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Systems with conversational interfaces are rather popular nowadays. However, their
full potential is not yet exploited. For the time being, users are restricted to calling pre-

defined functions. Soon, users will expect to customize systems to their needs and create
own functions using nothing but spoken instructions. Thus, future systems must under-

stand how laypersons teach new functionality to intelligent systems. The understanding

of natural language teaching sequences is a first step towards comprehensive end-user
programming in natural language.

We propose to analyze the semantics of spoken teaching sequences with a hierar-

chical classification approach. First, we classify whether an utterance constitutes an
effort to teach a new function or not. Afterwards, a second classifier locates the dis-

tinct semantic parts of teaching efforts: declaration of a new function, specification of

intermediate steps, and superfluous information. For both tasks we implement a broad
range of machine learning techniques: classical approaches, such as Näıve Bayes, and

neural network configurations of various types and architectures, such as bidirectional

LSTMs. Additionally, we introduce two heuristic-based adaptations that are tailored to
the task of understanding teaching sequences. As data basis we use 3168 descriptions

gathered in a user study. For the first task convolutional neural networks obtain the best
results (accuracy: 96.6%); bidirectional LSTMs excel in the second (accuracy: 98.8%).

The adaptations improve the first-level classification considerably (plus 2.2 percentage

points).

Keywords: Programming in Natural Language; Natural Language Understanding; End-
User Programming; Conversational Interfaces; Spoken Language Understanding; Natural
Language Processing; Computational Linguistics; Naturalistic Programming; Machine
Learning; Neural Networks; Intelligent Systems; Artificial Intelligence.

1. Introduction

Intelligent systems with conversational interfaces became rather smart lately. One

can literally communicate with virtual assistants such as Apple’s Siri or Google

Assistant and easily arrange meetings or check for new messages. Other voice-
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controlled systems, such as humanoid robots or home automation systems, are on

the rise. However, such systems still suffer from a limited range of functions. For

the time being, users can access built-in functionality only; new features are added

by developers solely. To eradicate this limitation, future systems must enable users

to customize systems themselves, preferably using nothing but spoken instructions

(because it seems most natural to enhance conversational interfaces by means of

conversation). Understanding how laypersons teach new functionality will be a big

step towards comprehensive end-user programming.

As for today, this task is not well studied. Therefore, we carried out a user study

to analyze the semantics of teaching sequences. The participants were supposed to

teach a humanoid robot in four different scenarios. We gathered 3168 descriptions

from 870 participants.

Based on this dataset and the findings from the study, we develop a hierarchical

classification approach. We observed that about a third of the descriptions are rather

sequences of instructions than teaching efforts. Thus, the first classification task is to

determine, whether a description constitutes an explicitly verbalized teaching intent,

such as “we gonna learn how to [...]” or “to [do A] you have to [...]”. All teaching

efforts are passed to the second-level classifier, that analyzes the semantic structure.

We found that teaching efforts are usually composed of three distinct semantic parts.

The first is a verbalization of the intent to teach a new function, e.g. “preparing

a cup of coffee means [...]”. The second includes all actions to be performed, i.e.

intermediate steps, to learn the function, e.g. “[...] put a coffee mug under the

dispenser and then press the red button on the coffee machine [...]”. Moreover, many

descriptions contain superfluous phrases (in the context of teaching sequences),

such as greetings or remarks, e.g. “Hello” or “coffee is a beverage that people like

to drink”. For the first classification task we implemented five classical machine

learning techniques and three different types of neural networks: ANNs, CNNs,

and RNNs. We tested various architectures of neural networks (e.g. LSTMs), added

further layers (e.g. GMax), and systematically altered the hyper-parameters. For the

second task we narrowed down to neural networks. Additionally, we implemented

heuristics to improve the performance of our approach; they are tailored to the task

but dataset-agnostic. The work presented here is part of the project PARSE [1],

in which we study the opportunities of end-user programming in (spoken) natural

language.

The remainder is structured as follows. First, we provide a task definition in

Section 2 before we introduce the project PARSE in Section 3. Afterwards we detail

the user study and the resulting dataset in Section 4. In Section 5 we compare the

performance of the different machine learning approaches (and configurations) for

the hierarchical classification task; we also present our adaptations there. Then,

we discuss related work from the field of programming with natural language in

Section 6. Finally, we conclude our work in Section 7 and discuss future work.

This article is an extended version of the paper published in the proceedings of

the 2020 IEEE 14th International Conference on Semantic Computing (ICSC) [2].
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2. Task Definition

The objective of our approach is to understand how laypersons teach new func-

tions to intelligent systems. From a preliminary study we learned that utterances

containing teaching sequences are usually composed of three semantic parts:

• Declaration: a declaration comprises an explicitly stated teaching intent, a

name for the skill that is to be learned, and potentially parameters. Exam-

ple: “[In order to]intent [set the table]name [for two]parameter”.

• Specification: a specification is the description of intermediate steps to re-

alize the new functionality. Example: “[go to the cupboard]action1 [open

it]action2 [and take out two plates]action3”.

• Miscellaneous: Any other types of statements that are irrelevant to under-

stand the teaching effort. These include (but are not limited to) greetings,

teaching of common sense knowledge or the environment, and observations.

Example: “setting the table is important”.

The individual parts may appear anywhere in the utterances. Furthermore,

declarative parts might be split up or repeated (often with different wordings). The

specification of intermediate steps is of variable length and non-contiguous in some

cases. But most importantly, we observed that humans often struggle to express a

teaching intent. Thus, many descriptions we examined can hardly be interpreted as

a teaching effort; they instead merely state a sequence of actions.

Based on these observations, we define a two-level hierarchical classification task

consisting of (see also Figure 1):

(1) First level (binary): classify whether an utterance contains a teaching intent

and can thus be interpreted as an effort to teach a new function or not.

Labels: Teaching and Non-Teaching, attached to entire descriptions.

(2) Second level (ternary): classify the semantic parts of a teaching sequence

as defined above (only for utterances with a teaching intent). Labels: Dec-

laration, Specification, and Miscellaneous, attached to each word in the

description.

An alternative approach we considered was to drop the first classification level.

In this case the absence of declaration labels would have indicated a missing teaching

intent. However, since a single word in an utterance is misclassified easily, this would

have produced many false positives. Thus, we expect a better overall classification

performance with the hierarchical approach. Moreover, others argued in favor of

hierarchical classification for similar tasks, e.g. Cohen et al. [3].

For both classification tasks we use machine learning approaches. Since the first

classification task is a sequence-to-single-label task, classical machine learning ap-

proaches and neural networks are suitable. The second task is a typical sequence-to-

sequence task. Thus, we focus on neural networks with an LSTM-like architecture,

which have proven appropriate in tasks of that type.
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Hey in order to prepare coffee you
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Fig. 1. Schematic overview of the two-leveled hierarchical classification task.

3. The project PARSE

The objective of the project PARSE (Programming ARchitecture for Spoken Ex-

planations) [1] is to enable layperson to program intelligent systems using nothing

but spoken natural language. To synthesize source code from spoken explanations,

PARSE needs to interpret natural language. Thus, PARSE is a system for spoken

language understanding (SLU), in the first place. Unlike most approaches, PARSE

employs an agent-based architecture instead of a natural language processing (NLP)

pipeline.

Agents analyze the natural language input concurrently and store their results

in a shared (graph-based) knowledge representation. They perform tasks such as

coreference analysis, control structure detection [4, 5], context analysis [6] or topic

modeling [7]. Due to the parallel execution, agents may benefit from (intermediate)

results of the other agents. For instance, the coreference agent resolves some refer-

ences. Then the context agent use these to construct an initial model. The context

model enables the coreference agent to resolve more references and so on. Agents

can implement either probabilistic, knowledge- or rule-based approaches, depend-

ing on the task at hand. PARSE ’s architecture is depicted in Figure 2. Besides the

agent-based language understanding component, PARSE makes use of pre- and a

post-processing pipelines. The first performs common NLP tasks and creates an ini-
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SLU

Agent BAgent A Agent C

Pre

P1 Pn...

Post

Pm Pk...

Domain Ontologies

Fig. 2. The general architecture of PARSE .

tial knowledge graph. Since spoken language entails disfluencies and ungrammatical

wording, PARSE ’s pre-processing has to be error-tolerant. For this reason PARSE

uses robust NLP techniques, such as shallow parsing.

To represent target systems, i.e. APIs, and system environments, PARSE makes

use of ontologies. This approach makes PARSE (mostly) domain agnostic; systems

and environments can be replaced with ease (without adjustments to other compo-

nents, such as agents and pipelines). Actual source code is synthesized as follows.

Elements of the enriched graph are mapped onto ontology elements, which gener-

ates pseudo code fragments. Afterwards, the graph is transformed into an AST.

Based on this AST, PARSE is able to synthesize source code for most common

programming languages, including Java, Python, and C. However, for the time be-

ing, PARSE generates scripts for one-time execution only. The approach presented

in this article is a first step towards comprehensive end-user programming in natu-

ral language. Proceeding from analyzing teaching sequences, we aim to synthesize

methods from spoken utterances.

4. Dataset

The dataset we use to train, validate, and test the classifiers originates from a pre-

liminary study. In this study, we examined how laypersons teach intelligent systems

new functions by means of natural language instructions; we analyzed the language

and structure used by subjects when describing new functionality. More precisely,

we investigated, whether laypersons always clearly state that they wish to add

new functionality and if so, whether the wish for extension (and the name of the

new function) can be clearly separated from the actions that are to be performed.

Furthermore, we studied the wording, e.g. the use of particular phrases to declare

certain intentions and the presence of non-descriptive or meaningless statements.

We used the online micro-tasking platform Prolifica to collect the data. Subjects

aProlific: https://www.prolific.co/

https://www.prolific.co/
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Fig. 3. The example scenario from the study including solutions.

were supposed to teach a humanoid robot new skills in four different scenarios:

(1) greeting someone (greet)

(2) preparing coffee (coffee)

(3) serving drinks (drinks)

(4) setting a table for two (table)

All of them take place in a kitchen setting but involve different objects and actions.

For each scenario, we provided the subjects with a short name (of the function to be

taught), a list of possible intermediate steps, and pictures depicting the setting. To

familiarize the subjects with the task, we designed a short introduction including an

exemplary scenario (starting the dishwasher). As shown in Figure 3 the exemplary

scenario includes potential, valid solutions and emphasizes the components: a name

for the new function (in blue), the explicit expression of the wish to teach something

(in red) and intermediate steps (in green).

870 subjects participated in the study. We gathered 3168 descriptions, i.e. teach-

ing sequencesb. Table 1 depicts six exemplary descriptions. Besides the descriptions,

we also gathered some personal information about the participants. First of all,

women and men participated almost equally (49% females and 51% males). Most of

bNote that we have gathered textual submission for the sake of simplicity but encouraged the
subjects to respond spontaneously.
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Table 1. Six exemplary descriptions taken from different scenarios.

ID scen. description

302 1 Look directly at the person. Wave your hand. Say ’hello’.

1000 2 You have to place the cup under the dispenser and press the red

button to make coffee.

1346 2 Making coffee means you have to press the red button, put a cup

underneath the hole and then pouring the coffee that comes out

into your cup

2180 3 To ring a beverage, open the fridge and select one of te beverages

inside, pour it into one of the glasses on the kitchen counter

and hand the glass over to the person.

2511 4 collect cutlery from cupboard, bring them to the table and place

down neatly

2577 4 To set the table for two, Go to the cupboard and take two of

each; plates, glasses, knives, and forks. Take them to the kitchen

table and set two individual places.

Table 2. The number of descriptions, words used in total, and uniquely used words per scenario

and in the entire dataset.

descriptions words (total) words (unique)

scenario 1 (greet) 795 18205 566

scenario 2 (coffee) 794 26005 625

scenario 3 (drinks) 794 33001 693

scenario 4 (table) 785 31797 685

dataset 3168 109008 1469

them are native English speakers (60%). The majority of the participants are UK

(31%) or US citizens (15%); the remainder is from European countries mainly. 70%

have no programming experience at all. The age of the participants (at the time of

participation) ranges from 18 to 76; the majority was 30 or younger (59%).

The 3168 teaching sequences we gathered in the preliminary study contain more

than 109,000 words in sum. The participants used the most words to describe the

third scenario (33001) and the least for the first (18205). In the mean, the subjects

used nearly 71 unique words to shape their instructions (min: 2, max: 227). The

dataset contains 1469 unique words altogether and about 642 unique words per

scenario. This suggests, that there is not much overlap between the scenarios, which

indicates a varying diction. Table 2 summarizes these dataset statistics.

The descriptions are of varying quality. A notable share contains syntactical

flaws, e.g. typos, and grammar mistakes (see Table 1 for examples). For instance,

description 2180 contains typos (“ring some beverage [...] te beverages inside”).



8 Sebastian Weigelt, Vanessa Steurer, Tobias Hey, Walter F. Tichy

They also vary in terms of descriptiveness and style; the latter ranges from full

sentences to notes. Most of the participants slipped into the role of a teacher; some

subjects however shifted their perspective to a naive end-user. Only a few used a

rather technical language, as from a developer’s perspective. The descriptions show

the following general structure in the most cases:

• a brief greeting (e.g. “Hey robot [...]” or “Hi Armar [...]”),

• the declaration of the new function (e.g. “[...] to prepare coffee [...]”),

• and the specification of intermediate steps (e.g. “[...] you have to place a

cup under the dispenser [...]”).

However, the order of the semantically distinct parts varies in some descriptions

Often the declarative part is uttered at the end (or even in between the specification

of intermediate steps). Some subjects also repeated the declaration after specifying

the steps, e.g. “[...] to prepare coffee [...] that’s how you make some coffee”).

Regarding the language, the descriptions show highly differing wording and syn-

tax (even for the same scenario). This fact also entails different levels of abstraction

among the descriptions. Some subjects detailed the intermediate steps up to the

movement of the robot’s arms, others gave rather abstract instructions. However,

we observed that many of the subjects used the same language constructs to struc-

ture their descriptions. For instance, to verbalize a teaching intent, subjects often

used gerunds (e.g. “preparing coffee”) and to-infinitives (e.g. “to prepare coffee”)

in combination with particular phrases, such as “you have to” or “means”. Other

phrases that were regularly used to shape a wish to extend the functionality are:

• “[...] means you have to [...] (see description 1346 in Table 1)”

• “if you want to [...] you need to [...]”

• “we are going to learn how to [...]”

• “in order to [...] you have to [...]”

To quantify these observations, we extracted the most frequent n-grams (n =

[2; 4]) from the dataset. In Figure 4 we depict the results for trigrams, which ap-

peared to be most informative. Expectedly, most of the trigrams are domain specific,

i.e. they include objects and events that can be attributed to the respective sce-

nario. However, some phrases are generally valid; they are used to structure the

description. For instance, the trigrams you have to and you need to separate the

declaration from the specification (see submission 1000 and 1346 in Table 1). The

first one is even the most frequent trigram in the dataset, the latter can be found

at rank nine. Either one of these two phrases was used in 1327 descriptions (42%).

This shows that certain wordings were commonly used by the subjects for this task.

We use the dataset as basis to solve the classification tasks. Therefore, we must

label each description according to the scheme described in Section 2. The label-

ing was performed jointly by the first and the second author. In a first step, we

attached the binary labels (Teaching and Non-Teaching). To attach labels for the

ternary classification task, we only considered submissions that were labeled as
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Fig. 4. Distribution of the 25 most frequent trigrams in the dataset.

Table 3. The distribution of the binary and ternary labels in the dataset.

binary ternary

Teach Non-Teach total Decl Spec Misc total

amount 1998 1170 3168 15559 57156 2219 74934

share .63 .37 1.00 .21 .76 .03 1.00

Teaching previously. For each of them, we first determined the declarative parts

(label Declaration). Then we separated the specification (label Specification) from

all superfluous information (label Miscellaneous), e.g. greetings and common-sense

teaching sequences. Table 3 depicts the total amount and share of the labels.

The analysis of the dataset revealed that more than one third (37%) of the de-

scriptions do not contain an explicitly stated teaching intent (label Non-Teaching).

Regarding the semantic structure of teaching sequences, the majority of words (76%)

can be attributed to the specification of intermediate steps; more than a fifth (21%)

account for verbalizations of teaching intents (wish for extension plus the name of

the function). A negligible number of words are superfluous in our context (3%).

Both label sets are unequally distributed, which may affect the quality of the

machine learning models. A one-sided shift often leads to over-fitted models that
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Table 4. Statistics on the words per description.

quantiles

min. max. mean st. dev. .990 .995 .999

1 312 35.43 22.48 117 135 232

favor the dominating label, since this approach optimizes accuracy on the dataset.

This threat concerns primarily the ternary classification task, in which the label

Specification strongly dominates the other labels (76%).

Another factor that affects the machine learning approaches is the length of

the natural language descriptions. In the study, we set no length restrictions. The

responses of the subjects in the dataset consist of one to 312 words with a mean

of 35.48 (see Table 4). Thus, the majority of descriptions is rather short; even the

responses within the .995 quantile are no longer than 135 wordsc. The complexity

of most machine learning models increases with maximum input length. Therefore,

it might be beneficial to limit the input length. Since neural networks can only deal

with input of fixed length, we have to define a maximum length anywaysd.

The dataset, including scenario descriptions, raw data, labeled data, and meta-

data is publicly available: http://dx.doi.org/10.21227/zecn-6c61

5. Understanding How Laypersons Teach New Functions

We aim to grasp the semantics of teaching sequences given by laypersons. In Sec-

tion 2 we have defined a hierarchical classification task. To implement it, we first

generate training instances (see Subsection 5.1). This involves pre-processing the

dataset as well as extracting and pre-processing instances. Then, we describe the

general approach to the classification task (see Subsection 5.2). Our approach is

hierarchic. On the first level, we classify descriptions in terms of the existence of

an explicitly stated teaching intent (see Subsection 5.3). The second classification

task addresses the semantic structure of teaching sequences (see Subsection 5.4).

Finally, we apply adaptations to improve the results (see Subsection 5.5).

5.1. Generation of Training Instances

According to Mihalcea [8] the generation of training instances involves three con-

secutive steps:

(1) Gathering and pre-processing the dataset

(2) Extraction of training instances

(3) Pre-processing of training instances

cNote that an input length of 135 words is still a lot compared to the state of the art. Most related
approaches are limited to single instruction that hardly exceed ten words (see Section 6).
dFor neural networks the maximum length of the input determines the size of the input layer.

http://dx.doi.org/10.21227/zecn-6c61
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Concerning the first step, we have already gathered the dataset (see Section 4).

However, we must pre-process the data to meet the requirements of the machine

learning toolkit and to maximize the overall quality. We perform the following

actions during dataset optimization:

• Conversion to lower case, e.g. Hello → hello

• Recovering contractions, e.g. don’t → do not

• Conversion of (cardinal) numbers, e.g. 1st → first

• Deletion of enumerations, punctuation, and disfluencies

• Correction of typographical errors (but not grammatical mistakes), e.g.

thng → thing

To extract the training instances, we can simply use all labeled descriptions from

the dataset (see Section 4). Note that the pre-processing of the dataset has no effect

on the number of training instances.

The pre-processing of the training instances primarily concerns the second-level

instances. We create lemmatized and tokenized versions of the instances. Addi-

tionally, we prepare datasets with and without stop words. Finally, we map the

instances and output labels to numeric values. The labels are simply mapped to

one-hot vectors, while we transform the words to bag-of-words vectors and fastText

word embeddings [9, 10]. We use two types of word embeddings: pre-trained em-

beddings generated by Facebook Research [11] on the Common Crawl datasete and

self-trained embeddings learned from the dataset. For the latter we tested three

lengths: 50, 100, and 300. However, we used the last option only, since it produced

the best results (at reasonable processing expense). Furthermore, the test results

are comparable, since the pre-trained embeddings also have 300 dimensions. Since

neural networks can process input with a fixed length only, we had to set a reason-

able value. We limit the input length to 135 tokens as 99.5% of all descriptions in

our dataset consist of 135 tokens or fewer (see Table 4).

5.2. General Approach

We used the Python libraries scikit learn, keras, and tensorflow to implement the

classifiers. For our experiments we used two hardware configurations: a MacBook

Pro with an Intel Core i5 (2.9 GHz) and 16 GB RAM and a PC with an Intel Core

i7 (3.5 GHz) and 32 GB RAM.

For the first-level classification task, which is a sequence-to-single-label task, we

decided to implement classical machine learning approaches and neural networks.

We used the following classical classification approaches: Decision Tree, Random

Forest, Support Vector Machine, Näıve Bayes, and Logistic Regression. The neu-

ral networks we implemented are of three different types: (basic) Artificial Neural

Networks (ANN), Convolutional Neural Networks (CNN), and Recurrent Neural

eCommon Crawl: https://commoncrawl.org/

https://commoncrawl.org/
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Table 5. Types and architectures overview of neural networks used in both classification tasks.

types architectures additional layers

ANN

Flatten (Flat)

Global max pooling 1D (GMax),

Dense (D),

Dropout(DO)

CNN

Max pooling 1D (Max),

Global max pooling 1D (GMax),

Dense (D),

Dropout(DO)

RNN

LSTM Dense (D),

GRU Dropout (DO)

BiLSTM

BiGRU

Table 6. Overview of the hyper-parameters ranges tested for both classification tasks.

hyper-parameter binary ternary

epochs 300, 500, 1000 50, 100, 300

batch sizes 50, 100, 300, 400 32, 64, 100, 256, 300

number of units 10, 20, 32, 40, 50, 64, 100, 128, 150, 250, 256, 512

dropout values 0.1, 0.2, 0.3

learning rates 0.001, 0.0005

Networks (RNN). We also implemented different architectures (e.g. LSTMs and

GRUs), added further layers (e.g. dense and dropout layers), and varied the hyper-

parameters (e.g. number of units and epochs). On the second level, we only im-

plemented neural network approaches, since the problem is a typical sequence-to-

sequence task. We used the same types and architectures, but varied the hyper-

parameters. Table 5 depicts the neural network types and architectures we used

for the first- and second-level classification task. Additionally, Table 6 lists the

hyper-parameters we tested in the process. Note that CNNs take another param-

eter besides the number of units, the convolution factor for which we tested the

values 3, 5, and 7.

We divided our dataset into train, validation, and test set. To split the data,

we used two strategies: a random split and a scenario-based split. For the random

split, we use the entire dataset and randomly divide it into training (80%) and

test set (20%). We further divide the training set into training and validation set;

again, we use an 80-20 split. The second split strategy selects one of the scenarios
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Table 7. First-level classification accuracy achieved by the classical machine learning techniques

on validation (in parenthesis) and test set.

Random Scenario

Decision Tree (.893) .903 (.861) .719

Random Forest (.917) .909 (.893) .374

Support Vector Machines (.848) .861 (.870) .426

Näıve Bayes (.771) .801 (.765) .300

Logistic Regression (.927) .947 (.891) .719

Baseline (ZeroR) .573 .547

(see Section 4) as test set; the remaining are used for training and validation, again

with an 80-20 split. The rationale behind the scenario-based is as follows. If we

use a whole scenario for testing, we can determine how the classifiers behave on

unseen data that is conceptually different. All descriptions for a single scenario

involve more or less the same actions and objects. However, they vary between the

scenarios. Thus, with the scenario-based split we are able to measure how well a

classifier learns teaching intent verbalizations and the general structure of teaching

sequences.

5.3. First-level Classification: Teaching Intent

On the first level of our hierarchical classification task, we determine whether a

description contains a teaching intent or not. The preliminary study has shown that

subjects verbalize teaching intents quite differently. Often the intent is implicitly

indicated or expressed by a single word only, e.g. “[do A] and [B] to prepare coffee”.

Therefore, the classification task is anything but straight forward.

As mentioned before, we implemented classical machine learning and neural

network approaches. We present results for both and discuss the differences between

the random and scenario-based dataset splits.

5.3.1. Classical Machine Learning Techniques

The input features for the classifiers are bag-of-words vectors and trigrams or quadri-

grams. We used the tokenized and lemmatized dataset for training, validation, and

test. However, all classifiers perform best on the lemmatized set. The same applies

to stop words; their exclusion degrades results in all cases. Thus, we only report the

results for the lemmatized set including stop words in Table 7. For all classifiers we

show the accuracy on the validation set in parenthesis and the final results (test set)

without. To provide a baseline, we depict the numbers of the so-called Zero-Rule

classifier (ZeroR); it always predicts the majority class of the training set.

As expected, the baseline is rather similar for the random and scenario-based

split. This indicates that our data is uniformly distributed. The results for the
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Fig. 5. A schematic illustration of the general network architecture.

classifiers vary greatly for the different splits. For the random split the accuracy on

the validation and test set are similar. Not surprisingly, the elaborate approaches

outperform the simple ones. The classifier that uses logistic regression achieves

the best results. An accuracy of 94.7% on the test set is a surprisingly good result.

However, the performance of all classifiers drastically declines if we use the scenario-

based split. Three of five fall behind the baseline; the Näıve Bayes classifier labels

only 30% of the instances correctly. The results for the Random Forest classifier show

the problem plainly. It works well for the random split and is the best classifier on

the validation set for the scenario-based split (89.3%). However, on the according

test set its accuracy drops to 37.4%. Solely Decision Trees and Logistic Regression

achieve acceptable accuracies (71.9%).

The results clearly show that classical machine learning approaches are insuffi-

cient for this task, since they oversimplify the classification problem and are unable

to generalize to unseen data that is conceptually different.

5.3.2. Neural Network Approaches

For the neural networks we use word embeddings as input, either self-trained or pre-

trained fastText embeddings (see Subsection 5.1). The general network structure

as depicted in Figure 5 is composed of an input and an embedding layer, followed

by the basic network architecture (e.g. LSTM), additional layers (e.g. Dense or

Dropout layers) and an output layer.

We tested different batch sizes (see Table 6). However, no matter how we set

the other hyper-parameters, we obtained the best results with a batch size of 100.

The same applies to the question whether to use lemmatized or just tokenized input

and stop words; in all cases the lemmatized dataset including stop words produced

better results again.
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Table 8. First-level classification accuracy achieved by neural networks on the random split; the

results on the validation set are depicted in parenthesis and without for the test set.

Name Configuration self-trained pre-trained

ANN1.0 Flat, D(10) (.907) .911 (.874) .887

ANN1.1 Flat, D(100) (.916) .914 (.846) .867

ANN2.0 GMax, D(10) (.876) .887 (.872) .902

ANN2.1 GMax, D(100) (.899) .896 (.879) .896

CNN1.0 C(128, 3), GMax, D(10) (.947) .966 (.954) .963

CNN1.1 C(128, 5), GMax, D(10) (.947) .971 (.930) .965

CNN1.2 C(128, 7), GMax, D(10) (.952) .966 (.943) .962

CNN2.0 C(128, 3), Max(2), C(64, 3), GMax, D(10) (.952) .959 (.952) .971

CNN2.1 C(128, 5), Max(2), C(64, 5), GMax, D(10) (.949) .972 (.952) .966

CNN2.2 C(128, 5), Max(2), C(128, 5), GMax, D(10) (.952) .964 (.954) .966

CNN2.3 C(128, 5), Max(5), C(128, 5), GMax, D(10) (.956) .958 (.952) .959

RNN1.0 GRU(128) (.560) .625 (.562) .625

RNN1.1 GRU(128), D(100) (.562) .625 (.562) .625

RNN2.0 BiGRU(32), DO(0.2), D(64), DO(0.2) (.947) .944 (.952) .959

RNN3.0 LSTM(64) (.566) .631 (.568) .638

RNN3.1 LSTM(128) (.570) .625 (.654) .738

RNN3.2 LSTM(128), D(100) (.562) .625 (.562) .625

RNN4.0 BiLSTM(64), DO(0.2), D(64), DO(0.2) (.947) .955 (.949) .955

RNN4.1 BiLSTM(64), DO(0.3), D(200), D(100) (.941) .947 (.947) .949

RNN5.0 BiLSTM(128), D(64) (.951) .955 (.956) .959

RNN5.1 BiLSTM(128), D(64), D(32) (.945) .962 (.947) .955

RNN5.2 BiLSTM(128), D(100), DO(0.3), D(50) (.936) .937 (.945) .941

RNN6.0 BiLSTM(256), D(128) (.952) .944 (.945) .952

LogReg – (.927) .947

For all other hyper-parameters we tested all possible combinations (as depicted

in Table 5 and Table 6). However, in Table 8 and Table 9 we only present the

best configurations per type, respective architecture. The first table depicts the

results on the random data split, while the second considers the scenario-based split.

Concerning the number of epochs, we observed that the best results are achieved

at different points. Usually the networks need a few epochs only (less than 10) to

converge. Also, the convergence can be predicted by means of the validation loss.

We interrupt the training process when the validation loss stops to decrease, which

is usually referred to as early stopping. Figure 6 shows the effect for RNN4; the

validation loss optimum is reached after epoch five.

The configurations in Table 8 and Table 9 can be read as follows. For the second

last recurrent neural network (RNN5.2) we use a bidirectional LSTM (BiLSTM)
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Table 9. First-level classification accuracy achieved by neural networks on the scenario-based split;

the results on the validation set are depicted in parenthesis and without for the test set.

Name Configuration self-trained pre-trained

ANN1.0 Flat, D(10) (.918) .759 (.897) .722

ANN1.1 Flat, D(100) (.905) .781 (.874) .715

ANN2.0 GMax, D(10) (.907) .766 (.905) .542

ANN2.1 GMax, D(100) (.893) .668 (.918) .674

CNN1.0 C(128, 3), GMax, D(10) (.962) .765 (.966) .854

CNN1.1 C(128, 5), GMax, D(10) (.973) .743 (.973) .776

CNN1.2 C(128, 7), GMax, D(10) (.973) .775 (.970) .897

CNN2.0 C(128, 3), Max(2), C(64, 3), GMax, D(10) (.968) .855 (.962) .874

CNN2.1 C(128, 5), Max(2), C(64, 5), GMax, D(10) (.969) .850 (.975) .859

CNN2.2 C(128, 5), Max(2), C(128, 5), GMax, D(10) (.973) .862 (.977) .862

CNN2.3 C(128, 5), Max(5), C(128, 5), GMax, D(10) (.962) .901 (.973) .801

RNN1.0 GRU(128) (.477) .299 (.519) .702

RNN1.1 GRU(128), D(100) (.519) .702 (.519) .702

RNN2.0 BiGRU(32), DO(0.2), D(64), DO(0.2) (.954) .911 (.958) .932

RNN3.0 LSTM(64) (.519) .702 (.519) .702

RNN3.1 LSTM(128) (.519) .702 (.519) .702

RNN3.2 LSTM(128), D(100) (.519) .702 (.519) .702

RNN4.0 BiLSTM(64), DO(0.2), D(64), DO(0.2) (.956) .896 (.962) .916

RNN4.1 BiLSTM(64), DO(0.3), D(200), D(100) (.947) .884 (.956) .911

RNN5.0 BiLSTM(128), D(64) (.960) .927 (.962) .919

RNN5.1 BiLSTM(128), D(64), D(32) (.950) .919 (.966) .898

RNN5.2 BiLSTM(128), D(100), DO(0.3), D(50) (.937) .922 (.954) .917

RNN6.0 BiLSTM(256), D(128) (.954) .843 (.962) .912

LogReg – (.891) .719

architecture with 128 units. Additionally, the network is composed of further layers:

Dense (with 100 units), Dropout (with a dropout value of 0.3), and another Dense.

For the random split (see Table 8) most neural networks achieve sufficient re-

sults. Only unidirectional LSTMs and GRUs fall behind considerably and seem

insufficient for the task (RNN1.∗ and RNN3.∗). However, their bidirectional coun-

terparts obtain excellent results; RNN5.0 is even the best regarding the validation

accuracy using pre-trained embeddings. On the test set, CNNs outperform all oth-

ers; CNN2.1 and CNN2.2 show the overall best performance (96.6% using pre-trained

embeddings). The majority of neural network configurations work best with pre-

trained embeddings (except for the ANNs). A comparison to the baseline reveals

that only CNNs and bidirectional RNNs (plus ANN1.0) outperform the Logistic

Regression classifier. The results for the random split suggest, that neural network
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Fig. 6. The validation and training loss for RNN5.0 (BiLSTM(128), D(64)).

approaches are the most suitable for the task, but must be configured with care.

Either way, the consideration of the scenario-based split is more informative (see

Table 9), since it models the realistic deployment of a classifierf . The results show

that the accuracy of all neural networks decreases on the test set. This outcome

was to be expected, since the subjects used a different vocabulary and wordings

in the test scenario. However, the magnitude of decline differs considerably. The

ANNs show the heaviest decline. That indicates that simple ANNs tend to over-fit

to the training instances, i.e. they solely memorize a previously seen wording. The

observation that ANNs perform worse using pre-trained embeddings for the random

split speaks for this assumption, too. The CNNs (which showed the best accuracy

on the random split) also deteriorate sharply (despite outstanding accuracies on

the validation sets). The bidirectional RNNs show the best performances; RNN2.0

reaches test set accuracy levels (over 93%). It also performs best on pre-trained

embeddings, which is to be expected, since the test set comprises previously unseen

vocabulary. Contrary to expectations, the other bidirectional RNNs show their best

results on self-trained embeddings. A possible cause may be that the advanced

network architectures actually focus on the wordings that constitute a teaching

intent, e.g. “... means you have to ...”.

Unfortunately, the validation accuracy is hardly a good predictor for the test

accuracy. The classifier with the best accuracy on the test set (RNN2.0) shows only a

mediocre validation accuracy; the neural network with the best validation accuracy

(CNN2.2) is ranked in the bottom half regarding test set results.

fUsually, classifiers are trained on existing datasets and then used for new and potentially differing
input. With a hold-out scenario these conditions are reasonably simulated.
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Table 10. Second-level classification accuracy achieved by neural networks on the random split;

the results on the validation set are depicted in parenthesis and without for the test set.

Name Configuration self-trained pre-trained

ANN1.0 - (.851) .855 (.851) .856

ANN2.0 D(10) (.848) .857 (.852) .849

ANN2.1 D(100) (.853) .856 (.853) .848

RNN1.0 LSTM(64) (.977) .976 (.979) .978

RNN1.1 LSTM(128) (.974) .976 (.978) .977

RNN2.0 LSTM(128), DO(0.2) (.976) .977 (.977) .977

RNN2.1 LSTM(128), DO(0.4) (.976) .977 (.979) .979

RNN2.2 LSTM(128), D(64) (.973) .972 (.977) .976

RNN3.1 BiLSTM(128) (.986) .983 (.987) .985

RNN3.2 BiLSTM(128), D(64) (.980) .983 (.985) .984

RNN3.3 BiLSTM(128), D(100), DO(0.3), D(50) (.982) .982 (.982) .985

RNN3.4 BiLSTM(128), DO(0.2) (.985) .984 (.988) .988

RNN3.5 BiLSTM(128), DO(0.4) (.985) .986 (.986) .986

RNN4.0 BiLSTM(256), DO(0.2) (.986) .984 (.987) .985

RNN5.0 BiGRU(128) (.984) .984 (.985) .985

ZeroR – .759

5.4. Second-level Classification: Semantic Structure

On the second level of our hierarchical classification task, we determine the semantic

structure of teaching sequences. We assume that they are composed of three parts:

a declarative part that expresses the teaching intent and the name of the new skill,

a specifying part that comprises the intermediate steps, and miscellaneous parts

that are irrelevant for the task. The preliminary study has shown that these parts

occur anywhere in an utterance and are potentially non-sequential.

For this task we waive the classical machine learning approaches. We assumed

that the sequence-to-sequence labeling task is too complex for the classical ap-

proaches and pre-tests confirmed this assumption.

The input (word embeddings) and general network layouts are the same as for

the first-level classification. The tested hyper-parameters differ slightly (see Table 5),

due to the changed boundary conditions of this task (see Section 2). For this task

a batch size of 32 proved to be best performing. Also, the results are best for the

tokenized (non-lemmatized) dataset. However, we still do not exclude stop words.

The unbalanced dataset poses a challenge; the class Specification clearly dominates

(see Table 3). In return, the Zero-Rule classifier becomes a strong baseline.

In Table 10 we report the results of the best performing neural networks for the

random dataset split; Table 11 shows the results for the scenario-based split. We

again distinguish results using self-trained versus pre-trained fastText embeddings.

Overall, the results are promising. All approaches outperform the baseline clearly.
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Table 11. Second-level classification accuracy achieved by neural networks on the scenario-based

split; the results on the validation set are depicted in parenthesis and without for the test set.

Name Configuration self-trained pre-trained

ANN1.0 - (.850) .779 (.851) .826

ANN2.0 D(10) (.850) .825 (.851) .826

ANN2.1 D(100) (.851) .822 (.851) .827

RNN1.0 LSTM(64) (.971) .960 (.975) .966

RNN1.1 LSTM(128) (.973) .960 (.973) .964

RNN2.0 LSTM(128), DO(0.2) (.970) .960 (.973) .966

RNN2.1 LSTM(128), DO(0.4) (.971) .959 (.974) .967

RNN2.2 LSTM(128), D(64) (.970) .955 (.971) .963

RNN3.1 BiLSTM(128) (.983) .960 (.981) .976

RNN3.2 BiLSTM(128), D(64) (.973) .960 (.979) .965

RNN3.3 BiLSTM(128), D(100), DO(0.3), D(50) (.978) .955 (.981) .968

RNN3.4 BiLSTM(128), DO(0.2) (.982) .958 (.981) .975

RNN3.5 BiLSTM(128), DO(0.4) (.980) .961 (.980) .973

RNN4.0 BiLSTM(256), DO(0.2) (.982) .964 (.982) .975

RNN5.0 BiGRU(128) (.976) .955 (.982) .968

ZeroR – .757

However, no CNN is among the best fifteen and ANNs performs considerably worse

(more than 10%) than the remaining; the RNNs dominate this task. In particular,

the bidirectional RNNs obtain surprisingly good results. The classification accuracy

of the best configuration (RNN3.4) for the random split using pre-trained embed-

dings is 98.8%. Encouragingly, the results for the scenario split are almost on the

same level. Four RNNs exceed 97% using pre-trained embeddings; RNN3.1 performs

best with an accuracy of 97.6%. However, there are only small differences between

the configurations. Thus, bidirectional RNNs seem to be suitable for this task in

general.

5.5. Adaptations

We implemented two task-based adaptations to improve the classification results

heuristically; the first concerns the binary and the second the ternary classification.

For both we use the best neural network configuration as basis (based on the mean

results): RNN2.0 for the first task and RNN3.1 for the second.

The first adaptation works as follows. We perform the first-level classification

as usual. However, we observed that the binary classifiers struggle to separate the

classes from time to time. Therefore, we adjust the class allocation. Originally, the

classifiers assign the label Non-Teaching to all values in the range [0;0.5] and Teach-

ing to (0.5;1]. We experimented with alternative separation values; we tested all in

the range [0,0.5] (steps: 0.05). The results are illustrated in Figure 7; the baseline
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Fig. 7. Accuracies (on the test set) obtained for different (optimized) separation values in the

output layer of RNN2.0 for the first-level classification (binary).

is RNN2.0 with an unchanged separation value (0.5). We obtain the best results

with a separation value of 0.1 (accuracy: 94.1%, plus 0.8% for the scenario-based

split). In a second step we use the ternary classification. We apply it to all descrip-

tions (not only those labeled as Teaching on the first level). Then, we review the

binary result and alter the class of all instances to Teaching that have a classifica-

tion value in the range of [m, 0.1) and at least n Declaration-labels. The rationale

behind this approach is as follows. The presence of Declaration-labels suggests that

the description is a teaching effort (first-level classification label Teaching). Again

we tested different values for m (range: [0.001; 0.1], steps: 0.001) and n (range [0;

6]); the results are depicted in Figure 8g. Two configurations obtain the best result:

(m = 0.008;n = 2), the green graph, and (m = 0.006;n = 5), the purple graph.

Using one of them, the accuracy of the binary classification increases to 95.5% for

the scenario-based split (plus 2.2 percentage points).

The second adaptation uses linguistic information to generate continuous se-

mantic parts (second-level classification). For our heuristic we employ the semantic

role labeling tool SENNA [12]; Figure 9 illustrates the approach. We interpret the

roles as chunks (and ignore their semantics) and merge these chunks with the out-

put of the second-level classifier as follows. For most cases we use a simple majority

decision. This means, the heuristic attaches the dominating label to all words of the

chunk. If there is a draw, we take the first word left of the chunk into account and if

there is no left word we consider the first to the right. Whenever there is neither a

word left nor right and the chunk contains Specification-labels, we attach this label

to all words. We evaluated the heuristic using RNN3.1 and the scenario-based data

split. Unfortunately, the classification accuracy decreases (minus 0.86%, relative).

However, the loss is small. In return, the adapted classification ensures that all se-

gWe only show the results for m = [0.001; 0.03], since accuracy values are best in this range.
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Fig. 8. Accuracies (on the test set) obtained for different adaption configurations for the first-level

classification (binary). A configuration consists of a separation value (m) and a minimum number

of Declaration labels (n = [0; 6]).

Utterance: to prepare coffee place an empty cup ...

Prim. Pred.: DECL DECL DECL SPEC SPEC ELSE SPEC

SRL Labels: 0 V A1 V A1 A1 A1

Adap. Pred.: DECL DECL DECL SPEC SPEC SPEC SPEC

Fig. 9. Schematic illustration of the adaptation of the second-level classification.

mantic parts are continuous. For instance, in the utterance “take a cup that is next

to a machine”, RNN3.1 attaches the label Specification to all words but is and to.

These two receive the label Declaration (which is incorrect here). The adaptation

alters both labels to Specification.

Continuous semantic parts are an essential precondition for most applications,

such as the synthesis of methods. At the same time, the misclassifications introduced

by the adaptations are negligible, since they mainly concern words of little relevance,

such as conjunctions.

6. Related Work

Over the years, the objective of programming with natural language has been viewed

from different perspectives: Some approaches think of it as code dictation, others

try to naturalize programming languages. Interactive systems rely on user feedback

to solve the task, while others employ semantic parsing. For research in the field of
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humanoid robotics, programming with natural language is of particular importance.

Each perspective focuses on different aspects and addresses the task of teaching new

skills differently.

Approaches for code dictation are basically natural language interfaces to code

editors. Developers dictate code and the text (or speech) is literally converted into

code. Thus, no semantic transformation or mapping is necessary. However, the re-

spective parsers (and automatic speech recognition systems) are tailored to prefer-

ably recognize code-like terms. Natural Java by Price et al. uses case frame gram-

mars for Java source code dictation [13]. They use information retrieval techniques

to fill the roles in the frames. Begel and Graham present Spoken Java, a voice based

code dictation interface for Java [14, 15]. According to the authors it is supposed to

be used by developers that can not use their hands due to injuries, e.g. repetitive

strain injuries. VoiceCode by Désilets et al. allows dictating different programming

languages [16]. With all approaches new methods can be dictated just like anything

else. However, users have to dictate proper source code.

The approach to naturalize programming by Wang et al. is set in a voxel world

called Voxelurn [17]. Users may define new aliases for API methods to naturalize

the vocabulary used. The approach also offers the composition of calls. The aliases

of composed calls constitute newly learned functions.

Other approaches are interactive; they synthesize source code in dialog with the

user. They are designed for laypersons or programming novices. Most of them make

use of mixed or user initiative dialog to clarify ambiguous or unclear input. Metafor

by Liu and Lieberman constructs program skeletons from English prose [18]. They

use a specialized parser that creates code-like subject-verb-object-object structures.

The results are classes, attributes, method signatures, but no runnable code. The

follow-up work by Mihalcea et al. is able to create runnable code including control

structures; they also detect comments [19]. Landhäußer et al. additionally recon-

struct timelines [20]. However, their tool NLCI provides marginal user feedback only.

Le et al. enable users to create short scripts for smartphones with SmartSynth [21].

The scripts are synthesized with the help of heuristics on syntactical features. The

input is limited to the following structure: a condition followed by a sequence of

actions. SmartSynth uses type inference to fill gaps in method calls, e.g. missing

parameters. If a script is invalid the user is queried for clarification.

Another perspective was recently introduced by the semantic parsing commu-

nity. Semantic parsing denotes the task of mapping natural language to logical

forms. Recently, source code is considered as one logical forms. Even though scripts

can be synthesized, integrating new functions are not considered so far. Guu et al.

use reinforcement learning in combination with the maximal marginal likelihood

method to map natural language to code [22]. Rabinovich et al. use an AST-like

structured BiLSTM to infer ASTs from textual descriptions [23] and Chen et al.

use recurrent neural networks to learn so-called action embeddings [24]. Dong and

Lapata use a two-tiered approach; first producing a light-weight, coarse meaning

representation and then using a BiLSTM to fill in missing details [25].
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Teaching new functionality to intelligent systems is of particular interest in the

robotic domain. The robotic systems of the future are supposed to act like hu-

mans. Thus, they have to be able to understand task descriptions for humans. Most

approaches aim at synthesizing actions plans or new functions (composed of single

actions). Lincoln and Verres use a planning approach to model the shared goals and

intents of users and machines [26]. New functionality can be taught but the used lan-

guage is rather technical. The approach by She et al. allows the usage of everyday

language to teach a robotic system new functionality [27]. For the transformation

the approach uses semantic parsing. Even though the approach does not expect

technical terms, the vocabulary and wordings are restricted. Markievicz et al. use

descriptions that were originally created to teach humans [28]. They use dependency

parsing and specialized semantic role labeling to map the natural language input

to robotic instructions. Their approach assumes that the input consists of known

instructions and thus is unable to cope with newly introduced functionalities.

7. Conclusion & Future Work

Natural language will be the key to effortless end-user programming. To make pro-

gramming in natural language a truly creative process, users must be empowered to

create new functions using spoken instructions. As a first step towards this goal, we

have presented a hierarchical classification task to grasp the semantics of natural

language teaching sequences. The first classification level determines whether an

utterance constitutes an effort to teach a new function. The second analyzes the

semantic structure of teaching efforts and divides them into three distinct parts: a

declarative part that contains the teaching intent with a name for the new function,

a specifying part that states the intermediate steps, and superfluous information.

For both tasks we implemented a broad range of machine learning approaches.

However, neural networks outperform the classical approaches in almost all cases. In

particular, bidirectional RNNs excel in both tasks. Even if we expose them to input

that is conceptually different to the training instances, they are highly accurate.

In this setting (scenario-based data split), the best classifier for the first task, a

BiGRU, obtains an accuracy of 93.2%; for the second it is even 97.6% (BiLSTM).

Additionally, we implemented two heuristic improvements. With the first, we

overrule the first-level classification if the second classifier disagrees and the first

was uncertain; this heuristic improves the accuracy by 2.2%. With the help of the

second heuristic we make sure that semantic parts are continuous.

As the next step we plan to synthesize actual methods based on the classification

results. We will construct method signatures from specifying phrases and bodies

from declarative parts. In order to implement that, we may have to refine the label

set of the second-level task, e.g. define a label for the name of the function or

parameters. Furthermore, we plan to evaluate our approach on other datasets; we

may use open-access corpora or even carry out another online study.
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