extends to an isomorphism of

Hilbert N (Γ)-cochain complexes

etf : W •l−•,t(M,E)→W •l−•(M,E). (6.3.16)

3. For any m ∈ N0 and each 0 ≤ k ≤ n, the (minimal) closure of the unbounded operator ∆m
k,t[E] :

Ωk(2)(M,E)→ Ωk(2)(M,E), which we also denote by ∆m
k,t[E], is a positive, self-adjoint morphism of

Hilbert N (Γ)-modules, so that

dom(∆m
k,t[E]) := {ω ∈W k

2m,t(M,E) : ιtω = . . . ιt∆
m−1
k,t ω = 0},

Hkt (M,∂M,E) = ker(∆k,t[E]).

4. For any m ∈ N0 and each 0 ≤ k ≤ n, we have the orthogonal Hodge-decomposition of Hilbert

N (Γ)-subcomplexes

Wk
2m,t(E) = ker(∆k,t[E])⊕ dtΩk−1

c (M,E)
2m
⊕ δtΩk+1(M,∂M,E)

2m
. (6.3.17)

Here, A
m

denotes the W2m-closure of a given subspace A ⊆W ∗2m(E).

By Statement 3 of the previous theorem, the operator ∆∗,t[E] admits a spectral projection for each

interval in R≥0. This allows us for λ ≥ 0 to define the partial isometry

P ∗[0,λ)(t) : Ω•(2)(M,E)→ Ω∗(2)(M,E)

as the spectral projection of ∆∗,t[E] associated to the half-open interval [0, λ). We define the submodules

Ω•Sm,t(M,E) :=

n⊕
k=0

im
(
P ∗[0,1)(t)

)
, (6.3.18)

Ω•La,t(M,E) :=
(
Ω•t,Sm(M,E)

)⊥
=

n⊕
k=0

im
(

11− P ∗[0,1)(t)
)
. (6.3.19)

Then

Proposition 6.3.2. (a) We have an orthogonal decomposition of Hilbert N (Γ)-module subcomplexes

(Ω•(2)(M,E), dt) = (Ω•Sm,t(M,E), dt)⊕ (Ω•La,t(M,E), dt). (6.3.20)

(b) The Hilbert N (Γ)-cochain complex (Ω•Sm,t(M,E), dt) is of finite type.

(c) One has Ω∗Sm,t(M,E) ⊆
⋂∞
l=0W∗l (M,E). In particular, Ω∗Sm,t(M,E) consists of smooth forms.

(d) The inclusion it : Ω•Sm,t(M,E) → Ω•(2)(M,E) is a chain homotopy equivalence of Hilbert N (Γ)-

cochain complexes with chain homotopy inverse P •t (1) : Ω•(2)(M,E)→ Ω•Sm,t(M,E).

Proof. (a) For a subset I ⊆ R+, we denote by ∆t[E] =
⊕n

k=0 ∆k,t[E] the total Laplacian, by PI(∆t[E])

the spectral projection of ∆t[E] corresponding to (the indicator function of) I and set ΩI(E) :=

im(PI(∆t[E]). We claim that (ΩI(E), dt) is always a subcomplex of Hilbert N (Γ)-modules. Applied

to I = [0, 1) and I = [1,∞), (a) then clearly follows.
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First, ΩI(E) is clearly a closed, Γ-invariant subspace, since it is the image of a Γ-equivariant

projection.

To see that ΩI(E) is a subcomplex, it suffices to show that

dtPI(∆t[E]) = PI(∆t[E])dt. (6.3.21)

To prove this, consider first the left-handed polar decomposition dt = u |dt| : ker(dt)
⊥ → im(dt) of

dt.

With this restriction of domain and range (implicit throughout) the operator is injective with dense

image, therefore u is an honest unitary, and |dt| =
√
δtdt.

Note furthermore that under the Hodge decomposition

Ω•(2)(M,E)M) = ker(dt)
⊥ ⊕ ker(∆t[E])⊕ im(dt),

the Laplacian ∆t[E] decomposes as direct sum of self-adjoint operators δtdt ⊕ 0 ⊕ dtδt, implying

that

PI(∆t[E]) = PI(δtdt)⊕ PI(dtδt). (6.3.22)

Therefore, to prove Equation 6.3.21, it suffices to show that dtχI(δtdt) = PI(dtδt)dt. Now, using

the above polar decomposition for dt, we get δt = |dt|u∗, so

PI(dtδt) = PI(u |dt|2 u∗) = uχI(|dt|2)u∗.

Consequently, using the fact that the spectral projections for any positive operator f commute with
√
f , we compute

dtχI(δtdt) = u |dt|PI(|dt|2) = uPI(|dt|2) |dt|

= uPI(|dt|2)u∗u |dt| = PI(dtδt)dt.

(b) By the spectral theorem, we have for each 0 ≤ k ≤ n that

ΩkSm,t(M,E) = im(P[0,1)(∆k,t[E])) ⊆ dom(∆k,t[E]) ⊆ {ω ∈ Wk
2 (M,E) : i∗#ω = i∗#tdω = 0}

⊆ Wk
2 (M,E).

Moreover, since the spectral projections of ∆k,t[E] commute with ∆k,t[E], it also follows that

∆k,t[E]ΩkSm,t(M,E) ⊆ ΩkSm,t(M,E).

Inductively, one concludes that ΩkSm,t(M,E) ⊆ dom(∆m
k,t[E]) ⊆ W k

2m(E) for each m ∈ N, from

which (c) follows.

(c) The proof in case that ∂M = ∅, which can be found in [90], can be adapted word-by-word when

∂M 6= ∅.

Now assume additionally that the Γ-invariant system D = (E ↓ M, g, h,∇g′f) is also weakly Γ-

admissible. Recall from the axioms laid out in Definition 6.1.1 that Γ-admissibility implies that we can

choose for each p ∈ Cr(f) radii rp > 0, coordinate charts φp : Brp(0)
∼=→ Up ⊆ Rn disjoint from ∂M with

154



Brp(0) := {x ∈ Rn : ||x|| < rp} and φp(0) = p, along with a flat bundle isomorphism Φp : Brp(0)×Cm
∼=→

E|Up that fit into the commutative diagram

Brp(0)× Cm E|Up

Brp(0) Up,

Φp
∼=

pr1 πE

φp
∼=

(6.3.23)

and such that all of the following conditions hold:

(H1) The pullback metric φ∗p(g|Up) equals the Euclidean metric on Rn.

(H2) The pullback Hermitian form Φ∗p(h|Up) equals the standard inner product on Cm.

(H3) One has

(f ◦ φp)(x1, . . . , xn) = f(p)− 1

2

ind(p)∑
i=1

x2
i +

1

2

n∑
i=ind(p)+1

x2
i .

(H4) The above choices are Γ-invariant, i.e. γ.Up = Uγ.p, rp = rγ.p, γ ◦ φp = φγ.p and γ ◦ Φp = Φγ.p for

each p ∈ Cr(f) and each γ ∈ Γ.

Together with the global form 6.3.11 of the Witten-Laplacian ∆∗,t, it is precisely due to this Γ-invariant

shape of f and metric bundle (E, h) ↓ (M, g) near Cr(f) that Burghelea et al. were able to prove the

next theorem. With the aid of properties (H1)− (H4), their proof from [21, Section 3.3] can be adapted,

word by word, to our situation of non-unitary bundles without any further modification.

Theorem 6.3.3. Let (E ↓ M, g, h,∇g′f) be a weakly Γ-admissible system. Then, for each t ≥ 0, there

exists an isometric embedding of Hilbert N (Γ)-modules

J•(t) :=

n⊕
k=0

Jk(t) : C•(2)(M,∇g′f,E, h)→ Ω•(2)(M,E),

Moreover, for large t >> 0, the composition

Q(t) := P •[0,1)(t) ◦ J
•(t) : C•(2)(M,∇g′f,E, h)→ Ω•Sm,t(M,E)

is an isomorphism of Hilbert N (Γ)-modules.

We stress the fact that the map of Hilbert N (Γ)-modules J∗(t) from the previous theorem (and there-

fore also the isomorphism Q∗(t)) is in general not a map of cochain complexes. This is why the maps

Q∗(t) alone cannot be used to reach our desired conclusion, namely that the complexes C•(2)(M,∇g′f,E, h)

and Ω•Sm,t(M,E, g, h) are chain homotopy equivalent. In spite of this, it still follows that for sufficiently

large t >> 0, the isomorphism Q•(t) can be used to define the isometry

I•(t) := Q•(t) (Q•(t)∗Q•(t))
−1/2

: C•(2)(M,∇g′f,E, h)→ Ω•Sm,t(M,E, g, h). (6.3.24)

Moreover, since (E ↓ M, g, h,∇g′f) is the lift of an admissible system with deck group Γ, there are also

isomorphisms of Hilbert N (Γ)-modules for t > 0:

Sk(t) : Ck(2)(M,∇g′f,E, h)→ Ck(2)(M,∇g′f,E, h), (6.3.25)

λp ⊗ [p] 7→ (π/t)
n−2k

4 e−tf(p) · λp ⊗ [p] p ∈ Crk(f), (6.3.26)

S•(t) :=

n⊕
k=0

Sk(t) : C•(2)(M,∇g′f,E, h)→ C•(2)(M,∇g′f,E, h). (6.3.27)
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Here, we have used the fact that f is Γ-equivariant, hence in particular satisfies f(γ.x) = f(x) for any

x ∈M .

Observe that because of Proposition 6.3.2,(b), we may regard Ω•Sm,t(M,E) as a subcomplex of the Sobolev

complexW•l−•,t(M,E) where l > n/2+1. This allows us to define the morphism of Hilbert N (Γ)-cochain

complexes

F •(t) := Int• ◦etf : Ω•Sm,t(M,E, g, h)→ C•(2)(M,∇g′f,E, h), (6.3.28)

as restricting to the subcomplex Ω•Sm,t(M,E) the composition of the isomorphism

etf :W•l−•,t(M,E)→W•l−•(M,E)

from Proposition 6.3.1,(a) with the integration map

Int• :W•l−•(M,E)→ C•(2)(M,∇g′f,E, h),

defined as in 6.1.3. Just as before, the proof of the next theorem, laid out for unitary bundles in

[21, Section 3.3], can be adapted to our setting without any modifications:

Theorem 6.3.4. Under the previous assumptions, we obtain for large t >> 0, that

S•(t) ◦ F •(t) ◦ I•(t) = 11 +O(t−1). (6.3.29)

Consequently, for large t >> 0, the map F •(t) is an isomorphism of Hilbert N (Γ)-cochain complexes.

Finally, we arrive at the following very important intermediate result

Theorem 6.3.5. Let M be a compact manifold, let ρ : π1(M) → GL(V ) be some finite-dimensional,

complex representation and let E := Eρ ↓M be the associated flat complex vector bundle over M . Choose

some CW structure X on M with X̃ the lifted structure on M̃ and let C∗(2)(X̃, ρ) be the associated cellular

L2-cochain complex. Further, let Ẽ ↓ M̃ be the lifted bundle on the universal cover, and let Ω∗(2)(M̃, Ẽ)

be the L2-cochain complex with absolute boundary conditions (with inner product constructed with respect

to some choice of lifted metrics). Then there is a L2-chain homotopy equivalence of Hilbert-N (Γ) cochain

complexes

Ω∗(2)(M̃, Ẽ) ' C∗(2)(X̃, ρ). (6.3.30)

In particular, we obtain:

1. For each 0 ≤ k ≤ n, it holds that bAn(2),k(M,ρ) = bTop(2),k(M,ρ).

2. For each 0 ≤ k ≤ n, it holds that αAnk (M,ρ) = αTopk (M,ρ).

3. (M,ρ) is of analytic determinant class if and only if it is of combinatorial determinant class.

Proof. Choose a type II Morse-Smale function f : M → R, along with a Riemannian metric g on M and

an Hermitian form h on Eρ, so that the system (Eρ ↓M, g, h,∇g′f) is weakly admissible. Consequently,

the lifted system (Ẽρ ↓ M̃, g̃, h̃,∇g̃′ f̃) is weakly Γ-admissible.

Recall from Proposition 6.3.1 that for any t ≥ 0, there is an isomorphism of Hilbert N (Γ)-complexes

etf : Ω•(2)(M̃, Ẽρ, g̃, h̃)
∼=→ Ω•(2),t(M̃, Ẽρ, g̃, h̃). (6.3.31)
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Moreover, due to Proposition 6.3.2,3, the spectral projection of ∆t[Ẽρ] associated to [0, 1) determines a

chain homotopy equivalence of Hilbert N (Γ)-cochain complexes

P (t) : Ω•(2),t(M̃, Ẽρ, g̃, h̃)
'→ Ω•Sm,t(M̃, Ẽρ, g̃, h̃). (6.3.32)

Next, for sufficiently large t >> 0, Theorem 6.3.4 implies that there is an isomorphism of Hilbert N (Γ)-

cochain complexes

F (t) : Ω•Sm,t(M̃, Ẽρ, g̃, h̃)
∼=→ C•(2)(M̃,∇g̃′ f̃ , Ẽρ, h̃). (6.3.33)

Let X be any CW-structure on M . Then Corollary 5.4.12 implies that there is a chain homotopy

equivalence of Hilbert N (Γ)-cochain complexes

G : C•(2)(M̃,∇g̃′ f̃ , Ẽρ, h̃)
'→ C•(2)(X̃, ρ). (6.3.34)

6.3.31-6.3.34 imply that the two Hilbert N (Γ)-cochain complexes Ω•(2)(M̃, Ẽρ, g̃, h̃) and C•(2)(X̃, ρ) are

chain homotopy equivalent.

6.4 Asymptotic expansions

Let D = (E ↓ M, g, h,∇gf) be a weakly admissible system with Γ := π1(M) and let D̃ := (Ẽ ↓
M̃, g̃, h̃,∇g̃ f̃) be the Γ-invariant lift of D (throughout this subsection, we assume that g = g′). We set

b := f−1(∂M). For t ≥ 0, let Ω•(2),t(M̃, Ẽ) be the Witten-deformed complex defined in the previous

section (with metric induced by g̃ and h̃ implicit, in order to simplify notation) with Witten-deformed

Laplacian ∆∗,t[Ẽ] : Ω∗(2),t(M̃, Ẽ)→ Ω∗(2),t(M̃, Ẽ). the orthogonal decomposition into the small and large

subcomplex. Further, we define Θ∗(t) : ker(∆∗,t[E]) → H∗(2)(M̃,∇g̃ f̃ , Ẽ, h̃) to be the isomorphim of

finitely-generated Hilbert N (Γ)-modules that is the composition Θ∗ · etf̃ , where Θ∗ : ker(∆∗,0[E]) →
H∗(2)(M̃,∇g̃ f̃ , Ẽ, h̃) is the isomorphism from 6.1.5. Introduce

Vol(D)(t) :=

n∏
k=0

detΓ(Θk(t))(−1)k . (6.4.1)

Observe that

Vol(D)(0) = TMet
(2) (E ↓M, g, h,∇gf). (6.4.2)

Moreover, recall the orthogonal decomposition of subcomplexes

Ω•(2),t(M̃, Ẽ) = Ω•Sm,t(M̃, Ẽ)⊕ Ω•La,t(M̃, Ẽ),

which implies the following: Provided that E ↓M is of determinant class, the torsion elements TAn(2) (D)(t), TSm(2) (D)(t)

and TLa(2) (D)(t) of the complexes Ω•(2),t(M̃, Ẽ), Ω•Sm,t(M̃, Ẽ), respectively Ω•La,t(M̃, Ẽ) are all well-defined

positive real numbers, so that

TAn(2) (D)(0) = TAn(2) (M,E, g, h), (6.4.3)

TAn(2) (D)(t) = TSm(2) (D)(t) · TLa(2) (D)(t). (6.4.4)

A function F : R → R is said to admit an asymptotic expansion, if there exists an integer N ∈ N and

constants (aj)
N
j=0, (bj)

N
j=0 such that for t→ +∞

F (t) =

N∑
j=0

(aj + bj log(t)) tj + o(1). (6.4.5)

The coefficient a0 in the expansion is called the free term of F and is denoted by FT(F ).
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Proposition 6.4.1 (Asymptotic expansion for the analytic torsion). There exists a constant C ∈ R, such

that the following holds: For any weakly admissible system D = (E ↓ M, g, h,∇gf) of determinant class

with M odd-dimensional, the function log TAn(2) (D)(t)− log Vol(D)(t) admits the asymptotic expansion.

log TAn(2) (E ↓M, g, h)− log Vol(D)(0) + Ctdim(E)χ(∂M). (6.4.6)

Proof. For 0 ≤ p ≤ n, recall that the Witten-Laplacian ∆p,t[Ẽ] of the lifted system

D̃ = (Ẽ ↓ M̃, g̃, h̃,∇g̃ f̃) is the lift ∆̃p,t[E] of the Witten-Laplacian corresponding to D. For t, λ ≥ 0,

introduce the function

ΘD(λ, t) =

n∑
p=0

(−1)p trΓ(f̃ · e−λ∆p,t[Ẽ]). (6.4.7)

It follows from Theorem 4.3.2 that for fixed t ≥ 0, ΘD(λ, t) is smooth in λ, and that for each 0 ≤ k ≤ n,

and each t ∈ R≥0, there exists Γ-equivariant differential forms

αtk(D) ∈ Ωn(M̃), (6.4.8)

βtk(D) ∈ Ωn−1(∂̃M), (6.4.9)

that are local quantities of the lifted system D̃, depend smoothly on t, satisfy αtk(D) ≡ 0 whenever k is

odd, and such that for λ→ 0, we have

ΘD(t, λ) =

n∑
k=0

λ
−n+k

2 (atk(D) + btk(D)) +O(λ1/2), (6.4.10)

atk(D) :=

∫
F
f · αtk(D) , btk(D) :=

∫
∂F

b · βtk(D), (6.4.11)

where F is a fundamental domain for the Γ-action on M̃ , such that ∂F := F ∩ ∂̃M is a fundamental

domain for the Γ-action on ∂̃M . Moreover, the very same arguments employed in [22, pp. 821-824] can

now be applied to show that

d

dt

(
log TAn(2) (D)(t)− log V ol(D)(t)

) ∣∣
t=t0

= at0n (D) + bt0n (D)
n odd

= bt0n (D). (6.4.12)

Therefore, in order to show the proposition, it remains to find a constant C > 0 independent of D or t

satisfying

btn(D) = C dim(E)χ(∂M) ∀t ∈ R≥0 . (6.4.13)

For this, the assumption that the metric bundle (E, h) ↓ (M, g) is of product structure near ∂M is

essential.

First, we will show that for a simple system D0 we now construct, btn(D0) is completely independent of t:

Let EC ↓ [a, b] be the trivial complex line bundle over [a, b]. We equip [a, b] with the standard Euclidean

metric 1R and the bundle EC with the constant (parallel) Hermitian form 1C. Further we choose a Morse

function f0(x) : [a, b] → R on [a, b] in such a way that f0(a + sε) = f0(b − sε) = b − sε for all s ∈ [0, 1]

and some small ε > 0. These choices form the admissible system D0 = (EC ↓ [a, b], 1R, 1C,
d
dxf0).

We wish to compute the density βt1(D0) that appears in the asymptotic expansion of the theta function

ΘD0
(λ, t) = tr(f0 · e−λ∆0,t[EC])− tr(f0 · e−λ∆1,t[EC]). (6.4.14)

For this, observe first that the function G(x) := b+ a− x gives rise to a bundle isometry of EC ↓ [a, b] to

itself that also satisfies f0(x) = f0(b + a − x) for all x near a. Therefore, G is an isomorphism between
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the restricted systems D0|[a,a+ε) and D0|(b−ε,b]. Consequently, since βt1(D0) is a local quantity, it follows

that βt1(D0)(a) = βt1(D0)(b) for all t ∈ R. Next, observe that the two Witten-Laplacians ∆1,t[EC] and

∆0,t[EC] are elliptic operators of order 2 over a 1-dimensional manifold, which is why βt1(D0) depends

only on the principal symbol of the ∆i,t[EC] with i = 0, 1. Lastly, under the natural isometry

Ω1([a, b],C) ∼= Ω0([a, b],C),

f(x)dx 7→ f(x),

the Witten-Laplacian ∆1,t[EC] of 1-forms can be identified with the Witten-Laplacian ∆0,t[EC] of 0-forms,

which takes the form

∆0,t[EC] = − d2

dx2
+ t2

near b. Since the principal symbol of ∆0,t[EC] is independent of t, we finally obtain

βt1(D0) ≡ C ′, (6.4.15)

bt1(D0) =

∫
{a,b}

f0 · βt1(D0) = b
(
βt1(D0)(a) + βt1(D0)(b)

)
= 2bC ′. (6.4.16)

for some constant C ′ ∈ R.

Consider the weakly admissible system D1 = (E|∂M ⊗ EC ↓ ∂M × [a, b], g|∂M ⊗ 1R, h|∂M ⊗̂1C, F ), where

F : ∂M × [a, b] → R is the Morse function defined by F (p, x) := f0(x) and we let D̃1 be its lift to

∂̃M × [a, b]. We use the abbreviations

∆∗,t := ∆∗,t[Ẽ|∂M ⊗̂EC] , ∆∗,t[0] := ∆∗,t[EC] , ∆∗ := ∆∗[Ẽ|∂M ]

and observe that we have a orthogonal sum decomposition of the Laplacian

∆p,t =

p⊕
q=0

(∆q ⊗ 11EC) +
(

11
Ẽ∂M

⊗∆p−q,t[0]
)
.

From this, we deduce the decomposition of heat operators

e−λ∆p,t =

p⊕
q=0

e−λ∆q ⊗ e−λ∆p−q,t[0]. (6.4.17)

Using the Hodge-decomposition, one verifies as in [22, Proposition 1.21, Proposition 4.2 ] that

n∑
q=0

(−1)q trΓ(e−λ∆q ) = χ(∂M,E) = dim(E)χ(∂M), (6.4.18)

Applying Equations 6.4.14 and 6.4.17–6.4.18, we compute

ΘD1
(λ, t) =

n∑
p=0

(−1)p trΓ(F̃ · e−λ(∆p,t))

=
∑
q,r

(−1)q+r trΓ

(
e−λ(∆q) ⊗ f0 · e−λ∆r,t[0]

)
=
∑
q

(−1)q trΓ(e−λ∆q ) ·
∑
r

(−1)r tr(f0 · e−λ∆r,t[0])

= dim(E)χ(∂M) ·ΘD0
(λ, t). (6.4.19)
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In particular, for any t ≥ 0, the functions ΘD1(λ, t) and dim(E)χ(∂M)ΘD0(λ, t) have the same asymptotic

expansions for λ→ 0, therefore also the same constant terms

btn(D1) = dim(E)χ(∂M)bt1(D0)
6.4.16

= dim(E)χ(∂M)2bC ′. (6.4.20)

Furthermore, using the locality of densities, one deduces that

βtn(D)(x) = βtn(D1)(x, b) = βtn(D1)(x, a)

for all x ∈ ∂M ∼= ∂M × {b} ∼= ∂M × {a}, which implies that

btn(D) =

∫
∂M

bβtn(D) =

∫
∂M×{b}

bβtn(D1) =
1

2

∫
∂M×{a,b}

bβtn(D1) =
1

2
btn(D1) = bC ′ dim(E)χ(∂M).

With C := bC ′, Equation 6.4.13 is finally proven.

Proposition 6.4.2 (Asymptotic expansion for the small torsion). For any weakly admissible system

D = (E ↓ M, g, h,∇gf) of determinant class with n := dim(M) and mk := #Crk(f), the function

log TSm(2) (D)(t)− log Vol(D)(t) admits the asymptotic expansion

log T
(2)
MS(M,E, h,∇gf) + dim(E)

 n∑
k=0

(−1)kmk
n− 2k

4
log(π/t) + t(−1)k+1

∑
x∈Crk(f)

f(x)

+ o(1).

(6.4.21)

Proof. For large t >> 0, there exists by Theorem 6.3.4 an isomorphism of finitely generated Hilbert

N (Γ)-cochain complexes

F •(t) : Ω•Sm,t(M̃, Ẽ, g̃, h̃)→ C•(2)(M̃,∇g̃ f̃ , Ẽ, h̃). (6.4.22)

From Proposition 4.1.40, it then follows that

log TSm(2) (M,E, g, h, f)(t)− log Vol(t) = log T
(2)
MS(M,E, h,∇gf)−

n∑
k=0

(−1)k log detΓ F
k(t). (6.4.23)

Recall also from Theorem 6.3.4 the formula Sk(t)◦F k(t)◦Ik(t) = 11Ck
(2)

+O(t−1), where Ik(t) is the isom-

etry from 6.3.24 and Sk(t) is the scaling isomorphism from 6.3.25. Consequently, by the multiplicativity

of the Fuglede-Kadison determinant in this setting, it holds that

log detΓ F
k(t) = − log detΓ S

k(t) + o(1). (6.4.24)

From the explicit formula of Sk(t), along with Proposition 4.1.40, we obtain

detΓ S
k(t) =

 ∏
x∈Crk(f)

(π/t)
n−2k

4 e−tf(p)

dim(E)

. (6.4.25)

The result now is an immediate consequence of 6.4.23 – 6.4.25.

Corollary 6.4.3 (Asymptotic expansion for the large torsion). Let D = (E ↓ M, g, h,∇gf) be a weakly

admissible system of determinant class with M odd-dimensional. The, the following assertions hold
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1. The function log TLa(2) (D)(t) admits an asymptotic expansion. More precisely, there exists a polyno-

mial Φ(D)(t) : R→ R in t and log(t), such that for t→∞

log TLa(2) (D)(t) = R(D) + Φ(D)(t) + o(1). (6.4.26)

Finally, for any arbitrary small neighborhood U of Cr(f)∪ ∂M , the polynomial Φ(D) depends only

on the isomorphism class of the system Df |U := (E|U ↓ U, g|U , h|U , f |U ).

2. Suppose that D1 = (E1 ↓ M1, g1, h1,∇g1
f1) is another weakly admissible system, such that there

exists neighborhoods U ⊆ M of Cr(f) ∪ ∂M and U1 ⊂ M1 of Cr(f1) ∪ ∂M1 with the property that

the derived systems Df |U := (E|U ↓ U, g|U , h|U , f |U ) and

Df1

1 |U1
:= (E1|U1

↓ U1, g|U1
, h|U1

, f1|U1
) are isomorphic (in particular #Crk(f) = #Crk(f1) for

each 0 ≤ k ≤ n). Then

R(D)−R(D1) = FT
(

log TLa(2) (D)
)
− FT

(
log TLa(2) (D1)

)
. (6.4.27)

3. Under the assumptions of (2), there exists local quantities α(D) ∈ Ωn(M \Cr(f),OM ) and α(D1) ∈
Ωn(M1 \ Cr(f1),OM1) of the derived systems systems D|M\Cr(f) and D1|M1\Cr(f1), such that one

has

FT
(

log TLa(2) (D)
)
− FT

(
log TLa(2) (D1)

)
=

∫
M\Cr(f)

α(D)−
∫
M\Cr(f1)

α(D1). (6.4.28)

Proof. 1. We have log TAn(2) (D)(t) = log TSm(2) (D)(t) + log TLa(2) (D)(t), hence also in particular(
log TAn(2) (D)(t)− log Vol(D)(t)

)
−
(

log TSm(2) (D)(t)− log Vol(D)(t)
)

= log TLa(2) (D)(t).

Since the left-hand side of the equation admits an asymptotic expansion, given by the sum of the

explicit formulas 6.4.6 and 6.4.21, the result follows.

2. Observe that FT
(

log TLa(2) (D)
)

= R(D)+FT(Φ(D)) and analogously FT
(

log TLa(2) (D1)
)

= R(D1)+

FT(Φ(D1)). Since the systems Df |U and Df1 |U1 are isomorphic by assumption, assertion (1) implies

that Φ(D) ≡ Φ(D1) and the result follows.

3. In case that ∂M = ∅, this is proven in [22, Theorem B, Section 6.2] for unitary bundles ( whose

proof is also referred to in [20, Proposition 4.2] for arbitrary flat bundles). The same proof works

without any modifications in the case that ∂M 6= ∅.

6.5 Proof of Theorem 6.1.5

Proposition 6.5.1. For i = 1, 2, let Di = (Mi, Ei, gi, hi,∇gifi) be two weakly admissible systems sat-

isfying the assumptions of Corollary 6.4.3.2. Moreover, assume that there exists a flat bundle E3 ↓ M3

with M3 compact, satisfying

1. (E3|∂M3
) ↓ ∂M3 = Ei|∂Mi

↓ ∂Mi, and
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2. the bundle Ei ↓ Ni is of determinant class, where Ni := M3 ∪∂M3 Mi and

Ei := E3 ∪E3|∂M3
Ei.

Then

R(D1) +
1

2

∫
M1

θ(h1) ∧ (∇g1
f1)∗Ψ(TM1, g1) = R(D2) +

1

2

∫
M2

θ(h2) ∧ (∇g2
f2)∗Ψ(TM2, g2). (6.5.1)

Proof. Choose a smooth function f3 : M3 → R on M3 with f3|∂M3 = fi|∂Mi for i = 1, 2 and such that the

function f i := f3 ∪∂M3 fi : Ni → R is a Morse function. Furthermore, choose a Riemannian metric g3 on

M3 with g3|∂M3
= gi|∂Mi

for i = 1, 2, such that for the metric gi = g3 ∪∂M3
gi on Ni, the pair (f i, gi) is a

Morse-Smale pair (since Ni is closed, there is no distinction between type I and type II). Lastly, choose

a Hermitian form h3 on the flat bundle E3 ↓M3 with h3|∂M3 = hi|∂Mi for i = 1, 2 with hi := h3 ∪∂M3
hi,

such that the system

Di := (Ei ↓ Ni, gi, hi,∇gif i) (6.5.2)

is weakly admissible. By construction, the pair Di also satisfies the assumptions of Corollary 6.4.3.2.

Applying Corollary 6.4.3.3, we can find densities αi on Mi \ Cr(fi) and αi on Ni \ Cr(fi), so that

R(D1)−R(D2) =

∫
M1\Cr(f1)

α1 −
∫
M2\Cr(f2)

α2, (6.5.3)

R(D1)−R(D2) =

∫
N1\Cr(f1)

α1 −
∫
N2\Cr(f2)

α2. (6.5.4)

Since the densities are local quantities, it follows from the chosen metrics on the respective bundles that

αi = αi|Mi
and α1|M3

= α2|M3
. Moreover, since Cr(fi)∩Mi = Cr(fi) by construction, we get from 6.5.3

and 6.5.4

R(D1)−R(D2) = R(D1)−R(D2). (6.5.5)

As Ni is closed, we can apply [102, Theorem 4.2] and obtain

R(Di) =
1

2

∫
Ni

θ(Ei, hi) ∧ (∇gif i)∗Ψ(TNi, gi), (6.5.6)

As mentioned in the introduction, the n-form θ(Ei, hi) ∧ (∇gif i)∗Ψ(TNi, gi) is a local quantity. In

particular, it follows both that θ(Ei, hi) ∧ (∇gifi)∗Ψ(TNi, gi)|Mi = θ(Ei, hi) ∧ (∇gifi)∗Ψ(TMi, gi) and

that θ(E1, h1) ∧ (∇g1f1)∗Ψ(TN1, g1)|M3 = θ(E2, h2) ∧ (∇g2f2)∗Ψ(TN2, g2)|M3 . Therefore∫
N1

θ(E1, h1) ∧ (∇g1
f1)∗Ψ(TN1, g1)−

∫
N2

θ(E2, h2) ∧ (∇g2
f2)∗Ψ(TN2, g2)

=

∫
M1

θ(E1, h1) ∧ (∇g1
f1)∗Ψ(TM1, g1)−

∫
M2

θ(E2, h2) ∧ (∇g2
f2)∗Ψ(TM2, g2). (6.5.7)

Equation 6.5.1 now is an immediate consequence of 6.5.5 – 6.5.7.

Theorem 6.5.2. Assume that Di = (Ei ↓ Mi, gi, hi,∇g′ifi) are two admissible systems with Mi odd-

dimensional, (∂M1, g1|∂M1) = (∂M2, g2|∂M2) and (E1|∂M1 , h1|∂M1) = (E2|∂M2 , h2|∂M2). Then, if both

Ei ↓Mi and Ei|∂Mi
↓Mi are of determinant class, we get

R(D1) +
1

2

∫
M1

θ(E1, h1) ∧ (∇g′1f1)∗Ψ(TM1, g1) = R(D2) +
1

2

∫
M2

θ(E2, h2) ∧ (∇g′2f2)∗Ψ(TM2, g2).
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Proof. We consider different cases:

Case 1: The systems Di satisfy the hypotheses of Corollary 6.4.3.2:

Consider the admissible system DS2 : (ES
2

C ↓ S2, g, h,∇gf) with ES
2

C ↓ S2 the the trivial complex line

bundle over S2, (f, g) some Morse-Smale pair on S2 and h a parallel metric on ES
2

C . Since S2 is simply-

connected, the system DS2 is of determinant class. It follows from Proposition 6.2.2 that that also the

modified product systems Di ×DS2 are of determinant class, so that

R(Di ×DS2) = 2R(Di), (6.5.8)

where we have used that χ(S2) = 2, as well as the well-known fact that R(DS2) = 0, which follows for

example also from [102, Theorem 4.2].

Next, consider the trivial complex line bundle ED
3

C ↓ D3. Since D3 is simply-connected, it is of deter-

minant class. Moreover, since E|∂M1 ↓ ∂M1 is of determinant class by assumption and ∂M1 is closed,

it follows again from Proposition 6.2.2 that the product bundle E|∂M1
⊗̂ED3

C ↓ ∂M1 ×D3, as well as its

restriction to ∂(∂M1 × D3) = ∂M1 × ∂D3, is of determinant class. Now observe that by construction,

the identification ∂D3 ∼= S2 induces an isomorphism of flat bundles E1⊗̂ED
3

C |∂M1×∂D3 ↓ ∂M1 × ∂D3 ∼=
Ei⊗̂ES

2

C |∂Mi×S2 ↓ ∂Mi × S2 for i = 1, 2. Just as in Proposition 6.5.1, we can therefore define for i = 1, 2

Ni := Mi × S2 ∪∂M1×S2 ∂M1 ×D3,

Ei := Ei⊗̂ES
2

C ∪Ei|∂Mi ⊗̂ES2

C
E1⊗̂ED

3

C .

By Proposition 6.2.8, it follows that Ei ↓ Ni is of determinant class. Hence, the modified product systems

Di ×DS2 satisfy also the assumptions of Proposition 6.5.1, from which we get

R(D1 ×DS2) +
1

2

∫
M1×S2

θ(h1⊗̂h) ∧∇g1×g(f1 + f)∗Ψ
(
T (M1 × S2), g1 × g

)
= R(D2 ×DS2) +

1

2

∫
M2×S2

θ(h2⊗̂h) ∧ (∇g2×g(f2 + f))∗Ψ
(
T (M2 × S2), g2 × g

)
. (6.5.9)

Applying the product formula 6.2.3, we obtain for i = 1, 2

θ(hi⊗̂h) ∧∇gi×g(fi + f)∗Ψ
(
T (Mi × S2), gi × g

)
= (θ(hi) ∧ (∇gifi)∗Ψ(TMi, gi))⊗ e(TS2, g),

Since e(TS2, g) is a representative of the rational Euler class of TS2, we obtain that
∫
S2 e(TS

2, g) =

χ(S2) = 2. Together with the previous equation, this implies for i = 1, 2, that∫
Mi×S2

θ(hi⊗̂h) ∧∇gi×g(fi + f)∗Ψ
(
T (Mi × S2), gi × g

)
= 2

∫
Mi

θ(hi) ∧ (∇gifi)∗Ψ(TMi, gi). (6.5.10)

The result now follows from 6.5.8 – 6.5.10.

Case 2: The systems Di don’t satisfy the hypotheses of Corollary 6.4.3.2:

Since the Di are by assumption admissible, we find a neighborhood U of ∂M , such θ(hi) ≡ 0 on U and

gi ≡ g′i on M \ U , which is why θ(hi) ∧ (∇g′ifi)
∗Ψ(TMi, gi) = θ(hi) ∧ (∇gifi)∗Ψ(TMi, gi) on all of M .

Moreover, since both g′i and gi are of product form near ∂Mi and hi|∂Mi is unimodular, it follows from

Proposition 6.2.4 that R(Di) = R(Ei ↓ Mi, g
′
i, hi,∇g′ifi). Therefore, we may assume without loss of

generality that gi ≡ g′i on all of M .

Now since the Mi are odd-dimensional with ∂M1 = ∂M2, we have χ(M1) = χ(M2). Using this, one

proceeds as in [22, Section 6] to show that there exist subdivisions (fi, gi) of (fi, gi) (with gi = gi near

∂Mi), neighborhoods Ui of Cr(fi) ∪ ∂Mi and an isometry θ : (U1, g1) → (U2, g2) satisfying θ(Cr(f1)) =
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Cr(f2), θ(M1) = M2 and f2 ◦ θ = f1. By Lemma 6.2.7, one additionally finds a Hermitian form hi on the

bundle Ei ↓ Mi (with hi = hi near ∂Mi) so that Di := (Ei ↓ Mi, gi, hi,∇gifi) is an admissible system,

satisfying

R(Di) = R(Di). (6.5.11)

Moreover, since the new systems Di now also satisfy the assertions of Corollary 6.4.3.2, we can apply

Case 1 to them and are finished.

Proof of Theorem 6.1.5: Let D = (E ↓M, g, h,∇g′f) be an Morse-Smale system of product form,

M odd-dimensional, so that E|∂M ↓ ∂M is also of determinant class. After pertubing the metric g

outside from a neighborhood of ∂M , it is because of Proposition 6.2.15 that we may assume without loss

of generality that g ≡ g′ outside from a neighborhood of ∂M , i.e. that D is admissible.

Choose a Morse-Smale pair (f̂ , ĝ) on ∂M . Then

D′ := (E|∂M ↓ ∂M, g|∂M , h|∂M ,∇ĝ f̂)

is a Morse-Smale system of determinant class. Since ∂M is closed, we have by [102, Theorem 4.2]

R(D′) = −1

2

∫
∂M

θ(h|∂M ) ∧ (∇ĝ f̂)∗Ψ(T∂M, g|∂M ) = 0, (6.5.12)

where the last equality follows from the assumption that h∂M is unimodular, i.e. θ(h|∂M ) ≡ 0.

Now recall the trivial system D0 = (EC ↓ I, g0, h0,∇g0f0) over the interval I = [a, b] that we have defined

in 6.1.7 and its relative torsion

R(D0) = − log 2

2
. (6.5.13)

Since ∂M is closed and ∂I = {a, b}, we can form the modified product system

D′ ×D0 = (EI ↓ ∂M × I, gI , hI ,∇ĝI f̂I), (6.5.14)

with EI := E∂M ⊗̂EC, gI := g∂M × g0, ĝI := ĝ × g0, hI := h|∂M ⊗̂h0 and f̂I the sum of the Morse

functions f̂ + f0 that is appropriately modified near the boundary ∂M ×{a, b}, so that D′ ×D0 is a type

II Morse-Smale system. By Proposition 6.2.2, this system is of determinant class as well and satisfies

R(D′ ×D0) = R(D′)− log 2

2
χ(∂M,E)

6.5.12
= − log 2

2
χ(∂M) dim(E). (6.5.15)

Moreover, as θ(h0) ≡ 0 and θ(h|∂M ) = 0 by assumption, we retrieve from the product formula 6.2.5 the

equality

θ(hI) = θ(h|∂M ⊗̂h0) = 0. (6.5.16)

Notice that D′ ×D0 is not necessarily an admissible system. This is due to the fact that neither is gI

trivial nor hI parallel near Cr(f̂I). However, since Cr(f̂I) is disjoint from ∂M × {a, b}, we can pertube

the metrics outside of a small neighborhood of ∂M to produce metrics g̃I and h̃I , so that h̃I is parallel

near Cr(fI), and that we have g̃I ≡ ĝI outside of a neighborhood of ∂M and near Cr(f̂I). By Lemma

5.4.18, the pertubation of the Hermitian form hI can be performed in such way that still, we have

θ(h̃I) ≡ 0, (6.5.17)

h̃I(p) = hI(p), p ∈ Cr(f̂I). (6.5.18)
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For the resulting admissible system DI := (EI ↓ ∂M×I, g̃I , h̃I ,∇ĝI f̂I), we obtain from Proposition 6.2.15

that

R(DI) = R(D′ ×D0) = − log 2

2
χ(∂M) dim(E). (6.5.19)

Observe now that by construction, DI and the disjoint union D t D := (E ↓ M t E ↓ M, g t g, h t
h,∇g′f t ∇g′f) of D with itself are two admissible systems satisfying the hypotheses of Theorem 6.5.2.

This allows us to finally conclude as follows:

2R(D) = R(D tD)

6.5.8
= R(DI)−

∫
M

θ(h) ∧ (∇gf)∗Ψ(TM, g) +
1

2

∫
∂M×I

θ(h̃I) ∧ (∇ĝI f̂I)∗Ψ(T (∂M × I), g̃I)

6.5.17
= R(DI)−

∫
M

θ(h) ∧ (∇gf)∗Ψ(TM, g)

6.5.19
= − log 2

2
χ(∂M) dim(E)−

∫
M

θ(h) ∧ (∇gf)∗Ψ(TM, g). (6.5.20)

This finishes the proof of Theorem 6.1.5.

6.6 Proof of Corollary C and Theorem E

Together with the work done in the previous chapters, we are finally ready to prove Corollary C and

Theorem E. To refresh our memory, we start by re-introducing the broader mathematical realm, from

which these two results emerged (cf. Section 1.3):

A linear algebraic group G over Q is a subgroup of GL(n,C) for some n ∈ N that is the zero locus of

a set of polynomials in the n2 variables with coefficients in Q. We set G to be the identity component

of G(R) = G ∩ GL(n,R). Then G is a real Lie group, which we assume to be semi-simple without

compact factors. For K ⊆ G a maximal compact subgroup, the quotient space X := G/K then has

the natural structure of a non-positively curved globally symmetric space: As a smooth manifold, X

is diffeomorphic to Rd for appropriate d ∈ N and there exists a canonical Riemannian metric g on X

of non-positive sectional curvature, unique up to a positive scalar, turning the transitive action of G

on X into an action by isometries. The fundamental rank δ(G) of G is the non-negative integer

δ(G) := rankC(G)− rankC(K) ∈ N0.

Let ρ : G → GL(V ) be a complex, finite-dimensional irreducible representation. Such ρ gives rise to the

G-equivariant bundle Eρ := X × V ↓ X, on the total space of which G acts diagonally via γ.(x, v) :=

(γ.x, ρ(γ)v). Due to [64, Lemma 3.1], Eρ can be equipped with a canonical G-equivariant Hermitian

metric hρ, unique up to a positive scalar. For each degree 0 ≤ p ≤ d, the pair of metrics (g, hρ)

induce on the associated Eρ-valued de Rham complex Ω∗(X,Eρ) Hodge-Laplacians ∆p : Ωp(X,Eρ) →
Ωp(X,Eρ). For t > 0, let e−t∆p(x, y) : X × X → End(V ) be the associated heat kernel. Due to G-

equivariance of the pair (g, hρ), one has e−t∆p(x, y) = e−t∆p(γ.x, γ.y) for each γ ∈ G. It follows that

there exists a smooth, non-negative, monotonically decreasing function Hp(ρ, t) in t > 0 which satisfies

tr(e−t∆p(x, x)) ≡ Hp(ρ, t). Therefore, we can define for each 0 ≤ p ≤ d the non-negative real number

bp(ρ) := lim
t→∞

Hp(ρ, t). (6.6.1)

It vanishes precisely when there are no harmonic, L2-integrable p-forms in Ωp(X,Eρ). We say that ρ is

L2-acyclic if and only if bp(ρ) = 0 for each 0 ≤ p ≤ d. From the collection of functions Hp(ρ, t) a number
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τ(2)(ρ) ∈ R>0 is constructed as follows: By [9, Lemma 3.8, Proposition 5.2],

1. we have Hp(ρ, t) ∈ O(t− dim(X)/2) for t→ 0. It follows that for s ∈ C with <(s) >> 0, there exists

ε > 0 such the expression ζpρ (s) := Γ(s)−1
∫ ε

0
ts−1(Hp(ρ, t) − bp(ρ))dt determines a holomorphic

function, that extends to a meromorphic function on all of C which is regular at 0.

2. We have
∫∞
ε
t−1(Hp(ρ, t)− bp(ρ))dt <∞ for each 0 ≤ p ≤ d.

3. The real number

τ(2)(ρ) :=
1

2

d∑
p=0

(−1)p+1p

(
d

ds
ζρ(s)|s=0 +

∫ ∞
ε

t−1(Hp(ρ, t)− bp(ρ))dt

)
is well-defined by assertions 1 and 2. Moreover, there exists a positive number c(ρ) > 0, satisfying

τ(2)(ρ) =

0 if δ(G) 6= 1,

(−1)
d−1

2 c(ρ) if δ(G) = 1.
(6.6.2)

The number τ(2)(ρ) does not depend on the normalization constant of the Hermitian form hρ, and changes

by the factor C−d when scaling the Riemannian metric g by the factor C > 0. In particular, given a

lattice Γ < G, it follows that the positive number

TAn(2) (Γ, ρ) := exp(Vol(Γ) · τ(2)(ρ)) ∈ R>0 .

does not depend on the normalization constants of g and hρ. Here, Vol(Γ) denotes the Riemannian

volume of a fundamental domain for the Γ-action on X.

In the case that Γ is torsion-free, the bundle Eρ ↓ X descends to a flat bundle Γ\Eρ ↓ Γ\X over the

locally symmetric quotient space Γ\X, which is precisely the flat bundle associated to the restricted

representation ρ|Γ. To avoid cumbersome notation, we denote the respective quotient metrics on Γ\Eρ ↓
Γ\X also by g and hρ on Γ\Eρ ↓ Γ\X. It is now easily verified from the definitions that the flat bundle

(Γ\Eρ ↓ Γ\X) is analytically L2-acyclic if and only if bp(ρ) = 0 for each 0 ≤ p ≤ d, and that we have

TAn(2) (Γ\X, ρ|Γ, g, hρ) = TAn(2) (Γ, ρ). (6.6.3)

Since by assumption, G is a connected semi-simple Lie group with finite center and no compact factors

and Γ < G is a torsion-free lattice, the quotient manifold Γ\X, although not necessarily compact, is

always a CW-model for the classifying space BΓ. That is because X ∼= Rd is contractible. Notably,

however, it is not finite CW-model whenever Γ is not uniform. Regardless, it is known, cf. [4, Theorem

13.1], that Γ\X is always the interior of a compact manifold with boundary, which we denote by Γ\X.

As such, a given CW-structure on Γ\X always serves as a finite CW-model for BΓ.

Identifying Γ with the fundamental group of Γ\X under the homotopy equivalent inclusion Γ\X ↪→ Γ\X,

choosing a finite CW-structure on Γ\X and some basis on the representation space V , we can form the

L2-cochain complex C∗(2)(Y, ρ), defined over a preferred universal cover Y of Γ\X (equipped with the

induced Γ-CW structure). It is a finite cochain complex of Hilbert N (Γ)-modules. The pair (Γ, ρ) is said

to be det-L2-acyclic if the combinatorial complex C∗(2)(Y, ρ) is det-L2-acyclic as in Definition 5.2.3. Since

G is semi-simple, ρ is unimodular (see for example [73, Lemma 4.3]). Thus, if (Γ, ρ) is det-L2-acyclic, we

can define by Theorem 5.3.12 the topological L2-torsion

TTop(2) (Γ, ρ) = TTop(2) (Γ\X, ρ) ∈ R>0 . (6.6.4)
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Since Wh(Γ) = 0 (see [36, Proposition 0.10]), TTop(2) (Γ, ρ) is in fact a homotopy invariant of the space

Γ\X: We may have chosen any finite CW -model of BΓ to define the same number TTop(2) (Γ, ρ) in the

above fashion. This follows from the arguments succeeding Definition 5.3.14.

Corollary C. In the above situation, suppose that ρ is L2-acyclic and that Γ < G is a uniform lattice.

Then the pair (Γ, ρ) is det-L2-acyclic. Moreover, we have an equality of L2-torsion elements

TTop(2) (Γ, ρ) = TAn(2) (Γ, ρ). (6.6.5)

Proof. Since Γ\X is compact, we have Γ\X = Γ\X. Therefore, we may choose Y := X as the universal

cover of Γ\X and obtain by Theorem 6.3.5 a chain homotopy equivalence between the combinatorial L2-

cochain complex C∗(2)(X, ρ) and the twisted L2-de Rham complex Ω∗(2)(X,E
ρ) (as complexes of Hilbert

N (Γ)-modules). Since det-L2-acyclicity is a chain-homotopy invariant of Hilbert cochain complexes by

Corollaries 4.1.32 and 4.1.38, and det-L2-acyclicity of Hilbert N (Γ)-cochain complex Ω∗(2)(X,E
ρ, hρ) is

satisfied if and only if ρ is L2-acyclic, the first assertion follows. For the second assertion, first note

that hρ is unimodular. This can be deduced from the fact that hρ is G-equivariant and the underlying

representation ρ is unimodular. The proof is completely analogous to the one carried out in Section 5.5

for the special case G = SO0(d, 1), and will be therefore be omitted. Finally, taking Equation 6.6.3 into

account, we may apply Theorem 6.1.8 to obtain the equality TTop(2) (Γ, ρ) = TAn(2) (Γ, ρ).

Theorem E. Let G := SO0(n, 1) with n odd, ρ : G → GL(V ) be an irreducible, finite-dimensional,

complex representation and Γ < G a torsion-free lattice. Then the following holds:

1. The pair (Γ, ρ) is det-L2-acyclic.

2. One has

TAn(2) (Γ, ρ) = TTop(2) (Γ, ρ). (6.6.6)

Proof. Let MR ⊆ Hn (R ∈ R≥0) be the the exhaustion of complete, Γ-invariant hyperbolic submanifolds

constructed as in Section 2.3. Firstly, Equation 6.6.3 and Theorem 2.3.13 imply that

TAn(2) (Γ, ρ) = lim
R→∞

TAn(2) (Γ\MR, ρ, g, hρ). (6.6.7)

Secondly, we can apply Corollary 4.2.18 in order to see that the L2-de Rham complex Ω∗(2)(MR, E
ρ, g, hρ)

(with absolute boundary conditions) is det-L2-acyclic. Due to Theorem 6.3.5, the same must therefore

be true for the cellular cochain complex associated to a Γ-CW structure of MR. Since Γ\MR is a finite

CW-model for Γ\Hn, we now obtain by definition that also (Γ, ρ) is det-L2-acyclic. Moreover, this allows

us to apply Theorem 5.5.2 in order to obtain an equality of topological L2-torsions

TTop(2) (Γ, ρ) = TTop(2) (Γ\MR, ρ) (6.6.8)

for all R > 0. Thirdly, we have both that Wh(Γ) = 0 by [36, Proposition 0.10], and that the pair

(∂MR, ρ) is of determinant class by Corollary 4.2.13. Therefore, if we denote by 11 : GC → C the trivial

representation, we may apply Theorem 6.1.8 to obtain that

log

(
TAn(2) (Γ\MR, ρ, g, hρ)

TTop(2) (Γ\MR, ρ)

)
= dim(ρ) · log

(
TAn(2) (Γ\MR, 11, g, h11)

TTop(2) (Γ\MR, 11)

)
. (6.6.9)
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Finally, the main result of [55] implies that

lim
R→∞

log

(
TAn(2) (Γ\MR, 11, g, h11)

TTop(2) (Γ\MR, 11)

)
= 0. (6.6.10)

The equality TAn(2) (Γ, ρ) = TTop(2) (Γ, ρ) is now a direct consequence of Equations 6.6.7–6.6.10.
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