
Learning Generalization and
Adaptation of Movement Primitives

for Humanoid Robots

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften /
Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M.Sc. You Zhou
aus Sichuan, China

Date for oral defence: 12.05.2020
First Referee: Prof. Dr.-Ing. Tamim Asfour
Second Referee: Prof. Dr. Ales Ude

Zusammenfassung

Humanoide Roboter, die mit für Menschen geschaffenen Werkzeugen und Um-
gebungen interagieren, sollen mit der Fähigkeit ausgestattet werden, Bewegun-
gen und Aktionen vom Menschen zu lernen, diese auf neue Aufgaben zu gene-
ralisieren und an neue Situationen zu adaptieren. Die Frage, wie Bewegungen
für solche Roboter auf eine flexible Art und Weise generiert werden können,
ist eine aktive und wichtige Forschungsfrage in der Robotik. Erkenntnisse aus
der Neurobiologe zeigen, dass Menschen komplexe Bewegungen durch die
Kombination von elementaren Bewegungseinheiten, sogenannten Bewegungs-
primitiven (Movement Primitives) erzeugen. Diese Sichtweise stellt einen erfolg-
versprechenden Ansatz zur intuitiven Roboterprogrammierung dar. Deshalb
beschäftigt man sich in der Robotik mit der Fragestellung, wie Bewegungspri-
mitiven aus menschlichen Demonstrationen gelernt werden können und wie
sie auf eine flexible und adaptive Art und Weise repräsentiert werden können,
um komplexe Roboteraufgaben zu programmieren.

Das Ziel dieser Arbeit ist es, ein generalisierendes und adaptives System für
die Generierung von Roboterbewegungen zu entwickeln und an humanoiden
Robotern zu evaluieren. Zu diesem Zweck wird eine neue Formulierung für
ein parametrisches Modell zur Repräsentation von Bewegungsprimitiven, die
Via-points Movement Primitive (VMP), vorgeschlagen und evaluiert. Basierend
auf diesem Modell werden verschiedene Ansätze entwickelt, um die Abbil-
dung vom Aufgabenparametern auf Modellparameter zu lernen und die re-
sultierende Bewegung bei der Ausführung an dynamischen Änderungen der
Umgebung anzupassen.

Repräsentation von Bewegungsprimitiven

Inspiriert durch die Ideen und die Konzepte der Bewegungsprimitiven wird in
dieser Arbeit eine neue Formulierung für die Repräsentation von Bewegungs-
primitiven, die sogenannte Via-points Movement Primitive (VMP), entwickelt,

I

die Vorteile bisheriger Methoden in der Literatur kombiniert und deren Nach-
teile minimiert. Die neue VMP-Formulierung erlaubt es, gelernte Bewegun-
gen an beliebige Zwischenpunkte der Trajektorie (Via-Points) anzupassen, um
veränderten Randbedingungen der Aufgabe Rechnung tragen zu können. Die
Möglichkeit, beliebige Via-Points bei gleichbleibender mathematische Beschrei-
bung der zugrundeliegenden Bewegung einfügen zu können, hat den Vorteil,
dass keine weiteren Demonstrationen für die Bewegungsausführung in neuen
Situationen notwendig sind und somit die Anzahl der erforderlichen Demons-
trationen für die erfolgreiche Ausführung einer Aufgabe minimiert wird. Die
neue Formulierung wurde in mehreren Experimenten mit mehreren Robotern
evaluiert. Die Ergebnisse zeigen die Vorteile gegenüber bekannten Methoden
in der Literatur, insbesondere im Hinblick auf die Extrapolationsmöglichkeiten
bei der Definition von Via-Points.

Generalisierung von Bewegungsprimitiven

Im Kontext des Lernens aus Beobachtung des Menschen werden Demonstra-
tionen in unterschiedlichen Modi und Modellen vorgeführt. Dabei kennzeichnen
die Modi die unterschiedlichen Arten, mit denen der Mensch eine Bewegungen
demonstriert während die unterschiedlichen Modelle die Tatsache ausdrücken,
dass der Mensch unterschiedliche Aufgaben mit unterschiedlichen ”versteck-
ten”Modellen löst.

Bisherige Methoden zur aufgabenspezifischen Generalisierung von Bewegungs-
primitiven berücksichtigen nur ein Modus bzw. ein Modell. Dies führt zu ei-
nem Kollabieren des Systems (Mode and Model Collapse), das sich dadurch aus-
drückt, dass diese Methoden keine gültige Lösung zur erfolgreichen Ausführung
der zugrundeliegenden Aufgabe liefern, obwohl solche Lösungen in den De-
monstrationen vorhanden sind. Das liegt daran, dass des verwendete Modus
bzw. das Modell nicht alle Aspekte des Demonstrationen, insbesondere ihre
Vielseitigkeit, berücksichtigt und somit gültige Lösungen nicht gefunden wer-
den können.

In dieser Arbeit werden zwei Ansätze vorgestellt, die das Problem des Mode and
Model Collapse lösen. Der erste Ansatz basiert auf der Erstellung eines Mixture
of Experts Modells, das mit einem in der Arbeit entwickelten Leave-One-Out
Expectation Maximization Algorithmus gelernt wird. Der zweite Ansatz sieht
die Verwendung eines Mixture Density Networks vor, um eine nicht-balancierte
Verteilung der Demonstrationen zu berücksichtigen. Die Ergebnisse zeigen,

II

dass die vorgeschlagenen Ansätze in ihrer Performanz derzeitige Methoden
bezüglich des Lernens der Abbildung von Aufgabenparametern auf Parameter
von Bewegungsprimitiven übertreffen und gleichzeitig das Problem des (Mode
and Model Collapse) lösen.

Adaptation von Bewegungsprimitiven

Um die Anforderungen an Bewegungsprimitiven bei Aufgaben der Mensch-
Roboter-Interaktion und kontaktreichen Manipulation zu erfüllen, wurde ein
Leader-Follower-Framework, die Coordinate Change Movement Primitive, entwi-
ckelt und evaluiert. Die Grundidee ist dabei, Bewegungsprimitiven des Follo-
wers im Koordinatensystem des Leaders zu lernen und Bewegungen des Follo-
wers während der Ausführung der Aufgabe in das globale Koordinatensystem
zu transformieren. Dadurch lassen sich Bewegungsprimitiven des Followers an
die Bewegung des Leaders anpassen.

Weiterhin wurde eine adaptive Kraftregelung entwickelt, um bei kontaktrei-
chen Aufgaben das gewünschte Verhalten bezüglich der vorgegebenen Kraft-
profile bei gleichzeitigem Folgen der exakten Bewegungstraketorie zu reali-
sieren. Die Regelung besteht aus einem Modell, welches das Kraftprofil vor-
hersagen kann, und einem adaptiven Regler, der die Steifigkeit basierend auf
der Information der Kraftrückkopplung anpasst. Die vorgeschlagene Regelung
wurde erfolgreich am humanoiden Roboter ARMAR-6 für eine Wischaufgabe
evaluiert.

III

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Learning from Demonstration . 4
1.3 Contributions . 6
1.4 Structure of the Thesis . 7

2 Related Work 9
2.1 Motion Representation . 9

2.1.1 Trajectory Optimization based on Human Motion Rules . 11
2.1.2 Generative Model of Trajectory Points 13
2.1.3 Dynamic Movement Primitives 15
2.1.4 Probabilistic Movement Primitives 19
2.1.5 Dynamical System . 22

2.2 Motion Generalization . 26
2.2.1 Learning Direct Mappings 26
2.2.2 Learning Generative Models 34

2.3 Motion Adaptation and Control . 39
2.3.1 Trajectory Adaptation . 39
2.3.2 Force Adaptation . 43
2.3.3 Movement Primitive Control and Compliance Adaptation 44

2.4 Conclusion . 47

3 Movement Primitive Representation 51
3.1 Adaptation Capability of Existing Movement Primitives 51
3.2 Via-Points Movement Primitive (VMP) 57

3.2.1 Basic Formulation . 57
3.2.2 Elementary Trajectory . 59
3.2.3 Via-Points Modulation . 65
3.2.4 Orientation VMP . 65
3.2.5 Task Space VMP . 67
3.2.6 Comparison of VMPs and ProMPs 69

V

Contents

3.3 Robot Applications . 71
3.3.1 Robot Learning Framework 72
3.3.2 Return Property . 74
3.3.3 Obstacle Avoidance . 75
3.3.4 Online Via-Points Integration 77

3.4 Conclusion . 78

4 Movement Primitive Generalization 79
4.1 Multiple Modes and Models . 80

4.1.1 Mode and Model Collapse 81
4.2 Mixture of Experts for Movement Primitve Generalization 82

4.2.1 Training Mixture of Experts 83
4.3 Mixture Density Networks for Movement Primitive Generalization 86

4.3.1 Extended Via-points Movement Primitive 86
4.3.2 Mixture Density Network (MDN) 87
4.3.3 MDN with Entropy Costs 91
4.3.4 MDN with Failure Costs . 93
4.3.5 Generating Motion with MDN 93

4.4 Evaluation . 95
4.4.1 Approximation of Polynomials 95
4.4.2 Random Obstacles Avoidance 95
4.4.3 Docking Problem . 97
4.4.4 Hit Ball Experiment in Simulation with ARMAR-6 99
4.4.5 Throw Ball Experiment with ARMAR-6 101

4.5 Conclusion . 102

5 Movement Primitive Adaptation and Control 105
5.1 Coordinate Change Movement Primitive (CC-MP) 106

5.1.1 Learning Adaptive Robot Wiping 108
5.1.2 Bimanual Manipulation with CC-MP 114

5.2 Compliance Adaptation in Contact-Rich Manipulation 116
5.2.1 Adaptive Force Control . 117
5.2.2 Force Predictive Models . 118
5.2.3 Learning Compliant Wiping Task 120

5.3 Conclusion . 122

6 Conclusion and Future Works 123
6.1 Scientific Contribution . 123

6.1.1 Movement Primitive Representation 123

VI

Contents

6.1.2 Movement Primitive Generalization 123
6.1.3 Movement Primitive Adaptation and Control 124

6.2 Future Works . 125
6.2.1 Movement Primitive Representation 125
6.2.2 Movement Primitive Generalization 126
6.2.3 Movement Primitive Adaptation and Control 127

Appendix 129
A Proof: Dot Product Kernel for Fitting the Polynomial 129

VII

Chapter 1. Introduction

1 Introduction

Robotic research continues to play a significant role in solving societal chal-
lenges and gains increasing attention in different research communities. Robots
are intelligent machines that can execute a sequence of motions to achieve a task
goal.

In industry, robots are used and installed in production lines to liberate workers
from repeated tedious works and increase the production efficiency and qual-
ity. However, current industrial robots rely on experts who write the programs
and set up the production line. However, a complete inhuman automated fac-
tory with programmed robots is expensive and too specialized to generalize to
other tasks. There is an increasing demand for cheap and intelligent robot sys-
tems that meet different industrial requirements and allow cooperation with
humans.

In society, industrial robots are limited helpful as assistants for humans in daily
activities. Unlike in a factory, the human-centered environment is dynamic and
difficult to predict, and industrial robots are too stiff to be safe in human-robot
interaction tasks.

One of the most captivating areas of current robotic research is artificial intelli-
gence (AI). AI is a collection of learning algorithms that are designed to extract
patterns from data or make decisions based on experience. AI simplifies the
efforts of the programmers or allows programming robots by nonexperts who
lack the knowledge of the robots or even programming languages. For robot
motion generation, AI is reflected by the ability to generalize and adapt learned
skills or motions to novel situations.

1.1 Problem Statement

The goal of this thesis is to develop a motion generation system for humanoid
robots that allows learning motions from human demonstration, generalization
and adaptation of learned motions to novel tasks. The underlying structure of

1

Chapter 1. Introduction

Figure 1.1: A robot motion generation system from sensory inputs to the motor
commands consists of perception interpretation, motion generalization,
motion representation and motion adaptation.

such motion generation system as developed in this thesis is shown in Fig. 1.1
and consists of four building blocks: perception interpretation, motion generaliza-
tion, motion representation and motion adaptation.

Here, we make a difference between motion generalization and adaptation for
a clear understanding of the problems and their solutions, as addressed in this
thesis.

The motion generalization is concerned with the generation of a new motion for a
new task based on previously learned motions. A task parameter is a set of task
features (requirements or constraints), which can be represented as a numerical
vector of a fixed dimension. For example, in an obstacle avoidance task, if the
number of the obstacles is known and their shapes are homogeneous, a numer-
ical vector that concatenates their positions represents the task parameter.

The motion adaptation is concerned with the adaptation of a learned motion to
the current task requirements. In many applications, it is difficult to represent
the task requirements as task parameter vector (a numerical vector of a fixed
dimension). For example, if the number of obstacles is unknown, an obstacle
avoidance problem is not easily solvable by motion generalization. In this case,
the motion representation or the controller should be adaptable to adjust the
trajectory or the control signals to accomplish the task. The development of
such motion adaptation methods requires expert knowledge. Hence, it is not

2

Chapter 1. Introduction

generalizable to other tasks. In contrast, once a method is developed for motion
generalization, it can also be used for any other task.

• Perception Interpretation:

How to interpret the sensory inputs and extract the relevant information
for the task execution is a challenging topic but is out of the scope of this
work. In this work, we assume that the result of the perception interpre-
tation is available and is converted to a numerical vector describing the
task parameters.

• Motion Generalization:

A motion generator takes the task parameters as input and outputs mo-
tion parameters. With an intelligent motion generator, a robot can gen-
eralize the learned motions to different situations, which are represented
by task parameters. Previous approaches do not take multiple modes
and models that exist in human demonstrations into consideration. Here,
multiple modes mean that humans accomplish the same task with dif-
ferent types of motions. Multiple models refer to the fact that humans
generate motions for different tasks with different hidden models.

• Motion Representation

Motion representation refers to a parametric model, which represents a
set of motions that can be used to accomplish a task. This model outputs
a sequence of the control targets such as target positions or velocities, de-
scribing the motion trajectory. A good parametric model can be adjusted to
adapt the generated trajectory to some temporal or spatial features such
as via-points that are required to pass through to satisfy given task con-
straints. In previous works, different mathematical models are suggested.
However, they have limited adaptation capabilities.

• Motion Adaptation and Control

Two kinds of motion adaptation are considered in this work: trajectory
and force adaptation. Trajectory adaptation refers to the spatial or tempo-
ral changes of the motion trajectory to meet the task requirements. Force
adaptation is required when a desired force or torque profile should be
ensured during a physical interaction between the robot and the environ-
ments.

3

Chapter 1. Introduction

Figure 1.2: The thesis consists of three main parts: movement primitive repre-
sentation, generalization and adaptation.

1.2 Learning from Demonstration

In order to generate task-oriented motions, different approaches have been de-
veloped. Recently, reinforcement learning (RL) combined with deep learning re-
ceives increasing attention. RL allows a robot to learn skills without super-
vision autonomously based on trial and error. With a given reward function
of each observation or state, an RL agent improves the policy as a parametric
model that maps the state to the action, to obtain higher accumulated rewards
during the task execution. However, current RL methods require a large num-
ber of training epochs. Hence, they are mostly implemented in simulation.

4

Chapter 1. Introduction

Being different from RL, learning from demonstrations (LfD) is a supervised learn-
ing approach, where a human demonstrates the robot how to execute the task,
and the robot learns from human demonstration. For many tasks where a hu-
man cannot easily give useful demonstrations, LfD cannot be applied directly.
For example, it is not easy to supervise a bipedal robot for walking or running,
because the robot does not have the same physical body as human. With RL,
this problem can be solved, though it requires a large number of trials. If hu-
man demonstrations can be transferred to the robot, LfD is more data-efficient
to generalize motions than RL. In some cases, the robot learns a skill with even
only one demonstration. Many robotic skills involve only kinematic require-
ments, such as transporting or throwing objects. Thus, human demonstrations
of these skills can be easily transferred to the robot.

In this work, LfD is used for two reasons. One reason is to learn how to gen-
eralize motions based on multiple demonstrations corresponding to different
task parameters. The other reason is to learn the parametric model for motion
representation. According to previous work inspired by neuro-biological re-
search, we call this parametric model a movement primitive (MP) and consider it
as the building block for a complex skill.

In the literature, trajectory models such as B-spline or fifth-order polynomials
are used to generate desired robot trajectories. Almost all those methods are
based on higher-order polynomials, because they allow calculating derivatives
and hence specifying the boundary conditions such as goal positions and ve-
locities. However, these models have limited representation capability because
they have fixed structures and a small number of parameters. Furthermore, a
small change of parameters may lead to a big change in the trajectory shape.
In LfD, since human demonstration always can not be represented with sim-
ple functions such as polynomials, powerful parametric models are needed.
An alternative is to use non-parametric models such as Gaussian process to
represent motions. The problem of using non-parametric models to represent
motions is that we need to store human demonstrations to be able to generate
new motions, which requires a large storage space, especially for a complex
task. Compared to polynomials and non-parametric approaches, a parametric
movement primitive (MP) is a compact solution.

5

Chapter 1. Introduction

1.3 Contributions

In this work, the focus is on the development of the parametric movement primi-
tives (MP), and methods that generalize a movement primitive to different task
parameters or adapt it to different task requirements, and answer the question
how to control the robot to follow the adapted trajectory. The contributions can
be divided into three main parts:

Movement Primitive Representation

In order to improve the current state of the art regarding movement primitive
adaptation to different situations, integrating via-points is considered as a ra-
tional solution. Via-points are those required points that generated trajectories
should pass through. With a set of via-points, the geometrical shape of the
trajectory can be adapted to new task requirements.

In this work, a new movement primitive model called Via-points Movement
Primitive (VMP) is developed. As its name reveals, the structure of VMP al-
lows it to adapt the trajectory to arbitrary via-points. It inherits the advan-
tages of previous models and resolves their drawbacks regarding the adap-
tation to arbitrary via-points. Furthermore, compared to previous movement
primitives, VMP can extrapolate to the via-points outside of the demonstra-
tion range. With via-points adaptation, VMPs fulfill a wide variety of robotic
application requirements, such as obstacle avoidance.

Movement Primitive Generalization

Learning a mapping from the task parameters to the parameters of movement
primitive parametric models is an intuitive way to generalize learned motions.
In the literature, different regression models are developed to learn this map-
ping from human demonstrations. However, they do not consider multiple
modes and models that exist in human demonstrations. A human accom-
plishes the same task specified with the same task parameters by different types
of motions, which can be viewed as modes of distribution of the MP parame-
ters. Many regression models associate one single MP parameter to one task
parameter in a deterministic way, which causes the collapse of modes. The
mode collapse leads to the lose of motion diversity for a task with specific task
parameters. Furthermore, for different tasks with different task parameters, a

6

Chapter 1. Introduction

human uses more than one hidden models to generate motions. Using one sin-
gle regression model causes the collapse of the hidden models, which can lead
to the failure of the MP generalization.

In this work, two different methods are proposed to avoid the mode and model
collapse. One method relies on using a mixture of experts model and modifying
the Expectation Maximization (EM) algorithm to learn the expert models based
on a small number of demonstrations. The other method uses a Mixture Density
Network(MDN) to map task parameters to a mixture of Gaussian distributions
of MP parameters. In order to further avoid the collapses caused by training
the MDN with a normal negative-log-likelihood (NLL) cost, a new cost function,
called entropy cost, is proposed for a balanced distribution of the training data
to different mixture components of MDN. Furthermore, a so-called failure cost
is introduced to improve the training process by avoiding outputting MP pa-
rameters similar to those parameters that lead to failure. In several robot ex-
periments, compared to previous methods, the new methods show better per-
formance.

Movement Primitive Adaptation and Control

For movement primitive adaptation, a leader-follower framework based on Co-
ordinate Change Movement Primitive (CC-MP) is developed for tasks involving
multiple agents such as wiping a moving surface or bimanual manipulation
tasks. The follower’s movement primitive is learned in the leader’s local frame
and can be adapted to the leader’s motion, which can also be encoded by a
leader movement primitive.

Furthermore, a force-predictive-model based adaptive controller is developed
to allow the compliant behavior of a robot while accurately tracking a given tra-
jectory. This controller enables a safe human-robot interaction in collaborative
tasks.

1.4 Structure of the Thesis

Chapter. 2 introduces and discusses related works regarding movement prim-
itive representation, generalization and adaptation. In the context of move-
ment primitive representation, different non-parametric or parametric methods
are introduced. Their merits and disadvantages are described and compared.
For movement primitive generalization, previous works are divided into two

7

Chapter 1. Introduction

categories: learning a direct mapping or learning a generative model and are
discussed and compared. For movement primitive adaptation, methods are
introduced for specific tasks such as obstacle avoidance, handover and force
adaptation. Furthermore, several control strategies are introduced to enable
compliant behavior of robots.

Chapter. 3 discusses further parametric models and introduces a new model,
as novel representations of movement primitives, the so-called Via-points Move-
ment Primitive (VMP), which inherits the benefits from previous methods and
resolves their drawbacks. The comparison between VMP and the previous
methods such as Dynamic Movement Primitive (DMP), Probabilistic Movement
Primitive (ProMP) shows the strengths of the VMP representation regarding
inter- and extrapolation capabilities for via-points adaptation. The chapter
also includes several robot applications based on VMP and shows that the via-
points adaptation can simplify robot tasks.

Chapter. 4 introduces two methods to handle multiple modes and models that
exist in human demonstration. The first method is learning mixture of experts
with a Leave-One-Out Expectation Maximization (LOO-EM) algorithm. LOO-EM
shows better performance for a small number of demonstrations than the nor-
mal EM algorithm. The second method uses a Mixture Density Network (MDN)
to model a mapping from task parameters to a mixture of Gaussian distribution
of MP parameters. In order to further reduce the occurrence of the mode and
model collapse, a so-called entropy cost is introduced to distribute the demon-
strations to different mixture components of MDN in a balanced way. Further-
more, a failure cost function is developed to improve the training process by
keeping MDN from outputting those MP parameters that lead to failure. Sev-
eral robot experiments show that MDN outperforms previous methods.

Chapter. 5 introduces a leader-follower framework to enable the adaptation of
the robot’s motion to humans’ behavior and the collaboration between multi-
ple agents. The follower movement primitive is encoded in the leader’s local
frame. Thus, the follower can adapt its motion to the leader’s motion during
task execution. With this framework, a robotic wiping system is developed.
The chapter also includes an adaptive control framework based on the force
predictive model developed to achieve compliant robot behavior while accu-
rately tracking an MP generated trajectory.

Chapter. 6 concludes the work and discusses future possible extensions.

8

Chapter 2. Related Work

2 Related Work

In this chapter, we separately introduce the methods developed for movement
primitive (MP) representation, generalization, and adaptation.

The movement primitive representation refers to different mathematical mod-
els that represent motions. These models are the basic building blocks for a
robot skill. Different motion representations have their advantages and disad-
vantages. They are usually a parametric model with a set of parameters that
uniquely define a set of motions. Section. 2.1 introduces and compares impor-
tant or popular methods.

The movement primitive generalization is concerned with a regression model
that maps the task parameters to the MP parameters. Works in the literature fo-
cus on a specific set of task parameters or a better generalization for some par-
ticular tasks. Other works investigate different regression models and whether
they are suitable for MP generalization or not. With different MPs, generaliza-
tion can have different meanings. In Section. 2.2, MP generalization approaches
are introduced and compared.

For movement primitive adaptation and control, methods are developed to
adapt the MP generated trajectory to the dynamic environment or different task
requirements. In contact-rich manipulation, one crucial task is to deal with or
control the contact force with the environment. An another important task is
to control the robot to follow the MP generated trajectory with a high accuracy
while being compliant when encountering the external perturbations.

2.1 Motion Representation

For representing robot motions, researchers focus on developing compact mo-
tion representations that are simple to learn and convenient to use. The early
electrophysiological studies on the frogs and rats by Bizzi Emilio and others
(Bizzi et al. (1991), Mussa-Ivaldi and Bizzi (2001)) suggested that complex mo-
tions are generated by combining elementary force fields. These force fields

9

Chapter 2. Related Work

Figure 2.1: The left four figures show the experiment on the spinalized frog
conducted by Bizzi Emilio and co-workers. The force field in (d)
is obtained by special interpolation with triangles. The right fig-
ures show that superposition (+) of two force fields in A and B by
stimulating different loci of the spinal cord coincides with the force
field generated by stimulating them simultaneously. The experi-
ment supports the assumption that complex motions are realized
by the combination of some elementary force fields. (The figures are
from Bizzi et al. (1991) and Mussa-Ivaldi and Bizzi (2001))

are called motor primitives, or movement primitive (MP) because they are funda-
mental building blocks for complex skills. Inspired by these experiments, in
the robotic community, MP refers to those basic motion units that can be ex-
ecuted by the robot. By ordering and sequencing MPs, complex skills can be
implemented.

There are a large number of MP representations in literature. They have their
strength and weakness because they are developed based on different assump-
tions and for different purposes. One essential purpose is to simplify the adap-
tation of motion to the new task requirements. For example, in order to deal
with unforeseen objects and changed targets, it is much easier to deform the on-
going trajectory instead of generating new trajectories (Pham and Nakamura
(2015)). Hence, many motion representation methods are usually equipped
with strategies to handle new targets or obstacles.

Before considering different movement primitives in literature, we introduce
here a set of traditional methods for the robotic motion generation.

10

Chapter 2. Related Work

2.1.1 Trajectory Optimization based on Human Motion Rules

These methods solve a constraint optimization problem to obtain a motion tra-
jectory. The objective function is designed based on a large number of experi-
ments, where human motions are thoroughly studied. The purpose is to create
the most human-like motions for robots based on the assumption that human
motions follow some basic rules, which can be reformulated by the objective
functions to be minimized or maximized. The constraints of those optimiza-
tion problems are the task requirements which the generated motion trajecto-
ries should fulfill.

In Lacquaniti et al. (1983), the authors found that human planar drawing mo-
tions follow a so-called two-third power law, which says that the angular ve-
locity ω and the trajectory curvature κ follow the relationship ω(t) = γκ(t)2/3

with a constant γ. In Pollick and Sapiro (1997), it is proved that the motion
obeying the power law has a constant equi-affine linear velocity. This law was
further extended to 3D trajectories in Maoz et al. (2009). In Bennequin et al.
(2009), a theory is developed to describe the property of human movements
based on the affine invariance: trajectories generated by humans are invariant
concerning affine transformations that include equi-affine and Euclidean trans-
formations. This fact gives the birth of motion generation methods based on
the optimization with objective functions that consider the affine invariance.

In Pham and Nakamura (2015), the authors proposed a strategy to formulate
an optimization problem to create a deformed trajectory, which has the same
equi-affine speed profile as the original one. This equi-affine velocity defined
in Maoz et al. (2009) is a scalar triple product of the first, second and third
derivative of the trajectories:

vea(t) = |dξ
ξξ

dt
,
d2ξξξ

dt2
,
d3ξξξ

dt3
|1/6, (2.1)

where |., ., .| is the scalar triple product and ξξξ is the corresponding trajectory.
In order to generate the trajectory with the same equi-affine speed profile, the
authors allow only affine transformations of the original trajectory for the new
trajectory which meets the task requirements. Even though this is the case,
there still exist a large number of redundant trajectories which meet the same
requirements. The objective function of the optimization problem, thus, pro-
vide a way to find a unique trajectory, or more precisely an affine transforma-
tion matrix M . For example, one cost function minimizes the distance between

11

Chapter 2. Related Work

the generated trajectory and the original one, namely

min
M

sup
t<T
||ξξξ(t)− ξξξ0(t)||, (2.2)

where T is the terminal time of the trajectory. The affine transformation can be
written as ξξξ(t) = ξξξ0(0) + M(ξξξ0(t) − ξξξ0(0)), where ξξξ0(0) is the start point of the
trajectory. Because

||ξξξ(t)−ξξξ0(t)|| = ||ξξξ0(0)+M(ξξξ0(t)−ξξξ0(0))−ξξξ0(t)|| ≤ ||M−I|| ||ξξξ0(t)−ξξξ0(0)||,
(2.3)

the problem is to minimize the norm ||M − I||. By flattening the matrix M to a
vectormmm, the objective function is approximated by the Frobenius norm which
is ||mmm − iii||, where mmmkl = M(k, l), iiikl = I(k, l) with 0 ≤ k, l < d and d is the
dimension of the trajectory. The optimization with this specific cost function is
represented as

min
m
||mmm− iii||2, (2.4)

which is a quadratic programming that can include equality or inequality con-
straints and can be solved by many software packages. Other objective func-
tions were introduced in Pham and Nakamura (2015). The main idea is still
to find an affine transformation that deforms the original trajectory for some
specific task constraints.

In Meirovitch et al. (2016), the authors suggest a method that solves an opti-
mization problem whose objective function is given as

Iξξξ0,T,λ(ξξξ,
...
ξξξ) =

∫ T

0

|
...
ξξξ |2dt+ λ6

∫ T

0

|ξξξ − ξξξ0|2dt, (2.5)

where ξξξ0 is the template trajectory. The optimization is to find a trajectory ξξξ that
is as close to the original trajectory and smooth as possible. The tradeoff be-
tween smoothness and accuracy depends on the Lagrange multiplier λ. Based
on the Euler-Lagrange equations, the solution should satisfy the equation:

ξξξ(6)(t) = λ6(ξξξ(t)− ξξξ0(t)), (2.6)

where ξξξ(6)(t) is the 6-th derivative of the trajectory at the time point t. This
equation is invariant with respect to the affine transformation because both

12

Chapter 2. Related Work

colinearity and the differentiation are affine invariant:

d6

dt6
M(ξξξ(t)) = λ6 (M (ξξξ(t))−M (ξξξ0(t))) . (2.7)

By adjusting the Lagrange multiplier λ, the generated trajectory goes from a
minimum jerked approaching motion to an exact reproduction of the original
template.

Based on a large number of researches for human motion generation, the result-
ing trajectories of these optimization problems are theoretically human-like.
With the constraints, they can accomplish the tasks as well. The problem of
these methods is that it is difficult to generalize them for different task parame-
ters. For each new task parameter, a new optimization problem is to be solved,
which is not convenient, especially when the task is complex.

2.1.2 Generative Model of Trajectory Points

In Calinon et al. (2007), the authors used a statistical learning approach to learn
a generative model of the trajectory points. The trajectory point is referring to
a pair (ξξξt, ξξξs), where ξξξt is the temporal parameter and ξξξs represents the spatial
parameter such as positions. After a number of demonstrations, a set of trajec-
tory points is collected. For example, for M demonstrations with T time steps
each, the training dataset will have totally M ·T points. In Calinon et al. (2007),
the authors use a Gaussian Mixture Model (GMM) to represent the distribution
of the trajectory points:

p(ξξξt, ξξξs) =
K∑
k=1

πππkN (ξξξt,s|µµµk,ΣΣΣk), (2.8)

where K is the number of the mixture components, πππk is a mixing coefficient,
and

µµµk =

(
µµµt,k

µµµs,k

)
, ΣΣΣk =

(
ΣΣΣt,k ΣΣΣts,k

ΣΣΣst,k ΣΣΣs,k

)
(2.9)

With a fixed number of mixture components K, GMM can theoretically repre-
sent any distribution.

Based on the conditional probability, which is used to infer unknown variables
conditioning on the known ones, we get a distribution of the trajectory posi-
tions ξξξs conditioning on the temporal parameter ξξξt. The conditional mean and

13

Chapter 2. Related Work

covariance of the k-th Gaussian distribution are:

ξ̂ξξs,k = µµµs,k + ΣΣΣst,k(ΣΣΣt,k)
−1(ξξξt − µµµt,k)

Σ̂ΣΣs,k = ΣΣΣs,k −ΣΣΣst,k(ΣΣΣt,k)
−1ΣΣΣts,k.

(2.10)

GMM also learns the relationship among individual dimensions of the spatial
parameter. Hence, it is also possible to determine the trajectory of one dimen-
sion from the others. For example, a joint space trajectory can be encoded to-
gether with a task space trajectory. Moreover, the null space control targets are
obtained when executing a task space motion.

With this generative model, the authors constructed an objective function based
on the mean of the conditional distribution mentioned before. Together with
the kinematic constraints, an optimization problem can be solved to obtain the
desired trajectory.

The method to infer the unknown conditioning on the known variables from a
GMM is called Gaussian Mixture Regression (GMR). In fact, GMR learns a func-
tion f that maps the temporal parameter ξξξt to the spatial parameter ξξξs:

ξξξs = f(ξξξt). (2.11)

In Calinon et al. (2013), the authors further improved their methods by con-
sidering different perspectives for the demonstrations. With this improvement,
they generalize the approach to the change of specific task parameters. And
the method is called Task-Parameterized Gaussian Mixture Model (TP-GMM). TP-
GMM will be described in detail in Section. 2.2.

14

Chapter 2. Related Work

2.1.3 Dynamic Movement Primitives

Figure 2.2: Two drawbacks of DMP result from the scaling multiplier (g − y0).
The first drawback is that DMP will generate a mirror trajectory if
(gnew − y0) = −(g − y0). The other one is that DMP generates infea-
sible trajectories if g ≈ y in the demonstrated trajectory. The force
term is numerically large and hence unstable when changing to a
new goal. The top-left figure shows the plots regarding the first
dimension of the trajectories of a figure ”8” in a 2D plane. The top-
right figure shows the result drawing. The red point and the red
trajectories represent the original goal and the trajectory. The blue
trajectories are the results of adapting to the goal on the right side
of the start. The green trajectory is the result of adapting to the goal
on the left side of the start. The bottom two figures show the results
given by the bio-inspired DMP given in Hoffmann et al. (2009).

In Ijspeert et al. (2003) and Schaal (2003), the authors proposed the Dynamic
Movement Primitive (DMP) based on both dyanmical system and statistical learn-
ing approaches.

In correspondence to the force field observed in the frog experiment (Fig. 2.1),
DMPs assume that the motion is governed by an elastic force field with a global
attractor g, namely a well-studied spring system, and a non-linear force term
f(x) as a function of a phase variable x, which is learned from the human

15

Chapter 2. Related Work

demonstration. With a stiffness K and a damping factor D, a DMP outputs
a scaled acceleration profile v̇ using the so-called transformation system:

τ v̇ = K · (g − y)−D · v + (g − y0) · f(x) · x
τ ẏ = v,

(2.12)

where y, v, v̇ are the position, scaled velocity and acceleration. The phase vari-
able x, also called canonical variable, is a time-dependent variable going from
1 to 0 and determined by an exponential decay system. Ijspeert et al. (2003)
and Schaal (2003) call it canonical system:

τ ẋ = αxx, with x(0) = 1, x(T) = 0, (2.13)

where T is the terminal time and αx is a constant. With the introduction of
the canonical system, the previous transformation system is time independent.
With the temporal scaling τ , the motion speed is adjustable.

In Ijspeert et al. (2003) and Schaal (2003), the non-linear force term f(x) is pa-
rameterized with a kernelized linear regression model :

f(x) =

∑N
i=1ψψψi(x)wwwi∑N
i=1ψψψi(x)

, (2.14)

where N is the number of kernels and www is the parameter vector. The function
ψψψ(·) is a squared exponential kernel (SEK), also called radial basis function (RBF):

ψψψi(x) = exp(− 1

2σ2
i

(x− ci)2) (2.15)

where σi and ci are the parameters of the i-th SEK, which are predefined or
learned from the demonstration. The parameter www is learned with the Locally
Weighted Regression (LWR) described in Atkeson et al. (1997). The goal is to
minimize the error of the parametric function to the desired force term values
ftarget. With one demonstration,M data samples {(xt, ydemo,t, ẏdemo,t)}Mt=1 are col-
lected along the timeline. The target force term is calculated with the Eq. 2.12:

ftarget(x) =
τ v̇demo − (K · (g − ydemo)−D · vdemo)

(g − y0,demo) · x
. (2.16)

With a training dataset {(xt, ft)}Mt=1, the cost function is

L =
M∑
t=1

N∑
i=1

ψψψi(xt)(wwwi − ft)2. (2.17)

16

Chapter 2. Related Work

By setting the first derivative of the cost function to zero, the k-th component
of the weights vector is obtained by

wwwk =

∑M
t=1ψψψk(xt)ft∑M
t=1ψψψk(xt)

. (2.18)

One advantage of LWR is that the weights vector www can be learned in an in-
cremental way. In Gams et al. (2010) and Gams et al. (2016), an incremental
learning strategy was developed to learn a periodic motion with DMP. Hereby,
the update of the weights vector with each new data point (xt, ft) is given by

wwwk,t+1 = wwwk,t +
ψψψk(xt+1)∑t+1
i=1ψψψk(xi)

(ft+1 −wwwk,t). (2.19)

With a variable
Pt =

1∑t
i=1ψψψk(xt)

, (2.20)

and its update rule

Pt+1 =
Pt

1 + Pt ·ψψψk(xt+1)
= Pt −

P 2
t ·ψψψk(xt+1)

1 + Pt ·ψψψk(xt+1)
, (2.21)

The update rule ofwww follows:

wwwk,t+1 = wwwk,t +ψψψk(xt+1) · Pt+1 · (ft+1 −wwwk,t). (2.22)

The process starts with each component equal to zerowwwk,0 = 0 and P0 = 1.

The DMP formulation is developed for a compact representation of robot mo-
tions. With the previously mentioned approach, it is learned from one single
demonstration. Once it is learned, it adapts to different speeds, starts, and goals
by changing its hyper-parameters τ , g, y0. Compared to the previous methods,
one advantage of a DMP is its adaptation capability, because the motion goal
is one of the standard task requirements in many applications. Without any
efforts, a DMP directly adapts to the goal change.

However, the DMP formulation proposed in Ijspeert et al. (2003) and Schaal
(2003) has the scaling problem when adapting to a new start or goal. This fact
is because the multiplier (g−y0) for the non-linear force term causes the numer-
ical problem when calculating the desired force term from the demonstration.
In Fig. 2.2, a DMP is used to learn a figure eight motion in 2D. Since the start
and goal are close to each other in the demonstration (red curve), the scaling
term (g− y0) is close to zero, which results in a significant target force term. Af-

17

Chapter 2. Related Work

ter learning the DMP parameters with the LWR, a small change of the scaling
term (g − y0) causes a dramatic change of the trajectory shape because of the
tremendous force term (the blue curve). Furthermore, the generated trajectory
flips (the green curve) when the new goal is on the other side of the new start
and leads to the sign change of the scaling term (g − y0).

In order to solve these problems, instead of a damped spring system combined
with a force term, in Hoffmann et al. (2009), the authors suggest the superposi-
tion of two elastic force fields,

τ v̇ = x ·K(f(x) + y0 − y) + (1− x) ·K(g − y)−Dv, (2.23)

where K(g − y) corresponds to the original spring system with a fixed global
goal g and K(f(x) + y0 − y) is an elastic force field generated by a moving
attractor f(x)+y0, which takes the place of the original force term. The weights
of these two force fields change with the canonical variable x going from 1 to
0. In the beginning, the moving attractor mainly governs the motion. During
execution, the global goal attractor gradually takes over. As in Hoffmann et al.
(2009) described, inspired by the frog experiment in Bizzi et al. (1991)(Fig. 2.1),
the authors called their method bio-inspired DMP. There is no scaling term in
this formulation, and the force term f(x) encodes the offset from y0 for the
moving attractor. The bio-inspired DMP scales the motion automatically and
solves the scaling problem, as shown in Fig. 2.2.

In Dragan et al. (2015), the authors proved that the bio-inspired DMP adapts to
the new start and goal by minimizing the normA = KTK, whereK is the finite
differencing matrix, such that:

minimize
ξξξ

||ξξξ − ξξξD||2A
s.t. ξξξ(1) = y0

ξξξ(0) = gnew,

(2.24)

where ξξξ and ξξξD are the target and the demonstrated trajectory and ||ξξξ||2M =

ξξξTMξξξ. The norm A is a distance measure between two trajectories:

C(ξξξ, ξξξD) =
1

2

∫
(ξ̇ξξ(x)− ξ̇ξξD(x))T (ξ̇ξξ(x)− ξ̇ξξD(x))dx =

1

2
(ξξξ − ξξξD)TA(ξξξ − ξξξD). (2.25)

The goal adaptation of the DMP minimizes the difference between the velocity
profiles of the demonstrated and the generated trajectory.

In Ijspeert et al. (2013), the authors provided a comprehensive review on DMPs

18

Chapter 2. Related Work

and its applications. According to Ijspeert et al., a DMP serves as a kinematic
planner, and the robot is usually equipped with a tracking controller such as
a PD controller with inverse dynamic methods. In order to accommodate the
external perturbation, especially in a compliant control mode, the canonical
system is modified to incorporate a feedback term called phase stopping:

τ ẋ = − 1

T
· 1

1 + αerr||ỹ − y||
, or τ ẋ = αx ·

x

1 + αerr||ỹ − y||
. (2.26)

where y is the DMP state and ỹ is the current position. The phase stopping tech-
nique for the canonical system makes a DMP a feedback trajectory planner that
stops when the controller prohibits to follow the planned trajectory for some
reasons such as human interruptions or poor tracking accuracy of the lower-
level controller. In real applications, the transformation system of a DMP pro-
vides only the forward control signal with y as the so-called DMP state without
receiving any feedback signal from the robot.

This control strategy questions the necessity to form the elastic force fields
(second-order dynamical systems) in the transformation system instead of di-
rectly encoding the trajectory. Moreover, a dynamical system increases the
complexity of the problem by requiring a solver for differential equations such
as Euler or Runge-Kutta methods and limits the adaptability of DMPs for the
trajectory adaptation.

The fact that a DMP can learn from one single demonstration is both its ad-
vantage and disadvantage. It is an advantage because it can be easily learned
and hence, meets a lot of application requirements, where multiple demonstra-
tions are not available or costly. It is a disadvantage because one demonstration
contains only little information about the task. The DMP adaptation is merely
due to its structure or its assumption about the movement. Without the knowl-
edge from multiple demonstrations, there is no reason to claim that the DMP
adaptation to the new start or goal is ”correct” for the task.

2.1.4 Probabilistic Movement Primitives

In order to also consider the variance of the demonstrations for a given task,
a probabilistic model called Probabilistic Movement Primitive (ProMP) was de-
veloped in Paraschos et al. (2013, 2018). With the fundamental operations in
probability theory, ProMPs are connectable, combinable, and modifiable.

Instead of a dynamical system, a ProMP directly encodes the positions and

19

Chapter 2. Related Work

velocities of a trajectory as follows:

yyyt = ψψψTt www + εy, www ∼ N (µµµw,ΣΣΣwww) , (2.27)

where yyyt = (ξξξt, ξ̇ξξt)
T is the state of the system, εyyy ∼ N (0,ΣΣΣyyy) is a Gaussian noise

and

ψψψt =

ψψψ1(t) ψ̇ψψ1(t)

ψψψ2(t) ψ̇ψψ2(t)
...

...
ψψψN(t) ψ̇ψψN(t)

 (2.28)

where ψψψi(t) is i-th squared exponential kernel (SEK) function (Eq. 2.15) and ψ̇ψψi(t)
is its corresponding first derivative. If considering the time independence and
the same canonical system used in a DMP, the time point t is simply replaced
by the canonical variable x. Hence, ψψψi(t) = ψψψi(xt).

Learning a ProMP means inferring the parameters of the Gaussian distribution
in Eq. 2.27. The maximum likelihood estimation (MLE) of its mean and its variance
are the empirical mean and covariance:

µµµw =
1

M

M∑
i=1

wwwi, ΣΣΣw =
1

M

M∑
i=1

(wwwi − µµµw)(wwwi − µµµw)T , (2.29)

where M is the number of demonstrations andwwwi is the i-th weights vector cor-
responding to the i-th demonstration. If a ProMP is used to encode a multi-
dimensional trajectory, the weights vectors to represent each dimension are
concatenated (Paraschos et al. (2018)). The weights vectorwwwi for the i-th demon-
stration is obtained by solving a regularized least square problem:

wi =
(
ΨΨΨTΨΨΨ + λI

)−1
ΨΨΨTξξξi, (2.30)

where

ΨΨΨ =

ψψψ(x0)

T

ψψψ(x1)
T

...
ψψψ(xT)T

 , (2.31)

and ξξξi is a vector representing the trajectory of the i-th demonstration.

With such probabilistic formulation, a ProMP provides a more compact rep-
resentation than a DMP. Unlike DMP goal adaptation that changes the attrac-
tor of the damped spring system without using any information from human

20

Chapter 2. Related Work

demonstration, the adaptation of a ProMP is entirely data-driven. As shown in
the left-most diagram in Fig. 2.3, the low variance of the Gaussian distribution
corresponds to a critical region between two obstacles. During the execution,
a ProMP guarantees that the motion goes through these low variance regions,
which is not achievable with a DMP.

Since a ProMP directly encodes the trajectory with a probability distribution, it
adapts to any via-points, including both the start and goal with the conditional
probability. We can use a triple (x∗, yyy∗,ΣΣΣ∗y) to denote a via-point, where x∗ is
the canonical variable that is corresponding to the time at which the trajectory
should go through the via-point, yyy∗ is the via-point positions and ΣΣΣ∗y represents
its uncertainty.

For a new via-point, the conditional probability of the weights vector is given
by

µµµ∗www = µµµwww + L(yyy∗ −ψψψTt∗µµµwww),

ΣΣΣ∗w = ΣΣΣw − LψψψTt∗ΣΣΣw,

L = ΣΣΣwψψψt∗(ΣΣΣy∗ +ψψψTt∗ΣΣΣwψψψt∗)−1,

(2.32)

andwww ∼ N (µµµ∗www,ΣΣΣ
∗
www). The mean trajectory definitely goes through the via-point.

The new covariance determines the freedom of the generated trajectory around
the via-points. In the middle diagram of Fig. 2.3, ProMP adapts the distribution
to a new goal. With a low variance, it guarantees that the generated trajectory
hits the new target. At the same time, the result trajectories distribution keeps
the low variance for the critical region in between the two obstacles. Since
a DMP does not learn variance information and adapts to the goal without
using knowledge from human demonstration, there is no guarantee that the
generated trajectory for the new goal does not collide with the obstacles. As
shown in the right diagram of Fig. 2.3, a ProMP also adapts to an arbitrary via-
point. While a DMP cannot directly adapt to other via-points except the new
start and goal.

In order to utilize ProMPs for robot applications, a stochastic feedback con-
troller developed in Paraschos et al. (2013, 2018) reproduces the mean and the
variance for all time steps of a given trajectory distribution. However, this con-
troller was only designed for linear dynamical systems or physical systems,
which can be linearized. For multi-joints robot control, a PD feedback controller
and an inverse dynamic method after the stochastic controller are still neces-
sary to realize the robot motions as for DMPs. The advantage of a stochastic
controller with ProMPs over DMPs is that the trajectory shows more compliant
behavior in case of perturbation because the variance of a ProMP allows the

21

Chapter 2. Related Work

Figure 2.3: ProMP is learned with a number of collision free demonstrations
(the blue curves). The learned ProMP represents a trajectory distri-
bution with the red curve as the mean trajectory and the red region
shows the variance. ProMP adapts to the new goal and any interme-
diate via-points shown in the right two diagrams with green balls.

robot to depart from the mean trajectory. While a DMP, with high gains K for
accurate reproduction of the demonstrated trajectory, is less compliant regard-
ing the perturbation and tries quickly to return to the original trajectory.

In Ewerton et al. (2015), the authors replaced the Gaussian distribution in the
ProMP formulation with a Gaussian Mixture Model (GMM). With a GMM, a
ProMP has a more powerful distribution representation. As usual, the GMM is
learned with the Expectation Maximization algorithm (EM).

The weights vector www in the DMP and ProMP formulations can be regarded as
a data point in a high dimensional movement primitive (MP) space. With the
DMP structure, each MP in this space denotes a family of trajectories that have
different starts and goals but are topologically similar (Ijspeert et al. (2013)).
While it only represents one single trajectory with a ProMP. If multiple demon-
strations for one specific task are available, a ProMP infers the parameters of the
Gaussian distribution or a GMM. However, with a small number of demonstra-
tions, the result distribution might overfit the data, especially when a relatively
complex model such as a GMM is used. In order to learn a ”correct” ProMP,
hence, we need a relatively large number of demonstrations, or we can only
solve simple tasks, where few demonstrations are enough.

2.1.5 Dynamical System

Appart from DMPs, there is an another popular way to use the dynamical sys-
tem theory to encode robot motions. These methods are called Dynamical Sys-
tem (DS) because they construct an autonomous dynamical system for the ob-
served velocity field from human demonstrations. Considering that the robot

22

Chapter 2. Related Work

motions that are executed for a specific 2D task are driven by a 2D velocity
field (as shown in Fig. 2.4), where each 2D position is associated with a velocity
vector, a DS learns a mapping from a position to a velocity vector:

ẏyy = f(yyy), (2.33)

where yyy is the position and ẏyy is its time derivative. In Gribovskaya et al. (2011),
the authors used a Gaussian Mixture Model (GMM) to represent a generative
model of the states that appear in the demonstrations. Each state is described
by the position and velocity. For a demonstrated trajectory ξξξ = (yyyt)

T
t=1, there are

T pairs of samples (xt, yyyt). With M demonstrations, M ·T samples are collected
into a dataset to train the GMM. In the execution phase, for one specific posi-
tion yyy, a conditional Gaussian distribution p(ẏyy|yyy) is calculated, whose mode is
considered as the desired velocity at the position yyy. The resulting function can
be considered as a state dependent combination of several linear dynamical
systems:

ẏyy =
K∑
k=1

ηηηk(yyy)(Akyyy + bk), (2.34)

where Ak = ΣΣΣk
ẏyyyyy(ΣΣΣ

k
yyyyyy)
−1 and bk = µµµkẏyy − Akµµµ

k
yyy . K is the number of the mixture

components of the GMM, which is usually regarded as a predefined constant.
The weights ηηηk(yyy) are obtained by calculating the conditional probability p(k|yyy).
To learn the parameters of GMM θ = {p(k),µµµk,ΣΣΣk}, the Expectation Maximiza-
tion (EM) algorithm is used. The method here is very similar to the GMM based
trajectory generative model described in Section. 2.1.2. However, the mapping
learned by the GMR is different. In the trajectory generative model, the learned
mapping maps the temporal parameter xt to the spatial variable yyy. In the DS,
the learned mapping maps the spatial parameter yyy to its corresponding velocity
ẏyy.

DS with EM suffers from the stability problem due to the limited number of
demonstrations that are not enough to form one asymptotically stable veloc-
ity field. The first solution mentioned in Gribovskaya et al. (2011) is to place
one GMM component around the global target and augment the training data
directing to the target to make sure that the trajectories converge to the target
from every direction.

In Khansari-Zadeh and Billard (2011), instead of learning a GMM, the DS is
obtained by solving a constraint optimization problem to maximize the likeli-
hood of observed demonstrations with stability criteria as constraints. The DS
is represented as a combination of multiple linear dynamical systems similar

23

Chapter 2. Related Work

Figure 2.4: Left: the velocity field learned and represented by DS; Right Top:
DS generates a trajectory directly towards the target Right Bottom:
DS generates different trajectories with slight different starts. (The
DS code is from http://lasa.epfl.ch/sourcecode/)

to Eq. 2.34.

As shown in Fig. 2.4, a DS is learned to draw a figure ”S” in a 2D space based
on the demonstrations (red dots). The velocity field represented by the learned
mapping is shown with the blue curves (left diagram in Fig. 2.4). Compared to
a DMP as another dynamical system approach, a DS is a global method, which
means that it learns a stationary global velocity field for task-oriented motions.
With a DS, the generated trajectories flow to the target from everywhere in the
space. However, they do not keep the motion shape from every start point.
As shown on the right side of Fig. 2.4, different start points result in different
motion shapes. As mentioned before, we can regard a DMP as a trajectory
generator, whose output is followed by a lower level tracking controller. In
the case of a perturbation, the controller compensates it by dragging the robot
back to the generated trajectory. In contrast, DS generates new trajectories with
the current new start towards the global attractor after perturbation. As an
example shown in Fig. 2.5, after learning a motion drawing a curve to the target,
a DMP generates a backward motion when encountering a push towards the

24

http://lasa.epfl.ch/sourcecode/

Chapter 2. Related Work

Figure 2.5: Left: The black dashed curve is one demonstration and the red
curve is generated by the learned DMP. When encountering a per-
turbation, DMP stops the phase and returns to the original trajec-
tory plan after the perturbation disappears. Right: The black dots
denote the demonstrations and the blue curve is generated by DS.
DS generates a new trajectory towards the global attracter after the
perturbation.

target, while a DS continues without a backward motion, the latter behavior
seems to be more intuitive.

In neuro-psychology, DS originates from the so-called ”final position control”
mentioned in Bizzi et al. (1984), which states that a fixed equilibrium point
generates the movement, and the physical features of muscles only determine
the trajectory. However, Bizzi et al. (1984) provided evidence to the conjecture
that animals like monkeys generate motions based on a temporal sequence of
equilibrium points, which is called ”virtual trajectory.” In one experiment, they
showed that the deafferented monkeys return their forearms to the intermedi-
ate position after an assisting pulse in the motion direction (see Section. 2.1.5).
This result coincides with DMPs.

As shown in the right bottom diagram in Fig. 2.4, a slightly different start
leads to a different trajectory. This fact is because usually, a limited number
of demonstrations are available for the task. Learning a ”correct” DS for a spe-
cific task is barely possible. If we want to draw a figure ”S,” the start cannot be
far from the start in the human demonstrations. DS defines the behavior with
its underlying assumptions in the area that is far from the original demonstra-
tions. Similar to ProMP, DS requires many demonstrations to be able to learn a
relatively ”correct” velocity field.

25

Chapter 2. Related Work

2.2 Motion Generalization

The movement primitives introduced in the last section have limited adapta-
tion capabilities. For example, a DMP can adapt to the new start and goal; a
ProMP can adapt to intermediate via-points which are not far from the demon-
strations range. However, an intelligent robot should be able to consider any
task parameters, which are not only spatial or temporal features of the trajecto-
ries, to learn how to generalize a learned skill.

In literature, researchers developed different methods for different movement
primitives to allow skill generalization to different task parameters. Here, we
consider two categories: learning a regression model or learning a generative
model.

2.2.1 Learning Direct Mappings

These approaches are usually based on a parametric movement primitive. In
the last section, except for the optimization-based methods, all other methods
require a parametric function f(·). The meaning of this function is different
for different movement primitives. In the DMP formulation, f(x) is the non-
linear force term of the canonical variable x of the transformation system. In
the ProMP formulation, f(x) is directly the position or velocity of the trajectory
at a certain time point corresponding to the canonical variable x. In the DS
formulation, f(yyy) is an autonomous dynamical system. No matter what mean-
ings these functions have, they are associated with a parameter vector www. In
order to take the task parameter queries qqq into account, we can either replace
the parameters vector www with a function of the task parameter queries ωωω(qqq) or
directly consider the task parameter queries as a part of the input of the para-
metric function f(·, qqq). The former methods require two regression models f(·)
and ωωω(qqq). While the latter ones represent the motion in one single model f(·, qqq).
In Stulp et al. (2013), the authors called the former methods as two-steps meth-
ods and the latter ones as one-step methods. Here, we keep the same names.

Two-steps Methods

In both DMP and ProMP, the parametric function f(x) is modeled and learned
by a linear regression model such that

f(x) = ψψψ(x)Twww, (2.35)

26

Chapter 2. Related Work

where www is the parameter vector of the movement primitive and ψψψ(·) is the
kernel vector that consists of kernel functions, usually squared exponential kernels
(SEK), also called radial basis functions (RBF). The two-steps methods replace
the parameter vector www with a parameter function ωωω(qqq) of the task parameter
queries as follow:

f(x) = ψψψ(x)Tωωω(qqq). (2.36)

The general process to learn this function is to first collect M demonstrations.
For each demonstration, the parameter vector www is obtained by learning the
parametric function f(x). Then, a dataset {(qqqi,wwwi)Mi=1} is collected to train ωωω(·),
which is modeled by different regression models, such as Locally Weighted Re-
gression.

In the following, we describe common approaches proposed in literature for
movement primitive generalization. These are

1. Locally Weighted Regression

In Ude et al. (2010), the Locally Weighted Regression (LWR) is used to infer
the function value ωωω(qqq) for DMP. The idea is to learn the parameter func-
tionwww = ωωω(qqq) by minimizing the objective function forM demonstrations:

minimize
www

M∑
k=1

||Xkwww − fffk||2K(d(qqq, qqqk)). (2.37)

The matrix X is called kernel matrix and defined as follows:

X =

ψ1(x1)∑N
i=1 ψi(x1)

x1 . . . ψN (x1)∑N
i=1 ψi(x1)

x1
...

ψ1(xT)∑N
i=1 ψi(xT)

xT . . . ψN (xT)∑N
i=1 ψi(xT)

xT

 , (2.38)

where N is the number of kernels and T is the terminal time index. ψi is
the i-th SEK such that:

ψi(x) = exp(− 1

2σ2
i

(x− ci)2), (2.39)

where ci and σi are constants. In Eq. 2.37, d is a distance measure defined
in the task parameter space. A kernel function K maps the distance to an
appropriate weight to form a weighted sum in the output space. In Ude

27

Chapter 2. Related Work

et al. (2010), a tricube kernel function is used as follows:

K(d) =

{
(1− |d|3)3 , if |d| < 1

0 otherwise
(2.40)

This function gives almost the same weights to the data points which are
close to the target but zero elsewhere. Without loss of generality, we
assume that Xk is always the same in all demonstrations, which can be
achieved by normalizing the trajectories in the temporal domain to a 0−1

range. For many applications, this preprocessing makes no difference be-
cause DMP can adapt to different speed. By doing this, we can solve the
optimization problem directly by calculating its derivative:

ωωω(qqq) =

∑M
k=1K (d(qqq, qqqk))wwwk∑M
k=1K (d(qqq, qqqi))

. (2.41)

Strictly speaking, the method is called Kernel Regression (KR) which is a
special type of LWR, where the local model is assumed to be a constant.
In Atkeson et al. (1997), the authors claimed that KR coincides with LWR
when the training data is regularly distributed and the target query is far
away from the boundary of the training set. However, the general LWR
outperforms KR for irregularly distributed training data. In Zhou and As-
four (2017), the LWR was used for DMP generalization and was proved to
be a weighted sum with the weights corresponding to a distance measure
in a higher dimensional feature space. The basic idea is to learn a new
parameter vector that satisfies

wwwj(qqq) =

∑Nq

i=1 ψi(qqq)ηηηji∑Nq

i=1 ψi(qqq)
, (2.42)

where Nq is the number of kernels defined in the query space,wwwj(qqq) is the
j-th dimension of the resulting weights vector and ηηηj is the corresponding
parameter vector. For each dimension of the MP parameter vector, we get
a LWR weight vector ηηηj and have

www(q) =
1

Z
HTΨ(q), (2.43)

where Z =
N∑
i=1

ψi(q), and

28

Chapter 2. Related Work

Ψ(q) =

 ψ1(q)

. . .

ψN(q)

 , H =

ηηη11 . . . ηηηNq1

...
ηηη12 . . . ηηηNqNq

 ,

where the j-th column of the matrix H is related to the j-th component
of a DMP. For the j-th component of the weight vector, we minimize the
squared error:

Lj =
M∑
k=1

Nq∑
i=1

ψi(qk)(ηηηji −wwwj(qk))2, (2.44)

where M is the number of samples. After calculating the derivative and
its zero point, we get the optimized weight component ηηηji:

ηηηji =

M∑
k=1

ψi(qk)wwwjk

M∑
k=1

ψi(qk)

, (2.45)

wherewwwjk = wwwj(qk). Replacing ηηηji in Eq. 2.42 results in

wwwj(q) =

M∑
k=1

Nq∑
i=1

ψi(qk)ψi(q)wwwjk

M∑
k=1

Nq∑
i=1

ψi(qk)ψi(q)

. (2.46)

The result is still a weighted sum of the training data. The difference
is that the weights are obtained by calculating the distance in a higher
dimensional feature space instead of a function of the distance defined in
the ordinary query space. The resulting function is given by

ωωω(qqq) =

M∑
k=1

k(qk, q)wwwk

M∑
k=1

k(qk, q)

, (2.47)

where
k(qk, q) = 〈Ψ(qk),Ψ(q)〉 . (2.48)

For a large training dataset, a threshold is used to truncate the contribu-
tions from the training queries far from the target one.

29

Chapter 2. Related Work

2. Gaussian Process Regression

In Forte et al. (2012), the authors replaced LWR with Gaussian Process Re-
gression (GPR). For each dimension of the MP parameters www, a GPR is
constructed such that

wi(qqq) ∼ GP (0, k(qqq, qqq′)) , (2.49)

where k(qqq, qqq′) is the parametric covariance function. The type and the
parameters of the covariance function determines the interpolation be-
haviour of GPR. The most popular covariance function is the SEK such
that:

k(qqq, qqq′) = σ2
fexp

(
− 1

2l2

n∑
d=1

(qd − q′d)2
)
, (2.50)

where θθθ = (σf , l) are the hyper-parameters. n is the dimension of the
queries. The result of GPR for the i-th component of the MP parameters
for a specific task parameter query qqq∗ is given by:

w̄∗i = kkkT∗ (K + σ2
nI)−1wwwi,

V [w∗i] = k(qqq∗, qqq∗)− kkkT∗ (K + σ2
nI)−1kkk∗

(2.51)

where wwwi is the vector concatenating the i-th component of the MP pa-
rameters for all demonstrations. K is the covariance matrix whose entries
are the covariance between each pair of the queries in the training dataset
such that

K =

k(qqq1, qqq1) k(qqq1, qqq2) . . . k(qqq1, qqqM)

...
k(qqqM , qqq1) k(qqqM , qqq2) . . . k(qqqM , qqqM)

 (2.52)

And
kkk∗ = [k(qqq∗, qqq1), k(qqq∗, qqq2), ..., k(qqq∗, qqqM)]T . (2.53)

In fact, GPR can be regarded as a weighted sum of the training data,
namely

ωωωi(qqq) =
M∑
j=1

k(qqqj, qqq)(K + σ2
nI)−1wwwi. (2.54)

Hence, the only difference between LWR and GPR is their different as-
sumption regarding the covariance between the target trajectory and demon-
strated trajectories. LWR assumes that this covariance is entirely depen-

30

Chapter 2. Related Work

dent on the distance between the current query and training queries. GPR
considers also the prior knowledge shown as the type and the hyperpa-
rameters of the covariance function.

For a large number of demonstrations, GPR is not ideal because the com-
putational cost results from inverting a M ×M large covariance matrix.
However, in many applications, only a small number of training demon-
strations are available. On the other hand, some local techniques for GPR,
such as the one described in Nguyen-Tuong et al. (2009) can be used for a
relatively large dataset.

3. Deep Neural Network

In the rise of deep learning, Deep Neural Network (DNN) is an alternative
to model the mapping ωωω(qqq) of task parameter queries to MP parameters.
One advantage of using DNN is that it combines powerful structures such
as Convolutional Neural Networks to build a system that takes the raw im-
age as inputs, and extracts latent task parameters, and outputs MP pa-
rameters in an end-to-end manner. As an example in Pahic et al. (2018),
the authors used an encoder-decoder structure to learn the mapping from
a raw image of a number to DMP parameters that encode the motion to
draw that number.

Other regression methods can also be used to model the mapping of task pa-
rameters to MP parameters. In Da Silva et al. (2012), the authors used Support
Vector Machines (SVM). In Matsubara et al. (2010), Principal Component Analysis
(PCA) was first applied to capture the lower dimensional structure of MP pa-
rameters from multiple demonstrations, and GPR was used to learn the map-
ping from task parameters to the weights for the principle components, called
style parameters.

One-step Methods

In Stulp et al. (2013), the authors suggest to use one single function f(x,qqq) to di-
rectly encode the force term of a DMP. The learned model is more compact and
requires fewer parameters than the two-steps methods. In Stulp et al. (2013),
this function is learned with LWR and GPR. In Pervez and Lee (2018), the idea
is further developed by replacing LWR or GPR with Gaussian Mixture Regression
(GMR).

31

Chapter 2. Related Work

Figure 2.6: Comparison between the one-step GPR and the two-steps GPR for
the tall obstacle avoidance.

Experiments for Comparing One-step and Two-steps Methods

In Fig. 2.6, an obstacle avoidance experiment is conducted, where the height
of the obstacle is the only task parameter query, and the motion start (red dot)
and goal (blue dot) are fixed. The first row shows the demonstrations which are
collected for different heights of the obstacle. For the one-step method, GPR is
used to learn the force term f(x,qqq). For the two-step methods, GPR is used
to learn the generalization mapping ωωω(qqq), which outputs the MP parameter
vector www. In both cases, we use a predefined functions ”fitrgp” in MatLab to
model the mappings. As in Forte et al. (2012) and Stulp et al. (2013), the DMP
is generalized for different heights of the obstacle. Both methods show good
interpolation, which indicates that the task parameter queries are in the range
of the demonstrations. However, they have only limited extrapolation, which
considers the task parameter queries out of the range of demonstrations. For
the height of 7.8, both methods fail to generate a collision-free solution.

In Fig. 2.7, an another experiment is conducted, where a 5-th order polynomial
such that

ξξξ(x) =
5∑

k=0

akx
k (2.55)

is to be fitted. The polynomial parameters {ak}5k=0 are given as the task pa-
rameter queries. The purpose is to generate trajectories which are similar to a
5-th order polynomial based on the input polynomial parameters. In this ex-
periment, a new movement primitive formulation called via-points movement
primitive (VMP) is used, which will be introduced in detail in Chapter. 3. VMP
is developed based on DMP and ProMP. Here, we consider a special form of

32

Chapter 2. Related Work

Figure 2.7: The comparison between one-step methods and two-steps meth-
ods for fitting the 5-th order polynomial.(The code is based on Pe-
dregosa et al. (2011))

VMP, namely
y(x) = (y0 − g)x+ g + f(x), (2.56)

where y0 and g are the start and goal of the trajectory. As one-step meth-
ods, we replace f(x) with f(x,qqq). For two-steps methods, we consider f(x) =

ψψψ(x)Tωωω(qqq). Different regression models are used to model f(x,qqq) or ωωω(qqq) such
as Support Vector Regression (SVR) and Gaussian Process Regression (GPR). For
GPR, we consider two different covariance functions. The one is the squared
exponential kernel (SEK) mentioned before as

k(qqqi, qqqj) = σ2exp

(
−||q

qqi − qqqj||2

2l2

)
. (2.57)

The other one is the dot product kernel (DPK) such that

k(qqq, qqq′) = qqq · qqq′ + σ2
0, (2.58)

where σ0 controls the inhomogenity of the kernel (Pedregosa et al. (2011)). We
use ”se” and ”dp” to denote the SEK and the DPK separately. All regression
models are implemented based on the machine learning package ”scikit”. We
use ”− 1” and ”− 2” to denote the one-step and two-steps methods. In Fig. 2.7,
the results of two experiments are shown. One of them is to map from a part
of the polynomial coefficients qqq = (a5, a4)

T to the MP encoded trajectory. The
other one is to learn the mapping for all the coefficients qqq = (a5, a4, a3, a2, a1, a0)

T .

If we use two-steps methods, the DPK is the best kernels for this task, with
which GPR can almost perfectly reproduce the 5-th order polynomial (see the
proof in the Appendix. Section. A).

33

Chapter 2. Related Work

However, for one-step approaches, the GPR with the DPK is not a right choice,
because the mapping f(x,qqq) also takes the time-dependent variable x as inputs,
which avoids taking advantage of a correct kernel assumption. On the other
hand, however, SVR-1 outperforms SVR-2 in both cases. The exact reason be-
hind this is not apparent and was also not discussed in Stulp et al. (2013). One
possible reason is that two-step methods learn a mapping to a higher dimen-
sional MP parameter output. If using GPR or SVR, learning this mapping is to
means learning multiple regression models, each of which takes responsibility
for one dimension. Hence, errors in all regression models are accumulated.

In contrast, the mapping f(x,qqq) to be learned in one-step methods has a rela-
tively small output dimension. Hence, GPR or SVR learns only a small set of
regression models. Overall, both one-step and two-steps methods have no big
difference regarding the performance.

2.2.2 Learning Generative Models

Instead of learning a direct mapping, some works learn a generative model.
The basic idea is to consider the task parameter queries as a part of the demon-
strations and learn a model to represent both the task parameters and the mo-
tion trajectories. In these approaches, no explicit mapping from the task pa-
rameter queries to the MP parameter is learned.

Task-Parameterized Gaussian Mixture Model

As mentioned in Section. 2.1.2, the generative trajectory model is represented
by a GMM. The problem of this method is that it cannot directly generalize to
the new goals and starts. In order to be able to generate appropriate motions,
the local coordinate system is required to encode the demonstrated trajecto-
ries. For example, in order to generate the approaching motion for grasping,
the target object is considered as the origin of a local coordinate system. The
demonstrated trajectories are encoded in this coordinate. The change of the
object position is equivalent to the change of the coordinate origin. Hence, the
parameters of the learned GMM for the generative model of the trajectories re-
main the same, and the generated trajectory adapts to different locations of the
target object.

In Calinon et al. (2013), the authors extended this idea to allow multiple local
frames and called their method Task-Parameterized Gaussian Mixture Model (TP-
GMM). Each frame refers to a transformation (A, b) in the global coordinate

34

Chapter 2. Related Work

Figure 2.8: TP-GMM uses multiple perspectives and learns GMM for each
frame. During the execution, these GMMs are combined to generate
a trajectory which corresponds to the maximum likelihood. Then,
an optimal tracking controller is used to track the generated trajec-
tory.The picture is taken from Calinon (2016).

and provides a perspective of the demonstrated trajectories. The local GMMs
are trained separately from different perspectives. During the execution, the
generated trajectory maximizes the overall likelihood concerning all trained
GMMs (Fig. 2.8).

The task parameters, which TP-GMM considers, are limited to those which can
be represented by the transformations (A, b), thus, they are defined in the same
space where GMM is defined. For example, the TP-GMM cannot solve the pre-
vious task in which a 5-th order polynomial is to be reproduced based on the
polynomial coefficients. Furthermore, the local frames should be manually de-
signed or determined according to different tasks. With inappropriate perspec-
tives, the learned TP-GMM shows worse generalization performance. An an-
other predefined parameter for TP-GMM is the number of mixture components
of the learned GMM, which corresponds to the accuracy of the reproduction.

In Fig. 2.9, with one local frame located at the top of the tall obstacle (second
row), the learned TP-GMM with 3 components generates all trajectories with-
out collision, which, however, do not have correct starts and goals. With three
local frames, which indicate the start, the goal, and the top of the tall obsta-
cle separately, though the generated trajectories of the learned TP-GMM with
3 components have the correct starts and goals, they collide with the obsta-
cles (third row). The reason is that the distance between two local frames re-
markably changes during the execution, and the solution with the maximum
likelihood still has a small probability. Increasing the number of the Gaussian
components can partially solve this problem (fourth row). However, a large
number of mixture components increase the learning complexity and might

35

Chapter 2. Related Work

Figure 2.9: TP-GMM is used to learn the model that generates motions avoiding
obstacles with different heights.

lead to overfitting of the training data and thus, result in a poor generalization
performance (last row).

In Calinon et al. (2013); Calinon (2016), TP-GMM is designed to solve the ex-
trapolation problem. Indeed, it outperforms other methods when the task pa-
rameter queries are out of the demonstrations range, as shown in Fig. 2.9. How-
ever, the extrapolation capability of the TP-GMM is not unlimited, as it cannot
solve the problem where the task parameter queries are too different from those
in the training data. For a successful generalization, TP-GMM requires that
the user understands the problem well, and know how many local frames and
where to locate local frames.

Learning Probabilistic Models

In Section. 2.1.4, the Probabilistic Movement Primitive (ProMP) was introduced,
where we assume that the parameter vector follows a Gaussian distribution
such that www ∼ N (µµµ,ΣΣΣ). For the parameters µµµ and ΣΣΣ, the maximum likelihood
estimation (MLE) is considered, which is the empirical mean and variance of
the parameters {www}Ni=1 that are corresponding to N demonstrations.

In the context of the human-robot interaction, in Maeda et al. (2014), the authors

36

Chapter 2. Related Work

suggest to encode robot motion trajectories and human motion trajectories with
one single probabilistic model. The parameters vector www can be separated by
two parts www = (wwwTo ,www

T
c)T , where wwwo is the parameters for the observed agent

(human) and wwwc is for the controlled agent (robot). The same linear regression
model used for the original ProMP represents the combined trajectory:

f(x) = ψψψ(x)Twww. (2.59)

During the demonstrations, both the human motion trajectories yyyo and the
desired robot trajectories yyyc are observed and the combined parameter www is
learned by solving a least square problem for Eq. 2.59. The MLE is used to
infer the parameters of the Gaussian distribution. For multiple DoFs of the
robot and human, the trajectories for each dimension are concatenated leading
to

f(x) = ΨΨΨ(x)www, (2.60)

where ΨΨΨ(x) is a (P + Q) × (PN + QN) matrix with P as the number of the
human DoFs and Q as the number of the robot DoFs and N as the number of
the kernels.

ΨΨΨ(x) =

ψψψT (x) 0 0

0 ψψψT (x) 0 . . . 0
...

...
...

... 0

0 0 ψψψT (x)

(2.61)

During the human-robot interactions, Gaussian conditioning is applied to ob-
tain the distribution of the robot motion trajectories based on the observed hu-
man motion trajectories yyyo. For one specific time point that corresponds to a
canonical variable x∗, the update of the Gaussian distribution is as follows:

µµµ∗ = µµµ+ L
(
yyy∗ −HHHT (x∗)µµµ

)
,

ΣΣΣ∗ = ΣΣΣ− LHHHT (x∗)ΣΣΣ,

L = ΣΣΣHHH(x∗)
(
ΣΣΣy∗ +HHHT (x∗)ΣΣΣHHH(x∗)

)−1
,

(2.62)

37

Chapter 2. Related Work

Figure 2.10: GMM based ProMP can handle multiple modes in the demonstra-
tions. The picture is taken from Ewerton et al. (2015).

where

HHH(x) =

ψψψ(x) 0 0 0 0 0
...

...
...

...
0 0 ψψψ(x) 0 0 0

0 0 0 0 0 0
...

...
...

...
0 0 0 0 0 0

(2.63)

is a block matrix with the upper-left submatrix having the size PN ×P and the
bottom-right submatrix having the size QN × Q . The matrix ΣΣΣy∗ is the obser-
vation noise, which indicates the uncertainty of the observed human motions.
The updated Gaussian distribution represents the desired robot trajectories dis-
tribution.

In Ewerton et al. (2015), the authors suggest to extend the Gaussian distribution
to a Gaussian Mixture Model (GMM) such that

p(www) =
K∑
k=1

πkN (www|µµµk,ΣΣΣk), (2.64)

where πk is the mixing coefficient of the k-th component, and K is the num-
ber of the mixture components. With a fixed K, we can infer the parameters
{πk,µµµk,ΣΣΣk}Kk=1 with Expectation Maximization (EM) algorithm. The advantage of
the GMM over the Gaussian distribution is that the learned ProMP can handle
multiple modes (Fig. 2.10) that exist in the human demonstrations. However,

38

Chapter 2. Related Work

humans can accomplish tasks with the same task parameters with different
types of motion trajectories. Hence, one single Gaussian distribution cannot
represent the MP parameters for all these trajectories.

The conditional probability is usually used with a learned generative model
to infer the unknown or desired motion parameters from known or observed
task parameters. Compared to the previous approaches which learn a direct
mapping from the task parameters to the MP parameters, a generative model
is more flexible and is useful for only partially observable human activities in
human-robot interactions. With the conditional probability, we can infer any
unknown variables based on the observed variables in the task. However, a
generative model is much more challenging to learn than a direct mapping.
Usually, it requires a large number of demonstrations and can only accomplish
relatively simple tasks.

2.3 Motion Adaptation and Control

After generating the desired trajectory, a robot controller is needed to execute it.
During motion execution, it is possible that the environment changes especially
in a contact-rich manipulation, or in human-robot interaction tasks. Thus, it is
necessary to adapt the generated motion to the changes in the environment.
Here, we consider three types of adaptation: trajectory, force, and compliance
adaptation.

2.3.1 Trajectory Adaptation

In the trajectory adaptation, the spatial or temporal features of a generated tra-
jectory are adjusted to resolve the task constraints. In the following, we discuss
three ways for trajectory adaptation.

Trajectory Adaptation based on the MP Structure

In order to adjust the trajectory, MP must have unique structures. As one ex-
ample, DMPs have a goal-directed damped spring system involved. Hence,
DMPs are adaptable to the new goal. The DMP parameters that can be changed
for trajectory adaptation are called hyper-parameters. Thus, a DMP has three
hyper-parameters: the goal g, the start y0, and the temporal factor τ , which can
be used to adapt to a new goal, a new start, or a new speed.

39

Chapter 2. Related Work

Recall that the DMP formulation in Pastor et al. (2009) and Hoffmann et al.
(2009) (see Eq. 2.23) is given by

τ v̇ = xK(f(x) + y0 − y) + (1− x)K(g − y)−Dv. (2.65)

In Prada et al. (2013), the authors suggest to use an arbitrary function wg(x) of
the canonical variable to replace the canonical variable by the weights of the
two force fields such that

τ v̇ = (1− wg(x))K(f(x) + y0 − y) + wg(x)(K(g − y) +Kvġ)−Dv, (2.66)

whereKvġ is introduced to avoid the sudden acceleration when the goal changes.
With different functions wg, the generated trajectories with the same DMP can
be different. For the handover task, in the paper, this function is given by

wg(x) = 0.5

[
1 + erf(

x− µµµ
ΣΣΣ
√

2
)

]
, (2.67)

where erf is the Gaussian error function. By changing the parameter µµµ, the
trajectory can be adapted to the changing goal. A larger µµµ delays the response
to an altered goal. The authors used this new DMP structure to accomplish the
handover task.

The trajectory adaptation by changing the hyper-parameters is simple and straight-
forward. However, the result sees no evidence in the demonstrations. Hence,
it is hard to say whether the adapted trajectory is ”correct” or not.

Trajectory Adaptation with Conditional Probability

In order to generate a ”correct” motion for the trajectory adaptation, researchers
investigated the use of data-driven methods than altering the hyper-parameters.
Similar to the generative model for the task generalization described in the last
section, the conditional probability is used to adapt the trajectory based on the
observed data.

As mentioned before, a ProMP encodes a trajectory distribution. After learning
the distribution from the demonstrations, for a new point (x∗, yyy∗,ΣΣΣyyy∗) that the
trajectory has to go through at time t, ProMP calculates the conditional prob-
ability of the trajectory p(www|(x∗, yyy∗,ΣΣΣyyy∗)). The samples from this conditional
distribution represent the trajectories going through this specific point.

In Ben Amor et al. (2014), unlike ProMP, the authors assume that the DMP

40

Chapter 2. Related Work

parameters for a specific task follow a Gaussian distribution. With multiple
demonstrations, a Gaussian distribution of DMP parameters is obtained by cal-
culating the mean vector and covariance matrix. The purpose is to correlate the
robot motions with the partially observed human motion ξξξ0. The conditional
problem p(www|ξξξ0) is solved for the DMP weights vector.

Solving the conditional problem provides a more ”correct” trajectory than the
methods which change the hyper-parameters because the former is driven by
the observed demonstrations. However, this kind of method has a limited us-
age for trajectory adaptation. The learned distribution from the demonstrations
limits the working range of the adaptation. For example, if a new goal is re-
quired, which is far away from the demonstrated trajectory in the space, ProMP
will not perform well because a goal far from the range of the demonstrations
is against the learned Gaussian distribution from the demonstrations.

Trajectory Adaptation for Obstacle Avoidance

One important application of the MP adaptation is to avoid obstacles during
the motion execution. The online obstacle avoidance requires the change of the
spatial or the temporal parameters of the trajectory. In the literature, for differ-
ent MP representations, different methods were proposed for obstacle avoid-
ance.

In Park et al. (2008), the authors added one extra repellent acceleration term
φφφ(yyy,vvv) to the DMP formulation (Eq. 2.23), where yyy is the current state relative
to the obstacle position and vvv is the current velocity. The acceleration term takes
the form:

φφφ(yyy,vvv) = λ(− cos θ)
||vvv||
p(yyy)

(
∇yyy cos θ − cos θ

p(yyy)
∇yyyp(yyy)

)
, (2.68)

where λ is a constant for the strength of the entire field. The angle θ is taken
between the current velocity and the relative position: cos θ = vvvTyyy

||vvv||p(yyy) . The func-
tion p defines the distance between the current position and the object position.
With this acceleration term, DMP is able to adjust the trajectory to avoid the
obstacle.

In Huber et al. (2019), a method based on the Dynamical System (DS) described
in Section. 2.1 is presented. The basic idea is to modulate the whole velocity
field with a modulation matrix: ẏyy = MMM(ξξξ)fff(ξξξ). The authors described the ob-

41

Chapter 2. Related Work

stacle with a reference point ξξξr and a distance function

Γ(ξξξ) =
d∑
i=1

(||ξξξi − ξξξci ||/RRR(ξξξ))2, (2.69)

where ξξξc is the center of the obstacle, and RRR is the distance from the reference
point within the obstacle to the surface in direction r(ξξξ), which directs from the
reference point to the current position ξξξ. The gradient of this distance function
denotes the direction in which the robot is getting close at the fastest to the
obstacle. The method decomposes the original velocity fff(ξξξ) into both the gra-
dient direction and the perpendicular one. By reducing the velocity towards
the obstacle and increasing the velocity in the other direction, the robot avoids
the obstacles.

In Koert et al. (2019), the authors use constrained optimization methods to ex-
tract one single weights vector www from a trajectory distribution encoded by a
ProMP. The optimization problem for the online spatial deformation is given
as

minimize
www

(www − µµµwww)Tdiag(ΣΣΣ−1www)(www − µµµwww),

s.t. ∀t, ξξξo > ∆(ψψψt−1,ψψψt,www,OOOt),

ξξξw > (ψψψTt www −ψψψTt wwwcurr)T (ψψψTt www −ψψψTt wwwcurr).
(2.70)

The objective function is the exponent of the Gaussian distribution learned by
a ProMP. By minimizing this objective function, the probability of the trajectory
is maximized with respect to the learned trajectory distribution. ξξξo denotes the
bound for the minimum distance to an obstacle,OOOt denotes a set of obstacles at
time t. ∆ denotes the minimum distance of the discretized robot trajectory to
the obstacles. ξξξw limits the change of the weight vector in the current position
of the trajectory. The minimum distance to one of the obstacles o is given by

dmin(ψψψt,ψψψt−1,www, o) =
|vvv1 × vvv2|

vvv1
, (2.71)

where vvv1 denotes the trajectory velocity such that vvv1 = ψψψTt www − ψψψTt−1www and vvv2 is
the relative velocity to the obstacle: vvv2 = ψψψTt−1www − o. The minimum distance to
the obstacle set is then ∆ = min

o∈OOOt

dmin(ψψψt,ψψψt−1,www, o).

The trajectory adaptation adjusts the shape of the generated trajectory to meet
some task requirements. We can also use it for the contact-rich manipulation,
where we need to guarantee a target force profile. For this purpose, the MP
parameters can take the offset, which generates the contact force, into the con-
sideration.

42

Chapter 2. Related Work

2.3.2 Force Adaptation

In Gams et al. (2016), the authors discusse several methods to realize the force
adaptation with DMPs. The purpose is to adjust the DMP parameters to ac-
commodate the force requirements. Thus, the DMP is first initialized with the
reference trajectory and then learned in an incremental manner (Eq. 2.22). Up-
dating the DMP parameters only makes sense when a periodic task is executed,
where not only the motion but also the environment does not change from one
period to the other. For discrete tasks, however, the environment can hardly
remain unchanged. In this case, one can directly adapt the motion to the target
force without the DMP update.

One of the methods described in Gams et al. (2016) is based on velocity re-
solved control strategy (Villani and De Schutter (2008)), where the desired DMP
position is first calculated with double integrals of the output DMP accelera-
tions. The force controller outputs a velocity, for example, it can be vvvf (t) =

Kp(Fd(t) − Fc(t)), where Fd is the desired force and Fc is the measured one.
Thus, the desired position for the lower level position controller is

yyyd = yyydmp +SSSF (

∫
vvvf (t)dt), (2.72)

whereSSSF is the selection matrix which chooses the direction, in which the force
control is activated. In fact, it can also be considered that DMP outputs the
desired velocity with one integral of the output such that

yyyd = yyy0 +

∫
vvvdmpdt+SSSF (

∫
vvvf (t)dt), (2.73)

where y0 is the start position. This classical velocity resolved approach has well-
known stability properties and behaviour. For a rapid changing target force
profile Fd(t), however, it is difficult to guarantee the high tracking accuracy
because the integral causes a delay of the controller.

Given the above, the MP adaptation is reduced to a control problem. The DMP
provides a desired trajectory that the controller should follow. By decoupling
the motion generation and the control problem, different control strategies can
be used.

Since a DMP outputs the acceleration, one other option is to add a coupling
term directly to the acceleration:

τ v̇ = K · (g − y)−D · v + (g − y0) · f(x) · x+ C(F), (2.74)

43

Chapter 2. Related Work

where the coupling term can be a force proportional controller such thatC(F) =

Kp(Fd−Fm). This is similar to the one mentioned before for the obstacle avoid-
ance (Park et al. (2008)). In Gams et al. (2014), the authors propose a so-called
coupled DMP to have both acceleration and velocity level modulations, and
formulate the problem as

τ v̇ = K · (g − y)−D · v + (g − y0) · f(x) · x+ c2Ċ

τ ẏ = v + C

C = cF (t),

(2.75)

with F (t) is the force control signal, Ċ is its derivative, c and c2 are two scaling
constants. According to the authors, the derivative Ċ serves as a damping term
like in a PD controller. The authors again used the Iterative Learning Control
(ILC) to adjust the coupling term C. ILC can only be applied for a repeatable
task. The idea of a simple ILC is to add the error term at the same time point in
the last execution into the current coupling term C in a feed forward manner.

The force adaptation can also be used for the bimanual task, where a displace-
ment of both end-effectors needs to be guaranteed. In Gams et al. (2014), the
authors suggest to use two DMPs, each of which encodes the motion of one
end-effector. The coupling term is then F (t) = k(dd − da), where dd is the de-
sired distance between the end-effectors and da is the actual difference.

2.3.3 Movement Primitive Control and Compliance
Adaptation

As mentioned before, MP adaptation can be realized by separating the trajec-
tory generation from the design of a tracking controller. Even if a coupling
term is added into the original DMP formulation for adaptation, we still need
a tracking controller to track the desired position or velocity trajectories.

For the tracking controller, an intuitive choice is impedance control, where the
attractor of a virtual damped spring system is moved with the desired trajec-
tory. With inverse dynamics based on the robot model, the desired torque τττ d
for each joint is obtained. If the learned MP encodes task space trajectories, the
desired torque is calculated such as

τττ d = JT (qqq)FFFm, (2.76)

where FFFm is the external force obtained by the admittance control, and JJJ is the

44

Chapter 2. Related Work

Figure 2.11: The control framework for the task space motion generation, de-
veloped and used in this thesis.

Jacobian matrix for the current joint values qqq.

In many robot applications, we prefer encoding task space trajectories to joint
space trajectories because it is more intuitive and convenient to take the task
requirements, which are usually defined in the task space, into consideration.
If the robot learns from the observation of human demonstrations, it is also
much easier to learn a task space trajectory, i.e., an end-effector trajectory in
the Cartesian space, because learning joint space trajectories requires solving
a non-trivial retargeting problem. If the robot learns by kinesthetic teaching,
both task and joint space trajectories can be easily learned. The generated joint
space motions can be used for the null space control to realize more natural
robot motions for the task. In Fig. 3.5, a control framework for the task space
MP is shown. Many experiments in this work were implemented based on this
control framework.

Passivity based Controller

In Kronander and Billard (2016) and Kramberger et al. (2018), passivity based
control strategies are developed for DS and DMP respectively. The idea of pas-
sivity based control is to design an energy storage function based on sensory
feedback signals. The system is passive if the time derivative of the storage
function is smaller than the supplied power. For a robot system, the input can
be considered as the generalized force FFF , and the output is the velocities of the
robot ẏyy. If the task space is considered, the generalized force can be the real
external force exerted upon the robot’s end-effector, and the velocities are the

45

Chapter 2. Related Work

task space end-effectors’ velocities. For the joint space, the generalized force
consists of the force exerted on each motor, and the velocities are joints’ veloci-
ties. The supplied power is represented by FFF T ẏyy.

In Kronander and Billard (2016), the authors separate the learned velocity field
into a conservative and a non-conservative part

fff(yyy) = fffC(yyy) + fffR(yyy), (2.77)

where a single attractor generates the conservative part. The non-conservative
part is the offset between the learned and the conservative velocity field. The
target velocity for the controller is determined by combining these two velocity
fields with a specific weight

τττ c = −DDDẏyy + λ1fff c(yyy) + βR(z, s)λ1fffR(yyy), (2.78)

where DDD is the damping coefficient, λ1 is a constant and βR(z, s) is the specific
weight function determined by the virtual energy s and the power supply of
the non-conservative part z = ẏyyfffR(yyy). At the beginning of the motion, the
initial stored energy is s̄. The energy flow is controlled by

ṡ = α(s) · ẏyy ·DDD · ẏyy − βs(z, s)λ1z. (2.79)

Both α and βs should satisfy some conditions (Kronander and Billard (2016))
to guarantee that the energy amount is fixed and is distributed between the
robot and the virtual energy storage s. For example, if the current velocity is
quite different from the non-conservative velocity field, the virtual energy is
increasing. According to the design of those functions, βR should be large to
guarantee the tracking accuracy.

In Kramberger et al. (2018), a passivity observer is applied to the coupled DMP.
The input power of the coupled DMP with a task space impedance controller
in interaction with a passive environment is defined as

Pin = ċccTFFF d − ẏyyTd,0FFF ext, (2.80)

where ccc is the coupling term given by yyyd − yyyd,0 and yyyd,0 is the output of DMP.
FFF d is the desired force and FFF ext is the actual force. The desired power profile of
the reference system is

P ∗in = ẏyyTd,0FFF d. (2.81)

The active power Pact = Pin − P ∗in is used to iteratively adjust the DMP’s goal

46

Chapter 2. Related Work

to guarantee the passvity of the system.

Learning Compliant Control

In Deniša et al. (2016), the authors proposed the Compliant Movement Primi-
tive (CMP). Instead of only representing the spatial trajectories like a DMP, a
CMP also encodes the torque profile. Hence, a CMP can be desired by a tuple
{wwwq, gggq,wwwτ , vk}. wwwq is the weights vector to represent the force term of the DMP
formulation for the trajectories in the state space. wwwτ is the weights vector of a
linear regression model to represent the torque profile concerning the canonical
variable x such that

τ(x) = ψψψ(x)Twwwτ , (2.82)

where ψψψ(x) is the kernel function. vk is the time duration of the whole motion,
and gggq is the hyper-parameters of the DMP state. The first weights vector wwwq
can be easily learned by observing the state-space trajectories. wwwτ is learned by
observing the torques from the torque sensors when executing the motion once
with a PD controller with high stiffness. With the learned torque profile, the de-
signed controller can utilize the feedforward control signal to reduce the gains
of the feedback control part. By doing this, it generates compliant motions.
However, with the learned torque profile, the proposed method is difficult to
generalize to different situations. For example, the goal adaptation of the orig-
inal DMP cannot be used anymore. In order to solve this problem, the authors
suggest learning a mapping from the task parameters ccc to wwwτ using multiple
demonstrations.

2.4 Conclusion

In this chapter, we follow the structure of the thesis mentioned in Chapter. 1
to introduce the previous methods in the literature for motion representation,
generalization, adaptation and control.

Motion Representation

In this work, we concentrate on parametric models. Compared to those non-
parametric models, a parametric model simplifies motion generalization and
adaptation. Inspired by the works in neuro-psychology such as Bizzi et al.

47

Chapter 2. Related Work

(1984, 1991), researchers in robotics society are searching for mathematical for-
mulations, so-called movement primitive. Movement primitives can be com-
bined or connected for a complex task.

Dynamic Movement Primitive (DMP), introduced in Schaal (2003) and Ijspeert
et al. (2013), consists of a damped spring system and a non-linear force term.
Due to its structure, a DMP can adapt to new goals by changing the attractor of
the damped spring system. However, a DMP cannot adapt to any intermediate
via-points that are required to fulfill particular task requirements.

Probabilistic Movement Primitive (ProMP), described in Paraschos et al. (2013),
learns a distribution of weights vectors of a linear regression model, which is
used to represent trajectories. With the operation in probability, a ProMP can
adapt to any via-points including starts and goals. However, with a small num-
ber of demonstrations, a ProMP cannot learn a ”correct” distribution.

Dynamical System (DS), introduced in Gribovskaya et al. (2011), learns directly
an autonomous dynamical system, hence, is independent of time. When en-
countering perturbations, a DS behaves different than a DMP or ProMP. With
enough demonstrations, a DS gives ”correct” motions that start with arbitrary
points. However, a DS cannot reproduce a trajectory in an accurate way. When
current position is not covered by demonstrations, a DS generates a velocity
directing to the goal.

In Chapter. 3, these methods are further compared regarding via-points adapta-
tion. Since via-points are useful for many robotic applications, via-points adap-
tation is an important feature of movement primitives. Then, a new movement
primitive called Via-points Movement Primitive (VMP) is introduced, which in-
herits the advantages of DMP and ProMP and resolves their drawbacks.

Motion Generalization

In this section, two kinds of generalization methods are introduced: learning a
direct mapping or learning a generative model.

According to Stulp et al. (2013), for learning a direct mapping, we further di-
vide approaches into one-step and two-steps methods. In one-step methods,
only one regression model is learned to map a canonical variable and task pa-
rameters to a required variable that is different for different movement primi-
tives. For example, in a DMP, the required variable is the non-linear force term.
In a ProMP, it is directly a point in the trajectory. In two-steps methods, besides
a parametric function mapping a canonical variable to a required variable, we

48

Chapter 2. Related Work

learn an another mapping from task parameters to the parameter of this para-
metric function. Several experiments show that both one-step and two-steps
methods have no big difference regarding their performance.

For learning a generative model, several methods are introduced.

Task-Parameterized Gaussian Mixture Model (TP-GMM), introduced in Calinon
et al. (2013), considers learning motions in the local frames and execute the
most likely motion in the global frame. With the idea of local frames, TP-GMM
outperforms direct mappings with respect to the extrapolation. However, TP-
GMM requires the knowledge about how many local frames are necessary and
where they should be located. It cannot be used for arbitrary task parameters
and can only work for those task parameters that can be represented by local
frames.

Gaussian Mixture Model based Probabilistic Movement Primitive (GMM-ProMP),
introduced in Ewerton et al. (2015), learns motions and the corresponding task
parameters together and uses conditional probability to infer an appropriate
motion based on a given task parameter. The proposed method can be used for
human-robot interaction tasks.

However, learning a generative model requires more data than learning di-
rectly mappings. With a small number of demonstrations, learning those mod-
els can result in overfitting or local optimum, thus, affect the generalization.

In this work, we consider learning a direct mapping. However, the previous
regression models used for the mapping do not consider multiple modes and
models that exist in human demonstrations. The mode collapse leads to the lose
of motion diversity. The model collapse causes the average problem and leads
to failure of task execution. To solve these problems, we propose two different
approaches in Chapter. 4. One approach is to use a mixture of experts. We
suggest using Leave-One-Out Expectation Maximization (LOO-EM) to learn these
expert models when only a small number of demonstrations are available. The
other approach is to use Mixture Density Network (MDN) to model a mapping
from task parameters to the distribution of movement primitive parameters.
We suggest using new costs to avoid mode and model collapses during training
MDN.

Motion Adaptation and Control

In this section, different adaptation approaches are introduced for particular
tasks such as obstacle avoidance, handover and force control. The motion

49

Chapter 2. Related Work

adaptation requires expert knowledge. For the controller, we describe differ-
ent strategies to realize compliant motion execution in literature.

In this work, we develop a leader-follower framework to solve cooperative and
human-robot interaction tasks. We mainly focus on developing a robotic wip-
ing system, where robot’s wiping motions should adapt to the human move-
ment. Furthermore, a force predictive model based adaptive controller is de-
veloped to realize compliant motion execution. Unlike previous approaches,
we consider learning a force predictive model and detect abnormal force pro-
files during the task execution. Based on the current force profile, an adaptive
controller decides how to adjust the stiffness of all PID controllers involved to
fulfill a task.

50

Chapter 3. Movement Primitive Representation

3 Movement Primitive
Representation

As a mathematical model for analyzing biological movements, movement prim-
itives facilitates intuitive robot programming by demonstrations. A good MP
representation with strong adaptation capabilities would allow flexible and
compact representation of robot motions as it allows changing the trajectory
shape to accomplish multiple tasks.

In this chapter, we first compare the adaptation capabilities of different MPs
introduced in Chapter. 2. Then, we introduce a new formulation called Via-
points Movement Primitives (VMP). The VMP formulation is developed based
on two previous works: DMP and ProMP. It resolves their drawbacks and in-
herits their benefits. Finally, we evaluate the VMP performance in different
applications and create a new framework for the robot learning from human
demonstrations to allow the robot to learn from the failure.

The work described in this chapter has been published in Zhou et al. (2019).

3.1 Adaptation Capability of Existing Movement
Primitives

Here, three different methods described in Chapter. 2 are considered. They are
the Dynamical System (DS) approach, Dynamic Movement Primitives (DMP) and
Probabilistic Movement Primitives (ProMP). In the following, we discuss their
adaptation capabilities.

Dynamical System

As a global method, DS adapts to a new goal by translating and rotating the
whole velocity field. In Gribovskaya et al. (2011), a comparison between DMP
and DS shows that the motion generated by DMP for adapting to a new goal

51

Chapter 3. Movement Primitive Representation

during the execution may have an unexpectedly excessive curvature. The rea-
son is that a discontinuous change of the goal attractor causes a sudden accel-
eration.

With the phase stopping technique, DMP pushes the robot ”back” to the ”orig-
inal” trajectory. In order to resolve this sudden acceleration, an another P-
controller can be used to change the DMP goal to the new target gradually.

On the other hand, DS remembers what the human demonstrator does at some
near points and generates the motion directly to the target. If human demon-
strations cover the whole workspace, and the goal is the only task constraint,
DS generates more correct motions than DMP does when the goal is changing,
or perturbations exist. Unfortunately, human demonstrations can hardly cover
the whole workspace because humans are only willing to provide a minimal
number of demonstrations and similarly accomplish many tasks, even though
there are multiple demonstrations. It is not always realistic to ask a human
to demonstrate a task with different initial states, and it is tedious to design
the data collection process. If no training data exists around some points in
the state space, most of DS variants generate velocities based on stability con-
straints. There is no reason to claim that the motion generated by a DS around
the point where there is no training data is better than scaling the demonstrated
trajectory with a DMP. Furthermore, DMPs are much simpler than DS concern-
ing the number of parameters. In order to acquire the correct number of mix-
ture models, the training process in the case of DS is more complicated than
DMP. Furthermore, DS cannot adapt to any intermediate via-points between
starts and goals because it only allows one global attractor.

Dynamic Movement Primitive

A DMP introduced with Eq. 2.12 in Chapter. 2 is a nonlinear dynamical sys-
tem and assumes that the motion is governed by a damped spring system
with a non-linear force term. In the bio-inspired DMP mentioned in Chapter. 2
(see Eq. 2.23), two elastic force fields are used, which is inspired by the frog
experiment in Bizzi et al. (1984). We can reformulate Eq. 2.23 as follows:

τ v̇ = K · (g − (g − y0) · x+ x · f(x)− y)−D · v, (3.1)

which is a PD tracking controller that tracks a moving attractor, consisting of
a straight line trajectory with a constant velocity profile defined in the phase
space and a non-linear trajectory x · f(x) that supports reproducing the human

52

Chapter 3. Movement Primitive Representation

demonstrations.

A DMP learns the offset of the demonstrated trajectory from the straight line
connecting the start and the goal directly. By learning only this offset, DMPs
can adapt to a new goal with a straight line connecting to the goal. This learned
offset guarantees a similar trajectory shape by the goal adaptation in the tem-
poral domain. For multi-dimensional trajectories, DMPs treat each dimension
separately. Hence, the similarity in the temporal domain does not necessar-
ily result in the similarity in the spatial domain. For example, imagine that a
DMP reproduces a U-shaped parabola. If we rotate the goal to a new position
with 90o, a DMP generates a counter-intuitive trajectory that might overshoot
the target. In Paraschos et al. (2013) and Gribovskaya et al. (2011), the authors
claimed that their methods resolve this drawback of DMP.

In Dragan et al. (2015), the authors related a DMP with a Hilbert space trajec-
tory optimization problem that minimizes the acceleration difference between
the generated trajectory for new goals and the demonstrated one. The line
trajectory with a constant velocity profile in the virtual trajectory is the only
changing part for a new goal. The difference between two line trajectories is
still a line trajectory with a constant velocity profile, which has zero acceleration
everywhere. Hence, it corresponds to the result of the optimization problem.

However, like DS, DMPs cannot adapt to any intermediate via-points because
DMPs learn the virtual trajectory. In neuro-psychology, Gomi and Kawato
found that the virtual trajectory is more complex than the real one, especially
when the stiffness is low (Gomi and Kawato (1997)). Thus, it is difficult to ma-
nipulate the real trajectory by adjusting the virtual trajectory.

The question is whether it is necessary to represent the virtual trajectory, es-
pecially for robot applications. To answer the question, we absorb x into the
non-linear function f(x) (see Eq. 3.1) and split it into two parts:

τ v̇ = K · (g − (g − y0) · x+ f1(x)− y)−Dv + f2(x), (3.2)

where g − (g − y0) · x + f1(x) represents the real trajectory that corresponds to
the demonstrated one, and f2(x) is an additional acceleration term that guar-
antees accurate tracking of the real trajectory. It means that DMPs also learn
the compensation to the error of a PD tracking controller to accurately track
the real trajectory. In robot applications, however, DMP is usually not directly
used to control the robot. The reason is that the learned extra acceleration f2(x)

is good for tracking the demonstrated trajectory, but cannot guarantee the ac-
curacy when the goal is changed. The most used strategy is to choose a high

53

Chapter 3. Movement Primitive Representation

stiffness K to reduce the amount of f2(x). The higher is the stiffness, the closer
is the learned virtual trajectory g − (g − y0) · x + f(x) to the real trajectory.
Nevertheless, a high gain PD controller is not ideal for compliant robot control.
Hence, another lower-level tracking controller with a relatively lower gain is
necessary. Thus, a reasonable strategy is to separate the tracking control from
DMPs.

Different methods guarantee the tracking accuracy in a compliant way, such as
Iterative Learning Control (ILC). Hence, an alternative strategy is to use MP only
to represent the real trajectory and use a tracking controller to realize compliant
control.

Probabilistic Movement Primitive

A ProMP assumes that the task-oriented motion trajectories follow a Gaussian
distribution (see Section. 2.1.4). ProMP separates the motion representation
from the robot control. The assumption of Gaussian distribution allows it to
handle via-points in an intuitive way. A ProMP considers a via-point as an
observed data point and draws a trajectory from a conditional Gaussian distri-
bution (see Eq. 2.32).

Learning ProMPs is to infer the parameters of the Gaussian distribution of the
parameters vector www. The same argument for DS also applies to ProMPs. The
human demonstrations can hardly cover the whole workspace. The learned
Gaussian distribution is only correct in an area close to the demonstrations.
This erroneous prior probability affects the performance of ProMP to extrapo-
late for the via-points outside of the demonstrations region, where the probabil-
ity of the via-points based on learned probability is so small to cause conflicts.

Fig. 3.1 shows one example, where the learned ProMP converges to one specific
goal with relatively low variance. A slight displacement of the goal results in
a dramatic change in the generated trajectory. In contrast, the DMP performs
reasonably.

The behavior of these MPs in the area where no training data points exist is
highly dependent on their assumptions. A DS assumes a stable velocity field
that governs the motion. Hence, it approaches the goal directly when no data
exists. DMP assumes that the virtual trajectory consists of a goal-directed line
and a non-linear offset. Thus, it scales the trajectory and preserves the shape in
the temporal domain for a new target. ProMP, instead, assumes a Gaussian tra-
jectory distribution. Hence, it does not allow any trajectory that goes through
the region with very low probabilities.

54

Chapter 3. Movement Primitive Representation

Figure 3.1: To generalize the reaching motion to a new target, ProMP generates
an abnormal motion (green curve) because the learned prior prob-
ability of the trajectory distribution (red region) has a low variance
when approaching the goal. A slightly different target (from the red
ball to the green one) causes numerical problems when calculating
the conditional probability with Eq. 2.32. In contrast, DMP can natu-
rally generalize to the new goal because a goal directed elastic force
field is one of its two components (see Eq. 2.23).

For goal adaptation, a DS translates and rotates the velocity field to match the
attractor to the goal. If data is not correctly collected or not enough to cover the
whole workspace, the translation and rotation might expose many points to the
non-data area, where a DS generates velocities based on its stability criterion.
A DMP draws a line from the start to the new goal and keeps the learned offset
from this line. If this line is rotated too much in the spatial domain, a DMP
might generate non-intuitive trajectories because it treats each dimension sepa-
rately. ProMP calculates the conditional probability based on the learned prior
probability of the skill-associated trajectories. It can adapt well to the new goal
that is around the demonstrated trajectories. However, a goal out of the region
will end up with an infeasible motion for the robot.

One might argue that fully data-driven methods such as DS and ProMP gener-
ate relatively correct trajectories because they obey the human demonstrations.
For a task requirement regarding the area which is not covered by the training
data, we should instead apply an additional learning process or require more
human demonstrations.

However, as mentioned before, a human demonstrator is probably not willing
to provide a large number of demonstrations. A versatile learning system based
on MP should be able to generate reasonable motions for unseen cases. Further-
more, it is difficult to apply fully data-driven methods in practical applications.
In order to acquire a skill, the robot needs to observe more than two demon-

55

Chapter 3. Movement Primitive Representation

DS DMP ProMP VMP
probabilistic formulation 3 7 3 3

free translation 7 3 7 3

start/goal interpolation 7 3 3 3

start/goal extrapolation 7 3 7 3

intermediate via-point interpolation 7 7 3 3

intermediate via-point extrapolation 7 7 7 3

Table 3.1: A feature list of movement primitives

strations for these methods. The demonstrations should be also under control
or carefully designed. In contrast, a DMP learns from only one demonstration
and can adapt automatically to the target. As far as the target is not too dif-
ferent from the original one, a DMP generates reasonable motions. Although
there is no proof that its generated trajectories are correct, they meet a large
number of practical applications. However, a DMP cannot learn from multi-
ple demonstrations, which also limits its application, especially when there are
multiple demonstrations available. Several methods extended DMP to a proba-
bilistic model (Matsubara et al. (2010) Meier and Schaal (2016)). These methods
demonstrate an improvement of motion representation using DMPs, but they
do not improve their adaptation capabilities.

In this chapter, we concentrate on the via-points adaptation and propose a new
formulation for movement primitives, the Via-points Movement Primitive (VMP)
that inherits the advantages of ProMP and DMP and resolves their drawbacks.
In Table 3.1, we show a feature list of these movement primitives. Except
DMPs, all other MPs take probabilistic formulations. Free translation means
that one MP can encode all trajectories in the space that differ from each other
with a constant translation (Dragan et al. (2015)). Only DMPs and VMPs have
free translations. DMPs cannot adapt to the via-points except the start and goal.
ProMPs cannot handle extrapolation. As DMPs, DSs cannot handle intermedi-
ate via-points. However, DSs can adapt to a new goal by shifting the learned
velocity field. In this case, however, we actually change the parameters of the
DS. Strictly speaking, hence, the shifted DS is not the original one. VMPs, intro-
duced in this chapter, have all desired features regarding adaptation capability
as a motion representation.

56

Chapter 3. Movement Primitive Representation

Figure 3.2: The virtual trajectory is more complicated than the real trajectory.
Only when the stiffness of the PD controller given by DMP is high
enough, the virtual trajectory gets closer to the real trajectory

3.2 Via-Points Movement Primitive (VMP)

3.2.1 Basic Formulation

The formulation of VMP consists of two different parts: elementary trajectory
hhh and shape modulation fff :

yyy(x) = hhh(x) + fff(x). (3.3)

The elementary trajectory h(x) connects directly the start and the goal of the
motion. The shape modulation f(x) describes the offset of the real trajectory to
the elementrary one. This offset is parameterized by the parameter vector www.
As DMP and ProMP, we use a linear weighted regression model with squared
exponential kernels to represent the shape modulation:

f(x) = ψψψ(x)Twww, ψψψi(x) = exp(− 1

2σ2
i

(x− ci)2). (3.4)

It is not difficult to find the similarity between a VMP and a DMP because a
DMP uses the same structure to represent the virtual trajectory tracked by a
PD controller. Further, the elementary trajectory h(x) in a DMP is a line trajec-
tory with a constant velocity profile. Instead of encoding the virtual trajectory,
however, a VMP represents directly the real trajectory. The virtual trajectory

57

Chapter 3. Movement Primitive Representation

Figure 3.3: Via-point modulation by changing the elementary trajectory h: The
motion for drawing ”α” in a 2D plane is divided into two parts:
elementary trajectory h and shape modulation f . Left: The VMP
is learned from only one demonstration. Middle: The via-points
modulation is realized by manipulating the elementary trajectory h.
Right: In this process, the learned force modulation is not changed.

is similar to the real one only when the stiffness K of the DMP is very high
(Fig. 3.2).

Because of directly encoding the real trajectory, a VMP allows direct trajec-
tory manipulations such as via-points integration. As an example depicted
in Fig. 3.3, the motion that draws the letter ”α” is separated into the linear
trajectory h, and the shape modulation f . The parametric shape modulation
contains the features of the motion. In Fig. 3.3, we also show how to manipu-
late the trajectory by only changing the elementary part of a VMP. The result of
the start and goal adaptation of a VMP shown in the second line is the same as
a result given by a DMP. However, a VMP allows the intermediate via-points
adaptation, which is challenging with a DMP.

Unlike a DMP with a deterministic parameter vectorwww, a VMP assumes thatwww

58

Chapter 3. Movement Primitive Representation

follows a Gaussian distribution:

www ∼ N (µµµwww,ΣΣΣwww) .

With this assumption, a VMP allows the calculation of the conditional proba-
bility as a ProMP does. Hence, a VMP is a combination of DMP and ProMP.
The probabilistic formulation of a VMP is as follows:

yyy(x) ∼ N
(
hhh(x) +ψψψ(x)Tµµµwww,ψψψ(x)TΣΣΣwwwψψψ(x) + ΣΣΣf

)
. (3.5)

Learning a VMP is to infer the parameters of the Gaussian distribution. The
maximum likelihood estimation (MLE) is the emprical mean and variance:

µµµwww =
1

M

M∑
i=1

wwwi, ΣΣΣwww =
1

M

M∑
i=1

(wwwi − µµµwww)(wwwi − µµµwww)T , (3.6)

where M is the number of demonstrations and the i-th parameter vector is
obtained by solving a least square problem such that

wwwi =
(
ΨΨΨTΨΨΨ + λIII

)−1
ΨΨΨT (YYY i −HHH i), (3.7)

where YYY i represents the i-th demonstrated trajectory andHHH i encodes its corre-
sponding elementary trajectory and ΨΨΨ is given by

ΨΨΨ =

ψψψT (x0)

ψψψT (x1)
...

ψψψT (xN)

 , (3.8)

with N as the number of the kernels.

As DMPs, VMPs assume that a goal-oriented basic structure always exists. As
ProMPs, VMPs also suppose that the trajectories follow a Gaussian distribu-
tion. Based on these two assumptions, VMPs can adapt to the via-points in
two different ways: either by manipulating the elementary trajectory hhh or by
adjusting the shape modulation fff .

3.2.2 Elementary Trajectory

We use a triple (x∗, yyy∗,ΣΣΣ∗) to represent a via-point, where x∗ is the canonical
value that specifies when the via-points that should be incorporated into the

59

Chapter 3. Movement Primitive Representation

trajectory and ΣΣΣ∗ shows the confidence level of the via-point. If the via-point
should be definitely met, ΣΣΣ∗ = 0.

Here, we concentrate on how to use the elementary trajectory to realize via-
points adaptation. Without loss of generality, we assume that we train MPs
on only one demonstration. The learned shape modulation f(x) of a VMP
with zero variance is a deterministic trajectory. Note that ProMPs cannot adapt
to any via-points because calculating the conditional probability based on the
prior probability with zero variance ΣΣΣwww = 0 causes the numerical problem, es-
pecially when the via-point should be definitely met, namely ΣΣΣ∗ = 0 in Eq. 2.32.

Inspired by the virtual trajectory of DMPs, the elementary trajectory of VMPs hhh
directly connects the start and the goal with a straight line. It also makes sense
to let the robot generate a line trajectory directing to the target when there is no
demonstration. For the goal adaptation, the elementary trajectory is a new line
from the start to the new goal.

The basic idea for the intermediate via-points adaptation is to split the elemen-
tary trajectory into segments, where each segment corresponds to a real tra-
jectory that connects two adjacent via-points, including the start and the goal.
This straight line connects two adjacent virtual via-points (x∗,hhh∗) with

hhh∗ = yyy∗ − fff(x∗). (3.9)

Even though the elementary trajectory is a line trajectory connecting two points,
it can be associated with different velocity profiles. Based on these profiles, they
behave differently. Since we define all trajectories in the canonical variable do-
main, the shape of the trajectories changes significantly in the temporal domain
if the canonical system is not linear.

In order to keep the same shapes in both the canonical variable domain and
temporal domain, we use a linear decay canonical system instead of an ex-
ponential decay system, which is popular for DMPs. The canonical system is
normalized and goes from 1 to 0. For each trajectory, once the start and the goal
are defined, we have two predetermined via-points (1, y0) and (0, g). Hence,
the shape modulation fff(1) = fff(0) = 0. We can also learn the start and goal
with the shape modulation and use a constant zero as the elementary trajec-
tory during the training. In this case, learning a VMP is the same as learning a
ProMP.

Without loss of generality, we let the shape modulation only model the shape
of the trajectory but not learn the start and goal like what DMP assumes. For

60

Chapter 3. Movement Primitive Representation

simplicity, all the formulations mentioned below are given for one dimension.
It is trivial to extend them for multiple dimensions.

Line Trajectory with a Constant Velocity

A simple line function connecting two points (x0, h0) and (x1, h1) is:

h(x) = (h1 − h0) ·
x− x0
x1 − x0

+ h0, (3.10)

where 1 = x0 > x1 = 0 because of a linear decay canonical system. If no via-
points exist, h0 = y0 and h1 = g. Then, a VMP can be represented as

y(x) = h(x) + f(x)

= (g − y0) · x−10−1 + y0 + f(x)

= (y0 − g) · x+ g + f(x),

which is exactly the formulation of the virtual trajectory of a DMP (see Eq. 3.1).
In this case, for the goal adaptation, both VMP and DMP generate the same tra-
jectory. When an intermediate via-point is required, a VMP splits the elemen-
tary trajectory into segments. These segments should meet three requirements:

h(0) = g, h(1) = y0, h(x∗) = y∗ − f(x∗) (3.11)

With a constant velocity profile, a piece-wise linear function such as

h(x) =

− (h∗−y0)x

1−x∗ + y0 + (h∗−y0)
1−x∗ x ≤ x∗

− (g−h∗)x
x∗

+ g x > x∗,

(3.12)

where h∗ = y∗ − f(x∗) meets the requirements. It is straightforward to extend
this method for more than one via-points. Theoretically, it allows as many via-
points as required. In contrast, as mentioned before, a DMP cannot handle
intermediate via-points because it encodes more complex virtual trajectories
which are difficult to adjust in a meaningful way.

The problem of the linear trajectory with a constant velocity profile is that it
introduces a turning point to the elementary trajectory and leads to a sudden
acceleration around any via-points. If no training data exists, a VMP automat-
ically generates a line trajectory with a constant velocity profile towards the
target, which has a sudden acceleration at both start and goal points. Although

61

Chapter 3. Movement Primitive Representation

we can resolve this sudden acceleration with some lower-level controllers, we
still prefer generating a smooth trajectory in many robot applications.

Optimized Trajectory

As mentioned in Chapter. 2, in Dragan et al. (2015), the authors proved that
DMP minimizes a Hilbert space norm to adapt the trajectory to the new goal

minimize
ξξξ

||ξξξ − ξξξD||2A
s.t. ξξξ(1) = y0, ξξξ(T) = gnew,

(3.13)

where ξξξ refers to a trajectory vector, and ξξξD is the demonstrated one. A is a
Hilbert space norm A = KTK with K being the finite differencing matrix. T is
the length of the trajectory that corresponds to the time duration of the motion.
The proof consists of two parts. First, it is not difficult to see that the gradient of
the objective function is the acceleration profile of the trajectory. The optimiza-
tion requires that the gradient equals to zero, which means that the trajectory
has zero acceleration, namely constant speed. If the force term is equal to zero, a
straight line with a constant speed is the adaptation result of the optimization.
Second, it is provable that the force derivative should be the same if it is not
zero in the demonstrated trajectory in order to minimize the objective function.
In Dragan et al. (2015), the authors prove the claim for the virtual trajectory of
DMP. The proof is the same for the goal and intermediate via-points adaptation
for a VMP.

For one intermediate via-point, the following optimization problem is to be
solved:

minimize
ξξξ

||ξξξ − ξξξD||2A
s.t. ξξξ(1) = y0, ξξξ(T) = gnew,

ξξξ(i∗) = y∗,

(3.14)

where i∗ is the index for the via-point and corresponds to the via-point canon-
ical value x∗, because we split the trajectory into the elementary trajectory
and the shape modulation. Once it is learned, the shape modulation will not
change. This common part of the trajectory can be eliminated. Instead of the
index, the canonical value is used and we get:

minimize
h

1
2
(HHHD −HHH)TA(HHHD −HHH)

s.t. h(1) = y0, h(0) = g,

h(x∗) = y∗ − f(x∗),

(3.15)

62

Chapter 3. Movement Primitive Representation

Figure 3.4: The black dotted lines are the original trajectories, and the red lines
are the trajectories which adapt to the via-points (red circles) that
have the same canonical values as the original points (black circles)
in the demonstrations. The linear trajectory segments with a con-
stant velocity generate a sudden acceleration at the via-point. This
problem can be solved by the optimization defined in Eq. 3.14 or
the minimum-jerk trajectory segments defined in Eq. 3.17 solves the
problem. The minimum-jerk trajectories generate much smoother
trajectory because the velocity at the via-point is matched to the one
on the original trajectory.

whereHHHD andHHH are the elementary trajectories in human demonstrations and
during the execution. By solving this optimization problem, we get a trajec-
tory which is similar to the one with a piece-wise linear function. The only
difference is that the turning point has a smooth transition due to the fact that
a discontinuous velocity profile leads to big costs regarding the norm A cost
function (see Fig. 3.4).

63

Chapter 3. Movement Primitive Representation

Minimum-Jerk Trajectory

In neuro-psychology, researchers conducted experiments to explore the pat-
terns followed by animals and human during motion execution. In Hogans
(1984) and Flash and Hogan (1985), it has been shown that human reaching
movements minimize the third time derivative of the position trajectory. In
many robot applications, the motion is generated based on this optimization
problem:

minimize
YYY

∫ T

t=0

...
y (t)2dt, (3.16)

This kind of trajectories is called minimum-jerk trajectories because they min-
imize the third derivative of the location called jerk. With the calculus of vari-
ations (see Hogans (1984)), it has been shown that these minimum-jerk tra-
jectories have zero sixth derivative. This fact gives a possibility to model the
minimum-jerk trajectory with a fifth-order polynomial

h(x) =
5∑

k=0

akx
k, (3.17)

whose six unknown parameters ak can be obtained by the boundary conditions
at both adjacent via-points (x0, y0) and (x1, y1):

h(x0) = y0 − f(x0) ḣ(x0) = ẏ0 − ḟ(x0) ḧ(x0) = ÿ0 − f̈(x0)

h(x1) = y1 − f(x1) ḣ(x1) = ẏ1 − ḟ(x1) ḧ(x1) = ÿ1 − f̈(x1)
(3.18)

Because the shape modulation is a differentiable function, we can also spec-
ify the velocity and acceleration at the via-points with this elementary trajec-
tory segment modeled by a fifth order polynomial. By matching the velocity at
the via-point with the one on the original trajectory, the fifth order polynomial
generates smoother and more similar trajectories than the constant speed line
trajectory.

In Fig. 3.4, three different elementary trajectories are compared. The optimized
elementary trajectory based on the norm A is very similar to the constant speed
line trajectory, with only a smoother transition around the via-points. The
minimum-jerk elementary trajectory generates even smoother trajectories. In
many robot applications, we prefer the minimum-jerk elementary trajectory.
Because it always generates smooth trajectories even when no training data
exists.

64

Chapter 3. Movement Primitive Representation

3.2.3 Via-Points Modulation

Manipulating the elementary trajectory by segmenting it to parts and connect-
ing each pair of via-points with an individual segment is not the only way for
the via-points adaptation with VMPs. We can still calculate the conditional
probability based on the probability distribution of the shape modulation like
what a ProMP does. In this case, the elementary trajectory is not changed, but
the shape modulation is adjusted and adapted to the new via-points. For a
via-point (x∗, yyy∗,ΣΣΣ∗), the equations to adjust the parameters of the shape mod-
ulation distribution are similar to the ones used for ProMP (see Eq. 2.32):

µµµ∗www = µµµwww + L
(
yyy∗ − hhh(x∗)−ψψψ(xvia)

Tµµµwww
)
,

ΣΣΣ∗www = ΣΣΣwww − Lψψψ(x∗)TΣΣΣwww,

L = ΣΣΣwwwψψψ(x∗)
(
ΣΣΣ∗ +ψψψ(x∗)TΣΣΣwwwψψψ(x∗)

)−1
.

(3.19)

To select one of the two ways to insert the via-points: changing the elementary
trajectory or the shape modulation, we calculate the probability of the via-point
conditioning on the learned distribution of the parameter vector:

p ((x∗, yyy∗,ΣΣΣ∗)|µµµwww,ΣΣΣwww) = N
(
yyy∗;hhh(x∗) +ψψψ(x∗)Tµµµwww,ψψψ(x∗)TΣΣΣwwwψψψ(x∗) + ΣΣΣ∗

)
.

(3.20)
If this probability is bigger than a given threshold η, the via-point is considered
inside the learned distribution and the trajectory passes through it by manipu-
lating the shape modulation distribution. If the via-point probability is smaller
than the threshold, it is considered outside the region of demonstrations and
is passed through by adjusting the elementary trajectory as mentioned in the
previous section. By doing this, VMPs combine the strategies of DMPs and
ProMPs and thus is more robust for the via-points adaptation.

3.2.4 Orientation VMP

In order to use VMPs to represent task space trajectories in robot applications,
encoding the position trajectories is not enough. In the next section, we propose
a method which also encodes the orientation trajectory.

The elementary trajectory of a VMP serves as a local coordinate system where
the shape modulation generates the offset trajectory. The superposition of these

65

Chapter 3. Movement Primitive Representation

two parts is a trajectory defined in the global coordinate system. However,
the superposition of two orientation trajectories is less meaningful and usually
makes no sense in robot applications. Hence, in order to be able to encode the
orientation trajectory, we use quaternions to represent the orientation and the
quaternion multiplication to replace the superposition for the position trajecto-
ries. The formulation of VMP for the orientation trajectory is as follows:

y(x) = h(x) ∗ f(x), (3.21)

where y, h and f are three quaternion functions defined on the canonical value
domain. h(x) denotes the orientation elementary trajectory that consists of seg-
ments connecting two adjacent orientation via-points. For the position trajec-
tory, the elementary trajectory segment is a straight line. For the orientation
trajectory, this segment is the shortest curve connecting two quaternion. The
spherical linear interpolation (SLERP) provides the curve:

h(x) =
sin((1− α(x))β)

sin(β)
q0 +

sin(α(x)β)

sin(β)
q1, (3.22)

where cos(β) = q0 · q1 is the dot product of two quaternions. q0 and q1 are
calculated by

q0 = y0 ∗ f(x0)
−1, q1 = y1 ∗ f(x1)

−1. (3.23)

(x0, y0) and (x1, y1) are two adjacent orientation via-points and α(x) is the pa-
rameter of the SLERP function which determines the velocity profile of the gen-
erated orientation trajecory. For a constant speed, we have

α(x) =
x− x0
x1 − x0

.

For a bell-shaped velocity profile which is like the one of a minimum-jerk posi-
tion trajectory, we can also use a fifth-order polynomial such that

α(x) =
5∑

k=0

ak

(
x− x0
x1 − x0

)k
,

where the parameters ak are obtained by the boundary conditions:

α(x0) = 0 α̇(x0) = ḣ0/c0 α̈(x0) = (ḧ0 − l0) ∗ α̇(x0)/ḣ0

α(x1) = 1 α̇(x1) = ḣ1/c1 α̈(x1) = (ḧ1 − l1) ∗ α̇(x1)/ḣ1
(3.24)

66

Chapter 3. Movement Primitive Representation

with
c0 = −β cot(β)q0 + β csc(β)q1 c1 = −β csc(β)q0 + β cot(β)q1

and
l0 = −β2q0 l1 = −β2q1.

ḣ and ḧ are the velocity and acceleration of the elementary trajectory at the ori-
entation via-point, which can be calculated based on the required velocity and
acceleration of the real trajectory and the shape modulation. In robot applica-
tions, the acceleration of the minimum-jerk orientation trajectory is usually set
zero to simplify the calculation.

For the probabilistic formulation of the quaternion trajectory, one simple way
is to use three linear model to represent the trajectories for qx, qy, and qz sep-
arately. We calculate the component qw with the fact that a unit quaternion is
required. The start quaternion determines the initial value of qw, and its value is
continuously tracked to guarantee that there is no jump because of the antipo-
dally symmetric property. Based on the assumption that the components are
independent and identically distributed (i.i.d.), we end up with the following
quaternion distribution:

y(x) ∼ N
(
h(x)∗ψ(x)T

[
qw,µµµqx ,µµµqy ,µµµqz

]
,ΨΨΨ(x)Tdiag(ΣΣΣqw ,ΣΣΣqx ,ΣΣΣqy ,ΣΣΣqz)ΨΨΨ(x)+ΣΣΣf

)
,

(3.25)
where diag(.) and ΨΨΨ(x) are block diagonal matrices. This is a multivariate nor-
mal distribution with independent components, and the covariance matrix is
diagonal. With a multivariate Gaussian distribution, we can use the same strat-
egy as mentioned before for the position trajectory to calculate the conditional
probability, and orientation via-points are added by manipulating the distri-
bution (see Eq. 3.19). In reality, it is not necessary to manipulate the shape
modulation for the orientation via-points adaptation, because it is usually not
accurate and more complicated than directly manipulating the elementary tra-
jectory.

3.2.5 Task Space VMP

By combining the position and orientation trajectory representation, a com-
plete VMP is used to represent a task space trajectory or its distribution. As
mentioned in Chapter. 2, MP usually serves as a kinematic planner. The robot
needs some controllers to follow the MP trajectory to accomplish the tasks. As

67

Chapter 3. Movement Primitive Representation

Figure 3.5: The control framework for VMP is shown with the block diagrams.
The joint space and task space trajectories are separately learned
from the kinesthetic demonstration.

mentioned before, we follow the basic idea and separate the trajectory repre-
sentation from the design of the tracking controller that is dependent on the
individual robot model. For example, an MP can be used to represent either the
TCP trajectories for a robot arm or the trajectories of the platform of a mobile
robot. These robots have different models and hence require different control
strategies.

The advanced control methods such as iterative learning control or reinforce-
ment learning control can also be applied to allow the robot to follow the given
trajectories with compliant behaviors.

The simplest way to control a robot to follow a trajectory is a PD controller.
We consider first to draw a sample from the trajectory distribution and let the
PD controller track the sample trajectory. For the via-points added before the
execution, it is straightforward. For the online via-points, we re-calculate the
trajectory distribution conditioning on the required via-points and draw an-
other sample from the new distribution. In order to handle perturbations, we
consider the current position and velocity as an online via-point and generate
the rest part of the trajectory based on it.

The Fig. 3.5 depicts a VMP control framework for tracking task space trajecto-
ries. The output of the joint space VMP provides the target for the null space
control to guarantee that the robot does not generate any counter-intuitive joint
motions when tracking the required task space trajectory.

For the control targets, since VMP is differentiable, it can provide both target
positions yd and velocities ẏd. Like DMPs, VMPs can also adapt to different

68

Chapter 3. Movement Primitive Representation

Figure 3.6: Left: ProMP generates trajectories going through low variance re-
gion (red circle). Right: VMP adapts to the goal with two steps.
Firstly it changes elementary trajectories (see the middle plot) and
then reduces the variance (see the most right plot).

speeds by adjusting the temporal factor in the canonical system such as a linear
decay canonical system:

τ ẋ = −αx.

With changed temporal factors, the target velocities should be divided by the
temporal factor such as ẏd

τ
.

3.2.6 Comparison of VMPs and ProMPs

Because DMPs cannot adapt to the intermediate via-points, we concentrate on
the comparison between VMPs and ProMPs.

We first consider a simple example where we want to adapt an MP to a new
goal, which is out of the range of demonstrations, which means that the condi-
tional probability (see Eq. 3.20) is less than the threshold η (see Fig. 3.6). In this
case, if we use a constant speed line trajectory, DMPs give the same result as
the mean trajectory of VMPs.

A VMP accomplish this task with two steps. First, it adapts the elementary
trajectory to the target because the value obtained by Eq. 3.20 is less than the
threshold. Second, the VMP reduces the variance by adjusting the variance of
the shape modulation using Eq. 3.19. The second step is to guarantee that the
generated trajectory will hit the target. These two steps also work for the in-
termediate via-points that are beyond the range of demonstrations. In contrast,
ProMPs stick to the low variance region and generates a trajectory that passes

69

Chapter 3. Movement Primitive Representation

Figure 3.7: Comparison between VMP (with η = 0.8) and ProMP for draw-
ing a figure eight. We consider three cases: without via-points (red
curves), with a via-point within the observation range (blue curves)
and with a via-point outside the range (green curves). The top-right
plots show the vertical axis values along the time line. The bottom-
right plots show the result motions. Different elementary trajectory
segments generate slightly different trajectories.

through these regions. This leads to infeasible motions and a large change in
the demonstrated trajectories.

In Fig. 3.7, we compare further the behavior of VMPs with ProMPs and train
them to draw a figure ”8”. Two different intermediate via-points are asked
during two motion executions. For the via-point that is inside the learned
trajectory distribution where p(yvia|µw,Σw) > η, they have similar behaviour
(blue curves). For the via-point that is outside the learned trajectory distribu-
tion, namely p(yvia|µw,Σw) < η, VMP manipulates the elementary trajectory
h(x) and generates a scaled figure eight that goes through the via-point (green
curves). In contrast, ProMP fails to generate any reasonable motions (most left-
bottom figure).

In the top row of the Fig. 3.7, we depict the trajectories for the vertical dimen-
sion in the time domain. It can be seen that the ProMP sticks to the region with
low variance. When carefully inspecting the training data, it is easy to find
that the region of low variance does not have any special meaning. It corre-
sponds to a point at the bottom of figure ”8” that is accidentally passed through

70

Chapter 3. Movement Primitive Representation

by all demonstrations. This accident leads to the erroneous prior probability
learned in the ProMP. It is inevitable to produce an erroneous prior probabil-
ity because the number of demonstrations for real applications is always lim-
ited, and the human demonstrations cannot cover all possible situations. In
this case, VMPs assume that there is a goal-directed trajectory that stabilizes
the generated motion as DMPs do. Although it is still difficult to guarantee
the correctness, VMPs reduce the risk of generating infeasible motions when
compared to ProMPs.

Theoretically, the low variance region corresponds to task constraints (such as
obstacles in Fig. 2.3) during the human demonstrations. However, as men-
tioned before, it is usually difficult for a human to give multiple demonstra-
tions in a way that is appropriate for training a ”correct” probabilistic model.
Furthermore, the human demonstrations are sometimes similar, which results
in a set of dummy regions with low variance (as shown in Fig. 3.7).

For hard task constraints, it is better to set via-points which avoid the conflicts
to the constraints than to let the robot learn these constraints from the demon-
strations. In the case of multiple task constraints, a ProMP probably generates
an even more infeasible motion to meet all of them.

The threshold of the conditional probability to determine whether to manip-
ulate the elementary trajectory or the shape modulation is not easy to decide,
because it is a probability density function and theoretically ranges from 0 to
infinite. This function is dependent on the variance of the learned prior prob-
ability. If this variance is high, manipulating the shape modulation does not
cause infeasible motions. In contrast, if the variance is low, manipulating the
shape modulation is probably not a good idea because it shows the same be-
havior of ProMP. In this case, the threshold should be high enough to eliminate
the possibility of generating unreasonable motions. The more stable way is to
test whether the via-point lands out of the range (µ−n ∗σ, µ+n ∗σ) where n is
a chosen integer. For each dimension, it can also be different, especially when
we learn the dimension of the trajectory independently.

3.3 Robot Applications

The via-points integration in the VMP formulation is an advantage over other
methods such as DS, DMP, or ProMP. The ability to integrate via-points makes
many robotic applications much simpler. In Stulp et al. (2011) and Rueckert
and D’Avella (2013), researchers extended the learning process of a DMP. They

71

Chapter 3. Movement Primitive Representation

Figure 3.8: In the upper diagram, ARMAR-6 learns how to pass a ruler through
the narrow area. After that, it fails to pass a longer object through.
With only one via-point, the robot accomplishes the task. In the
lower diagram, the sucker gripper learns how to transport the ob-
ject. The whole motion is encoded with one VMP. The via-point is
used to specify the location of the object.

tested their methods with via-points tasks, for which they designed a cost func-
tion and used either optimization methods or reinforcement learning to mini-
mize it. However, these methods require several iterations, and their results are
usually dependent on the cost function and learning methods. Instead, VMP
with a constant speed linear elementary trajectory can directly generate trajec-
tories that coincide with the results of an optimization method (see Eq. 3.15).

3.3.1 Robot Learning Framework

A major problem of an MP used in the robotic area is its weak adaptability.
Although VMPs improve the adaptability regarding the via-points integration,
it still cannot guarantee that the generated motion can fulfill the task require-
ments. DMPs assumes that the goal adapted motion is generated by a changed
goal of its underlying damped spring system, while ProMPs assume that the
skill-associated trajectories follow a Gaussian distribution, and the conditional
probability realizes the adaptation. These assumptions might be wrong, and

72

Chapter 3. Movement Primitive Representation

the generated motions might not be able to accomplish the task. The funda-
mental reason is that we do not provide any task specified cost functions like in
reinforcement learning but only try to mimic the human motions when using
MPs for learning from demonstrations. This weakness can be solved by other
learning methods built upon the MP system. In Chapter. 4, several methods
to generalize MP for different task constraints are discussed in detail. In this
section, based on VMPs, a robot learning framework is developed to allow the
robot to learn from a human when encountering failures.

The basic idea is to integrate the specific via-points in case of failures in execut-
ing the motion generated by the current VMP. This process benefits from the
property of VMP that allows integrating as many via-points as necessary. This
supports a natural human-robot interaction. In reality, when we learn a specific
skill, the teachers usually prefer adjusting our pose during the motion execu-
tion instead of showing us the motion again and again. By teaching based on
pose adjustment, the teacher considers the individual difference. By remem-
bering the intermediate pose, we speed up the skill acquisition of the robot. In
many cases, remembering the pose might be more efficient than memorizing
the whole motion trajectory. In learning by demonstration, it is much easier to
use intermediate via-points to either correct the error during the motion repro-
duction or to help the robot to adapt the learned motion to new task constraints
than to repeat the demonstrations multiple times.

In Fig. 3.8, we show one example with the humanoid robot ARMAR-6 de-
scribed in Asfour et al. (2018), where the learned motion is to pass a short ruler
through the narrow area of the ladder. However, the robot cannot pass the long
ruler through, hence, encounters a failure. In order to solve the problem with
DMP or ProMP, the human needs to show the robot a new motion with a suit-
able orientation trajectory. With VMP, however, the human just stop the robot
when it collides with the ladder and adjusts the pose of its hand by rotating
90 deg. With VMP and this orientation via-point, the robot can simply pass
the long ruler through the restricted area without learning a new motion. In
reality, the robot might encounter many tasks with slightly different task con-
straints. Memorizing via-points is much more efficient than memorizing entire
trajectories.

In Fig. 3.8, another example illustrates that the usage of via-points is not only
the obstacle avoidance. The sucker gripper (Borràs et al. (2018)) learns how
to reach and transport the object with only one VMP. When it tries to move
another object in a different location, it fails. By memorizing a via-point, the
sucker gripper can transport the new object. With DMP, however, we need

73

Chapter 3. Movement Primitive Representation

Figure 3.9: A via-point on the original demonstrated trajectory guarantees that
the rest trajectory is similar to the demonstrated one. By doing this,
ARMAR-III avoids obstacles during wiping, but does not change
the wiping pattern afterwards.

either to have two separate DMPs, one of which approaches the object, and the
other one transports it, or to train an another DMP for the new object at the
new location. With ProMP, we need to demonstrate multiple times to cover the
space surrounding the possible object locations. Otherwise, it might result in
an unexpected infeasible motion.

The robot learning framework is built based on VMPs. Memorizing the via-
point can solve many problems and is more efficient than requiring new demon-
strations. With only one learned parameters vector, a VMP is more compact
representations than DMP and ProMP, because it can generate different trajec-
tories for many different task constraints.

3.3.2 Return Property

Another property of VMPs is its return property that is useful in many robot ap-
plications. The ”return” property refers to the fact that a via-point on the orig-
inal trajectory drags the generated motion back to the original demonstrated
one. Because we do not have any task-specific cost functions when we use MP
for learning by demonstration, any MP cannot guarantee the absolute correct-
ness of generated motions for new task constraints. Hence, it is much safer to
keep the executed motion near to the demonstrated one when no via-points
are required. In Fig. 3.9, we show that a via-point on the demonstrated trajec-

74

Chapter 3. Movement Primitive Representation

Figure 3.10: An orientation via-point is integrated to pass a longer ruler
through the narrow area. The red bar indicates the via-point.

tory guarantees that the remaining part of the generated trajectory coincides
with the demonstrated one. We can apply this property, for example, for ob-
stacle avoidance in the wiping task, where the robot needs to avoid some ob-
stacles during wiping, but does not change the original wiping pattern a lot
(see Fig. 3.9).

Imagine that a robot is standing in front of the table and retracts its hand from
above the table. In order to avoid a collision while retracting hand from any-
where on the table, the robot can remember a via-point. In such situations, we
need two DMPs to accomplish this task or multiple demonstrations to train
ProMP.

3.3.3 Obstacle Avoidance

Integrating via-points to the generated trajectories is one of the most intuitive
ways for obstacle avoidance. The standard way to solve the obstacle avoid-
ance problem is either to apply the path planning algorithms such as rapidly-
exploring random tree (RRT) (Lavalle et al. (2000)) or to create a repulse field
(force or velocity field) (Khatib (1990)) to avoid the collision. The former meth-
ods are usually time-consuming and can result in counter-intuitive joint mo-
tions. The latter methods require full knowledge about the obstacles and can
possibly be stuck into local optimum. Both methods are unlikely to generate
motion similar to humans.

75

Chapter 3. Movement Primitive Representation

Figure 3.11: Four via-points are integrated to realize a collision free grasping.
Two via-points are set at the same location with a distance to the
obstacle to avoid it. One via-point takes the robot’s manipulability
into the consideration for grasping (see the red arrow). The other
one via-point utilizes the return property of VMP to guarantee no
collision during hand retraction.

VMPs provide another way for obstacle avoidance by combining the motion
planner with learning by demonstration. In this case, a local motion planner
that works in the task space is required. It generates a sequence of via-points
with which the robot can avoid the obstacles. For the arm motion, however,
this task space local motion planner should also take the joint space into the
considerations. Currently, we manually design this local motion planner for
different obstacles and their locations. In many cases, it is not difficult to design
the via-points for obstacle avoidance. In Fig. 3.10, we show an example where
the robot easily obtained an orientation via-point when observing the boundary
of the narrow area.

In Fig. 3.11, we show another obstacle avoidance example, where ARMAR-6
grasps an object on the table which is behind an obstacle. The robot uses four
via-points to avoid the obstacle and successfully grasps the target object. In this
case, the robot calculated these via-points by observing the relative positions
of the obstacle to the target object and its manipulability when approaching

76

Chapter 3. Movement Primitive Representation

Figure 3.12: The via-points are online integrated to the motion for object grasp-
ing .

the target object. We can design a general local motion planner to fulfill the
collision-free grasping task. Compared to direct motion planning, VMP gen-
erates more human-like motions because they are learned from humans and
has been proved to be similar to the demonstrated trajectory with required via-
points.

3.3.4 Online Via-Points Integration

During the execution of a VMP, additional via-points can be integrated into the
trajectory as required. For this purpose, the VMP re-calculates the trajectory
based on newly integrated via-points. In Fig. 3.12, we show how this online
via-points integration works. In this case, ARMAR-6 is trying to grasp an object
moved by a human. We represent the whole motion with one VMP. With the
camera on the head, the robot can detect the position of the object. We associate
the position of the object with a canonical value and form a via-point (xvia, yvia).
We obtain the canonical value by considering an appropriate time offset for
moving from the current position to the current object position. If the robot has
not yet grasped the object, the total motion time duration will increase with a
fixed amount of time to avoid the high speed of the motion.

77

Chapter 3. Movement Primitive Representation

3.4 Conclusion

In this chapter, a novel formulation for movement primitives, Via-points Move-
ment Primitive (VMP), is introduced, which allows flexible via-points integra-
tion into the generated trajectory to accomplish tasks. Compared to the DMP
formulation, the VMP is a probabilistic formulation, i.e. it can encode multiple
demonstrations. Furthermore, a VMP allows intermediate via-points adapta-
tion, which cannot be done by a DMP. Compared to a ProMP, a VMP can handle
via-points extrapolation. a ProMP, however, generates infeasible motions when
the via-points are out of the range of demonstrations.

Based on the via-points adaptation of VMPs, we have developed a robot learn-
ing framework. Instead of learning new motions, a robot accomplishes a par-
ticular task by memorizing a set of via-points. For the same task, however,
we require multiple DMPs or multiple demonstrations to learn appropriate
ProMPs.

78

Chapter 4. Movement Primitive Generalization

4 Movement Primitive
Generalization

The adaptation based only on the MP representation is not enough to generate
motions for any task parameters. VMPs can only adapt to starts, goals, and
intermediate via-points to change the shape of the trajectory. If we consider an
arbitrary task parameter and a set of demonstrations for different queries, we
need to be able to generalize the learned MP to different tasks with different
task parameter queries.

In Chapter. 2, different methods to generalize MPs to different task parameters
have been introduced and compared. They are classified into two categories:
learning a direct mapping or learning a generative model. As mentioned, learn-
ing a generative model is more difficult than learning a direct mapping and
usually requires a large number of demonstrations. In this chapter, we mainly
focus on how to learn a direct mapping from the task parameter queries to the
motion parameters.

In Section. 2.2.1, two different strategies have been discussed for learning a
direct mapping. One type of approach learns two regression models, hence,
called two-steps methods. One regression model f(x) maps the canonical vari-
able to the trajectory related variable, which, for example, is the force term of a
DMP or the trajectory point in a ProMP. The other regression model ωωω(qqq) maps
the task parameter queries to the parameter vectorwww of the previous regression
model f(x). The other type of approaches combine both regression models to
one single function f(x,qqq) that takes the canonical variable and the task param-
eters queries as inputs and outputs the trajectory related variable. Both types
of approaches have been compared and their advantages and disadvantages
have been discussed. In this chapter, we focus on the development of two-steps
methods for generalization of movement primitives.

Two approaches to learn the mapping from task parameter queries to move-
ment primitive parameters are introduced. One approach is to use a mixture
of experts model for the mapping. A Leave-One-Out Expectation Maximization

79

Chapter 4. Movement Primitive Generalization

Figure 4.1: Left: multiple modes; Right: multiple models.

(LOO-EM) is developed to learn the mixture of experts model. LOO-EM out-
performs the original EM algorithm, which is easily stuck in the local minima
that results in a poor performance when learning the mixture of experts model.
Another approach is to use a Mixture Density Network (MDN) to learn a map-
ping of task parameters to distribution of movement primitive parameters. In
order to reduce the occurrence of mode and model collapse, a so-called entropy
cost is introduced to distribute the demonstrations to different mixture com-
ponents in a balanced way. To further improve training MDN, we develop a
failure cost that keeps MDN from outputting MP parameters similar to those
parameters that lead to failure. Several experiments show that an MDN trained
with new cost functions outperforms previous methods.

The work for learning mixture of experts models with LOO-EM has been pub-
lished in Zhou and Asfour (2017), and the work for MDN based MP general-
ization has been published in Zhou et al. (2020).

4.1 Multiple Modes and Models

In robot learning from human demonstration, humans usually have to demon-
strate a task without instructions, especially when we require multiple demon-
strations. These demonstrations can have multiple modes, which means that
humans generate different types of motions to demonstrate the same task with
the same task parameters. They can also have multiple models, which means

80

Chapter 4. Movement Primitive Generalization

that humans generate motions for different task parameters with different hid-
den models.

For example, given the task of reaching a target while avoiding an obstacle (see
the left column of Fig. 4.1), a specific goal as a task parameter query can be
reached using two different modes, i.e., by trajectories passing the obstacle on
the left or the right. Thus, learning a movement primitive for such task should
take multiple modes in human demonstrations into account to increase the diver-
sity of motions, which is beneficial if the task constraints change. Even though
there are no multiple modes for each single task parameter query in human
demonstrations, there might exist multiple models for different types of task pa-
rameters. As shown in the right column of Fig. 4.1, the goals on the left and
right sides of the obstacle are reached separately by two types of trajectories,
which are generated with two different models to allow passing the obstacle on
the left or the right.

4.1.1 Mode and Model Collapse

Previous two-steps methods that learn a direct mapping from task parame-
ters qqq to MP parameters www cannot handle multiple modes and models. Hence,
they can lead to mode collapse and model collapse as shown in the bottom row
of Fig. 4.1. The reason is that the traditional regression models, such as GPR, do
not take multiple modes and models into consideration. Hence, this happens
also for one-step methods. As mentioned before, in this chapter, we mainly
consider how to solve these problems for the two-steps methods.

Overall, for two-steps methods, the purpose is to learn a mapping ωωω from task
parameters qqq to MP parameters www. With M demonstrations, a training dataset
{(qqqi,wwwi)}Mi=1 is collected. The i-th MP parameter wwwi is learned from the i-th
demonstration. In DMPs and ProMPs, we obtain the MP parameters by solving
a least square problem.

A deterministic regression modelωωω that always maps one task parameter query
to one specific MP parameter cannot avoid mode collapse. Hence, a probabilistic
model is required to keep the motion diversity that exists in human demonstra-
tions. Motion diversity is crucial because it is beneficial when the change of the
task constraints leads to the failure of some types of motions. In these cases, a
deterministic model would not work. If the task constraints do not change after
the motion generation, it is not necessary to consider multiple modes, because
the robot can only execute one motion at one time. As far as the generated
motion is valid and reasonable for the task, the task execution will succeed.

81

Chapter 4. Movement Primitive Generalization

Model collapse is more severe for a deterministic model than the mode col-
lapse because it leads to failure of task execution, as shown in the bottom right
of Fig. 4.1. The reason for the failure with traditional regression models is that
they usually consider only one model. However, human demonstrations can
include several different models. In this case, the single learned models per-
form worse, especially for task parameter queries on the boundary between
the two models. They tend to average the results from both models, which lead
to trajectories going directly through the obstacle in Fig. 4.1.

In this chapter, two different approaches are introduced. One of them is to solve
the model collapse for the deterministic models. The other one is to create a
probabilistic model based on Mixture Density Networks (MDN) to resolve both
mode and model collapse.

4.2 Mixture of Experts for Movement Primitve
Generalization

One way to solve the model collapse problem for deterministic models is to
combine multiple regression models and create a mixture of experts, as de-
scribed in Jacobs et al. (1991). Then, we divide the space of the task parameter
queries into different regions. We learn each expert of the mixture model from
human demonstrations which correspond to the task parameters in one of the
regions. During task execution, we assign a new task parameter query to one
of the models according to its region. The model takes the query as input and
outputs the MP parameter. In Fig. 4.1, we divide the space of the trajectory
goals, as the task parameters, from the middle. If we train two GPRs for two
separate groups of the demonstrations, the model collapse will not occur.

Assuming that the number of experts is known, to use the mixture of experts,
we need to solve two problems. One is how to assign each demonstration to
the models during training of the mixture model. The other is which model is
to select for a newly encountered task parameter query.

A simple solution to the latter problem is to find the training task parameter
query that is the closest to the new query and use its model to determine the
MP parameter. In Da Silva et al. (2012), the authors presented an alternative,
where they trained a classifier that takes the task parameter query as input and
outputs a label indicating which model to use.

82

Chapter 4. Movement Primitive Generalization

4.2.1 Training Mixture of Experts

For training the mixture of experts model, if we know how to assign demon-
strations to models, it is trivial to train each regression model (or expert) sepa-
rately based on their associated demonstrations. However, it is often not triv-
ial to determine such training data association. If the number of experts K is
known, the training purpose is to infer the parameters ΘΘΘ = {θθθk}Kk=1. For the i-th
pair of training data (qqqi,wwwi), the posterior probability of the association index
ki is given by

p(ki|qqqi,wwwi) =
1

Z
p(wwwi|ki, qqqi)p(ki|qqqi), (4.1)

where Z is the normalizing coefficient.

We assume that

p(wwwi|ki, qqqi) ∝ exp (−h||wwwi −ωωω(qqqi;θθθki)||) (4.2)

with h as a constant and ωωω(·;θθθ) as a parametric function with the parameter
θθθ that corresponds to one expert model. p(wwwi|ki, qqqi) reaches its maximum if
wwwi = ωωω(qqqi;θθθki) and decreases when wwwi and ωωω(qqqi;θθθki) depart from each other.
Based on this assumption, the posterior probability satisfies

p(ki|wwwi, qqqi) ∝ exp (−h||wwwi −ωωω(qqqi;θθθki)||) . (4.3)

Expectation Maximization

To infer the parameters ΘΘΘ, we consider {ki} as hidden variables and use the
Expectation Maximization (EM) algorithm. Before the E- and M-step, K-means
clustering is conducted to separate the training MP parameters {wwwi}Ni=1 into K
clusters and K models are trained for the initial parameters set {θθθk}Kk=1. In the
E-step, for each pair (qqqi,wwwi), the current optimal association index is calculated
based on Eq. 4.3:

k∗i = argmax
k

p(k|qqqi,wwwi). (4.4)

In the M-step, K models are trained again on the new clusters based on the
current association indices. By iterating between E- and M-steps, the algorithm
finds a local minimum.

If the regression model ωωω has a strong representation capability, i.e. it can rep-
resent complex functions, or the training dataset is small, EM algorithm could
converge to the local minima, where a subset of K models overfit the training

83

Chapter 4. Movement Primitive Generalization

data. These local minima lead to the model collapse, as mentioned before. In the
extreme case, the EM algorithm stops at the first iteration and keeps the initial
training data assignment to different models because each model overfits its
associated training data.

Leave-One-Out Expectation Maximization (LOO-EM)

To solve the problem, instead of limiting the capability of the regression models
such as using a linear model, we consider an alternative based on the idea of
the leave-one-out (LOO) cross-validation.

In the M-step, instead of only training K models, we train K + N models. For
each data pair (qqqi,wwwi), we train a so-called LOO model. We obtain the training
dataset for the model by dropping the data (qqqi,wwwi) from the current training
dataset of the ki-th model. With the performance of these leave-one-out mod-
els, we check how significantly this training data affects the ki-th model by
evaluating its fitting error with the LOO model. The more significant it affects
its current model, the more possible its current model overfits it, and the less
likely it belongs to this model. We use θθθlooi to denote the parameters of the
leave-one-out model for the i-th training data.

In the E-step, the model association indices are updated with Eq. 4.4 based on
the following posterior probability:

p(k|qqqi,wwwi) ∝

exp(−h||wwwi −ωωω(qqqi;θθθk)||), if (qqqi,wwwi) 6∈Mk

exp(−h||wwwi −ωωω(qqqi;θθθ
loo
i)||), if (qqqi,wwwi) ∈Mk,

(4.5)

where Mk is the training dataset of the current k-th model.

Except the data association indices {ki}Ni=1, {θθθlooi }Ni=1 is also regarded as the hid-
den variables in the Leave-One-Out Expectation Maximization (LOO-EM) algo-
rithm.

Let’s consider a multi-modal mapping as shown by the black dashed curves on
the left side of the Fig. 4.2 and is described by:

f(x) =

 1
x

+ 1, if x ≤ 0

1
x
− 1, if x > 0.

(4.6)

We compare the use of EM and LOO-EM for learning a mixture of experts.
Each expert is a two-layers neural network and each layer contains 40 neu-
rons. The neural network is trained with a gradient descent method. As shown

84

Chapter 4. Movement Primitive Generalization

Figure 4.2: Comparison between EM and LOO-EM for a multi-modal mapping.

in Fig. 4.2, the training data points are indicated by the dots. Since a neural
network is powerful enough to approximately go through all the training data
points, EM is simply stuck in a local minimum (Fig. 4.2, right-top). Although
almost all training data points are met by the learned regression model, the re-
sult regression models cannot predict other points on the desired mapping. In
contrast, LOO-EM learns the correct data association (Fig. 4.2, right-bottom). In
30 experiments with random initialization of the data association, EM obtains
an error of around 2.6 . While LOO-EM has an error of around 0.7.

The LOO-EM algorithm is, however, time-consuming, especially for a complex
task, where we need a large dataset. Furthermore, the learned system is still
deterministic. Hence, it cannot encode multiple modes.

To handle multiple modes, we need an MP generalization model which can
output a probabilistic representation. A Mixture Density Network (MDN), de-
scribed in Bishop (1994), outputs a mixture of Gaussian distributions which
can encode multiple modes and models. Furthermore, an MDN takes the ar-

85

Chapter 4. Movement Primitive Generalization

chitecture of neural networks, which allows it to handle complex tasks.

In the rest of this chapter, we suggest to use a Mixture Density Network (MDN)
to model the mapping ωωω(·) in a two-steps method.

4.3 Mixture Density Networks for Movement
Primitive Generalization

Using methods such as LWR (Ude et al. (2010)), SVR (Da Silva et al. (2012))
or GPR (Forte et al. (2012)) to model the mapping are good enough to accom-
plish simple tasks with a small number of demonstrations (less than 100). For
complex tasks, however, they fail to scale to large datasets and result in poor
performance.

Furthermore, single regression models cannot handle multiple modes and mod-
els and lead to the mode and model collapse. The LOO-EM algorithm solves
the model collapse problem, however, with a high computational cost. In the
M-step, the algorithm requires training of the regression model for each data
point. If we use a neural network with a big set of parameters, the algorithm is
intractable for a large dataset.

As described in the previous section, MDN is proposed. Combined with the
Via-points Movement Primitive (VMP) introduced in the last chapter, it provides
a probabilistic model and can scale from simple to complex tasks, as we will
describe in the following.

4.3.1 Extended Via-points Movement Primitive

In last chapter, we introduced VMP to represent the motions. The formulation
of VMP (see also Eq. 3.3) is given by

yyy(x) = hhh(x) + fff(x), (4.7)

where the shape modulation fff is a linear regression model such that

fff(x) = ψψψ(x)Twww, (4.8)

whose parameter follows a Gaussian distribution, namelywww ∼ N (µµµ,ΣΣΣ). For M
demonstrations, the parameters of the Gaussian distribution are determined by

86

Chapter 4. Movement Primitive Generalization

the empirical mean and covariance, which correspond to the maximum likelihood
estimation (MLE):

µµµ =
1

M

M∑
i=1

wwwi, ΣΣΣ =
1

M

M∑
i=1

(wwwi − µµµ)(wwwi − µµµ)T . (4.9)

The i-th MP parameterwwwi is obtained by solving a least square problem for the
i-th demonstration YYY i and can be written as follows

wwwi = (ΨΨΨTΨΨΨ + λIII)−1ΨΨΨT (YYY i −HHH), (4.10)

where HHH is a vector representing points in the elementary trajectory. Here, we
assume that it is a line with a constant velocity profile (see Eq. 3.2.2).

We replace the Gaussian distribution with a Gaussian Mixture Model (GMM)
and consider that the parameters of the GMM are the functions of the task pa-
rameters qqq. Hence, we have

www = ω(qqq) ∼
K∏
k=1

N (µµµk(qqq),ΣΣΣk(qqq))
zk , (4.11)

where zk is an element of a K-dimensional binary variable zzz = (z1, z2, ..., zK)T

where only one particular element is equal to 1 and all other elements are zero.
The probability of the k-th element of zzz being equal to 1 is

p(zk = 1) = πk(qqq).

The probability of the resultwww given the task parameter qqq is

p(www|qqq) =
K∑
k=1

πk(qqq)N (www|µµµk(qqq),ΣΣΣk(qqq)). (4.12)

4.3.2 Mixture Density Network (MDN)

Structure of MDN

A Mixture Density Network (MDN) for movement primitive generalization is
shown in Eq. 4.11. An MDN models πk(·), µµµk(·) and ΣΣΣk(·) by three neural net-
works to determine the MP parameters. For a detail introduction to MDN, the
readers are referred to Bishop (1994).

87

Chapter 4. Movement Primitive Generalization

Figure 4.3: Mixture Density Network (MDN) for the MP generalization

The three neural networks share a common network part (blue region in Fig. 4.3)
that extracts the latent features and is exchangeable for different tasks. The out-
put dimension of the mixture coefficients functions π(qqq) is the number of the
mixture components K. The output dimension of the mean network µµµ(qqq) is
the dimension of the MP parameter www or the number of kernels, which deter-
mines the reproduction accuracy of the MP. In many applications, 10 kernels are
enough for one degree of freedom (DoF). Hence, for a three-dimensional trajec-
tory, the output of the mean network has 30 dimensions. According to Mclach-
lan and Basford (1988), Eq. 4.12 can approximate any given density function to
arbitrary accuracy with a diagonal covariance matrix. The output dimension
of the covariance network ΣΣΣ(qqq) coincides with the mean network. Hence, for
a three-dimensional trajectory, an MDN has a total of K + K × 30 × 2 output
values.

88

Chapter 4. Movement Primitive Generalization

To train an MDN, we consider the negative-log-likelihood (NLL) cost such that

lNLL(ΘΘΘ) = −
M∑
i=1

log

(K∑
k=1

πk(qqqi;ΘΘΘ)N
(
wwwi|µµµk(qqqi;ΘΘΘ),ΣΣΣk(qqqi;ΘΘΘ)

))
, (4.13)

where ΘΘΘ denotes all the parameters of the MDN. The normal distribution with
a diagonal covariance matrix can be written as

N (wwwi|µµµi,ΣΣΣi) =
1

(2π)N/2|ΣΣΣi|1/2
exp

(
−1

2

N∑
j=1

(wi,j − µi,j)2

σ2
i,j

)
, (4.14)

where µµµi = µµµk(qqqi;ΘΘΘ) and ΣΣΣi = ΣΣΣk(qqqi;ΘΘΘ) and N is the dimension of the MP
parameter or the number of kernels. A stochastic gradient descent algorithm
such as Adam (Kingma and Ba (2014)) is used to minimize the NLL cost.

With a gradient descent method, we can only find local minima and expect that
they are good enough to accomplish the tasks. However, this is sometimes not
the truth.

Let us take a look at the simple previous example where a fixed obstacle should
be avoided in Fig. 4.1. The black dashed curves are the demonstrations. As
mentioned before, the left column shows multiple modes, and the right column
shows multiple models.

Mode and Model Collapse with Previous Methods

For multiple modes, GPR is a deterministic method and captures only one
mode. In the left plot of the second row of Fig. 4.1, GPR generates a trajec-
tory that approaches the target from the left side. For a particular task param-
eter query, a deterministic model always outputs the same trajectory after it is
trained.

GPR has another problem in this case. Since several demonstrations are from
the right side, the result of GPR is affected and shifted towards right side. Sim-
ple regression models such as GPR and SVR tends to get the average of the
training outputs for the queries in the middle of the training queries. This prob-
lem is more serious when we consier multiple models in the right plot of the
second row of Fig. 4.1. It leads to the model collapse and results in failure of
task execution.

The mode and model collapse also happens for some other regression models
such as SVR because of the same reasons mentioned before.

89

Chapter 4. Movement Primitive Generalization

Figure 4.4: Obstacle avoidance with MDN.

Mode and Model Collapse with NLL cost

Unlike GPR or SVR, an MDN is a probabilistic model and outputs a distribu-
tion, from which we can draw multiple samples. Hence, we have opportunities
to get different types of motions for one particular task parameter query. How-
ever, in the experiment (left plot in the third row of Fig. 4.1), the MDN with only
the NLL cost (denoted as the original MDN in Fig. 4.4) still loses one mode if
we draw 5 samples from its output for the task parameter query denoted with
the green dot.

Similar to GPR or SVR, the original MDN with only the NLL cost still loses one
model and fails to generate valid motions for the task parameter queries in the
middle.

The mode collapse during training MDN is a known problem. In Hjorth and
Nabney (1999), the authors solve this problem by reducing the learning com-
plexity. They fix the means and the variance, and train the mixing coefficient

90

Chapter 4. Movement Primitive Generalization

function π(qqq) to reduce the NLL cost. If there are enough fixed mixture compo-
nents regularly distributed in the output space, the learned MDN does not lose
its representation capability. However, for the MP parameter as high dimen-
sional output, an MDN requires a large grid that might be intractable.

In Makansi et al. (2019), the authors predict the next car location based on the
current one in a 2D map. In order to avoid the mode collapse, they suggest sep-
arating the MDN into two parts: a sampling network and an inference network.
The sampling network takes the current car location as the input and outputs
a number of the hypotheses of the next car locations. To keep the modes, they
trained the network to diversely place these hypotheses and increase the like-
lihood at the same time. After training the sampling network, they trained an
inference network to infer the GMM parameters based on the hypotheses. For
using this strategy for the MP generalization, a large dimensional output of
the sampling network is required, which can also cause problems during the
training.

In summary, previous methods in literature cannot be applied for the MP gen-
eralization.

4.3.3 MDN with Entropy Costs

Before solving the mode and model collapse, we first discuss in more details
the reason of their occurrence.

The mode collapse occurs if demonstrations associated with different modes
for one task parameter query are imbalanced. As an example, in Fig. 4.4 (left
column), only a small number of demonstrations take the path on the right side.
By maximizing the likelihood of all demonstrations, an MDN tends to output a
small mixing coefficient for the mixture component, which corresponds to the
mode with less associated training data. In theory, it is correct to associate a
small probability to events that rarely happen in the observations. However,
the imbalance of the demonstrations in different modes can be caused due to
the habit of the demonstrator. It is often the case that we cannot collect enough
demonstrations to cover all modes. Even if there are only a few demonstrations
for a specific way for task execution, these demonstrations should be taken into
account to increase the motion diversity.

The model collapse occurs in the case of small number of demonstrations. Sev-
eral mixture components of the MDN, which are represented by neural net-
works, are powerful enough to overfit all the demonstrations. After training of

91

Chapter 4. Movement Primitive Generalization

the MDN, instead of all K mixture components, we can use a subset of them to
approximately fit all training data. This corresponds to certain local minima of
the NLL cost, which results in a poor performance of the MDN for certain task
parameter queries. As shown in Fig. 4.4 (right column), one of the two mod-
els disappear with the original MDN, and the MDN performs similar to GPR.
Compared to the mode collapse, the model collapse is more severe because it
can lead to the failure of the task execution.

In order to reduce the occurrence of the mode and model collapses, we intro-
duce a negative model entropy cost function over demonstration set DDD is as
follows,

lmodel(ΘΘΘ) =
K∑
k=1

p(m = k|DDD;ΘΘΘ) log p(m = k|DDD;ΘΘΘ), (4.15)

where

p(m = k|DDD;ΘΘΘ) =
M∑
i=1

πk(qqqi;ΘΘΘ)p(qqqi), (4.16)

and m is the component index and p(qqqi) ∝M−1. By minimizing the cost, we in-
crease the uncertainty of the model labels when considering the entire demon-
stration set DDD. A high uncertainty of the model labels is equivalent to either
equally distributed mixing coefficients for each task parameter query or equally
distributed demonstrations to different models. In the former case, if all mix-
ing coefficients for one specific task parameter query are nearly equal and close
to 1/K, each mode has the same probability of being selected to generate mo-
tions. Hence, the mode collapse does not occur. In the latter case, if each model
is associated with a subset of the demonstrations, the corresponding mixture
component, i.e. the network branch, is well trained. Hence, the model collapse
does not occur.

The model entropy cost is related to the identifiability of the output GMM. A
GMM is identifiable except the relabeling if (see Frühwirth-Schnatter (2006)):

• the components of GMM are different from each other (multiple modes);

• all components are used to explain the data distribution (multiple mod-
els).

In the following experiments, the final cost is a weighted sum of the NLL cost
(lNLL) and entropy cost (lmodel) such that

l = wNLLlNLL + wmodellmodel, (4.17)

where wNLL = 1 and wmodel = 50.

92

Chapter 4. Movement Primitive Generalization

As shown in Fig. 4.4, the MDN with both NLL and the entropy cost (denoted
as entropy MDN) solve the mode and model collapses.

4.3.4 MDN with Failure Costs

In many applications, samples with failure can be easily collected with an un-
derfitted MDN model. To reduce the occurrence of MP parameters that corre-
spond to failures for similar task parameter queries, we introduce the failure
cost function

lneg(ΘΘΘ) =
M∗∑
i=1

log

(K∑
k=1

πk(qqqi;ΘΘΘ)N
(
www∗i |µµµi,ΣΣΣneg

))
, (4.18)

where the normal distribution has the same form as Eq. 4.14 but ΣΣΣneg = σnegIII .
By minimizing this cost function, the output mean vector µµµi for a specific task
parameter qqqi is kept away from the MP parameters {www∗i }M

∗
i=1 that lead to fail-

ure.

If σneg is too small, the failure cost will not affect the results. On the other
hand, a too big σneg can result in trajectories, which are significantly different
from demonstrations. Here, we determined σneg empirically with the smallest
variance of all MP parameter components.

For training an MDN with the failure cost, we prepare an evaluation dataset.
After a certain number of training steps, we run the MDN on this evalua-
tion dataset and collect the failed samples in a failure dataset {www∗i }M

∗
i=1. In the

next training steps, we calculate the failure cost function based on the failures
dataset. To keep the computational cost tractable, we use a fixed dataset size
M∗ and remove the earliest failed samples from it when new samples are col-
lected.

The final cost with the failure cost involved can then be given as

l = wNLLlNLL + wmodellmodel + wneglneg, (4.19)

where wNLL = 1, wmodel = 50 and wneg = 1.

4.3.5 Generating Motion with MDN

In learning from demonstration, a successful task execution means that the gen-
erated motions are similar to the demonstrations, and the generated motions

93

Chapter 4. Movement Primitive Generalization

accomplish the task with specific task parameters. In the proposed method, we
meet the former requirement by training MDN with the NLL, which is related
to the similarity between the collected and generated MP parameters. To check
whether the latter requirement is met, we evaluate the trained MDN with the
success rate of the task execution.

For the task execution, we can only execute one motion after another. Hence,
the MP parameter for the task must be determined based on the MDN output
distribution in a subsequent step.

The purpose is to generate single motions for given task parameter queries.
In the following experiments, we consider two strategies: selecting the most
probable mode or selecting the best one from multiple samples.

The most probable mode is the output mean vector of the mixture component
that has the most significant mixing coefficient. If the learned MDN outputs a
GMM with separate components, the most probable mode is the mode of the
output GMM. For one specific task parameter query qqq, MDN outputs K Gaus-
sian mixture components with their mixing coefficients {πk}Kk=1. The K modes
of these Gaussian mixture components correspond toK most probable motions
of different types. However, not all these K modes can be used to accomplish
the task. The most significant mixing coefficient indicates the mode that most
likely succeeds. With this strategy, the MDN serves as a deterministic model.
Hence, we can compare it with previous deterministic methods. Selecting the
most probable MP parameter is the simplest way to generate motion from the
MDN output. This strategy works quite well in many tasks.

However, with the most probable MP parameter, we ignore the information
provided by the output variance ΣΣΣ of the MDN. Each of its diagonal elements
indicates how various the generated trajectories can be at the corresponding
period for successful task execution. When we draw samples from the output
GMM for a specific task parameter query, the variance matrix ensures that the
samples have a high probability of success. In some tasks, the most probable
MP parameter does not work very well because these tasks require a relatively
accurate trajectory. A small deviation of the generated trajectory from the de-
sired one leads to failure. To improve the performance, we draw several MP
parameters from the MDN output distribution and execute one after another
on the robot for the task until success. In this case, a successful task execution
means that there is at least one example from the output distribution that leads
to success. Hence, the success rate is also dependent on the number of samples
drawn from the distribution.

94

Chapter 4. Movement Primitive Generalization

Moreover, with the former strategy, an MDN always generates the same mo-
tion for a given specific task parameter query. In order to demonstrate the
motion diversity and the fact that multiple modes can be learned by an MDN,
we also need to draw multiple samples from the output distribution (see Sec-
tion. 4.4.5).

We can evaluate The quality of learning from demonstration in two different
ways. One way is to assess the similarity between the generated and demon-
strated motions. In the MDN case, this similarity is associated with a low NLL
cost. The other way is to evaluate task performance or calculate the success rate
for different task parameters. The former is highly dependent on the effective-
ness of the training algorithms, while the latter is more important for the task.
Hence, we use the latter to evaluate the method described before.

4.4 Evaluation

4.4.1 Approximation of Polynomials

In Section. 2.2.1, we compared one-step with two-steps methods using a poly-
nomial fitting test, where a 5-th order polynomial y(x) =

∑5
k=1 akx

k has to be
presented. The purpose is to learn a mapping from the coefficients ak to the
MP parameter www. The error is the distance between the true 5-th order polyno-
mials and the generated trajectories by the output VMP parameters. As shown
in Fig. 4.5, we add MDN into the comparison. In total, we conducted 60 exper-
iments. In each experiment, we sampled 30 random coefficients for training,
and 20 were for testing.

For MDN, we select the most probable MP parameter as the output. Except for
the GPR with DPKs, MDN outperforms all other methods.

4.4.2 Random Obstacles Avoidance

A 2D obstacle avoidance experiment showed in Fig. 4.4 has also been con-
ducted in Zhou and Asfour (2017) as well as in Ewerton et al. (2015). In or-
der to show whether the methods can scale to more complex tasks, we placed
three obstacles randomly in the 2D space and searched for the collision-free
trajectories with random starts and goals. To collect demonstrations, a person
drew curves connecting random starts and goals without collisions with three

95

Chapter 4. Movement Primitive Generalization

Figure 4.5: Polynomial fitting test with MDN .

Figure 4.6: Left-Top: The MDN is trained on a dataset with 100 demonstrations.
The best performance is approx. 82% success rate. Left-Bottom: The
MDN is trained on a 300 dataset. The best performance is approx.
85% success rate. Right: 16 examples with MDN generated trajecto-
ries show how MDN works.

randomly generated 2D balls on a tablet. Without any instructions, the human
demonstrations show multiple modes and models.

The success of the task execution requires that the generated trajectory connects
the start and goal without any collision with randomly placed obstacles.

Due to the task complexity and existence of the multiple modes and models,
previous approaches could not achieve acceptable results. With a 100 dataset,
TP-GMM has only a success rate of about 45% with five local frames (three for
the obstacles, two for the start and the goal) and five mixture components for
the GMM. Both one-step and two-steps methods with SVR and GPR perform
worse with a success rate that is less than 30%.

96

Chapter 4. Movement Primitive Generalization

For MDN, we assume that there are three mixture components K = 3. To
extract the latent feature (blue box in Fig. 4.3), we introduced three separate
network branches for three obstacles’ locations. Each branch takes the position
of one obstacle, the start and the goal of the trajectory as the input and outputs
a hidden feature vector. Three hidden feature vectors are then concatenated to
one vector, which is used as input by the MDN. The whole MDN is trained in
an end-to-end manner.

During testing, we select the most probable MP from the output distribution.
For each number of training data, 30 experiments are conducted for 30 differ-
ent training datasets randomly chosen from the collected demonstrations. In
order to utilize the failure cost function, after each 100 training steps, the MDN
is evaluated on an evaluation dataset to produce failed samples. To avoid in-
creasing data, we considered only the recent 3000 failed samples.

The results are shown on the left side of Fig. 4.6. With 100 demonstrations,
the MDN with both the entropy and failure cost functions (lNLL + lmodel + lneg)
achieves about 82% success rate. The performance is improved further to 85%

with 300 demonstrations. With 100 demonstrations, the entropy MDN with the
failure cost function (lNLL+ lmodel+ lneg) achieves the best result and the entropy
MDN (lNLL + lmodel) is better than the original MDN (lNLL). Their difference is
decreasing with the increasing number of demonstrations.

On the right side of Fig. 4.6, 16 testing samples are shown. The colorized solid
curves are generated by the most probable mode (MP parameter) given by the
MDN, and the transparent dashed curves correspond to the other two modes,
which are not selected by the MDN with relatively small output mixing coeffi-
cients. Three different modes are shown with three different colors: The green
curves bend towards the top; The blue curves bend towards the bottom; The
red curves connect the start and the goal directly. The MDN accomplishes the
task with two steps. One step is to separately update each mixture component
branch to increase the success rate of their modes. The other step is to adjust
the mixing coefficients output to select the mode, which has the highest chance
of accomplishing the task.

4.4.3 Docking Problem

In this experiment, the MDN should generate a curve connecting two docking
stations without colliding with them. This experiment has been used often by
Calinon et al. (see Calinon et al. (2013); Calinon (2016)) to show the strength

97

Chapter 4. Movement Primitive Generalization

Figure 4.7: Left: The entropy MDN outperforms the original one for any num-
ber of samples. Right: The black solid curves are the sample drawn
from the MDN output distribution. The other dashed curves denote
the modes of three Gaussians.

of TP-GMM. We extend the experiment to allow the random orientation of the
start and random position and orientation of the goal. The successful task exe-
cution requires that the generated trajectory has no collision with the docking
stations and connects the start and the goal. In comparison, both TP-GMM and
MDN are trained on 100 training data and tested on another 100 dataset. For
TP-GMM, we associated two frames to the start and the goal separately. The
number of components is determined based on the performance. TP-GMM
shows a success rate smaller than 10%. For MDN, the number of components
was 3. If the mode is selected, where the MDN serves as a deterministic model,
the entropy MDN achieves a 29% success rate.

However, in this experiment, we need an accurate trajectory to guarantee that
there is no collision when leaving the start or approaching the goal. Hence,
the mode of the output GMM does not work very well. In order to improve
the performance, we drew multiple samples and selected the best one. From
the left diagram in Fig. 4.7, we see that the performance is improved with the
increasing number of samples. In addition, the results show that the entropy
MDN always has a better performance than the original MDN. On the right
side of the Fig. 4.7, 16 samples are shown. The black curves indicate the result
given by MDN. The dashed curves denote the mode of three Gaussian compo-
nents. In several cases, the selected samples coincide with the mode. In most of
the cases, the successful samples are obtained by taking a small change of one

98

Chapter 4. Movement Primitive Generalization

Figure 4.8: In this experiment, the desired final ball location is the input of the
MDN, which is denoted by a transparent box. Top: the robot hits
the ball from its right side, and the ball bounces off the border and
stops at the target. Bottom: the robot hits the ball directly towards
the target.

of the three modes. However, there are still a few cases, in which the generated
trajectories are different from the three modes given by the MDN.

4.4.4 Hit Ball Experiment in Simulation with ARMAR-6

In this experiment, the robot hits the ball with its fist. After being hit, the ball
slides on the table and stops at some locations (see Fig. 4.8). The final location
of the ball on the table is the task parameter query. The purpose is to gener-
ate an appropriate robot motion to hit the ball and let the ball stop at a spe-
cific location. This experiment is conducted in the MuJoCo simulator (Todorov
et al. (2012)) with the model of the humanoid robot ARMAR-6 (Asfour et al.
(2018)).

For the demonstrations, we use a random trajectory generator based on a 5-
th order polynomial, with which the position and velocity at the end of the

99

Chapter 4. Movement Primitive Generalization

Figure 4.9: The result of the hit ball experiment shows that the MDN (red) out-
performs the baseline (gray), GPR±Σ (blue) and SVR±Σ (green)

trajectory can be specified. The initial ball location on the table is fixed. The
velocities, when hitting the ball, are randomly sampled from a uniform distri-
bution. With different hitting velocities, the ball stops at different locations. The
final locations of the ball qqq and the MP parameters www are collected in a training
dataset.

As shown in Fig. 4.8, the ball can bounce off the borders of the table, which
realizes multiple modes for one specific target location in the collected demon-
strations. The table is 260 cm × 200 cm big and the ball has radius 5 cm. Suc-
cessful task execution is that the ball is no more than 10 cm far from the target
location.

We useK = 3 mixture components and train the MDN with 50 random demon-
strations and test it on 100 new ball locations. If the most probable MP parame-
ters are selected, the average success rate is around 15%. This poor performance
might be because the task requires an accurate trajectory. With a random small
perturbation of the MP parameters that correspond to the initial 50 demonstra-
tions, the success rate drops rapidly. To improve the performance of this task,
we drew several samples from the output distribution. In this case, a successful
MP generalization means that there is at least one sample that leads to success-
ful task execution. As shown in Fig. 4.9, increasing the number of samples
improves the success rate.

In this task, the increasing number of samples helps because of two reasons.
One trivial reason is the setup of the task, which allows successful task exe-
cutions by chance: VMP guarantees that the robot hits the ball, and the table

100

Chapter 4. Movement Primitive Generalization

borders limit the final ball locations. The other reason is that the MDN learns
the correct distribution, which gives a high probability to the correct MP pa-
rameter, which is unfortunately not precisely the mode. Sampling from the
correct distribution has a bigger chance of finding the correct solution than di-
rectly selecting the most probable mode. In order to prove that the latter rea-
son exists with MDN for this task, we consider a uniform distribution of the
MP parameters as the baseline, whose interval is determined by the minimal
and maximal components of the MP parameters, which correspond to the 50

demonstrations. Besides the baseline, we construct the Gaussian distributions
by considering the GPR and SVR outputs as mean vectors and with a fixed
variance matrix (Σ = 0.01III).

As shown in Fig. 4.9, MDN outperforms other methods for all the sample num-
bers. For the baseline, it coincides with the intuition that its success rate is
almost proportional to the number of samples because it does not learn from
the demonstrations. GPR and SVR have better performances than the baseline
because they draw the samples close to their output MP parameters. However,
the samples drawn around their outputs are totally by chance because of the
fixed variance matrix. In contrast, the MDN learns a relatively correct distri-
bution output and achieves already a high success rate with a smaller sample
number.

4.4.5 Throw Ball Experiment with ARMAR-6

To further evaluate our method, we let the robot throw a ball on a specific tar-
get. The arms of ARMAR-6 have 8 degrees of freedom (DoF) each. In order to
simplify the task, only 4 DoFs are used, 2 of the shoulder joints, the elbow and
the wrist joint. Other joints are excluded for this task without loss of generality
(see the 4 DoF in Fig. 4.10). The demonstrations were conducted by the human
using kinesthetic teaching. After learning the corresponding MP parameter for
each demonstration, we speed up the motion to 1 second and set a fixed joint
goal. The robot hand is controlled to open always at 0.55 second. Then we
record the location of the ball when it drops on the ground. By fixing the goals
and speed of the motions, the locations where the ball hits the ground are only
dependent on the shape of the motions. In the experiment, we let the robot face
the wall so that it can bounce the ball off the wall to the target.

We let the robot throw 50 times with different human demonstrations and ran-
domly split the collected data into 30 for training and 20 for testing. We train an
MDN (K = 2) on 30 demonstrations. For the testing, we only use the hit ground

101

Chapter 4. Movement Primitive Generalization

Figure 4.10: Top-left: Four DoFs are used for throwing the ball. Top-right:
the robot throws the ball directly to the target. Bottom: the robot
bounce the ball to the target off the wall.

locations of the other 20 demonstrations as task parameter queries, which guar-
antees that all the hit ground locations are reachable. During the testing, we
place a plate on the ground to indicate the current query. The successful task
execution is throwing the ball on the plate either directly or by bouncing it off
the wall. In the experiment, only 2 out of 20 target hit ground locations were
missed with 10 samples. In Fig. 4.10, for one specific task parameter query,
we show how two MP parameters, which correspond to two different modes,
result in different paths of the ball.

4.5 Conclusion

In this chapter, in the context of the two-steps methods, two approaches are
presented to learn a mapping ωωω from the task parameter queries to movement
primitive parameters.

One approach is to use a mixture of experts to model the mapping from task
parameter queries to MP parameters. A Leave-One-Out Expectation Maximiza-
tion (LOO-EM) algorithm is developed to learn this mixture of experts model.
LOO-EM outperforms the original EM algorithm, which is easily stuck in local
minima. Although models obtained with EM can fit all training data, they can-
not represent the ”correct” multi-modal functions as shown in Fig. 4.2. How-
ever, since LOO-EM requires training models for each data point, using LOO-
EM to learn a mixture of experts model is time consuming, especially when the

102

Chapter 4. Movement Primitive Generalization

demonstration dataset is large. Moreover, LOO-EM is a deterministic method,
hence, cannot handle multiple modes.

To overcome these difficulties and be able to handle multiple modes and mod-
els at the same time, we propose using a probabilistic model, namely Mixture
Density Network (MDN), which outputs a mixture of Gaussian distributions,
to learn the mapping from task parameter queries to MP parameters. How-
ever, training MDN with the original negative-log-likelihood (NLL) cost can still
cause mode and model collapse. Hence, we introduce an entropy cost function
that forces the MDN to consider multiple modes and models. To further im-
prove the training process, a failure cost is also introduced to avoid similar MP
parameters that lead to failure. Experiments show that MDNs with new cost
functions outperform previous methods and original MDNs trained with only
NLL cost function.

103

Chapter 5. Movement Primitive Adaptation and Control

5 Movement Primitive Adaptation
and Control

In this chapter, the movement primitive parameters have been already deter-
mined by the generalization approaches described in Chapter. 4. The final step
is to control the robot to follow the MP generated trajectory to accomplish the
task. For this purpose, the task space tracking controller described in Fig. 3.5
can be used. However, for a contact-rich manipulation or human-robot inter-
action tasks, a trajectory tracking controller is not enough for successful task
execution, because additional task parameters such as target force profiles or
environment changes should also be considered.

In Chapter. 4, the task parameters for a specific task are represented in a fixed
dimensional space. They can be explored with a limited number of demonstra-
tions, which means that all the valid task parameters for the task can be deter-
mined by the interpolation of regression models trained on those demonstra-
tions. In the obstacle avoidance example, if the number of obstacles is fixed, the
problem can be solved by the MP generalization as described in Section. 4.4.2.
However, if the number of obstacles is unknown, it is difficult to solve the prob-
lem with the MP generalization because the task parameters have a variable
dimension, and we cannot use a limited number of demonstrations to explore
all the possibilities.

The same statement applies to human-robot interaction tasks, where a human’s
activity cannot be predicted or covered by a limited number of demonstra-
tions. For example, in a robot washing system where the robot’s arm wipes
the back of the human as in the case of an assistive bathing system (Zlatintsi
et al. (2020)), the robot cannot predict how the human moves the back during
task execution based on a limited number of demonstrations.

Unfortunately, such problems cannot be solved directly with a general approach
like in Chapter. 4. Expert knowledges are required for the solutions. For exam-
ple, using Via-points Movement Primitive (VMP), described in Chapter. 3, in ob-
stacle avoidance tasks, we need an expert such as a local task space via-points

105

Chapter 5. Movement Primitive Adaptation and Control

planner that outputs a sequence of via-points to avoid obstacles.

In many applications, multiple agents are involved such as in human-robot in-
teraction tasks or bimanual manipulation tasks. For such tasks, in which, mo-
tions of one agent depend on those of other agents, or the agents act in a leader-
follower manner, we propose a simple leader-follower framework, called Coor-
dinate Change Movement Primitive (CC-MP), which adjusts the follower’s motion
based on the leader’s behavior. Based on CC-MP, a robot washing system is de-
veloped in the context of the assisitve bathing system mentioned before.

The work of CC-MP has been published in Zhou et al. (2016a) and Zhou et al.
(2016b). The robot washing system based on CC-MP has been published in Dome-
tios et al. (2018).

In this chapter, we also realize a compliant control during task execution based
on movement primitives. It is difficult to control a robot in a compliant way and
guarantee tracking accuracy of a given trajectory at the same time. In order to
solve this problem, we propose learning a force predictive model to guide an
adaptive controller to change its stiffness. With this control diagram, the robot
can adapt to external perturbations in a compliant way and track the given
trajectory accurately during task execution. We evaluate this method with a
wiping table task.

5.1 Coordinate Change Movement Primitive
(CC-MP)

As the name reveals, the Coordinate Change Movement Primitive (CC-MP) changes
the coordinate frame of the task space MP during task execution. The MP pa-
rameter www is learned in a local coordinate frame. Hence, it can adapt to the
coordinate transformation afterward. This strategy is similar to the TP-GMM
(see Calinon et al. (2013) Section. 2.2.2), where several GMMs are learned in the
local frames and adapt to their changes during the task execution.

CC-MP also encodes the movement of the leader if it is possible and necessary.
In human-robot interaction tasks, the human is viewed as the leader. The hu-
man motion, however, is not controlled by the robot. Hence, it is not necessary
to encode human motion with a movement primitive. In bimanual manipu-
lation tasks, in contrast, it makes more senses to encode the motions of both
hands, where one serves as the leader, and the other is the follower.

106

Chapter 5. Movement Primitive Adaptation and Control

It is task-specific to determine which agent is the leader or the follower. How-
ever, uncontrollable agents with difficulty to describe behaviors should be con-
sidered as the leader.

all the uncontrollable agents should always be the leader.

Before training the follower’s movement primitive, the demonstrated trajectory
yyyfG,d(x) is transformed in the local cooridnate of the leader such that:

yyyfL,d(x) = T (yyylG)yyyfG,d(x), (5.1)

where the subscript L and G are for the local and the global coordinates sep-
arately. The superscript l and f denote the leader and the follower. yyyfL,d(x)

is learned by the movement primitive. During the task execution, the gener-
ated motion of the learned yyyfL(x) is transformed back to the global coordinate,
namely

yyyfG(x) = T−1(yyylG)yyyfL(x). (5.2)

Figure 5.1: The Docking problem is solved by CC-MP, where the red end-
effector should approach the blue end-effector with a particular
direction. The motion of the red end-effector is learned and en-
coded with a movement primitive in the local frame of the blue
end-effector. During task execution, its global motion is obtained
by transforming its local motion back to the global frame.

In Fig. 5.1, one example is shown, where the red end-effectors should approach
the blue end-effectors with a specific orientation. Since it is similar to a docking

107

Chapter 5. Movement Primitive Adaptation and Control

task of spacecraft to a space station, we call it a docking problem. The blue
end-effector is not controllable. Hence, it is regarded as a leader. The motion
of the follower (the red end-effector) is learned with the MP. With the previous
process, CC-MP simply adapts to the motion of the blue object without chang-
ing any parameters. It is difficult to use the MP generalization approaches de-
scribed in Chapter. 4 for the docking problem because it is hard to predict how
the blue target object moves during the task execution.

In the robot wiping task described in the following, a hierarchical leader-follower
structure is used, where there are multiple leaders and followers. The leader of
one follower can be a follower of the others.

Figure 5.2: Learning wiping motions with CC-MP. Left: We extract a human
wiping motion from the KIT motion database. Middle: The tra-
jectory is separated into the linear and periodic part. Right: After
learning CC-MP, we can reproduce the original wiping motion and
also change the wiping pattern (see Fig. 5.3).

5.1.1 Learning Adaptive Robot Wiping

The robot wiping task is one of the essential applications for service robots
(Zlatintsi et al. (2020)). The wiping skill is used in multiple different tasks such

108

Chapter 5. Movement Primitive Adaptation and Control

as cleaning the table, mopping the floor, or helping washing the human body.
In all these tasks, the robot should be able to generate different wiping patterns
and adapt the wiping motions to the changing environment. In the following,
we describe how CC-MPs are used to solve the robot wiping task.

As shown in Fig. 5.2, the demonstrations are human motion recordings in the
KIT motion database described in Mandery et al. (2015). The 3D wiping motion
is projected on a 2D surface by eliminating the dimension with the lowest vari-
ance. Since the curvature of the wiping surface usually determines the third
dimension, it is not learned directly from the demonstration. There are two
different ways to learn this wiping motion. We either directly learn the whole
motion with one single MP or first separate it into discrete and periodic pat-
terns. The latter solution is much more flexible than the former one. The peri-
odic wiping pattern can be combined with different wiping directions (discrete
parts) to generate different wiping motions according to the user’s preference
or commands.

To extract the periodic wiping pattern, the moving average algorithm is first ap-
plied on the trajectory, whose result is the discrete part as shown in the upper-
middle plot of Fig. 5.2. The moving average algorithm uses a time window to
scan the whole trajectory. For each location of the time window, an average
value of all the points in the time window is calculated. With a particular size
of the time window, we can eliminate the local features of the trajectory such as
the periodic pattern in the wiping motion.

By subtracting the discrete part from the original trajectory, we obtain the peri-
odic part. To get one period, we applied the Fourier transformation to the peri-
odic part to find its frequency. By cutting the periodic part with the frequency
and averaging all the segments, we can obtain one period, as shown in the
bottom-middle plot of Fig. 5.2. Then, the leader MP is learned from the discrete
trajectory, and the follower MP is learned from the periodic pattern. During
the execution, the Eq. 5.2 is used to determine the wiping motion. As shown
in the right plot of Fig. 5.2, the reproduction result approximates the original
trajectory.

Encoding Periodic Motions

In Section. 2.1.3 and Chapter. 3, we described how to represent discrete mo-
tions with DMP or VMP. For a periodic motion, as in Ijspeert et al. (2013), the

109

Chapter 5. Movement Primitive Adaptation and Control

transformation system of DMP is as follows:

τ v̇ = K(g − y)−Dv + rf(x), (5.3)

where r is the amplitude of the periodic motion. Instead of squared exponential
kernels (SEK), cosine exponential kernels (CEK) are used such that

ψψψi(x) = exp(hi(cos(x− ci)− 1)), (5.4)

where hi is a constant called concentration parameter. The CEK is closely related
to the von Mises distribution (Ijspeert et al. (2013)), a periodic version of the
Gaussian distribution. Instead of a decay system, we use a linear increasing
canonical system τx = at or τ ẋ = a based on an assumption that a periodic
motion never ends. With DMP, we can adapt the learned periodic motion to
different amplitudes and speeds.

For VMPs, the elementary trajectory is replaced by a single anchor point g,
hence,

y(x) = g + rf(x), (5.5)

where r is the amplitude. The same kernel functions CEKs are used for the lin-
ear regression model f(x) = ψψψ(x)Twww. As DMP, VMP can also adapt to different
speeds and amplitudes.

Wiping Trajectory Adaptation

As shown in Fig. 5.3, the wiping motion can be adjusted by changing the hy-
perparameters of the leader’s or follower’s MP. For example, the change of the
temporal factor ratio (TFR), namely τf/τl, where τf is for the follower and τl is for
the leader, results in different wiping motions as shown in two bottom-right
plots.

In addition to different wiping patterns, the leader-follower framework is also
used to adapt to the moving or curved wiping surface, as shown in Fig. 5.4
and Fig. 5.5. The wiping surface is regarded as the leader. The wiping motion,
as a whole, is the follower and encoded in the local coordinate defined by the
wiping surface.

Based on CC-MP, a vision based robot wiping system is proposed in Dometios
et al. (2018). As shown in Fig. 5.6, a camera system obtains the points cloud of
the wiping surface. By analyzing those points, the surface norm vector around
the current local wiping region is extracted. Based on this norm vector and

110

Chapter 5. Movement Primitive Adaptation and Control

Figure 5.3: Wiping pattern is encoded with CC-MP. By changing the hyper-
parameters of the leader or follower movement primitives, we can
generate different wiping patterns. For example, as shown in the
last two plots, changing the temporal factor ratio (TFR) results in dif-
ferent wiping styles.

Figure 5.4: CC-MP adapts to the moving wiping surface. A surface is moving
and rotating. The learned periodic wiping motion is adapted to the
movement of the surface.

a perception based controller, the generated trajectory of the leader MP is ad-
justed, and the coordinate frame of the periodic follower pattern is changed.
With this setup, the wiping motion adapts to the moving or curved surface. For

111

Chapter 5. Movement Primitive Adaptation and Control

Figure 5.5: CC-MP adapts to the curved surface. The red lines denote the dis-
crete part of a wiping motion. The green dots represent the periodic
part. The blue arrows indicate the target force into the wiping sur-
face. When the surface is deformed, which is detected by the vision
system, the wiping motion is adapted to the changing curvature of
the surface.

Figure 5.6: A vision based CC-MP wiping system. This work has been pub-
lished in Dometios et al. (2018).

the perception-based controller, we refer the readers to Dometios et al. (2018)
for detail.

As shown in Fig. 5.7 and Fig. 5.8, ARMAR-III (see Asfour et al. (2006)) accom-

112

Chapter 5. Movement Primitive Adaptation and Control

Figure 5.7: ARMAR-III is wiping a moving whiteboard. The top row shows the
points cloud provided by the kinect camera.

Figure 5.8: ARMAR-III is wiping the back of a human. For the safety reasons,
we keep a distance between the human and the robot. The second
and fourth columns show the points cloud from the kinect camera.

plished the wiping tasks on a moving whiteboard and human back.

Wiping Force Adaptation

Similar to the coupled DMP presented in Gams et al. (2010), a coupling term
is added to the follower MP to generate force on the wiping surface. In Zhou
et al. (2016b), we use DMP in the CC-MP framework, hence, the coupling term

113

Chapter 5. Movement Primitive Adaptation and Control

is added to the output acceleration of the DMP. For VMPs, we can have

y(x) = h(x) + f(x) + c(x), (5.6)

where the coupling term c(x) denotes a position offset from h(x) + f(x) for a
desired force. Like the method described in Gams et al. (2010), the coupling
term can be iteratively updated. Since the follower’s movement primitive is
used to encode the wiping pattern and is learned in the leader’s local frame, a
mapping from the 2D position in this local frame to the position offset in the di-
rection perpendicular to the wiping surface can be trained with an incremental
learning algorithm. In Zhou et al. (2016b), a Locally Weighted Regression (LWR)
model is used to learn this coupling term, since it allows the incremental learn-
ing during the task execution. The coupled VMP can be written as

y(x) = h(x) + f(x) + c(sss), (5.7)

where sss is the current projected position on the surface, and

c(sss) =

∑N
i=1 ψi(sss)wwwi∑N
i=1 ψi(sss)

, (5.8)

where N is the number of the kernel functions and ψi(.) is a 2D exponential
function:

ψi(sss) = exp(−hi||sss− sssi||2), (5.9)

with h the normalization factor and sssi a point on the 2D grid. The training
data is collected during the wiping execution. Combined with a feedback force
controller, the robot can gradually adapt to the curvature of the surface while
meeting the desired target force.

5.1.2 Bimanual Manipulation with CC-MP

Another application of CC-MP is to couple both hands of the robot in bimanual
manipulation tasks. In this case, one of the hands is regarded as the leader, and
the other one is the follower.

For holding a rigid object, the relationship between two hands does not change.
By only learning the leader’s movement, both hands are automatically coupled.
In Fig. 5.9, the robot put down a heavy guard in collaboration with a human.
The leader VMP learns the motion of the left hand. Since the right-hand does
not move in the left-hand coordinate, the follower VMP encodes a static po-

114

Chapter 5. Movement Primitive Adaptation and Control

Figure 5.9: ARMAR-6 is placing down the board bimanually with the human
cooperation.

Figure 5.10: ARMAR-6 is regrasping the board with the human cooperation.

sition. With CC-MP, only one motion is to be learned for this guard lowering
task. In this case, CC-MP serves as a constant offset between the left and right
hand.

In Fig. 5.10, the robot regrasped the guard while manipulating is jointly with
a human. In this bimanual task, the leader VMP is learned by observing the
motion of the left hand during the human demonstration. The motion of the
right hand described in the leader’s coordinate frame is obtained with Eq. 5.1
and learned by the follower VMP. The via-points are integrated to guarantee
that the hand does not collide with the guard. In the case when two separate

115

Chapter 5. Movement Primitive Adaptation and Control

Figure 5.11: Left: force predictive model Right: adaptive force control

VMPs are used and coupled with one canonical system, we need to change both
VMPs if the initial grasping positions on the guard change. With the CC-MP,
we only need to change the leader’s VMP. CC-MP simplifies the adaptation to
the new task requirements.

5.2 Compliance Adaptation in Contact-Rich
Manipulation

As described in Chapter. 3, the task space VMP control framework (see Fig. 3.5)
is a standard impedance control framework. Most of the tasks mentioned be-
fore are executed using this controller. The standard controller only takes the
position and velocity feedback into consideration to track the VMP generated
trajectories. For a contact-rich manipulation, however, a position tracking con-
troller is not enough. In Fig. 5.6, the robot uses the visual feedback to realize
wiping on a curved and moving surface. Here, we consider how to use force
sensor feedback to realize compliant behaviors and follow desired force pro-
files. We still focus on the wiping task. However, the method is not limited to
this task.

It is not trivial to realize compliant behavior for a contact-rich manipulation.
For example, in the wiping task, if the friction of the surface is not negligible,
a more stiff impedance controller is required to realize an accurate position
tracking for the VMP generated wiping motion. A high stiffness, however,
conflicts with the desired compliant behavior.

One solution is to use an adaptive controller, which changes its stiffness on-

116

Chapter 5. Movement Primitive Adaptation and Control

Figure 5.12: The rotational velocity vvvr aligns the wiping tool with the wiping
surface.

line according to the requirements. During the wiping without external distur-
bances, its stiffness is high to guarantee the tracking accuracy on the wiping
surface with negligible friction. Once an unexpected disturbance is detected,
its stiffness decreases to realize a compliant reaction and avoid the damage of
itself or the environment.

We assume that an unusual force profile corresponds to an unexpected distur-
bance during the task execution. To detect this unusual force profile, we learn a
force predictive model that can predict the normal force profile during correct
task execution. By comparing the current force profile with the predicted one,
we can tell whether the force profile is unusual or not, then, guide an adaptive
controller to realize compliant behaviors.

As shown in Fig. 5.11, the result control diagram consists of two parts: an adap-
tive force controller and a force predictive model.

5.2.1 Adaptive Force Control

A standard impedance controller is used to output a general force Fm based on
the desired velocity vvvd and the current velocity vvve. With the task space inverse
dynamic, the joint torque targets τm are calculated and passed to a lower level
torque controller for the motor commands.

For the wiping task, the desired velocity vvvd consists of vvvVMP and vvvforce. The
VMP velocity vvvVMP is to track the desired motion trajectory. vvvforce is separated
to its translational velocity vvvf and rotational velocity vvvr. A PID force controller
calculates the translational velocity vvvf with the desired force Fd and the current
force Fe in the z-direction perpendicular to the wiping surface. This direction

117

Chapter 5. Movement Primitive Adaptation and Control

is established in the local frame of the robot’s end-effector. An another PID
controller calculates the rotational velocity vvvr with the desired angle αd and the
current angle αe to rotate the hand to align the wiping tool with the wiping
surface (see Fig. 5.12).

The structure of the adaptive controller is shown in Fig. 5.11 (right). The adap-
tive strategy (green box) changes the stiffness of all PID controllers mentioned
before, according to the result given by the force predictive model. With a low
stiffness, the controller is compliant and cannot follow the VMP generated tra-
jectory well. With high stiffness, the controller guarantees a high tracking ac-
curacy but is not compliant. When adjusting the stiffness Kp, the adaptive con-
troller also adjusts derivative Kd and integral Ki gains in the same way.

For the wiping task, we consider two different modes of the controller.

• Normal mode: the normal mode is for the case without external distur-
bance. The stiffness Kp is calculated by

Kp(t) = min(Kp(t0) + βp(t− t0), Kp,max), (5.10)

where where t0 is the start time point when the controller is switched to
the normal mode and the constant βp decides how fast the stiffness should
reach its maximum Kp,max.

• Adaptive mode: the adaptive mode takes over once disturbances are de-
tected. The stiffness Kp is determined by

Kp(t) = max(Kp(t0)− αp(t− t0), 0), (5.11)

where t0 is the start time point when the controller is switched to the
adaptive mode and the constant αp decides how fast the stiffness should
be decreased to zero. Once the stiffness is zero, the zero torque controller
only compensates the gravity.

5.2.2 Force Predictive Models

The force predictive model is shown in Fig. 5.11 (left). The output of the model
is compared with the force profile during the task execution. If they are differ-
ent, the adaptive strategy decreases the stiffness of the PID controllers. Other-
wise, it keeps the high stiffness.

Bi-directional Gated Recurrent Units (Bi-GRU), described in Schuster and Paliwal
(1997), are used to model the mapping from a velocity profile to a force profile.

118

Chapter 5. Movement Primitive Adaptation and Control

Bi-GRU has been proved to be useful for learning the mapping from language
to motion (see Plappert et al. (2018)). Other recurrent neural networks can be
used here to model this mapping. Bi-GRU takes the velocity profile defined in
the local coordinate as input and outputs a sequence of the force values. As
shown in Chapter. 4, a mixture density network can be used to encode multiple
modes in the distribution. Here, we again use a mixture density network con-
nected to the Bi-GRU for the case when the force distribution contains multiple
modes. To train this network, we minimize the negative-log-likelihood (NLL)
of the observed target force profile:

lNLL(ΘΘΘ) = −
N∑
i=1

log

(K∑
k=1

πk(vvv;ΘΘΘ)N
(
FFF ;µµµ(vvv;ΘΘΘ),ΣΣΣ(vvv;ΘΘΘ)

))
, (5.12)

where ΘΘΘ denotes the parameters of the whole network. µµµ and ΣΣΣ are the result
functions for both mean and variance. vvv and FFF are sequential velocity and
force profiles, which are collected by the sliding window with a fixed sequence
length L. The data number N is determined by both the sliding window size
and the length of the whole observed time series data.

In Fig. 5.11, the force and velocity profile are stored in a queue. The last L ve-
locities are taken as input of the predictive model, which outputs a Gaussian
mixture distribution of the force profile. Based on this distribution, the proba-
bility of the L steps force profile is calculated. The logarithm of this probability
is called score, and its integral is called abnormal score. The integral avoids the
reaction to short disturbances or noisy force sensor measurement.

Learning Multiple Force Predictive Models

It is not expected that the learned predictive model generalizes well to any
cases because it is difficult to collect enough data that covers all different sit-
uations. However, in reality, many contact-rich manipulations, including the
wiping task, face different situations, where one force predictive model is not
enough. In order to overcome this problem, we propose an approach to learn-
ing and creating a mixture of experts.

1. In the beginning, no predictive model exists. We let the robot execute the
task with a high stiffness controller. The velocity and force profiles are
collected to train the first model;

2. Once more than one models exist, we let the robot execute the task with
the control framework shown in Fig. 5.11;

119

Chapter 5. Movement Primitive Adaptation and Control

Figure 5.13: Top Left: Human interrupts the robot wiping task. Top Right: Re-
covery fails because one predictive model does not consider the
force profile during the recovery. Bottom: The diagrams are shown
for the force profile, scores and abnormal scores, and the adjusted
stiffness separately.

3. If the robot cannot execute the task as expected, we use current data to
train another predictive model. All predictive models work as a mixture
of experts. According to the sum rule, the probabilities of the current force
profile calculated based on all the predictive models are added together,
and its logarithm is the corresponding score.

By iterating between the second and the third steps, we build a mixture of ex-
perts, which takes all experienced situations into consideration.

5.2.3 Learning Compliant Wiping Task

For the wiping task as an example, the first predictive model is learned after
executing several periods of the wiping motion with a high stiff controller. In
the second step, the robot follows the control diagram shown in Fig. 5.11 to
execute the wiping motion. Since the first predictive model already learns the

120

Chapter 5. Movement Primitive Adaptation and Control

Figure 5.14: Two force predictive models are trained for a successful compliant
wiping task.

friction between the table and the wiping tool, the robot can predict the force
profile very well if the friction is the only external force source. Hence, the
robot executes the motion with high stiffness to guarantee high tracking ac-
curacy. Once additional external force is detected, the probability of the force
profile concerning the predicted force distribution decreases. According to the
adaptive strategy, the stiffness of all PID controllers decreases, and the robot is
in a compliant mode.

In Fig. 5.13, we show how the robot behaves with the first predictive model.
The curves denoted as ”Predcited force x”, ”Predicted force y” and ”Predicted force z”
are the mean of the distribution. The shadowed pattern indicates the ±3σ re-
gion of the distribution. At the beginning of the task, the observed force profile
is in the acceptable region. Hence, the controller uses a high stiffness for good
tracking accuracy. When encountering the human interruption, the observed
force profile is different from the predicted one, the stiffness decreases quickly
(bottom diagram in Fig. 5.13) to zero, and the robot is very compliant with only
gravity compensation. After perturbation, the robot, however, cannot recover
from the compliant mode, and the force profile is still abnormal because the
velocity and force profiles during the recovery are not in the training dataset of
the first predictive model.

121

Chapter 5. Movement Primitive Adaptation and Control

To solve this problem, we can learn a second predictive model according to the
third step in the previous process. The data for training the second model is
collected by observing the velocity and the force profiles during the failed re-
covery. In Fig. 5.13, this corresponds to the force curves after the human inter-
ruption. As shown in Fig. 5.14, with the combined output distributions given
by both models, the robot quickly recovers from failure because the force pro-
file is normal and a high stiff controller continues tracking the VMP generated
motion trajectory.

5.3 Conclusion

In this chapter, Coordinate Change Movement Primitive (CC-MP) is introduced.
Its basic idea is to create a leader-follower framework and learn the follower’s
MP in the leader’s coordinate frame. CC-MP has been evaluated in different
tasks such as wiping tasks, bimanual manipulation tasks.

In addition, a force predictive model based adaptive controller is introduced
to realize both compliant control and accurate tracking for the VMP generated
trajectory. The basic idea is to learn several force predictive models and com-
pare the force profile during task execution with the predicted one. The adap-
tive strategy decreases the stiffness of the PID controllers if both profiles are
different from each other. Otherwise, a high stiff controller guarantees a high
tracking accuracy.

122

Chapter 6. Conclusion and Future Works

6 Conclusion and Future Works

In this work, several new approaches are proposed to provide solutions to
movement primitive representation, generalization and adaptation. These meth-
ods endow a humanoid robot with adaptable movement primitives and can
generalize the learned movement primitives to different task parameters and
adapt the generated motion to different task requirements.

6.1 Scientific Contribution

The scientific contributions can be summarized as follows,

6.1.1 Movement Primitive Representation

In Chapter. 3, a new movement primitive representation called via-points move-
ment primitive (VMP) is developed in Zhou et al. (2019). VMPs inherit the ad-
vantages of both dynamic movement primitive (DMP) and probabilistic movement
primitive (ProMP), two popular approaches to represent motions in literature.
VMPs allow integration of via-points into the original learned trajectory dis-
tribution to meet task requirements. Compared to DMPs, VMPs are proba-
bilistic formulation and allow integration of intermediate via-points into the
demonstrated trajectory. Compared to ProMPs, VMPs can extropolate to the
via-points out of the range of demonstrations. Several robot applications show
that VMPs outperform DMPs and ProMPs in the case of changing task con-
straints.

6.1.2 Movement Primitive Generalization

In Chapter. 4, two approaches are introduced to handle multiple modes and
models that exist in the human demonstrations for the same and different task
parameters, which current state of the art methods cannot deal with. The first

123

Chapter 6. Conclusion and Future Works

approach is to use a mixture of experts. In order to avoid the local minima that
leads to the model collapse when using the Expectation Maximization (EM) al-
gorithm, a Leave-One-Out Expectation Maximization (LOO-EM) algorithm is pro-
posed in Zhou and Asfour (2017). However, this method is time-consuming for
a relatively large training dataset. The second approach uses a mixture density
network (MDN) to learn the mapping from the task parameter to the distribu-
tion of the movement primitive parameters. In order to avoid mode and model
collapses during training MDN on a limited number of demonstrations, the
entropy cost is introduced to achieve a more balanced association of demon-
strations to GMM mixture components. Since it is often easier to collect failed
examples by using an underfitted MDN model instead of additional human
demonstrations, a failure cost is used to reduce the occurrence of failures in fu-
ture executions. Compared to previous methods, the proposed method shows
better performance in different tasks. This work has been published in Zhou
et al. (2020).

6.1.3 Movement Primitive Adaptation and Control

In Chapter. 5, two different approaches are developed for trajectory adapta-
tion and force adaptation separately. The first approach is to create a leader-
follower framework for the task. The follower’s movement primitive is learned
in the leader’s coordinate frame. During the execution, the leader’s coordinate
changes, and the follower adapts its motion to the leader’s movement. Hence,
the method is called Coordinate Change Movement Primitive (CC-MP). By adding
a coupling term to the movement primitive formulation, the trajectory adap-
tation is used to also ensure a desired force of the interaction. The works for
CC-MP and its force adaptation have been published in Zhou et al. (2016a)
and Zhou et al. (2016b). With CC-MP, a vision-based robot wiping system is
created in Dometios et al. (2018). The resulting system adapts the learned wip-
ing pattern to a moving and curved wiping surface.

The second approach is introduced to realize a compliant robot control during
contact-rich manipulation tasks. A force predictive model is learned when the
robot executes the task with a high stiffness controller. Based on the predictive
model, an adaptive controller is created to adapt the stiffness. Once an abnor-
mal force profile is detected, the adaptive controller decreases the stiffness to
allow human-robot interactions or avoid damages of the robot or the environ-
ment. The approach is evaluated in the robot wiping task.

124

Chapter 6. Conclusion and Future Works

6.2 Future Works

6.2.1 Movement Primitive Representation

Local Via-points Planner

The via-points movement primitive (VMP) introduced in Chapter. 3 adapts to ar-
bitrary via-points. For many applications such as obstacle avoidance, VMP
provides an efficient solution without learning new movement primitives from
new demonstrations. However, this solution is based on where the via-points
are placed. In the future, a local via-points planner can be used to determine
where the via-points should be placed for a given task.

For different tasks, different local via-points planners should be developed. For
example, once an obstacle is found, the local planner should place several via-
points along the timeline to adjust the trajectory to avoid the obstacle. It is not
a trivial task to design such a planner. As an example shown in Fig. 3.11, it
is easy to decide where to place the first via-point, which has an offset away
from the obstacle. However, this via-point makes grasping of the target object
difficult because of the robot’s kinematic constraint. Hence, a new via-point
is required to improve the robot manipulability. As mentioned before, for the
task requirements which cannot be represented in a fixed dimensional space, an
implicit or explicit rule-based method is necessary. A local via-points planner
is designed based on a set of rules for a specific task.

Active Learning

The advantage of VMP over ProMP is that it extrapolates to the via-points out-
side of the demonstration region. The extrapolation capability is due to the
VMP structure, which is similar to DMP. The elementary trajectory of VMP
can be regarded as the local frame where the shape modulation is defined. Al-
most all the methods that solve the extrapolation in literature are based on local
frames.

However, even though VMP improves the extrapolation of the via-points adap-
tation, it might generate motions that are different from the demonstrations
when many via-points are required for some task constraints. In this case, it
does not make any sense to use one single VMP to accomplish the task. An
intelligent robot decides when to ask for additional demonstrations to accom-
plish the task efficiently.

125

Chapter 6. Conclusion and Future Works

6.2.2 Movement Primitive Generalization

Generating a Motion from a Distribution

In Section. 4.3, a mixture density network (MDN) is learned to map task param-
eters to a distribution of the MP parameters. As shown in the hit ball example
(see Section. 4.4.4), drawing multiple samples from the output distribution im-
proves the performance of the MP generalization.

However, multiple samples require multiple robot trials, which are costly, es-
pecially when the failed trials might result in the damage of the robot or its
surroundings. In order to solve this problem, in future work, a discriminator
can be traine to learn the success probability of task execution based on task pa-
rameters and their corresponding MP parameters. Instead of real robot trials,
the discriminator can find the one from multiple samples with the best chance
of successful task execution. Designing and training such a discriminator is,
however, not a trivial task for a complex task such as the hit ball task described
in Section. 4.4.4. A fully connected network as the discriminator was investi-
gated for the hit ball task, but it did not improve the performance, compared to
selecting the most probable MP parameter.

Reinforcement Learning and Supervised Learning

In Kober and Peters (2014), reinforcement learning (RL) algorithms are used to
find one MP parameter that accomplishes the task. Unlike learning from demon-
strations or supervised learning (SL), the RL agents explore the MP space con-
taining all possible MP parameters to increase the reward during the task exe-
cution. The basic idea is to calculate the gradient of the value function, namely
accumulated rewards along with the task execution, concerning the MP pa-
rameter. Gradient ascent methods are used to find its local maximum. The
difficulty is that the value function is sometimes not directly related to the MP
parameters. Thus, sampling methods are necessary to approximate the gradi-
ent.

Since the RL result maximizes the value function that directly indicates how
the task is executed, it is more task-oriented than the result given by learning
from demonstrations (supervised learning). On the other hand, for learning
from demonstrations, the model is trained based on the similarity between the
generated and the demonstrated motions. In theory, it does not guarantee the
successful task execution, but only succeeds if the assumption is correct that the

126

Chapter 6. Conclusion and Future Works

tasks with similar task parameters can be accomplished with similar motions. How-
ever, on the other side, the RL agent does not necessarily generate human-like
(more intuitive) motions unless it is explicitly required and this requirement is
formulated in the reward function.

Moreover, RL is more complicated to train than SL and requires more samples.
Instead of using RL from scratch, RL is used to improve the result of the SL. In
the future, a complete MP generalization system consists of RL and SL. RL is
used on the SL results to provide more task-oriented MP parameters. Moreover,
the RL result can be further used to improve SL to reduce the necessary samples
required by the RL agent.

6.2.3 Movement Primitive Adaptation and Control

Deciding the Leader or the Follower

In Section. 5.1, CC-MP is introduced for the trajectory adaptation. In the de-
scribed applications, the leader and the follower are manually determined. In
many applications, the leader and the follower also exchanges their roles. In fu-
ture work, the problem of how to determine the leader and the follower should
be addressed.

127

Chapter 6. Conclusion and Future Works

Appendix

A Proof: Dot Product Kernel for Fitting the
Polynomial

Lemma A.1. Consider a 5-th order polynomial with coefficients qqq and a linear regres-
sion model with parameterswww to fit the polynomial. The purpose is to learn a mapping
from qqq to www. If the Gaussian process regression with dot product kernels is used to
model this function, the function value can almost perfectly reproduce the polynomial.

Proof. In order to perfectly reproduce the polynomial, the result mapping ωωω(·)
should satisfy that

ΨΨΨωωω(qqq) = XTqqq, (A.1)

where

ΨΨΨ =

ψψψ(x0)

T

ψψψ(x1)
T

...
ψψψ(xT)T

 , and XT =

x50 x40 . . . x0 1

x51 x41 . . . x1 1
...

...
...

...
...

x5T x4T . . . xT 1

 . (A.2)

Consider the pseudo-inverse of the kernel matrix ΨΨΨ, we obtain that

www = ωωω(qqq) = (ΨΨΨTΨΨΨ)−1ΨΨΨTXTqqq = ΓTqqq. (A.3)

For n different coefficients and their corresponding polynomials, we have

Wn = QnΓ, (A.4)

where

Wn =

wwwT1
wwwT2

...
wwwTn

 , Qn =

qqqT1
qqqT2
...
qqqTn

 . (A.5)

129

Chapter 6. Conclusion and Future Works

Consider the pseudo-inverse of the matrix Qn, we replace the matrix Γ and get
the resultwww∗ for new coefficients qqq∗ such that

wwwT∗ = qqqT∗ (QT
nQn)−1QT

nWn. (A.6)

To prove the statement, we need to prove that GPR with DPK gives the same
result.

For DPK, we construct the kernel matrix:

K(Qn, Qn) =

qqqT1 qqq1 qqqT1 qqq2 . . . qqqT1 qqqn

qqqT2 qqq1 qqqT2 qqq2 . . . qqqT2 qqqn
...

...
qqqTnqqq1 qqqTnqqq2 . . . qqqTnqqqn

 = QnQ
T
n . (A.7)

Then we have
QT
nK(Qn, Qn) = QT

n (QnQ
T
n). (A.8)

By reformulating this equation with the associative rule, we get

(QT
nQn)−1QT

n = QT
nK(Qn, Qn)−1. (A.9)

The result of GPR is that

wwwT∗ = K(qqq∗, Qn)K(Qn, Qn)−1Wn, (A.10)

where
K(qqq∗, Qn) =

(
qqqT∗ qqq1 qqqT∗ qqq2 ... qqqT∗ qqqn

)
= qqqT∗Q

T
n . (A.11)

We multiply both sides of Eq. A.9 with qqqT∗ and Wn:

qqqT∗ (QT
nQn)−1QT

nWn = qqqT∗Q
T
nK(Qn, Qn)−1Wn = K(qqq∗, Qn)K(Qn, Qn)−1Wn.

(A.12)
GPR result coincides with Eq. A.6.

130

Chapter 6. Conclusion and Future Works

131

List of Figures

List of Figures

1.1 Motion Generation System . 2
1.2 Three Main Parts of the Thesis . 4

2.1 Frog Experiment . 10
2.2 Biologically-Inspired DMP . 15
2.3 Obstacle Avoidance with ProMP 22
2.4 Dynamical System for Drawing Letter ”S” 24
2.5 Dynamic Movement Primitive and Dynamical System 25
2.6 One-step and Two-steps Methods for Obstacle Avoidance 32
2.7 One-step and Two-steps Methods for Fitting Polynomials 33
2.8 Task-Parameterized Gaussian Mixture Model 35
2.9 Task-Parameterized Gaussian Mixture Model for Obstacle Avoid-

ance . 36
2.10 Probabilistic Movement Primitive based on Gaussian Mixture

Model . 38
2.11 Control Framework for Movement Primitive 45

3.1 Overfitting with ProMP . 55
3.2 Comparison between virtual and real trajectory 57
3.3 Drawing Letters with VMP . 58
3.4 Comparison between Elementary Trajectories 63
3.5 Control Framework for VMP . 68
3.6 Comparison between VMP and ProMP for Goal Adaptation . . . 69
3.7 Comparison between VMP and ProMP 70
3.8 Learning Framework of VMP . 72
3.9 Return Property of VMP . 74
3.10 Orientation VMP for Obstacle Avoidance 75
3.11 Task Space VMP for Obstacle Avoidance 76
3.12 Online Via-Points Integration . 77

4.1 Mode and Model . 80
4.2 Comparison between EM and LOO-EM 85

133

List of Figures

4.3 Mixture Density Network . 88
4.4 Obstacle Avoidance with MDN . 90
4.5 Polynomial Fitting Experiment for MDN 96
4.6 Random Obstacle Avoidance with MDN 96
4.7 Docking Problem with MDN . 98
4.8 Multiple Modes in the Hit Ball Experiment 99
4.9 Hit Ball Results . 100
4.10 Multiple Modes in Throw Ball Experiment 102

5.1 Docking with CC-MP . 107
5.2 Learning Wiping with CC-MP . 108
5.3 Changing the Wiping Pattern with CC-MP 111
5.4 CC-MP for the Moving Wiping Surface 111
5.5 CC-MP for a Curved Surface . 112
5.6 Visual based CC-MP Wiping System 112
5.7 Wiping a Moving Whiteboard . 113
5.8 Wiping a moving human back . 113
5.9 Placing the Board . 115
5.10 Regrasping the Board . 115
5.11 Force based Adaptive Control Diagram 116
5.12 Force Adaptive Control for a Inclined Surface 117
5.13 Recovery Failure with One Force Predictive Model 120
5.14 Compliant Wiping with Two Force Predictive Models. 121

134

Bibliography

Bibliography

Asfour, T., Kaul, L., Wächter, M., Ottenhaus, S., Weiner, P., Rader, S., Grimm, R.,
Zhou, Y., Grotz, M., Paus, F., Shingarey, D., and Haubert, H. (2018). ARMAR-
6: A collaborative humanoid robot for industrial environments. In IEEE/RAS
International Conference on Humanoid Robots (Humanoids), pages 447–454. Cited
on pages 73 and 99.

Asfour, T., Regenstein, K., Azad, P., Schröder, J., Vahrenkamp, N., and Dill-
mann, R. (2006). ARMAR-III: An integrated humanoid platform for sensory-
motor control. In IEEE/RAS International Conference on Humanoid Robots (Hu-
manoids), pages 169–175. Cited on page 112.

Atkeson, C. G., Moore, A. W., and Schaal, S. (1997). Locally weighted learning.
Artif. Intell. Rev., 11(1-5):11–73. Cited on pages 16 and 28.

Ben Amor, H., Neumann, G., Kamthe, S., Kroemer, O., and Peters, J. (2014).
Interaction primitives for human-robot cooperation tasks. In 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 2831–2837. Cited
on page 40.

Bennequin, D., Fuchs, R., Berthoz, A., and Flash, T. (2009). Movement timing
and invariance arise from several geometries. In PLoS Computational Biology.
Cited on page 11.

Bishop, C. M. (1994). Mixture density networks. Technical report. Cited on pages
85 and 87.

Bizzi, E., Accornero, N., Chapple, W., and Hogan, N. (1984). Posture con-
trol and trajectory formation during arm movement. Journal of Neuroscience,
4(11):2738–2744. Cited on pages 25, 47, and 52.

Bizzi, E., Mussa-Ivaldi, F., and Giszter, S. (1991). Computations underlying the
execution of movement: a biological perspective. Science, 253(5017):287–291.
Cited on pages 9, 10, 18, and 48.

135

Bibliography

Borràs, J., Heudorfer, R., Rader, S., Kaiser, P., and Asfour, T. (2018). The KIT
swiss knife gripper for disassembly tasks: A multi-functional gripper for bi-
manual manipulation with a single arm. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4590–4597. Cited on page 73.

Calinon, S. (2016). A tutorial on task-parameterized movement learning and
retrieval. Intelligent Service Robotics, 9(1):1–29. Cited on pages 35, 36, and 97.

Calinon, S., Alizadeh, T., and Caldwell, D. G. (2013). On improving the extrapo-
lation capability of task-parameterized movement models. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 610–616. Cited
on pages 14, 34, 36, 49, 97, and 106.

Calinon, S., Guenter, F., and Billard, A. (2007). On learning, representing, and
generalizing a task in a humanoid robot. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 37(2):286–298. Cited on page 13.

Da Silva, B. C., Konidaris, G., and Barto, A. G. (2012). Learning parameterized
skills. In Proceedings of the 29th International Coference on International Confer-
ence on Machine Learning, ICML’12, pages 1443–1450, USA. Omnipress. Cited
on pages 31, 82, and 86.

Deniša, M., Gams, A., Ude, A., and Petrič, T. (2016). Learning compliant
movement primitives through demonstration and statistical generalization.
IEEE/ASME Transactions on Mechatronics, 21(5):2581–2594. Cited on page 47.

Dometios, A. C., Zhou, Y., Papageorgiou, X. S., Tzafestas, C. S., and Asfour,
T. (2018). Vision-based online adaptation of motion primitives to dynamic
surfaces: Application to an interactive robotic wiping task. IEEE Robotics and
Automation Letters (RA-L), 3(3):1410–1417. Cited on pages 106, 110, 112, and 124.

Dragan, A. D., Muelling, K., Bagnell, J., and Srinivasa, S. S. (2015). Movement
primitives via optimization. In IEEE International Conference on Robotics and
Automation (ICRA), pages 2339–2346. IEEE. Cited on pages 18, 53, 56, and 62.

Ewerton, M., Neumann, G., Lioutikov, R., Amor, H. B., Peters, J., and Maeda,
G. (2015). Learning multiple collaborative tasks with a mixture of interaction
primitives. In IEEE International Conference on Robotics and Automation (ICRA),
pages 1535–1542. Cited on pages 22, 38, 49, and 95.

Flash, T. and Hogan, N. (1985). The coordination of arm movements: an ex-
perimentally confirmed mathematical model. The Journal of neuroscience : the
official journal of the Society for Neuroscience, 5 7:1688–703. Cited on page 64.

136

Bibliography

Forte, D., Gams, A., Morimoto, J., and Ude, A. (2012). On-line motion synthesis
and adaptation using a trajectory database. Robotics and Autonomous Systems,
60:1327–1339. Cited on pages 30, 32, and 86.

Frühwirth-Schnatter, S. (2006). Finite mixture and markov switching models.
Cited on page 92.

Gams, A., Do, M., Ude, A., Asfour, T., and Dillmann, R. (2010). On-line periodic
movement and force-profile learning for adaptation to new surfaces. In 2010
10th IEEE-RAS International Conference on Humanoid Robots, pages 560–565.
Cited on pages 17, 113, and 114.

Gams, A., Nemec, B., Ijspeert, A. J., and Ude, A. (2014). Coupling move-
ment primitives: Interaction with the environment and bimanual tasks. IEEE
Transactions on Robotics, 30(4):816–830. Cited on page 44.

Gams, A., Petric, T., Do, M., Nemec, B., Morimoto, J., Asfour, T., and Ude,
A. (2016). Adaptation and coaching of periodic motion primitives through
physical and visual interaction. Robotics and Autonomous Systems, 75, Part
B:340–351. Cited on pages 17 and 43.

Gomi, H. and Kawato, M. (1997). Human arm stiffness and equilibrium-point
trajectory during multi-joint movement. Biological Cybernetics, 76:163–171.
Cited on page 53.

Gribovskaya, E., Khansari-Zadeh, S., and Billard, A. (2011). Learning non-
linear multivariate dynamics of motion in robotic manipulators. The Inter-
national Journal of Robotics Research, 30(1):80–117. Cited on pages 23, 48, 51,
and 53.

Hjorth, L. U. and Nabney, I. T. (1999). Regularisation of mixture density net-
works. In 1999 Ninth International Conference on Artificial Neural Networks
ICANN 99. (Conf. Publ. No. 470), volume 2, pages 521–526 vol.2. Cited on
page 90.

Hoffmann, H., Pastor, P., Park, D., and Schaal, S. (2009). Biologically-inspired
dynamical systems for movement generation: Automatic real-time goal
adaptation and obstacle avoidance. In 2009 IEEE International Conference on
Robotics and Automation, pages 2587–2592. Cited on pages 15, 18, and 40.

Hogans, N. (1984). An organizing principle for a class of voluntary movements.
Journal of neuroscience, 4:2745–54. Cited on page 64.

137

Bibliography

Huber, L., Billard, A., and Slotine, J. (2019). Avoidance of convex and concave
obstacles with convergence ensured through contraction. IEEE Robotics and
Automation Letters, 4(2):1462–1469. Cited on page 41.

Ijspeert, A., Nakanishi, J., and Schaal, S. (2003). Learning attractor landscapes
for learning motor primitives. In Advances in Neural Information Processing
Systems 15, pages 1547–1554. Cited on pages 15, 16, and 17.

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Peter, P., and Schaal, S. (2013). Dy-
namical movement primitives: Learning attractor models for motor behav-
iors. Neural Comput., 25(2):328–373. Cited on pages 18, 22, 48, 109, and 110.

Jacobs, R., Jordan, M., Nowlan, S., and Hinton, G. (1991). Adaptive mixture of
local expert. Neural Computation, 3:78–88. Cited on page 82.

Khansari-Zadeh, S. M. and Billard, A. (2011). Learning stable nonlinear dynam-
ical systems with gaussian mixture models. IEEE Transactions on Robotics,
27(5):943–957. Cited on page 23.

Khatib, O. (1990). Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots, pages 396–404. Springer New York, New York, NY. Cited on page 75.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization.
International Conference on Learning Representations. Cited on page 89.

Kober, J. and Peters, J. (2014). Reinforcement Learning in Robotics: A Survey, pages
9–67. Springer International Publishing, Cham. Cited on page 126.

Koert, D., Pajarinen, J., Schotschneider, A., Trick, S., Rothkopf, C., and Peters, J.
(2019). Learning intention aware online adaptation of movement primitives.
IEEE Robotics and Automation Letters, 4(4):3719–3726. Cited on page 42.

Kramberger, A., Shahriari, E., Gams, A., Nemec, B., Ude, A., and Haddadin,
S. (2018). Passivity based iterative learning of admittance-coupled dynamic
movement primitives for interaction with changing environments. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 6023–6028. Cited on pages 45 and 46.

Kronander, K. and Billard, A. (2016). Passive interaction control with dynamical
systems. IEEE Robotics and Automation Letters, 1(1):106–113. Cited on pages 45
and 46.

138

Bibliography

Lacquaniti, F., Terzuolo, C., and Viviani, P. (1983). The law relating kinematic
and figural aspects of drawing movments. Acta psychologica, 54:115–30. Cited
on page 11.

Lavalle, S. M., Kuffner, J. J., and Jr. (2000). Rapidly-exploring random trees:
Progress and prospects. In Algorithmic and Computational Robotics: New Direc-
tions, pages 293–308. Cited on page 75.

Maeda, G., Ewerton, M., Lioutikov, R., Ben Amor, H., Peters, J., and Neu-
mann, G. (2014). Learning interaction for collaborative tasks with proba-
bilistic movement primitives. In 2014 IEEE-RAS International Conference on
Humanoid Robots, pages 527–534. Cited on page 36.

Makansi, O., Ilg, E., Çiçek, Ö., and Brox, T. (2019). Overcoming limitations
of mixture density networks: A sampling and fitting framework for multi-
modal future prediction. In IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR). Cited on page 91.

Mandery, C., Terlemez, O., Do, M., Vahrenkamp, N., and Asfour, T. (2015).
The KIT whole-body human motion database. In International Conference on
Advanced Robotics (ICAR), pages 329–336. Cited on page 109.

Maoz, U., Berthoz, A., and Flash, T. (2009). Complex unconstrained three-
dimensional hand movement and constant equi-affine speed. Journal of neu-
rophysiology, 101:1002–15. Cited on page 11.

Matsubara, T., Hyon, S.-H., and Morimoto, J. (2010). Learning stylistic dynamic
movement primitives from multiple demonstrations. volume 24, pages 1277–
1283. Cited on pages 31 and 56.

Mclachlan, G. and Basford, K. (1988). Mixture Models: Inference and Applications
to Clustering, volume 38. Cited on page 88.

Meier, F. and Schaal, S. (2016). A probabilistic representation for dynamic
movement primitives. CoRR. Cited on page 56.

Meirovitch, Y., Bennequin, D., and Flash, T. (2016). Geometrical invariance
and smoothness maximization for task-space movement generation. IEEE
Transactions on Robotics, 32(4):837–853. Cited on page 12.

Mussa-Ivaldi, F. and Bizzi, E. (2001). Motor learning through the combination
of primitives. Philosophical transactions of the Royal Society of London. Series B,
Biological sciences, 355:1755–69. Cited on pages 9 and 10.

139

Bibliography

Nguyen-Tuong, D., Seeger, M., and Peters, J. (2009). Local gaussian process re-
gression for real time online model learning and control. In Advances in neural
information processing systems 21, pages 1193–1200, Red Hook, NY, USA. Max-
Planck-Gesellschaft, Curran. Cited on page 31.

Pahic, R., Gams, A., Ude, A., and Morimoto, J. (2018). Deep encoder-decoder
networks for mapping raw images to dynamic movement primitives. pages
1–6. Cited on page 31.

Paraschos, A., Daniel, C., Peters, J., and Neumann, G. (2018). Using probabilis-
tic movement primitives in robotics. Autonomous Robots, 42(3):529–551. Cited
on pages 19, 20, and 21.

Paraschos, A., Daniel, C., Peters, J. R., and Neumann, G. (2013). Probabilistic
movement primitives. In Advances in Neural Information Processing Systems
26, pages 2616–2624. Curran Associates, Inc. Cited on pages 19, 21, 48, and 53.

Park, D., Hoffmann, H., Pastor, P., and Schaal, S. (2008). Movement repro-
duction and obstacle avoidance with dynamic movement primitives and po-
tential fields. In Humanoids 2008 - 8th IEEE-RAS International Conference on
Humanoid Robots, pages 91–98. Cited on pages 41 and 44.

Pastor, P., Hoffmann, H., Asfour, T., and Schaal, S. (2009). Learning and gen-
eralization of motor skills by learning from demonstration. In 2009 IEEE
International Conference on Robotics and Automation, pages 763–768. Cited on
page 40.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Pas-
sos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011).
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830. Cited on page 33.

Pervez, A. and Lee, D. (2018). Learning task-parameterized dynamic move-
ment primitives using mixture of gmms. Intelligent Service Robotics, 11(1):61–
78. Cited on page 31.

Pham, Q. and Nakamura, Y. (2015). A new trajectory deformation algorithm
based on affine transformations. IEEE Transactions on Robotics, 31(4):1054–
1063. Cited on pages 10, 11, and 12.

140

Bibliography

Plappert, M., Mandery, C., and Asfour, T. (2018). Learning a bidirectional map-
ping between human whole-body motion and natural language using deep
recurrent neural networks. Robotics and Autonomous Systems, 109:13–26. Cited
on page 119.

Pollick, F. and Sapiro, G. (1997). Constant affine velocity predicts the 13 power
law of planar motion perception and generation. Vision research, 37:347–53.
Cited on page 11.

Prada, M., Remazeilles, A., Koene, A., and Endo, S. (2013). Dynamic movement
primitives for human-robot interaction: Comparison with human behavioral
observation. In 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1168–1175. Cited on page 40.

Rueckert, E. and D’Avella, A. (2013). Learned parametrized dynamic move-
ment primitives with shared synergies for controlling robotic and muscu-
loskeletal systems. Frontiers in computational neuroscience, 7:138. Cited on
page 71.

Schaal, S. (2003). Dynamic movement primitives - a framework for motor con-
trol in humans and humanoid robots. In The International Symposium on Adap-
tive Motion of Animals and Machines. Cited on pages 15, 16, 17, and 48.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673–2681. Cited on page 118.

Stulp, F., Raiola, G., Hoarau, A., Ivaldi, S., and Sigaud, O. (2013). Learning
compact parameterized skills with a single regression. In 2013 13th IEEE-
RAS International Conference on Humanoid Robots (Humanoids), pages 417–422.
Cited on pages 26, 31, 32, 34, and 48.

Stulp, F., Theodorou, E., Kalakrishnan, M., Pastor, P., Righetti, L., and Schaal,
S. (2011). Learning motion primitive goals for robust manipulation. In 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 325–
331. Cited on page 71.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-
based control. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5026–5033. IEEE. Cited on page 99.

Ude, A., Gams, A., Asfour, T., and Morimoto, J. (2010). Task-specific general-
ization of discrete and periodic dynamic movement primitives. IEEE Trans-
actions on Robotics, 26(5):800–815. Cited on pages 27 and 86.

141

Bibliography

Villani, L. and De Schutter, J. (2008). Force Control, pages 161–185. Springer
Berlin Heidelberg, Berlin, Heidelberg. Cited on page 43.

Zhou, Y. and Asfour, T. (2017). Task-oriented generalization of dynamic move-
ment primitive. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3202–3209. Cited on pages 28, 80, 95, and 124.

Zhou, Y., Do, M., and Asfour, T. (2016a). Coordinate change dynamic move-
ment primitives - a leader-follower approach. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 5481–5488. Cited on
pages 106 and 124.

Zhou, Y., Do, M., and Asfour, T. (2016b). Learning and force adaptation for
interactive actions. In IEEE/RAS International Conference on Humanoid Robots
(Humanoids), pages 1129–1134. Cited on pages 106, 113, 114, and 124.

Zhou, Y., Gao, J., and Asfour, T. (2019). Learning via-point movement primi-
tives with inter- and extrapolation capabilities. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). Cited on pages 51 and 123.

Zhou, Y., Gao, J., and Asfour, T. (2020). Movement primitive learning and gen-
eralization using mixture density networks. IEEE Robotics & Automation Mag-
azine (to appear), pages 0–0. Cited on pages 80 and 124.

Zlatintsi, A., Dometios, A., Kardaris, N., Rodomagoulakis, P. K. I., Papageor-
giou, X., Maragos, P., Tzafestas, C., Varholomeos, P., Hauer, K., Werner, C.,
Annicchiarico, R., Lombardi, M. G., Adriano, F., Asfour, T., Sabatini, A. M.,
Laschi, C., Cianchetti, M., Guler, R. A., Kokkinos, I., Klein, B., and Lopez, R.
(2020). I-support: a robotic platform of an assistive bathing robot for the el-
derly population. Robotics and Autonomous Systems, pages 0–0. Cited on pages
105 and 108.

142

	Introduction
	Problem Statement
	Learning from Demonstration
	Contributions
	Structure of the Thesis

	Related Work
	Motion Representation
	Trajectory Optimization based on Human Motion Rules
	Generative Model of Trajectory Points
	Dynamic Movement Primitives
	Probabilistic Movement Primitives
	Dynamical System

	Motion Generalization
	Learning Direct Mappings
	Learning Generative Models

	Motion Adaptation and Control
	Trajectory Adaptation
	Force Adaptation
	Movement Primitive Control and Compliance Adaptation

	Conclusion

	Movement Primitive Representation
	Adaptation Capability of Existing Movement Primitives
	Via-Points Movement Primitive (VMP)
	Basic Formulation
	Elementary Trajectory
	Via-Points Modulation
	Orientation VMP
	Task Space VMP
	Comparison of VMPs and ProMPs

	Robot Applications
	Robot Learning Framework
	Return Property
	Obstacle Avoidance
	Online Via-Points Integration

	Conclusion

	Movement Primitive Generalization
	Multiple Modes and Models
	Mode and Model Collapse

	Mixture of Experts for Movement Primitve Generalization
	Training Mixture of Experts

	Mixture Density Networks for Movement Primitive Generalization
	Extended Via-points Movement Primitive
	Mixture Density Network (MDN)
	MDN with Entropy Costs
	MDN with Failure Costs
	Generating Motion with MDN

	Evaluation
	Approximation of Polynomials
	Random Obstacles Avoidance
	Docking Problem
	Hit Ball Experiment in Simulation with ARMAR-6
	Throw Ball Experiment with ARMAR-6

	Conclusion

	Movement Primitive Adaptation and Control
	Coordinate Change Movement Primitive (CC-MP)
	Learning Adaptive Robot Wiping
	Bimanual Manipulation with CC-MP

	Compliance Adaptation in Contact-Rich Manipulation
	Adaptive Force Control
	Force Predictive Models
	Learning Compliant Wiping Task

	Conclusion

	Conclusion and Future Works
	Scientific Contribution
	Movement Primitive Representation
	Movement Primitive Generalization
	Movement Primitive Adaptation and Control

	Future Works
	Movement Primitive Representation
	Movement Primitive Generalization
	Movement Primitive Adaptation and Control

	Appendix
	Proof: Dot Product Kernel for Fitting the Polynomial

