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VARIATIONAL METHODS FOR BREATHER SOLUTIONS OF
NONLINEAR WAVE EQUATIONS

RAINER MANDEL AND DOMINIC SCHEIDER

Abstract. We construct infinitely many real-valued, time-periodic breather solutions of
the nonlinear wave equation

∂2

tU −∆U = Q(x)|U |p−2U on T× R
N

with suitable N ≥ 2, p > 2 and localized nonnegative Q. These solutions are obtained
from critical points of a dual functional and they are weakly localized in space. Our ab-
stract framework allows to find similar existence results for the Klein-Gordon equation or
biharmonic wave equations.

1. Introduction

Breathers are real-valued, time-periodic and spatially localized solutions of nonlinear equa-
tions describing the propagation of waves on R

N ×R where N ∈ N. The existence of breather
solutions appears to be rare phenomenon and up to now, most work in this area is related to
the discussion of explicit examples such as the famous sine-Gordon breather for the (1 + 1)-
sine-Gordon equation [1]. A number of (in-)stability results for such explicit breathers [2–5]
is available. Nonexistence results can be found in [9,22,27]. The construction of non-explicit
breather solutions is a very difficult task. In papers by Hirsch, Reichel [18, Theorem 1.3]
and Blank, Chirilus-Bruckner, Lescarret, Schneider [6] this was achieved for nonlinear wave
equations of the form

(1) s(x)∂ttu− uxx + q(x)u = f(x, u) (x, t ∈ R)

following two completely different approaches. The methods from [6] come from spatial
dynamics and rely on center manifold reductions. For one very specific choice of periodic
step functions s, q (multiples of each other) and the nonlinearity f(x, u) = u3, the authors
prove the existence of L∞-small periodic breather solutions that are exponentially localized
in space. The particular choice for s and q is motivated by the underlying spectral theory of
periodic Hill operators, also called Floquet theory. Using variational methods instead, Hirsch
and Reichel [18] proved the existence of (spatially) square integrable breather solutions under
appropriate assumptions on the nonlinearity. The latter include power-type nonlinearities
f(x, u) = |u|p−1u with 1 < p < p∗ for some p∗ depending on the choice of s and q. Again,
the potentials s, q are of very special form in order to ensure suitable spectral properties.
More precisely, it is required that for all k ∈ Z the spectrum of the linear operator associated
with the k-th mode does not contain 0 in a uniform sense. This makes it possible to have
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a strong localization in space. All of these results concern the case of one spatial dimension
N = 1. The Bethe-Sommerfeld Conjecture about the number of gaps of periodic Schrödinger
operators (see [23, Section 6.1.3]) suggests that the above approach can hardly be generalized
to higher space dimensions that we discuss next.

In the case N ≥ 2 we are aware of very few results. The first deals with a semilinear
curl-curl wave equation in R

3 × R where −uxx is replaced by ∇ × ∇ × u in (1) and u is a
three-dimensional vector field on R

3. Using that this part in the equation actually vanishes
for gradient fields, Plum and Reichel [28] succeed in proving the existence of exponentially
localized breather solutions via ODE methods for suitable radially symmetric coefficient
functions s, q and power-type nonlinearities f . As far as we know, this is the only result
dealing with strongly localized breathers in higher dimensions, i.e., U(t, ·) ∈ L2(RN) for
almost all t ∈ R. Recently, the second author suggested a new construction of (even in
time) breathers [29] for the cubic Klein-Gordon equation that we will refer to as weakly
localized in space. Those satisfy U(·, t) ∈ Lq(RN) for almost all t ∈ R for some q > 2
and we believe that in general U(t, ·) /∈ L2(RN) holds due to rather small decay rates at
infinity, presumably U(t, x) ∼ |x|(1−N)/2 as |x| → ∞. That approach relies on the Lp-theory
for Helmholtz equations on R

N and bifurcation techniques allow to prove the existence of
infinitely many branches consisting of polychromatic radially symmetric breather solutions
that emanate from a nontrivial stationary solution of the problem. The solutions are of the
form

U(t, x) =
∑

k∈Is

eiktuk(x), Is ⊆ Z

with radially symmetric Fourier modes uk = u−k infinitely many of which are non-zero.
Imposing radial symmetry is of course a significant restriction. In this paper we propose
a variational approach for the construction of weakly localized breather solutions that does
not rely on symmetry assumptions for the coefficients and generalizes to much more general
classes of equations. Before going into the details of our method, we would like to point
that it would be most desirable to find strongly localized breather solutions for nonlinear
wave-type equations in the case of spatial dimensions N ≥ 2.

Here we prove the existence of weakly localized breathers for wave equations of the form

(2) ∂2
t U −LU = Q(x)|U |p−2U on R

N × R.

The data Q, p will be chosen suitably in dependence of the mapping properties of certain
right inverses of L. As a model case one may have in mind L = ∆. In contrast to [29] we
can deal with nonradial Q and obtain the existence of an unbounded sequence of breathers.
In order to avoid “bad” modes, we look for breather solutions that may enjoy additional
symmetry properties with respect to time. To include such symmetries in our analysis we
introduce a parameter s ∈ {1, . . . , 5} that stands for

(s = 1) no additional symmetry,

(s = 2) U(t, x) = U(−t, x), i.e., U is even in time,

(s = 3) U(t, x) = −U(−t, x), i.e., U is odd in time,

(s = 4) U(t + π, x) = U(t, x), i.e., U is π-periodic,
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(s = 5) U(t + π, x) = −U(t, x), i.e., U is π-antiperiodic.

For those symmetries the relevant modes k ∈ Is ⊂ Z in the corresponding Fourier expansions
come from the sets

(3) I1 := Z, I2 := Z, I3 := Z \ {0}, I4 := 2Z, I5 := 2Z+ 1.

As to s = 2 resp. s = 3 observe that the symmetry assumptions moreover imply that the
modes uk resp. iuk are real-valued. Regarding s = 4 let us mention that general periods
T > 0 can be discussed, as we will explain in Section 2.5. We will assume that the following
conditions are satisfied for the modes k ∈ Is:

(A1) There are (real-valued) bounded symmetric operators Rk : Lq′(RN) → Lq(RN) for
some q ∈ [p,∞] that satisfy ‖Rk‖ ≤ C(k2 + 1)−

α
2 for some α > 1− 2

p
as well as

∫

RN

Rkf · (−L− k2)φ dx =

∫

RN

fφ dx for all f ∈ Lq′(RN ), φ ∈ C∞
c (RN).

(A2) Q ∈ Lq/(q−p)(RN), Q ≥ 0, Q 6≡ 0 and the linear operators v 7→ RQ
k [v] := Q1/pRk[Q

1/pv]
are compact from Lp′(RN) to Lp(RN ).

(A3) There are ωk ∈ Lp′(RN) with
∫

RN ωkR
Q
k [ωk] dx > 0.

We briefly comment on these assumptions. The operators Rk can be interpreted as distribu-
tional inverses of −L−k2 which may even exist when classical inverses are not available. This
is for instance the case in our model example L = ∆ as we will show below. The symmetry
assumption means

∫

RN

Rkf · g dx =

∫

RN

f · Rkg dx for all f, g ∈ Lq′(RN).

The growth bound on the norms ensures the convergence of Fourier series in topologies that
are suitable for our analysis. Assumption (A2) is needed for our dual variational approach,
notably for the verification of the Palais-Smale condition of the functional J to be introduced
below. Notice that Q ∈ Lq/(q−p)(RN ), Q ≥ 0 and (A1) already imply the boundedness of RQ

k

as a map from Lp′(RN) to Lp(RN), see (12). For L = ∆ such operators are called Birman-
Schwinger operators in the literature. Finally, (A3) is a technical assumption that holds in
many applications. It is for instance satisfied if Q is positive and for all k ∈ Is there are
test functions φk ∈ C∞

c (RN) such that
∫

RN φk(−L − k2)φk dx > 0. This follows from the

choice ωk := Q−1/p1Q>δ(−L− k2)φk ∈ Lp′(RN) for sufficiently small δ > 0. Accordingly, this
assumption always holds for Q > 0 and elliptic differential operators L. In Section 2 we will
see a number of settings where all these assumptions hold.

Assuming (A1)-(A3) for all modes k ∈ Is we are going to prove the existence of breather solu-
tions U of (2) in the Banach space Lq(RN , Lp

s(T)) consisting of all elements of Lq(RN , Lp(T))
having the symmetry indexed by s. Here, T ≃ [0, 2π] stands for the torus. The norm on
these spaces is given by

‖W‖Lq(RN ,Lp(T)) :=
∥
∥
∥‖W (·, x)‖Lp(T)

∥
∥
∥
Lq(RN )

:=

(
∫

RN

(∫

T

|W (t, x)|p dt

)q/p

dx

)1/q

.
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More precisely, we will speak of 2π-periodic distributional breather solutions since we require
these functions to solve equation (2) in the following sense:

∫

T×RN

U (∂2
t − L)Φ d(t, x) =

∫

T×RN

Q(x)|U |p−2U Φ d(t, x) ∀Φ ∈ C∞
c (RN , C∞(T)).(4)

Here, Φ ∈ C∞
c (RN , C∞(T)) means that there is a compact subset K ⊆ R

N such that Φ :
R

N × T → R is smooth, 2π-periodic in time and the support of Φ(t, ·) is contained in K for
all t ∈ T. Our main result is the following.

Theorem 1. Assume N ∈ N, 2 < p < ∞ and (A1)-(A3) for all k ∈ Is where s ∈ {1, . . . , 5}.
Then the nonlinear wave equation (2) admits an unbounded sequence of 2π-periodic distribu-
tional breather solutions Uj ∈ Lq(RN , Lp

s(T)), j ∈ N0, in the sense of (4).

Let us add that our breather solutions are either constant or polychromatic. The latter
means that at least two Fourier modes uk, ul with k 6= l, k, l ∈ N0 of the solution are non-
zero. Indeed, plugging the ansatz U(x, t) = cos(kt)uk(x) or U(x, t) = sin(kt)uk(x) for some
k ∈ Is and nontrivial functions uk into (2) one infers k = 0, so U is necessarily constant in
time. In our applications below this will be avoided by choosing s ∈ {3, 5} because of 0 /∈ Is.
In the case p ∈ {3, 4, . . .} we can conclude as in [29, Theorem 1 (iii)] that nonconstant in time
breathers have infinitely many nontrivial modes, which we believe to be the typical situation.

We first outline how this paper is organized. In Section 2 we show how Theorem 1 applies
in concrete situations. In particular, we prove the existence of infinitely many breathers
of nonlinear wave equations and Klein-Gordon equations on R

N . Moreover, we indicate
further possible generalizations of our approach. In Section 3 we motivate our variational
approach and present the proof of Theorem 1 relying on the technical results contained in
the Propositions 2–4. The proofs of the latter are presented in Section 4.

2. Applications and Examples

2.1. Breather Solutions for the Wave Equation on R
N . We show that Theorem 1

applies to classical nonlinear wave equations on R
N with power-type nonlinearities

(5) ∂2
tU −∆U = Q(x)|U |p−2U on T× R

N .

To verify (A1)–(A3) we need distributional inverses for operators of the form −∆ − k2 for
k ∈ Is and suitable s ∈ {1, . . . , 5}. From [21, Theorem 2.3], [17, Theorem 6] (N ≥ 3)
and [12, Theorem 2.1] (N = 2) we infer that that the operators

Rkf := lim
ε→0+

Re

[

F−1

(
Ff

| · |2 − k2 − iε

)]

are suitable for that purpose. Here, F denotes the Fourier transform in R
N . For the asymp-

totics with respect to k we refer to [21, Theorem 2.3] (N ≥ 3) and inequality (8) in [14]
(N = 2).
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Lemma 1. Let N ∈ N, N ≥ 3 and assume 2(N+1)
N−1

≤ r ≤ 2N
N−2

. For every k ∈ Z \ {0}

the operator Rk : Lr′(RN) → Lr(RN ) is a real-valued, bounded and symmetric distributional
inverse of −∆− k2 satisfying

‖Rkf‖r ≤ C|k|−2+N

r′
−N

r ‖f‖r′

for some C > 0. In the case N = 2 the same holds for 6 ≤ r < ∞.

We stress that this result does not provide an inverse for−∆, which is why we have to consider
symmetries that exclude the zero mode. This and (3) motivate the choice s ∈ {3, 5}, so that
we obtain the existence of infinitely many odd-in-time 2π-periodic breathers and infinitely
many π-antiperiodic breathers.

Corollary 1 (The Wave Equation). Assume N ∈ N, N ≥ 2 and Q ∈ L
q

q−p (RN), Q ≥ 0, Q 6≡ 0
where p, q satisfy

2 < p <
2(N + 1)

N − 1
,

2(N + 1)

N − 1
< q <

2Np

(N − 1)p− 2
.

Then, for s ∈ {3, 5}, the wave equation (5) admits an unbounded sequence of 2π-periodic
distributional breather solutions Uj ∈ Lq(RN ;Lp

s(T)), j ∈ N0.

Proof of Corollary 1. We verify the assumptions (A1) - (A3) for L = ∆. As indicated
above the choice s ∈ {3, 5} implies Is ⊂ Z \ {0} so that k ∈ Is implies |k| ≥ 1. In particular,
the previous lemma applies and yields real-valued, bounded, symmetric linear operators Rk

that are distributional inverses of −∆− k2 and satisfy

‖Rkf‖q ≤ C(k2 + 1)−α/2‖f‖q′ (k ∈ Is)

for α = 2− N
q′
+ N

q
. Here we have used that our assumptions imply 2(N+1)

N−1
≤ q < 2N

N−2
. From

q < 2Np
(N−1)p−2

we moreover infer α > 1− 2
p
. So assumption (A1) holds. The compactness of the

Birman-Schwinger operator RQ
k is proved as in [13, Lemma 4.1] (N ≥ 3) resp. [12, Section 3]

(N = 2) or [16, Lemma 3.1]. (We will provide more details in the proof of Corollary 3 below.)
Taking ωk := v0(k·) for the function v0 from [13, Lemma 4.2 (ii)] we find that (A3) holds
as well. Hence, Theorem 1 yields the existence of and unbounded sequence of distributional
breathers in Lq(RN ;Lp

s(T)). �

2.2. Breather Solutions for the Klein-Gordon Equation. We study the Klein-Gordon
equation

(6) ∂2
t U −∆U +m2U = Q(x)|U |p−2U on T× R

N .

Much like for the wave equation, we deduce from Theorem 1 the following

Corollary 2 (The Klein-Gordon Equation). Assume N ∈ N, N ≥ 2, m > 0 and Q ∈

L
q

q−p (RN), Q ≥ 0, Q 6≡ 0 where p, q satisfy

2 < p <
2(N + 1)

N − 1
,

2(N + 1)

N − 1
< q <

2Np

(N − 1)p− 2
.
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Then the Klein-Gordon equation (6) admits an unbounded sequence of 2π-periodic breather
solutions Uj ∈ Lq(RN ;Lp

s(T)), j ∈ N0. Here, s can be chosen as follows:

(i) if m 6∈ N, then s ∈ {1, . . . , 5},

(ii) if m ∈ 2N− 1, then s = 4 (π-periodic breathers),

(iii) if m ∈ 2N, then s = 5 (π-antiperiodic breathers).

Since the proof is very much the same as for the wave equation, we omit it. Let us remark that
our choice of s again ensures that we avoid the modes k ∈ Is with m2− k2 = 0. In the study
of the operators −∆ +m2 − k2, there may now occur a finite number of operators (k ∈ Is

with k2 < m2) with classical L2-inverses given by a convolution with positive exponentially
decaying kernels. These well-understood Bessel potential operators also satisfy (A1)–(A3).
Notice that their mapping properties are even better than the ones mentioned in Lemma 1
because all r ∈ [2, 2N

N−2
] are allowed if N ≥ 3.

2.3. Breather Solutions for Fractional and Biharmonic Wave Equations. We con-
sider the problem

(7) ∂2
tU + (−∆)γU = Q(x)|U |p−2U on T× R

N

for general γ > N
N+1

. As in the case of the classical wave equation one finds distributional

inverses of (−∆)γ −k2 with the aid of the Limiting Absorption Principle that allows to make
sense of the limits

Rγ
kf := lim

ε→0+
Re

[

F−1

(
Ff

| · |2γ − k2 − iε

)]

.

This follows from a result by Huang [20, Corollary 3.2].

Lemma 2 (Huang). Let N ∈ N, N ≥ 3 and assume 2(N+1)
N−1

≤ r < 2N
(N−2γ)+

, γ ≥ N
N+1

.

For every k ∈ Z \ {0} the operator Rγ
k : Lr′(RN) → Lr(RN) is a real-valued, bounded and

symmetric distributional inverse of (−∆)γ − k2 satisfying

‖Rγ
kf‖r ≤ |k|

−2+ N

γr′
− N

γr ‖f‖r′.

The previous lemma provides the existence of distributional inverses for all γ ≥ N
N+1

. As
in the case of the Laplacian we expect a similar result to hold in the two-dimensional case
N = 2. In the following result we apply Lemma 2 in order to prove the existence of breathers
to fractional nonlinear wave equations just as in the case γ = 1 discussed in Corollary 1. We
stress that this includes the case γ = 2 of a biharmonic wave equation.

Corollary 3 (Fractional Wave Equations). Assume N ∈ N, N ≥ 3, γ > N
N+1

and Q ∈

L
q

q−p (RN), Q > 0 where p, q satisfy

2 < p <
2γ(N + 1)

((2− γ)N − γ)+
,

2(N + 1)

N − 1
< q <

2Np

((N − γ)p− 2γ)+
.

Then, for s ∈ {3, 5}, the fractional wave equation (7) admits an unbounded sequence of
2π-periodic distributional breather solutions Uj ∈ Lq(RN , Lp

s(T)), j ∈ N0.
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Proof of Corollary 3. As in the proof of Corollary 1 the previous lemma yields assump-
tion (A1) for α = 2 − N

γq′
+ N

γq
. For the verification of (A3) we follow [25, Lemma 3.1]. We

define ωδ
k := Q−1/pω̃k1Q≥δ ∈ Lp′(RN) where δ > 0 is sufficiently small and the support of

F(ω̃k) is contained in {ξ ∈ R
N : |ξ|2γ > k2}. Then the above definition for Rγ

k implies

lim
δ→0+

∫

RN

ωδ
kQ

1/pRγ
k [Q

1/pωδ
k] dx =

∫

RN

ω̃kR
γ
k [ω̃k] dx

= lim
ε→0

Re

(∫

RN

|F(ω̃k)|
2

|ξ|2γ − k2 − iε
dξ

)

=

∫

RN

|F(ω̃k)|
2

|ξ|2γ − k2
dξ > 0.

So choosing δ > 0 sufficiently yields (A3).

The verification of (A2) is standard for classical Schrödinger operators of second order. In
order to see that in the fractional case nothing really changes, we repeat the main arguments
here. In view of

‖Q1/pRγ
k [Q

1/pv]‖p ≤ ‖Q‖
1/p
q

q−p

‖Rγ
k[Q

1/pv]‖q

it suffices to prove that v 7→ Rγ
k[Γv] is compact from Lp′(RN) to Lq(RN) where Γ := Q1/p.

We may without loss of generality assume that Γ is bounded with compact support. Indeed,

choosing Γn → Γ in L
pq

q−p (RN ) with Γn bounded and compact support, we find

‖Rγ
k [Γv]−Rγ

k [Γnv]‖q ≤ ‖Rγ
k[(Γ− Γn)v]‖q ≤ ‖Rγ

k‖q′→q ‖Γ− Γn‖ pq

q−p
︸ ︷︷ ︸

→0 as n→∞

‖v‖p′.

Having proved that v 7→ Rγ
k [Γnv] is compact for each n ∈ N we can thus conclude that

v 7→ Rγ
k [Γv] is compact as the limit of compact operators with respect to the uniform operator

topology. So it remains to prove the compactness of v 7→ Rγ
k [Γv] from Lp′(RN) to Lq(RN)

assuming that Γ is bounded with compact support.

Let B ⊂ R
N be any bounded ball. The compactness of v 7→ χBR

γ
k [Γv] follows from the

fractional Rellich-Kondrachov Theorem, see [10, Corollary 7.2]. By the same argument as
above, it remains to show ‖χRN\BR

γ
k[Γ·]‖p′→q → 0 as B ր R

n. To this end we use

Rγ
kf = Gγ

k ∗ f, where Gγ
k(z) := lim

ε→0+
Re

[

F−1

(
1

| · |2γ − k2 − iε

)

(z)

]

.

The formulas (3.8),(3.8’) in [20, Corollary 3.2] show that the kernel function satisfies |Gγ
k(z)| ≤

Ck|z|
1−N

2 if |z| ≥ 1 for some Ck > 0. Hence, for M := supp(Γ) adn x ∈ R
N such that

dist(x,M) ≥ 1 we have

|Rγ
k [Γv](x)| ≤ Ck

∫

M

|x− y|
1−N

2 |Γ(y)||v(y)| dy ≤ C̃k|x|
1−N

2 ‖Γ‖p‖v‖p′.

This yields for large enough balls B

‖χRN\BR
γ
k[Γv]‖q ≤ C‖Γ‖p‖v‖p′

(∫

RN\B

|x|
q(1−N)

2 dx
) 1

q
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and the conclusion follows due to q > 2(N+1)
N−1

> 2N
N−1

. �

2.4. Breather Solutions for the perturbed Wave Equation. We consider

(8) ∂2
t U −∆U + V (x)U = Q(x)|U |p−2U on T× R

N

where now V is a short-range potential. In a forthcoming paper by L. Cossetti and the first
author the following generalization of Lemma 1 is proved.

Lemma 3 (Cossetti, Mandel). Let N ∈ N, N ≥ 3 and assume V ∈ L
N
2 (RN) + L

N+1
2 (RN)

and 2(N+1)
N−1

≤ r ≤ 2N
N−2

. For every k ∈ Z \ {0} there is a real-valued, bounded and symmetric

distributional inverse Rk : Lr′(RN) → Lr(RN) of −∆+ V (x)− k2 satisfying

‖Rkf‖r ≤ |k|−2+N

r′
−N

r ‖f‖r′.

Corollary 4. Assume N ∈ N, N ≥ 2, V as in Lemma 3 and Q ∈ L
q

q−p (RN), Q > 0 where
p, q satisfy

2 < p <
2(N + 1)

N − 1
,

2(N + 1)

N − 1
< q <

2Np

(N − 1)p− 2
.

Then, for s ∈ {3, 5}, the perturbed wave equation (8) admits an unbounded sequence of
2π-periodic distributional breather solutions Uj ∈ Lq(RN ;Lp

s(T)), j ∈ N0.

Proof. (A1) and (A2) can be found in [8]. To see that (A3) holds it remains to choose a test
function φk ∈ C∞

c (RN) satisfying
∫

RN φk(−L−k2)φkdx. To this end we write V = V1+V2 with

V1 ∈ LN/2(RN), V2 ∈ L(N+1)/2(RN). Replacing V1, V2 by V11|V |>R respectively V11|V |≤R + V2

if necessary we can assume that ‖V1‖N/2 is small enough. So we obtain for every δ > 0 some
Cδ > 0

∫

RN

φk(−L− k2)φk dx

=

∫

RN

|∇φk|
2 + (V (x)− k2)|φk|

2 dx

≥ ‖∇φk‖
2
2 −

(

‖V1‖N
2
‖φk‖

2
2N
N−2

+ ‖V2‖N+1
2
‖φk‖

2
2(N+1)
N−1

)

− k2‖φk‖
2
2

≥ ‖∇φk‖
2
2 − δ‖φk‖

2
2N
N−2

− (Cδ + k2)‖φk‖
2
2

≥ (1− C2
Sδ)‖∇φk‖

2
2 − (Cδ + k2)‖φk‖

2
2.

Here, CS > 0 comes from the Sobolev Embedding Theorem. Choosing φ = φ∗(tk·) for some
fixed nontrivial φ∗ ∈ C∞

c (RN) and large enough tk > 0 we get the result. �

2.5. Generalizations. Before going on with the proof of our main result we indicate further
generalizations of our method.

• (General periods) In our main result we presented the theory for 2π-periodic
breathers. Clearly, by rescaling, there is an analogous theory for T -periodic breathers
for any given T > 0. Analytically this does not change much, but explicit criteria in
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concrete applications need to be adapted. For instance, in Corollary 2 dealing with
the Klein-Gordon equation the conditions on the mass m in (i),(ii),(iii) need to be
replaced by the corresponding condition on Tm

2π
.

• (Negative Q) In (A2) we assume nonnegative Q since this is required by the classical
dual variational approach that we implement in our paper. In the context of the
Helmholtz-type problems it is possible to deal with Q ≤ 0 as well. Indeed, following
[25, Section 3] we can slightly modify our functional J from (9) below to cover this
case as well. In this way one obtains the existence of infinitely many breathers in that
case. In the case of an elliptic operator L, say L = ∆, the corresponding solutions are
not stationary and hence polychromatic for all s ∈ {1, . . . , 5}. This is true because
the maximum principle implies that solutions of −∆U = Q|U |p−2U are necessarily
trivial in this case. Sign-changing Q are much more delicate and up to now, dual
variational techniques have not proven to be applicable.

• (Non-Euclidean Settings) Resolvent estimates of type Lp − Lq also hold in the
hyperbolic space, see [7, Theorem 2.3] and [19, Theorem 1.2]. The decay rate of the
operator norms of the corresponding right inverses with respect to k, however, is not
known as far as we can see. Once a bound as in (A1) is proved, our method yields
the existence of breathers in this case, too.

• (General evolutions) The wave operator ∂2
t − L can be replaced by P (−i∂t) − L

where P : R → R is a polynomial. In that case, the main difficulty is the construction
of a distributional inverse of −L + P (k). One also has to review the definition of Is

and Proposition 2 (i) where the compatiblity of Rk with these symmetries is proved.
The results for odd respectively even polynomials P will be different here.

• (Systems) One may ask whether breathers also exist for coupled nonlinear wave
equations. Following our approach, this leads to infinite systems of coupled nonlinear
Helmholtz systems. We believe that some ideas from the paper [26] about 2 × 2-
Nonlinear Helmholtz Systems can be used.

• (General nonlinearities) Our paper deals with power-type nonlinearities, but the
dual variational technique is actually a bit more flexible. To apply this method to
a general nonlinearity f(x, u) (replacing Q(x)|u|p−2u in (2)), one has to require the
invertibility of z 7→ f(x, z) for almost all x ∈ R

N . Very often this is guaranteed by
imposing a monotonicity assumption with respect to z. Moreover, this inverse needs
to give rise to a dual functional having the Mountain Pass Geoemtry on an appro-
priate Banach space. In some cases, if the nonlinearity does not behave like a power
everywhere, Orlicz spaces can be used, see for instance [11]. Being interested in an
unbounded sequence of breather solutions, one further has to impose that the nonlin-
earity is odd with respect to the second entry. Ideas for treating general nonlinearities
or power-type nonlinearities f(x, u) = Q(x)|u|p−2u with Q ∈ L∞(Rn) using a fixed
point approach can be found in [24].
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3. Proof of Theorem 1

To motivate our variational approach we introduce the formal Fourier series expansion

U(t, x) =
∑

k∈Is

eiktuk(x) with Fourier modes uk(x) := [U ]k(x) :=
1

2π

∫

T

e−iktU(t, x) dt.

Recall that Is collects the frequencies that are needed for building up breather solutions U
with the symmetry indexed by s ∈ {1, . . . , 5} as in the Introduction. Plugging this ansatz
into (2) we are lead to the infinite system of equations

(−L− k2)uk = [Q|U |p−2U ]k = Q1/p [Q1/p′ |U |p−2U ]k (k ∈ Is).

We introduce the dual variable V := Q1/p′ |U |p−2U with formal Fourier series expansion

V (t, x) =
∑

k∈Is

eiktvk(x) with vk(x) = [V ]k(x) =
1

2π

∫

T

e−iktV (t, x) dt.

So we can rewrite the above system as follows

(−L− k2)uk = Q1/p[Q1/p′ |U |p−2U ]k  Q1/puk = RQ
k

[

[Q1/p′ |U |p−2U ]k

]

 Q1/pU(t, ·) =
∑

k∈Z

eiktRQ
k

[

[Q1/p′ |U |p−2U ]k

]

 |V (t, ·)|p
′−2V (t, ·) =

∑

k∈Z

eiktRQ
k [vk]

 |V |p
′−2V = R[V ]

where the operator R is defined via

R[V ](t, x) :=
∑

k∈Is

eiktRQ
k [vk] (x) with vk(x) = [V ]k(x) =

1

2π

∫

T

e−iktV (t, x) dt.

If Q is positive, then we can similarly derive the formula U = Q−1/pR[V ]. So in order to
deduce integrability properties of U , we will therefore study the operator

(Q−1/p
R)[V ] :=

∑

k∈Is

eiktRk

[
Q1/pvk

]
,

which makes sense even under our weaker assumptions on Q, namely Q ≥ 0, Q 6≡ 0. Since
R will turn out to be symmetric, the above equation for V has a variational structure. It is
the Euler-Lagrange equation of the functional

J(V ) :=
1

p′

∫

T×RN

|V |p
′

d(t, x)−
1

2

∫

T×RN

V R[V ] d(t, x)(9)

so that we are lead to prove the existence of critical points. This motivates the following
discussion of the functional J and finishes the nonrigorous introductory part of this section.

We start our rigorous analysis of the functional by proving that J is well-defined and contin-
uously differentiable on the Banach space Xp′

s where, from now on, Xr
s := Lr(RN , Lr

s(T)) for
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r ∈ (1,∞) and s ∈ {1, .., 5}. These spaces were introduced at the beginning of the paper. We
will need the Hausdorff-Young inequality for Fourier series that we recall for the convenience
of the reader.

Proposition 1 (Hausdorff-Young). Let p ∈ [2,∞]. Then there is a C > 0 such that

‖f‖Lp(T) ≤ C‖f̂‖ℓp′(Z)(10)

‖ĝ‖ℓp(Z) ≤ C‖g‖Lp′(T)(11)

whenever f̂ ∈ ℓp
′

(Z) and g ∈ Lp′(T). Here, ĝ(k) := 1
2π

∫

T
e−iktg(t) dt for k ∈ Z.

The proofs of the following propositions are postponed to Section 4.

Proposition 2. Assume (A1),(A2).

(i) The operator R : Xp′

s → Xp
s is well-defined, continuous, symmetric and compact.

(ii) The operator Q−1/pR : Xp′

s → Lq(RN , Lp
s(T)) is well-defined and continuous.

Using part (i) of the previous proposition we show that J satisfies the assumptions of the
Symmetric Mountain Pass Theorem. This allows to conclude that there is an unbounded
sequence of critical points. Those will provide the breather solutions U after inverting the
formal passage to the dual variables from the beginning of this section.

Proposition 3. Assume (A1),(A2),(A3). Then the functional J : Xp′

s → R as in (9) is
even, continuously differentiable and has the mountain pass geometry:

(i) J(0) = 0 and there are r, δ > 0 with J(V ) ≥ δ for all V ∈ Xp′

s with ‖V ‖p′ = r.

(ii) There is an increasing sequence of linear subspaces W
(m) ⊆ Xp′

s of dimension m,
respectively, and radii Rm > r such that J(V ) < 0 for all V ∈ W

(m) with ‖V ‖p′ > Rm.

(iii) J satisfies the Palais-Smale condition.

The last of our preparatory results shows that each critical point of J indeed provides a
2π-periodic distributional beather solution as claimed in Theorem 1. Here we use part (ii) of
Proposition 2.

Proposition 4. Assume (A1),(A2) and let V ∈ Xp′

s be a nontrivial critical point of J . Then
the function U := Q−1/p

R[V ] ∈ Lq(RN , Lp
s(T)) is well-defined and a nontrivial 2π-periodic

distributional breather solution of the nonlinear wave equation (2) in the sense of (4).

We summarize the arguments mentioned above to prove our main result.

Proof of Theorem 1:
By Proposition 3 the functional J satisfies all assumptions of the Symmetric Mountain Pass
Theorem [15, Corollary 7.23]. So there is an unbounded sequence of critical values of J . Since
J maps bounded sets to bounded sets, we thus get an unbounded sequence of critical points
(Vj)j∈N0. By Proposition 4, the substitution Uj := Q−1/p|Vj|

p′−2Vj yields the asserted infinite
sequence of distributional 2π-periodic breather solutions of the nonlinear wave equation (2)
in Lq(RN , Lp

s(T)). This sequence is unbounded because Hölder’s inequality implies

‖Q‖
1/p
q

q−p

‖Uj‖q = ‖Q1/p‖ pq

q−p
‖Uj‖q ≥ ‖Q1/pUj‖p = ‖Vj‖

p′−1
p′ ր ∞ (j → ∞).
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�

4. Proofs of auxiliary results

Proof of Proposition 2.

Step 1: Proof of (i) – Well-definedness and continuity.

We show that the series in the definition of R[V ] converges in Lp(RN , Lp(T)) and that R

preserves the time-symmetry, i.e., R(Xp′

s ) ⊂ Xp
s . To prove the first point we use the estimate

‖RQ
k w‖Lp(RN ) = ‖Q1/pRk(Q

1/pw)‖Lp(RN )

≤ ‖Q1/p‖
L

pq
q−p (RN )

‖Rk(Q
1/pw)‖Lq(RN )

(A1)

≤ ‖Q‖
1/p

L
q

q−p (RN )
C(k2 + 1)−α/2‖Q1/pw‖Lq′(RN )

≤ ‖Q‖
1/p

L
q

q−p (RN )
‖Q1/p‖

L
p′q′

p′−q′ (RN )
C(k2 + 1)−α/2‖w‖Lp′(RN )

= ‖Q‖
2/p

L
q

q−p (RN )
C(k2 + 1)−α/2‖w‖Lp′(RN )

≤ C1(k
2 + 1)−α/2‖w‖Lp′(RN ) where C1 := C‖Q‖

2/p

L
q

q−p (RN )
.

(12)

Next we determine a uniform upper bound for the corresponding finite serieses over finitely
many modes k ∈ Is. For notational convenience this will be expressed as a sum over k:

∥
∥
∥
∥
∥

∑

k

eik · RQ
k [vk]

∥
∥
∥
∥
∥
p

=

∥
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

∑

k

eik · RQ
k [vk] (x)

∥
∥
∥
∥
∥
Lp(T)

∥
∥
∥
∥
∥
∥
Lp(RN )

(10)

≤

∥
∥
∥
∥
∥
∥

(
∑

k

|RQ
k [vk] |

p′

)1/p′
∥
∥
∥
∥
∥
∥
Lp(RN )

=

∥
∥
∥
∥
∥

∑

k

|RQ
k [vk] |

p′

∥
∥
∥
∥
∥

1/p′

Lp−1(RN )

p>2

≤

(
∑

k

∥
∥
∥|R

Q
k [vk] |

p′
∥
∥
∥
Lp−1(RN )

)1/p′

=

(
∑

k

∥
∥
∥R

Q
k [vk]

∥
∥
∥

p′

Lp(RN )

)1/p′

(12)

≤ C1

(
∑

k

(k2 + 1)−
αp′

2 ‖vk‖
p′

Lp′ (RN )

)1/p′
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= C1

(
∫

RN

∑

k

(k2 + 1)−
αp′

2 |vk(x)|
p′ dx

)1/p′

p>2

≤ C1






∫

RN

(
∑

k

(k2 + 1)−
αp′

2
· p−1
p−2

) p−2
p−1
(
∑

k

|vk(x)|
p

)p′

p

dx






1/p′

(11)

≤ C1

(
∑

k

(k2 + 1)−
αp

2(p−2)

) p−2
p ∥
∥
∥‖V (·, x)‖Lp′(T)

∥
∥
∥
Lp′(RN )

= C1

(
∑

k

(k2 + 1)
− αp

2(p−2)

) p−2
p

‖V ‖p′ .

So, summing up, we have proved

(13)

∥
∥
∥
∥
∥
∥

∑

|k|≤k∗,k∈Is

eik · RQ
k [vk]

∥
∥
∥
∥
∥
∥
p

≤ C1




∑

|k|≤k∗,k∈Is

(k2 + 1)−
αp

2(p−2)





p−2
p

‖V ‖p′ ,

and this completes the proof since the sum converges if and only if αp
p−2

> 1, which holds by

assumption. Therefore R[V ] is a well-defined limit in Lp(RN , Lp(T)) and

‖R[V ]‖p ≤ C1

(
∑

k∈Is

(k2 + 1)−
αp

2(p−2)

) p−2
p

‖V ‖p′ .

Notice that R maps real-valued functions to real-valued functions because so do the operators
RQ

k . So it remains to prove the time-symmetry preserving property of R, i.e., R(Xp′

s ) ⊂ Xp
s .

Recall that elements V ∈ Xp′

s are real-valued by assumption and thus satisfy vk = v−k for all
k ∈ Z and all s = 1, . . . , 5.

• For s = 1 there is nothing to prove.

• For s = 2 any V ∈ Xp′

s is even in time. Equivalently, all Fourier modes vk = v−k are
real-valued. This is true also for RV because Rk = R−k implies

[RV ]k = RQ
k [vk] = RQ

−k[v−k] = [RV ]−k, [RV ]k = RQ
k [vk] = RQ

k [vk] = RQ
k [vk] = [RV ]k.

• For s = 3 any V ∈ Xp′

s is odd in time, i.e., the zero mode v0 = 0 vanishes and the
other Fourier modes vk = −v−k are purely imaginary. Again, this is true also for RV
because the zero mode does not occur in Is and

[RV ]k = RQ
k [vk] = RQ

−k[−v−k] = −[RV ]−k, [RV ]k = RQ
k [vk] = RQ

k [−vk] = −[RV ]k.

• For s = 4 any V ∈ Xp′

s is π-periodic, i.e., the modes with odd k vanish. Since I4 = 2Z
this is true as well for RV .

• For s = 5 any V ∈ Xp′

s is π-antiperiodic, i.e., the modes with even k vanish. Since
I5 = 2Z+ 1 this is true as well for RV .
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Step 2: Proof of (i) – Symmetry and compactness.

The symmetry of R, which means
∫

T×RN

R[V ](t, x)W (t, x) d(t, x) =

∫

T×RN

V (t, x)R[W ](t, x) d(t, x)

for all V,W ∈ Xp′

s , follows from the the continuity of R : Xp′

s → Xp
s and the symmetry of

RQ
k . We now turn to the proof of compactness. Assume that (V (n))n is a bounded sequence

in Xp′

s with
∥
∥V (n)

∥
∥
p′
≤ CV for all n ∈ N. We aim to show that a subsequence of (R[V (n)])n

converges in Xp′

s . Here, for almost all t ∈ T and n ∈ N,

R[V (n)](t, · ) =
∑

k∈Is

eikt RQ
k [v

(n)
k ] in Lp(RN).

From Hölder’s inequality we infer
∥
∥
∥v

(n)
k

∥
∥
∥
Lp′(RN )

=

∥
∥
∥
∥

1

2π

∫

T

eikt V (n)(t, · ) dt

∥
∥
∥
∥
Lp′ (RN )

≤ (2π)
− 1

p′
∥
∥V (n)

∥
∥
p′
≤ CV .

So all sequences (v
(n)
k )n are bounded in Lp′(RN ). The compactness ofRQ

k from (A2) combined
with a standard diagonalization technique provides yk ∈ Lp(RN), k ∈ Z, and a subsequence

(v
(nj)
k )j with

∀ k ∈ Is RQ
k [v

(nj)
k ] → yk in Lp(RN) as j → ∞.(14)

We claim that

(15) (R[V (nj)])j →
∑

k∈Is

eik · yk in Xp
s .

That the latter function indeed belongs to Xp
s follows from

∥
∥
∥
∥
∥

∑

k

eik · yk

∥
∥
∥
∥
∥
p

= lim
j→∞

∥
∥
∥
∥
∥

∑

k

eik · RQ
k [v

(nj)
k ]

∥
∥
∥
∥
∥
p

(13)

≤ C1

(
∑

k

(k2 + 1)−
αp

2(p−2)

) p−2
p

lim sup
j→∞

∥
∥V (nj)

∥
∥
p′

≤ C1CV

(
∑

k∈Is

(k2 + 1)−
αp

2(p−2)

) p−2
p

< ∞.

Combining this with (13) and (14), we obtain (15) using a 3ε-argument.

Step 3: Proof of (ii).

We essentially repeat the estimate from the first step where the exponent q replaces p in
the spatial Lebesgue norm in order to take the missing factor Q1/p into account. Given that
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q ≥ p′ and that our summation is over finitely many indices only, we obtain
∥
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

∑

k

eiktRk[Q
1/pvk](x)

∥
∥
∥
∥
∥
Lp(T)

∥
∥
∥
∥
∥
∥
Lq(RN )

q≥p′

≤

(
∑

k

∥
∥Rk[Q

1/pvk]
∥
∥
p′

Lq(RN )

)1/p′

≤ C

(
∑

k

(k2 + 1)−
αp′

2

∥
∥Q1/pvk

∥
∥
p′

Lq′(RN )

)1/p′

≤ C

(
∑

k

(k2 + 1)−
αp′

2 ‖Q1/p‖p
′

p′q′

p′−q′

‖vk‖
p′

Lp′ (RN )

)1/p′

≤ C‖Q‖
1/p
q

q−p

(
∑

k

(k2 + 1)−
αp′

2 ‖vk‖
p′

Lp′ (RN )

)1/p′

step 1

≤ C‖Q‖
1/p

q

q−p

(
∑

k

(k2 + 1)−
αp

2(p−2)

)p−2
p

‖V ‖p′.

Since the sum converges, we get the result. �

Proof of Proposition 3.
We prove that the functional

J : Lp′

s (T× R
N) → R, J(V ) :=

1

p′

∫

T×RN

|V |p
′

d(t, x)−
1

2

∫

T×RN

V R[V ] d(t, x)

satisfies the assumptions of the Symmetric Mountain Pass Theorem. It is straightforward to
deduce from Proposition 2 that J is well-defined, even and of class C1.

(i) Assuming ‖V ‖p′ = r, we estimate using CR := ‖R‖p′→p < ∞ and get

J(V ) =
1

p′

∫

T×RN

|V |p
′

d(t, x)−
1

2

∫

T×RN

V R[V ] d(t, x)

≥
1

p′
‖V ‖p

′

p′ −
CR

2
‖V ‖2p′

= rp
′

(
1

p′
−

CR

2
r2−p′

)

.

Hence, the claim (i) holds for r = (CRp
′)−1/(2−p′) and δ = rp

′

/2p′ > 0.

(ii) According to (A3) we find ωk ∈ Lp′(RN) such that w.l.o.g.
∫

RN

ωkR
Q
k [ωk] dx =

2

π
for all k ∈ Is.

With that, we choose for k ∈ Is

Vk(t, x) := wk(x)Tk(t) :=

{

wk(x) cos(kt) if s ∈ {1, 2, 4},

wk(x) sin(kt) if s ∈ {3, 5}.
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This choice guarantees Vk ∈ Xp′

s for all k ∈ Is. Moreover,

∫

T×RN

Vk′ R[Vk] d(t, x) =

∫

T

Tk′(t)Tk(t) dt ·

∫

RN

ωk′ R
Q
k [ωk] dx

{

= 0 if k 6= k′,

= 2 if k = k′.

So the Vk are linearly independent. Choosing nested subsets Ij
s ⊂ Is with j elements and

Wj := span{Vk : k ∈ Ij
s} we get dim Wj = j. For any fixed j ∈ N, equivalence of norms

provides a constant cj > 1 with

1

cj




∑

k∈Ij
s

β2
k





1/2

≤

∥
∥
∥
∥
∥
∥

∑

k∈Ij
s

βkVk

∥
∥
∥
∥
∥
∥
p′

≤ cj




∑

k∈Ij
s

β2
k





1/2

whenever βk ∈ R, k ∈ Ij
s .

For R > r and some arbitrary element V =
∑

k∈Ij
s
βkVk ∈ Wj with ‖V ‖p′ = R, we obtain

the estimate

J(V ) =
1

p′

∫

T×RN

|V |p
′

d(t, x)−
1

2

∫

T×RN

V R[V ] d(t, x)

=
1

p′

∫

T×RN

|V |p
′

d(t, x)−
1

2

∑

k,k′∈Ij
s

βkβk′

∫

T×RN

Vk′ R[Vk] d(t, x)

=
1

p′
·Rp′ −

∑

k∈Ij
s

β2
k

≤
1

p′
· Rp′ −

1

c2j
· R2.

Since p′ < 2, we thus conclude for Rj := max
{

r,
(
c2j/p

′
)1/(2−p′)

}

that J(V ) < 0 whenever

V ∈ Wj with ‖V ‖p′ > Rj.

(iii) Take any Palais-Smale sequence (Vn)n for J , that is, Vn ∈ Xp′

s with

J ′(Vn) → 0 in
(

Xp′

s

)′

= Xp
s , J(Vn) → c

where c > 0 denotes the mountain pass level. We claim that the sequence (Vn)n is bounded.
Indeed, assuming otherwise, the identity

J ′(Vn)[Vn]− 2J(Vn) =

(

1−
2

p′

)∫

T×RN

|Vn|
p′ d(t, x)

leads in the limit n → ∞ to the contradictory statement

0 = lim sup
n→∞

J ′(Vn)[Vn]− 2J(Vn)

‖Vn‖p′
= lim sup

n→∞

(

1−
2

p′

)

‖Vn‖
p′−1
p′ = −∞.

Hence, we may assume w.l.o.g. that Vn ⇀ V weakly in Xp′

s for some V ∈ Xp′

s . Due to the
compactness of R (see Proposition 2), this implies R[Vn] → R[V ] strongly in Lp

s(T × R
N).
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Hence, we obtain
∫

T×RN

VnR[Vn] d(t, x) →

∫

T×RN

V R[V ] d(t, x).

As in the proof of [13, Lemma 5.2] we obtain Vn → V in the strong sense by uniform convexity
of Lp′(T× Ω) and the statement is proved. �

Proof of Proposition 4.
We consider a nontrivial critical point V ∈ Lp′

s (T × R
N) of the functional J . Since R is

symmetric by Proposition 2 (i), the Euler-Lagrange equation reads

|V |p
′−2V = R[V ] in Xp

s = Lp(RN , Lp
s(T)).(16)

From Proposition 2 (ii) and (16) we infer U := (Q−1/pR)[V ] ∈ Lq(RN , Lp
s(T)). We will use

Q1/pU = Q1/p · (Q−1/pR)[V ] = R[V ] = |V |p
′−2V and thus

Q|U |p−2U = Q1/p · |Q1/pU |p−2Q1/pU = Q1/pV.

So it remains to verify
∫

T×RN

Q|U |p−2U Φ d(t, x) =

∫

T×RN

U (∂2
t − L)Φ d(t, x)

for all C∞
c (RN , C∞(T)). We first verify the above identity for (real-valued) test functions of

the form Φ(t, x) :=
∑

k e
−iktφk(x) ∈ Xp′

s where again the sum is taken over finitely many

k ∈ Is and φl, φ−l = φl ∈ C∞
c (RN). We then have

∫

T×RN

Q(x)|U(t, x)|p−2U(t, x)Φ(t, x) d(t, x)

=

∫

T×RN

Q(x)1/pV (t, x)Φ(t, x) d(t, x)

=
∑

k

∫

RN

Q(x)1/pφk(x)

[∫

T

e−ikt V (t, x) dt

]

dx

= 2π
∑

k

∫

RN

φk(x)Q(x)1/pvk(x) dx

(A2)
= 2π

∑

k

∫

RN

(−L− k2)φk(x) Rk[Q
1/pvk](x) dx

= 2π

∫

RN

∑

k

Q(x)−1/pRQ
k [vk](x) (−L − k2)φk(x) dx

=

∫

RN

∑

k∈Is

Q(x)−1/pRQ
k [vk](x) (−L− k2)

[∫

T

eiktΦ(t, x) dt

]

dx

=

∫

RN

∑

k∈Is

Q(x)−1/pRQ
k [vk](x)

[∫

T

−eiktL [Φ(t, ·)] (x) + ∂2
t

[
eikt
]
Φ(t, x) dt

]

dx.
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We now integrate by parts. Since Φ( · , x) is periodic, the boundary terms in
∫ 2π

0
Φ∂2

t

[
eikt
]
dt =

[
ikΦ · eikt + (∂tΦ) · e

ikt
]2π

0
+
∫ 2π

0
eikt∂2

tΦ dt vanish for a.e. x ∈ R
N . So we get

∫

T×RN

Q(t, x)|U(t, x)|p−2U(t, x) Φ(t, x) d(t, x)

=

∫

RN

∑

k∈Is

Q(x)−1/pRQ
k [vk](x)

[∫

T

eikt
(
∂2
t − L

)
Φ dt

]

dx

=

∫

RN

∑

k∈Is

∫

T

eiktQ(x)−1/pRQ
k [vk](x)

(
∂2
t − L

)
Φ dt dx

=

∫

T×RN

Q(x)−1/p
∑

k∈Is

eiktRQ
k [vk](x)

(
∂2
t − L

)
Φ d(t, x)

=

∫

T×RN

Q−1/p
R[V ] (∂2

t − L)Φ d(t, x)

(16)
=

∫

T×RN

Q−1/p|V |p
′−2V (∂2

t −L)Φ d(t, x)

=

∫

T×RN

U (∂2
t −L)Φ d(t, x).

Now we extend this identity to arbitrary Φ ∈ C∞
c (RN , C∞(T)). From above, we obtain that

the identity (4) holds for Φ replaced by real-valued test functions of the form

∑

k∈Is,|k|≤k∗

e−ikt φk(x) where φk(x) =
1

2π

∫

T

eiktΦ(t, x) dt.

Since the functions U(·, x) and Q|U(·, x)|p−2U(·, x) have the symmetry in time indexed by s
for almost all x ∈ R

N , they are L2(T)-orthogonal to the modes e−ikt with k ∈ Z \ Is. So we
see that (4) actually holds for Φ replaced by

∑

k∈Z,|k|≤k∗

e−ikt φk(x).

It remains to pass to the limit k∗ → ∞ because of Φ(x, t) =
∑

k∈Z e
−ikt φk(x). Here we

use that Φ(·, t) and all the φk have support contained in some fixed compact set K ⊆ R
N .

Moreover, since Φ,LΦ are smooth in time, we have

‖φk‖∞ + ‖Lφk‖∞ ≤ (k2 + 1)−100 for all k ∈ Z.

So the Fourier series for (∂2
t − L)Φ converges uniformly on R

N , which implies
∫

T×RN

Q(x)|U |p−2UΦ d(t, x) =

∫

T×RN

U (∂2
t − L)Φ d(t, x).

This finishes the proof.
�
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[22] M. Kowalczyk, Y. Martel, and C. Muñoz. Nonexistence of small, odd breathers for a class of nonlinear
wave equations. Lett. Math. Phys., 107(5):921–931, 2017.

[23] P. Kuchment. An overview of periodic elliptic operators. Bull. Amer. Math. Soc. (N.S.), 53(3):343–414,
2016.

[24] R. Mandel. Uncountably many solutions for nonlinear Helmholtz and curl-curl equations. Adv. Nonlinear
Stud., 19(3):569–593, 2019.

[25] R. Mandel, E. Montefusco, and B. Pellacci. Oscillating solutions for nonlinear Helmholtz equations. Z.
Angew. Math. Phys., 68(6):Paper No. 121, 19, 2017.

[26] R. Mandel and D. Scheider. Dual variational methods for a nonlinear Helmholtz system. NoDEA Non-
linear Differential Equations Appl., 25(2):Paper No. 13, 26, 2018.
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