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Abstract

We describe a spacetime endowedwith a non-metricity tensor which effectively

serves as a model of a spacetime foam. We explore the consequences of the

non-metricity in several f(R) theories.
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1. Introduction

It has been argued by Wheeler [1, 2] that the spacetime may have a nontrivial structure over

small scales. This nontrivial structure is characterized by �uctuations of the metric and the

topology. The topological changes are usually referred to as spacetime defects (or spacetime

foam). These ‘imperfections’ can be seen as remnants of a possible quantum phase of the

spacetime.

Since not too much is known about the aforementioned small structure of spacetime, there is

a large degree of arbitrariness in its description.Different approaches have been proposed in the

study of the spacetime defects, but mainly in the single defect case and for particular topologies

[3–8], (for other approaches see [9–11, 18]). It is not dif�cult to convince oneself that a space-

time with changing topology over small scales is hard to describe or even intractable. It seems,

therefore, natural to take an effective perspective, where the spacetime foam is described by

an intrinsic geometrical property of the spacetime manifold.

Our point of view is inspired by the theory of defects in solids, where a solid (e.g., a crystal)

can be described by a three-dimensional Riemannian manifold and the presence of point-like
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defects can be modeled through the non-metricity tensor, i.e., the failure of the metric to be

covariantly conserved [15, 16]. This is rather natural, since in the presence of defects one

should expect a non-conservation of the volume element, which is a consequence of the non-

conservation of the metric. In other words, under this interpretation non-metric theories of

gravity can be used to describe the spacetime foam.

In previousworks the non-metricitywas introduced to describe such a distribution of defects

[19, 20], being its presence linked to the presence of matter at the level of the �eld equations.

Fromour point of view, the spacetime foam (and hence the non-metricity) should be an intrinsic

property of the spacetime and therefore one must expect its existence even in vacuum. We

will show that this problem can be overcome by giving dynamics to the non-metricity �eld

that describes the defects. In addition, we will show that, higher-curvature corrections in non-

metric gravity are consistent with Starobinsky-like models and can drive an in�ationary phase

and late-time accelerated expansion depending on the sign of the kinetic term associated to the

defects.

This paper is organized as follows. In section 2, the concept of non-metricity is introduced

and its connection with spacetime defects is suggested. In section 3, we review some results

about non-metric f(R) theories. In section 4 the dynamical term associated to the non-metric

tensor is introduced. In section 5, explicit solutions are analyzed in a RW Universe. Finally,

section 6 contains conclusions and further discussion.We also add one appendixwith technical

details about the stability of the solutions.

2. Non-metricity and defects

The presence of point-like defects in a solid can be identi�ed with the non-conservation of

the volume element and the distribution can be described in a natural geometrical way with

the introduction of the non-metricity tensor [15, 16, 19]. This can be seen as follows. The

non-metricity tensor, Qµνρ, measures the failure of the metric to be covariantly conserved,

∇̃µgνρ = −Qµνρ. (2.1)

If we assume that the torsion tensor vanishes, the relation (2.1) results in a modi�cation of the

connection Γ̃κνµ that can be written as the Levi-Civita connection Γ
κ
νµ plus an extra tensor:

Γ̃
κ
νµ = Γ

κ
νµ +Ω

κ
νµ. (2.2)

From the torsion-free condition it follows thatΩκ
[νµ] = 0. The (general) covariant derivative

∇̃ is now de�ned in terms of the new connection. The non-conservation of the volume element

follows immediately since

1

g
∇̃λ g = −2Ω

ρ
λρ, (2.3)

where we have de�ned g = det gµν . By keeping the analogy with the geometric description of

defects in solids, the tensor Ω, or rather a contraction of it, will describe a random distribution

of spacetime defects through a smooth spacetime manifold.

2.1. The single defect case

Although we will use this non-metric approach to describe an effective distribution of defects

through spacetimewith its own dynamics, this could still be used to model a single static defect.

For this purpose, we assume that the Ω tensor (or the Weyl vector de�ned in section 4.1), has
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support over a compact region of space, say a sphere SR of radius R,

Ω
µ
νρ(x) =

{
0, x /∈ SR,

6= 0, x ∈ SR.
(2.4)

The radius R can be identi�ed with the size of the defect. Of course, the support SR, can be

thought as a disjoint union of compact regions Si, and in this case Ω describes a distribution of

defects of (possibly) different size.

Now, we can wonder about the effect of this non-vanishing non-metricity on the trajectory

of a test particle. First, it is clear that outside the region SR, the connection is Levi-Civita and

the geodesic equation is the usual one. However, in the region S, the geodesics satisfy

d2xµ

dτ 2
+
(
Γ
µ
ρσ +Ω

µ
ρσ

) dxρ
dτ

dxσ

dτ
= 0, x ∈ SR. (2.5)

The modi�cation of the geodesic when crossing the defect (the region SR) depends entirely

on the speci�c choice of Ω. In an exact description of a spacetime defect (represented by non-

trivial topology in the region SR), this modi�cation is entirely determined by the boundary

conditions of the surface of SR (see for example [17]). On the one hand, it is not very dif�-

cult to convince oneself that, within this point of view, a judicious choice of Ω would allow to

mimic the effects of the nontrivial topology. On the other hand, the advantage of this approach

is that it could be easily extended to effectively describe a distribution of spacetime defects

by choosingΩ appropriately. Note also that the same idea can be used to describe a non-static

defect by allowing Ω to depend on time. We will, however not insist on this line of reasoning.

As we will see, in the Palatini formalism, Ω (and therefore the defects) will be considered a

dynamical entity obeying corresponding �eld equations.

3. Non-metric f (R) theories

If non-metricity is the main ingredient in the effective description of the presence of defects

in the spacetime manifold, one has to look for actions compatible with non-vanishingQµνρ. In

the Palatini formalism the metric and the connection are considered as two independent geo-

metrical quantities (see for example [12–14] and references therein). This approach �ts quite

well to our purposes, as Ω itself will be promoted to a genuine dynamical entity. As a conse-

quence, in order to obtain the �eld equations one has to perform variations with respect to both

�elds. The variation with respect to gµν gives the Einstein �eld equations, while the variation

with respect to Γ̃κνµ (Palatini variation) gives (possibly) some constraints on the connection

coef�cients. It is well-known that, if we start with the Einstein–Hilbert (EH) action and with a

general connection (non-metric) the Palatini variation constrains the connection to be the Levi-

Civita one. From this point of view it seems, therefore, that the presence of defects described

by a non-metricity tensor requires a more general action. A natural generalization is given by

f(R) gravity, where the linear EH action is replaced by a general function of the Ricci scalar.

3.1. Non-metric f (R) gravity without matter

Let us assume that a general non-metric f(R) theory can describe defects distributed on the

spacetime manifold. We have the following action in vacuum

S =
1

2κ

∫
d4x

√−g f (R), (3.1)

3
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with Γ
µ
[νρ] = 0 and ∇̃µgνρ = −Qµνρ 6= 0. The metric and Palatini variations of the action lead

to the following equations

f ′(R)Rµν −
1

2
f (R)gµν = 0, (3.2)

∇̃λ

(
f ′(R)

√−ggµν
)
− ∇̃σ

(
f ′(R)

√−ggσ(µ
)
δν)λ = 0. (3.3)

After taking the trace in (3.2) and (3.3) one obtains

f ′(R)R− 2 f (R) = 0 (3.4)

∇̃λ

(
f ′(R)

√−ggµν
)
= 0. (3.5)

Assuming that f (R) 6= αR2, the solutions of (3.4) correspond to constant Ricci scalar, R = ci
(for details see [12]). This implies that f(R) is also a constant and as a consequence

∇̃λ

(√−ggµν
)
= 0 ⇒ Qµνρ = 0. (3.6)

Therefore, a general non-metric f(R) theory corresponds to the Einstein equations with a

cosmological constant

Rµν −
1

2
cigµν = 0. (3.7)

From (3.6) it follows that the theory is metric, and, if the non-metricity tensor describes a

distribution of defects, f (R) theories in vacuum cannot contain them. As already mentioned, it

is reasonable to assume that the defects are an intrinsic property of the spacetime, and hence

they should exist regardless the presence of matter. From all these considerations we conclude

that f(R) gravity in vacuum does not have enough structure to describe defects and therefore,

we will explore general actions providing dynamics to the defects.

4. New action for defects and gravity

The considerations above suggest that, in order to describe spacetime defects, one has to con-

sider more general actions than f(R) gravity. We will be interested in actions of the form

S =
1

2κ

∫
d4x

√−g
(
f (R̃)+ P[∂σΩ

µ
νρ]

)
, (4.1)

where P is at most quadratic in ∂σΩ
µ
νρ and responsible for the dynamics of Ωµ

νρ and R̃ is

de�ned in (4.6). But before doing that, and in order to see the effect of the non-metricity, let

us consider a simple situation contained in (4.1)

S =
1

2κ

∫
d4x

√−gR̃. (4.2)

The Ricci tensor including non-metricity can be expanded as follows

Rµσ(Γ̃) = ∂νΓ̃
ν
µσ − ∂µΓ̃

ν
νσ + Γ̃

λ
µσΓ̃

ν
λν − Γ̃

λ
νσΓ̃

ν
λµ

= Rµσ(Γ)+ Rµσ(Ω)+Ω
ν
νλΓ

λ
µσ +Ω

λ
µσΓ

ν
λν − Ω

λ
νσΓ

ν
µλ − Ω

ν
µλΓ

λ
νσ ,

(4.3)
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where

Rµσ(Ω) ≡ ∂νΩ
ν
µσ − ∂µΩ

ν
νσ +Ω

λ
µσΩ

ν
λν − Ω

λ
νσΩ

ν
λµ. (4.4)

If we perform the variation with respect to Ωµ
νρ in (4.2) and trace in the ρ, σ indices and con-

tract in the ρ,λ indices, the following constraints in the non-metric part of the connection are

imposed

Ω
µ
µν = 0, gµνΩρ

µν = 0. (4.5)

Taking into account the condition (4.5) the Ricci scalar can be simpli�ed as

R̃ ≡ R(Γ̃, gµν) = gµσRµσ(Γ̃) = R(Γ, gµν)− ΩµλνΩ
λµν (4.6)

Upon inserting (4.6) in (4.2) we obtain

S =
1

2κ

∫
d4x

√−g
{
R(Γ, gµν)− ΩµλνΩ

λµν
}
. (4.7)

Therefore, once we consider a non-metric EH action, a mass term (of Planck order) for the

non-metricity tensor is naturally generated. Moreover, Ωµλν is trivially eliminated from (4.7)

generating the standard EH action (see [28] for other non-metric extensions of the EH action).

4.1. Weyl vector and the addition of dynamics

So far we have considered a general non-metricity tensor with (potentially) 40 degrees of free-

dom. From now on we will assume that all relevant d.o.f. of Ωµ
νρ are contained in a vectorWµ

(generally called Weyl vector) de�ned as follows

Ω
ν
µσ =

1

2
(Wσδ

ν
µ +Wµδ

ν
σ −Wνgµσ), (4.8)

or

Wµ =
1

2
Ω
ν
νµ. (4.9)

The Ricci tensor Rµσ(Γ̃) can be written as

Rµσ(Γ̃) = Rµσ(Γ)+
1

2
∂σWµ −

3

2
∂µWσ −

1

2
∂ν(W

νgµσ)+WλΓ
λ
µσ −

1

2
gµσW

λ
Γ
ν
νλ

+
1

2
WµWσ −

1

2
gµσW

2
+

1

2
gνσW

λ
Γ
ν
µλ +

1

2
gνµW

λ
Γ
ν
λσ. (4.10)

Then the EH action in terms of (4.10) is given by

S =
1

2κ

∫
d4x

√−gR(Γ̃, gµν)

=
1

2κ

∫
d4x

{√−g
[
R(Γ, gµν)−

3

2
W2

]
− 3∂ν(

√−gWν)

}
, (4.11)

where R = gµνRµν is the Ricci scalar and the boundary term is explicitly shown. In order to

5
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obtain the second line of (4.11), we have used the following identities

gµσ∂νgµσ = 2Γλνλ, (4.12a)

gµσ∂µgνσ = Γ
λ
νλ + gµσgλνΓ

λ
µσ , (4.12b)

∂ν
√−g = √−gΓλνλ, (4.12c)

Note that the effect of the Weyl vector in the standard EH is the introduction of a quadric

term inWµ. The variation of the EH action with respect to the Weyl vector gives

−3
√−gWµ

= 0. (4.13)

Therefore, as already stated, the non-metricity vanishes in vacuum.A natural candidate to make

Wµ nontrivial is a Maxwell-like term

L1 = −1

4

√−ggµαgνβ
(
∇̃µWν − ∇̃νWµ

)(
∇̃αWβ − ∇̃βWα

)
. (4.14)

The variation of the action corresponding to (4.14) with respect to the Weyl vector gives

0 = ∇̃µ

[√−ggµαgνβ
(
∇̃αWβ − ∇̃βWα

)]

=
√−ggµαgνβ∇̃µ

(
∇̃αWβ − ∇̃βWα

)
+

(
∇̃αWβ − ∇̃βWα

)
∇̃µ

(√−ggµαgνβ
)

=
√−ggµαgνβ∇̃µ

(
∇̃αWβ − ∇̃βWα

)
. (4.15)

Together with the EH action, we can obtain the �eld equation of the Weyl vector

gµαgνβ∇̃µ(∇̃αWβ − ∇̃βWα) = 3Wν . (4.16)

The term in the rhs of (4.16) comes from the EH action and corresponds to a ‘mass’ term

forWµ. The full EH action can be cast as

S =
1

2κ

∫
d4x

√−g
{
R
(
Γ̃, gµν

)
− 1

4λ
gµαgνβ

(
∇̃µWν − ∇̃νWµ

)(
∇̃αWβ − ∇̃βWα

)}
,

(4.17)

where λ is a coupling constant of dimension [L]−2. The variation of action (4.17) with respect

to Weyl vector and metric gives the following equations of motion respectively

1

λ
gµαgνβ∇̃µFαβ = 3Wν , (4.18)

Rµν(Γ)−
1

2
gµνR(Γ, gµν) =

1

2λ
gραFµρFνα −

1

8λ
gµνg

ραgσβFρσFαβ +
3

2
WµWν −

3

4
gµνW

2,

(4.19)

where

Fαβ ≡ (∂αWβ − ∂βWα). (4.20)
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First, for 1/λ→ 0, the non-metricity disappears and (4.18) and (4.19) reduce to the standard

Einstein equations in vacuum. Second, it can be shown that the �eld equation forWµ reduces

to

1

λ
gµαgνβ∇µFαβ = 3Wν , (4.21)

i.e. ∇̃ has been replaced by ∇ (which preserves the metric). Since [∇ν ,∇µ] ∝ Rµν , (4.21)

implies the following conservation law

∇µW
µ
= 0. (4.22)

Note that the lhs of (4.21) depends on Wµ through the normal covariant derivative and as a

consequence it can be interpreted as the standard Proca equation in curved spacetime.

4.2. Conservation of energy–momentum tensor

Let us consider that the Lagrangian for matter takes the general form
√−gLM(gµν ,Wµ,ψ),

where ψ collectively denotes the matter �elds. Then, the total action is given by

S =
1

2κ

∫
d4x

√−g
{
R
(
Γ̃, gµν

)
− 1

4λ
gµαgνβFµνF

αβ

}
+

∫
d4x

√−gLM. (4.23)

The variation of (4.23) with respect to Weyl vector and metric gives the following equations

of motion respectively

∇µF
µν

= 3λWν − 2κλ
δLM
δWν

, (4.24)

Gµν =
1

2λ
gραFµρFνα −

1

8λ
gµνFρσF

ρσ
+

3

2
WµWν −

3

4
gµνW

2
+ κTµν , (4.25)

where Tµν is the energy momentum tensor de�ned in the usual way

Tµν ≡ − 2√−g
δSM
δgµν

. (4.26)

By taking∇ν on both sides of (4.24), we get

0 = ∇ν∇µF
µν

= 3λ∇νW
ν − 2κλ∇ν

δLM
δWν

. (4.27)

Meanwhile, by taking∇ν on both sides of (4.25), we get

0 = ∇νGµν =
1

2λ
Fµν

(
3

h
Wν − 2κλ

δLM
δWν

)
+

3

2
∇ν

(
WµWν

)
− 3

4
∇ν

(
gµνW

2
)
+ κ∇νTµν

=
3

2
Wµ∇νW

ν − κFµν
δLM
δWν

+ κ∇νTµν

= κ∇νTµν + κWµ∇ν
δLM
δWν

− κFµν
δLM
δWν

, (4.28)
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where we have used (4.27) and the Bianchi identity. A suf�cient condition for the vanishing

of the last two terms in (4.28) is that

δLM
δWν

= 0, (4.29)

i.e., as long as the matter Lagrangian does not couple to the Weyl vector, the usual

energy–momentum tensor is conserved. There are of course �elds that have this property, being

the obvious example a scalar.Wewill comment about the role of a scalar �eld in section 6. In the

presence of spinor �elds and since the spin connection contains a piece depending on the af�ne

connection, our formalism will introduce a coupling to the Weyl vector. In this case, it is still

possible to de�ne a conserved object which is a combination of the usual energy–momentum

tensor and an extra contribution associated to the defects, see for example [19].

5. Some cosmological implications

Having established themain properties of the non-metricity �eld within our approach,wemove

now to some implications of the presence of non-metricity in various models. Once again, we

will assume that all the relevant d.o.f. of the non-metric part of the connection are described by

the Weyl vector. In particular, we will consider two non-metric f(R)-theories, namely a linear

and a quadratic function of the Ricci scalar in addition to a Maxwell-like term giving dynamics

to the Weyl vector.

5.1. Non-metric R̃ theory

We start with spatially-�at Robertson–Walker (RW) metric

ds2 = −dt2 + a2(t)δi j dx
i dx j. (5.1)

As a warming-up example let us consider the action (4.17) then, the �eld equations forWµ

in RW spacetime can be written explicitly as

−3a2λW0
= ∆W0 − ∂0(∂1W1 + ∂2W2 + ∂3W3), (5.2a)

3λWi =
1

a2
∂ jF ji − ∂0F0i −

ã

a
F0i, j 6= i (5.2b)

where∆ stands for Laplace operator. If we assume the ansatz,Wµ = Wµ(t), then equation (5.2)

reduce to

W0
= 0, (5.3)

for the time component and

Ẅ i +
ã

a
Ẇi + 3λWi = 0. (5.4)

for the spatial components. The Friedmann equations read

3
ã2

a2
=

3

4

1

a2λ
Ẇ2

+
9

4

W2

a2
, (5.5)

−
(
2
ä

a
+
ã2

a2

)
=

1

4

1

a2λ
Ẇ2 − 3

4

W2

a2
. (5.6)

8
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The rhs of (4.19) can be interpreted as a contribution to the energy momentum tensor

TWµν =
1

2λ
gραFµρFνα −

1

8λ
gµνg

ραgσβFρσFαβ +
3

2
WµWν −

3

4
gµνW

2, (5.7)

which is non-diagonal. But the Einstein tensor is diagonal in the RWmetric. This implies that,

in order to solve consistently the Einstein equations, one should assume that

TWµ 6=ν = 0. (5.8)

In order to realize this condition we proceed as follows. We replace the de�nition (4.8) by

Ω
ν
µσ =

1

2

N∑

a=1

(
W (a)
σ δνµ +W (a)

µ δνσ −W (a) νgµσ
)
, (5.9)

whereW (a) are NWeyl vectors with randomly oriented directions [29]. Each productW
(a)
i W

(a)
i

will be proportional to N, while the non-diagonal termsW
(a)
i W

(a)
j , i 6= jwill be proportional

to
√
N (due to the random distribution of orientations). Therefore, for largeN, the non-diagonal

terms are suppressed, leading to the condition (5.8), which is exact is the limit. The same

conclusion follows if one considers a triad of mutually perpendicular vectors [30]. In any case,

and to simplify the notation, we simply assume that the non-diagonal terms are negligible, and

each occurrence ofW2 is understood as proportional to N. The energy density and pressure for

the Weyl tensor can be read from (5.7),

ρ =
3

4

1

a2λ
Ẇ2

+
9

4

W2

a2
, (5.10)

p=
1

4

1

a2λ
Ẇ2 − 3

4

W2

a2
. (5.11)

In addition, if we assume that for early times the potential energy dominates, |λ|W2 ≫ Ẇ
2
,

the equation of state of the ‘Weyl �uid’ takes the form

p≈ −1

3
ρ. (5.12)

From the second Friedmann equation (5.6) we obtain the following behavior for the scale

factor

a(t) ∝ t. (5.13)

The �rst obvious consequence is that, non-metricity itself does not allow for an in�ationary

phase. The energy density for the defects ρd de�ned in (5.10) behaves as ρd ∝ 1/t2 independent
of the coupling constant λ. On the other hand, if we assume that the kinetic energy dominates,

Ẇ
2 ≫ |λ|W2, the equation of state is given by

p≈ 1

3
ρ, (5.14)

which corresponds to the equation of state for radiation. Therefore, in this regime the model

mimics a Universe dominated by radiation, a(t) ∝ √
t. In this situation the energy density

ρd behaves as ρd ∝ 1√
λt3/2

. As a consequence, in the aforementioned assumptions, the three-

volume multiplied by the defect energy density grows linearly in time as long as the potential

9
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energy dominates, and after that reaches a constant value determined by the coupling constant

λ and the initial values ofW and a. With this simple example we still cannot put any constraint

on the coupling λ, since, as we have seen, the only sensible quantity is the energy density of

the defects, and we cannot put constraints on that either. In the next section we study a less

simple example with Reacher phenomenology.

5.2. Non-metric R̃+ αR̃2 theory

We have determined that the Einstein–Hilbert action coupled to the Weyl vector cannot drive

an in�ationary phase. In this section we explore the effect of higher-curvature corrections. The

expression for the non-metric Ricci scalar has the form (4.11)

R(Γ̃, gµν) =

[
R(Γ, gµν)−

3

2
W2

]
− 3√−g∂ν

(√−gWν
)
. (5.15)

The last term in (5.15) is in general a boundary term of the linear action and can be expanded

as

∂ν
(√−gWν

)
= Γ

λ
νλW

ν
+ ∂νW

ν . (5.16)

In addition, in the RW geometry we have Γ
λ
νλ = 0. If we use the ansatz, W 0 = 0,

W i = W i(t) then the last term in (5.16) also vanishes. Under this conditions, the action

containing a quadratic curvature term can be written as follows

Sg =
1

2κ

∫
d4x

√−g
[
R̃+ αR̃2

]

=
1

2κ

∫
d4x

√−g
[
R+ αR2 − 3

2
W2 − 3αRW2

+
9α

4
W4

]
. (5.17)

The R̃2 term generates a quartic term in theWeyl vector and a quadratic term in the standard

Ricci scalar, but also a non-minimal coupling between the Ricci scalar and the Weyl vector.

After the addition of theMaxwell-like term to (5.17) the full action thatwe are going to consider

is

S = Sg −
1

8κλ

∫
d4xFµνF

µν. (5.18)

The modi�ed Friedmann equations and the �eld equations forW take the following form

H2
+ 36αH2Ḣ − 6αḢ2

+ 12αHḦ =
1

3
ρ ≡ −1

3
T 0
0 , (5.19)

Ḣ + 36αḢ2
+ 6α

(
3HḦ +

...
H
)
= −1

2
(ρ+ p) ≡ −1

2

(
−T 0

0 + T i
i

)
, (5.20)

ẅi + 3Hẇi + λ

(
1

λ
+ 36α

)
wi

(
2H2

+ Ḣ
)
+ 3λwi − 27αλw3

i = 0, (5.21)

where we have introduced the new vector �eld wi [29] de�ned by

wi = Wi/a. (5.22)

10
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The energy momentum tensor is given by

Tµν =
3

2
WµWν −

3

4
gµνW

2
+ 3αRWµWν + 3αW2Gµν −

9α

2
WµWνW

2
+

9α

8
gµνW

4

+
1

2λ
gραFµρFνα −

1

8λ
gµνg

ραgσβFρσFαβ + 3α
(
gµν�−∇µ∇ν

)
WρW

ρ. (5.23)

Fromnowonwewill assume in addition that the �eldwi (including themetric factor) represents

the defects (note that in �at space both de�nitions coincide) and κ = 1. After using (5.21) we

can write the energy density and pressure in terms of wi in the following form

ρ =
1

4λ
ẇ2

+
3

4
wH

(
1

λ
+ 36α

)
(Hw + 2ẇ)+

9

8
w2

(
2− 9w2α

)
, (5.24)

p=
1

4

(
1

λ
− 72α

)
ẇ2

+
(1+ 36αλ)

4
w

((
1

λ
+ 144α

)
H2w + 72αwḢ +

1

λ
2Hẇ

)

− 3λ

8
w2

(
2

(
1

λ
− 72α

)
+ 9α

(
1

λ
+ 144α

)
w2

)
, (5.25)

where we have used the notation w2 ≡ wiwi,wẇ ≡ wiẇi. In terms of the �eld wi it is clear

that, when 1
λ
+ 36α = 0, (5.24) and (5.25) can be rewritten as

ρ =
3

4λ
ẇ2

+
9

4
w2

+
9

32λ
w4, (5.26)

p=
3

4λ
ẇ2 − 9

4
w2 − 9

32λ
w4, (5.27)

while (5.21) reduces to

ẅi + 3Hẇi + 3λwi − 27αλw3
i = 0. (5.28)

In this limit, the model corresponds to a (metric) R+ αR2 minimally coupled to a scalar �eld

φ2 = w2 with potential V(φ) = 9
4
φ2 + 9

32λφ
4.

5.2.1. λ > 0,α > 0. The situation with λ > 0 and α > 0 is qualitatively similar to a metric

model R+ αR2. The �eldw drops rapidly to zero during the in�ationary phase (IP) and begins

to oscillate. The Universe enters in a matter dominated Friedmann phase (MFP) and the expan-

sion decelerates forever. TheHubble parameter decays linearly in the IP and it is approximately

described by the following expression

HIP(t) ≈ Hi −
1

36α
t, (5.29)

whereHi in the initial value if the Hubble parameter. After the IP,H(t) starts to oscillate leading

to a MFP. The qualitative behavior ofH(t) andw(t) is shown in �gure 1. The number of e-folds

N during this phase can be given byN ≈ 18H2
i α, as it can be seen immediately form �gure 1.

The duration of the IP is entirely determined by the coupling α and the initial value of the

Hubble parameter.

11
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Figure 1. Normalized behavior of the Hubble parameter and the w(= W/a) vector. tf is
the time at the end of the in�ationary phase and can be approximated as tf ≈ 36Hiα.

5.2.2. 1/λ < −36α < 0. This situation is more interesting. Since λ is negative, w has the

wrong sign in front of the kinetic term. The behavior of H(t) is qualitatively the same as in

the previous case. It decays linearly following (5.29). Now, due to the fact that λ < 0, w does

not enter in the oscillatory phase. Instead, it decays exponentially until the end of the IP. In this

phase it can be approximated as follows

wIP(t) ≈ wi exp

[
−Hit +

t2

72α

]
, t ∈ (tP, tf), (5.30)

where we have assumed that 1/|λ| > α, tP is the Planck time, tf the time at the end of in�ation

de�ned in the caption of �gure 1 and wi is the initial value of the vector �eld. In the MFP, w
can be approximated by

wMFP(t) ≈ wIP(tf) exp
[√

3|λ|(t − tf)
]
, t ∈ (tf, te), (5.31)

where te is the time at the end of the MFP. On the other hand, the following constants are exact

solutions of the equations (5.19)–(5.21)

HdS[t] =

√
3|λ|
2

, wdS(t) = 2
√
|λ|. (5.32)

The solution (5.32) is a critical point of the system (5.19)–(5.21) and corresponds to an

asymptotically stable point of the linearized system (see appendix A). In order to estimate the

duration of the MFP (te) we can use the expression (5.32). Since w(t) grows monotonically in

the MFP and (5.32) is an attractor, the following condition holds at t ≈ te

wMFP(te) ≈ 2
√
|λ| ⇒ te ≈ tf +

√
|λ|
3

log

[
2
√
|λ|

wIP(tf)

]
. (5.33)

12
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Figure 2. Qualitative behavior of the normalized Hubble parameter and w vector.

Since (5.32) is an exact solution of (5.19)–(5.21), we conclude that for t > te the Universe

enters in a stable de Sitter phase. The behavior of H(t) and w(t) are shown qualitatively in

�gure 2.

The evolution of the equation of state p/ρ = ω is shown in �gure 3. In the IP ω is approxi-

mately constant with −1 < ω < −1/3. After this phase it begins to oscillate to large negative
values ω < −1, due to the minus sign in front of the kinetic term. Finally, in the de-Sitter phase

it converges to ω = −1.

The maximum duration of the Friedmann phase depends roughly on the parameter λ as one

can see from (5.33). A realistic value for te requires the following constraints. First, in order to

preserve the IP we assume �rst that the number of e-folds is approximatelyN ≈ 75, see [22].

Second, if the initial valuewi of theWeyl vector is of the order of the coupling λ, |ω|2 ≈ λ, the
time te for the beginning of the late-time acceleration can be computed from (5.33) and gives a

value te ≈ 25
√
3/|λ|. Therefore, if |λ| is of the order of the square of the cosmological constant

Λc, te is roughly one order of magnitude bigger that its real value. Under these conditions, the

model presented above describes in�ation, matter-dominated Friedmann phase and late-time

acceleration. It should be noted that, the potential responsible for the late-time acceleration

is naturally obtained in the non-metric approach from the gravity part and no extra functions

have to be chosen. Therefore, the distribution of defects, here represented by the vector �eld

w, drives the accelerated stage andmakes unstable the Friedmann phase. Note also that, during

the late-time acceleration phase the equation of state of the defect �eld coincides exactly with

that of a cosmological constant, p/ρ = −1. The qualitative behavior of the energy density of

the defects in shown in �gure 4. Due to the wrong sign of the kinetic term it starts in a negative

value and remains negative approximately until the end of the IP. In the MFP it takes positive

values and �nally stabilizes at a constant value, ρd =
9|λ|
2

in the last phase.

In the limiting case 1/λ = −36α < 0, equations (5.26)–(5.28), the Universe does not enter

in the MFP and the Hubble parameter goes directly from a linearly decreasing phase to a
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Figure 3. Equation of state. IP: in�ationary phase, MFP: matter-dominated Friedmann
phase and dS: de Sitter phase.

Figure 4. Normalized behavior of the defect energy density.

constant phase (5.32), leading to an continuous exponential expansion of the scale factor. The

situation α < 0 is also rather uninteresting, since the Hubble parameter grows linearly leading

to an exponential expansion without MFP.
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6. Conclusions

We have proposed an effective description of the spacetime foam in terms of the non-metricity

tensor. If such a spacetime foam is an intrinsic property of spacetime, an otherwise quite natural

assumption, one should expect that its existence cannot depend on the presence or absence of

matter (or radiation). Our formulation in terms of theWeyl vector suggests naturally aMaxwell

term to provide the dynamics. From this point of view, the spacetime has two dynamical struc-

tures: the metric, whose dynamics is governed by the Einstein equations (or their generalization

to f(R) gravity), and the Weyl vector, whose dynamics is governed by Maxwell type equations

(with mass term) in a curved spacetime. It is worth noting that the effect of the non-metricity is

nontrivial even in �at spacetime. The trajectory of a test particle is still governedby the geodesic

equation, but the connection contains now a non-vanishing part arising from the non-metricity.

It is important emphasize that the mass term, or in general the potential V(WµWµ), is

naturally generated by the gravity sector f(R). It is always possible to introduce by hand

any potential in the Weyl vector with terms of the form V(∇̃µgµρ∇̃µgµρ), but this possibility

increases the degree of arbitrariness of the model.

From the point of view of cosmological applications, we have pointed out that the non-

metric Einstein–Hilbert action with the Maxwell term does not allow for a description of an

in�ationary phase. Instead, it describes a non-accelerating and non-decelerating expansion,

where the scalar factor grows linearly, as long as the potential energy dominates the kinetic

one. In the opposite situation, the Universe enters a radiation dominated phase.

The situation becomes more interesting if we consider R̃+ αR̃2. In this case, the behavior

of the solutions depends strongly on the parameter α, of dimension inverse mass squared, and

on the coupling λ (multiplying the Maxwell term). If α,λ > 0, the solutions are qualitatively

similar to those of a Starobinsky-like model [21]. There is an in�ationary period followed by a

matter dominated phase. If α < 0, the Universe enters a de-Sitter phase that lasts forever. For

1/λ < −36α < 0 there are three different phases: for t ∈ (tP, tf) the Universe experiences a de-

Sitter expansion, for t ∈ (tf , te) the Universe expands as in a matter dominated phase. Finally,

for t > te the expansion begins to accelerate again. During the IP the non-metricity, represented

by the Weyl vector, is highly suppressed, as it can be seen from (5.30). As a consequence, the

model effectively corresponds to a R+ 1
6M2R

2 Starobinsky model. The constraints onM from

the normalization of the CMB anisotropy give a value M ≈ 10−5, or α ≈ 1010 in Plank units

[23]. The addition of matter should not modify qualitatively our results since for large times

the energy density of the defect �eld takes over the energy density of cold matter and radiation.

Regarding possible variations of the model and comparison with other available models

several comments are in order:

(a) As we have pointed out, for λ = 1 and α = −1/36, our model is equivalent to a scalar

�eld φ =
√
w2 minimally coupled to R+ αR2 which lacks the Friedmann phase. This is

due to the presence of R2. However, if we get rid of this term, that is, we only include a term

RWµWµ (vector �eld non-minimally coupled to gravity), the Friedmann phase reappears

[29]. But the model is still not compatible with late-time acceleration.

(b) With an appropriated choice of initial conditions, a minimally coupled ghost-like scalar

�eld (with thewrong sign in front of the kinetic term) can describe in�ation and Friedmann

phase (driven by the higher-curvature term) and late-time acceleration (driven by the ghost

�eld). The potential V(φ) has to be chosen such that ∂φV(φ = φ0) = 0, where φ0 is the
value of the φ at which the late-time acceleration begins. At this value, both φ0 andH0 6= 0

are solutions of the �eld equations. The disadvantage of these models is that one has to
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choose a particular potential, which in our model is ‘naturally’ obtained from the gravity

side.

(c) One can also consider more general non-metric f(R) gravity. This still univocally

determines the potential for the Weyl vector, but also generates non-minimal couplings of

the form Rn(WµWν )m. The analysis of this kind of models is left for future investigations.

(d) Several models previously discussed in the literature also explain in a uni�ed way the

three phases discussed here (as prominent examples see [24] for phantom in�ation and

[25] for Maxwell coupled to f(R) and references therein). But they also require the choice

of several functions (the ‘metric’ of the scalar �eld in the �rst case, and the non-minimal

coupling function to the Maxwell term and the f(R) term in the gravity side in the latter).

For extensive reviews of f(R) theories in the cosmological context see [26, 27].

Finally, the constraints obtained for λ both in sign and magnitude, arise from the fact that,

under these conditions the defect �eld, described by the Weyl vector, is responsible for the

late-time acceleration. It should be noted that these non-canonical kinetic terms occur also in

higher-derivative gravities [31] and supergravities [32]. On the other hand, scalar �elds with

wrong sign in front of the kinetic term have already been considered extensively in the literature

in the cosmological context [24, 33, 34]. It may very well be that generalizations of the kinetic

term for the defects, in the spirit of [25], may change this fact. These issues are left for future

work.
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Appendix A. Linearized system

The linearized system (5.19)–(5.21) at the point (H⋆,w⋆) =

(√
3|λ|
2
, 2

√
|λ|

)
has the form









δḢ1

δẇ1

δḢ
δẇ









=

















−3

√

3

2

√

|λ|
√

|λ|36α+ 1/|λ|
12α

−6|λ| − 1

3α

1+ 36α|λ|
4
√
6α

−|λ|3/22(36α+ 1/|λ|) −3

√

3

2

√

|λ| 4
√
6|λ|2(36α+ 1/|λ|) −216α|λ|2

1 0 0 0

0 1 0 0

























δH1

δw1

δH
δw









,

whereH1 ≡ Ḣ andw1 ≡ ẇ. The eigenvalues of the linear system can be computed in a closed

form

(λ1, λ2, λ3, λ4) =
√
|λ|




−
3

√
3
2

2
+
i

√
21
2

2
,−

3

√
3
2

2
−
i

√
21
2

2
,−

√
81α2 + 4α/|λ|

2
√
6α

−
3

√
3
2

2
,

√
81α2 + 4α/|λ|

2
√
6α

−
3

√
3
2

2



 .
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Since we have, Re[λi] < 0, i = 1, 2, 3, 4 the critical point (H⋆,w⋆) is stable. Similarly, it

can be shown that the point (0, 0) (corresponding to an asymptotic Friedmann Universe) is

unstable.

ORCID iDs

Jose Queiruga https://orcid.org/0000-0003-3904-8805

References

[1] Wheeler J A 1955 Geons Phys. Rev. 97 511
[2] Wheeler J A 1957 On the nature of quantum geometrodynamics Ann. Phys. 2 604
[3] Hawking S W 1978 Space-time foam Nucl. Phys. B 144 349–62
[4] Hawking S W, Page D N and Pope C N 1979 The propagation of particles in space-time foam Phys.

Lett. B 86 175–8
[5] Klinkhamer F R 2014 Skyrmion spacetime defect Phys. Rev. D 90 024007
[6] Klinkhamer F R and Sorba F 2014 Comparison of spacetime defects which are homeomorphic but

not diffeomorphic J. Math. Phys. 55 112503
[7] Klinkhamer F R andQueiruga JM2018 Antigravity from a spacetime defectPhys. Rev.D 97 124047
[8] Klinkhamer F R and Queiruga J M 2018 A stealth defect of spacetimeMod. Phys. Lett. 33 1850127
[9] Bernadotte S and Klinkhamer F R 2007 Bounds on length-scales of classical spacetime foammodels

Phys. Rev. D 75 024028
[10] Klinkhamer F R and Queiruga J M 2017 Mass generation by a Lorentz-invariant gas of spacetime

defects Phys. Rev. D 96 076007
[11] Queiruga J M 2018 Particle propagation on spacetime manifolds with static defects J. Phys. A 51

045401
[12] Sotiriou T P and Liberati S 2007 Metric-af�ne f (R) theories of gravity Ann. Phys. 322 935–66
[13] Sotiriou T P 2010 f (R) theories of gravity Rev. Mod. Phys. 82 451–97
[14] Sotiriou T P 2006 f (R) gravity and scalar-tensor theory Class. Quantum Grav. 23 5117–28
[15] Kupferman R, Maor C and Rosenthal R 2018 Non-metricity in the continuum limit of randomly-

distributed point defects Isr. J. Math. 223 75–139
[16] Günther H and Zorawski M 1985 On geometry of point defects and dislocations Ann. Phys. 497

41–6
[17] Klinkhamer F R andWang Z 2019 Lensing and imaging by a stealth defect of spacetimeMod. Phys.

Lett. A 34 1950026
[18] Hossenfelder S 2013 Phenomenology of space-time imperfection II: local defects Phys. Rev. D 88

124031
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