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ABSTRACT: Precipitation forecasts are of large societal value in the tropics. Here, we compare 1–5-day ensemble

predictions from the European Centre for Medium-RangeWeather Forecasts (ECMWF, 2009–17) and the Meteorological

Service of Canada (MSC, 2009–16) over 308S–308N with an extended probabilistic climatology based on the Tropical

Rainfall Measuring Mission 3 B42 gridded dataset. Both models predict rainfall occurrence better than the reference only

over about half of all land points, with a better performance byMSC.After applying the postprocessing technique ensemble

model output statistics, this fraction increases to 87% (ECMWF) and 82% (MSC). For rainfall amount there is skill in many

tropical areas (about 60% of land points), which can be increased by postprocessing to 97% (ECMWF) and 88% (MSC).

Forecasts for extremes (.20mm) are only marginally worse than those of occurrence but do not improve as much through

postprocessing, particularly over dry areas. Forecast performance is generally best over arid Australia and worst over oceanic

deserts, the Andes and Himalayas, as well as over tropical Africa, where models misrepresent the high degree of convective

organization, such that even postprocessed forecasts are hardly better than climatology. Skill of 5-day accumulated forecasts

often exceeds that of shorter ranges, as timing errors matter less. An increase in resolution and major model update in 2010 has

significantly improved ECMWF predictions. Especially over tropical Africa new techniques such as convection-permitting

models or combined statistical-dynamical forecasts may be needed to generate skill beyond the climatological reference.

SIGNIFICANCE STATEMENT: Accurate forecasts of rainfall could support tropical countries to more effectively

manage key resources such as water, food, health, and energy. Here we assessed the usefulness of 1–5-day predictions

from two leading weather centers against satellite-based rainfall estimates. The forecast models failed to predict the

probability of rainfall occurrence better than a climatological reference in many parts of the tropics but showed some

value in predicting rainfall amounts and even extremes. Statistical correction methods can significantly improve the raw

model output except for high mountain ranges, some coastal areas, and most of tropical Africa. Future studies should

refine statistical correction methods, run forecast models at higher spatial resolution, improve model physics, and

experiment with statistical forecast techniques.

KEYWORDS: Tropics; Precipitation; Statistical techniques; Ensembles; Forecast verification/skill; Probabilistic Quantitative

Precipitation Forecasting (PQPF)

1. Introduction
Numerical weather prediction (NWP) has steadily improved

over the last decades, allowing a multitude of socioeconomic

benefits to be realized (Bauer et al. 2015; Alley et al. 2019).

While progress is unmistakable for 500-hPa geopotential

heights and mean sea level pressure in the extratropics, im-

provements in the predictions of many other parameters are

more variable (Navascués et al. 2013). For example, forecasts

of European cloud cover have hardly improved over the last

more than 10 years (Haiden et al. 2018). A region generally

characterized by low forecast skill and high uncertainty is the

tropical belt. Haiden et al. (2012) note that 1-day precipitation

forecasts at low latitudes have skill similar to 6-day forecasts in

the extratropics. Little progress has been made also for free-

tropospheric winds in the tropics (Haiden et al. 2018).

For variables with large forecast uncertainty, ensemble

prediction is of particular importance, even for short ranges

(Leutbecher and Palmer 2008; Zhang and Pu 2010). However,

Vogel et al. (2018) find that there is little to no skill in pre-

cipitation forecasts from ten global NWP ensemble prediction

systems over northern tropical Africa. Their results are robust

against temporal and spatial aggregation and point to fundamental

problems inpredictingprecipitation in this region. Similar problems

were reported by Medina et al. (2019) for tropical Brazil. Models

appear to performbetter in areas in the outer tropics and subtropics

(Medina et al. 2019; Webster et al. 2011) or during time periods
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when the tropics are strongly influenced by the more predictable

extratropical circulation (Davis et al. 2013; van der Linden

et al. 2017). The sobering performance of current NWP

systems in the tropics have substantial socioeconomic

implications, as the majority of developing countries are

located in this area. Their populations are especially vulnera-

ble to weather disasters and often underserved by forecasting

(Alley et al. 2019).

Why is there so little progress in tropical weather forecast-

ing, although many challenges have been realized for decades

(e.g., Smith et al. 2001)? First, initial uncertainties tend to be

largest in equatorial regions (�Zagar 2017). This is caused by

an insufficient observational network, data assimilation algo-

rithms optimized for midlatitude conditions, and large model

errors, which also contribute to a fast degradation of forecast

quality (Privé and Errico 2013). Conventional observations

such as surface stations and weather balloons are scarce at low

latitudes, particularly over the vast tropical oceans. Consequently,

the observing system is dominated by satellite data, which are

heavily skewed toward measuring atmospheric mass variables

rather than wind (e.g., Baker et al. 2014). However, data denial

experiments for periods with a much enhanced radiosonde

network during field campaigns overWest Africa have shown a

relatively small impact on model performance, illustrating

the importance of model errors and the assimilation system

(Agustí-Panareda et al. 2010; van der Linden et al. 2020).

Second, the tropics are dominated by convective processes

and are therefore particularly sensitive to the representation of

deep convection, which is parameterized in all current global

NWP models. This can create an erroneous diurnal cycle and

impede the mesoscale organization of convection, which in

turn can quickly lead to a degradation of, for example, the

West African monsoon circulation (Marsham et al. 2013) with

impacts on forecasts far beyond Africa (Pante and Knippertz

2019). Despite many improvements, however, forecasts using

explicit convection still suffer from biases and other deficits

(Kniffka et al. 2020; Peters et al. 2019), particularly in areas

where a high degree of convective organization makes fore-

casts challenging. Estimates of intrinsic predictability using

storm-resolving simulations show that in the tropics convection

limits the forecast horizon to few days at scales of 100 km

(Judt 2020).

Third, small-scale physical processes such as cloud micro-

physics and radiation can relatively easily affect scales large

enough to be of interest to predictions through their effects on

the vertical profiles of latent (and radiative) heating and thus

divergent wind. For example, convective invigoration by in-

creased cloud condensation nuclei (Rosenfeld et al. 2008)

and larger or longer-lived anvils (Fan et al. 2013) affect con-

vective organization and coupling to larger-scale circulations.

The most important example of such a coupling on weather

time scales are equatorial waves, classically referring to

planetary-scale solutions of the shallow water equations for

the tropics (Matsuno 1966; Wheeler and Kiladis 1999). The

coupling relies on a wave-induced modification of environ-

mental conditions for convection such as convergence, sta-

bility, moisture availability, and shear (Schlueter et al. 2019a,b).

Although a relatively high level of intrinsic predictability has

recently been shown for equatorial waves (Li and Stechmann

2020; Judt 2020), NWP models are known to lose wave energy

too quickly and to misrepresent propagation, partly due to

precipitation being triggered too easily by convective parame-

terization schemes (Lin et al. 2008; Frierson et al. 2011; Dias

et al. 2018; Bengtsson et al. 2019).

This paper provides a comprehensive assessment of our

current ability to predict rainfall in the tropics with global

ensemble systems. Predictions from the European Centre for

Medium-Range Weather Forecasts (ECMWF, 2009–17) and

theMeteorological Service of Canada (MSC, 2009–16 only due

to limited data availability) will be compared, since both per-

formed well in past model intercomparisons over West Africa

(Vogel et al. 2018) and Ethiopia by Stellingwerf et al. (2020).

The analysis will evaluate the whole probability distribution

with separate assessments for rainfall occurrence, amount, and

extremes. In addition, the potential of statistical postprocessing

to correct for systematic biases and dispersion errors (see

Vannitsem et al. 2018, for an overview) is tested here system-

atically for rainfall forecasts for the first time, to our knowledge.

The results will be a first step toward potential improvements to

be designed and tested specifically for the tropics, which in the

long run can inform socioeconomically important decision

in areas such as weather warnings (particularly of heavy

precipitation and flooding; see, e.g., Engel et al. 2017), water

management, energy production, agriculture, and disease

prevention.

Section 2 introduces the analyzed ensemble forecasts and the

satellite observations used for validation. Section 3 explains

the construction of our climatological reference forecast and

the methods used for forecast evaluation and to statistically

postprocess raw ensemble precipitation forecasts. Section 4

presents the results of our investigations, starting with the

assessment of calibration and reliability of raw and post-

processed ensemble forecasts before considering the skill in

predicting precipitation occurrence, amount, and extremes.

Additionally, the improvement over the investigation period is

analyzed. Section 5 summarizes the main outcomes and gives

an outlook.

2. Data
The evaluation of precipitation forecasts by the ECMWF

and MSC ensembles will be done over the tropical belt be-

tween 308S and 308N. Both systems will be described in

section 2a. Tropical Rainfall Measuring Mission (TRMM)

rainfall estimates will be used as an observational reference

and are described in section 2b. All datasets are spatially av-

eraged over the same 18 3 18 longitude–latitude boxes resulting
in 21 600 data points. Forecast evaluation results will likely

depend on spatial resolution but Vogel et al. (2018) showed

that their conclusions for northern tropical Africa were fairly

robust for latitude–longitude boxes from 0.258 3 0.258 to
28 3 58. We assess forecast quality for accumulation periods

between 1 and 5 days. Due to data availability the evaluation

will cover the period 2009–17 for ECMWF forecasts and

2009–16 for MSC. Only annual statistics will be presented

but particularly for the outer (and often drier) parts of the

tropics, a more seasonal perspective would be beneficial.
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a. Forecasts
ECMWF is one of the leading providers of ensemble pre-

diction information worldwide. Its ensemble prediction system

(EPS) consists of a high-resolution (HRES) run, a control

(CNT) run, and 50 perturbed ensemble (ENS) members. The

HRES and CNT runs are started from unperturbed initial

conditions and differ only in their spatial resolution. The ENS

members have the same spatial resolution as the CNT run but

are started from perturbed initial conditions and are subject

to a stochastic representation of model uncertainties (Buizza

et al. 1999). Molteni et al. (1996) and Leutbecher and Palmer

(2008) describe generation and properties of the ECMWF

EPS in detail. For comparison, we consider the EPS of

the Meteorological Service of Canada (MSC; 21 members).

It is among the best-performing EPSs for accumulated

precipitation in northern tropical Africa (Vogel et al. 2018).

Both ensemble forecasts are accessible via the TIGGE archive

(https://confluence.ecmwf.int/display/TIGGE). Park et al. (2008)

and Bougeault et al. (2010) discuss objectives and the setup of

TIGGE, including the participating EPSs, while Swinbank

et al. (2016) report on recent research and achievements. The

data were spatially averaged from the original 0.58 to a 18 grid.
For both models, we use forecasts initialized at 0000 UTC. The

forecast quality of both EPSs can be monitored in quasi-real

time at the World Meteorological Organization (WMO) Lead

Centre on Verification of Ensemble Prediction Systems

website http://epsv.kishou.go.jp/EPSv.1 It displays average

scores for standard atmospheric variables for the tropical

belt between 208S and 208N, and the Northern and Southern

Hemisphere extratropics.

b. Observations
For a spatially consistent and complete forecast verification,

we rely on the TRMM 3B42 gridded dataset. TRMM merges

active measurements from a space-borne precipitation radar

with passive, radar-calibrated information from infrared as

well as microwave measurements (Huffman et al. 2007). Based

on monthly accumulations, TRMM estimates are calibrated

against nearby gauge observations. The data are available on a

0.258 3 0.258 grid with 3-hourly temporal resolution.

The TRMM 3B42 product is regarded to be one of the best

available satellite precipitation estimates (e.g., Maggioni et al.

2016) and has been shown to represent daily and even sub-

daily rainfall over tropical Africa (e.g., Pfeifroth et al. 2015;

Camberlin et al. 2019). There are, however, a number of

known deficiencies (Huffman et al. 2007). Over land, TRMM

generally underestimates the frequency and amount of rain

from warm clouds, typically found over coastal areas with

onshore trade or monsoonal winds and in the vicinity of

mountains (e.g., Dinku et al. 2018). Another potential prob-

lem is an underestimation of extreme values, partly due to

beam filling in the microwave bands (Young et al. 2014;

Monsieurs et al. 2018). Over ocean, precipitation detection is

more challenging than over land and calibration with gauges

is not possible. The warm rain/drizzle problem is most severe

over dry subtropical regions with extensive marine stratus.

c. Köppen–Geiger climates

For an assessment of forecast quality at a regional level, the

tropics are divided into Köppen–Geiger climates by conti-

nents. This classification (Köppen 1900; Geiger 1961) uses five

main climate zones and subgroups within each zone that are

defined by seasonal precipitation patterns. Kottek et al.

(2006) provide an updated Köppen–Geiger classification

with a resolution of 0.258 3 0.258, available at http://koeppen-

geiger.vu-wien.ac.at/present.htm, that we coarsened to 18 3 18
to match the other datasets. We defined in total ten climatic

regions with similar characteristics (see color shadings in

Fig. 2a). For the most frequent main climates Equatorial

(A) and Arid (B), we added continental labels: Arid North

(N) Africa, Tropical Africa, Arid South (S) Africa, Arid

Americas (mostly Mexico, eastern Brazil, and areas near the

Andes), Tropical Americas, Arid Asia (mostly southwestern

Asia and parts of India), Tropical Asia (including theMaritime

Continent and northern Australia), and Arid Australia. All

areas on different continents belonging to Warm Temperate

(C) are labeled ‘‘Temperate climates.’’ The main climates

Snow (D) and Polar (E) are found in only 6 and 91 grid boxes,

respectively, in the highAndes andHimalayas, and aremerged

under the label ‘‘Mountain climates.’’ The number of grid

boxes in each region are provided in Table 1.

3. Methods
For probabilistic forecasts, both the correctness of the

probabilistic statement and its sharpness need to be evaluated.

To measure the skill of a forecast, an adequate reference needs

to be defined (section 3a). To measure the calibration of an

ensemble system, probability integral transform (PIT) his-

tograms and reliability diagrams will be used (section 3b).

The actual evaluation then requires the application of proper

scoring rules (section 3c). Finally the employed ensemble

postprocessing method will be detailed (section 3d). In the

results section, we will then analyze both raw and post-

processed forecasts side-by-side to bring out the benefit of

statistical correction, which we deem useful for model de-

velopers, forecasters, and users of forecast products.

a. Reference forecasts
For a reference forecast, the concept of an extended prob-

abilistic climatology (EPC) was applied following Vogel et al.

(2018). For a given date, EPC generates an observation-based

ensemble forecast by using all observations for this calendar

date during 1998–2017, but without the considered year.

Recently, Lang et al. (2020) compared various climatological

methods and showed superiority of the EPC approach. For

more robust statistics, we explored adding further days around

the day of interest, testing window lengths of up to 640 days

with a step size of 65 days. In terms of skill measured by the

cross-verified continuous ranked probability score (CRPS; see

section 3c), different window lengths for individual Köppen–
Geiger climate regions do not deviate by more than 0.008

from a reference window length of620 days (Fig. 1). There is a

1On thiswebpage, theMSC is denoted asCanadianMeteorological

Centre (CMC).
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general tendency for arid climates to perform better for wider

windows and for tropical climates to have lowest CRPS for

narrower windows, possibly due to effects of seasonal changes

such as monsoon onsets. Ultimately, we decided to use the

optimal value within the65–40-day range for each grid box in

order to maximize the skill of EPC over the tropical belt.

b. Calibration
PIT histograms and verification rank histograms are stan-

dard tools for the assessment of calibration. Hamill (2001),

Gneiting et al. (2007), and Wilks (2019) provide further in-

sights into their use and interpretation. To accommodate en-

semble forecasts with different numbers of ensemblemembers,

we use unified PIT (uPIT) histograms as in Vogel et al. (2018).

The forecast distribution is divided into 20 bins of equal width

such that each bin has a nominal value of 5%. This allows for a

unified treatment of PIT and verification rank histograms.

Calibrated probabilistic forecasts have uniform PIT histo-

grams, while a U-shape (skew) indicates underdispersion (bias).

The evaluation of probability of precipitation (PoP) or accu-

mulation above a given threshold is based on reliability dia-

grams (e.g., Wilks 2019), where the observed frequency of

occurrence is plotted against the forecast probability.

c. Proper scoring rules
To evaluate precipitation forecast quality we use proper

scoring rules that assess calibration and sharpness simulta-

neously (Gneiting and Raftery 2007;Wilks 2019). We evaluate

the quality of forecasts for the PoP by means of the Brier score

(BS; Brier 1950). For a probabilistic precipitation forecast with

cumulative distribution function (CDF) F and verifying ob-

servation y, the CRPS (Gneiting et al. 2007) is defined as

CRPS(F, y)5

ð‘
2‘

[F(x)2 1(x$ y)]2 dx .

Here, 1 is an indicator function, equal to 1 if the argument is

true and equal to 0 otherwise. TheCRPS is negatively oriented,

reported in the unit of the observation (here, millimeter). This

way higher scores correspond to less skillful forecasts.

For comparative assessments, we rely on skill scores (i.e.,

the BSS and CRPSS) that indicate skill relative to a reference

forecast (here EPC). Thereby a higher (lower) forecast quality

of the investigated forecast compared to the reference forecast

is indicated by positive (negative) skill. Equal predictive per-

formance of both forecasts yields a skill of zero and the skill

of a perfect forecast is one.

d. Statistical postprocessing

Statistical postprocessing corrects systematic deficiencies

of NWP model output and allows to assess its true value

(Vannitsem et al. 2018). In view of the typically small differ-

ences in predictive performance between different statistical

postprocessing methods, we rely in the following on the well-

established and computationally efficient method of ensemble

model output statistics (EMOS; Gneiting et al. 2005) using

generalized extreme value (GEV) distributions.

The idea of the EMOS GEV approach by Scheuerer (2014)

is to convert an ensemble forecast into a parametric GEV

distribution. The three-parameter GEV family of proba-

bility distributions allows a point mass for zero precipitation

and flexible modeling in positive precipitation accumulations,

depending on the specifics of the ensemble forecast at hand.

For mathematical details we refer to the original paper by

Scheuerer (2014).

Postprocessing techniques rely on statistical parameters

that need to be estimated from training data, comprising

forecast–observation-pairs from the TRMM pixel at hand

and typically froma rolling training period consisting of thenmost

recent days for which data are available at the initialization time.

We use a local neighborhood approachwith n5 500 training days

such that for each TRMMpixel its past 500 forecast–observation-

pairs as well as the forecast–observation-pairs of eight adjacent

grid boxes are used for training data composition. Near coasts

the eight nearest grid boxes that belong to the land–sea class of

TABLE 1. Fraction of grid boxes (%)with positive skill for 1-day precipitation forecasts in each climatic region and all regions combined.

Individual columns show values for the three skill measures, BSS for occurrence of precipitation (threshold 0.2mm), CRPSS, and BSS for

extreme events (exceedance of 20mm), for the two models ECMWF (2009–17) and MSC (2009–16), and for raw and postprocessed

forecasts (left and right values, respectively). The numbers in parentheses after the region names give the total number of grid boxes in

each region.

BSS 0.2mm CRPSS BSS 20mm

Region ECMWF MSC ECMWF MSC ECMWF MSC

Arid Americas (150) 35j81 45j82 58j91 61j84 34j67 47j60
Arid Asia (394) 58j94 21j95 71j98 46j92 46j59 55j52
Arid Australia (426) 98j100 99j100 100j100 100j100 83j96 87j95
Arid North Africa (1103) 68j91 46j84 46j91 17j65 22j29 20j16
Arid South Africa (244) 82j98 80j99 85j99 91j98 16j72 36j55
Mountain climate (97) 0j39 0j29 1j77 1j51 7j60 6j39
Tropical Africa (793) 24j74 46j60 19j97 46j84 17j82 24j65
Tropical Americas (1034) 44j93 67j90 69j100 87j99 51j99 63j94
Tropical Asia (529) 30j87 57j78 81j100 88j99 80j99 71j95
Temperate climate (817) 34j83 39j82 66j99 75j98 61j96 73j87
Combined (5587) 49j87 53j82 60j97 62j88 44j76 50j67
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the original point are considered. Parameter estimation is then

based on CRPS minimization over the training data. All

computations were performed in R (R Core Team 2018) and

the details of the EMOS GEV implementation closely follow

Vogel et al. (2018). The fact that we evaluate predictions post-

processed using TRMM data relative to TRMM-based EPC

forecasts should lead to a somewhat optimistic skill estimate.

However, Vogel et al. (2018) could show for northern tropical

Africa that conclusions on forecast performance do not depend

on whether satellite or station observations are used.

4. Results
The results section is organized as follows: The first three

subsections discuss results for ECMWF only in all detail. The

first of these concentrates on aspects of calibration and re-

liability with respect to the occurrence of precipitation on

forecast day 1, while the following two address aspects of

skill. As a threshold for the occurrence of precipitation, we use

0.2mm irrespectively of the accumulation period, but our re-

sults change minimally under different thresholds up to 1mm.

The latter part will be broken down into aspects of rainfall

occurrence, rainfall distribution, and extremes as well as into

1- versus 5-day accumulation periods. Results for raw en-

semble output will be compared to postprocessed forecasts

throughout. In the fourth subsection corresponding results

for the MSC model will be presented and discussed relative to

ECMWF. The fifth subsection present regional summary sta-

tistics for different skill measures, the two models, and raw and

postprocessed forecasts. The final subsection will then address

the question to what extent we can see improvements in the

forecasting systems over time.

a. Calibration and reliability of the ECMWF ensemble
Concentrating first on land areas, Fig. 2a displays PIT his-

tograms based on 1-day accumulated precipitation forecasts by

the ECMWFEPS for the Köppen–Geiger climates and regions

as introduced in section 2c. For all ten regions ECMWF raw

ensemble forecasts are strongly underdispersive (or over-

confident), as indicated by the tendency of the observation

to rank lowest or highest compared to all ensemble members.

Moreover there is a clear positive skew in the PIT histograms

in all regions indicating that the observation frequently lies

below the smallest ensemble member. This is mostly caused

by a tendency of the model to produce light rain, when no

precipitation occurs in reality. The fraction of such situations is

indicated by the leftmost bin, which comprises between 30%

(Arid Australia) and 48% (Arid Americas) of all forecasts.

This value should be compared to the nominal value of 5%

for a uniform distribution. There is no clear pattern in how this

fraction is distributed geographically.

The miscalibration evident from the PIT histograms can be

summarized in a single number, the so-called (scaled) dis-

crepancymeasure as defined by Berrocal et al. (2007). It attains

values between zero and one, where lower values indicate

better calibration. Figure 2b displays the spatial distribution of

this measure for the ECMWF raw ensemble forecasts used for

Fig. 2a. The results confirm that the ECMWF ensemble is not

well calibrated anywhere in the tropics, but that calibration is

even worse over many oceanic areas. The highest values are

reached over the so-called oceanic deserts to the west of South

America and southern Africa. These areas receive very little

precipitation in reality and are dominated by persistent stra-

tocumulus decks with occasional drizzle or light rain. TRMM is

known to have large uncertainties in rain fraction (see Fig. 4c in

Berg et al. 2010) and a comparatively large dry bias (Huffman

et al. 2007) in these regions. The often light rain from warm

clouds is generally challenging to detect from space (Young

et al. 2018). This suggests that the calibration (and skill) of the

model is presumably assessed worse in these regions than it

actually is—particularly in recent years, as ECMWF has ad-

dressed relevant problems in their forecast model (Ahlgrimm

and Forbes 2014). In contrast, the oceanic intertropical conver-

gence zone (ITCZ) regions, which are dominated by frequent

rainfall from deep convection, have much lower discrep-

ancy values. Interestingly, such clear differences between

moister and drier parts of the tropics are not seen over land.

Several coastal areas stand out as having particularly low cal-

ibration (e.g., eastern Brazil, eastern Madagascar, central

Mexico, eastern Kenya, and Tanzania). These are all regions

characterized by moist onshore flow that often feeds warm

FIG. 1. CRPS skill of 1-day EPC-based precipitation forecasts using different window

lengths (in steps of65 days) for different climatic regions (see Fig. 2 for the region definition).

The reference length used here is 20 days. Results are shown for the entire study region

308S–308N and the TRMM data record 1998–2017.
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rain. It is well known that TRMM tends to have a negative bias

in such conditions (see section 2b) that could explain the low

calibration, while additional model errors can of course not be

ruled out. The overall lack of calibration in ECMWF ensemble

forecasts is robust across accumulation times from 1 to 5 days

(not shown). However, there is a general tendency of wet (dry)

areas to become better (worse) calibrated with longer accu-

mulation periods. We speculate that this is related to a rela-

tively high frequency of 5-day dry periods in observations,

while the model tends to rain too often creating an even larger

mismatch.

Figure 3a displays reliability diagrams for the 1-day occur-

rence of precipitation as forecast by EPC. As expected, the

reliability of such a forecast is close to perfect in all climatic

regions. The gray bars at the bottom of the individual diagrams

show the climatological distribution of PoP. All arid regions

favor low values with some variability between the very dry

Sahara and slightly moister Arid S Africa for example. The

moister regions either feature a unique mode at high values

such as the Tropical Americas or show a bimodal distribution

such as Tropical Africa that reflects seasonal shifts (also evi-

dent in Mountain climates). The Temperate climate zone

stands out as having an almost uniform distribution.

A comparable analysis for forecasts by the ECMWF raw

ensemble (Fig. 3b) reveals a clear tendency in all regions to

predominantly issue forecasts close to 0% and 100% PoP,

while all other categories are sparsely populated. The share

between the two extreme categories appears to be related

mostly to the overall climatology (i.e., arid regions being

dominated by dry forecasts). Such behavior has also been de-

scribed by Medina et al. (2019) for subregions in Brazil. In

Mountain climates many forecasts with low rain probability

do have precipitation in reality (about a quarter). This dis-

crepancy indicates potential problems in both observations

and model forecasts. Clearly, the model resolution is not

sufficient to represent the many orographic effects that can

trigger convection (e.g., elevated heating, rotors, mountain

waves, barrier winds, see review by Houze 2012). This often

results in lower predictive performance as analyzed, for ex-

ample, by Richard et al. (2007) for the European Alps. On

the other hand, it has been shown that TRMM performs

relatively poor in the detection of precipitation over moun-

tainous terrain (Barros et al. 2006; Hirpa et al. 2010; Maggioni

et al. 2016), prompting more caution in the interpretation

of the results for this category. Despite these regional

differences in low-probability predictions, forecasts of

very high probabilities for rainfall occurrence generally

verify in only about 60%–90% of cases depending on the

region. This underlines that the forecasts are overall highly

overconfident.

After statistical postprocessing ECMWF forecasts are much

better calibrated, but with a light tendency to be under-

confident leading to small deviations from a uniform distribu-

tion in the PIT histogram (not shown). Figure 3c shows the

improvement in reliability. In all regions, much larger parts

of the probability space reflected by the gray bars are popu-

lated, indicating a lower resolution of postprocessed forecasts.

The PoP distribution is now much closer to that of EPC

(Fig. 3a), although a number of smaller deviations remain. For

example in several arid regions, too many low probability

forecasts still occur. The highest rainfall probability category

is so sparsely populuated in some regions that sampling

FIG. 2. Calibration of 1-day ECMWF raw ensemble forecasts for precipitation during 2009–17. (a) PIT histograms with 20 bins for the

10 Köppen–Geiger climates indicated with color shading and correspondingly colored arrows. The percentage of uPIT values in the

leftmost bin is indicated and should be compared to the nominal value of 5% under calibration. (b) Spatial distribution of the discrepancy

between ECMWF raw ensemble and calibrated forecasts as defined by Berrocal et al. (2007). Lower values indicate better calibration.
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problems lead to nonmonotonicities (e.g., Arid North Africa

and Asia). The reliability curves are now much closer to the

diagonal in all regions despite a general tendency to be

underforecasting for low-probability forecasts and over-

forecasting for high-probability forecasts.

b. Skill of the ECMWF ensemble
Figure 4 displays the BSS of ECMWF raw 1-day ensemble

forecasts for the occurrence of precipitation relative to EPC.

We see a clear contrast between land areas and oceans. Over

the latter, BSS is neutral to negative almost everywhere.

Skillful forecasts are only found right next to land areas (e.g.,

off the coast of northwestern Australia, Persian Gulf). Areas

with neutral skill over open oceans are predominantly moist

regions such as the ITCZ over the equatorial Pacific and

Atlantic Oceans as well as the warm water areas around the

Maritime Continent and over the equatorial Indian Ocean.

Interestingly, skill is also enhanced over the South Pacific and

Atlantic Convergence Zones and just west of the northern

African and Central American landmasses. The latter may be

related to continental convective complexes moving out to the

ocean and to forcing from the extratropics during the transition

seasons (e.g., Kiladis and Weickmann 1997; Knippertz 2007).

To first order, the pattern over the ocean has some resem-

blance with the discrepancy measure shown in Fig. 2b, indi-

cating that a lack of calibration explains at least part of the poor

skill over the ocean. Forecasts over land are generally more

skillful but regional contrasts can be very large. There is a

general tendency for higher skill in the relatively drier outer

tropics away from largest mountain chains (Australia, southern

Brazil, the Sahara, southwestern Africa, southwestern Asia).

Skill is often negative in coastal and mountainous regions

in the inner tropics (e.g., Andes, Central America, eastern

Brazil, western Central Africa, lowlands in East Africa,

eastern Madagascar, Himalayas). It appears that the local

topographic features responsible for stratiform rainfall gener-

ation or the triggering of convection (and possibly its orga-

nization) are much better represented by EPC than by the

dynamical forecast model in these areas. However, as already

pointed out in the previous subsection, skill may be under-

estimated in some coastal areas with moist onshore flow due to

issues of warm rain detection by TRMM.

FIG. 3. Reliability diagrams for 1-day (a) EPC and ECMWF, (b) raw, and (c) postprocessed ensemble forecasts for occurrence of

precipitation (threshold 0.2mm) during 2009–17.
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For the probability of 5-day accumulated rainfall above

0.2mm (not shown), the BSS generally increases, most likely

as timing errors become less relevant. Over many parts of the

oceans the negative skill turns to neutral or only slightly

negative values. Over land, regions of negative skill also tend

to contract and become mostly confined to complex terrain

(South America and Asia) and coastal areas (tropical West

Africa). Along the coast of East Africa, however, the region of

negative skill expands inland, indicating more fundamental

problems beyond timing issues. This includes the dry bias of

TRMM in areas with warm rain as discussed in previous

sections.

While the BS (and BSS) assesses the probability of occur-

rence of accumulated precipitation above given thresholds, the

CRPS (and CRPSS) allow evaluating forecast quality with

respect to the full probabilistic forecast distribution. Figure 5a

displays the mean CRPSS of raw ECMWF ensemble forecasts

for 1-day accumulated precipitation and the period 2009–17

relative to EPC. The overall pattern has some similarities with

the BSS shown in Fig. 4 but overall the skill is considerably

higher. This suggests that the ECMWF model struggles par-

ticularly to discriminate between rain-no rain situations, while

the forecast of the rainfall amount is more reasonable in many

parts of the tropics. Areas with consistently poor forecast

performance are the oceanic deserts over the southern (and

to a much lesser extent the northern) Pacific and Atlantic as

well as the Himalayas and Andes. Many other parts of the

oceanic and terrestrial tropics show weakly positive skill in-

cluding densely populated areas such as India, Australasia,

and eastern Brazil. The striking exception is tropical Africa,

which is characterized by consistently negative skill, apart

from highlands in eastern and southern Africa. The affected

areas are known to have large contributions from intense

convective systems organized at the mesoscale (see Fig. 11 in

Nesbitt et al. 2006) and it is known that convective parame-

terizations struggle to realistically represent this process,

leading to forecasts with too much light and too little intense

rainfall overall (Stephens et al. 2010; Marsham et al. 2013;

Pearson et al. 2014; Birch et al. 2014; Pantillon et al. 2015).

A similar conclusion was already drawn by Vogel et al.

(2018) for the poor performance of the TIGGE models over

northern tropical Africa.

Postprocessing is capable of eliminating areas of negative

skill almost entirely (Fig. 5b; the remaining grid points over

Egypt have little practical relevance). A large fraction of

tropical land and ocean now shows moderately positive skill.

Even the highly problematic oceanic deserts and high moun-

tain regions (Andes, Himalayas) reach at least neutral skill

after postprocessing. The striking counterexample is tropical

Africa. Despite only moderately negative skill in the raw

forecasts, postprocessing can only achieve neutral skill here.

This suggests that the discrepancy between the more frequent

and lighter rain generally produced by convection schemes and

the very concentrated, long-lived and intense mesoscale con-

vective systems in reality is too large to be cured by a relatively

simple statistical correction. The singularity of tropical Africa

is also seen in Fig. 2a by Wheeler et al. (2017) using anomaly

correlations applied to the ECMWF ensemble mean. The BSS

distribution for postprocessed ECMWF PoP forecasts is

almost identical to the CRPSS (Fig. 5b) and is therefore not

shown here. This implies that for both rainfall occurrence

and amount, EPC is currently the best (and easiest to use)

probabilistic forecast information we can provide for large

parts of tropical Africa.

How does predictive performance for rainfall amount

change for longer accumulation periods? Fig. 5c shows a

CRPSS distribution analogous to Fig. 5a but for 5-day ac-

cumulated precipitation forecasts. This demonstrates that

most of the forecast performance is inherited from errors for

1-day predictions. Postprocessing can again improve forecasts

practically everywhere (Fig. 5d) but some regions (oceanic

deserts, northern tropical Africa) show a further deterioration

compared to 1-day forecasts (Fig. 5b). Overall this indicates

that the misrepresentation of local conditions important for

rainfall generations dominate forecast behavior, while effects

of decreasing predictability for longer lead times or smoothing

by longer accumulation periods appear to have comparably

little influence.

c. Skill of the ECMWF ensemble for extreme rainfall events
An important aspect of precipitation forecasts is their ability

to predict extreme events, as this allows for precautionary

action to be taken. Exemplarily, Webster et al. (2011) report

on extreme rainfall events in Pakistan in 2010, which were

embedded in the Indian monsoon during a period of anom-

alous large-scale flow. These were predicted by the ECMWF

model with high probabilities 6–8 days ahead. However, not

all extreme precipitation events are connected to well-predictable

and large-scale features, and it is unclear if and where models

are able to predict extreme precipitation reliably. Sampling

FIG. 4. Brier skill score (BSS) for 1-day ECMWF raw ensemble forecasts for occurrence of precipitation (threshold 0.2mm) relative

to EPC during 2009–17.
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uncertainty typically impedes our ability to analyze forecast

skill for the most extreme cases (Lerch et al. 2017). A common

compromise is to increase the number of events by using

thresholds low enough to give robust statistics for a given time

series length. Here, we use 20mm within 1 day and 50mm

within 5 days as thresholds for the occurrence of extreme

events and exclude grid boxes where the considered event

occurs with a frequency of less than 1%, or about 33 events in

2009–17. We only display results for continents, where im-

pacts are most important. The evaluation is based on the BSS

as in Fig. 4. For 1-day events and raw ECMWF ensemble

forecasts (Fig. 6a), positive skill with values of up to 0.3 is found

for most of tropical Australasia and with local exceptions over

higher ground (Himalayas, Papua New Guinea). Central and

South America show a more mixed result with lower skill

over mountainous areas (e.g., Andes) and higher skill over

eastern Brazil and Mexico. As already found for the CRPSS

(Fig. 5a), tropical Africa to the west of the East African

highlands stands out as a region of particularly low predictive

performance.

Postprocessing improves skill almost everywhere and elim-

inates areas of negative BSS (Fig. 6b). However, while areas

with negative skill in the raw ensemble can be turned to

positive skill through postprocessing in the Americas, over

the Maritime Continent, and in Asia, tropical Africa only

reaches BSS values around zero. This general pattern is

FIG. 5. Continuous ranked probability skill score (CRPSS) for 1-day ECMWF (a) raw and (b) postprocessed forecasts for accumulated

precipitation amount relative to EPC during 2009–17. (c),(d) As in (a) and (b), but for 5-day forecasts.
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robust for accumulations of 5 days and a threshold of 50mm

(Figs. 6c,d). In the raw forecasts, signals generally tend to

amplify over 5 days (i.e., both positive and negative values

increase in magnitude) (Fig. 6c). Postprocessing (Fig. 6d)

can again correct for the bulk of deficiencies but performance

remains slightly worse for 5 days than for 1 in areas with

low skill, while areas with good skill are similar or even

better for the longer accumulation period. This is largely

consistent with the analysis of precipitation amount shown

in Fig. 5.

FIG. 6. BSS for ECMWF (a),(c) raw and (b),(d) postprocessed ensemble forecasts for the exceedance of 20mm within 1 day in (a) and

(b) and the exceedance of 50mm within 5 days in (c) and (d) during 2009–17. Displayed is skill only over land and where the considered

event has an occurrence frequency above 1%.
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d. Comparison to the MSC ensemble
In this section, the raw and postprocessed MSC ensemble

forecasts will be analyzed and compared to the ECMWF re-

sults discussed in the previous section. As pointed out in

section 2, MSC data are only available for 2009–16. When

ECMWF results are restricted to this period (not shown),

changes are minimal and therefore we conclude that this

discrepancy is an unlikely explanation for the relatively large

and systematic differences between the two systems. Figure 7

displays calibration of the MSC ensemble in the same way as

Fig. 2. Although the MSC raw ensemble is also not well

calibrated, it shows a more uniform distribution than ECMWF.

PIT histograms are slightly right skewed in all regions, imply-

ing observations to rank lowest too often. The leftmost bin

contains between 17% (Tropical Asia) and 32% (Mountain

climates) of all forecasts.

The geographical distribution of the discrepancy measure

for theMSC ensemble in Fig. 7b has structural similarities with

that for ECMWF ensemble forecasts (Fig. 2b). It reveals good

calibration over large parts of the Indian and western Pacific

Oceans as well as along the Atlantic and eastern Pacific ITCZ.

The oceanic deserts stand out as areas of large discrepancy but

not as much as in ECMWF. As indicated by the PIT histo-

grams, calibration is also better in MSC than in ECMWF over

land in tropical Africa and northwestern South America.

The reliability of the MSC raw ensemble is investigated in

Fig. 8a. As for the ECMWF ensemble (Fig. 3a), there is a

general tendency to frequently forecast rainfall with prob-

abilities of near zero and near one. Apart again from the

Mountain climates region, many low-probability forecasts

do in fact verify, while forecasts with higher probabilities

overestimate the occurrence of rainfall, indicating an overconfi-

dent system. The best reliability is found for Arid Australia,

Tropical Asia, Tropical Africa, and the Tropical Americas.

Overall, the MSC raw ensemble is more reliable than the

ECMWF raw ensemble for most regions.

The spatial distribution of the BSS for the MSC raw en-

semble is displayed in Fig. 8b. It has many similarities with the

corresponding pattern for ECMWF (Fig. 4) but the skill is

overall higher. This is particularly true for the moister oceanic

regions but also for some land areas such as South America.

Lowest skill is again found over oceanic deserts and in moun-

tainous terrain. This demonstrates that the better calibration

in MSC forecasts does in fact lead to more reliable forecasts

than in the ECMWF EPS, at least when raw model output is

considered.

Now focusing on the entire rainfall distribution, Fig. 9a shows

horizontal maps of CRPSS for raw MSC ensemble forecasts

for 1-day accumulated precipitation. Again, the overall pattern

is similar to that of the ECMWF ensemble (Fig. 5a). Regional

differences are found for tropical Africa, where the MSC raw

ensemble has neutral instead of negative skill, for South

America, where negative skill is restricted to the Andes region

in the MSC raw ensemble, and for arid northern Africa, where

the MSC ensemble performs worse than the ECMWF raw

ensemble (and EPC).

Postprocessing increases skill almost everywhere as ex-

pected, but parts of northern Africa still have negative skill

(Fig. 9b). A direct comparison to the corresponding ECMWF

forecasts (Fig. 9c) reveals that the better skill in the MSC raw

ensemble does not necessarily yield better postprocessed

predictions. Over most parts of the tropics, ECMWF shows

superior or equal performance. Exceptions are merely the

dry oceanic areas off the coast of Peru and off the coast of

Namibia and Angola, as well as over dry northeastern Africa

and the Arabian Peninsula. A more detailed look reveals that

the postprocessing leads to a calibration and reliability simi-

lar to ECMWF, while the resolution is slightly lower in MSC

FIG. 7. As in Fig. 2, but for the MSC model and during 2009–16.
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(not shown). This suggests that while the MSC raw ensemble

is better calibrated and more reliable than the ECMWF raw

ensemble in many regions, as reflected in higher BSS and

CRPSS, it does not necessarily contain superior predictive

information. Interestingly, MSC raw and postprocessed en-

semble forecasts for extreme rainfall are slightly worse than

their ECMWF counterparts (Fig. 6) but with a similar spatial

distribution (not shown). Recently, Stellingwerf et al. (2020)

evaluated the ECMWF and MSC EPSs specifically over

Ethiopia and found ECMWF to be the best individual model

after bias correction, while MSC shows the most realistic

ensemble spread. Over Ethiopia, MSC also performs best

with respect to extremes, which we cannot confirm for the

larger tropical area.

e. Summary statistics
For a better overview of the results discussed so far, Table 1

presents summary skill statistics for all regions, both models,

and both raw and postprocessed forecasts. The numbers given

are the percentages of grid boxes with skill larger than zero.

The main take-home messages from this analysis are:

d Postprocessing improves forecasts in all cases but for BSS

20 mm in Arid Asia and Arid North Africa, where such

extremes are rare, leading to poor statistical robustness. For

all regions combined (bottom row in Table 1), fractions of

positive skill increase from 44%–62% for raw forecasts to

67%–97% after postprocessing.
d ECMWF performs worse than MSC in 19 out of 30 cases for

raw forecasts but only in 3 cases after postprocessing, con-

firming the previously discussed aspect of worse calibration

but better predictive potential. This is also reflected in the

statistics for all regions combined.
d For the majority of regions, performancemeasured in CRPSS

is better than for the other two metrics, both before and after

postprocessing. Forecasts of extremes are often only margin-

ally worse than forecasts of precipitation occurrence.
d The region with the overall best performance is Arid Australia,

where good skill is achieved already for the raw forecasts.
d Mountain climates stand out as the region with poorest

performance, where skill remains relatively low even after

postprocessing. This region comprises of only 97 grid boxes

with extreme conditions that challenge both models and

observations as discussed above.
d Another region of note is Tropical Africa, where particularly

raw ECMWF forecasts perform poorly in all three skill

measures. It is likely that the high degree of convective

organization found here contributes considerably to this

poor performance, as it leads to a strong concentration of

rainfall into few intense events. Given that this issue is rather

systematic, postprocessing is capable of curing some of the

deficiencies. For example, for ECMWF the positive fraction

for CRPSS increases from 19% to 97% but most of this skill

is still only marginally above zero (see Fig. 5b). Similar

problems are also seen in Arid North Africa, where orga-

nized convection occurs during the summer rainy season.

Given their sizes of more than 1000 grid boxes, the two

African regions contribute significantly to the combined

fractions at the bottom of Table 1.

f. Improvement over time
In previous subsections, the ability of ECMWF and MSC

raw and postprocessed ensemble forecasts to predict rainfall

amount, occurrence, and extreme events was assessed with

respect to the regional and spatial distribution based on the

mean skill. Here we examine whether the model skill has im-

proved over the investigation period (2009–17 for ECMWF

and 2009–16 forMSC) due to, for example, higher resolution or

better model physics and data assimilation.

FIG. 8. As in Figs. 3b and 4, respectively, but for the MSC model and during 2009–16.
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Figure 10a displays the temporal evolution of CRPSS for

raw ECMWF forecasts for 1-day accumulated precipitation in

eachKöppen–Geiger climate region (see, e.g., Fig. 2a). In 2009,

all regions except for Arid Asia and Arid Australia have

negative skill. Performance is worst for Mountain climates,

followed by Tropical Africa, Arid Americas, and Arid North

Africa. From 2009 to 2010, forecast skill increases markedly in

most climates. For some regions, the increase in skill continues

until 2011, with most showing positive skill by then. After 2011,

no clear change in CRPS skill is detectable anymore. We hy-

pothesize that the improvement early in the time series is re-

lated to the increase in horizontal resolution introduced on

26 January 2010, when grid spacing was reduced from 25 to

16 km for the HRES run and from 50 to 32 km for the CNT and

ENS runs (Miller et al. 2010), and the introduction of the

5-species prognostic microphysics scheme on 9 November

2010 (Forbes et al. 2011). For the period 2011–17, nonpara-

metric trend tests do not detect change at the 5% level except

for tropical Africa (improvement) and Mountain climates

(deterioration), suggesting that all changes to the ensemble

system introduced after 2010 have little effect on the metrics

used here to assess tropical rainfall forecasting.

Figure 10b shows the corresponding time series for post-

processed forecasts. Skill is now positive for all regions and all

years varying between 0 and 0.3 with an overall more gradual

increase in most regions, indicating that the postprocessing is

able to remedy some of the negative impacts of lower resolu-

tion before 2010. There is a marked gap between the prob-

lematic Mountain climates, Arid North Africa, and Tropical

Africa on one hand, and the other climate zones on the other

hand. Arid Australia and Americas show a large increase in

postprocessed skill with the resolution change from 2009 to

2010 but skill stays roughly constant after that or even deteri-

orates in the case of Arid Australia. For Tropical Africa and

Tropical Americas, in contrast, postprocessed forecast skill

improves significantly (on the 5% level) after the resolution

increase (i.e., over 2011–17). Over the entire nine years the

increase in CRPSS in the three tropical regions is on the order

of 0.05. CRPSS for Mountain climates increases by about 0.06,

starting at almost zero in 2009, with a significant improvement

during 2011–17.

After postprocessing, the Mountain climates region con-

tinues to show the worst performance of all Köppen–Geiger

climates, while Arid Australia performs best as already seen

for the raw forecasts. This indicates that the predictive in-

formation contained in the raw forecasts sets limits to what

postprocessing can achieve. However, a different behavior

is observed for Arid Northern and Tropical Africa, which

FIG. 9. (a),(b) As in Figs. 5a and 5b, respectively, but for the MSC model and during 2009–16. (c) Differences between postprocessed

forecasts from ECMWF (2009–17) and MCS (2009–16) (i.e., between Fig. 5b and Fig. 9b).
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reveal a raw ensemble skill similar to Arid Americas but have

relatively much smaller skill after postprocessing. This indi-

cates that forecasts for Arid Americas contain more predictive

information, although the raw ensemble forecasts for the three

regions have similar levels of miscalibration. With less con-

vective organization in Arid Americas (see, e.g., Nesbitt et al.

2006), this is a further indication of deficiencies in the repre-

sentation of highly organized convective systems.

These regional differences are also evident in the temporal

evolution of the skill gap, the difference in CRPSS between

raw and postprocessed forecasts (Fig. 10c). It shows a clear

narrowing in all regions from 2009 to 2011, when it decreases

for the majority of regions from a CRPSS difference between

0.1 and 0.3 down to 0.05–0.15. After 2011, however, the gap

in skill remains about constant in most regions except for a

significant increase (on the 5% level) for Mountain climates.

This behavior is consistent with the rather constant im-

provement by postprocessing found by Hemri et al. (2014),

who verified ECMWF forecasts of temperature and 1-day

accumulated precipitation against WMO station observa-

tions worldwide.

For the MSC model (2009–16 only), raw ensemble forecasts

have neutral or slightly positive CRPSS in all regions and for

all years (i.e., already in 2009 in contrast to ECMWF), except

for Mountain climates and to a much lesser degree Arid

Americas (Fig. 11a). The former and all tropical climates

(Asia, Americas, Africa) show a significant positive trend. In

agreement with ECMWF the consistently best performance

is seen for Arid Australia. After postprocessing, most regions

show consistently positive skill but problems are still evident

FIG. 10. Temporal evolution of CRPSS for (a) raw and (b) postprocessed ECWMF 1-day

ensemble forecasts for accumulated precipitation relative to EPC during 2009–17. (c) The

corresponding temporal evolution of the gap in skill between postprocessed and raw

forecasts.
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inMountain climates, Arid N and Tropical Africa (Fig. 11b),

consistent with the ECMWF results. Significant positive

trends are now restricted to Tropical Africa and Mountain

climates. As discussed in the previous subsection, raw MSC

ensemble forecasts are slightly more skillful than ECMWF

in most regions but postprocessing largely reverses this or-

der (cf. Fig. 10 with Fig. 11). Due to the overall better cal-

ibration, the skill gap is consistently smaller for the MSC in

most regions throughout the entire period (Fig. 11c). As for

ECMWF, skill gaps in MSC are largest for Arid Americas

andMountain climates. Somewhat surprisingly, the skill gap

grows markedly in 2014 for Arid Asia, leading to an overall

significant positive trend.

5. Conclusions
The quality of precipitation forecasts from two leading op-

erational ensemble predictions systems (ECMWF and MSC)

was assessed specifically for the tropics between 308S and

308N. TRMM satellite estimates were used as an observational

reference. Predictions were evaluated for accumulation pe-

riods of 1 and 5 days with respect to occurrence and amount of

precipitation as well as the occurrence of extreme rainfall

relative to a probabilistic reference forecast based on clima-

tology (termed EPC). The potential of statistical ensemble

postprocessing to correct for biases and dispersion errors in

the ensemble forecasts was investigated. Performance over

land is summarized for specific Köppen–Geiger climatic

regions.

The main results are as follows:

d Forecasts of precipitation occurrence (using a threshold of

0.2mm): Both the ECMWFandMSCmodels do not perform

better than the climatological reference over about half of all

land points (Table 1) and over relatively dry oceanic regions.

This is due to substantial calibration problems and biases,

FIG. 11. As in Fig. 10, but for the MSC model and during 2009–16.
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particularly a strong overconfidence for high-probability

forecasts. Postprocessing increases forecast performance

significantly, with the fraction of land grid boxes with posi-

tive skill rising to 87% (ECMWF) and 82% (MSC). This

demonstrates that postprocessing brings out the enhanced

predictive information in the ECMWF forecasts despite

even larger calibration problems than MSC.
d Forecasts of precipitation amount: There is moderate skill in

many parts of the tropics in the raw ensemble forecasts

(about 60%of all land points have positive skill, see Table 1).

Most problematic regions are the oceanic deserts (particu-

larly over the South Atlantic and Southeast Pacific), high

mountain ranges (particularly the Andes and Himalayas),

and the west and central lowlands of tropical Africa. Over

Tropical Africa as a whole only 19% of grid points in

ECMWF (and 46% in MSC) have skill. Postprocessing

leads to a considerable improvement almost everywhere,

but over the cores of the oceanic deserts and tropical Africa

skill remains close to zero (Figs. 5b and 9b). While the

former is of little practical relevance and may well stem at

least partly from problems with TRMM handling light rain

from warm clouds, the latter is worrying given the large

population of tropical Africa and socioeconomic impor-

tance of rainfall. The most likely reason for this deficit

is the inability of convective parameterization schemes

to represent the vertically tilted structure crucial for the

upscale growth and propagation of mesoscale convective

systems (Vogel et al. 2018).
d Forecasts of extreme rainfall events (using a threshold of

20mm in 1 day): For land points model forecasts of extremes

are only marginally worse than those of rainfall occurrence

(44% with positive skill in ECMWF and 50% in MSC, see

Table 1). This is partly due to some very poor performance in

arid regions, where relatively few such cases occur, but

also again due to Tropical Africa, where models struggle

to represent the intensity of organized convection. Overall,

postprocessing does not improve performance as much as for

occurrence, likely due to smaller sample sizes.
d 5- versus 1-day accumulation times: Results for a 5-day accu-

mulation period bear many resemblances to the 1-day results,

indicating that the predictive performance is dominated by

model error (e.g., boundary layer, convection). Particularly

in wetter areas, the longer accumulation time even leads to

improvement, as timing errors become less relevant. Such

behavior appears to be typical of the inner tropics and is in

strong contrast to higher latitudes (see Fig. 2a in Wheeler

et al. 2017).
d Time evolution: Calibration in the ECMWF raw ensemble

improves between 2009 and 2011 but not much afterward.

This is likely associated with the increase in model resolution

and a major cloud microphysics upgrade in 2010. Skill of

postprocessed forecasts increases more gradually in most

regions, indicating that the postprocessing is able to remedy

some of the earlier model deficits. Mountain climates are

generally forecast poorest but at least there is an increase

by about 0.06 in CRPSS from 2009 to 2017. Findings for the

MSC model broadly agree but the better calibration leads

to a smaller skill gap.

The skill of the ensemble forecasts was assessed against the

TRMM rainfall product, which has known spatiotemporarily

varying limitations. Past research has demonstrated particu-

lar issues over mountains and coastal regions with warm

rain—despite the gauge calibration of TRMM. In future studies,

it would therefore be desirable to use the successor product

Integrated Multisatellite Retrievals for GPM (IMERG),

potentially other daily products such as Global Precipitation

Climatology Project (GPCP) daily and Multi-Source Weighted-

Ensemble Precipitation (MSWEB), and as many rainfall stations

as possible over tropical and subtropical land areas.

Nevertheless, the results of this study have unveiled a

number of considerable deficiencies in our ability to forecast

rainfall in the tropics with global ensemble prediction systems.

While for example over most of Australia, forecast perfor-

mance is satisfactory and can only be improved rather little

with postprocessing, the raw ensemble model output is hardly

useful in many other regions and postprocessing is needed

to increase predictive skill. A prominent exception is tropical

Africa where forecasts are only little better than the climato-

logical reference even after postprocessing. This shows that the

deficits in realistically representing rainfall processes in this

region dominated by organized convection impedes benefit-

ting from (presumably useful) predictions of the environ-

mental conditions that influence mesoscale convective systems

formation and maintenance.

We propose several lines of research to improve tropical

rainfall prediction: The first is to try alternative postprocessing

approaches such as those used by Rasp and Lerch (2018),

Medina et al. (2019), and Hewson and Pillosu (2020). The

second is to improve global NWPmodels. Increased computing

power and its more efficient use, as well as improvements in

the understanding and parameterization of relevant processes

(e.g., couplings between the boundary layer and shallow and

deep convection), will likely help increase precipitation fore-

cast skill. As the explicit simulation of deep convection is not

computationally feasible on the global scale at the moment, we

advocate experiments with limited-area convection-permitting

deterministic and ensemble forecast systems (e.g., Pante and

Knippertz 2019). The third idea is to use the coupling between

more predictable synoptic-to planetary-scale wave phenomena

and convection (Schlueter et al. 2019a,b) to improve forecasts.

This would require training adequate statistical models, such as

neural network approaches, with past observations and can in

principle be done based on observations alone or additionally

taking into account current model predictions of environ-

mental factors. In particular for monsoon regions, a differ-

entiation between seasons will be beneficial in any approach

that builds heavily on statistics. Finally, efforts are needed to

improve initial conditions in the tropics, where uncertainty is

particular large in current operational systems and limits

practical predictability (e.g., �Zagar 2017). The long-term goal

of such activities should be to lift the quality of forecasts to a

level that is high enough to underpin real-world decision

making to create socioeconomic benefit. In the short term,

we strongly advocate the further development and operational

use of ensemble postprocessing methods to provide essential

forecast information to the vulnerable societies in the many

2382 WEATHER AND FORECAST ING VOLUME 35

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/35/6/2367/5015893/w

afd200082.pdf by guest on 09 N
ovem

ber 2020



developing countries in the tropics (Webster 2013; Alley

et al. 2019).
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