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Abstract

Complex flow phenomena make it difficult to simulate engineering applications

at a level of detail and accuracy that allows a characterization and improvement

of their working principle. This thesis shows that the lattice Boltzmann method

(LBM) is very well suited for this purpose. The focus is on the simulation and

modeling of turbulent flows. Due to the excellent parallelizability of the LBM,

turbulent flows are calculated with large-eddy simulations instead of Reynolds-

averaged Navier–Stokes models, which are common for industrial applications.

Thus, transient complex turbulent flows can be investigated simulatively. The

knowledge gained from these simulations is particularly useful for the design

and optimization of devices and processes.

All described LBM simulations are performed with the open source software

OpenLB. For this purpose, OpenLB is extended to allow a validation of imple-

mented turbulence models by means of canonical flow types. Furthermore, a

framework for the simulation of fluid-structure interaction (FSI) is created.

Initially, the collision operators Bhatnagar–Gross–Krook (BGK), entropic lattice

Boltzmann (ELB), two-relaxation-time (TRT), regularized lattice Boltzann (RLB)

and multiple-relaxation-time (MRT) are investigated in the Taylor-Green vortex

flow, a paragon of decaying homogeneous isotropic turbulence (DHIT). The fo-
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cus is on stability, consistency and accuracy of the used schemes. The study

includes the comparison of the turbulent kinetic energy, the energy dissipation

rate and the energy spectrum to a reference solution. Three different Reynolds

numbers Re= 800, Re= 1600 and Re= 3000 are considered using both acoustic

and diffusive scaling to characterize the influence of the lattice Mach number.

In highly underresolved grid configurations the BGK scheme shows unstable be-

haviour. Diverging simulations using the MRT scheme are due to a strong de-

pendence on the lattice Mach number. Although ELB changes the viscosity, no

behaviour corresponding to a eddy viscosity model can be found. At low lattice

Mach numbers, the RLB scheme shows very low energy levels at high wave num-

bers. The “magic parameter” of the TRT scheme is determined in terms of energy

contribution. Nevertheless, no increased stability compared to the BGK scheme

is found. Overall, the lattice Mach number should be chosen with respect to the

collision scheme to ensure stability and improve accuracy.

For the realization of a near-wall-modeled large-eddy simulation (NWM-LES)

approach the BGK collision operator is selected. The Smagorinsky eddy viscosity

model with the van Driest damping function is used in the turbulent boundary

layer. The influence of different velocity boundary implementations and wall

functions is investigated in a bi-periodic, fully developed turbulent channel flow

for friction Reynolds numbers of Reτ = 1000, Reτ = 2000 and Reτ = 5200.

The validation is carried out using direct numerical simulation (DNS) data for

first and second order turbulence statistics. Applying this approach to a Coriolis

mass flowmeter (CMF) shows that the pressure drop can be described up to a

Reynolds number of Re= 127 800.

Furthermore, the developed NWM-LES LBM approach is compared with Open-

FOAM, an open source implementation of the finite volume method (FVM), for

complex turbulent flows relevant for internal combustion engines. The previ-

ously developed and validated LBM approach is extended with a curved bound-

ary scheme for set velocity. The results of both flow solvers are compared with

data from a particle image velocimetry (PIV) experiment. The validation in-
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cludes both time-averaged and root mean square (RMS) velocity fields. In ad-

dition, both the run-time of the simulation and the duration of the different

grid generation processes are determined. The performance analysis shows that

OpenLB is 32 times faster than OpenFOAM for the tested configuration. Con-

sequently, the developed NWM-LES LBM approach is able to describe complex

turbulent flows in an engineering application accurately while simultaneously

reducing the required computational effort.

Vortex induced vibrations (VIV) also play an important role in many engineer-

ing applications. For the investigation of these, different fluid structure ap-

proaches for LBM are implemented, compared and evaluated. The two investi-

gated classes are the moving boundary methods (MBM) and the partially satu-

rated methods (PSM). First, the Galilean invariance of aerodynamic coefficients

for the individual schemes is investigated. The BGK scheme is used to simulate

an eccentrically positioned cylinder in a Couette flow. Furthermore, different

volume approximation methods for PSM and refill algorithms for MBM are com-

pared. Both, the grid convergence and the Galilean invariance convergence,

are considered. The study of VIV phenomena includes a transversely oscillating

cylinder in a free stream at a Reynolds number of Re = 100. Free and forced

oscillation are examined to investigate known phenomena such as lock-in and

lock-out zones. The results show that both, MBM and PSM, are in good agree-

ment with literature data, which confirms their suitability for VIV simulations.

Finally, a fluid-structure interaction approach is realized using an MBM approach

for the simulation of a CMF. Here, OpenLB is coupled with Elmer, an open source

implementation of the finite element method, to describe the structural dynam-

ics. A staggered coupling approach between the two software packages is pre-

sented. The finite element mesh is created by the grid generation tool Gmsh

to ensure a complete open source workflow. First, the Eigenmodes of the CMF

are calculated and compared with measurement data. The resulting excitation

frequency is used to determine the phase shift in a partitioned fully coupled FSI

simulation. The calculated phase shift is in good agreement with measured data
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and confirms that this model is able to describe the working principle of a CMF.

The conducted studies demonstrate the great potential of the LBM for the sim-

ulation of engineering applications, especially when turbulent flows are consid-

ered.



Zusammenfassung

Komplexe Strömungsphänomene machen es schwierig Ingenieursanwendungen

so detailliert und genau zu simulieren, dass eine Charakterisierung und Verbes-

serung ihres Funktionsprinzips möglich ist. Diese Arbeit zeigt, dass die Lattice-

Boltzmann-Methode (LBM) sehr gut für diesen Zweck geeignet ist. Im Vorder-

grund stehen hierbei die Simulation und Modellierung von turbulenten Strö-

mungen. Diese lassen sich auf Grund der hervorragenden Parallelisierbarkeit der

LBM mit Large-eddy Simulationen an Stelle von Reynolds-gemittelten Navier–

Stokes Modellen, die im industriellen Umfeld üblich sind, berechnen. Somit kön-

nen komplexe transiente turbulente Strömungen simulativ untersucht werden.

Die daraus gewonnenen Erkenntnisse dienen insbesondere der Auslegung und

Optimierung von Bauteilen und Prozessen.

Alle beschriebenen LBM Simulationen werden mit der Open Source Software

OpenLB durchgeführt. Dazu wird OpenLB erweitert, um eine Validierung von

implementierten Turbulenzmodellen mittels kanonischer Strömungsformen zu

ermöglichen. Des Weiteren wird ein Framework für die Simulation von Fluid-

Struktur Interaktion (FSI) geschaffen.

Anfangs werden die Kollisionsoperatoren Bhatnagar–Gross–Krook (BGK), Entro-

pic Lattice Boltzmann (ELB), Two-Relaxation-Time (TRT), Regularized Lattice
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Boltzmann (RLB) und Multiple-Relaxation-Time (MRT) in der Taylor-Green Vor-

tex Strömung, einem klassischen Beispiel für abklingende homogene isotrope

Turbulenz (DHIT), untersucht. Hierbei liegt der Fokus auf Stabilität, Konsistenz

und Genauigkeit der verwendeten Schemata. Die Studie beinhaltet den Vergleich

der turbulenten kinetischen Energie, der Dissipationsrate der Energie und dem

Energiespektrum zu einer Referenzlösung. Drei unterschiedliche Reynoldszah-

len, Re = 800, Re = 1600 und Re = 3000, werden sowohl unter Verwendung

einer akustischen als auch einer diffusiven Skalierung betrachtet, um den Ein-

fluss der Lattice Machzahl zu charakterisieren. In stark unteraufgelösten Gitter-

konfigurationen zeigt das BGK Schema ein instabiles Verhalten. Divergierende

Simulationen unter der Verwendung des MRT Schemas sind auf eine starke Ab-

hängigkeit von der Lattice Machzahl zurückzuführen. Obwohl ELB die Viskosität

verändert, kann kein Verhalten, das einem Wirbelviskositätsmodell entspricht,

gefunden werden. Bei geringen Lattice Machzahlen zeigt das RLB Schema sehr

geringe Energielevel bei hohen Wellenzahlen. Der „magic parameter” des TRT

Schemas wird bestimmt im Hinblick auf den Energieeintrag. Trotzdem wird kei-

ne erhöhte Stabilität im Vergleich zum BGK Schema festgestellt. Insgesamt sollte

die Lattice Machzahl bezüglich des verwendeten Kollisonsschemas gewählt wer-

den, um die Stabilität zu gewährleisten und die Genauigkeit zu verbessern.

Für die Realisierung eines wandmodellierten Large-Eddy Simulation (NWM-LES)

Ansatzes wird der BGK Kollisionsoperator ausgewählt. Das Smagorinsky Wir-

belviskositätsmodell kommt hierbei zum Einsatz und wird in der turbulenten

Grenzschicht mit der van Driest’schen Dämpfungsfunktion verwendet. Der Ein-

fluss verschiedener Implementierungen von Geschwindigkeitsrandbedingungen

und Wandfunktionen wird in einer biperiodischen, voll ausgebildeten turbu-

lenten Kanalströmung für Schubspannungs-Reynoldszahlen von Reτ = 1000,

Reτ = 2000 und Reτ = 5200 untersucht. Die Validierung erfolgt mittels Daten ei-

ner direkten numerischen Simulation (DNS) für Turbulenzstatistiken erster und

zweiter Ordnung. Die Anwendung dieses Ansatzes auf einen Coriolis Massen-

durchflussmesser (CMF) zeigt, dass der Druckverlust bis zu einer Reynoldszahl

Re= 127800 beschrieben werden kann.
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Des Weiteren wird der entwickelte NWM-LES LBM Ansatz mit OpenFOAM, ei-

ner Open Source Implementierung der finititen Volumen Methode (FVM) für

komplexe turbulente Strömungen, die relevant für Verbrennungsmotoren sind,

verglichen. Der zuvor entwickelte und validierte LBM Ansatz wird mit einer Ge-

schwindigkeitsrandbedingung für gekrümmte Ränder erweitert. Die Ergebnisse

beider Strömungslöser werden mit Daten eines Particle Image Velocimetry (PIV)

Experiments verglichen. Die Validierung umfasst sowohl die zeitgemittelten als

auch die quadratisch gemittelten (RMS) Geschwindigkeitsfelder. Zusätzlich wird

sowohl die Laufzeit der Simulation als auch die Dauer der unterschiedlichen Git-

tergenerierungsprozesse bestimmt. Die Performanceanalyse der getesteten Kon-

figuration zeigt, dass OpenLB 32-mal schneller ist als OpenFOAM. Folglich ist

der entwickelte NWM-LES LBM Ansatz dazu in der Lage, komplexe turbulente

Strömungen in einer Ingenieursanwendung akkurat und mit einem verringerten

Rechenaufwand zu beschreiben.

Wirbel induzierte Vibrationen (VIV) sind ein weiterer wichtiger Anwendungs-

fall für Ingenieursapplikationen. Für die Untersuchung dieser werden verschie-

dene Fluid-Struktur Ansätze für LBM implementiert, verglichen und evaluiert.

Die zwei untersuchten Klassen sind die Moving Boundary Methods (MBM) und

die Partially Saturated Methods (PSM). Als erstes wird die Galiläische Invari-

anz von aerodynamischen Koeffizienten für die einzelnen Schemata untersucht.

Dazu wird das BGK Schema verwendet, um einen exzentrisch positionierten

Zylinder in einer Couette Strömung zu simulieren. Überdies werden verschie-

dene Volumenapproximationsmethoden für PSM und Auffüllmechanismen für

MBM verglichen. Sowohl die Gitterkonvergenz als auch die Konvergenz der Ga-

liläischen Invarianz werden betrachtet. Die Studie der VIV-Phänomene umfasst

einen transvers oszillierenden Zylinder in einem Freistrom bei einer Reynolds-

zahl von Re = 100. Dabei werden freie und erzwungene Oszillation betrachtet,

um bekannte Phänomene, wie Lock-in und Lock-out Zonen, zu untersuchen. Die

Ergebnisse zeigen, dass sowohl MBM als auch PSM eine gute Übereinstimmung

zu Literaturdaten aufweisen, womit die Eignung für VIV-Simulationen bestätigt

werden kann.
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Schließlich wird ein Fluid-Struktur Interaktionsansatz unter der Verwendung ei-

nes MBM Ansatzes für die Simulation eines CMFs realisiert. Hierbei wird OpenLB

mit Elmer, einer Open Source Implementierung der Finite-Elemente-Methode,

gekoppelt, um auch die Strukturdynamik zu beschreiben. Ein gestaffelter Kopp-

lungsansatz zwischen den beiden Softwarepaketen wird präsentiert. Das Finite-

Elemente-Gitter wird durch das Gittergenerierungstool Gmsh erstellt, um einen

kompletten Open Source Workflow zu garantieren. Zunächst werden die Eigen-

moden des CMFs berechnet und mit Messdaten verglichen. Die daraus bestimm-

te Anregungsfrequenz wird zur Bestimmung des Phasenshifts in einer partitio-

nierten voll gekoppelten FSI Simulation verwendet. Der berechnete Phasenshift

zeigt eine gute Übereinstimmung mit den Messdaten und bestätigt, dass dieses

Modell in der Lage ist, das Funktionsprinzip eines CMFs zu beschreiben.

Die durchgeführten Studien zeigen das große Potential der LBM für die Simu-

lation von Ingenieursapplikationen, insbesondere wenn turbulente Strömungen

betrachtet werden.
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1
Introduction

In many engineering applications numerical simulations are essential to govern

and manage their product life cycles. This becomes particularly evident when

looking at the following selection, which intends to illustrate the importance

of numerical simulations in engineering. Firstly, it is generally understood that

the operating costs of pumps in pipeline systems are mainly influenced by the

pressure drop [19]. Numerical simulations enable the fast and precise calcula-

tion of arbitrarily shaped pipeline elements, and thus help to substantially min-

imize their operating cost. Another prominent example is the construction of

bridges [31]. Here, vortex-induced vibrations (VIV) have to be taken into ac-

count carefully. Otherwise this phenomenon can have disastrous consequences

as could be seen from the collapse of the Tacoma Narrows Bridge [9]. In this

regard, numerical simulations help to understand and predict VIV phenomena,

thus improving durability, efficiency and safety during a bridge’s life cycle. Also,

numerical simulations represent an essential tool for the analysis of internal com-

bustion (IC) engines, where they help to understand the complex processes in

turbulent intake flows of IC engines, resulting in improved engine efficiency and
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reduced pollutant emissions [89]. Lastly, the Coriolis mass flowmeter (CMF),

which is a highly accurate instrument for mass flow measurements, can benefit

from numerical simulations as its design can be improved for extended range of

use by simulating its working principle [105].

Unfortunately, precise numerical simulations of engineering applications are com-

plex and time-consuming, even if many cores and a large amount of memory is

used [26]. This is often related to the interconnection of various multiphysical

phenomena and the turbulent flow regime of fluids [79]. The three-dimensional,

unsteady and irregular nature of turbulence is the reason why the simulation

of turbulent flows is challenging [77]. In this respect, three approaches have

emerged prominently to model turbulent flows, namely direct numerical simula-

tion (DNS), large-eddy simulation (LES) and Reynolds-averaged Navier–Stokes

equations (RANS) [104]. The idea behind the direct numerical simulation is to

solve the Navier–Stokes equations. Here, no turbulence modeling is used, but

all time and length scales of the flow have to be resolved. LES, in contrast, sim-

ulates the large energy-containing scales and models the small scales based on

the universal character hypothesis. The RANS approach can be seen as a statis-

tical approach that describes the mean motion of the flow field. This approach

is especially common to describe industry applications due to its fast solution

procedure for statistically stationary flows and its reduced requirements on the

spatial resolution of numerical grids [29].

Nevertheless, RANS describes the entire energy spectrum by a few turbulence

quantities and the high level of modeling can lead to inaccurate and non phys-

ical results, if complex turbulent flows are considered [29]. The use of LES can

avoid this problem but goes hand in hand with a significantly increased com-

puting effort [77]. The higher computational demand can be compensated by a

highly parallel and fast algorithm [97]. The lattice Boltzmann method (LBM),

which has gained interest over the last decades [7, 17, 1], demonstrates this

advantage [48, 47] and is therefore an alternative to traditional discretization

methods such as the finite volume method (FVM) or the finite difference method
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(FDM).

The main aim of this work is to show that LBM is an excellent choice for the sim-

ulation of engineering applications, especially if turbulent flows are considered.

This thesis contributes to the four main areas of numerical simulation: method

development, implementation, validation and application.

A novel LBM near-wall modeled large eddy simulation (NWM-LES) method is

proposed to accurately simulate engineering applications at high Reynolds num-

bers. A particular challenge is the correct estimation of turbulence statistics

when a coarse mesh is used.

Based on the methodological development, a highly modular and fast NWM-LES

algorithm is implemented in the LBM framework OpenLB. Thanks to the mod-

ular structure also curved boundaries can be handled. Furthermore, various

fluid-solid interfaces for moving boundaries are implemented in a new frame-

work for OpenLB. Additionally, a complete open source coupling workflow be-

tween OpenLB and the structural solver Elmer [24] is developed to simulate

fluid-structure interaction (FSI).

Rigorous validation is carried out to analyze and compare commonly used col-

lision operators for decaying homogeneous isotropic turbulence in terms of ac-

curacy, consistency and stability. The implemented NWM-LES approach is vali-

dated in a fully developed bi-periodic channel flow. Moreover, the distinct fluid-

solid interfaces are compared in a Couette flow using a Galilean invariance anal-

ysis.

The implemented and validated approaches are used to address various engi-

neering applications. The simulation of a CMF at high Reynolds numbers with

LBM is enabled for the first time by using the NWM-LES approach and compared

to measurement data. A further application case of the NWM-LES approach is

the in-cylinder flow in an IC-engine, thus demonstrating the broad field of ap-
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plication. The analysis of VIV phenomena as an important engineering relevant

challenge in a free stream shows the suitability of the fluid-solid interface ap-

proaches. The implemented FSI workflow makes it possible for the first time to

simulate the working principle of a CMF with LBM.

This thesis is structured as follows: Chapter 2 introduces the DNS, LES and

RANS approach for the simulation of turbulent flows, while focusing on the im-

plementation in the LBM framework. The subsequent Chapters 3-7 represent

published articles. A DNS for different collision operators is obtained in Chap-

ter 3 to analyze the properties of each collision operator in terms of lattice Mach

number, Reynolds number and grid resolution dependency. In Chapter 4, the

BGK collision operator is selected to implement a NWM-LES, enabling the simu-

lation of the pressure drop in a CMF geometry. An extension of this approach for

curved boundaries to address IC-engine flows is depicted in Chapter 5. Next, the

evaluation of various fluid-solid interfaces in the context of VIV is presented in

Chapter 6. On this basis, Chapter 7 shows a complete open source FSI workflow

to simulate the working principle of a CMF. Finally, Chapter 8 summarizes the

results and provides an outlook about future research topics.



2
Modeling and Simulation Approaches for

Turbulent Flows

The complexity of turbulence modeling originates from its multiscale character.

Turbulence motion appears on a broad range of time and length scales. Tur-

bulence is still a not fully understood physical phenomenon, and the existing

theories are based on simplifications that lead to limitations of applicability for

complex turbulent flows [38]. It is worth noting that turbulence theory is based

on working hypotheses. The behavior of turbulence in the limit of very high

Reynolds numbers has not been experimentally tested and therefore the vali-

dation of turbulence theories is based on a limited database. This fact leads

to a field of tension between distinct theories that propagate a certain view on

turbulence.

Nevertheless, for a better understanding of the different approaches to turbu-

lence modeling, established concepts are introduced which – strictly speaking

– only apply to homogeneous isotropic turbulence at high Reynolds numbers.
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Homogeneous turbulence means that all statistical properties are invariant by

spatial translation. If the statistical properties are also invariant to any axial

rotation, the flow is called homogeneous and isotropic [5].

The concepts are explained with the help of Figure 2.1, which displays a model

spectrum of the kinetic energy E as a function of the wave number κ. Hereby,

κEI κDI

energy-containg
range

inertial
subrange

dissipation
subrange

universal
equilibrium

range

∼ κ−5/3

log κ

lo
g

E(
κ
)

Figure 2.1: Characteristic ranges in the model spectrum of the turbulent kinetic energy

the wave number and the corresponding length scale l are connected by κ =
2π/l. Important turbulent quantities are the turbulent kinetic energy k and the

dissipation rate of the turbulent kinetic energy ε. The turbulent kinetic energy

k is defined as

k =
1
2
〈u′
α
u′
α
〉, (2.1)

where Greek indices obey the Einstein notation, u′
α

is the fluctuation component

of the velocity field u and 〈·〉 denotes a time-averaged quantity. The dissipation
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rate of the turbulent kinetic energy ε reads

ε = ν

�

∂ u′
α

∂ xβ
∂ u′

α

∂ xβ

�

, (2.2)

where xβ is the position.

In 1922, Richardson [83] introduced the concept of the energy cascade, which

is still an important qualitative model to understand the energy transfer from

large scales to small scales. The largest occurring eddies are usually in the order

of the characteristic length scale of the flow. They are located at small wave

numbers κ < κEI in the energy containing range. These energy containing large

scales are unstable and break up into smaller eddies. The process can be seen

as a cascading waterfall from pool to pool, which means that energy can only

be transferred between scales that are similar in size and no long-range energy

transfer takes place. The break-up process, where the eddies become smaller

and smaller, takes place in the inertial subrange κEI < κ < κDI. The process lasts

until the eddy motion is stable at high wave numbers κ > κDI in the dissipa-

tion subrange. Here, the kinetic energy is dissipated by the effect of molecular

viscosity.

Further questions concerning the scales of the energy cascade can be answered

with the K41 theory proposed by Kolmogorov [52] and restated by Pope [77].
The theory is that the small scales of turbulence κ > κEI are statistically isotropic

at high Reynolds numbers Re, which is known as Kolmogorov’s hypothesis of lo-

cal isotropy [77]. Hence, the large energy containing scales are characterized as

anisotropic and the small scales can be seen as statistically isotropic. Addition-

ally, small scales in the universal equilibrium range κ > κEI can be unambigu-

ously determined by the viscosity ν and the turbulent kinetic energy dissipation

ε. This dependency is known as the first similarity hypothesis. The dependency

of ν and ε is used to describe the smallest occurring dissipative scales in the flow,

namely the Kolmogorov scales. The Kolmogorov length scale η, velocity scale
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uη and time scale τη are respectively defined by

η=
�

ν3

ε

�1/4

, (2.3)

uη = (εν)
1/4, (2.4)

τη =
�ν

ε

�1/2
. (2.5)

The second similarity hypothesis states that the small scales in the inertial sub-

range κEI < κ < κDI are only determined by the turbulent kinetic energy dissi-

pation ε. This implies that viscous effects are negligible in the inertial subrange

and only motions in the dissipation range are affected by the viscosity. The de-

crease of energy according to the energy cascade in the inertial subrange scales

with ∼ κ−5/3.

The following sections introduce the three basic approaches to turbulence mod-

eling, namely the direct numerical simulation (DNS), the large-eddy simulation

(LES) and the Reynolds-averaged Navier–Stokes (RANS) approach. Hereby, the

focus is set on the implementation in the LBM, which is illustrated by an exem-

plary selection of models.

2.1 Direct Numerical Simulation

DNS is the most accurate and conceptually the simplest approach to simulate

turbulent flows, because no additional turbulence modeling is involved. There-

fore, the Navier–Stokes equations are approximated and the occurring errors are

solely due to discretization. The basic idea is to resolve all scales of motion using

suitable fine discretization, initial and boundary conditions. The obtained flow

field is equivalent to a single realization of a flow or a short term laboratory ex-

periment [25]. Nevertheless, the computational demand rapidly increases with
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the Reynolds number. Hence, the application of DNS is restricted to low and

moderate Reynolds numbers, which excludes most large-scale industrial appli-

cations.

Assuming homogeneous isotropic turbulence, the high computational effort can

be estimated, which was shown by Pope [77]. Firstly, a turbulence Reynolds

number ReL is defined as

ReL =
k

1
2 L
ν
=

k2

εν
, (2.6)

where k is the turbulent kinetic energy and L = k3/2/ε the characteristic length

scale of the flow. The domain sizeL must be large enough to capture the largest

appearing energy-containing motions. A reasonable choice to capture the large

scale energy-containing motions is that the domain size L is eight times the

longitudinal integral length scale L11, which is defined by

L11(t) =

∞
∫

0

=
〈u′1(x + e1r, t)u′1(x , t)〉

〈(u′1)2〉
dr, (2.7)

where e1 is the unit vector in direction 1. Furthermore, the grid spacing ∆x
must be smaller than the Kolmogorov length scale η or at least in the same order

of magnitude. Consequently, the resolution N with respect to the Kolmogorov

length scale η = 1.5/(π∆x) [109] assuming high Reynolds numbers (L11/L =
0.43) [77] is given by

N =
L
∆x
= 8

L11

∆x
≈ 3.8

L11

η
≈ 1.6

L
η
= 1.6Re

3
4
L . (2.8)

The number of time steps M supposes a simulation duration of four times the

turbulence time scale τs = k/ε and a Courant–Friedrichs–Lewy number of CFL=
k1/2∆t/∆x = 0.05 [77]. Hence, the number of time steps is estimated by

M =
4
τs
= 80

L
∆x
≈ 38.2

L
η
= 38.2Re

3
4
L . (2.9)

Finally, the number of mode-steps N 3M [77] yields

N 3M = 160Re3
L. (2.10)
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This result underlines the high computational effort that is necessary to address

transient high Reynolds number flows with DNS.

In this section, the Navier–Stokes equations that must be solved for DNS are

introduced. Afterwards the Boltzmann equation and its discretization, the lat-

tice Boltzmann equation, is described. The focus is on different LBM collision

operators that are commonly used to recover the Navier–Stokes equations.

2.1.1 Navier–Stokes Equations

The Navier–Stokes equations are a fundamental set of partial differential equa-

tions to describe a fluid as a continuum. They are based on the conservation

principles for mass, momentum and energy. The corresponding continuity and

momentum equations are introduced in the following.

2.1.1.1 Continuity Equation

The continuity equation describes the conservation of mass, i.e. the sum of the

masses flowing in and out of a unit volume per unit time is equal to the mass

change per unit time due to density changes. This implies that the fluid mass

can neither be created nor destroyed. The continuity equation reads

∂ ρ

∂ t
+ uα

∂ ρ

∂ xα
+ρ

∂ uα
∂ xα

= 0, (2.11)

where ρ is the fluid density and t is the time. The first two terms of Eq. (2.11)

represent the material derivative of the density. If the fluid is assumed to be

incompressible, the material derivative equals zero. The fluid velocity is there-

fore divergence-free or solenoidal and the incompressible continuity equation is

written as
∂ uα
∂ xα

= 0. (2.12)
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It is worth noting that a constant density is not a necessary condition for in-

compressible flows, an example of which are density layers in oceans [75, 110].
The incompressibility assumption of the flow is justified for low Mach numbers

(Ma< 0.3) [2].

2.1.1.2 Momentum Equation

The momentum equation is based on Newton’s second law of motion. It pos-

tulates that the fluid acceleration equals the sum of surface and body forces

experienced by the fluid. Hence, the momentum equation in convective form

reads

ρ

�

∂ uα
∂ t
+ uβ

∂ uα
∂ xβ

�

=
∂ Tαβ
∂ xβ

−
∂ p
∂ xα

+ρgα, (2.13)

where p is the pressure field, gα is the body acceleration and T f
αβ

is the fluid stress

tensor. Assuming an incompressible Newtonian fluid, the fluid stress tensor is

given by

Tαβ = µ

�

∂ uα
∂ xβ

+
∂ uβ
∂ xα

�

, (2.14)

where µ is the dynamic viscosity.

2.1.2 Boltzmann Equation

A fluid can be statistically described by a particle distribution function f , which

depends on position x , particle velocity ξ and time t. The transport process of

f is described by the Boltzmann equation, which reads

∂ f
∂ t
+ ξα

∂ f
∂ xα

+
Fα
ρ

∂ f
∂ ξα

= Ω( f ). (2.15)

This equation can be interpreted as an advection equation [54]. The first two

terms are the material derivative of f and therefore describe the advection with
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velocity ξ. The third term is related to the acting forces. The source term on

the right hand side is the collision operator Ω( f ). It can be simplified by the

Bhatnagar-Gross-Krook (BGK) [8] collision operator, which is commonly used

to derive LBM collision operators. The BGK-Boltzmann equation reads

∂ f
∂ t
+ ξα

∂ f
∂ xα

+
Fα
ρ

∂ f
∂ ξα

= −
1
τ
( f − f eq) , (2.16)

where τ is the relaxation time and f eq a distribution function at equilibrium

state. Assuming a three dimensional velocity space and an ideal gas, f eq is de-

fined by the Maxwell-Boltzmann distribution

f eq = ρ
�

m
2πkB T

�
3
2

exp

 

m
�

ξ− u
�2

2kB T

!

, (2.17)

where m is the particle mass and kB the Boltzmann constant, u the local mean

velocity and T the temperature. The macroscopic quantities of the fluid such

as mass density ρ, momentum density ρu, total energy density ρE and inter-

nal energy density ρe are defined by the moments of the particle distribution

function, respectively

ρ(x , t) =

∫

f (x ,ξ, t)dξ, (2.18)

ρ(x , t)u(x , t) =

∫

ξ f (x ,ξ, t)dξ, (2.19)

ρ(x , t)E(x , t) =
1
2

∫

|ξ|2 f (x ,ξ, t)dξ, (2.20)

ρ(x , t)e(x , t) =
1
2

∫

|ξ− u|2 f (x ,ξ, t)dξ. (2.21)

In the hydrodynamic limit, the incompressible Navier-Stokes equations can be

derived from the BGK-Boltzmann equation (2.16) [91].
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2.1.3 Lattice BoltzmannMethod

The discretization of the BGK-Boltzmann equation (2.16) in the hydrodynamic

regime [53] on an equidistant Cartesian grid yields a finite number of particle

distribution functions fi. The resulting lattice is defined by d dimensions and q
lattice velocities ci, i = 0, 1, ..., q − 1. A commonly used descriptor set in three

dimensions is D3Q19, where the lattice velocities ci are defined as

ci =















(0,0, 0) i = 0,

(±1, 0,0), (0,±1,0), (0, 0,±1) i = 1, 2, ..., 6,

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7, 8, ..., 18.

(2.22)

The lattice Boltzmann equation (LBE) without external forces is given by

fi

�

x LB + ci, tLB + 1
�

= fi

�

x LB, tLB
�

+Ωi, (2.23)

where fi is the particle distribution function at discrete lattice position x LB and

time step tLB. On the right hand side of Eq. (2.23) Ωi represents the lattice

collision operator, which relaxes the particle distribution functions fi towards

their corresponding discretised equilibria f eq
i , under the conservation constraints

for mass and momentum.

For an isothermal, weakly compressible flow, the particle distribution function

at equilibrium state f eq
i is described by a low Mach number truncation of the

Maxwell-Boltzmann distribution (see Eq. (2.17)). It reads

f eq
i

�

ρLB, uLB
�

= ρLBwi

�

1+
ciαu

LB
α

c2
s

+
uLB
α

uLB
β
(ciαciβ − c2

s δαβ)

2c4
s

�

, (2.24)

where wi are the lattice weights obtained by the Gauss-Hermite quadrature [45,

95], cs = 1/
p

3 is the speed of sound of the lattice and δαβ is the Kronecker

delta.
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Similar to Eqs. (2.18) and (2.19), the moments of the discrete particle distribu-

tion functions fi are used to calculate macroscopic flow quantities. The zeroth,

first and second moment of fi yield the density ρLB, momentum ρLBuLB, and

momentum flux Π, respectively. These discrete moments of fi are obtained by

ρLB =
q−1
∑

i=0

fi , (2.25)

ρLBuLB =
q−1
∑

i=0

ci fi, (2.26)

Παβ =
q−1
∑

i=0

ciαciβ fi . (2.27)

A simplifed isothermal equation of state relates the pressure pLB to the density

ρLB through

pLB = c2
s ρ

LB. (2.28)

The lattice Mach number MaLB is written as

MaLB =
uLB

char

cs
, (2.29)

where uLB
char is the characteristic lattice velocity. In the incompressible limit (MaLB→

0), the incompressible Navier–Stokes equations (see Eqs. (2.12) and (2.80)) are

recovered.

Finally, the lattice Boltzmann algorithm is divided in 2 steps: the local collision

step and the streaming step. The local collision step is described by the right-

hand side of Eq. (2.23) and the subsequent streaming step is represented by the

left-hand side of Eq. (2.23).
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2.1.4 Collision Operators

Various collision operators for LBM have been proposed over the last decades

to improve certain properties such as stability, consistency or accuracy. The fol-

lowing sections introduce commonly used collision operators to approximate the

incompressible Navier–Stokes equations. A more detailed comparison and dis-

cussion of these collision operators for homogeneous isotropic turbulence can

be found in Haussmann et al. [44].

2.1.4.1 Bhatnagar–Gross–Krook Collision Scheme

One of the oldest single relaxation time (SRT) collision operators is the Bhat-

nagar, Gross and Krook (BGK) [8] operator. It describes the linear relaxation

towards a particle distribution function at equilibrium state. The discretization

of the continuous form in Eq. (2.16) yields

Ωi = −
1
τ

�

fi

�

x LB, tLB
�

− f eq
i

�

ρLB, uLB
��

. (2.30)

If Eq. (2.30) is inserted in Eq. (2.23), we obtain the BGK scheme as

fi

�

x LB + ci, tLB + 1
�

= fi

�

x LB, tLB
�

−
1
τ

�

fi

�

x LB, tLB
�

− f eq
i

�

ρLB, uLB
��

. (2.31)

Within the incompressible limit, the relaxation time τ is connected to the kine-

matic viscosity νLB of the fluid by

νLB = c2
s

�

τ−
1
2

�

. (2.32)

This represents an interconnection of viscosity and stability. It is well-known that

the BGK operator suffers from instability at coarse grid resolutions and small

viscosities, see e.g. Yasduda et al. [108] or Chen and Doolen [17]. Nathen et

al. [71] showed that the instabilities originate from an increased energy at high

wave numbers. In the case of fully developed turbulent channel flows, Lam-

mers et al. [57] found a stability criterion at y+ < 2.5 (see Eq. (2.67)) using an

equidistant grid and a bounce back formulation for the walls.
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2.1.4.2 Multiple-Relaxation-Time Collision Scheme

The lattice BGK equation can be interpreted as a special case of an LBE with

multiple relaxation times (MRT) [22, 54]. Therefore, τ is replaced by a q × q
matrix S.

The moment vector m with q entries is calculated by multiplying the particle

distribution functions f =
�

f0, . . . , fq−1

�T
with the rows M j of a regular q × q

matrix M . To be precise, for j = 0, . . . , q− 1

m j = M j f . (2.33)

The vectors MT
j can be obtained by a Gram-Schmidt orthogonalization procedure

or Hermite polynomials [54, 22, 55]. Furthermore, it can be represented as a

linear combination of Hermite vectors, which allows to construct equilibrium

moments for an arbitrary matrix M [54]. It is noteworthy that the column-wise

arrangement of M follows the order of the velocity set [88, 22].

The equilibrium moments meq
j are similarly expressed by

meq
j = M j f

eq. (2.34)

Consequently, the MRT scheme [22, 54, 55] is written as

f
�

x LB + ci, tLB + 1
�

= f
�

x LB, tLB
�

−M−1S
�

m
�

x LB, tLB
�

−meq
�

x LB, tLB
��

.

(2.35)

Applying a D3Q19 velocity set, d’Humières et al. [22] proposed a moment vec-

tor

m =
�

ρLB, e, e2, jx , qx , jy , qy , jz , qz , 3σx x , 3πx x ,σww,πww,σx y ,σyz ,σxz , nx , ny , nz

�T, (2.36)

where m0, m3, m5 and m7 represent the density and the momentum flux. The

moments m1 = e and m2 = e2 are internal energy, respectively the squared
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internal energy, whereas m4 = qx , m6 = qy and m8 = qz are heat flux com-

ponents. The symmetric traceless viscous stress tensor is given by m9 = 3σx x ,

m11 = σww = σy y −σzz, m13 = σx y , m14 = σyz and m15 = σxz. The remaining

five moments of higher polynomial order, m10 = 3πx x , m12 = πww, m16 = nx ,

m17 = ny and m18 = nz, can be symmetrically traced back to parts of tensors

corresponding to products of the previously mentioned moments [22].

The according diagonal collision matrix is defined as

S = diag
�

0,ω1,ω2, 0,ω4, 0,ω4, 0,ω4,ω9,ω10,ω9,ω10,ω13,ω13,ω13,ω16,ω16,ω16

�

, (2.37)

where the relaxation frequencies of the conserved moments ρLB and j = ρLBuLB

yields S0 = S3 = S5 = S7 = 0. The relaxation frequencies ω1, ω9 and ω13

corresponding to the relaxation of e, diagonal and off-diagonal entries of σ, are

connected to kinematic and bulk viscosity via

νLB = c2
s

�

1
ω9
−

1
2

�

= c2
s

�

1
ω13
−

1
2

�

, νLB
B =

2
3

c2
s

�

1
ω1
−

1
2

�

. (2.38)

The relaxation frequency according the kinemtic viscosity is given byω9 =ω13 =
1
τ . The remaining adjustable parameters have been optimized with local analysis

in Fourier space with respect to the tested Reynolds numbers: ω1 = 1.19, ω2 =
ω10 = 1.4, ω4 = 1.2 and ω16 = 1.98 [22, 56].

The major advantage of MRT is the maximum number of tunable relaxation

times and equilibrium populations [22]. Thus, multiple possibilities exist to in-

fluence the stability and the physical behavior. The MRT scheme claimed to

avoid the upcoming instabilities as they occur for BGK at low resolutions [55,

22]. Nevertheless, disadvantages were identified by Nathen et al. [71], who

showed that instabilities appear at high Reynolds numbers and fine grids.
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2.1.4.3 Two-Relaxation-Time Collision Scheme

The two-relaxation-time (TRT) scheme was proposed by Ginzburg et al. [41] to

circumvent the complexity of optimizing several relaxation rates. The basic idea

is to relax the moments in m either with the lattice relaxation timeω+ = 1
τ+ =

1
τ

or with a second relaxation time ω− = 1
τ− , depending on the underlying poly-

nomial degree. Moments with an even order are relaxed with ω+ and moments

with an odd order are relaxed with ω−.

The equilibrium distribution is parted into a symmetric and an antisymmetric

contribution

f eq+
i =

1
2

�

f eq
i + f eq

ī

�

, (2.39)

f eq−
i =

1
2

�

f eq
i − f eq

ī

�

, (2.40)

where the index ī denotes the opposite direction cī = −ci in the lattice. Similarly,

the decomposition of the particle distributions is

f +i =
1
2
( fi + f ī) , (2.41)

f −i =
1
2
( fi − f ī) . (2.42)

The TRT scheme describes the relaxation to the antisymmetric and symmetric

non-equilibrium populations separately with relaxation rates ω− and ω+. It is

written as

fi

�

x LB + ci, tLB + 1
�

= fi −ω+
�

f +i − f eq+
i

�

−ω−
�

f −i − f eq−
i

�

. (2.43)

The decoupling of stability from viscosity is obtained through the individual re-

laxation of even and odd order moments. This leads to larger stability regions

of TRT in comparsion to BGK [40].

Ginzburg et al. [40, 41] summarized the stability increasing properties of the



2.1 Direct Numerical Simulation 19

TRT scheme based on the so-called “magic parameter”,

Λ=
�

1
ω+
−

1
2

��

1
ω−
−

1
2

�

. (2.44)

Krüger et al. [54] recommended to keep the value for Λ constant, when the vis-

cosity is changed through τ+ = τ in Eq. (2.32). Consequently, the magnitude

ratio of τ− to τ+ is calculated according to Eq. (2.44) and should maintain the

desired TRT solution behavior throughout the choices of νLB. A “magic parame-

ter” of Λ= 0.25 is recommended because of its stability properties [40].

2.1.4.4 Regularized Lattice Boltzmann Collision Scheme

Another attempt to increase the stability of the BGK scheme is the regularized

lattice Boltzmann (RLB) scheme proposed by Latt et al. [58].

Hereby, the non-equilibrium part f neq
i of the particle distribution function fi =

f eq
i + f neq

i is regularized according to

f neq
i ≈ f (1)i =

wi

2c4
s

�

ciαciβ − c2
s δαβ

�

q
∑

j=0

c jαc jβ f neq
j . (2.45)

Hence, the regularization of Eq. (2.31) is written as

fi

�

x LB + ci, tLB + 1
�

= f eq
i

�

x LB, tLB
�

+
�

1−
1
τ

�

f (1)i

�

x LB, tLB
�

. (2.46)

It is worth mentioning that Eq. (2.45) can be calculated purely locally and there-

fore maintains computational efficiency.

Moreover, Latt et al. [58] showed the equivalence of Eq. (2.46) to an MRT for-

mulation, where the hydrodynamic moments for densityρLB, momentumρLBuLB

and momentum flux Π are relaxed with 1
τ , whereas the kinetic moments are re-

laxed with a relaxation time of one. As a result, the RLB scheme has an increased

stability in case of large pressure gradient problems and turbulent flows.
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2.1.4.5 Entropic Lattice Boltzmann Collision Scheme

The Maxwell–Boltzmann equilibrium distribution approximation in Eq. (2.24)

violates Boltzmann’sH -theorem. [4]

Nevertheless, theH -functional has a convex-composed, discrete velocity coun-

terpart

H ( f ) =
q−1
∑

i=0

filn
�

fi

wi

�

, (2.47)

upholding the second law of thermodynamics [10]. H ( f ) is minimized with

respect to the conservation constraints for mass and momentum by [10, 3]

f̌ eq
i := argmin f H ( f ) = ρLBwi

d
∏

α=1

�

2−
q

1+ 2(uLB
α
)2
�

�

2uLB
α
+
Æ

1+ 3(uLB
α
)2

1− uLB
α

�ciα

.

(2.48)

Additionaly, a viscosity related parameter b [18] is calculated as

b =
1

6νLB + 1
=

1
2τ
∈ (0,1] . (2.49)

Hence, the entropic lattice Boltzmann (ELB) scheme is written as

fi

�

x LB + ci, tLB + 1
�

= fi

�

x LB, tLB
�

+ ab
�

f̌ eq
i

�

x LB, tLB
�

− fi

�

x LB, tLB
��

. (2.50)

The over-relaxation parameter a > 0 is defined as the non-trivial root of the

isentropic condition [10]

H
�

fi + a
�

f̌ eq
i − fi

��

= H ( fi) . (2.51)

Eqs. (2.48) and (2.51) have to be estimated in every time step. The latter is non-

linear and typically solved iteratively using the Newton–Raphson method [18].
The ELB scheme can be interpreted as an SGS model and an according turbulent

viscosity expression was derived by Malaspinas et al. [64]. If a is chosen to a = 2,

the ELB scheme is equivalent to the BGK scheme [18].
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2.2 Large-Eddy Simulation

As already mentioned at the beginning of this chapter, the small scales of turbu-

lence can be seen as homogeneous, isotropic and universal. In contrast, the large

scales are anistropic and inhomogeneous. The idea of LES is to differentiate be-

tween these large and small scales by simulating the large eddies and modeling

the small scales. For better comprehension, Figure 2.2 shows a model DNS and

LES energy spectrum. The small wave numbers κ < κcut-off describe the resolved

κcut-off

resolved scales unresolved scales

log κ

lo
g

E(
κ
)

DNS
LES

Figure 2.2: DNS and LES model spectrum of the turbulent kinetic energy

scales that are simulated and the high wave numbers κ > κcut-off are the unre-

solved small scales that have to be modeled. The separation of the resolved and

unresolved scales should take place in the inertial subrange, so that the eddies

in the energy-containing range are simulated and only the dissipative motion

needs to be modeled. Hence, the main function of the LES modeling terms is

the description of the dissipation of the turbulent kinetic energy. Especially the
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fact that energy is transported on average from the large to the small scales and

the universal character of the small scales is used.

First, this section introduces the filtered Navier–Stokes equations that have to

be solved for LES. Next, the filtered lattice Boltzmann equation is described.

Afterwards, LBM implementations of distinct SGS approaches are shown. Fi-

nally, the concept of near-wall modeled (NWM) and near-wall resolved (NWR)

approaches in LBM for addressing wall-bounded turbulence is discussed.

2.2.1 Filtered Navier–Stokes Equations

The velocity field is decomposed into a filtered part u and an SGS part uSGS. This

decomposition reads

u(x , t) = u(x , t) + uSGS(x , t). (2.52)

Analogously, the pressure field is parted in a filtered contribution p and an SGS

part pSGS. A general filtering operation can be written as

u(x , t) =

∫

G(r , x )u(x − r , t)dr , (2.53)

where G is the filter operation and r the radial coordinate. Common filter oper-

ations are box filter, Gausian filter, or the spectral cut-off filter. If no explicit filter

is applied, the discretization itself can be seen as an implicit filter operation with

constant filter width ∆x . Hereby, the filter operation G is not known and addi-

tionally the filter is time dependent [29]. Using the decomposition Eq. (2.52) to

Eq. (2.12), the filtered incompressible Navier–Stokes continuity equation reads

∂ uα
∂ xα

= 0, (2.54)
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and the momentum equation without body force according Leonard’s decompo-

sition [60] is given by

∂ uα
∂ t
+
∂ uαuβ
∂ xβ

= ν
∂

∂ xβ

�

∂ uα
∂ xβ

+
∂ uβ
∂ xα

�

−
∂ T SGS

αβ

∂ xβ
−

1
ρ

∂ p
∂ xα

, (2.55)

where T SGS
αβ

is the SGS stress tensor. The tensor T SGS
αβ

is expressed as

T SGS
αβ
= uαuβ − uαuβ (2.56)

Therefore, it can be interpreted as the effect of unresolved fluctuations on the

resolved motion. This SGS stress tensor is not known and must be modeled to

close the set of filtered incompressible Navier–Stokes equations.

2.2.1.1 Filtered Lattice BoltzmannMethod

Applying the filtering operation to the Boltzmann equation (2.15) and subse-

quent discretization, the filtered lattice Boltzmann equation without external

forces [50] is given by

f i

�

x LB + ci, tLB + 1
�

= f i

�

x LB, tLB
�

+Ωi, (2.57)

where f i is the filtered particle distribution function. The filtered collision oper-

ator Ωi can be implemented by a single-relaxation time model proposed by the

BGK collision operator (see Section 2.1.4.1). It reads

Ωi = −
1
τef f

�

f i(x
LB, tLB)− f

eq

i (ρ
LB, uLB)

�

, (2.58)

where τef f is the effective relaxation time towards the filtered discrete particle

distribution function at equilibrium state f
eq

i , ρLB is the filtered lattice density

and uLB the filtered lattice velocity field. The equilibrium distribution function

f
eq

i and the moments of f i, the density ρLB, the momentum ρ
LBuLB and the

momentum flux Π are calculated according to Eqs. (2.25), (2.26) and (2.27) by

replacing fi by f i.
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2.2.2 Subgrid-Scale Models

The main idea of an SGS model is to describe the interaction of the unresolved

flow patterns with the resolved ones. It is therefore necessary to introduce a

certain amount of dissipation to dissipate as much energy as a DNS of the same

configuration. The influence of an SGS model is visible in spectral space, as

depicted in Figure 2.2. Beyond the cut-off wave number κcut-off, which means on

smaller scales, the SGS model in a LES causes a much faster energy dissipation

compared to a DNS. A reliable SGS model should then provide accurate statistics

of the resolved energy-containing scales of motion. The choice of a suitable LES

depends largely on the filter width and the flow type. This is often a compromise

between accuracy and computational demand.

2.2.2.1 Eddy Viscosity Models

In order to close Eq. (2.55), the SGS stress tensor is described using the linear

eddy viscosity hypothesis [12]. Hence, the SGS stress tensor reads

T SGS
αβ
= −νSGS

�

∂ uα
∂ xβ

+
∂ uβ
∂ xα

�

, (2.59)

where νSGS is the SGS viscosity.

Eddy viscosity models are often introduced in LBM by adding the turbulent vis-

cosity to the molecular viscosity [50], which results in an effective viscosity

νLB,ef f = νLB + νLB,SGS. (2.60)

A consistent approach to implement eddy viscosity models in LBM was derived by

Malaspinas and Sagaut [66]. They presented that due to the connection between

lattice viscosity and lattice relaxation time (see Eq. (2.32)), the relaxation time

is also divided in a molecular and an SGS contribution

τef f = τ+τSGS, (2.61)
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where τSGS = νLB,SGS

c2
s

is the eddy contribution. The eddy viscosity νSGS in Eq. (2.60)

is evaluated by an SGS viscosity model, which can be generally written in lattice

units as

νLB,SGS = (CM∆
LB
grid)

2DM , (2.62)

where CM is a model coefficient, ∆LB
grid is the lattice grid filter and DM a model-

related operator.

Smagorinsky Model The probably most popular SGS viscosity models is the

Smagorinsky model [98]. The according model operator is defined as

DM =
r

2S
LB

αβ
S

LB

αβ
, (2.63)

where Sαβ is the filtered strain rate. The literature values for the Smagorinsky-

Lilly model constant CM are in the range of 0.065 ≤ CM ≤ 0.24 [67, 87]. For a

complex turbulent flow, a Smagorinsky-Lilly constant of CM = 0.1 is a common

choice [29]. There are several possibilities in the LBM framework to estimate

the filtered strain rate S
LB

αβ
. The first one is the approximation of the velocity

gradient by a finite difference scheme. Another approach is the local estimation

of the filtered strain rate by

S
LB

αβ
= −

Π
neq

αβ

2ρLB
τef f c2

s

, (2.64)

where Π
neq

αβ
is the second moment of the non-equilibrium parts of the particle

distribution function, which can be calculated according to Eq. (2.27) by replac-

ing f i with f
neq

i = ( f i − f
eq

i ). This leads to an implicit relation of the effec-

tive relaxation time τef f and the filtered strain rate S
LB

αβ
. Therefore, Malaspinas

and Sagaut [66] proposed an explicit expression for the Bhatnagar–Gross–Krook

(BGK) collision operator. This explicit expression for determining the effective

relaxation time τef f is calculated by

τef f =

√

√

√

τ2 +
2(CM∆

LB
grid)2

ρ
LB c4

s

r

2Π
neq

αβ
Π

neq

αβ
+
τ

2
, (2.65)
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where the lattice grid filter ∆LB
grid corresponds to the lattice grid spacing ∆xLB,

i.e. ∆LB
grid = 1.

SmagorinskyModelwithVanDriestDamping It is well known that the Smagorin-

sky model suffers from a too dissipative behavior in the near-wall region [72, 39,

85]. One possibility to circumvent this drawback is the introduction of a damp-

ing function that reduces the SGS viscosity depending on the wall distance. The

van Driest damping function [23] can be incorporated in the grid filter ∆LB
grid by

∆LB
grid =min

�

1,
κyLB

C∆

�

1− e(−
y+

A+ )
�

�

, (2.66)

where yLB is the lattice wall distance, A+ = 26 is the van Driest parameter, C∆ =
0.158 is a model constant and κ = 0.41 is the von Kármán constant [69]. The

dimensionless wall distance y+ in Eq. (2.66) is defined as

y+ =
uLB
τ

yLB

νLB
, (2.67)

where uLB
τ
=
r

T LB
w
ρLB is the friction velocity and T LB

w the wall shear stress.

Further examples of Smagorinsky based SGS models are the dynamic Smagorin-

sky model [39] implemented by Premnath et al. [80] and the shear-improved

Smagorinsky model realized by Leveque et al. [61].

Wall-Adapting Local Eddy-Viscosity Model The wall-adapting local eddy-viscos-

ity (WALE) model [72] is able to adapt the dissipation near the wall without

using a wall-damping function. The model is based on the calculation of the

resolved velocity gradient tensor ∂ uLB
α
/∂ xLB

β
. The model parameter DM is written

as

DM =

�

GLB
α,βGLB

α,β

�1.5

�

S
LB

αβ
S

LB

αβ

�2.5
+
�

GLB
α,βGLB

α,β

�1.25
. (2.68)
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Hereby, GLB
α,β is the traceless symmetric part of the squared resolved velocity gra-

dient, which is given by

GLB
α,β =

1
2





�

∂ uLB
α

∂ xLB
β

�2

+

�

∂ uLB
β

∂ xLB
α

�2


−
1
3
δαβ

�

∂ uLB
γ

∂ xLB
γ

�2

. (2.69)

Weickert et al. [106] use a central finite difference scheme to explicitly obtain

the filtered strain rate S
LB

αβ
and GLB

α,β . The model constant in the range of 0.45≤
CM ≤ 0.5 are recommended for homogeneous isotropic turbulence.

There are several advantages of the WALE model. Firstly, it is able to predict cor-

rectly the behavior near the wall, νLB,SGS ∝ (y+)3. Furthermore, no additional

explicit filtering procedure is required compared to the dynamic Smagorinsky

models [39]. In a laminar shear flow the turbulent viscosity is correctly reduced

to zero. Hence, the model can be used to describe relaminarization or transition

to turbulence [86].

2.2.2.2 Approximate Deconvolution Model

The main idea of the approximate deconvolution model (ADM) [99] is the recon-

struction of sub-grid quantities by using the filtered resolved quantities. There-

fore, an inverse filtering operation (deconvolution) is used. Since the decon-

volution requires information of the sub-grid scales, the reconstruction is only

approximate. Sagaut [90] and Malsapinas and Sagaut [65] introduced the ADM

to the LBM framework. In the following an ADM-LBM approach using viscosity

filters [102, 84, 65], which was proposed by Nathen et al. [70], is presented.

The ADM-LBM algorithm consists of three steps: a standard BGK collsion step

(right hand side of Eq. (2.23)), a subsequent streaming step (left hand side of

Eq. (2.23)) and an explicit filter operation. This explicit filter operation is cal-
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culated by

Q ∗G ∗ f̂i = −σ(x LB, tLB)
D
∑

j=1

M
∑

m=−M

dm f̂i(x
LB +me j, tLB), (2.70)

where Q ∗ G ∗ f̂i is the inverse filter operation, e the Cartesian basis vectors

and M the filter stencil size. The filter weighting coefficients dm for the selective

viscosity filter of order M = 2 are d0 = 6/16, d1 = −4/16 and d2 = 1/16. The

coefficents for other orders can be found by Malaspinas and Sagaut [65]. The

filter strength is estimated by

σ(x LB, tLB) =
�

|SLB
αβ
(x LB, tLB)− 〈SLB

αβ
(x LB, t̃LB)〉|

�

√

√

√

�

2ρLBc2
s

|Πneq
αβ
|

�

, (2.71)

where 〈SLB
αβ
(x LB, t̃LB)〉 is the phase averaged strain rate. The filter strength is

estimated locally without using finite differences.

In comparison to an eddy viscosity model no additional model parameters are in-

troduced that depend on the flow configuration and the mesh size. Furthermore,

ADM is able to take backscatter into account in a physical way [86].

2.2.3 Wall Bounded Turbulence

In the case of wall-bounded turbulence the size of the energy-containing eddies

is drastically reduced. However, the emerging coherent structures influence the

behavior of the flow in the vicinity of the wall. The two different approaches

to deal with the phenomena of wall-bounded turbulence are described in the

following.
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2.2.3.1 Near-Wall Resolved Large-Eddy Simulation

In a near-wall resolved large-eddy simulation (NWR-LES) all energy containg

scales near to the walls are resolved, which means that the grid and the filter

are fine enough to resolve 80% of the energy everywhere [77]. The chosen SGS

model for NWR-LES should be able to describe the wall-near behavior. If the

scaling laws of the turbulent boundary layer are taken into account, the amount

of grid points is in O (Re1.8
L ) in the wall-near region, while it is only in O (Re0.4

L ) in

the outer region [15]. Considering the time step scaling, the neceassary runtime

tcalc,NWR-LES [29] is given by

tcalc,NWR-LES ∼ Re2.7
L . (2.72)

A recommendation for the grid spacing in the wall-near region is ∆y+ ≤ 2 [15,

76].

2.2.3.2 Near-Wall Modeled Large-Eddy Simulation

The near-wall modeled large-eddy simulation (NWM-LES) approach circum-

vents the high computational demand for higher Reynolds numbers (see Eq.

(2.72)) by modeling the effects of the turbulent boundary layer. As a conse-

quence, the energy-containing scales are only resolved remote from the wall.

The required calculation runtime tcalc,NWM-LES [29] is therefore drastically re-

duced to

tcalc,NWM-LES ∼ Re0.53
L . (2.73)

The grid spacing is usually chosen, so that the first grid point is located in the

logarithmic layer 30 ≤ ∆y+ ≤ 150 [76]. NWM-LES is commonly based on an

empirical wall function [59, 107, 93] to describe the velocity profile in the tur-

bulent boundary layer. This wall function is needed to correctly describe the

otherwise strongly underestimated high velocity gradient near the wall.
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In LBM, wall models for turbulent flows were initially investigated in the con-

text of a two-equation RANS model [103, 28]. NWM-LES was introduced into

the LBM framework by Malaspinas and Sagaut [62]. They used the MRT col-

lision operator for the wall function model. Schneider [94] used the MRT-LES

approach coupled with a three equations model based on the Werner and Wen-

gle function [107]. A cumulant LBM [34] approach was proposed by Pasquali

et al. [74] to obtain the required velocity information in a local manner suitable

for GPUs.

Haussmann et al. [42] adapted the approach of Malaspinas and Sagaut [62] to

the BGK collision operator and evaluated different boundary schemes and wall

functions. Furthermore, they incorporate an curved boundary formulation in

the wall model approach [43]. The following listing summarizes and unifies the

proposed algorithms.

1. The velocity of the first cell in discrete normal direction uLB
n that is not part

of the boundary scheme is calculated according to Eq. (2.27).

2. The distance to the boundary yLB
bc is defined in the discrete normal direction

cn. It is worth mentioning that in common wet-node approaches the physi-

cal boundary and the simulation domain are the same. In the case of a wall

function the distance of the boundary cell to the physical boundary yLB
bc is

changed. The choice of ybc = 0.5∆xLB|n| leads to accurate results [42].
Accordingly, the distance from the neighbor fluid node at position x LB

n to

the boundary is given by

yLB
n = yLB

bc + |cn|. (2.74)

3. The applied wall profile uses only the stream-wise velocity component, a

local stream-wise unit vector es is obtained by

es =
uLB

n − (u
LB
n · cn)cn

|uLB
n − (u

LB
n · cn)cn|

. (2.75)
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4. Hence, the stream-wise component uLB
n,‖ of uLB

n can be calculated by

uLB
n,‖ = uLB

n · es. (2.76)

5. The boundary distance yLB
n and the stream-wise velocity component uLB

n,‖ are

used to obtain the averaged wall shear stress T̃ LB
w . Hereby, different wall

function formulations can be used. According to the work of Haussmann et

al. [42], the use of the Musker profile [68] or a three layer model proposed

by Schmitt [93] leads to accurate results. Subsequently, the stream-wise

component ũLB
bc,‖ of ũLB

f is calculated by the chosen wall function using the

boundary distance yLB
bc and the averaged wall shear stress T̃ LB

w .

6. Then, the velocity ũLB
bc of the boundary node is computed by

ũLB
bc = esũ

LB
bc,‖. (2.77)

7. Next, a velocity boundary scheme is used to reconstruct the particle dis-

tribution function at node position x LB
bc . In the case of a straight bound-

ary orientation the wet node scheme proposed by Guo et al. [112] can be

used to impose ũLB
bc . A curved boundary formulation can be obtained by the

scheme of Bouzidi et al. [13]. Thereby a velocity correction step is required

instead of an additional velocity term in the boundary scheme, because the

velocity ũLB
bc should be set on the position of x LB

bc and not on the physical

wall.

8. The effective relaxation time τef f is calculated according a suitable SGS

model, see Section 2.2.2.

9. Finally, the stream and collide algorithm is applied according Eq. (2.57).

This algorithm is expandable to further collision operators, SGS models, velocity

boundary formulations and wall functions by altering the corresponding steps.
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2.3 Reynolds-Averaged Navier–Stokes

In RANS models, the entire turbulence spectrum is described by a few quanti-

ties [29]. As a result, a high degree of modeling is taken into account. In contrast

to LES and DNS, the flow quantities are time averaged. If statistically stationary

flows are addressed with RANS, the reduction of the dimensions is possible for

symmetric flow problems. RANS is known to be a grid independent physical

system, which means that the spatial discretization has only a low influence on

the solution. The main advantage of RANS is the faster computation time due

to its used assumptions. Especially the time-averaging process in DNS and LES

requires an averaging procedure over a long time span. RANS avoids this prob-

lem by swapping the order of averaging and simulation. Due to the complexity

of turbulent phenomena, a single RANS model may not be able to describe all

canonical flow types with sufficient precision. Therefore, turbulence models us-

ing RANS should be seen as an engineering approximation instead of a scientific

law [27].

This section starts with an introduction of the Reynolds-averaged Navier–Stokes

equations. Then, the group of turbulent viscosity models are described. As an

example, the two-equation k-ε model and its corresponding implementation for

LBM are outlined.

2.3.1 Reynolds-Averaged Navier–Stokes Equations

The Reynolds decomposition [82] for the velocity u reads

u(x , t) = 〈u〉(x ) + u ′(x , t), (2.78)

where 〈u〉 is the time-averaged contribution and u ′ the fluctuation component.

In the same way, the pressure field is decomposed in a time-averaged contribu-

tion 〈p〉 and a fluctuation part p′.



2.3 Reynolds-Averaged Navier–Stokes 33

By applying the Reynolds decomposition Eq. (2.78) to Eq. (2.12), the Reynolds-

averaged incompressible Navier–Stokes continuity equation [82] reads

∂ 〈uα〉
∂ xα

= 0, (2.79)

and the according momentum equation without body force is given by

∂ 〈uα〉
∂ t

+
∂ 〈uα〉〈uβ〉
∂ xβ

= ν
∂

∂ xβ

�

∂ 〈uα〉
∂ xβ

+
∂ 〈uβ〉
∂ xα

�

−
∂ 〈u′

α
u′
β
〉

∂ xβ
−

1
ρ

∂ 〈p〉
∂ xα

, (2.80)

where 〈u′
α
u′
β
〉 is the Reynolds stress tensor.

2.3.2 Turbulent Viscosity Models

The Reynolds stresses can be modeled using the turbulent viscosity hypothesis

to close the RANS equations. Taking the hypothesis into account the Reynolds

stresses are written as

〈u′
α
u′
β
〉=

2
3

kδαβ − νtur b

�

∂ 〈uα〉
∂ xβ

+
∂ 〈uβ〉
∂ xα

�

, (2.81)

where νtur b is the turbulent kinematic viscosity.

2.3.2.1 k-εmodel

The k-ε model proposed by Launder and Spalding [59] is a commonly used

two-equation turbulent viscosity model. The two turbulence quantities, namely

the turbulent kinetic energy k and the turbulent kinetic energy dissipation ε are

described by two additional transport equations. The empirical model transport

equation for k reads

∂ k
∂ t
+ 〈uβ〉

∂ k
∂ xβ

=
∂

∂ xβ

�

νtur b

σk

∂ k
∂ xβ

�

+

νtur b

�

∂ 〈uα〉
∂ xβ

+
∂ 〈uβ〉
∂ xα

�

∂ 〈uα〉
∂ xβ

− ε,
(2.82)



34 2 Modeling and Simulation Approaches for Turbulent Flows

and the second model transport equation for ε is given by

∂ ε

∂ t
+ 〈uβ〉

∂ ε

∂ xβ
=
∂

∂ xβ

�

νtur b

σε

∂ ε

∂ xβ

�

+

C1
νtur bε

k

�

∂ 〈uα〉
∂ xβ

+
∂ 〈uβ〉
∂ xα

�

∂ 〈uα〉
∂ xβ

− C2
ε2

k
.

(2.83)

By solving the two transport equations, the turbulent viscosity νtur b is written as

νtur b = Cµ
k2

ε
. (2.84)

The occurring model constants can be chosen according to the work of Laudner

et al. [59] to

Cµ = 0.09, σk = 1.00, σε = 1.30, C1 = 1.44, C2 = 1.92. (2.85)

The first attempt to implement a k-ε model into the LBM framework was made

by Succi et al. [100]. They deploy two additional particle distribution functions

to approximate the solution of the transport equations. Another possibility to

discretize the transport equations is the use of a Lax–Wendroff scheme [101,

103]. In the following the method of Sajjadi et al. [92] is presented, which fol-

lows the idea of Succi et al. [100]. The zeroth order moment of the distribution

functions gi and hi are defined as

kLB =
q−1
∑

i=0

gi, (2.86)

εLB =
q−1
∑

i=0

hi. (2.87)

Both transport equations are given by

gi(x
LB+ ci, tLB+1) = gi(x

LB, tLB)−
1
τk

�

gi(x
LB, tLB)− geq

i (x
LB, tLB)

�

+ F k
i , (2.88)

hi(x
LB+ ci, tLB+1) = hi(x

LB, tLB)−
1
τε

�

hi(x
LB, tLB)− heq

i (x
LB, tLB)

�

+ F εi , (2.89)
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where F k
i and F εi are defined as

F k
i =ωi

�

νLB,tur b|SLB
αβ
|2 − εLB

�

�

1+
ciαu

LB
α
(τk − 0.5)

c2
s τ

k

�

, (2.90)

F εi =ωi

�

C1
εLB

kLB

�

νLB,tur b|SLB
αβ
|2
�

− C2
(εLB)2

kLB

�

�

1+
ciαu

LB
α
(τε − 0.5)

c2
s τ
ε

�

. (2.91)

The according equilibrium distribution functions geq
i and heq

i are respectively

written as

geq
i

�

kLB, uLB
�

=ωik
LB

�

1+
ciαu

LB
α

c2
s

+
uLB
α

uLB
β

�

ciαciβ − c2
s δαβ

�

2c4
s

�

, (2.92)

heq
i

�

εLB, uLB
�

=ωiε
LB

�

1+
ciαu

LB
α

c2
s

+
uLB
α

uLB
β

�

ciαciβ − c2
s δαβ

�

2c4
s

�

. (2.93)

The relaxation times τk and τε are obtained by

τk = τ+
σkν

LB,tur b

c2
s

, (2.94)

τε = τ+
σεν

LB,tur b

c2
s

. (2.95)

Finally, the lattice turbulent viscosity νLB,tur b is calculated similarly to Eq. (2.84)

by

νLB,tur b = Cµ
(kLB)2

εLB
. (2.96)
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Stability, consistency and accuracy of various lattice Boltzmann schemes are investigated by

means of numerical experiments on decaying homogeneous isotropic turbulence (DHIT).
Therefore, the Bhatnagar–Gross–Krook (BGK), the entropic lattice Boltzmann (ELB), the

two-relaxation-time (TRT), the regularized lattice Boltzann (RLB) and the multiple-relaxa-

tion-time (MRT) collision schemes are applied to the three-dimensional Taylor–Green vortex,

which represents a benchmark case for DHIT. The obtained turbulent kinetic energy, the energy
dissipation rate and the energy spectrum are compared to reference data. Acoustic and di®usive

scaling is taken into account to determine the impact of the lattice Mach number. Furthermore,

three di®erent Reynolds numbers Re ¼ 800, Re ¼ 1600 and Re ¼ 3000 are considered. BGK

shows instabilities, when the mesh is highly underresolved. The diverging simulations for MRT
are ascribed to a strong lattice Mach number dependency. Despite the fact that the ELB

modi¯es the bulk viscosity, it does not mimic a turbulence model. Therefore, no signi¯cant

increase of stability in comparison to BGK is observed. The TRT \magic parameter" for DHIT
at moderate Reynolds numbers is estimated with respect to the energy contribution. Stability

and accuracy of the TRT scheme is found to be similar to BGK. For small lattice Mach

numbers, the RLB scheme exhibits lowered energy contribution in the dissipation range
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compared to an analytical model spectrum. Overall, to enhance stability and accuracy, the

lattice Mach number should be chosen with respect to the applied collision scheme.

Keywords: Decaying homogeneous isotropic turbulence; Taylor–Green vortex; lattice

Boltzmann methods; OpenLB; direct numerical simulation.

PACS Nos.: 47.11.–j, 47.27.Gs, 02.60.Cb.

1. Introduction

In addition to conventional approaches to numerically solving the Navier–Stokes

equations, e.g. ¯nite volume methods or ¯nite element methods, the lattice Boltz-

mann methods (LBM) have gained in importance in recent decades. Based on kinetic

gas theory, the LBM evolved from the lattice gas cellular automata.46 Due to the

highly parallelizable algorithm22,23 and the associated increase in performance, the

LBM has proven broad applicability, for example in particle °ows26,44 or °ows in

complex geometries.3,21 Despite its multiple uses, especially turbulent °ow simula-

tions with the LBM require further validation and important developments of

established Navier–Stokes solvers have to be caught up. The simplest canonical °ow

for the validation of turbulence quantities is homogeneous isotropic turbulence

(HIT). Regardless of the academic character of this type of °ow, fundamental

statements can be made about the numerical method itself and the development of

turbulence models.

One of the ¯rst decaying homogeneous isotropic turbulence (DHIT) simulations

with LBM was performed in 1992 by Chen et al.10 They used 1283 grid points for

Reynolds numbers Re ¼ 200 and Re ¼ 300 and observed good agreement with

spectral methods for time-dependent energy and enstrophy decay as well as spatial

evolution of vortices. Ten years later, Luo et al.34 discovered similar results to

pseudo-spectral methods revealing an increase of dissipation at high wave numbers.

The work of Yu et al.49 comprises a DNS study at Re ¼ 600 and reproduces two

power-law scalings of the low wavenumber energy spectrum with di®erent initial

conditions. Furthermore, the power-law decay of the kinetic energy and the sup-

pression of the spectral cascade by rotation were examined. The in°uence of tem-

perature °uctuations on DHIT were investigated by Lee et al.31 The results con¯rm

the applicability of LBM for compressible turbulence with a thermal ¯eld. In 2009,

the ¯rst forced HIT simulation for two lattice velocity sets D3Q15 and D3Q19 were

obtained by Kareem et al.24 The study concluded that an increase in resolution

reduces the in°uence of the underlying velocity set. Peng et al.40 compared LBM with

pseudo-spectral methods for DHIT and found that LBM requires double resolution

to accurately capture pressure °uctuations. Nathen et al.38 were the ¯rst to examine

di®erences of various collision schemes in DHIT. They applied three distinct collision

schemes on the three-dimensional Taylor–Green vortex (TGV) °ow to compare

accuracy and stability. Notwithstanding the numerous ¯ndings of this study, some
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in°uencing factors, e.g. the lattice Mach number, have been disregarded. In this

work, we aim to extend the TGV study in Ref. 38 with additional collision schemes

and complete the statements that have been made.

In this paper, we present a detailed analysis of ¯ve commonly used collision

schemes on turbulent °ows. The work covers the advantages and drawbacks of each

scheme concerning accuracy, consistency and stability. We set the focus on DHIT,

due to the absence of boundaries and forcing schemes, which interfere with the

applied collision scheme. Solely direct numerical simulations (DNS) are performed to

determine the viscous e®ects caused by the collision scheme itself, and not by a

turbulence model. The TGV is chosen to evaluate the kinetic energy and the energy

dissipation rate. Furthermore, a spectral analysis is performed. Subsequent error

calculations are conducted to quantitatively assess each collision scheme with respect

to a reference solution. This reference solution is computed on a grid that resolves the

Kolmogorov scales, and is validated with previously published pseudo-spectral DNS

results. For the ¯rst time, we cross-compare the Bhatnagar–Gross–Krook (BGK),4

the entropic lattice Boltzmann (ELB),2 the two-relaxation-time (TRT),18 the reg-

ularized lattice Boltzann (RLB),30 and the multiple-relaxation-time (MRT)14 colli-

sion scheme in terms of solution dependencies on the lattice Mach number, the

Reynolds number and the grid resolution. In particular, the TRT scheme is presented

for the ¯rst time in a three-dimensional DHIT setting, where the e®ect of the \magic

parameter"18 on turbulence quantities is scrutinized.

The paper is organized as follows. Section 2 gives a brief introduction to the

LBM, and speci¯es the used collision schemes. In Sec. 3, the TGV benchmark case

for DHIT, and the turbulence quantities examined therein, are described. Section 4

validates a high resolution LBM DNS against pseudo-spectral methods. Section 5

studies the TRT scheme's second relaxation parameter with respect to the energy

dissipation rate and the energy spectrum. Section 6.1 determines the stability and

accuracy in underresolved DNS for the di®erent collision schemes. Based on two

common scaling approaches, we further examine the lattice Mach number in°uence

in Sec. 6.2. The grid convergence with respect to the calculated turbulence quan-

tities is analyzed in Sec. 6.3. Finally, we conclude the paper with continuative

remarks in Sec. 7.

2. LBM

Discretizing the kinetic Boltzmann equation on a Cartesian grid leads to a ¯nite

number of particle distribution functions fi. The topology of the lattice is de¯ned by

d dimensions and q lattice velocities ci, i ¼ 0; 1; . . . ; q� 1. In this work, the velocity

set D3Q19 is utilized to discretize the velocity space. This choice is justi¯ed by the

absence of transformations as well as lower memory costs for computations. The

following section is formulated in lattice units with the common choice of

�x ¼ �t ¼ 1, for the node distance �x and the lattice time step �t. The lattice

DNS of DHIT ��� numerical experiments of distinct LBM
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velocities ci in D3Q19 are given by

ci ¼
ð0; 0; 0Þ; i ¼ 0;

ð�1; 0; 0Þ; ð0;�1; 0Þ; ð0; 0;�1Þ; i ¼ 1; 2; . . . ; 6;

ð�1;�1; 0Þ; ð�1; 0;�1Þ; ð0;�1;�1Þ; i ¼ 7; 8; . . . ; 18:

8<
: ð1Þ

The lattice Boltzmann equation reads

fiðxþ ci; tþ 1Þ ¼ fiðx; tÞ þ �i; ð2Þ
where x speci¯es the lattice location. Furthermore, the relaxation of the populations

fi towards their respective equilibria f
eq
i , under the conservation constraints for mass

and momentum, is manifested in the collision operator �i.

For an isothermal, weakly compressible °ow, a truncated Maxwell–Boltzmann

equilibrium distribution f eq
i is given by35

f eq
i ð�;uÞ ¼ �wi 1þ ci�u�

c2s
þ u�u�ðci�ci� � c2s���Þ

2c4s

� �
; ð3Þ

where Greek indices obey the Einstein notation, ��� denotes the Kronecker delta,

!i are lattice weights obtained from the Gauss–Hermite quadrature,20,42 and cs ¼ 1ffiffi
3

p
represents the speed of sound within the lattice.

Macroscopic °ow quantities such as density �, momentum �u, and momentum

°ux ¦ are obtained from the moments of fi, respectively

� ¼
Xq�1

i¼0

fi; ð4Þ

�u ¼
Xq�1

i¼0

cifi; ð5Þ

��� ¼
Xq�1

i¼0

ci�ci�fi: ð6Þ

A simpli¯ed isothermal equation of state relates the pressure p to the density

through

p ¼ c2s�: ð7Þ
The lattice Mach number Ma is de¯ned as

Ma ¼ uL

cs
; ð8Þ

where uL denotes the lattice velocity. Hence, the incompressible Navier–Stokes

equations are recovered for Ma ! 0.

Finally, the lattice Boltzmann algorithm is conceptually parted in a local collision

step, associated to the right-hand side of Eq. (2), and subsequent streaming, exe-

cuted according to the left-hand side of Eq. (2).
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2.1. BGK collision scheme

Bhatnagar, Gross and Krook4 proposed a collision operator with a single relaxation

time. Discretization yields

�i ¼ � 1

�
ðfiðx; tÞ � f eq

i ð�;uÞÞ; ð9Þ

and with Eq. (2), we obtain the BGK scheme as

fiðxþ ci; tþ 1Þ ¼ fiðx; tÞ �
1

�
ðfiðx; tÞ � f eq

i ð�;uÞÞ: ð10Þ

In the incompressible limit, the relaxation time � is coupled with the kinematic

viscosity � of the °uid through

� ¼ c2s � � 1

2

� �
; ð11Þ

which results in an interconnection of viscosity and stability. Stability de¯ciencies for

small viscosities and low resolutions are well-known and have already been observed

among others by Yasduda et al.,48 Nathen et al.38

2.2. MRT collision scheme

As a generalization of the BGK scheme, � is replaced by a q� q matrix S comprising

several relaxation times.14,27

The particle distributions f ¼ ðf0; . . . ; fq�1ÞT are multiplied with the rowsMj of a

regular q� q matrix M, constructed from velocity components,14 to obtain a mo-

ment vector m with q entries

mj ¼ Mjf : ð12Þ
The equilibrium moments m eq

j are similarly revealed by

m eq
j ¼ Mjf

eq: ð13Þ
The MRT scheme14,27,29 then reads

fðxþ ci; tþ 1Þ ¼ fðx; tÞ �M�1S½mðx; tÞ �meqðx; tÞ�: ð14Þ
For the D3Q19 lattice, d'Humi�eres et al.14 proposed a moment vector

m ¼ ð�; e; e2; jx; qx; jy; qy; jz; qz; 3�xx; 3�xx; �ww; �ww; �xy; �yz; �xz;nx;ny;nzÞT; ð15Þ

where the corresponding diagonal collision matrix is de¯ned as14

S ¼ diagð0; !1; !2; 0; !4; 0; !4; 0; !4; !9; !10; !9; !10; !13; !13; !13; !16; !16; !16Þ: ð16Þ
The relaxation of the conserved moments � and j ¼ �u yields zero. Hence, the as-

sociated relaxation frequencies in S are negligible and nulled out. Further, !1;9;13 for

the relaxation of e, diagonal and o®-diagonal entries of, are connected to kinematic

DNS of DHIT ��� numerical experiments of distinct LBM
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and bulk viscosity via

� ¼ c2s
1

!9

� 1

2

� �
¼ c2s

1

!13

� 1

2

� �
; �B ¼ 2

3
c2s

1

!1

� 1

2

� �
: ð17Þ

The remaining free parameters w2;4;10;16 are respectively related to kinetic moments

for the components of e2;q;¼;n, and have been optimized by d'Humi�eres et al.14

with local analysis in Fourier space as suggested by Lallemand et al.28

O®ering advanced possibilities to in°uence stability and physical behavior, the

maximum number of tunable relaxation rates and equilibrium populations, resem-

bles the main advantage of the MRT.14

2.3. TRT collision scheme

To counteract the complexity of tuning individual relaxation rates, a simpli¯cation

of the MRT scheme was introduced by Ginzburg et al.18 It is accomplished by

relaxing the subset of even order moments in m with !þ ¼ 1
�þ ¼ 1

� and the comple-

ment with !� ¼ 1
�� .

The equilibrium distribution is split into a symmetric and an antisymmetric

contribution

f eqþ
i ¼ 1

2
ðf eq

i þ f eq
�i
Þ; ð18Þ

f eq�
i ¼ 1

2
ðf eq

i � f eq
�i
Þ; ð19Þ

where the index �i denotes the opposite direction c�i ¼ �ci in the lattice. Analogously,

the decomposition of the particle distributions is

f þ
i ¼ 1

2
ðfi þ f�iÞ; ð20Þ

f �
i ¼ 1

2
ðfi � f�iÞ: ð21Þ

The relaxation to the antisymmetric and symmetric nonequilibrium populations,

separately with relaxation rates !� and !þ, yields the TRT scheme

fiðxþ ci; tþ 1Þ ¼ fi � !þðf þ
i � f eqþ

i Þ � !�ðf �
i � f eq�

i Þ: ð22Þ
Resulting in larger stability regions of TRT compared to BGK,17 a decoupling of

stability from viscosity, is obtained through the individual relaxation of even and

odd order moments.

Ginzburg et al.17,18 summarized the stability enhancing attributes of the TRT

scheme, based on the so-called \magic parameter",

� ¼ 1

!þ � 1

2

� �
1

!� � 1

2

� �
: ð23Þ
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When changing the viscosity through �þ ¼ � in Eq. (11), � should be kept constant

according to Krüger et al.27 Hence, the magnitude ratio of �� to �þ obeys Eq. (23)

and should ensure the desired TRT solution behavior throughout the choices of �.

2.4. RLB collision scheme

Latt et al.30 presented a possible regularization of the nonequilibrium part f neq
i of the

particle distribution function fi ¼ f eq
i þ f neq

i via

f neq
i � f

ð1Þ
i ¼ wi

2c4s
ðci�ci� � c2s���Þ

Xq
j¼0

cj�cj�f
neq
j : ð24Þ

Hence, the regularization of Eq. (10) yields

fiðxþ ci; tþ 1Þ ¼ f eq
i ðx; tÞ þ 1� 1

�

� �
f
ð1Þ
i ðx; tÞ: ð25Þ

Equation (24) acts as a purely local variation and maintains computational

e±ciency.

Further, Latt et al.30 established the equivalence of Eq. (25) to an MRT formu-

lation, where the hydrodynamic moments for density �, momentum �u and mo-

mentum °ux ¦ are relaxed with 1
� , whereas the kinetic moments are prescribed with

a unity relaxation time. As a consequence, the RLB scheme exhibits increased

stability for large pressure gradient problems and turbulent °ows.

2.5. ELB collision scheme

The Maxwell–Boltzmann equilibrium distribution approximation in Eq. (3) does not

agree with Boltzmann's H-theorem.2

Nevertheless, the H-functional has a convex-composed, discrete velocity

counterpart

HðfÞ ¼
Xq�1

i¼0

filn
fi
wi

� �
; ð26Þ

upholding the second law of thermodynamics.6 Further, HðfÞ is minimized with

respect to the conservation constraints for mass and momentum by6,1

�f eq
i :¼ argminfHðfÞ ¼ �wi

Yd
�¼1

ð2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2u2

�

q
Þ 2u� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3u 2

�

p
1� u�

 !
ci�

: ð27Þ

With a viscosity related parameter11

b ¼ 1

6� þ 1
¼ 1

2�
2 ð0; 1�; ð28Þ

the ELB scheme then reads

fiðxþ ci; tþ 1Þ ¼ fiðx; tÞ þ abð�f eq
i ðx; tÞ � fiðx; tÞÞ: ð29Þ
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The over-relaxation parameter a > 0 is de¯ned as the nontrivial root of the isentropic

condition6

Hðfi þ að�f eq
i � fiÞÞ ¼ HðfiÞ: ð30Þ

Equations (27) and (30) have to be solved in every time step. The latter is

nonlinear and typically executed iteratively with the Newton–Raphson method.11

Prescribing a tolerance, at which the solution to Eq. (30) is analytically computed by

asymptotically expanding a, helps to cut back the ELB scheme's increased compu-

tational e®ort. Setting a ¼ 2 generates equivalence to the BGK scheme.11

2.6. Initialization

In addition to the initial velocity ¯eld u0 ¼ uðx; t0Þ at t0 ¼ 0, the initial pressure

p0 ¼ pðx; t0Þ is required to guarantee a divergence free initial solution for the in-

compressible NSE. Based on the absence of a given p0, the naive approach, initial-

izing the populations via Eq. (3) with

fiðx; t0Þ ¼ f eq
i ð�0;u0Þ; ð31Þ

where �0 is set to a constant value, violates the Poisson equation for the initial

pressure ¯eld.37,27 In case p0 is available, the initialization of fi through Eq. (31) with

�0 ¼ p0
c 2s

instead, still neglects the in°uence of f neq
i . An initial state, additionally

taking nonequilibrium contributions for fi ¼ f eq
i þ f neq

i into account, is given in

Ref. 27 as

f neq
i ð�0;u0Þ � �wi�0�

c2s
ðci�ci� � c2s���Þ@�u0�: ð32Þ

3. The TGV Benchmark

The partly universal character of turbulent scales, gave rise to the investigation of

DHIT in simpli¯ed geometries in the ¯rst place. Typically, an initial velocity ¯eld

solution to the incompressible Navier–Stokes equations is subscribed to a periodic

°ow domain and subsequently evolves in time. The obtained results give insight to

characteristic attributes of more complex turbulent °ows.41 Pseudo-spectral DNS

methods are the preferred tool for DHIT and were frequently used in the past, see

Refs. 5, 8 and 9. The highly simpli¯ed setting and fairly accurate DNS reference

solutions turned DHIT °ows such as the TGV into common benchmark problems for

the validation of numerical methods. Whereas the present work focuses on the three-

dimensional TGV, a detailed comparison of pseudo-spectral DNS to BGK LBM

with respect to turbulence quantities for the two-dimensional TGV is provided by

Tauzin et al.43

For this section, we assume a physical unit system if not stated otherwise, and set

the domain to a fully periodic cube of volume � ¼ ð2�lcÞ3. Characteristic length,

velocity and density are denoted as lc, Uc and �c, respectively. According to the work

M. Haussmann et al.
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of Brachet et al.,9 the initial velocity ¯eld for the TGV °ow at t0 ¼ 0 is de¯ned as

uðx; t0Þ ¼
Ucsin

x

lc

� �
cos

y

lc

� �
cos

z

lc

� �

�Uccos
x

lc

� �
sin

y

lc

� �
cos

z

lc

� �
0

0
BB@

1
CCA: ð33Þ

Further, the initial pressure pro¯le is given by

pðx; t0Þ ¼ p1 þ �cU
2
c

16
cos

2x

lc

� �
þ cos

2y

lc

� �� �
cos

2z

lc

� �
þ 2

� �
; ð34Þ

where p1 is a reference pressure. To achieve a physical solution for the incom-

pressible NSE, a consistent initialization for the LBM with Eq. (32) is obtained via

analytically calculating the velocity gradient from Eq. (33).

3.1. Turbulence quantities

As a ¯rst step to analyze the simulation results, time-dependent global quantities are

evaluated. Starting with the Reynolds decomposition, a °ow variable ’ can be split

into mean �’ and °uctuation ’0. Assuming DHIT the mean velocity of the °ow is zero,

�’ ¼ 0. Moreover, we may approximately replace spatial averages, denoted by h�i,
with spatial integrals.16 Consequently, the turbulent kinetic energy is written as

kðtÞ ¼ 1

2
hu 0

�u
0
�i ¼

1

2j�j
Z
�

u�u�dx: ð35Þ

Under these assumptions, the energy dissipation rate can be similarly calculated from

	ðtÞ ¼ 2�hs 0
��s

0
��i ¼ �

@u 0
�

@x�

@u 0
�

@x�

� �
¼ �

1

j�j
Z
�

@u�

@x�

@u�

@x�

dx; ð36Þ

where s 0
�� is the °uctuating part of the strain rate tensor

s�� ¼ 1

2

@u�

@x�

þ @u�

@x�

� �
: ð37Þ

Secondly, the accuracy in terms of a quantity 
 2 f	; kg with respect to its

reference solution 
ref , is measured by evaluating 
ðtmÞ at a total number of 103 time

steps tm 2 ½t0; tM �, where tM ¼ 10. Subsequently, the relative L2-error norm is

de¯ned as

errL2ð
Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

m¼0 ½
refðtmÞ � 
ðtmÞ�2PM
m¼0 ½
refðtmÞ�2

s
: ð38Þ

The global error out of 	 and k is then computed as the mean

gerrL2ð	; kÞ :¼ 1

2
½errL2ð	Þ þ errL2ðkÞ�: ð39Þ
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As a third evaluation quantity, the band averaged three-dimensional energy

spectrum

Eð�; tÞ ¼ 1

2

X
�

jûð»; tÞj2; ð40Þ

is calculated at ¯xed instants of time. In Eq. (40), û denotes the complex Fourier

transform of the velocity ¯eld, » the wavenumber vector and � ¼ j»j its absolute

value. Kolmogorov's theory of HIT postulates that small scales exist down to a

length of

�ð�; 	Þ ¼ �3

	

� �1
4

: ð41Þ

In contrast to that, the largest scales are limited by the domain size L � 2�.40

To create a visual reference, as suggested by Pope,41 a model spectrum, suitable for

high enough Reynolds numbers, is generated from

EHð�Þ ¼ C	
2
3��

5
3fLðL�Þf�ð��Þ: ð42Þ

The inertial range prediction is given through

fLðL�Þ ¼
L�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL�Þ2 þ cL
p

 !5
3þp0

; ð43Þ

and the exponential decay rate within the dissipation range is obtained with

f�ð��Þ ¼ expð��f½ð��Þ4 þ c4��14 � c�gÞ: ð44Þ
According to Pope,41 parameters, aligned with experimental data, read C ¼ 1:5,

cL ¼ 6:78, c� ¼ 0:4, � ¼ 5:2, and the van K�arm�an inertial spectrum is employed with

p0 ¼ 4. Subscribing �, 	, L, and � with Eq. (41), completes the model.

4. Reference Solution

Due to the absence of extensive databases for TGV solutions at various Reynolds

numbers, including turbulence quantities at exact instants of time, an LBM reference

solution is computed with the BGK scheme. For the sake of error minimization, the

following contributions are taken into account.

With lc ¼ 1½m� and Uc ¼ 1½ms � we de¯ne the Reynolds number as Re ¼ Uclc
� ¼ 1

�.

Observations in previous publications con¯rm that fully developed turbulence be-

havior occurs after the dissipation rate peak 	 ¼ 	max.
5,8,9 We conclude that the

smallest appearing length scales can be approximated from Eq. (41) to �ð�; 	maxÞ.
In the following, the resolution N is related to the edge length of the cube

2�lc. Hence, with a reference dissipation rate from pseudo-spectral DNS results
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published by Brachet et al.,9 for Re ¼ 800; 1600; 3000 the required resolutions cap-

turing any appearing scales, can be approximated to N & 2�lc
� ¼ 313; 537; 896,

respectively.

By Chapman–Enskog analysis, the compressibility error is found to be of order

OðMa2Þ.27 A resolution of N ¼ 1024, with �t � �x2, decreases the compressibility

error to Oð10�4Þ and exceeds the Kolmogorov scale bound for Re ¼ 800; 1600; 3000.

The thus obtained solution is hereafter referred to as LBM-DNS1024. The calculation

required ca. 15.2 hours using 55 nodes, where each node consists of two Intel Xeon

E5-2660 v3 deca cores. The performance is estimated to 5.149 giga lattice cell

updates per second.

In Fig. 1 and Table 2, the resulting values for dissipation rate and kinetic

energy at Re ¼ 1600 are compared to pseudo-spectral reference data from Refs. 9, 45

and 12. The di®erence to latter reference data is estimated according to Eq. (38).

Simulation parameters are summarized in Table 1.

Figure 1(b) shows that the LBM-DNS1024 solution is very close to the pseudo-

spectral results from Van Rees et al.45 and DeBonis12 (errL2ð	Þ < 0:005). The higher

deviation to the results of Brachet9 is justi¯ed by the lower resolution of 256, which is

still remarkable considering the computational resources more than 30 years ago.

Taking the pseudo-spectral results with a resolution of 512 into account, the error of

the LBM-DNS1024 solution reduces to approximately 0.5%, see Table 2. Assuming

that a Reynolds number Re � 3000 does not have a large in°uence on the accuracy

at a resolution of N ¼ 1024, further LBM-DNS1024 reference solutions for Re ¼ 800

and Re ¼ 3000, with a hypothetical error bound gerrL2ð	; kÞ � 0:01, are obtained. To

enable a quantitative error estimation, the following studies utilize the LBM-DNS1024
as a reference.
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Fig. 1. Dissipation rate 	ðtÞ and kinetic energy kðtÞ of the TGV °ow at Re ¼ 1600. Present LBM-DNS1024
solution in comparison to pseudo-spectral DNS (psDNS) reference results from Brachet,9 van Rees,45

DeBonis.12
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5. Parameter Tests for the TRT Collision Scheme

The in°uence of the \magic parameter" � on the dissipation rate 	 was investigated

for Re ¼ 800, by varying � 2 ½0:25; �̂�, where �̂ ¼ ð�þ � 0:5Þ2 implies equivalence to

the BGK scheme, via �� ¼ �þ. The viscosity connected relaxation time was set to

�þ ¼ 0:50375 and the lattice velocity was chosen to uL ¼ 0:1 within the weakly

compressible regime.

Figure 2 visualizes how the de¯nition-wise decoupling of odd and even order

moments in the TRT scheme in°uences the magnitude of the dissipation rate. The

often proposed value17,18 � ¼ 0:25 overestimates the dissipation rate and ¯nally

results in a diverging simulation for N ¼ 64 and N ¼ 128. Lowering the \magic

parameter", decreases the dissipation rate until a maximum of the damping e®ect is

reached for � ¼ 0:002. A higher grid resolution N broadens the possible � range for

stable results but likewise reduces the in°uence of the \magic parameter" on the

dissipation rate. The choice of � ¼ 0:002 leads to a lower dissipation rate than

�þ ¼ ��. Figure 2(c) depicts the energy spectrum at t ¼ 9 for each tested �. In case

of � ¼ 0:002 the decrease in Eð�Þ for increasing � is sustained, whereas other \magic

parameter" choices lead to an unphysical growth of energy contained in the wave-

number regime around � > 10.

For �� < �þ ¼ 0:50375, neither the dissipation rate, nor the energy

spectrum features notable di®erences to �� ¼ �þ. A further decrease of �, i.e.

�� � 0:5 	 0:00375, eventually results in diverging simulations as �� ! 0:5. In this

study, the speci¯c values of �� and � inducing these instabilities, seem nondeter-

ministic and varied for each resolution. For the sake of simplicity, these parameter

choices are excluded from Fig. 2.

Table 1. Methodology and discretization summary of numerical solutions for the TGV °ow at

Re ¼ 1600. Present LBM-DNS1024 solution in comparison to pseudo-spectral DNS (psDNS)

results from Brachet et al.,9 van Rees et al.,45 DeBonis.12

Method Equation Timestepping N �t

psDNS Brachet et al.9 NSE leapfrog, Crank–Nicolson 256 0.005

psDNS van Rees et al.45 NSE vorticity form Runge–Kutta 512 0.0092
psDNS DeBonis12 NSE Runge–Kutta 512 0.001

present BGK LBM DNS LBGK explicit Euler 1024 0.00004

Table 2. Global error of LBM-DNS1024 for the TGV °ow at Re ¼
1600 with dissipation rate and kinetic energy error contributions

against pseudo-spectral DNS (psDNS) reference solutions from

Brachet et al.,9 van Rees et al.,45 DeBonis.12

Reference errL2 ð	Þ errL2 ðkÞ gerrL2 ð	; kÞ
psDNS 256 Brachet et al.9 0:00675 ��� ���
psDNS 512 van Rees et al.45 0:00460 ��� ���
psDNS 512 DeBonis12 0:00358 0:00161 0:00260
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Comparing the 	-slope with Eð�Þ for � ¼ 0:01, we deduce that the added amount

of energy arti¯cially increases the dissipation rate. Thus, to enhance stability

through a lowered dissipation, avoiding unphysical energy allocation, � ¼ 0:002 is

used for all following computations.

6. Collision Scheme Comparison

Nathen et al.38 provided a comparison of MRT, BGK, and RLB collision schemes

and investigated mesh convergence abilities with a resolution sequence N ¼ 64;
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Fig. 2. Dissipation rate 	ðtÞ and energy spectrum Eð�Þ ¼ Eð�; t ¼ 9Þ of the TGV °ow at Re ¼ 800. TRT

results with various \magic parameters", where �þ ¼ � ¼ 0:50375, for N ¼ 64 (left column) and N ¼ 128

(right column), are compared to the present LBM-DNS1024 solution and Kolmogorov's power-law for the

inertial subrange.41
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128; 256; 512 for Reynolds numbers Re ¼ 800, 1600 and 3000. Furthermore, using

spectral analysis, they described the appearance of spurious oscillations for the MRT

at high Reynolds numbers, which prevents the scheme from reaching second-order

accuracy in the incompressible limit.38 To continue the work in Ref. 38, we analyze

the in°uence of di®usive scaling on the results for the BGK, TRT, MRT, RLB and

the ELB scheme, using the dissipation rate to quantify the point in time where

instability occurs. Additionally, acoustic scaling (AS) was tested as well, ¯xing the

lattice Mach number for any Reynolds number and resolution. Finally, an error

computation for each scaling is obtained with the help of the de¯nitions in Eqs. (38)

and (39). The dependency on the grid resolution, the Reynolds number and the

lattice Mach number is used to determine and quantify accuracy, stability and

consistency of each collision scheme. The discretization parameters for both

approaches with a starting point at N ¼ 64 are listed in Table 3.

6.1. On the stability, highly underresolved DNS

If the grid spacing �x is greater than the occurring Kolmogorov length scales �,

de¯ned by Eq. (41), the simulation is termed as underresolved. The consequent

e®ects for the each collision scheme become visible in Fig. 3. The grid resolution is set

constant to N ¼ 64 and three Reynolds numbers are applied to analyze the insta-

bility issues in highly underresolved meshes.

The BGK, MRT and RLB dissipation rate results in Fig. 3 agree with Ref. 38. For

Re ¼ 800, BGK and ELB with N ¼ 64 already predict 	 quite well with respect to

magnitude and slope shape. The increased numerical dissipation with a subsequent

damping e®ect38 of the RLB are present. A similar observation can be made for the

TRT with � ¼ 0:002 compared to the BGK scheme.

If the Reynolds number is increased to Re ¼ 1600, the BGK, ELB and TRT

scheme become unstable. Although the dissipation rate is slightly diminished by

Table 3. Summary of LBM discretization parameters. Di®usive scaling (DS) and

acoustic scaling (AS) for resolutions N ¼ 64; 128; 256; 512 and Reynolds numbers

Re ¼ 800; 1600; 3000.

N uL Ma �x �t Re ¼ 800 Re ¼ 1600 Re ¼ 3000

DS � � �

64 0:1 0:17321 0:1 0:01 0:50375 0:50188 0:501

128 0:04952 0:08578 0:04947 0:00245 0:50375 0:50188 0:501

256 0:02476 0:04288 0:02464 0:00061 0:50375 0:50188 0:501

512 0:01219 0:02112 0:0123 0:00015 0:50375 0:50188 0:501

AS � � �

64 0:1 0:17321 0:1 0:01 0:50375 0:50188 0:501

128 0:1 0:17321 0:04947 0:00495 0:50758 0:50379 0:50202

256 0:1 0:17321 0:02464 0:00246 0:51522 0:50761 0:50406

512 0:1 0:17321 0:0123 0:00123 0:53049 0:51525 0:50813
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Fig. 3. Dissipation rate 	ðtÞ and energy spectrum Eð�Þ ¼ Eð�; t ¼ 9Þ of the TGV °ow at
Re ¼ 800; 1600; 3000. BGK, TRT, MRT, RLB, ELB results for N ¼ 64 in comparison to the present

LBM-DNS1024 solution and Kolmogorov's power-law for the inertial subrange.41
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TRT, the instabilities still occur. The MRT and RLB scheme are able to stabilize the

simulation but underestimate the course of the dissipation rate. The results for

Re ¼ 3000 show that the behavior is ampli¯ed by increasing the Reynolds number.

The BKG, ELB and TRT schemes exhibit an onset of instabilities earlier in time.

Similarly, the damping of the dissipation rate for MRT and RLB is more pronounced.

Further observations can be made with the three-dimensional energy spectra for

each Reynolds number at t ¼ 9, presented in Fig. 3. At Re ¼ 800, the BGK scheme

shows a nonphysical high energy level at wavenumbers � 
 10, as already observed

in Ref. 38. The excessive amount of energy contained in the small scales is also visible

for the ELB and slightly reduced for the TRT scheme as a consequence of the choice

for �. This higher energy contribution is responsible for the diverging simulations for

TRT, ELB and BGK at Re ¼ 1600 and Re ¼ 3000 in the underresolved grid.

However, the MRT and RLB scheme exhibit the characteristic strong decrease of

energy in the dissipative range. Considering solely the inertial subrange, both

schemes describe the expected power-law slope of the energy cascade. In the dissi-

pative range, the MRT scheme contains more energy in comparison to the RLB

scheme. Although stability is preserved, the MRT scheme's unphysical energy con-

tributions at � > 10 as a consequence of the low resolution, increase with the Rey-

nolds number, similar to those observed for BGK, ELB and TRT.

Yu et al.49 studied the energy spectrum for DNS and large eddy simulation (LES)

with the BGK scheme on DHIT. Compared to the DNS results, the added arti¯cial

viscosity in LES led to lowered energy levels at high wavenumbers.49 Hence, in the

case of an underresolved DNS, a turbulence model should be applied to model the

unresolved scales, consequently preventing instabilities for the BGK scheme and

unphysical results with the MRT scheme.

6.2. Acoustic and di®usive scaling

DS and AS is tested for three di®erent grid resolutions N ¼ 128, N ¼ 256 and N ¼
512 and three Reynolds numbers Re ¼ 800, Re ¼ 1600 and Re ¼ 3000. The dissi-

pation rate for DS and AS at Re ¼ 800 is depicted in Fig. 4. All tested schemes are

stable in this case, regardless of the applied lattice Mach number. Minor di®erences

between the collision schemes are visible at a grid resolution N ¼ 128. The courses of

the dissipation rate for TRT, ELB and BGK are very close to each other, whereas

MRT lies slightly above them, and RLB is located below. This behavior is more

pronounced by DS.

If the Reynolds number is increased to Re ¼ 1600, a di®erence between DS and

AS can be observed. At a grid resolution of N ¼ 128 all collision operators are stable.

Again, the RLB underestimates the dissipation rate, but meets the course of the

reference solution. However, MRT is not able to follow the reference course in the

peak region. Figures 5(c) and 5(d) show that further decreasing Ma in the case of

DS leads to an instability of MRT. On the other hand, a constant Mach number

e®ects a good approximation of the reference solution. The damping of the
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dissipation rate in the case of ELB is greater by AS. A higher grid resolution of

N ¼ 512 ampli¯es the unstable behavior of MRT on account of the Mach

number, such that instabilities occur earlier, result in a diverging simulation and

hence, violate the consistency.
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Fig. 4. Dissipation rate 	ðtÞ of the TGV °ow at Re ¼ 800. BGK, TRT, MRT, RLB, ELB results for

N ¼ 128; 256; 512with parameters obtained from DS (left column) and AS (right column) are compared to

the present LBM-DNS1024 solution.
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The dissipation rate for the highest considered Reynolds number Re ¼ 3000 is

shown in Fig. 6. Independent of the scaling, BGK, ELB and TRT are not stable

for N ¼ 128. The instability of TRT develops earlier in comparison to

BGK. However, ELB is slightly longer stable than BGK. The results of MRT are
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Fig. 5. Dissipation rate 	ðtÞ of the TGV °ow at Re ¼ 1600. BGK, TRT, MRT, RLB, ELB results for

N ¼ 128; 256; 512 with parameters obtained from DS (left column) and AS (right column) are compared to

the present LBM-DNS1024 solution.
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again related to the lattice Mach number. A smaller Ma a®ects the stability and

causes a diverging simulation. If the fraction MaDS

MaAS
is diminished, i.e. the grid

resolution is increased, the instability sets in earlier. The underestimation of the

dissipation rate by RLB is more pronounced by DS. Nevertheless, solely the RLB

scheme is stable throughout all tested Re numbers.
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Fig. 6. Dissipation rate 	ðtÞ of the TGV °ow at Re ¼ 3000. BGK, TRT, MRT, RLB, ELB results for
N ¼ 128; 256; 512with parameters obtained from DS (left column) and AS (right column) are compared to

the present LBM-DNS1024 solution.
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Additionally, a spectral analysis of the energy is considered for a further inves-

tigation of the observed phenomena. The three dimensional energy spectra for Re ¼
3000 at t ¼ 9 with DS and AS are depicted in Fig. 7. To visualize the model spec-

trum, de¯ned in Eq. (42), the dissipation rate maximum was calculated from the

LBM-DNS1024 reference solution for each Reynolds number, with a subsequent def-

inition of �. In the case of the MRT scheme a lowered Mach number e®ects an

overestimated energy at the end of the inertial subrange in comparison to the model

spectrum, see Figs. 7(a) and 7(d). This nonphysical overestimation of the energy

leads to a diverging simulation, for increasing Ma. The RLB scheme also displays a

highMa-dependency. If AS is applied, the course of the energy spectrum converges to

the model spectrum. However, DS induces an underestimation of the energy in the
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Fig. 7. Energy spectrum Eð�Þ ¼ Eð�; t ¼ 9Þ of the TGV °ow at Re ¼ 3000. BGK, TRT, MRT, RLB,

ELB results with parameters from DS (top row) and AS (bottom row) forN ¼ 128; 256; 512 in comparison

to the analytical model spectrum EHð�Þ derived from Kolmogorov's theory for HIT.41
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dissipation range. Compared to MRT and RLB, which show a strong dependence on

the Mach number, TRT, BGK and ELB are not sensitive to the used scaling. The

latter schemes exhibit a good agreement to the model spectra for the grid resolutions

N ¼ 256 and N ¼ 512.

The observed behavior for each collision operator can be summarized as follows.

. BGK: The BGK scheme is able to obtain accurate results, if the grid resolution is

chosen with respect to the Kolmogorov length. Otherwise, the higher energy

budget in the dissipation range leads to instabilities.

. TRT: The proposed \magic parameter" of � ¼ 0:25 is magnitudes too large for

turbulence simulation, where �þ is usually close to 0:5. The choice of the � should

be done carefully, due to the observed dependency on the Reynolds number, the

Mach number and the grid resolution. The stability issues of BGK are still present

in the TRT and are only slightly a®ected by the choice of �.

. ELB: Although the entropic scheme is a viscosity controlling scheme it is not able

to mimic a turbulence model or to stabilize the simulation. Furthermore, an in-

creased accuracy is not observed in comparison to BGK.

. MRT: The accuracy and the stability of MRT strongly depends on the Mach

number. If the Mach number is decreased, instabilities arising from the over-

estimated energy level at the end of the inertial subrange. On the other hand,

MRT is able to avoid the stability issues of BGK in underresolved grids.

. RLB: The increase of stability based on the regularization guarantees stable

simulations for any herein applied grid resolutions, Reynolds numbers and Mach

numbers. However, the dissipation rates are strongly damped, which limits the

accuracy at low resolutions. In addition, a small Mach number decreases the en-

ergy in the dissipation range.

6.3. On the accuracy and consistency

The error contributions from dissipation rate and kinetic energy for DS and AS are

calculated according to Eq. (38), and summarized in Tables 5–8. Every diverging

simulation is indicated by the term \not a number" (nan). The postpositioned value

in parenthesis indicates the approximate point in time at which the instabilities

occur in the simulation. The gerrL2ð	; kÞ error takes the error of the dissipation rate

and the turbulent kinetic energy into account to provide an accuracy benchmark

value. The validity of this error corresponds to the accuracy of the reference solution

LBM-DNS1024 that is estimated to 0:01 in Sec. 4. In Fig. 8 the gerrL2ð	; kÞ error is

calculated for the DS and AS. Moreover, the averaged experimental order of con-

vergence EOC was computed as the arithmetic mean of the convergence speeds

EOCNi;Nj
¼

ln
gerr

Ni
L2
ð	;kÞ

gerr
Nj

L2
ð	;kÞ

� �

ln
Nj

Ni

� 	 ; ð45Þ
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Fig. 8. Global error gerrL2 ð	; kÞ for t 2 ½0; 10� of stable DS (left column) and AS (right column) com-

putations with BGK, TRT, MRT, RLB, ELB at N ¼ 64; 128; 256; 512 against the present LBM-DNS1024
solution for the TGV °ow at Re ¼ 800; 1600; 3000.
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where Ni < Nj denote two subsequent resolutions. Table 4 provides the convergence

order calculations for both scalings.

The results for Re ¼ 800 in Figs. 8(b) and 8(a) underline the signi¯cant di®er-

ences between AS and DS for each collision operator. If the grid resolutions are highly

underresolved, the convergence order of BGK, TRT and ELB is EOC64;128 � 1 in-

dependent of the applied scaling. However, the convergence speeds for higher grid

resolutions are of second order for DS and superlinear for AS. This reduction of the

convergence order is related to the Mach number-dependent truncation error, which

is strongly pronounced at low Reynolds numbers. Furthermore, the decreasing

convergence order for AS leads to inconsistency for higher grid resolutions caused by

the constant truncation error. The ELB scheme shows the strongest Mach

number dependency, resulting in a drastically reduced convergence speed of

EOC 256;512 ¼ 0:38. MRT and RLB exhibit a higher convergence order for smaller

grid resolutions, which is induced by the larger error at N ¼ 64.

In the case of Re ¼ 1600, the EOC256;512 for ELB, TRT and BGK is second order

for DS. The corresponding AS value is smaller for BGK and TRT EOC 256;512 � 1:7,

but strongly decreased for ELB. This indicates that the in°uence of the truncation

error is still present at higher grid resolution but reduced in comparison to Re ¼ 800.

In contrast, the convergence speed of RLB is increased for AS, irrespective of the

resolution. The EOC 64;128 for MRT suggests an increased convergence order for DS.

The DS applied at Re ¼ 3000 leads to an EOC 256;512 ¼ 1:06 for RLB. The AS

however, increases the EOC 256;512 to 1:58. For the ELB, the decrease in convergence

order from DS to AS is less pronounced for Re ¼ 3000 than for Re ¼ 1600. Similarly,

Table 4. Experimental order of convergence EOC for BGK, TRT, MRT, RLB, ELB with

parameters from DS and AS. Convergence speeds for subsequent grid resolutions are computed

from gerrL2 ð	; kÞ for t 2 ½0; 10� against the present LBM-DNS1024 solution for the TGV °ow at

Re ¼ 800; 1600; 3000.

Re BGK TRT MRT RLB ELB

DS AS DS AS DS AS DS AS DS AS

800 EOC64;128 0:89 0:88 1:28 1:28 2:19 1:85 1:40 1:60 0:94 0:84

EOC128;256 1:98 1:87 2:02 1:91 1:67 1:91 1:97 2:09 1:96 1:32

EOC256;512 2:08 1:25 2:11 1:28 1:32 1:03 2:39 1:47 2:06 0:38

EOC 1:65 1:33 1:80 1:49 1:73 1:59 1:92 1:72 1:65 0:85

1600 EOC64;128 ��� ��� ��� ��� 1:77 1:32 0:79 0:97 ��� ���
EOC128;256 1:63 1:61 1:76 1:72 ��� 2:47 1:52 1:94 1:63 1:10

EOC256;512 2:05 1:70 2:11 1:75 ��� 1:47 2:07 2:17 2:05 0:45

EOC 1:84 1:65 1:93 1:73 1:77 1:75 1:46 1:70 1:84 0:77

3000 EOC64;128 ��� ��� ��� ��� 1:41 0:80 0:44 0:57 ��� ���
EOC128;256 ��� ��� ��� ��� ��� 1:44 0:89 1:11 ��� ���
EOC256;512 1:36 1:23 0:94 0:70 ��� 1:88 1:06 1:58 1:37 0:84

EOC 1:36 1:23 0:94 0:70 1:41 1:37 0:79 1:09 1:37 0:84

DNS of DHIT ��� numerical experiments of distinct LBM
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the EOC reduction for BGK and TRT from DS to AS lessens with the decreasing

in°uence of Ma at this Reynolds number.

Moreover, the change in stability from DS to AS can be evaluated from Tables 5

and 6. The coarse grid induced instabilities for BGK, TRT and ELB set in at similar

points in time for both scalings. A coarse grid leads to earlier occurring instabilities

when the Reynolds number is increased. Similarly, low Mach number instabilities of

Table 5. Dissipation rate error errL2 ð	Þ for t 2 ½0; 10� of DS computations with

BGK, TRT, MRT, RLB, ELB at N ¼ 64; 128; 256; 512 against the present

LBM-DNS1024 solution for the TGV °ow at Re ¼ 800; 1600; 3000. The approxi-
mate instability onset at time t � ~t is denoted as \nan ð~tÞ".

DS errL2 ð	Þ

Re N BGK TRT MRT RLB ELB

800 64 0:1227 0:1764 0:2271 0:2997 0:1297

128 0:0657 0:0695 0:0416 0:1090 0:0667

256 0:0146 0:0150 0:0116 0:0255 0:0149

512 0:0030 0:0030 0:0050 0:0042 0:0031

1600 64 nan ð7:5Þ nan ð7:6Þ 0:4352 0:5255 nan ð7:5Þ
128 0:1201 0:1404 0:1209 0:3043 0:1220

256 0:0372 0:0399 nan ð7:3Þ 0:1046 0:0380

512 0:0084 0:0087 nan ð1:5Þ 0:0244 0:0086

3000 64 nan ð6:9Þ nan ð6:7Þ 0:6366 0:7214 nan ð6:9Þ
128 nan ð7:6Þ nan ð6:8Þ 0:2340 0:5355 nan ð7:6Þ
256 0:1310 0:1000 nan ð4:5Þ 0:2890 0:1327

512 0:0505 0:0518 nan ð0:9Þ 0:1378 0:0506

Table 6. Dissipation rate error errL2 ð	Þ for t 2 ½0; 10� of AS com-

putations with BGK, TRT, MRT, RLB, ELB at N ¼ 64; 128; 256;

512 against the present LBM-DNS1024 solution for the TGV °ow at

Re ¼ 800; 1600; 3000. The approximate instability onset at time t �
~t is denoted as \nan ð~tÞ".

AS errL2 ð	Þ

Re N BGK TRT MRT RLB ELB

800 64 0:1227 0:1764 0:2271 0:2997 0:1297

128 0:0642 0:0680 0:0557 0:0918 0:0706

256 0:0140 0:0143 0:0112 0:0174 0:0266

512 0:0048 0:0048 0:0049 0:0048 0:0235

1600 64 nan ð7:5Þ nan ð7:6Þ 0:4352 0:5254 nan ð7:5Þ
128 0:1206 0:1385 0:1693 0:2646 0:1316

256 0:0367 0:0391 0:0263 0:0650 0:0609

512 0:0094 0:0096 0:0079 0:0119 0:0470

3000 64 nan ð6:9Þ nan ð6:7Þ 0:6366 0:7213 nan ð6:9Þ
128 nan ð7:6Þ nan ð6:8Þ 0:3622 0:4894 nan ð7:6Þ
256 0:1279 0:0884 0:1307 0:2227 0:1592

512 0:0521 0:0534 0:0325 0:0716 0:0894
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the MRT set in earlier with increasing Re. This reveals that the stability of the MRT

scheme depends on the Re and Ma. Comparable observations are found by Dellar,13

who proved that MRT diverged in the order of OðMa�1Þ for an inclined jet test case.

Additionally, the costs for di®usive scaling can be estimated. The number of

arithmetic operations doubles for N ¼ 128, quadruples for N ¼ 256 and increases

Table 7. Turbulent kinetic energy error errL2 ðkÞ for t 2 ½0; 10� of DS

computations with BGK, TRT, MRT, RLB, ELB at N ¼
64; 128; 256; 512 against the present LBM-DNS1024 solution for the
TGV °ow at Re ¼ 800; 1600; 3000. The approximate instability onset

at time t � ~t is denoted as \nan ð~tÞ".

DS errL2 ðkÞ

Re N BGK TRT MRT RLB ELB

800 64 0:0184 0:0186 0:0209 0:0148 0:0191

128 0:0108 0:0108 0:0125 0:0098 0:0110

256 0:0049 0:0049 0:0055 0:0048 0:0050

512 0:0017 0:0017 0:0018 0:0017 0:0017

1600 64 nan ð7:5Þ nan ð7:6Þ 0:0142 0:0127 nan ð7:5Þ
128 0:0084 0:0084 0:0111 0:0076 0:0085

256 0:0041 0:0041 nan ð7:3Þ 0:0038 0:0042

512 0:0015 0:0015 nan ð1:5Þ 0:0014 0:0015

3000 64 nan ð6:9Þ nan ð6:7Þ 0:0124 0:0154 nan ð6:9Þ
128 nan ð7:6Þ nan ð6:8Þ 0:0110 0:0073 nan ð7:6Þ
256 0:0049 0:0047 nan ð4:5Þ 0:0046 0:0050

512 0:0026 0:0027 nan ð0:9Þ 0:0035 0:0026

Table 8. Turbulent kinetic energy error errL2 ðkÞ for t 2 ½0; 10� of
AS computations with BGK, TRT, MRT, RLB, ELB at N ¼
64; 128; 256; 512 against the present LBM-DNS1024 solution for the

TGV °ow at Re ¼ 800; 1600; 3000. The approximate instability
onset at time t � ~t is denoted as \nan ð~tÞ".

AS errL2 ðkÞ

Re N BGK TRT MRT RLB ELB

800 64 0:0185 0:0186 0:0209 0:0148 0:0191

128 0:0125 0:0125 0:0133 0:0119 0:0129

256 0:0071 0:0071 0:0072 0:0070 0:0067

512 0:0040 0:0040 0:0040 0:0040 0:0022

1600 64 nan ð7:5Þ nan ð7:6Þ 0:0143 0:0127 nan ð7:5Þ
128 0:0099 0:0100 0:0111 0:0095 0:0099

256 0:0062 0:0062 0:0063 0:0061 0:0053

512 0:0038 0:0038 0:0039 0:0038 0:0017

3000 64 nan ð6:9Þ nan ð6:7Þ 0:0124 0:0153 nan ð6:9Þ
128 nan ð7:6Þ nan ð6:8Þ 0:0098 0:0085 nan ð7:6Þ
256 0:0071 0:0068 0:0067 0:0078 0:0060

512 0:0053 0:0054 0:0049 0:0054 0:0026
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eightfold for N ¼ 512. Therefore, a fundamental recommendation of the scaling can

be made for RLB and MRT, where the AS signi¯cantly improves the accuracy for the

RLB at higher Reynolds numbers and leads to a stable simulation if MRT is applied.

For ELB, the error displays a strong Ma-dependency. Therefore, DS is preferable. In

the case of BGK and TRT no uniform recommendation can be given and should be

decided on a case-by-case basis.

7. Conclusion

The collision schemes BGK, TRT, MRT, RLB and ELB for LBM DNS calculations

of DHIT were presented and discussed concerning stability, accuracy and consis-

tency. The three-dimensional energy spectrum, integral quantities and resulting

global error measurements with respect to a priorly validated high resolution

LBM-DNS1024 reference, were investigated. Subsequently, lattice Mach number,

Reynolds number and resolution dependencies of the solution for the individual

collision schemes were quanti¯ed and visualized. A comparison of AS and DS was

executed and results were analyzed in detail.

The present DS observations for BGK agree with previous test cases38 and the-

oretical predictions,27 approving the suitability for accurate, DHIT DNS computa-

tions in the incompressible limit.

The BGK and TRT results for AS only slightly di®ered from the ones obtained

with DS at high Reynolds numbers. However, at the lowest Reynolds number

Re ¼ 800 the constant truncation error of AS is more pronounced, which leads to

a diminished convergence speed. Additionally, the tests proved that with the AS

approach, the EOC for the RLB scheme is increased at Re ¼ 1600 and Re ¼ 3000.

The absence of instabilities, using AS for the MRT scheme, is a clear advantage

over DS at high Reynolds numbers, which resulted in instabilities induced by

decreasing Ma and ampli¯ed with increasing Re. When comparing the results

with the ELB scheme to the ones obtained with BGK, neither could instabilities

for low resolutions be prevented with the additional entropy correction, nor was

an increased accuracy noted. This absence of higher accuracy and stability was

also observed by Luo et al.32 for a single relaxation-time entropic LBM scheme

without a bulk viscosity modi¯cation. Besides, the AS results with the ELB

scheme exhibited strongly reduced accuracy as opposed to the DS parameter

setting.

We draw the conclusion that, when executing LBM DNS DHIT computations

with the MRT, and RLB for high Reynolds numbers as de¯ned here, reduced run-

time along with increased stability for the MRT scheme and an increased EOC for

the RLB scheme, approve that it su±ces to lower the lattice Mach number to the

weakly compressible regime and retain a ratio of �t � �x. In case of the ELB

scheme, decreasing Ma is still advisable, due to the strong decrease in accuracy

observed with AS. In contrast to that, a universal recommendation cannot be made
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for the BGK and the TRT scheme, because the in°uence of the Mach number

truncation error corresponds to the Reynolds number. AS leads per de¯nition to a

constant truncation error resulting in inconsistency, if the resolution goes to in¯nity.

Despite these e®ects, the increased e®ort of DS and the decreasing in°uence of the

truncation error at larger Reynolds numbers, justify a lattice velocity of uL ¼ 0:1 for

high Reynolds number °ows.

Since we ascertained a stability dependency on Re, Ma and N for the MRT, it is

believed that future studies on relaxation time optimization for kinetic moments,

connecting the present work with results from di®erent test cases (see Refs. 13, 33,

47), should lead to more satisfying simulations in the incompressible limit. The fact

that the consistently stable RLB scheme constitutes a subclass of MRT,30 underlines

the possibility of stabilizing MRT computations in the incompressible limit for DHIT

with non-hydrodynamic relaxation times as functions of Re, Ma and N . Further-

more, recent developments such as the cumulant lattice Boltzmann15 model provide

another approach to circumvent the Mach number-dependent stability issues of

the MRT.

In addition, the observed close interaction of �� with the solution behavior for the

TRT, also motivates the possible necessity of relaxation time scaling. We found that

the value of the \magic parameter", which was suggested in previous literature,17,18

required further scaling to yield stable results at all. Moreover, a constant � for TRT,

did, against expectations,27 not lead to stability enhancing features throughout every

tested parameter combination. Although dissipative e®ects were partly controllable,

low resolution induced instabilities could not be avoided. Hence, an advisable \magic

parameter" handling for three-dimensional DHIT computations with the

TRT scheme is yet to be investigated and optimized, for example by extending the

theory-based work of Ginzburg et al.,17,18 combined with a similar analysis as

proposed above.

The computationally demanding, though, in terms of solution quality unsatisfy-

ing features of the ELB, underline the requisiteness of studying more advanced

entropy consistent schemes such as the Karlin–B€osch–Chikatamarla (KBC) model.25

One advantage of the Karlin–Chikatamarla–B€osch model in comparison to ELB is

the reduced arti¯cial energy injection in high wavenumbers at low resolutions and

the consequential stability enhancement.7

Finally, testing subsequent versions of each collision scheme, comprising de¯-

ciency compensating features or consistently incorporated turbulence models,35

should be of major concern to achieve stable and su±ciently accurate LBM results

for turbulent °ows in general. As an example of analyzing a more complex canonical

°ow, a comparison of RLB, MRT, and BGK for wall-bounded turbulence can be

found in Ref. 38. At higher Reynolds numbers, where the turbulent boundary is

di±cult to resolve due to the large number of required grid points, wall-modeled

approaches are advantageous. So far, wall models for BGK,19 MRT36 and cumulant

LBM39 have been successfully implemented.

DNS of DHIT ��� numerical experiments of distinct LBM

1950074-27

64 3 Comparison of Distinct Collision Operators for Direct Numerical Simulation



Acknowledgments

This work was performed on the computational resource ForHLR II funded by the

Ministry of Science, Research and the Arts Baden-Württemberg and DFG

(\Deutsche Forschungsgemeinschaft").

References

1. S. Ansumali, I. Karlin, C. E. Frouzakis and K. Boulouchos, Phys. A, Stat. Mech. Appl.
359, 289 (2006).

2. S. Ansumali and I. V. Karlin, Phys. Rev. E 65, 056312 (2002).
3. L. d. L. X. Augusto, J. Ross-Jones, G. C. Lopes, P. Tronville, J. A. S. Gonçalves, M. Rädle

and M. J. Krause, Commun. Comput. Phys. 23, 910 (2018).
4. P. L. Bhatnagar, E. P. Gross and M. Krook, Phys. Rev. 94, 511 (1954).
5. O. N. Boratav and R. B. Pelz, Phys. Fluids 6, 2757 (1994).
6. F. B€osch, Entropic lattice Boltzmann models for °uid dynamics, PhD thesis, ETH Zurich

(2017).
7. F. B€osch, S. S. Chikatamarla and I. V. Karlin, Phys. Rev. E 92, 043309 (2015).
8. M. E. Brachet, Fluid Dynamics Res. 8, 1 (1991).
9. M. E. Brachet, D. I. Meiron, S. A. Orszag, B. Nickel, R. H. Morf and U. Frisch, J. Fluid

Mech. 130, 411 (1983).
10. S. Chen, Z. Wang, X. Shan and G. D. Doolen, J. Stat. Phys. 68, 379 (1992).
11. S. Chikatamarla, S. Ansumali and I. Karlin, Phys. Rev. Lett. 97, 010201 (2006).
12. J. DeBonis, Solutions of the Taylor–Green vortex problem using high-resolution explicit

¯nite di®erence methods, in 51st AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition, p. 382 (2013).

13. P. J. Dellar, J. Comput. Phys. 190, 351 (2003).
14. D. d'Humi�eres, Philos. Trans. Roy. Soc. London A: Math. Phys. Eng. Sci. 360, 437

(2002).
15. M. Geier, M. Sch€onherr, A. Pasquali and M. Krafczyk, Comput. Math. Appl. 70, 507

(2015).
16. W. K. George, Lectures in Turbulence for The 21st Century (Chalmers University of

Technology, 2013).
17. I. Ginzburg, D. d'Humi�eres and A. Kuzmin, J. Stat. Phys. 139, 1090 (2010).
18. I. Ginzburg, F. Verhaeghe and D. d'Humieres, Commun. Comput. Phys. 3, 427 (2008).
19. M. Haussmann, A. C. Barreto, G. L. Kouyi, N. Rivi�ere, H. Nirschl and M. J. Krause,

Comput. Math. Appl. (2019) (in press).
20. X. He and L.-S. Luo, Phys. Rev. E 56, 6811 (1997).
21. T. Henn, V. Heuveline, M. J. Krause and S. Ritterbusch, Aortic coarctation simulation

based on the lattice Boltzmann method: Benchmark results, in Statistical Atlases and
Computational Models of the Heart, Imaging and Modelling Challenges, eds. O. Camara,
T. Mansi, M. Pop, K. Rhode, M. Sermesant, and A. Young, (Springer, Berlin, 2013),
pp. 34–43.

22. V. Heuveline and M. J. Krause, OpenLB: towards an e±cient parallel open source library
for lattice Boltzmann °uid °ow simulations, in Int. Workshop on State-of-the-Art in
Scienti¯c and Parallel Computing. PARA, Vol. 9 (2010).

23. V. Heuveline, M. J. Krause and J. Latt, Comput. Math. Appl. 58, 1071 (2009).
24. W. A. Kareem, S. Izawa, A.-K. Xiong and Y. Fukunishi, Comput. Math. Appl. 58, 1055

(2009).
25. I. V. Karlin, F. B€osch, and S. Chikatamarla, Phys. Rev. E 90, 031302 (2014).

M. Haussmann et al.

1950074-28

3.7 Conclusion 65



26. M. J. Krause, F. Klemens, T. Henn, R. Trunk and H. Nirschl, Particuology 34, 1 (2017).
27. T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva and E. M. Viggen, The

Lattice Boltzmann Method, Vol. 10 (Springer, 2017).
28. P. Lallemand and L.-S. Luo, Phys. Rev. E 61, 6546 (2000).
29. P. Lallemand and L.-S. Luo, Phys. Rev. E 68, 036706 (2003).
30. J. Latt and B. Chopard, Math. Comput. Simul. 72, 165 (2006).
31. K. Lee, D. Yu and S. S. Girimaji, Int. J. Comput. Fluid Dyn. 20, 401 (2006).
32. L.-S. Luo, W. Liao, X. Chen, Y. Peng, W. Zhang et al., Phys. Rev. E 83, 056710 (2011).
33. L.-S. Luo, W. Liao, X. Chen, Y. Peng, W. Zhang et al., Phys. Rev. E 83, 056710 (2011).
34. L.-S. Luo, D. Qi and L.-P. Wang, in High Performance Scienti¯c and Engineering

Computing (Springer, 2002), pp. 123–130.
35. O. Malaspinas and P. Sagaut, J. Fluid Mech. 700, 514 (2012).
36. O. Malaspinas and P. Sagaut, J. Comput. Phys. 275, 25 (2014).
37. R. Mei, L.-S. Luo, P. Lallemand and D. d'Humi�eres, Comput. Fluids 35, 855 (2006).
38. P. Nathen, D. Gaudlitz, M. J. Krause and N. A. Adams, J. Commun. Comput. Phys. 23,

846 (2017).
39. A. Pasquali, M. Geier and M. Krafczyk, Comput. Math. Appl. (2017) (in press).
40. Y. Peng, W. Liao, L.-S. Luo, and L.-P. Wang, Comput. Fluids 39, 568 (2010).
41. S. B. Pope, Turbulent Flows (Cambridge University Press, New York, USA, 2001).
42. X. Shan, X.-F. Yuan and H. Chen, J. Fluid Mech. 550, 413 (2006).
43. G. Tauzin, L. Biferale, M. Sbragaglia, A. Gupta, F. Toschi, A. Bartel and M. Ehrhardt,

Comput. Fluids 172, 241 (2018).
44. R. Trunk, T. Henn, W. D€or°er, H. Nirschl and M. J. Krause, J. Comput. Sci. 17, 438

(2016).
45. W. M. Van Rees, A. Leonard, D. Pullin and P. Koumoutsakos, J. Comput. Phys. 230,

2794 (2011).
46. D. A. Wolf-Gladrow. Lattice-gas Cellular Automata and Lattice Boltzmann Models: An

Introduction (Springer, 2004).
47. H. Xu, O. Malaspinas and P. Sagaut, J. Comput. Phys. 231, 7335 (2012).
48. T. Yasduda, T. Hashimoto, H. Minagawa, K. Morinishi and N. Satofuka, Proc. Eng. 61,

173 (2013).
49. H. Yu, S. S. Girimaji and L.-S. Luo, J. Comput. Phys. 209, 599 (2005).

DNS of DHIT ��� numerical experiments of distinct LBM

1950074-29

66 3 Comparison of Distinct Collision Operators for Direct Numerical Simulation



4
Near-Wall-Modeled Large-Eddy Simulation of

a Coriolis Mass Flowmeter

This chapter was published in the following article:

M. HAUSSMANN, A. CLARO BARRETO, G. LIPEME KOUYI, N. RIVIÈRE, H. NIRSCHL

AND M. J. KRAUSE

Large-eddy simulation coupled with wall models for turbulent channel flows

at high Reynolds numbers with a lattice Boltzmann method – Application

to Coriolis mass flowmeter

Computers & Mathematics with Applications, 78.10 (2019)

https://doi.org/10.1016/j.camwa.2019.04.033

My contribution according to the contributor role taxonomy system [14] in-

cluded conceptualization, methodology, software, validation, formal analysis,

investigation, data curation, writing – original draft, visualization and project

administration.

https://doi.org/10.1016/j.camwa.2019.04.033


Computers and Mathematics with Applications 78 (2019) 3285–3302

Contents lists available at ScienceDirect

Computers andMathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Large-eddy simulation coupledwithwall models for turbulent
channel flows at high Reynolds numberswith a lattice
Boltzmannmethod— Application to Coriolismass flowmeter✩

Marc Haussmann a,∗, Alejandro CLARO BARRETO b, Gislain LIPEME KOUYI b,
Nicolas Rivière d, Hermann Nirschl c, Mathias J. Krause a

a Lattice Boltzmann Research Group, Karlsruhe Institute of Technology, Germany
b University of Lyon, National Institute of Applied Sciences of Lyon - INSA Lyon, Laboratory Wastes Water Environment Pollutions
(DEEP), France
c Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Germany
d University of Lyon, INSA Lyon, Laboratory of Fluid Mechanics and Acoustics (LMFA), France

a r t i c l e i n f o

Article history:
Received 17 October 2018
Received in revised form 15 February 2019
Accepted 27 April 2019
Available online 20 May 2019

Keywords:
Turbulent flow
Large-eddy simulation
BGK
OpenLB
Wall function
Coriolis mass flowmeter

a b s t r a c t

The numerical prediction of pressure drop within wall-bounded flow domains at high
Reynolds numbers (Re) using a large-eddy simulation (LES) approach is a challenging
task for industrial applications because the fluid domain is usually underresolved.
A lattice Boltzmann method (LBM) with Bhatnagar, Gross and Krook (BGK) collision
operator coupled with the Smagorinsky–Lilly turbulence model is used to model these
wall-bounded turbulent flows. The near wall region is modelled using wall functions to
decrease the required mesh resolution for high Re. The influence of different velocity
boundary approaches and wall functions is investigated for the benchmark bi-periodic
fully developed turbulent channel flow for friction Reynolds numbers (Reτ ) of 1000,
2000 and 5200. This benchmark case is validated against direct numerical simulation
(DNS) results for turbulent statistics of 1st and 2nd order. Based on this validation, the
pressure drop of an industrial Coriolis mass flowmeter is compared to experimental data
for Re up to 127 800. The error of the pressure drop calculation in underresolved grids
is reduced by two orders of magnitude in comparison to a no-slip approach for curved
boundaries.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The pressure drop in a pipeline system of a plant is a key parameter to scale the size of pumps and the associated
investment and operating costs [1]. Common pipeline elements, e.g. pipe bends or flow dividers, are described by well
examined empirical correlations. However, manufacturer-specific designs of special elements, as flow meters, are either
not covered by these correlations or they suffer from a lack of accuracy. The numerical prediction of pressure drops is
an alternative to expensive experiments or to the development of new empirical correlations, which are still dedicated
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to a certain flow regime. The numerical prediction within turbulent flows at high Reynolds numbers (Re) is challenging
because of the three-dimensional, unsteady and irregular nature of turbulence [2]. Besides, wall-bounded turbulent flows
add a degree of complexity due to the wall-near region treatment.

The computational cost of wall-resolving approaches is O(Re1.8) in the wall-near region, while it is only O(Re0.4) in
the outer region [3]. This fact leads to a tremendous increase of computation time due to the higher mesh resolution
required. Therefore, different approaches have been proposed to model the effects that rise in the turbulent boundary
layer. The wall model approaches [4–6] are usually based on an empirical function. They cover the course of the velocity
in the wall-near region due to the high velocity gradient in vicinity of the wall that is otherwise highly underpredicted.

Wall function modelling was first accessed by the Reynolds averaged Navier–Stokes (RANS) approaches to allow higher
grid spacing for the wall region [4]. The RANS approaches require extra boundary conditions for each turbulent quantity,
e.g. the k-epsilon model demands two additional conditions. Moreover, the position of the first grid point is generally
restricted to the logarithmic layer of the time-averaged stream-wise velocity to ensure the taken hypothesizes [7]. These
functions can be implemented on the large-eddy simulation (LES) models by applying the same assumptions as for RANS
approaches, e.g. the numerical estimation of the time-averaged wall shear stress. The main objective is thereby that
turbulence quantities in the bulk domain can be addressed with a higher accuracy.

The wall function approach within an LES framework was introduced by Deardoff [8] in 1970 with a logarithmic
average velocity profile to model implicitly the near-wall region. Laudner and Spalding [4] proposed to calculate the
mean wall shear stress and the turbulent viscosity from the logarithmic velocity profile. This wall function was applied to
a RANS k-epsilon model. Based on this idea, other researches proposed different wall functions within an LES framework.
Schumann [9] proposed a two layer equations model under the assumption of the so called subgrid scale (SGS) motion
model. This model was extended by Schmitt [6] to three layers in order to approximate the buffer layer with a higher
accuracy. Furthermore, Werner and Wengle [5] postulated an approach to circumvent iterative schemes to estimate the
wall shear stress and calculate it directly using a power-law profile. A special formulation for curved boundaries was
given by Shih et al. [10] that takes into account encountered adverse and favourable pressure gradients.

In the lattice Boltzmann (LB) community wall models for turbulent flows were initially investigated in the context of a
k-epsilon RANS model [11,12]. Wall functions coupled with LES models were first proposed by Malaspinas and Sagaut [13].
They modelled the near wall region with the Musker profile and the bulk domain with a multi-relaxation time (MRT)
LB scheme. Their numerical results were in good agreement against DNS data [14,15]. Schneider [16] used the MRT-LES
approach coupled with a three equations model based on the Werner and Wengle function [5]. In 2017 Pasquali et al. [17]
proposed an approach based on the cumulant LB method to obtain the needed velocity information in a local manner
which is suitable for graphic processing units.

The previous works simulated mainly benchmark cases of simple geometry, e.g. the bi-periodic turbulent channel, even
if the LB method is suitable for complex geometries [18–20] thanks to its highly parallel algorithm [21,22]. Also, they used
only the MRT LB approach even though Nathen et al. [23] have shown the suitability of a single relaxation time (SRT)
model for wall-bounded turbulent flows. Therefore, the applicability of the SRT model proposed by Bhatnagar, Gross and
Krook (BGK) [24] to mimic turbulent industrial cases still needs to be investigated. Also no quantitative error analysis of
the Reynolds stresses has been considered so far.

The main aim of this paper is to demonstrate that an SRT-LBM coupled to a wall function is able to predict the turbulent
statistics of 1st and 2nd order in highly underresolved grids with sufficient accuracy and therefore suitable for industrial
and engineering field applications.

In this work, we propose the adaption of the Malaspinas and Sagaut approach to a SRT-LBM. In addition, we evaluated
several velocity boundary schemes and wall function approaches according to different grid resolutions and friction
Reynolds numbers (Reτ ). We performed detailed error calculations and convergence speed analyses for the Reynolds
stresses, which had never before been demonstrated for an LBM wall function approach. This scheme is applied, for the
first time, to an industrial Coriolis mass flowmeter (CMF) to predict the pressure drop at high Re numbers.

The paper is organized in the following way: Section 2 gives a brief introduction to the SRT-LBM coupled to the LES
model. Furthermore, the used wall function equations are described in detail. The results of the validation case, the
bi-periodic turbulent channel flow, are pointed out in Section 3. Based on this validation, the pressure drop study for
the application case, the CMF, is presented in Section 4. Finally, Section 5 summarizes the results and focuses on future
research topics.

2. Theoretical background and modelling

2.1. Lattice Boltzmann method

An LBM simplifies the kinetic Boltzmann equation to a discrete set of particle distribution functions fi, i = 0, 1, . . . , q−

1, i.e. the movement of particles is restricted to a finite number of directions. In the case of a three dimensional lattice
D3Q15, D3Q19 and D3Q27 are the most popular descriptor sets employed to solve e.g. the Navier–Stokes equation. The
LB equation with external body force proposed by Guo et al. [25] is given by

fi(t + ∆t, x + ci∆t) = fi(t, x) + Ωi + ∆t Fi(ρ,u∗) , (1)
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where x is the position vector in the discrete lattice; ∆t is the discrete time step; ci is the discrete velocity; Ωi is the
collision operator; and Fi(ρ,u∗) is the external body force. The discrete velocities in D3Q19 are given by

ci =

⎧⎨⎩
(0, 0, 0) i = 0
(±1, 0, 0), (0, ±1, 0), (0, 0, ±1) i = 1, 2, . . . , 6
(±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1) i = 7, 8, . . . , 18

(2)

The collision operator is approximated with the SRT model proposed by Bhatnagar, Gross and Krook [24], written as

Ωi = −
1
τ
(fi(t, x) − f eqi (ρ,u∗)), (3)

where f eqi is the discrete Maxwell–Boltzmann equilibrium distribution function; and τ is the relaxation time towards this
equilibrium. The collision operator Ωi relaxes the particle distribution fi towards the equilibrium f eqi while conserving mass
and momentum. The particle distribution function at equilibrium f eqi and the external body force Fi (ρ,u∗) are given by

f eqi

(
ρ,u∗

)
= ρωi[1 +

ci · u∗

c2s
+

(cici − c2s I) : u∗u∗

2c4s
], (4)

Fi
(
ρ,u∗

)
= ρωi

(
1 −

1
2τ

)
[
ci − u∗

c2s
+

ci(ci · u∗)
2c4s

] · g, (5)

where ωi are the lattice weights obtained by the Gauss–Hermite quadrature [26,27]; cs = 1/
√
3 is the speed of sound of

the lattice; δαβ is the Kronecker operator; g is the external body acceleration.
The zeroth to second moments of fi give the macroscopic density ρ, momentum ρu∗, and momentum flux Π,

respectively. These discrete moments of fi are given by

ρ =

q−1∑
i=0

fi , (6)

ρu∗
=

q−1∑
i=0

(cifi) +
1
2
F , (7)

∏
αβ

=

q−1∑
i=0

ciαciβ fi. (8)

Besides, the kinematic viscosity of the fluid ν is related to the relaxation time τ as follows

ν = c2s (τ − 0.5) . (9)

The momentum equation (7) contains the term 1
2F to correct the momentum calculation due to the body force. A multi-

scale Chapman–Enskog expansion of the lattice Boltzmann equation (1) allows to recover the Navier–Stokes equations
with a body force for weakly-compressible flows [25,28,29]

An LB algorithm is decomposed in 2 steps: the collision step and the streaming step. The collision step corresponds to
the right-hand-side of Eq. (1). Once the fi are updated, the streaming step takes place according to the left-hand-side of
Eq. (1).

2.2. Turbulence simulation: Large-eddy approach

Usually, the LES is implemented within the LB framework by replacing the molecular viscosity ν with an effective vis-
cosity νeff [30]. The νeff allows to model the non-resolved scales by adding a turbulent viscosity νturb. The Smagorinsky–Lilly
model [31] was used in this research. The νeff is given by

νeff = ν + νturb, with νturb = (C∆)2|S̄|, (10)

where C is the Smagorinsky constant; ∆ = (∆x∆y∆z)1/3 is the grid filter; and |S̄| =

√
2 S̄αβ S̄αβ is the magnitude of the

filtered strain rate S̄αβ =
1
2

(
∂ ūα

∂xβ
+

∂ ūβ

∂xα

)
.

It is well known that the Smagorinsky–Lilly model is not adapted for wall-bounded flows because it is too dissipative
for the near-wall region [32]. One way to overcome this limitation is to use a van Driest damping function [33] defined
as

νturb = ρ̃[κy[1 − e−y+/A+

]]
2
|∂u/∂y| , (11)
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where ρ̃ is the average density; κ = 0.4 is the von Karman constant, this parameter varies between 0.37 and 0.41 [34];
|∂u/∂y| is the magnitude of the streamwise velocity gradient along the wall-normal direction; A+

= 26 is the van Driest
parameter; y+

= yũτ/ν is the dimensionless normal distance, y, away from the wall, with ũτ the friction velocity given
by

ũτ =

√
τ̃w/ρ̃. (12)

where τ̃w is the average shear stress.
Malaspinas and Sagaut [35] presented a consistent framework to implement LES within LBM framework. They have

shown that for weakly compressible turbulent flows the relaxation time τ can be replaced by an effective relaxation time
τeff via

τeff = τ + τturb, τturb = νturb/c2s , (13)

where τturb is the turbulent relaxation time.
From a macroscopic approach, the filtered strain rate S̄ needs to be computed in order to estimate the turbulent or

effective viscosity parameter. Malaspinas and Sagaut [35] obtained an explicit expression for the BGK model without
external body force using a local method. From a mesoscopic approach, the turbulent relaxation time τturb is the interesting
quantity to be computed in order to obtain the effective relaxation time τeff , which is needed for the collision step on
Eq. (1). The turbulent relaxation time τturb with a local method is given by

τturb =

√
τ 2 +

2(C∆)2

ρ̄ c4s

√
2 Π̆ (1) : Π̆ (1) −

τ

2
, (14)

where Π̆ (1)
= ρ̄(Fu∗

+ u∗F)/2 + Π (1) is the modified momentum flux; and ρ̄ =
∑

f̄i is the filtered density. It should be
noted that the distribution function fi becomes the filtered distribution function f̄i within the LES framework. Eq. (14) is
used for the fluid lattices, whereas Eq. (11) is for the boundary lattices.

2.3. Lattice Boltzmann boundary conditions

A Dirichlet velocity condition is used in this research to impose the velocity at the boundary. The interested reader
for boundary conditions within LB framework could find a detailed introduction and overview within the book of Krüger
et al. [36].

In this work only wet-node approaches are addressed. The basic idea of a wet node approach is the reconstruction
of every particle distribution function f̄i in the boundary cell, which can be split up in an equilibrium part f̄ eqi and a
non-equilibrium part f̄ (1)i

f̄i(t, x) = f̄ eqi (ρ̄, ū∗) + f̄ (1)i . (15)

After, the reconstruction the collision step is performed without modifications.
We are considering two different wet-node approaches. The first one is the equilibrium scheme [37,38]. Every f̄i on

the boundary is substituted by the equilibrium function

f̄i(t, x) = f̄ eqi (ρ̄, ū∗) . (16)

The second approach is the extrapolation scheme proposed by Guo et al. [39,40]. Hereby, the non-equilibrium distribution
function f̄ (1)i is substituted with zeroth order extrapolation scheme, which uses the value from the cell in inwards normal
direction

f̄i(t, x) = f̄ eqi (ρ̄, ū∗) + f̄ (1)i

(
t, x − |cj|n

)
. (17)

These two approaches are chosen due to simplicity and the ability to deal with edges and corners in a stair case
approximation.

2.3.1. Computation of density
The density at the boundary is not given, but necessary to calculate the equilibrium part, see Eq. (15). For a flat wall, the

density can be approximated with local or non-local methods. A local method uses only the information of the boundary
nodes, i.e. the distribution f̄i(t, x) and the macroscopic constraints. A non-local method needs information from neighbour
lattice nodes. A very accurate approach to calculate the density in a local manner is the Zou and He’s method [41]. They
propose to compute the density ρ̄bc := ρ̄(x) at wall node x via

ρ̄bc =
1

1 + ū⊥

bc

⎛⎝2
∑

i∈{i|ci·n>0}

fi +
∑

i∈{i|ci·n=0}

fi

⎞⎠ , (18)
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where ū⊥

bc =
(
ū∗

bc −
1
2F

)
· n is the perpendicular component of the velocity vector ū∗

bc along the outward unity normal
vector n.

Although Zou and He’s method is a highly accurate and mass conserving formulation, the method is restricted to flat
boundaries. Therefore, this research only uses the formulation by Guo et al. [39] in order to deal with arbitrary shaped
boundaries. The method uses the density of the neighbour lattice node in the inwards normal direction, −|cj|n, via

ρ̄bc =

∑
f̄i
(
t, x − |cj|n

)
(19)

with cj denoting the lattice velocity direction that respects the condition (cj · n)/|cj| = −1.

2.4. Wall functions

The flow close to the wall is modelled using near-wall functions. These functions are often based on a logarithmic or
a power-law profile for the predominated velocity. A near-wall function allows to obtain the average wall shear stress τ̃w

and turbulent fluctuations. In this work, the authors tested three different wall function approaches.
The first one is the Musker profile [42] given by

u+
= 5.424 arctan

(
2.0y+

− 8.15
16.7

)
+ log10

(
(y+

+ 10.6)9.6

(y+2
− 8.15y+ + 86.0)2

)
− 3.5072790194,

(20)

where u+
=

ũ
ũτ

is the normalized velocity in stream-wise direction. The function is an implicit equation based on the
logarithmic profile and it is applicable from the viscous sublayer (y+

≥ 1). A Newton method is used to approximate the
average wall shear stress τ̃wall.

Another possibility to circumvent the implicit calculation of wall shear stress is the approach by Werner and
Wengle [5]. The wall function is split into two layers:

u+
=

{
y+ 0 ≤ y+ < 11.81
Cm(y+)m 11.81 ≤ y+

(21)

where m =
1
7 and Cm = 8.3. By the use of the power-law function for the upper layer, the wall shear stress can be

calculated explicitly and is given by

τ̃w =

⎧⎪⎪⎨⎪⎪⎩
2ρνūF

yF
ūF ≤

ν

2yF
(11.81)2

ρ

[
1 − m

2
C

1+m
1−m
m (

ν

yF
)1+m

+
1 + m
Cm

(
ν

yF
)mūF

] 2
1+m

ūF >
ν

2yF
(11.81)2

(22)

The drawback of the two region formulation is the kink in the middle of the buffer layer, see 5(a). Therefore, a three layer
formulation can be used. According to the work of Schmitt [6], one can use a logarithmic function to cover the buffer
layer. A three layer model yields

u+
=

⎧⎨⎩
y+ 0 ≤ y+ < 5
a log10(y+) + b 5 ≤ y+ < 30
Cm(y+)m 30 ≤ y+

(23)

where a =
1
κ log10(30)+B−5

log10(6)
and b = 5 − a log10(5) and B = 5.2 and κ = 0.4.

The average wall shear stress τ̃w calculation in the tree layer model is given by

τ̃w =
2ρνūF

yF
ūF <

ν

2yF
(5)2

ũ√
τ̃w
ρ

= a log10(

√
τ̃w
ρ
yF

ν
) + b solve for τ̃w

ν

2yF
(5)2 ≤ ūF <

ν

2yF
(30)2

τ̃w = ρ

[
1 − m

2
C

1+m
1−m
m (

ν

yF
)1+m

+
1 + m
Cm

(
ν

yF
)mūF

] 2
1+m ν

2yF
(30)2 ≤ ūF

(24)

In the buffer region, the average wall shear stress τ̃w is implicitly calculated by a Newton method. However, the calculation
in the linear (y+ < 5) and the logarithmic (y+ > 30) region is explicitly given according to the work of Werner and
Wengle [5].

The influence of these different formulations on the turbulence statistics and an error estimation with respect to the
DNS data [43] is presented and discussed in Section 3.2.
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Fig. 1. Sketch of the used and calculated quantities form the boundary node (bc) and the adjacent fluid node (F) in normal direction.

2.5. Near-wall treatment

The idea of the used wall model approach was proposed by Malaspinas and Sagaut [13]. The objective is the
computation of the velocity at the boundary ū∗

bc . The used filtered velocity vector ū∗

F and position vector x notation are
given by

ū∗
= (ū, v̄, w̄), x = (x, y, z). (25)

If a staircase approximation is considered, the distance to the boundary ybc is given by

ybc = 0.5∆x∥n∥, (26)

where ∆x is the distance between two lattice nodes and ∥n∥ is the magnitude of the boundary unity normal n. The
distance from the wall to the neighbour fluid node in wall-normal direction yF is written as

yF = ybc + ∆x∥n∥. (27)

The boundary node and the corresponding fluid node is shown in Fig. 1. Because the wall function profiles are only valid
for stream-wise direction, it is necessary to extract this component from the wall-normal neighbour filtered velocity ū∗

F .
To do so, the local stream-wise unit vector e′

x is computed by

e′

x =
ū∗

F − (ū∗

F · n)n
∥ū∗

F − (ū∗

F · n)n∥
. (28)

The stream-wise component ūF of ū∗

F and the wall-normal neighbour distance respect to the wall yF are given by

ūF = ū∗

F · e′

x. (29)

The average wall shear stress τ̃w is computed by solving the Musker profile Eq. (20) for ūF = ũ (yF , τ̃w) or can directly
computed by Eq. (22). Then, the streamwise velocity at the boundary is computed by ūbc = ũ (ybc, τ̃w). Finally, the
boundary velocity is obtained by ū∗

bc = ūbce′
x.

2.5.1. Summary of the used wall model algorithm
The following listing summarizes the necessary formulas to reconstruct the filtered particle distribution functions f̄i

and to calculate the turbulent viscosity νt in order to perform the collide and stream step.

1. Compute ū∗

F with Eq. (6)–(7).
2. Compute e′

x with Eq. (28).
3. Compute ūF and yF with Eq. (29) and Eq. (27).
4. Approximate τ̃w by solving the Musker profile (Eq. (20)) with ū′

F and yF or explicit with Eq. (22)
5. Compute ū∗

bc = ũ (ybc, τ̃w) e′
x, with ũ (ybc, τ̃w) defined by Eq. (20), Eq. (21) or Eq. (23) and ybc with Eq. (26)

6. Compute ρ̄bc with Eq. (19)
7. Reconstruct f̄i with either Eq. (17) or Eq. (16).
8. Compute νturb with Eq. (11) and τturb with Eq. (13)
9. Compute collision and streaming steps with Eq. (1).

3. Results of the validation benchmark: Bi-periodic turbulent flow

The proposed wall function approach, see Section 2.5.1, is validated against the benchmark case of a 3D bi-periodic
turbulent channel flow. The bi-periodic channel flow is a very common benchmark case for wall-bounded turbulent flows

4.3 Results of the validation benchmark: Bi-periodic turbulent flow 73
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Fig. 2. Sketch of the geometry: periodicity in stream-wise (x-direction) and span-wise (z-direction), walls in lateral direction (y-direction), channel
half H = 1m.

and therefore a wide spectrum of experimental and numerical data is available. The channel is periodic in stream-wise
(x-direction) and span-wise (z-direction) direction. Two parallel walls are perpendicular to the normal direction
(y-direction). A D3Q19 descriptor set is chosen according to the work of Malaspinas and Sagaut [13]. The grid is aligned to
the Cartesian axis of the channel geometry. In the case of a non axis-aligned grid configuration a descriptor with a higher
amount of lattice directions (e.g. D3Q27) should be chosen to improve the rotational invariance [44]. The dimensions of
the channel flow geometry are given by Fig. 2. The half of the channel height is H = 1m. The Reτ number and the bulk
Reynolds number Rebulk for the channel can be estimated by

Reτ =
Hũτ

ν
, (30)

Rebulk =
2Hum

ν
, (31)

where um is the mean bulk velocity and ν is the kinematic viscosity.
The flow is forced in stream-wise direction according the forcing scheme of Cabrit [45], which is written as

F =
ũ2

τ

H
+ (um,DNS − ũx)

um,DNS

H
, (32)

where um,DNS is the mean velocity given by the DNS data and ũx is the yz plane averaged velocity at x = πH . The flow
is initialized with a power-law profile, see Eq. (21), perturbated by a turbulence intensity of 5 percent. Thereby, the
turbulence is seeded with random fluctuations to reduce the amount of flow through cycles before the statistics are
obtained. The turbulence intensity is given by

I =
u′

um
, (33)

where u′ is the velocity fluctuation in stream-wise direction. The statistics are spatial and temporal averaged to ensure
a high accuracy. The spatial average is realized by a line L in z direction that is positioned at x = πH . The time for the
statistics is started after 400 channel passages cp =

2πH
um

and lasts 150 channel passages. The amount of ensembles is
related to a statistic frequency of 25Hz. Assuming um ≈ 1m

s the total amount of ensembles is about 23560. The recorded
statistics consist of the normalized stream-wise velocity profile, which is defined as

⟨u⟩+ =
1
Nt

tn∑
t=t0

1
NL

∑
x∈L

ū(t, x)
ũτ

. (34)

where Nt is the amount of ensembles, t0 denotes the start time step and tn the end time step of the statistics, NL is the
number of grid points in the according line. Also the normalized Reynolds normal stress ⟨u′u′

⟩
+ in stream-wise direction

is tracked and given by

⟨u′u′
⟩
+

= ⟨uu⟩+ − (⟨u⟩+)2, (35)

⟨uu⟩+ =
1
Nt

tn∑
t=t0

1
NL

∑
x∈L

(ū(t, x))2

ũ2
τ

. (36)

The calculation for the normalized normal stresses in span-wise ⟨w′w′
⟩
+ and lateral ⟨v′v′

⟩
+ direction is analogous. The

normalized Reynolds shear stress is given by

⟨u′v′
⟩
+

= ⟨uv⟩
+

− ⟨u⟩+⟨v⟩
+, (37)
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Table 1
Discretization parameter for the three different grid resolutions N = 10, N = 20 and
N = 40.
N ∆t ∆x uL Ma

10 0.005466 0.1053 0.0519298 0.08995
20 0.001297 0.05128 0.0252991 0.04382
40 0.0003162 0.02531 0.0124895 0.02163

⟨uv⟩
+

=
1
Nt

tn∑
t=t0

1
NL

∑
x∈L

ū(t, x)v̄(t, x)
ũ2

τ

, ⟨v⟩
+

=
1
Nt

tn∑
t=t0

1
NL

∑
x∈L

v̄(t, x)
ũτ

. (38)

For all simulations a Smagorinsky constant of C = 0.12 is chosen, because the low dissipative characteristics of the BGK
scheme should be taken into account [30]. The chosen resolutions N = 10, N = 20 and N = 40 are defined as the number
of grid points related to the half channel height H . The used discretization parameters are depicted in Table 1. Diffusive
scaling ∆t ∝ ∆x2 is used and the Mach number Ma is chosen to fulfil the incompressibility condition Ma < 0.1. The
Mach number Ma is given by

Ma =
uL

cs
, (39)

where cs is the lattice speed of sound and uL is the lattice velocity. The DNS results of Lee and Moser [43] have been used
to compare the normalized velocity profiles and the Reynolds stresses.

3.1. Comparison of velocity boundary approaches at Reτ = 1000

In the following section we analyse the influence of the reconstruction of the non-equilibrium particle distribution
function f̄ (1)i on the flow field. Therefore, the two velocity boundary schemes, which are described in Section 2.3, are
applied on the turbulent channel flow.

The normalized stream-wise mean velocity u+ is shown in Fig. 3 for the three different mesh resolutions, N equal to
10, 20 and 40. These three resolutions correspond to a dimensionless wall distance y+ of 12.5, 25 and 50, respectively.
The equilibrium (EQ) scheme underestimates the stream-wise velocity at the first few lattice nodes, up to 3 away from
the wall, for all resolutions. Furthermore, the underestimation error increases as the first node gets closer to the wall, see
Figs. 3(a) and 3(c). The neglected non-equilibrium part of fi by the EQ scheme impacts the 1st order turbulent statistics
(i.e. the mean velocity). On the other hand, the extrapolation (EP) scheme gives a better approximation of the stream-wise
velocity for all the mesh resolutions. This scheme fairly well approximates it if the first node is located at the buffer region
ending (5 < y+ < 30), see Fig. 3(c). Both schemes, the EQ and the EP, should not be used below the logarithmic layer
(y+ < 30) if the velocity at the first node needs to be correctly simulated.

The normalized Reynolds normal stress in stream-wise direction ⟨u′u′
⟩ and the shear stress ⟨u′v′

⟩ for both boundary
schemes are depicted in Fig. 4. The normal stress ⟨u′u′

⟩ for both schemes is in good agreement to the DNS results [43]
for the coarse and fine resolutions (N = 10 and 40). However, at N = 20 the EQ scheme does not follow the DNS profile
but it fluctuates around it. These fluctuations are unexpected with the stabilizing effect of the EQ scheme by cutting off
the non-equilibrium part of fi. On the other hand the EP scheme is able to describe the profile of the DNS results. At the
higher resolution (N = 40), the location of the peak value is better approximated by the EP scheme. However, the EQ
scheme gives a closer DNS peak value than the EP scheme. The Reynolds shear stress ⟨u′v′

⟩ is better recovered by the EQ
scheme than the EP scheme N = 10, the EP scheme gives a fluctuation profile. These fluctuations vanish at higher grid
resolutions. Although the EQ scheme seems to smooth the fluctuations at N = 10 (see Fig. 4(b)), the near-wall prediction
at higher resolutions is less accurate than the EP scheme (see Figs. 4(d) and 4(e)). Furthermore, fluctuations in the EQ
scheme course by N = 20 are visible, see Fig. 4(d).

Overall, the EQ scheme is only suitable to stabilize the Reynolds stresses for low resolutions (i.e. N = 10). In contrast,
the use of the EP scheme at higher grid resolutions increases the accuracy due to the reconstruction of the non-equilibrium
part of fi.

3.2. Comparison of different wall functions for Reτ = 1000

We tested three different wall functions: the continuous Musker equation (Eq. (20)), the two equation proposed by
Werner and Wengle (Eq. (21)) and a three equations model (Eq. (23)) based on the work of Schmitt [6]. These wall
functions are described in detail in Section 2.4. All three models are based on empirical equations to approximate the
boundary layer profile. The three wall functions are plotted for Reτ = 1000 in Fig. 5(a) and the relative deviation from
the DNS data is tracked in Fig. 5(b). The relative deviation corresponds to the approximation error defined as

errWF :=
u+

WF (y
+) − u+

DNS(y
+)

u+

DNS(y+)
, (40)
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Fig. 3. Normalized stream-wise velocity u+ profiles for the equilibrium (EQ) and the extrapolation (EP) scheme with three grid resolutions N = 10,
N = 20 and N = 40, for Reτ = 1000 and wall function of Musker.

where u+

DNS is the normalized stream-wise velocity for Reτ = 1000 from the DNS data; and u+

WF is the corresponding
value from the wall function. It can be observed that the two equation formulation (WW) suffers from inaccuracy in the
buffer layer (5 < y+ < 30). The calculated error provides for the Werner and Wengle (WW) approach a peak error at
y+

≈ 12, which is close to 25 percent. This high error indicates that neither the power-law nor the linear law is able to
describe this region adequately. This drawback vanishes, if a third equation for the buffer layer is introduced (i.e. SC). The
continuous Musker formulation is also able to describe all three wall regions with sufficient accuracy (maximal error in
the buffer layer of 3.3 percent).

The influence of these wall functions is investigated for the two grid resolutions N = 10 and N = 40 on the 1st and 2nd
order turbulence statistics. Fig. 6 represents the normalized stream-wise velocity u+, the normal stress on stream-wise
direction⟨u′u′

⟩
+ and the shear stress ⟨u′v′

⟩
+ profiles. Both grid resolutions are chosen in order to show the first point

in the logarithmic layer (y+
≈ 50) and in the middle of the buffer layer (y+

≈ 12.5). If the first grid point is located
in the logarithmic region, all three wall functions are able to cover the correct behaviour for the velocity profile and
the Reynolds stresses, see Figs. 6(a), 6(c) and 6(e). However, if the first grid point is in the buffer layer, the velocity is
overestimated with the WW function, see Fig. 6(b), and it is underestimated by the other wall functions. The normal
stress ⟨u′u′

⟩
+ is correctly recovered by the MU and SC functions regardless the mesh resolution (see Figs. 6(c) and 6(d)).

The WW function overestimate it and shows a fluctuating course for the fine resolution (see Fig. 6(d)). The prediction
of the shear stress ⟨u′v′

⟩
+ is similar for all the wall functions. The WW formulation slightly overestimates it for the fine

resolution (see Fig. 6(f)). This behaviour is explained by the error of the WW function on the buffer layer presented on
Fig. 5(b). Therefore, the WW function should not be used in the buffer region (5 < y+ < 30). On the contrary, the MU
and SC functions are in good agreement to each other and they are able to cover the course of the reference DNS data for
1st and 2nd order turbulent statistics.

3.3. Comparison for different values of Reτ

The same three resolutions (N = 10, N = 20 and N = 40) were applied on the bi-periodic channel flow for Reτ = 2000
and Reτ = 5200, which correspond to a bulk Reynolds number of Rebulk ≈ 80 000 and Rebulk ≈ 250 000, respectively.
Based on the previous results from Sections 3.1 and 3.2, we choose the Musker (MU) equation as the wall function and
the extrapolation (EP) scheme for the velocity boundary implementation.

The normalized stream-wise velocity u+, the normal stress ⟨u′u′
⟩
+ and the shear stress ⟨u′v′

⟩
+ are compared again to

the DNS data, see Fig. 7. For the smallest resolution (N = 10), the velocity profile u+ fluctuates around the DNS solution for
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Fig. 4. Normalized Reynolds normal stresses in streamwise direction ⟨u′u′
⟩
+ and shear stresses ⟨u′v′

⟩
+ profiles for the equilibrium (EQ) and the

extrapolation (EP) scheme with three grid resolutions N = 10, N = 20 and N = 40, Reτ = 1000 and wall function of Musker.

Fig. 5. Normalized streamwise velocity u+ for three wall functions: Musker (MU), Schmitt (SC) and Werner et Wengle (WW) in comparison to DNS
data at Reτ = 1000 and relative error calculation according Eq. (40).
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Fig. 6. Normalized streamwise velocity u+ , Reynolds normal stresses in streamwise ⟨u′u′
⟩
+ and the shear stresses ⟨u′v′

⟩
+ profiles for the wall

functions Musker (MU), Werner et Wengle (WW) and Schmitt (SC) with grid resolution N = 10 and N = 40, Reτ = 1000 and extrapolation (EP)
scheme.

both Reτ . These fluctuations increase for Reτ = 5200. At higher resolutions the approximation of u+ is in good agreement
to DNS, see Figs. 7(a) and 7(b).

The normal stresses are depicted in Fig. 7(c) and 7(d). The lowest resolution (N = 10) is again not able to describe the
course with a sufficient accuracy for both Reτ . The accordance to the course for grid resolution N = 20 is better, but the
stresses are overestimated all along the profile. By contrast, the highest resolution N = 40 is close to DNS solution.

Fig. 7(e) presents the shear stress values for Reτ = 2000, it is observed that for N = 10 the LES solution shows a
high deviation from the DNS course. This behaviour increases by Reτ = 5200, see Fig. 7(f). This reflects that the proposed
scheme is not able to describe 2nd turbulent statistics with 10 grid points on the half-channel height. The mesh resolution
of N = 20 allows to eliminate the fluctuations, but the shear stress is still underestimated. Only the mesh resolution of
N = 40 fairly recover the DNS profiles.

In summary, the MU function coupled to EP scheme requires a mesh resolution for the half-channel height between
N = 20 to N = 40 to fairly reproduce the DNS profiles of 1st and 2nd order turbulent statistics. Furthermore, only the
Reynolds stresses at the highest resolution N = 40 are in good agreement with the DNS data.
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Fig. 7. Normalized stream-wise velocity u+ , normal stress in stream-wise ⟨u′u′
⟩
+ and the shear stress ⟨u′v′

⟩
+ profiles for Reτ = 2000 and Reτ = 5200

with three grid resolutions N = 10, N = 20 and N = 40, wall function of Musker and extrapolation scheme.

3.4. Enhanced turbulence statistic data and error estimation

The results of the turbulent channel flow are quantitatively evaluated by an error criterion. The normalized mean
absolute error nMAE criterion was chosen and it is given by

nMAE :=

∑n
i=1 |Yi,SIM − Yi,DNS |∑n

i=1 Yi,DNS
, (41)

where Yi,SIM is the simulation data of the wall function approach at a discrete point i; and Yi,DNS is the according DNS
reference value. The DNS reference values are linearly interpolated to adapt them to the discrete positions of the LBM
solution. A study of the effect of grid resolution for the normalized stream-wise velocity u+ based on this error criterion
is shown in Fig. 8 for three different Reτ : 1000, 2000 and 5200. The experimental order of convergence (EOC) for the
grid resolutions N = 10 and N = 20 is close to EOC = 1 for both Reτ = 1000 and Reτ = 2000. However, the EOC for
Reτ = 5200 is approximately EOC = 2. For the grid resolutions N = 20 and N = 40, the estimated error is still decreasing,
but seems to reach a plateau, which decreases the EOC . The reasons for this could be the small error at N = 20 and the
comparison to DNS data instead of wall function profiles. Despite the high quality of the reference solution, the accuracy
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Table 2
Normalized mean absolute error nMAE of the normalized stream-wise velocity ũ+ , the Reynolds normal stresses in
stream-wise ⟨u

′

u
′

⟩
+ wall-normal ⟨v

′

v
′

⟩
+ and span-wise ⟨w

′

w
′

⟩
+ directions, the Reynolds shear stress ⟨u

′

v
′

⟩
+ profiles

with different wall function (WF) approaches (Musker (MU), Schmitt (SC) and Werner and Wengle (WW)), boundary
schemes (BS) (extrapolation (EP) and equilibrium (EQ)), grid resolutions N and friction Reynolds numbers Reτ .

Reτ N BS WF u+ < u
′

u
′

>+ < v
′

v
′

>+ < w
′

w
′

>+ < u
′

v
′

>+

1000 10 EP MU 0.02846 0.1586 6.0277 7.2599 −0.2921
1000 10 EQ MU 0.02798 0.1004 0.2922 2.9690 −0.1571
1000 20 EP MU 0.01586 0.1856 0.4477 0.1158 −0.2026
1000 20 EQ MU 0.03406 0.9066 0.3493 0.3799 −0.3173
1000 40 EP MU 0.01178 0.1639 0.1215 0.1374 −0.0535
1000 40 EQ MU 0.03067 0.2418 0.1540 0.1282 −0.1596
1000 10 EP WW 0.02382 0.1211 5.8791 0.4744 −0.1969
1000 10 EP SC 0.02643 0.1195 6.3565 5.1764 −0.3143
1000 20 EP WW 0.02191 0.1469 0.6565 0.2671 −0.1205
1000 20 EP SC 0.01839 0.2298 0.5152 0.1831 −0.1385
1000 40 EP WW 0.02470 2.7632 0.2265 0.2180 −0.1783
1000 40 EP SC 0.01281 0.1753 0.1261 0.1389 −0.0396
2000 10 EP MU 0.02369 0.3453 4.9721 1.6562 −0.6237
2000 20 EP MU 0.01488 0.6770 0.2845 0.1750 −0.3688
2000 40 EP MU 0.01198 0.2568 0.0995 0.1237 −0.1508
5200 10 EP MU 0.04122 0.1377 8.2053 2.6698 −0.6187
5200 20 EP MU 0.00973 0.2071 1.1306 1.0366 −0.3133
5200 40 EP MU 0.00788 0.1852 0.1366 0.1089 −0.0491

Fig. 8. Deviation from the normalized stream-wise velocity DNS profile for three different friction Reynolds numbers Reτ = 1000, Reτ = 2000,
Reτ = 5200.

is influenced by statistical uncertainties (<1%) [43]. In addition, the used spatial linear interpolation leads to an error
term, especially in regions where the profile is not assumed to be linear (y+ > 5). Since the LES grid spacing ∆xLES is
larger than the DNS grid spacing ∆xDNS this error term is in order O((∆xDNS)2).

Table 2 provides the nMAE of the normalized stream-wise velocity u+, the normal stresses ⟨u′u′
⟩
+ and the shear

stress ⟨u′v′
⟩
+ for all simulated channel flow configurations. The Reynolds stresses ⟨v′v′

⟩
+, ⟨w′w′

⟩
+ and ⟨u′v′

⟩
+ show

grid convergence for Reτ = 2000 and Reτ = 5200.
Furthermore, a high conformity to the DNS data for the configuration MU function and EP scheme at the resolution

N = 40 is visible for the used Reτ numbers. The wall function approach presented is suitable for simulating high Re
number flows in underresolved grids with good accuracy.

4. Results of the application case: Coriolis mass flowmeter

A Coriolis mass flowmeter (CMF) measures the mass flow and the density of a fluid with a high accuracy. This device is
part of many pipeline systems in plants, where a high precision is necessary to ensure a certain product quality or safety
guideline. The installation of a CMF in a pipeline system requires reliable data of the pressure drop. In the following section,
we present our numerical setup to simulate a RotaMASS Supreme RCxS38 CMF from the company ROTA YOKOGAWA GmbH
& Co. KG. The geometry of the simulated domain is depicted in Fig. 9 and consists of a flow divider, two measuring tubes
and a flow combiner.

The inflow and the outflow stretch are elongated to diminish the jet effects after the flow combiner (see Fig. 10), which
influence the pressure measurement accuracy at the outflow. In stream-wise direction periodic boundary conditions are
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Fig. 9. Simulation domain of the Coriolis mass flowmeter and position of the forcing area (blue) and the two pressure measuring planes (red). The
flow direction is from left to right. In flow direction a flow divider, two measuring tubes and a flow combiner are shown. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Volume rendering representation of the instantaneous velocity at Re = 15 980.

Table 3
Discretization parameter for the three different grid resolutions N = 21, N = 41 and N = 81.
Re N ∆t ∆x uL Ma

15 980 21 0.0006469 0.002619 0.05786 0.1002
15 980 41 0.0001697 0.001341 0.02964 0.05133
15 980 81 4.348e−05 0.0006790 0.01500 0.02598
31 960 81 2.174e−05 0.0006790 0.01500 0.02598
63 910 81 1.087e−05 0.0006790 0.01500 0.02598

127 800 81 5.435e−06 0.0006790 0.01500 0.02598

applied due to stability and to guarantee an adequate distribution of turbulence intensity at the entrance. As a result, a
force term is applied on a volume close to the inflow, see Fig. 9, and scaled to the set mass flow. The scaling of the force
ensures the prescribed massflow by a control loop that covers a predefined turbulence intensity and the time averaged
velocity in the forcing area. The expected pressure drop is neither used in the control loop nor in the scaling procedure.
The wall of the CMF is described by three different boundary conditions. The first one is our wall function approach
using the extrapolation scheme and the Musker equation. The curved walls are approximated by a staircase and the
resulting discrete boundary normals are used in the wall function approach. The second scheme is the full way bounce
back approach to show a boundary condition that uses a staircase approximation and implements a no-slip condition.
On the contrary the third scheme, the Bouzidi approach [46] takes the distance to the physical boundary into account
and resolves the staircase approximation. Four different Reynolds numbers are simulated: Re = 15 980, Re = 31 960,
Re = 63 910 and 127 800. The characteristic length in the definition of the Reynolds number is related to the diameter of
the measuring tube and the average velocity. The discretization parameters are given by Table 3. The Mach number Ma
in the coarse grid is chosen with respect to the incompressibility condition and diffusive scaling is applied. The simulated
fluid is water at a temperature of 293.15 K.

4.1. Pressure drop validation

The pressure drop is calculated by a pressure value at the inflow and the outflow region. Therefore, two planes are
chosen one behind the forcing area close to the inlet and the other one near to the outlet, see Fig. 9. The plane averaged
pressure pE is given by

pE(t) =
1
NE

∑
x∈E

p̄(t, x), (42)
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Fig. 11. Deviation from the experimental data for the wall function approach using the extrapolation scheme and the Musker equation at Reynolds
number Reτ = 15 980.

where E is a given plane, NE is the amount of grid points in the plane and x the position in the plane, which starts at
x = x0 and ends at x = xn. The time averaged total pressure drop ∆ptotal is defined as

∆ptotal =
1
Nt

tn∑
t=t0

|pinflow(t) − poutflow(t)|, (43)

where Nt is the amount of time steps, t0 indicates the start time step and tn the end time step of the statistics. The
numerical statistics of the Coriolis flow meter are related to the residence time, which is given as

tr =
VCMF

V̇
, (44)

where VCMF is the volume of the CMF and V̇ is the volume flow through the CMF. The statistic starts after 20tr and lasts
for 10tr . The statistic frequency is also chosen to 1000

tr
with respect to the residence time. This leads to a total ensemble

amount of Nt = 10000. The relative error for the pressure drop errPD is defined as

errPD =

⏐⏐⏐⏐∆ptotal,SIM − ∆ptotal,EXP
∆ptotal,EXP

⏐⏐⏐⏐ , (45)

where ∆ptotal,EXP is the experimental pressure drop value and ∆ptotal,SIM is the simulated pressure drop value.
Fig. 11 shows the calculated error errPD for different grid resolutions N . The resolution is related to the diameter at the

inflow section. The applied wall function scheme shows at Re = 15 980 by N = 21 and N = 41 an EOC close to EOC = 2.
For N = 41 and N = 81 the EOC is greater than EOC = 3. Due to the fact that the experimental pressure drop takes into
account a measuring error and a staircase approximation is used, this high EOC is based on mutually beneficial error terms.
If the measurement error is of the same magnitude as the pressure error errPD, the order of convergence can be increased
or decreased due to the uncertainty of the experimental reference values. Further sources of error could be caused by the
difference between the position of the numerical and the experimental position of the pressure measurement. The use
of different boundary conditions and the influence on the pressure drop ∆ptotal is depicted in Fig. 12. It is observed that
the Bouzidi scheme leads to a slightly better simulated pressure drop than the bounce back scheme. This behaviour is
to be expected, because Bouzidi takes the correct wall spacing into account and the implemented bounce back approach
operates on a staircase approximation. Nevertheless, both schemes suffer on a highly overestimated pressure drop. On
the contrary, the wall function approach is in very good agreement to the experimental data.

A summary of all simulated cases is given by Table 4. The estimated error errPD shows for Bouzidi and bounce back
scheme that the higher the Reynolds number, the worse the pressure drop prediction. The wall function approach is able
to cover the experimental data with a maximal error of 6.1% at the highest Reynolds number. In comparison to bounce
back and Bouzidi the error is reduced by two orders of magnitude.

5. Conclusion and outlook

This paper aims at demonstrating the capacity to simulate wall-bounded turbulent flows in highly underresolved grids
with a SRT-LES-LB model coupled to a wall function. The model was validated with the bi-periodic turbulent channel flow.
Thereby, algorithm options, as velocity boundary schemes and wall functions, were estimated for a friction Reynolds
number Reτ = 1000. It was shown that the extrapolation scheme has an improved accuracy at higher resolutions. In the
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Fig. 12. Total pressure drop ∆ptotal data of the simulation with bounce back, Bouzidi and wall function approach for different Reynolds numbers
with grid resolution N = 81 in comparison to the experimental data.

Table 4
Pressure drop ∆ptotal and the according relative error errPD for different Reynolds numbers Re, boundary
schemes and grid resolutions N .
Re N Boundary scheme ∆ptotal errPD
15 980 21 Wall function 288 0.47628
15 980 41 Wall function 609 0.10966
15 980 81 Wall function 546 0.00367
15 980 81 Bouzidi 1 339 1.43989
15 980 81 Bounce back 1 849 2.36794
31 960 81 Wall function 1 979 0.03620
31 960 81 Bouzidi 5 497 1.87819
31 960 81 Bounce back 7 075 2.70418
63 910 81 Wall function 7 085 0.02242
63 910 81 Bouzidi 21 769 2.14128
63 910 81 Bounce back 30 388 3.38499

127 800 81 Wall function 24 321 0.06095
127 800 81 Bouzidi 90 035 2.47629
127 800 81 Bounce back 116 421 3.49501

case of the wall function, a three layer formulation and the Musker equation allow to handle the velocity at the first grid
point in the buffer layer with sufficient precision (errWF < 3.3%). The extrapolation scheme and the Musker equation
were applied on two higher friction Reynolds numbers: 2000 and 5200. The 1st and 2nd order turbulence statistics are
well in line with the DNS reference data for higher grid resolutions. The smallest grid resolution, N = 10, is not able to
recover the DNS profiles and suffers from fluctuations. However, grid convergence is observed for the normalized velocity
profiles u+.

The analysis of the pressure drop in the geometry of a Coriolis mass flowmeter shows a major improvement in
comparison to different no-slip boundary conditions. The error is reduced by two orders of magnitude in the used under-
resolved grid. Hence the developed approach is able to deal with application geometries and the simulated pressure drop
by flows at high Reynolds numbers, up to Re = 127 800, is in very good agreement to experimental data (errPD < 6.1%).

Further work has to been carrying out on the implementation of a curved boundary formulation that takes into account
the position of the wall. Authors will refer to the work of Guo [40], which extends the used extrapolation scheme to
curved boundaries. In principle, the proposed algorithm is also valid for non discrete normals in case of an arbitrary
shaped boundary. Furthermore, the analysis of pressure gradients occurring at curved boundaries should be investigated
and included in the wall function formulation.
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Abstract: In this paper, we compare the capabilities of two open source near-wall-modeled
large eddy simulation (NWM-LES) approaches regarding prediction accuracy, computational costs
and ease of use to predict complex turbulent flows relevant to internal combustion (IC) engines.
The applied open source tools are the commonly used OpenFOAM, based on the finite volume method
(FVM), and OpenLB, an implementation of the lattice Boltzmann method (LBM). The near-wall
region is modeled by the Musker equation coupled to a van Driest damped Smagorinsky-Lilly
sub-grid scale model to decrease the required mesh resolution. The results of both frameworks are
compared to a stationary engine flow bench experiment by means of particle image velocimetry (PIV).
The validation covers a detailed error analysis using time-averaged and root mean square (RMS)
velocity fields. Grid studies are performed to examine the performance of the two solvers. In addition,
the differences in the processes of grid generation are highlighted. The performance results show
that the OpenLB approach is on average 32 times faster than the OpenFOAM implementation for the
tested configurations. This indicates the potential of LBM for the simulation of IC engine-relevant
complex turbulent flows using NWM-LES with computationally economic costs.

Keywords: turbulent flow; large-eddy simulation; wall function; IC engine; OpenLB; OpenFOAM;
particle image velocimetry

1. Introduction

Due to the complex turbulent nature of internal combustion (IC) engine flows, their accurate
prediction is a major challenge to numerical and experimental investigations. Additional difficulties
arise from the interconnection of multiphysical processes, including multiphase flow phenomena, heat
transfer and chemical reactions. Each process features different time and length scales, often varying
in orders of magnitude, which further increases the complexity.

A particularly important turbulent flow structure for the analysis of IC engines is the intake jet [1].
This high-speed flow over the valves is critical in generating a charge motion, which is commonly
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referred to as a tumble motion. The tumble breakdown in engine compression results in turbulent
structures, which dominate the mixing, ignition and combustion processes and in turn, the engine
efficiency and pollutant emissions. Therefore, it is necessary to understand the complex processes in
turbulent IC engine intake flows to improve the combustion performance and reduce cycle-to-cycle
variability [2–7].

Optically accessible research engines enable the detailed investigation and visualization of the
processes inside IC engines, often with simplified geometries for numerical validation. High-speed laser
diagnostics have long been utilized in engine experiments and have provided more insight into the
turbulent structures present in engine flows [8–11]. Simplified flow bench setups with steady state or
transient operation are common tools to optimize cylinder head or intake port geometries and have been
used to investigate the intake flow in industrial and scientific research [12,13]. Recent studies examined
intake phenomena using magnetic resonance velocimetry (MRV) in a steady water flow bench [1] or
low-speed particle image velocimetry (PIV) in a steady air flow bench [14,15]. The data from these
experiments have been used as validation for large eddy simulation (LES) approaches [14–18].

However, high-speed PIV data for a flow bench with a realistic engine geometry is limited.
Therefore, numerical simulations are another essential tool for the analysis of IC engine flows.
In particular, the 3D flow data and turbulence structures obtained with LES offer data which are
nearly impossible to obtain in experimental investigations. The choice of LES instead of commonly
used Reynolds-averaged Navier–Stokes (RANS) approaches is justified by its ability to resolve the
intrinsic unsteady flow motion resulting from the moving valves and pistons. The study of unsteady
phenomena such as cycle-to-cycle variability, misfire and knock are especially important factors
influencing the geometric design and the operating conditions [2]. The use of LES, which is known to be
computationally expensive, is often favored with moderate Reynolds numbers (10, 000 < Re < 30, 000)
and relatively small regions of interest. However, the fast prediction of accurate and detailed LES
results to accelerate design cycles is still a challenge due to the increased number of cells and time
required to generate adequate statistics when comparison with RANS approaches.

LES studies of fired and non-fired engine cases including moving piston and valves are reported
by many researchers, e.g., [3–7]. Most of these numerical studies are focused on the analysis of
cycle-to-cycle variations of in-cylinder flow fields and its influence on the mixing dynamics, combustion
and pollutant emission. In this respect, it is worth mentioning that systematic evaluation studies of
different LES approaches and models under engine-like operating conditions are rarely reported in the
literature. This is mainly because of the considerable numerical effort required to carry out LES of many
engine cycles of fired and non-fired cases with moving piston/valves. Furthermore, the complexity of
in-cylinder flows impedes in-depth studies of individual processes and model evaluation. Therefore,
it is useful to reduce the complexity of the engine configuration and evaluate LES approaches and
numerical models by means of simplified flow bench configurations that represent most of the flow
and mixing phenomena relevant to IC engines.

The aforementioned studies are based on traditional discretization methods like the finite volume
method (FVM). In recent years, an alternative approach called the lattice Boltzmann method (LBM)
has gained increasing attention in research and industry. LBM is useful in a wide range of applications,
e.g., thermal flow simulations [19,20] or flows in complex geometries [21,22], due to its highly efficient
parallel algorithm [23,24]. Such efficiency offers a high potential in reducing computation times for
the simulation of high Reynolds number flows using DNS or LES approaches, which is usually a
bottleneck in the field of turbulent flow simulations.

Qualitative and quantitative comparisons were made to estimate the capabilities of LBM
based implementations for the simulation of turbulent flows in comparison with FVM-based
implementations. In 2014 Kajzer et al. [25] evaluated the performance differences between an LBM
and FVM implementation for the simulation of homogeneous isotropic turbulence. They found
that in particular the scalability of LBM methods and the adaptivity for computations on graphics
processing units (GPU) lead to a significant performance advantage compared with the tested FVM
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implementation in OpenFOAM. Two years later Pasquali et al. [26] showed that the calculation of the
external aerodynamics of a car also benefits from the use of LBM on GPUs. A further comparison
between LBM and FVM depicted that the higher grid resolution obtained by LBM leads to more
resolved vortex structures in the outer layer of turbulent channel flows [27]. Barad et al. [28] compared
a higher order finite difference method (FDM) with LBM in a software framework that uses the
same Cartesian mesh structure. They showed that for the simulation of airframe noise the LBM
implementation is 15 times faster than the higher order FDM scheme at a similar accuracy.

Most of the LBM studies related to engine flows that have been conducted to date deal with the
injection process. Therefore, a multiphase approach is chosen to simulate spray formation, bubble break
up and flow induced cavitation. A summary of these studies can be found in the book of Montessori
and Falcucci [29]. A moving valve/pistion arrangement was simulated by Dorschner et al. [30] using
the parameter-free Karlin–Bösch–Chikatamarla (KBC) collision operator. They showed that the results
are in good agreement with a DNS reference.

In contrast to all these previous contributions, we focus on the implementation of open source
near-wall-modeled LES (NWM-LES) to achieve fast and accurate results, which is relevant to users in
academia and industry. Therefore, a recent version of the established FVM-based implementation of
OpenFOAM is compared with OpenLB [31], an open source LBM framework. To get a fair comparison,
we solve the same target equation in both software frameworks, including an explicit sub-grid scale
(SGS) modeling and the use of a wall function. Furthermore, we do not limit the grid to a certain amount
of cells or type of mesh elements so that each implementation can show its advantages. The grid
generation process is also taken into account to compare the time spent on pre-processing. This is one
of the first studies where in-house-conducted experimental data are used to validate two open source
implementations. Moreover, a detailed error analysis of both methods covering the grid convergence
of time-averaged and root mean square (RMS) velocity fields in the context of engine flows is a novelty.
Additionally, a performance analysis compares the solver runtime of each implementation that is
needed to calculate the statistics for the different grids. The comparison in the theory section aims
to highlight the differences between both discretization methods. In addition, the differences in the
implementation of wall-modeled LES in LBM and FVM are described. The NWM-LES implementation
in LBM is ongoing research due to the complex boundary treatment in LBM. As a result, a new
LBM wall function approach is proposed which extends the previous approaches [32,33] to curved
boundaries.

This paper is organized as follows: Section 2 introduces the applied modeling approaches and
shows the differences and similarities using LBM or FVM. Next, the experimental and numerical setup
is described in Section 3. The related results using NWM-LES obtained with OpenFOAM and OpenLB
for different grid resolutions are presented and compared to the PIV results in Section 4. Finally,
Section 5 summarizes the results and draws a conclusion.

2. Applied Modeling Approaches

2.1. Filtered Navier–Stokes Equations

The filtered incompressible Navier–Stokes equations consist of the continuity equation

∂uα

∂xα
= 0, (1)

and the momentum equation according Leonard’s decomposition [34] which reads

∂uα

∂t
+

∂uαuβ

∂xβ
= ν

∂

∂xβ

(
∂uα

∂xβ
+

∂uβ

∂xα

)
−

∂TSGS
αβ

∂xβ
− 1

ρ

∂p
xα

, (2)
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where Greek indices obey the Einstein notation, uα is the filtered velocity, p is the filtered pressure
field, TSGS

αβ is the SGS stress tensor, ρ is the density and ν is the viscosity. This set of equations can be
closed by using a linear eddy viscosity hypothesis for the SGS stress tensor

TSGS
αβ = −νSGS

(
∂uα

∂xβ
+

∂uβ

∂xα

)
, (3)

where νSGS is the SGS viscosity that can be modeled by an SGS viscosity model (see Section 2.2).
In Equation (2) no volume force is applied and will not be considered hereafter.

2.1.1. Finite Volume Method

In dealing with the FVM of incompressible fluid flow, the discretization process of the balance laws
of fluid motion can be divided into two steps: (1) the spatial and temporal discretization of the solution
domain and (2) the discretization of the spatial and temporal terms in the Navier–Stokes equations [35].
Then, the partial differential equations can be converted into a corresponding set of algebraic
equations and solved numerically. Additionally, nonlinearities in the Navier–Stokes equations and
the pressure-velocity coupling require some special numerical treatment. The second-order solution
procedure employed in the open source C++ library OpenFOAM 2.4.0, which is used in the present
LES study, is briefly outlined in the following. A detailed description can be found, e.g., in [36–38].

In the standard FVM framework of OpenFOAM, the continuum space and time domain are
divided into a finite number of discrete regions called control volumes (CV) and time intervals,
respectively. Thereby, the CVs completely bound the solution domain and the solution variables,
such as velocity and pressure, are colocated at the cell centroids of the CVs [39]. In contrast to a
staggered grid arrangement, this allows an arbitrary topology of CVs, e.g., hexahedrons, tetrahedrons,
prisms, pyramids or general polyhedrons, which has significant advantages in the discretization of
complex solution domains.

Several approximation schemes and solution procedures are available in the OpenFOAM
framework to discretize and solve the Navier-Stokes equations. In this study, the standard
pimpleFOAM solver of OpenFOAM 2.4.0 is applied, which is based on a merged PISO [40]-SIMPLE [41]
algorithm for the coupling of pressure and velocity. Thereby, the governing equations are numerically
solved in a segregated manner using a momentum predictor, pressure solver and momentum corrector.
This iterative solution procedure is applied with a second-order implicit backward-differencing
scheme for the time integration. Regarding spatial terms, a low-dissipative second-order flux-limiting
differencing scheme is employed for the convection terms and a conservative scheme is used for the
Laplacian and gradient terms. The resulting systems of linear equations are iteratively solved using a
geometric agglomerated algebraic multigrid solver. Thereby, convergence of the overall procedure
is obtained if all normalized residuals are smaller than 10−4. Validation and verification studies of
this specific solution procedure for LES of complex fluid flows relevant to IC engines are provided
in [18,42,43].

2.1.2. Lattice Boltzmann Method

The lattice Boltzmann equation discretizes the velocity space of the kinetic Boltzmann equation
to a discrete set of lattice velocities ci, i = 0, 1, ..., q − 1. Common velocity sets to recover
the three-dimensional incompressible Navier–Stokes equations are D3Q15, D3Q19 and D3Q27.
The present work uses a discrete velocity D3Q19 set, which is given by

ci =





(0, 0, 0) i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1, 2, ..., 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7, 8, ..., 18

(4)
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The descriptor set is chosen due to the higher computation performance and the lower memory
demand in the used LBM implementation. However, higher errors due to a violation of the rotational
invariance are taken into account in comparison with a D3Q27 stencil [44].

The filtered lattice Boltzmann equation without external forces is given by

f i

(
xLB + ci, tLB + 1

)
= f i

(
xLB, tLB

)
+ Ωi, (5)

where f i is the filtered particle distribution function at discrete lattice position xLB and time step
tLB. The filtered collision operator Ωi is implemented by a single-relaxation time model proposed by
Bhatnagar, Gross and Krook [45]. It can be written as

Ωi = −
1

τef f

(
f i(t

LB, xLB)− f
eq
i (ρLB, uLB)

)
, (6)

where τef f is the effective relaxation time towards the filtered discrete particle distribution function
at equilibrium state f

eq
i , ρ is the filtered lattice density and u the filtered velocity field. The collision

operator satisfies the conservation of mass and momentum. The particle distribution function
equilibrium is described by a low Mach number truncated Maxwell-Boltzmann distribution

f
eq
i

(
ρLB, uLB

)
= ρLBωi

[
1 +

ciαuLB
α

c2
s

+
uLB

α uLB
β (ciαciβ − c2

s δαβ)

2c4
s

]
, (7)

where ωi are the lattice weights obtained by the Gauss-Hermite quadrature [46,47], cs = 1/
√

3 is the
speed of sound of the lattice and δαβ is the Kronecker operator.

The moments of the particle distribution functions f i yield macroscopic flow quantities.
The density ρLB, the momentum ρLBuLB and momentum flux Π are obtained by the zeroth, first
and second moments, which are given by

ρLB =
q−1

∑
i=0

f i , (8)

ρLBuLB =
q−1

∑
i=0

ci f i, (9)

Παβ =
q−1

∑
i=0

ciαciβ f i . (10)

The lattice effective kinematic viscosity of the fluid νef f is connected to the effective relaxation
time τef f as follows

νLB,ef f = c2
s

(
τef f − 0.5

)
. (11)

Assuming a simplified isothermal equation of state the filtered lattice pressure is related to the
filtered density by

pLB = c2
s ρLB. (12)

Finally, the lattice Boltzmann algorithm is divided in 2 steps: the collision step and the streaming
step. The local collision step is represented by the right-hand side of Equation (5) and the subsequent
streaming step is associated with the left-hand side of Equation (5).
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2.2. Sub-Grid Scale Modeling

The introduced eddy viscosity νSGS in Equation (3) is estimated by an SGS viscosity model,
which can be generally written as

νSGS = (CM∆grid)
2DM, (13)

where CM is a model coefficient, ∆grid is the grid filter and DM a model-related operator. The present
work uses a Smagorinsky-Lilly model [48], where the model operator is defined as

DM =
√

2SαβSαβ, (14)

where Sαβ is the filtered strain rate. The literature values for the Smagorinsky-Lilly model constant
CM are in the range of CM = 0.065...0.24 [49,50]. For a complex turbulent flow, a Smagorinsky-Lilly
constant of CM = 0.1 is a common choice [51]. The Smagorinsky–Lilly model suffers from a too
dissipative behavior in the near-wall region [42,52]. One possibility to prevent this aspect is the
introduction of a damping function that reduces the SGS viscosity depending on the wall distance.
The van Driest damping function [53] can be incorporated in the grid filter ∆grid by

∆grid = min
[

3
√

∆x∆y∆z,
κy
C∆

(
1− e(−

y+

A+ )
)]

, (15)

where y is the wall distance, A+ = 26 is the van Driest parameter, C∆ = 0.158 is a model constant
and κ = 0.41 is the von Kármán constant [54]. The dimensionless wall distance y+ in Equation (15) is
defined as

y+ =
uτy

ν
, (16)

where uτ =
√

Tw
ρ is the friction velocity and Tw the wall shear stress.

2.2.1. SGS Model for Finite Volume Method

In the FVM framework of OpenFOAM, the SGS viscosity νSGS is calculated explicitly for each
time step using the resolved velocity field. Then, the turbulent and molecular diffusion contributions
are combined into an effective stress tensor by means of the Boussinesq approximation as

Tef f
αβ = −

(
ν + νSGS

)(∂uα

∂xβ
+

∂uβ

∂xα

)
,

= −νef f

(
∂uα

∂xβ
+

∂uβ

∂xα

)
,

(17)

where νef f represents the effective viscosity. For the sake of computational efficiency, the velocity
gradient and transposed velocity gradient terms in Equation (17) are treated separately. Thereby,
the velocity gradient term is treated implicitly as a diffusion, while the transposed velocity is treated
as an explicit source term. The latter is therefore calculated using the velocity at the previous iteration.
Further information on the implementation of eddy viscosity turbulence in OpenFOAM can be found,
e.g., in [55].

2.2.2. SGS Model for Lattice Boltzmann Method

Eddy viscosity models are often introduced in LBM by adding turbulent viscosity to the molecular
viscosity [56], which results in an effective viscosity

νLB,ef f = νLB + νLB,SGS. (18)
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A consistent approach to implement eddy viscosity models in LBM was derived by Malaspinas
and Sagaut [57]. They presented that due to the connection between lattice viscosity and
lattice relaxation time (see Equation (11)), the relaxation time is also divided in a molecular and
SGS contribution

τef f = τ + τSGS, (19)

where τSGS = νLB,SGS

c2
s

is the eddy contribution. The filtered strain rate SLB
αβ in the SGS operator

formulation in Equation (14) can be obtained by a finite difference scheme or locally in the LBM
framework by

SLB
αβ = −

Πneq
αβ

2ρLBτef f c2
s

, (20)

where Πneq
αβ is the second moment of the non-equilibrium parts of the particle distribution function,

which can be calculated according to Equation (10) by replacing f i with f
neq
i = ( f i − f

eq
i ). This implicit

relation of the effective relaxation time τef f and the filtered strain rate SLB
αβ can be replaced by an explicit

expression for the Bhatnagar–Gross–Krook (BGK) collision operator by a local method proposed by
Malaspinas and Sagaut [57]. This explicit expression for determining the effective relaxation time τef f

is given by

τef f =

√
τ2 +

2C2
M

ρLB c4
s

√
2Πneq

αβ Πneq
αβ +

τ

2
. (21)

2.3. Wall Function Approach

In contrast to a near-wall resolved LES, the NWM-LES requires additional effort to model the
effects occurring in the boundary layer. However, NWM-LES allows grid spacing up to y+ = 200,
which results in a significantly smaller amount of grid points. In the present work, we use the idea
of Werner and Wengle [58], which describes an instantaneous connection between the wall shear
stress and the velocity. This consideration only applies for averaged quantities and therefore a RANS
hypothesis is assumed for the boundary node. A fully developed turbulent boundary layer can be
described by the Musker profile [59] which reads

u+ = 5.424 arctan
(

2.0y+ − 8.15
16.7

)

+ log10

(
(y+ + 10.6)9.6

(y+2 − 8.15y+ + 86.0)2

)

− 3.5072790194.

(22)

This empirical formulation is based on a logarithmic law and is able to describe the turbulent
boundary layer from the viscous sublayer (y+ ≥ 1). The solution of the implicit function (22) requires
an iterative scheme.

2.3.1. Wall Function for Finite Volume Method

Analogous to wall-shear stress models often used in the context of RANS, the boundary
condition of the SGS viscosity νSGS is corrected for each time step by means of a wall function
in the NWM-LES approach of OpenFOAM. The numerical procedure can be divided into two steps.
First, the friction velocity uτ is approximated iteratively according to Musker’s wall function. Thereby,
the Newton–Raphson method is applied to find the root of the wall function. Then, in the second step,
νSGS at the wall is calculated as
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νSGS = u2
τ

yp

u‖
, (23)

where yp denotes the wall distance of the cell centroid and u‖ the stream-wise velocity. It is important
to note that a boundary condition of νSGS based on Musker’s wall function is not available in
OpenFOAM and was therefore added to the standard framework. A detailed description of the
wall function approach in OpenFOAM including comprehensive validation studies in turbulent
channel and impinging flows were provided by the authors in [60].

2.3.2. Wall Function for Lattice Boltzmann Method

The implementation of wall functions in the context of LBM is not straightforward due to
numerous boundary scheme approaches. The idea of the wall model approach applied in this
work was proposed by Malaspinas and Sagaut [32] and adapted to the BGK collision operator by
Haussmann et al. [33]. They validated the wall function scheme using a bi-periodic turbulent channel
flow. We adapt this scheme to curved boundaries using a curved link-wise instead of a wet-node
boundary scheme. Our proposed algorithm is parted in two steps: the curved boundary approach and
a velocity correction step according to the wall function. For better comprehension, the used indexing
convention for the following two paragraphs is depicted in Figure 1.

xLB
b

xLB
f

xLB
f f xLB

n

boundary
wall

xLB
w

cn

cī ci qB

y1

Figure 1. Illustration of the indexing convention for the curved wall function approach applied in
this work.

Curved Boundary Step

In the present work, we use the curved boundary approach proposed by Bouzidi et al. [61].
This approach is an extension of a half-way bounce back scheme and characterized as precise, stable
and computationally efficient for the simulation of turbulent flows [62]. The interpolated bounce-back
approach uses a linear interpolation based on the dimensionless distance qB, which is defined as:

qB =
|xLB

f − xLB
w |

|xLB
f − xLB

b |
. (24)

Without altering the streaming step for boundary cells the unknown particle distribution function
after the streaming step f ī(xLB

f , tLB + 1) can be replaced by
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f ī(xLB
f , tLB + 1) =





1
2qB

fi(xLB
b , tLB + 1) + 2qB−1

2qB
f ī(xLB

f f , tLB + 1) for qB ≥ 1
2 ,

2qB fi(xLB
b , tLB + 1) + (1− 2qB) fi(xLB

f , tLB + 1) for qB < 1
2 ,

(25)

where index ī indicates the particle distribution function in the opposite direction of index i. For qB =

0.5 the approach is equal to the half-way bounce back boundary condition.

Velocity Correction Step

The velocity correction step is used to correct the velocity in the particle distribution functions at
node position xLB

f according the wall function. Firstly, the distance to the boundary yLB
1 is defined in

the discrete normal direction cn. Accordingly, the distance from the neighbor fluid node at position
xLB

n to the boundary is given by
yLB

2 = yLB
1 + |cn|. (26)

Due to the fact that the wall profile uses only the stream-wise velocity component, a local
stream-wise unit vector es is obtained by

es =
uLB

n − (uLB
n · cn)cn

|uLB
n − (uLB

n · cn)cn|
. (27)

Subsequently, the stream-wise component uLB
2 of uLB

n is calculated by

uLB
2 = uLB

n · es. (28)

The boundary distance yLB
2 and the stream-wise velocity component uLB

2 are inserted in the
Musker profile Equation (22) to obtain the averaged wall shear stress T̃LB

w . Therefore, the solution of
the implicit equation is approximated by the Newton method. Afterwards, the stream-wise component
ũLB

1 of ũLB
f is calculated by the Musker profile Equation (22) using the boundary distance yLB

1 and the

averaged wall shear stress T̃LB
w . Then, the velocity ũLB

f of the first fluid is computed by

ũLB
1 = ũLB

f · es. (29)

Finally, the particle distribution function at node position xLB
f is corrected as follows

fi(xLB
f , tLB + 1) = f eq

i (ρLB,∗, ũLB
f ) + f neq,∗

i , (30)

where superscript ∗ denotes the quantities calculated after Equation (25). This means only the velocity
is altered according the wall function, while the density and the non-equilibrium parts are preserved.

3. Setup of the IC Engine Test Case

In this work, a flow bench setup of an IC engine was chosen as a benchmark for the numerical
comparison. With this setup, the intake flow with the focus on the intake jet over the valves into the
cylinder can be examined in a realistic engine geometry and at the same time the overall complexity
can be reduced compared with a real engine. The optically-accessible single cylinder engine at TU
Darmstadt (Darmstadt Engine, [10]) was converted into a steady-state flow bench by removing and
replacing the piston with an outlet channel open to ambient conditions (see Figure 2). As opposed to
the previous flow bench studies of Freudenhammer et al. [63] in which the same spray-guided cylinder
head geometry was fitted in a continuous water flow configuration for MRV measurements, the flow
bench of the present study uses dry air and allows for instantaneous flow measurements. For this
configuration, the cylinder liner was extended and the outlet channel geometry was optimized by
means of unsteady RANS to suppress recirculation of the flow. For added simplicity to the engine
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geometry, the spark plug and fuel injector were replaced by flat plugs; but otherwise, the four-valve
spray-guided pent-roof cylinder head (AVL) and fused-silica cylinder liner with a bore of 86 mm as
well as the intake system remained unchanged. Figure 2 shows a diagram of the intake system and
engine geometry of the flow bench experiment. As indicated by the red boxes, the flow bench has
three optical access sections. The first section (I) represents the standard engine optical access which
was fitted to the new flow bench extension (experimental sections II and III). Experimental section
II allows for the characterization of the flow inside the flow bench extension for the verification of
the flow structures present. Finally, experimental section III allows optical access and flow validation
of the outflow through the bottom of the flow bench via a flat fused-silica plate and movable mirror.
Intake valves were positioned at a fixed valve lift of 9.21 mm corresponding to 270 ◦CA (crank angles
before top dead center) and exhaust valves were kept closed, thus mimicking the intake flow during
regular engine operation.

y

x

ṁin

Pin,1 ϑin,1

16D

7D

Pin,2 ϑin,2 Pout,2

Pout,1ṁout

I

II
III

Figure 2. Flow bench and intake system overview. The inner diameter of the intake pipes D is 56.3 mm.
Experimental sections include the standard engine- (I), the Flow bench- (II) and the Outlet duct optical
access (III).

The flow bench experiment was conducted under controlled boundary conditions for consistent
operation. Two mass flow controllers (Bronkhorst) were used to set a defined mass flow of 94.1 kg

h ,
which corresponds to the respective instantaneous mass flow at 270 ◦CA under normal engine
operation with a speed of 800 rpm and intake pressure of 0.95 bar. Since the instantaneous mass
flow of engine operation is not available, the velocities in the intake jet were compared and matched
such that the phase-averaged velocity (average of 400 cycles at 270 ◦CA) in motored engine operation
matched the average velocities of the flow bench near the intake valve. As indicated in Figure 2, two
absolute pressure sensors (Pin,1, Pin,2, PAA-M8cool HB, Keller) measured the static pressure and two
PT100 temperature sensors (ϑin,1, ϑin,2) measured the temperature of the flow within the intake pipe.
Additionally, two more absolute pressure sensors (Pout,1, Pout,2, PMP4070, Kistler) measured the static
pressure inside the flow bench. Table 1 summarizes the experimental boundary conditions.
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Table 1. Flow bench boundary conditions. Values in brackets represent estimates of the measurement
uncertainty (total error band corresponding to a rectangular distribution with mean ± uncertainty).

Valve Lift 9.21(0.15) mm

ϑin,2 22.7(0.5) ◦C
Pin,2 1.000(0.001) bar
Pout,2 0.998(0.001) bar
ṁin 94.10(1.00) kg/hr
η 18.26× 10−6 kg/(m s)
ρ 1.18 kg/m3

ϑwall (estimated) 22(1) ◦C

3.1. Experimental Setup

High-speed PIV was used to measure the in-cylinder flow velocity field in the valve plane (VP,
z = −19 mm) (see Figure 3). For this configuration a laser light sheet (850 µm thickness) from two
high-speed frequency-doubled Nd:YAG cavities (IS4II-DE Edgewave), operated at 12.5 kHz each with
a time separation of 8 µs, entered the cylinder volume via the bottom glass plate of the outlet channel.
DOWSIL 510 (Dow Corning) silicone oil was atomized by a fluid seeder (AGF 10.0, Palas) with an
average particle size of 0.5 µm and introduced to the intake system as tracer particles. The Mie-scattered
light was imaged with a high-speed CMOS camera (Phantom v2640) equipped with a Nikon lens
(85 mm f/1.4 with 35 mm distance rings) in HS Binned double-frame mode.

I E

CAM

z

x

Nd:YAG
Sheet
Optics

y

x

Intake (I) Exhaust (E)

m
.
in

m
.
out

Figure 3. Arrangement of particle image velocimetry (PIV) measurement system.

The commercial software DaVis 10.0.5 (LaVision) was used to calculate flow fields. After a time
filter background subtraction, a cross-correlation with multi-pass iterations of decreasing window
size (twice: 48 × 48 pixel; twice: 24 × 24 pixel, 75% overlap) resulted in vector fields which where
post-processed with a peak ratio threshold of 1.3 and a universal outlier median filter to remove
spurious vectors. The dynamic range of the velocity measurement is limited by the minimum and
maximum resolved pixel shift. The frame separation time of the setup was optimized to yield a pixel
shift of maximum 4.5 pixels in the intake jet region, since the jet characteristics are the main interest.

The uncertainty of velocity measurements by means of PIV depends on parameters such as the
optical setup defined by imaging optics, camera and light sheet as well as tracer properties, the PIV
algorithm and the flow itself. Common approaches to estimate the uncertainty as a function of different
influencing variables employ artificial PIV images generated by Monte Carlo simulations [64]. Newer
methods use the actual experimental data to estimate the uncertainty [65–67] and have been validated
by a benchmark experiment [68].

The commercial software DaVis estimates the uncertainty based upon a correlation statistics
approach [67]. In this study, the time-averaged uncertainty of the instantaneous velocity magnitudes
is approximately 3% to 6% (normalized to the global maximum velocity range of 35 m s−1).
This uncertainty range is valid for the jet region and lower velocity regions below the valves. Near the
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exhaust side cylinder walls, where the intake jet is curved downwards due to the influence of the walls,
the normalized uncertainties increase to a maximum of 10%. This approach considers random errors
inherent to the correlation process for particle images. Therefore, the reported uncertainties apply for
instantaneous velocity fields and propagate to RMS velocity values, but are reduced to� 1% for the
time-averaged velocity, since most of the 25,000 pairs of particle images are uncorrelated to each other.

Other sources of error introduce a bias in the velocity calculation. Sharp gradients in the flow,
e.g., at the edge of the intake jet, are underestimated due to the spatial averaging of the PIV algorithm.
Acknowledging reported uncertainty assessments [64], this normalized error is assumed to be on
the order of 3% to 9% for the jet region in instantaneous velocity fields and is slightly lower in
the time-averaged velocity field due to the non-stationary jet position. The spatial average of the
normalized uncertainty due to flow gradients amounts to 1%.

Additional systematic errors stem from the non-zero light sheet thickness and strong out-of-plane
velocity components, which are detected as in-plane components due to the camera‘s perspective.
This error is zero in the center, increases linearly to the edges of the field-of-view and can amount to
more than 10% [64]. However, if the averaged out-of-plane velocity component is zero this error source
is statistically zero. In the central tumble plane this assumption is justified, but less so in the valve
plane, where mean out-of-plane velocity components exist. The uncertainty due to perspective errors
was calculated with the time-averaged LES flow field, which provides all three velocity components.
This normalized uncertainty contribution amounts to up to 10% locally and to 0.2% in the spatial
average. Altogether, the spatially averaged accumulated normalized uncertainty of the time-averaged
PIV measurements within this work is estimated to be 1%.

3.2. Numerical Setup

The fluid domain is depicted in Figure 4 in a clip representation. The inlet patch is colored in blue
and the outlet patch in red. In contrast to the experimental setup, both the inflow and outflow regions
are shortened in order to reduce the computational effort. The reduction of the inflow length to 2.62D
is justified by the applied inlet boundary condition (see Section 3.3). For the estimation of the outflow
length as 1.88D, the tumble flow area and the integral time scale were considered to ensure that the
influence of the flow upstream is negligible.

y

x

Figure 4. Clip representation of the simulation geometry with (x,y)-plane coordinate system.
The boundary contains inlet (blue), outlet (red) and wall patches (metallic).
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3.3. Boundary Conditions and Initial Conditions

The initial and boundary conditions play an important role in LES, because they mainly influence
the time for statistically independent results. The inlet condition is especially challenging; the often
used approaches that assume random fluctuations are not sufficient. The result is an energy signal,
which equally distributes the energy in the wave number regime. Therefore, in the present study,
we apply a digital filter-based operation proposed by Klein et al. [69]. This approach is able to
reproduce prescribed Reynolds stresses. Considering the measured mass flow in the experiment and
assuming a plug flow profile, the Dirichlet condition for the time-averaged inflow velocity is given by

〈u〉in = (7.941,−4.047, 0.0)
m
s

. (31)

The superimposed fluctuations use an integral length of L = 0.25D according to the work of
Ries et al. [42]. The calculation of the prescribed Reynolds stress tensor 〈u′αu′β〉in, taking the hypothesis
of homogeneous isotropic turbulence into account, reads

〈u′αu′β〉in = δαβ |〈u〉in| I, (32)

where I = 0.06 is the turbulence intensity. The outlet condition is a free outflow condition, where the
Dirichlet pressure condition is set to

pout = 0 Pa. (33)

3.3.1. Finite Volume Method

In the case setup of OpenFOAM, no-slip conditions are utilized for the velocity and the zero
Neumann condition is used for the kinematic pressure at the solid walls. Furthermore, the wall
function approach is employed for the SGS viscosity at the walls. At the outlet, a velocity inlet/outlet
boundary condition is used to allow back-flow of air from downstream. Thereby, the incoming fluid
velocity is obtained by the internal cell value, while the zero Neumann condition is employed in the
case of outflow. Finally, as mentioned above, synthetic turbulent inflow conditions are employed at
the inflow based on the digital filter method of Klein et al. [69].

3.3.2. Lattice Boltzmann Method

As previously mentioned in Section 2.3.2, the boundary conditions in the LBM are a critical
challenge, especially in turbulent flows, where both accuracy and stability are important. The inflow
condition is realized by a non-local regularized approach (see boundary scheme BC4 in [70]). The used
inflow velocity is obtained by the digital filter approach, which is bilinear interpolated and mapped
to each cell position. The outflow condition uses a wet-node equilibrium condition. Every particle
distribution in each boundary cell before the regular collision occurs is replaced by

fi(xLB, tLB) = f eq
i (ρLB

out, uLB(xLB + cn, tLB)), (34)

where ρLB
out is the prescribed lattice density and uLB(xLB + cn, tLB) the velocity of the neighbor cell in the

normal direction. It is noteworthy that boundary approaches that also reconstruct the non-equilibrium
part (e.g., BC3 and BC4 in [70]) show stability issues for this flow configuration.

The flow field is initialized by the equilibrium distribution f eq
i (ρLB, uLB), where ρLB = 1 and

uLB = 0. Then, the velocity at the inflow is increased at the inlet for t = 0.05 s and is updated until
the considered mass flow is reached. This procedure results in non-equilibrium parts of the particle
distribution function that are adjusted according to the velocity field.
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3.4. Statistics

The flow field is assumed to be statistically stationary after tss = 0.5 s. After this start-up time,
sampling is started within the LBM and FVM frameworks. The statistics are used to calculate the
time-averaged velocity 〈u〉 and the RMS velocity uRMS, which can be calculated by

uα,RMS =

√
〈(u′α)2〉 =

√
〈u2

α〉 − 〈uα〉2, (35)

where 〈u2
α〉 is the time-averaged square of the velocity. The averaging time for uRMS is calculated

according to the engineering correlation proposed by Ries et al. [42] as

tav =
L

|〈u〉| ε2
RMS

, (36)

where εRMS is the desired maximum sampling error. Inserting a sampling error εRMS = 0.025,
the averaging time is calculated as tav = 2.524 s.

3.4.1. Finite Volume Method

An adaptive time stepping technique is applied in the OpenFOAM setup in order to ensure a
Courant–Friedrichs–Lewy (CFL) number smaller than one. Thereby, the time-averaged velocities are
defined as

〈uα〉 =
1

tav

Nt

∑
n=0

(un
α∆tn) , (37)

where ∆tn is the time step at tn and Nt the total number of time steps within tav. Analogously,
the time-averaged square of the velocity 〈u2

α〉 is given by

〈u2
α〉 =

1
t2
av

Nt

∑
n=0

(un
α∆tn)2 . (38)

3.4.2. Lattice Boltzmann Method

Due to the use of fixed time steps, ensemble averaging is applied. The time-averaged velocity
〈uα〉 is given as

〈uα〉 =
1

Ne

tss+tav

∑
tss

(uα(t)) , (39)

where number Ne is the number of independent ensembles. In the same way the time-averaged square
of the velocity 〈u2

α〉 is evaluated as

〈u2
α〉 =

1
N2

e

tss+tav

∑
tss

(uα(t))
2 . (40)

Assuming Taylor’s hypothesis of frozen turbulence and a spatial decorrelation distance of two
integral length scales L, the number of independent ensembles Ne is calculated by

Ne =
tav|〈u〉in|

2L
. (41)

This results in 800 independent ensembles.

3.5. Grid Configurations

Both OpenFOAM and OpenLB are evaluated with three different grids in this work. There are
certain differences between the grid structures, see Figure 5.
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OpenLB uses a uniform Cartesian mesh without grid refinement. The fluid cells are indicated
by checking if each grid point is inside or outside the geometry. The resulting grid is not volume
conservative. In contrast, body-fitted meshes are favored by OpenFOAM. Therefore, prisms and
polyhedral mesh elements are applied to reconstruct the geometry shape and preserve the volume.
Furthermore, refinement layers are used to resolve more scales, especially near the wall. A detailed
comparison between the three grid configurations used: low resolution (LR), medium resolution (MR)
and high resolution (HR) for both OpenFOAM and OpenLB can be found in Table 2.

Acoustic scaling ∆t ∝ ∆x is used for the presented OpenLB configuration, which provides a
constant compressibility error with respect to the incompressible Navier–Stokes equations but in return,
requires less computational increase for smaller grid spacing than diffusive scaling. The application
of acoustic scaling leads to a constant lattice Mach number MaLB = 0.026 for the OpenLB setups.
The resulting compressibility error is assumed to be sufficiently small. In terms of the inlet diameter
D, Cartesian grid resolutions of N = 53, 77 and 111 are generated, approximately tripling the cell
number in every configuration consisting of OpenFOAM meshes. Due to the adaptive time step and
grid refinement in OpenFOAM, the size of the displayed grid spacing ∆x and time step ∆t is space-
and time-averaged, respectively.

(a) OpenFOAM (b) OpenLB
Figure 5. Slice representation of the Finite Volume and Lattice Boltzmann computational meshes.
For OpenFOAM (a) an unstructured graded mesh and for OpenLB (b) a uniform Cartesian mesh
is used.

Table 2. Discretization parameters for the three grid configurations: low resolution (LR), medium
resolution (MR) and high resolution (HR) for both OpenFOAM and OpenLB.

Solver Identifier Ngrid ∆x ∆t MaLB CFL

OpenFOAM LRFVM 1.153× 106 1.060× 10−3 3.000× 10−6 − 1
OpenFOAM MRFVM 3.121× 106 7.610× 10−4 2.250× 10−6 − 1
OpenFOAM HRFVM 8.712× 106 5.410× 10−4 1.600× 10−6 − 1

OpenLB LRLBM 1.300× 106 1.061× 10−3 1.786× 10−6 0.026 −
OpenLB MRLBM 3.846× 106 7.303× 10−4 1.230× 10−6 0.026 −
OpenLB HRLBM 1.123× 107 5.066× 10−4 8.526× 10−7 0.026 −

4. Results of the IC Engine Test Case

In this section, PIV and LES results of the in-cylinder fluid flow are analyzed. At first, the ability
of LBM and FVM to predict characteristic features of engine flows is assessed. Then, predicted
time-averaged and RMS velocity profiles at several locations downstream of the valve are compared
with each other and with the high-speed PIV measurements. Subsequently, the prediction accuracy of
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both numerical techniques are evaluated based on error analysis. Finally, the computational cost of
OpenLB and OpenFOAM is appraised in terms of meshing and simulation performance.

4.1. Characterization of the In-Cylinder Flow

Figure 6 depicts the magnitude of the two dimensional time-averaged velocity |〈U〉| at the VP
section obtained from (a) PIV measurements, (b) OpenLB and (c) OpenFOAM. Whereby |〈U〉| is
defined by means of the in-plane velocity components as

|〈U〉| =
√
〈ux〉2 + 〈uy〉2. (42)

The absence of the plane normal components is due to the two-dimensional PIV measurement
data (see Section 3.1).
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(a) PIV (b) HRLBM (c) HRFVM

Figure 6. Line integral convolution visualization of the averaged velocity field with local characteristic
flow patterns (I-V) of the PIV measurements (a), along with the OpenLB (b) and OpenFOAM (c)
numerical results.

Characterized by strong flow/wall interaction processes, the turbulent flow inside IC engines
features very complex flow and mixing dynamics. Considering Figure 6, some of the complex types of
flow relevant to IC engines can also be found in the flow bench configuration; namely, (I) boundary
layer flow, (II) impingement/stagnation, (III) wall-jets, (IV) flow separation/reattachment and (V) the
so-called tumble flow. By comparing the LES results with the PIV measurements in Figure 6, it appears
that LBM as well as FVM are able to properly predict such flow types. Furthermore, it can be clearly
seen that predictions of LBM and FVM are quite similar to each other and also generally similar to the
PIV measurements. This confirms the validity of LBM and FVM for such a fluid flow application.

The complex physics of engine flows are further analyzed and highlighted in Figure 7,
which shows a snapshot of turbulent structures in the vicinity of the valve visualized by means
of the Q-criterion [71]. Thereby, iso-surfaces of Q = 7× 10−7 are colored by the magnitude of the
instantaneous velocity.

As is visible in Figure 7, a highly turbulent flow is generated around the intake valve. This gas
stream separates from the valve and initiates large-scale turbulent structures, which cascade into
smaller ones until they dissipate further downstream. Such a complex disintegration process is
essential in the context of IC engine flows since it influences the mixing and subsequent flow pattern
inside the combustion chamber. It is nearly impossible to capture these three dimensional turbulent
scales experimentally. However, as seen in Figure 7, it can be well represented by means of LBM and
FVM techniques.
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Figure 7. Turbulent structures as smoothed iso-surfaces of Q-criterion with Q = 7 × 10−7 and
magnitude of velocity from HRLBM.

4.2. Validation of In-Cylinder Fluid Flow

For further comparison, the magnitudes for the two-dimensional time-averaged velocity |〈U〉|
and RMS velocity |URMS| are plotted over three lines positioned at y = −7 mm, −12 mm and −17 mm,
see Figure 8.

y

x

−7mm
−12mm
−17mm

z=19mm

Figure 8. Positions of the three considered lines at y = −7 mm, −12 mm and −17 mm in the mid valve
plane at z = 19 mm.

The magnitude for the two-dimensional RMS velocity vector is again obtained from the two
in-plane components

|URMS| =
√

u2
RMS,x + u2

RMS,y. (43)

For these three lines, each grid configuration of both solvers and the PIV results are presented in
Figure 9.

It can be seen that the highest grid resolutions HRLBM and HRFVM agree well with the trends
of the PIV results. Furthermore, the different convergence behaviors in the near-wall region are
observable. Due to the used grid refinement, the wall jet can be described more precisely by LRFVM

and MRFVM compared with LRLBM and MRLBM. In contrast, OpenLB is able to predict the transition
area of the tumble flow to the right-side wall jet more accurately than OpenFOAM, even with the
lower resolutions LRLBM and MRLBM.
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(a) y = −7 mm (b) y = −7 mm

(c) y = −12 mm (d) y = −12 mm

(e) y = −17 mm (f) y = −17 mm

HRFVM MRFVM LRFVM

HRLBM MRLBM LRLBM

PIV

Figure 9. Magnitude of the two dimensional time-averaged velocity |〈U〉| and root mean square (RMS)
velocity |URMS| at y = −7 mm,y = −12 mm and y = −17 mm in low, medium and high resolution
grids for Lattice Boltzmann Method (LBM) and finite volume method (FVM) in comparison with
PIV data.
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4.3. Prediction Accuracy

The prediction accuracy of the numerical results calculated by OpenLB and OpenFOAM is
compared with each other by means of the PIV measurement data. Therefore, we introduce the
normalized absolute error nAE as the error criterion. The nAE for variable φ at position x is defined as

nAEφ(x) =
|φsim(x)− φPIV(x)|

max(φPIV(x))−min(φPIV(x))
, (44)

where φsim is the simulated data and φPIV is the PIV measurement data, which is used as the reference
value. The normalization is obtained by the interval length of the experimental data. The nAE|〈U〉|,
concerning the time-averaged velocity |〈U〉|, is depicted for the three different grid resolutions LR,
MR and HR in Figure 10. The region of interest is in accordance with the experimental data (VP,
see Figures 3 and 8).

For the low grid resolution LR, both OpenFOAM and OpenLB show the largest errors in the
jet region (see Figure 10a,b. Also, the tumble flow prediction accuracy is diminished in comparison
with higher grid resolutions. It can be observed that especially the approximation of the jet region
in LRLBM is worse than LRFVM, due to the larger grid spacing in the near-wall region around the
valve. In contrast, the medium grid resolution exhibits in both cases that the error in the jet region
is reduced (see Figure 10c,d. The high deviation region at the starting point of the jet is related to a
shifted separation point of the boundary layer on the valve surface. Overall, the flow field of MRFVM

approximates the PIV measurement data better than MRLBM, which is due to the higher accuracy
in the jet and tumble flow range. In Figure 10e,f, the error maps for the highest grid resolution are
presented. The error maps for HRLBM and HRFVM are in good agreement with each other and to the
PIV measurement. Both the jet and the tumble flow region are well predicted. Again, it is noticeable
that the highest deviation in the jet region is related to a shifted separation point.

For the RMS velocity |URMS|, high errors are more spread over the jet region compared with the
mean velocity |〈U〉| errors, reaching into the tumble region as the fluctuation due to turbulent kinetic
energy is amplified by the velocity (see Figure 11). For both LR and MR, OpenFOAM is able to predict
the turbulent velocity fluctuations in the jet region better than OpenLB as a result of the graded mesh
(see Figure 11a–d). For the same reason, OpenLB shows much smaller errors in the tumble region,
while OpenFOAM suffers from greater errors at MRFVM and LRFVM (see Figure 11a,c). Similar to the
|〈U〉| error map, |URMS| is in good agreement with the PIV measurements for HRLBM and HRFVM

given in Figure 11e,f.
A global error criterion can be defined by the arithmetic mean of the normalized error nAEφ.

This normalized mean absolute error nMAEφ is given by

nMAEφ =
1

NPIV

NPIV

∑
k=1

nAEφ(xk), (45)

where NPIV is the number of experimental data points in the plane. Figure 12 depicts the normalized
mean absolute error of the mean velocity nMAE|〈U〉| and the RMS velocity nMAE|URMS|.

It can be seen that the nMAE decreases with an increasing number of cells. Both errors for the
time-averaged velocity and the RMS velocity are lower than nMAE|〈U〉| < 0.08 and nMAE|URMS| < 0.15,
respectively, which is satisfactory for such coarse meshes. The errors for the highest resolution are very
similar, which is also indicated by the corresponding error maps (see Figure 10e,f). The convergence
order for the OpenLB and OpenFOAM configurations is lower than the first order. This diminished
convergence order can be justified by the experimental reference data, where the estimated PIV
measurement uncertainty is nMAE|〈U〉| = 0.01. Another source of error for the RMS velocity, besides
the uncertainty of the PIV data, is the sampling error εRMS = 0.025. This may also affect the convergence
order of nMAE|URMS|.
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(a) LRFVM

nAE|〈U〉|

(b) LRLBM

(c) MRFVM

nAE|〈U〉|

(d) MRLBM

(e) HRFVM

nAE|〈U〉|

(f) HRLBM

Figure 10. Normalized absolute error (nAE) map representation of the time-averaged velocity nAE|〈U〉| for
in-cylinder flow against PIV data for OpenFOAM (left) and OpenLB (right) at different grid resolutions.
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(a) LRFVM

nAE|URMS|

(b) LRLBM

(c) MRFVM

nAE|URMS|

(d) MRLBM

(e) HRFVM

nAE|URMS|

(f) HRLBM

Figure 11. Normalized absolute error (nAE) map representation of the RMS velocity nAE|URMS| for
in-cylinder flow against PIV data for OpenFOAM (left) and OpenLB (right) at different grid resolutions.
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Figure 12. Normalized mean absolute error of the time-averaged velocity nMAE|〈U〉| and the RMS
velocity nMAE|URMS| for three different grids: LR, MR and HR. The number of cells are normalized by
the coarse grid LR.
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Figure 12. Normalized mean absolute error of the time-averaged velocity nMAE|〈U〉| and the RMS
velocity nMAE|URMS| for three different grids: low resolution (LR), median resolution (MR) and high
resolution (HR). The number of cells are normalized by the coarse grid LR.

4.4. Computational Cost

Besides the accuracy, the computational costs are a key factor to analyze the suitability of a
numerical method. Therefore, the runtime of the mesh generation and the solver was evaluated on a
single node which consists of two dodeca-core Intel Xeon processors E5-2680 v3 that support AVX2.
The node provides 64 GB main memory. The use of a single node for estimating runtime performance
was chosen because the parallel scalability is not in the scope of this study. The estimation of parallel
scalability requires extensive testing due to the strong influence by the cells per core ratio, the load
balancing method and the connection between the nodes of the cluster system. Comprehensive studies
that deal with the parallel scalability of OpenFOAM and OpenLB can be found in [43,72,73].

4.4.1. Meshing Performance

Due to the straightforward approach in the case of OpenLB, the grid generation is fully automatic
and does not require any additional preparation steps. On the contrary, the meshing process for FVM
is very time-consuming if the grid is manually obtained. Internal OpenFOAM tools can drastically
reduce the effort, but require an experienced user. This study uses the built-in OpenFOAM meshing
tool snappyHexMesh. Still, writing a script for grid generation for a complex geometry can take several
days. Nevertheless, we only take the runtime for the mesh generation into account. The meshing time
is estimated by

tcore,mesh = Ncore tnode,mesh , (46)

where tnode,mesh is the runtime on the node and Ncore the amount of used cores. The comparison of the
meshing time for the three different resolutions is represented in Figure 13.
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Figure 13. Meshing runtime tcore,mesh comparison between OpenFOAM and OpenLB for the three grid
configurations: LR, MR and HR.

It can be observed that the meshing time in OpenLB is more than doubled each time the higher
grid resolution is used. In contrast, the results of OpenFOAM show a certain overhead with the
high resolution grid, i.e. The grid generation for OpenFOAM takes considerably more time with
each increase in resolution. This can be justified by the complex meshing procedure, which consists
of a castellation, snapping and adding layers step including several optimization cycles. Overall,
the meshing time in OpenLB is on average 424 times shorter than in OpenFOAM. In the case of
a static mesh, this performance benefit is not decisive. However, the use of a moving mesh, e.g.,
if piston motions are taken into account, requires several mesh updates in one cycle. Therefore, a fast
grid creation process, such as that with OpenLB, can be essential in the context of engine relevant
flows. The suitability of LBM for describing moving boundaries has been demonstrated in extensive
comparisons for different moving boundary methods, e.g., in [74,75].

4.4.2. Simulation Performance

For the comparison of the simulation performance difference for each grid, a runtime metric is
introduced. At tss = 0.5 s, the beginning of the statistics computation, the runtime tracker is started.
The tracked runtime tnode,solver is divided by the according past simulation time tsim,solver and scaled
with the number of cores Ncore. This core time tcore,solver is written as

tcore,solver =
Ncoretnode,solver

tsim,solver
. (47)

This means that the runtime metric calculates the core hours for one second of simulation time
including the additional time for processing the turbulence statistics. The direct comparison of each
grid resolution is justified by the comparable accuracy, see Section 4.3. The performance results for the
three different grid resolutions are presented in Figure 14.

The bar chart reveals that the simulations obtained by OpenLB are significantly faster than the
OpenFOAM simulations. The resulting performance factor can be determined by dividing tcore,solver
for the corresponding grid resolutions. If each grid configuration is taken into account, the mean
performance factor for OpenLB to OpenFOAM can be estimated as 32.03. It is noteworthy that the
performance factor varies greatly between the different grid resolutions, 21.76 for LR and 46.49 for
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HR. Additional quantities are introduced to further investigate the variance of the performance factor.
The mean cells per core (MCPc) are given by

MCPc =
Ngrid

Ncore
. (48)

Another performance metric are the cell updates per core and second (CUPcs), which are
defined as

CUPcs =
Ngrid

tcore,solver∆t
. (49)

LR FVM

LR LBM

M
R FVM

M
R LBM

HR FVM

HR LBM

0

2

4

6

8
·104

3,641.5
167.38

15,896.72

571.16

74,523.73

1,603.01

t c
or

e,
so

lv
er

in
co

re
ho

ur
s

pe
r

se
co

nd
si

m
ul

at
io

n
ti

m
e

Figure 14. Solver runtime tcore,solver comparison between OpenFOAM and OpenLB for the three grid
configurations: LR, MR and HR.

Both quantities MCPc and CUPcs are listed for the three grid configurations in Table 3.

Table 3. Mean cells per core (MCPc) and cell updates per core and second (CUPcs) for the three
grid configurations: low resolution (LR), medium resolution (MR) and high resolution (HR) for both
OpenFOAM and OpenLB.

Solver Identifier MCPc CUPcs

OpenFOAM LRFVM 5.016× 104 2.934× 104

OpenFOAM MRFVM 1.357× 105 2.424× 104

OpenFOAM HRFVM 3.788× 105 2.023× 104

OpenLB LRLBM 5.654× 104 1.208× 106

OpenLB MRLBM 1.672× 105 1.521× 106

OpenLB HRLBM 4.885× 105 2.283× 106

The solvers show a contrary behavior, while OpenLB benefits from an increased MCPc and almost
doubles the CUPcs from LR to HR, OpenFOAM has a decrease of about 45 percent. Consequently,
OpenFOAM seems to be less affected by the used MCPc. The reasons for the different behavior
can be manifold and range from the influence of the load balancing method to cache effects and
communication effects. A detailed discussion of these influencing factors can be found in [72,76,77].
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5. Conclusions and Outlook

The purpose of this paper is to evaluate NWM-LES for complex turbulent flows using LBM by
comparison with FVM simulations and PIV experiments. Thereby, a van Driest damped Smagorinsky
model coupled to the Musker equation was used to model the turbulent boundary layer. Both LBM
and FVM NWM-LES approaches were outlined in detail. Three different grid resolutions were
used to simulate an engine relevant in-cylinder flow with the open source frameworks OpenLB and
OpenFOAM. Characteristic flow features of the in-cylinder flow were highlighted and compared
side-by-side. In addition to the quantitative comparison, the errors of the tested grid configuration
were calculated against a highly precise PIV measurement and analyzed in detail. It was shown
that the matching grid configurations of both numerical methods had similar errors. Surprisingly,
OpenLB requires only slightly more cells than OpenFOAM to produce the same accuracy, although
no grid refinement was used. This can be justified by the chosen region of interest, which is
remote from the wall, and also the incorporated near-wall treatment based on the wall function
approach. The time-averaged and the RMS velocity at the highest grid resolution for OpenLB
and OpenFOAM were in good agreement with the PIV measurement (nMAE|〈U〉| < 0.038 and
nMAE|URMS| < 0.098, respectively). The performance estimation revealed that the meshing process
in OpenLB was 424 times faster and the simulation process approximately 32 times faster for the
investigated setup. These significant performance differences in meshing and solver runtime indicate
that LBM is a valuable and viable alternative to FVM in simulating IC engine relevant flows with
NWM-LES. In particular, the fast grid generation process in OpenLB further reduces computational
costs, if moving meshes are applied. The faster calculation speed for NWM-LES using LBM is
advantageous to address industrial applications and to enable "overnight" calculations that previously
took weeks. Therefore, faster design cycles and operating condition tests are feasible. The performance
advantage can also be used to provide more precise results in the same time and finally paves the way
for near-wall-resolved LES in the future [78].

Nevertheless, LBM still needs additional research to gain the maturity of NWM-LES with FVM.
The applied equilibrium wall function approach based on Musker’s law of the wall is strictly speaking
only valid in fully developed turbulent boundary layers. In contrast, turbulent boundary layers
of complex turbulent flows deal with pressure gradients, separation and recirculation, variable
physical properties, compressibility effects and many more. Therefore, a further step is to implement
a generalized wall function such as [79–81] in OpenLB that is able to model these flow features.
In addition, the simple SGS model employed in this study can be replaced by more advanced
turbulent models, e.g., models based on dynamic procedures [82], the scale similarity hypothesis [83]
or wall-adapted SGS models [52], which have shown an increased accuracy for IC engine flows [2,42].
If reactive turbulent flows are considered, further investigations have to be done. In this respect,
a modeling approach based on detailed chemistry with a large number of species as well as tabulated
chemistry is a challenging task, especially for LBM due to the high memory requirements [84].
However, given the benefits of the mesh generation and computation time reductions shown in
this work, LBM is a promising alternative to FVM in IC engine and many other complex turbulent
flow applications in the future.
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Abbreviations

The following nomenclature is used in this manuscript:

BGK Bhatnagar–Gross–Krook
CFL Courant–Friedrichs–Lewy number
CUPcs cell updates per core and second
CV control volumes
FDM finite difference method
FVM finite volume method
GPU graphics processing unit
HR high resolution
IC internal combustion
LBM lattice Boltzmann method
LES large eddy simulation
MCPc mean cells per core
MR medium resolution
MRV magnetic resonance velocimetry
nMAE normalized mean absolute error
nAE normalized absolute error
NWM near-wall-modeled
PIV particle image velocimetry
RANS Reynolds-averaged Navier–Stokes
RMS root mean square
SGS sub-grid scale
LR low resolution
VP valve plane

Roman

A+ van Driest parameter
c set of discrete lattice velocity vectors
cn discrete lattice normal velocity vector
C∆ van Driest model constant
CM sub-grid scale model coefficient
cs speed of sound of the lattice
D intake pipe diameter
DM model related operator
es stream-wise unit vector
f filtered particle distribution vector
f

eq
filtered particle distribution vector at equilibrium state

f
neq

non-equilibrium of the particle distribution function vector
I turbulence intensity
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L integral length scale
MaLB lattice Mach number
ṁin massflow into the flow bench
ṁout massflow out of the flow bench
N resolution
Ncore number of cores
Ne number of independent ensembles
Ngrid number of grid cells
NPIV number of PIV data points
Nt total number of time steps within tav

p filtered pressure
pLB filtered lattice pressure
pout pressure at the numerical outflow
Pin,1 absolute pressure at pressure sensor inlet 1
Pin,2 absolute pressure at pressure sensor inlet 2
Pout,1 absolute pressure at pressure sensor outlet 1
Pout,2 absolute pressure at pressure sensor outlet 2
qB dimensionless distance
Q Q-criterion
Re Reynolds number
S filtered strain rate tensor

SLB filtered lattice strain rate tensor
t time
tav averaging time
tLB lattice time
tcore,mesh runtime on the core for meshing
tnode,mesh runtime on the node for meshing
tcore,solver runtime on the core for the solver per second simulation time
tnode,solver runtime on the node for the solver
tsim,solver passed simulation time
tss time to a statistically stationary flowfield
Tef f effective stress tensor
TSGS sub-grid scale stress tensor
Tw wall shear stress
T̃LB

w averaged wall shear stress assuming RANS hypothesis
u filtered velocity vector
uLB filtered lattice velocity vector
ũLB

f averaged velocity vector assuming RANS hypothesis

uLB
n filtered lattice velocity vector at position xLB

n
ũLB

1 stream-wise component of ũLB
f

uLB
2 stream-wise component of uLB

n
uτ friction velocity
u+ dimensionless friction velocity
u‖ stream-wise velocity
〈u〉 time-averaged velocity vector
〈u〉in time-averaged velocity vector at the numerical inflow
u′ velocity fluctuation vector
〈u′〉 time-averaged velocity fluctuation vector
〈u′u′〉 Reynolds stress tensor
〈U〉 two dimensional time-averaged velocity vector
URMS two dimensional root mean square velocity vector
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x position vector
xLB lattice position vector
xLB

f lattice position vector in ci direction

xLB
f f lattice position vector in 2ci direction

xLB
n lattice position vector in cn direction

xLB
w lattice wall position vector

y wall distance
yLB

1 lattice distance from the the node at position xLB
f distance to the boundary

yLB
2 lattice distance from the the node at position xLB

n to the boundary
y+ dimensionless wall distance
yp wall distance of the cell centroid

Greek

δ Kronecker operator
∆grid grid filter
∆t time step
∆x grid spacing
ε maximal sampling error
η dynamic viscosity
ϑin,1 temperature at temperature sensor 1
ϑin,2 temperature at temperature sensor 2
ϑwall wall temperature
κ von Kármán constant
ν kinematic viscosity
νef f effective kinematic viscosity
νSGS sub-grid scale kinematic viscosity
νLB lattice kinematic viscosity
νLB,ef f lattice effective kinematic viscosity
νLB,SGS lattice sub-grid scale kinematic viscosity
Π filtered lattice momentum flux
Πneq filtered second moment of the non-equilibrium of the particle distribution function
ρ density
ρLB filtered lattice density
ρLB

out lattice density at the outflow
τ lattice relaxation time
τSGS lattice sub-grid scale relaxation time
τef f lattice effective relaxation time
φPIV PIV measurement data
φsim simulated data
ω lattice weight vector
Ω filtered collision operator vector
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a b s t r a c t

The present work compares fluid–solid interface approaches for the lattice Boltzmann
method (LBM) to study vortex-induced vibrations (VIV). Two classes of fluid–solid inter-
face approaches, namely the partially saturated methods (PSM) (Noble and Torczynski
(1998), Holdych (2003), Krause et al. (2017), Trunk et al. (2018)) and moving boundary
methods (MBM) (Bouzidi et al. (2001), Lallemand and Luo (2003), Yu et al. (2003),
Ginzburg et al. (2008) and Filippova and Hänel (1998), Mei et al. (1999, 2000)), are
investigated. First, the Galilean invariance of aerodynamic coefficients obtained by each
scheme is examined. The Bhatnagar–Gross–Krook (BGK) LBM is utilized to simulate an
eccentrically positioned cylinder in a transient Couette flow. In addition, various refill
methods for MBM and volume approximation techniques for PSM are tested. Besides
different error norms and a grid independence study of each method, the Galilean
invariance violating frequencies are studied as well. These error calculations are used
to choose a representative for each class to simulate vortex shedding. The VIV test case
describes a transverse oscillation of a cylinder in a freestream at a Reynolds number of
100. Both free and forced cylinder oscillations are examined to study known phenomena
as lock-in and lock-out zones. The results of MBM and PSM are in good agreement to
literature values and prove the suitability for VIV simulations.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The study of vortex-induced vibrations (VIV) plays a major role in many engineering applications e.g. the construction
of bridges [1], pipelines [2], or submarine cables [3]. Therefore, the investigation of VIV phenomena is of topical interest
to improve their durability, efficiency and safety.

One of the most important benchmark cases of VIV is the examination of the wake past a circular cylinder, a topic
to which numerous experimental and numerical contributions have been made during the last 40 years. Interested
readers are referred to the reviews of Bearman [4] and Sarpkaya [5]. Most of these simulations are based on traditional
discretization methods such as the finite volume or finite element method. The present study, however, covers the lattice
Boltzmann method (LBM), which has shown its applicability in distinct fields such as particle simulations [6,7] and flows
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in complex geometries [8,9] by reason of its underlying highly efficient parallel algorithm [10,11]. The previous VIV
simulations using LBM covered various obstacle shapes and geometric arrangements.
The wake of a single cylinder with a prescribed transverse motion in the lock-in zone as well as free oscillations were
analysed by Wang et al. [12]. Further studies with one free oscillating circular cylinder can be found [13,14]. Jiang et al. [15]
depicted the influence of an altered shape to a cuboid and provided a validation for the static case. VIV of two cylinders
in tandem configuration were performed by Xu et al. [16] at a Reynolds number of Re = 100 and by Lin et al. [17] at
Re = 200. Also the influence of three moving cylinders were described by Hong et al. [18]. Furthermore, possibilities to
suppress VIV and to control the wake were simulated [19]. Various VIV application simulations cover swimming fish [20],
harbour seal vibrissae [21] or energy harvesting systems [22].

All previously mentioned VIV simulation studies deal with a fluid–solid interface approach to describe the movement
of an obstacle. Fluid–solid interface approaches in the LBM can be classified into three main groups, namely the partially
saturated methods (PSM), the moving boundary methods (MBM) and the immersed boundary methods (IBM). The latter
group of schemes based on a Lagrangian description of the boundary is not considered in this study, the focus is set on
the comparison between MBM and PSM.
PSM are characterized by a continuous description of the simulation domain obtained by a solid volume fraction
approximation. In contrast, MBM use a boundary formulation coupled to a cell reconstruction method for moving
geometries. Based on these different approaches, numerous algorithms were compared in the last decade focusing on
a great variety of different applications. In 2008, Kao et Yang [23] proposed a novel mass and momentum conserving
bounce back scheme and compared it to established MBM. Peng et al. [24] showed the difference between MBM and IBM
for a fixed cylinder configuration. The influence of several collision operators were examined in [25]. Furthermore, Tao
et al. [26] evaluated different momentum exchange and refill methods for the MBM. One of the first extensive comparisons
between MBM, PSM and IBM can be found in [27], which mainly focuses on flow acoustic problems. In addition to the
comparison of different methods, the study covers multiple refill methods. Rettinger et Rüde [28] compared MBM and
PSM for several 3D particle benchmarks.
The present study, in contrast, evaluates the mentioned methods with respect to their suitability for VIV simulations. In
that context, a transient analysis of aerodynamic quantities and frequencies is indispensable. The investigated simulation
data can be affected by temporal and spatial discretization depending on the movement of the obstacle in the flowfield.
The Galilean invariance as a transformation property of the Navier–Stokes equations is numerically investigated. In
contrast, Galilean invariance defects of collision operators, equilibria or descriptor sets, which are often addressed by
row expansions using Taylor or Hermite polynomials (see e.g. Dellar [29]) are not part of this study. The present Galilean
invariance study is dealing with two inertial frames. Therefore, a static and a moving obstacle configuration is applied
to precisely differentiate between grid errors and Galilean invariance errors. Various PSM and MBM coupled to distinct
refill algorithms and volume approximation approaches are compared. For the first time, different resolutions are used to
evaluate the force signals and to quantify the errors with various error norms. Moreover, to the knowledge of the authors,
PSM have never before been used to simulate VIV phenomena. The comparison of MBM and PSM in the context of VIV
represents a novel study.
The resulting data of the present work allows to quantify the influence of the grid resolution and the ability to describe
moving obstacles for each methods. The discrete motion of the fluid–solid interface interacts with the numerical dis-
cretization and introduces periodically reoccurring pressure fluctuations. The frequencies of these upcoming fluctuations
are parasitic frequencies, since they violate the Galilean invariance properties. Therefore, a detailed error analysis is used to
choose algorithm configurations with regard to accuracy or occurring fluctuations depending on the respective resolution.
Especially for VIV, the parasitic frequencies play a central role since they can drastically influence the overall quality of
the results.
This paper is structured in the following way: Section 2 introduces the used PSM and MBM approaches. Here, refill
methods, volume approximation techniques and force calculations are described in detail. The next section (Section 3)
describes a cylinder in a Couette flow. This setup is used to rate each configuration regarding their suitability to perform
VIV simulations. Based on this validation two representatives are chosen to simulate a transverse oscillating cylinder in
Section 4. The results are summarized in Section 5 and potential future studies are pointed out.

2. Theoretical background and modelling

2.1. Lattice Boltzmann method

The LBM discretizes a simulation domain by a voxel mesh on which a set of velocity distribution functions fi(x, t)
are solved numerically at position x and time t . This set is specified by d dimensions and q lattice velocities c i, i =

0, 1, . . . , q−1. All terms in Section 2 are written in lattice units with the usual choice of δx = δt = 1, for the grid spacing
δx and the lattice time step δt . In the subsequent sections quantities in lattice units are explicitly identified with the
superscript L. A common choice to recover the incompressible Navier–Stokes equations in two dimensions is the D2Q9
descriptor set. The corresponding lattice velocities c i can be defined as

c i =

⎧⎨⎩
(0, 0) for i = 0,
(±1, 0), (0, ±1) for i = 1, . . . , 4,
(±1, ±1) for i = 5, . . . , 8.

(1)
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The general form of the external force free lattice Boltzmann equation (LBE) reads

fi(x + c i, t + 1) = fi(x, t) + Ωi(x, t). (2)

The collision operator Ωi(x, t) can be chosen in different ways, the present work uses the single-relaxation time
Bhatnagar–Gross–Krook (BGK) [30] form, which reads

Ωi(x, t) = −
1
τ

(
fi(x, t) − f (eq)i (x, t)

)
. (3)

The velocity distribution functions fi(x, t) are linearly relaxed with the lattice relaxation time τ towards their equilibria
f (eq)i (x, t).

A truncated Maxwell–Boltzmann equilibrium function f (eq)i (u, ρ) to solve a weakly compressible flow is obtained by

f (eq)i (u, ρ) = wiρ

[
1 +

(
c i · u
c2s

+
(c i · u)2

2c4s
+

u2

2c2s

)]
, (4)

where u is the lattice velocity, ρ denotes the lattice density, wi are lattice weights received from the Gauss–Hermite
quadrature [31,32] and cs =

1
√
3
represents the lattice speed of sound. The lattice shear kinematic viscosity ν is connected

to the lattice relaxation time τ in the incompressible limit by

ν = c2s

(
τ −

1
2

)
. (5)

The macroscopic quantities lattice density ρ and momentum ρu are accessible through the moments of the populations.
The zeroth and first order moments are calculated as

ρ =

q−1∑
i=0

fi (6)

and

ρu =

q−1∑
i=0

c ifi, (7)

respectively. The relation of lattice pressure p and density ρ using an isothermal equation of state is given by

p = c2s ρ. (8)

The lattice Mach number MaL is written as

MaL =
uL

cs
, (9)

where uL is the characteristic lattice velocity.
An LBM algorithm is divided into a collision step corresponding to the right side of Eq. (2) and a streaming step

associated with the left side of Eq. (2).

2.2. Moving boundary methods (MBM)

A moving solid object inside the fluid domain is described by the position of its boundary, which changes over time.
According to this boundary position, we distinguish between fluid and solid nodes. In the particular case where a former
solid node becomes a fluid node, the unknown velocity distribution functions have to be determined by a refill algorithm.
Therefore, MBM consist of a velocity boundary formulation which is coupled to a refill algorithm. The following boundary
schemes are curved boundary formulations and take the distance to the boundary into account to improve the accuracy.
For the sake of clarity, the introduced position indices are depicted in Fig. 1. Index b is associated with the boundary node
located inside the solid region. In direction c i the wall is intersected at xw . xf , xff and xfff denoting the corresponding fluid
nodes in this direction. The distance between xw and xf is defined by the normalized distance q, which is calculated by

q =
|xf − xw|

|xf − xb|
. (10)

Position xnew is related to nodes, where a refill algorithm needs to be applied. The nodes in discrete normal direction cn
are denoted by xn, xnn and xnnn. This indexing convention is also used for velocity u and density ρ. The index ī accompanies
a quantity in the opposite direction of one with index i.

124 6 Evaluation of Fluid-Solid Interface Approaches for Vortex-Induced Vibrations



674 M. Haussmann, N. Hafen, F. Raichle et al. / Computers and Mathematics with Applications 80 (2020) 671–691

Fig. 1. Illustration of the used indexing convention.

2.2.1. Boundary schemes
Bouzidi boundary (BOUZIDI). The boundary condition proposed by Bouzidi et al. [33] represents an extension of a half-way
bounce back scheme to handle curved boundaries. The boundary scheme can be classified as an interpolated bounce-back
approach [34]. The unknown populations after the streaming step fī(xf , t + 1) are calculated by a linear interpolation:

fī(xf , t + 1) =

{
2qfi(xb, t + 1) + (1 − 2q)fi(xf , t + 1) − 2wi

c2s
c i · uw(t) for q < 1

2 ,

1
2q fi(xb, t + 1) +

2q−1
2q fī(xff , t + 1) −

1
q

wi
c2s
c i · uw(t) for q ≥

1
2 .

(11)

For q = 1/2 this is equivalent to a half-way bounce back condition. The last terms in Eq. (11) are an addition for moving
boundaries using the wall velocity uw(t).

Yu interpolation scheme (YU ). Another interpolated bounce back approach is found in Yu et al. [35]. In contrast to Bouzidi
et al. [33], they present a unified interpolation for q ≥ 1/2 and q < 1/2. The present paper uses the linear formulation.
The populations at a fictitious wall node xw are calculated as

fi(xw, t + 1) = fi(xf , t + 1) + q
[
fi(xb, t + 1) − fi(xf , t + 1)

]
. (12)

Assuming a velocity bounce back condition on the wall, it follows

fī(xw, t + 1) = fi(xw, t + 1) − 2
wi

c2s
c i · uw(t). (13)

So that, the missing populations fī(xf , t + 1) are calculated by

fī(xf , t + 1) = fī(xw, t + 1) +
q

1 + q

[
fī(xff , t + 1) − fi(xw, t + 1)

]
, (14)

where a linear interpolation with the boundary node xb is applied.

Central linear interpolation (CLI). Ginzburg et al. [36] used an interpolated bounce back approach as well in order to obtain
a curved boundary formulation. The boundary condition utilizes a central linear interpolation around the fluid node. With
the coefficients κ0 =

1−2q
1+q and α =

4
1+2q the resulting form reads

fī(xf , t + 1) = fi(xb, t + 1) + κ0fi(xf , t + 1) − κ0fī(xff , t + 1) − α
wi

c2s
c i · uw(t). (15)

This scheme reduces to the half-way bounce back boundary condition for q = 1/2.

Filippova and Hänel scheme (FH). In contrast to the previously mentioned boundary schemes, the work of Filippova
and Hänel [37,38] employs extrapolations to deal with curved boundaries. The unknown velocity distribution after the
streaming step fī(xf , t + 1) can be calculated by

fī(xf , t + 1) = (1 − χ )fi(xb, t + 1) + χ f (⋆)i (xb, t) − 2
wi

c2s
c i · uw(t). (16)
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The linear combination in Eq. (16) uses a fictitious equilibrium f (⋆)i that is defined as

f (⋆)i (xb, t) = wiρf (t)
[
1 +

c i · ubf (t)
c2s

+
(c i · uf (t))2

2c4s
−

uf (t) · uf (t)
2c2s

]
. (17)

The fictitious velocity ubf and the weighting factor χ are chosen according to Mei et al. [39]

ubf (t) =
(q − 1)

q
uf (t) +

uw(t)
q

and χ =
2q − 1
τ + 1/2

for q ≥
1
2
, (18)

ubf (t) = uff (t) and χ =
2q − 1
τ − 2

for q <
1
2
. (19)

Changing these parameters in comparison to the original one proposed by Filippova and Hänel [38] results in a higher
accuracy [39–41].

2.2.2. Boundary force calculation
The force calculation for MBM is usually based on a momentum exchange approach. In the present work we use a

Galilean invariant momentum exchange approach [42]. The boundary force is calculated by a sum over all boundary
nodes

F (t) =

∑
xb

∑
i∈L

[
(c i − uw(t))fi(xb, t + 1) − (c ī − uw(t))fī(xf , t + 1)

]
, (20)

where L denotes the set of fluid–solid links. This formulation is able to describe the boundary force of moving obstacles
accurately and circumvents the drawbacks of a conventional momentum exchange calculation [26,42].

2.2.3. Refill algorithms
Equilibrium refill algorithm (EQ). A simple choice for the refill algorithm is the equilibrium distribution function refill
algorithm [43]. The unknown particle distribution functions at the new fluid node fi(xnew, t) are set to the equilibrium
distribution function

fi(xnew, t) = f (eq)i (ρnew(t), uw(t)). (21)

The density ρnew(t) entering Eq. (21) is calculated by averaging the density of the surrounding fluid nodes and the used
velocity is the wall velocity uw(t).

Non-equilibrium refill algorithm (NEQ). Based on the idea of Guo et al. [44], the non-equilibrium parts of the unknown
velocity distribution function are obtained by extrapolation. Both zeroth order [45] and second order [27] extrapolation
are proposed. For the sake of accuracy we use the second order formulation in the present work. The unknown velocity
distribution functions fi(xnew, t) are decomposed into equilibrium and non-equilibrium contributions

fi(xnew, t) = f eqi (ρnew(t), uw(t)) + f neqi (xnew, t). (22)

Both, the missing density ρnew(t) and the non-equilibrium distribution function f neqi (xnew, t), are obtained by

ρnew(t) = 3ρf (t) − 3ρff (t) + ρfff (t), (23)

and

f neqi (xnew, t) = 3f neqi (xf , t) − 3f neqi (xff , t) + f neqi (xfff , t), (24)

where the second order extrapolation is in c i direction.

Normal extrapolation refill algorithm (EXTRA). Another second order extrapolation scheme is found in [43]

fi(xnew, t) = 3fi(xn, t) − 3fi(xnn, t) + fi(xnnn, t). (25)

Here, the velocity distributions fi(xnew, t) are extrapolated by the velocity distribution functions in discrete normal
direction cn.

2.3. Partially saturated methods (PSM)

Instead of using a velocity boundary formulation (Section 2.2), PSM employ a level-set function in form of a continuous
description of a solid volume fraction approximation d(x, t) ∈ [0, 1] over the entire simulation domain. Its contribution
can be modelled by modifying the collision operator Ωi(x, t) or by adding an additional source term Si(x, t) to the LBE
(Eq. (2)) depending on the approach being used, which yields the general form

fi(x + c i, t + 1) = fi(x, t) + Ωi(x, t) + Si(x, t). (26)
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In either way, a weighting factor B(x, t) depending on the solid volume fraction approximation has to be introduced.
According to Rettinger and Rüde [28], this can be achieved in two different variants

B1 : B(x, t) = d(x, t), (27)

B2 : B(x, t) =
d(x, t)

(
τ −

1
2

)
(1 − d(x, t)) +

(
τ −

1
2

) . (28)

2.3.1. Approaches
Homogenized lattice Boltzmann method (HLBM). One way of modelling a fluid–solid interface by means of a continuous
field description is to use a moving porous media approach. A corresponding framework for LBM is provided by the
HLBM. Adapted from a lattice Boltzmann description of fluid flow in heterogeneous porous media [46], the influence of
submerged solid objects on the fluid flow is achieved by scaling an effective velocity ueff (x, t). This scaling consists of a
simple convex combination, directly depending on the solid volume fraction d(x, t) with a B1 weighting formulation

ueff (x, t) = B(x, t)uF (x, t) + (1 − B(x, t)) uS(x, t). (29)

Here, uF (x, t) and uS(x, t) are the velocities of the fluid and the solid object, respectively. A porous momentum loss force
accounts for the reduced momentum due to the fluid flow retardation. As proposed by Kupershtokh [47], this force can
implicitly be incorporated into the LBE by shifting the distribution functions fi(x, t) in velocity space with a source term

Si(x, t) = f eqi

(
ρ(x, t), ueff (x, t)

)
− f eqi

(
ρ(x, t), uF (x, t)

)
. (30)

PSMM2 and PSMM3. Another way to account for the influence of a submerged solid object can be realized by modifying
the LBM collision operator rather than including an additional source term [48,49]. This modification consists analogously
to Eq. (29) of a weighted average of a fluid collision operator Ω

f
i (x, t) and one specifically designed to model solid sites

Ω s
i (x, t)

Ωi(x, t) = B(x, t)Ω s
i (x, t) + (1 − B(x, t))Ω f

i (x, t). (31)

While Ω
f
i (x, t) represents the standard BGK collision operator (Eq. (3)), the solid one Ω s

i (x, t) can be modelled in different
ways

M1 : Ωs
i (x, t) =

[
fī(x, t) − f eq

ī
(ρ, u)

]
−

[
fi(x, t) − f eqi (ρ, us)

]
, (32)

M2 : Ωs
i (x, t) =

[
f eqi (ρ, us) − fi(x, t)

]
(33)

+

(
1 −

1
τ

) [
fi(x, t) − f eqi (ρ, u)

]
,

M3 : Ωs
i (x, t) =

[
fī(x, t) − f eq

ī
(ρ, us)

]
−

[
fi(x, t) − f eqi (ρ, us)

]
. (34)

As formulation M2 and M3 in combination with B2 (Eq. (28)) were reported as superior [28], only these are considered
in the present study and referred to as PSMM2 and PSMM3.

2.3.2. Boundary force calculation
In PSM the hydrodynamic force acting on a solid object is calculated by summing up the force contribution of all

individual nodes xS occupied by the solid object. In HLBM this contribution is accounted for by the source term Si(x, t)
representing the porous momentum loss force (Section 2.3.1)

F (t) =

∑
xs

[∑
i

(Si(xs, t)c i)

]
. (35)

In PSMM2 and PSMM3 the contribution consists of the weighting factor B(x, t), the oppositely directed lattice velocity c ī
and the solid collision operator Ωs

i (x, t) according to the M2 or M3 formulation in Eqs. (33) and (34) respectively

F (t) =

∑
xs

[
B(xs, t)

∑
i

(
Ω s

i (xs, t)c ī
)]

. (36)

2.3.3. Volume approximation algorithms
As the weighting factor B(x, t) employed in all PSM approaches heavily depends on the solid volume fraction

approximation d(x, t), its calculation poses a decisive factor to the accuracy and performance of the overall algorithm.
For that, the intersections of the quadrilateral cells and the solid object have to be evaluated. While this is a trivial task
in case of an analytical description of the solid objects boundary, in most cases such a description does not exist which
leads to the necessity of volume approximation algorithms.
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Fig. 2. Illustration of the three volume approximations algorithms SS, POLYGON and EPSILON. The black dots represent the cell centres.

Supersampling algorithm (SS). In order to increase the accuracy while sticking to a simple step function, the SS represents
an alternative approach. As demonstrated by Owen [50], each intersected cell can be subdivided into a number of subcells
(Fig. 2(a)) depending on a chosen refinement level nref . The solid fraction of each cell can then be calculated by simply
checking which subcells are located within the solid objects boundary and by subsequently summing over those that
do. The present study uses a refinement level of nref = 10, which results in 100 subcells for every intersected cell.
This approach is straightforward to implement, but eventually becomes computationally expensive for large refinement
levels. Its applicability to a wide range of boundary geometries, however, often poses a crucial advantage over different
approaches.

Polygon approximation algorithm (POLYGON). A more sophisticated approach is the approximation of the volume fraction
in each cell by one single sufficiently simple shape. A polygon can be constructed by intersecting the boundary with
the cell sides and computing the length of the edges that are inside the boundary [51]. Its area corresponds to the solid
fraction in that cell. This is shown in Fig. 2(b).

Epsilon boundary layer algorithm (EPSILON). In the case of moving objects a simple step function leads to abrupt changes
from solid to fluid cells, which potentially leads to fluctuations and numerical errors. These can be avoided by using a
continuous function with a smooth transition from solid to fluid instead (Fig. 2(c)). In case of a circular cylinder, this
function can be described via

d(x, t) =

⎧⎨⎩
1 for ∥x − X k∥2 ≤ R −

ε
2 ,

cos2
(

π
2ε (∥x − X k∥2)

)
for R −

ε
2 < ∥x − X k∥2 < R +

ε
2 ,

0 for ∥x − X k∥2 ≥ R +
ε
2 .

(37)

Here, X k(t) is the object’s centre of mass, R its radius and ε ≥ 0 the smoothing parameter ε controlling the width of the
continuous transition area [6]. In the present study, we set the smoothing parameter to ε =

√
2. Resulting from the D2Q9

descriptor set with max(∥c i∥2) =
√
2, this choice ensures that a solid cell (d(x, t) = 1) is not a direct neighbour of a fluid

cell (d(x, t) = 0).

3. Results of the Galilean invariance benchmark

3.1. Benchmark description

We simulate a moving cylinder in a transient Couette flow. The geometrical setup is inspired by [43] and illustrated
in Fig. 3. The channel has a length of L1 + L2 = 8D and a height of L4 = 4D, where D denotes the cylinder diameter. The
cylinder is eccentrically positioned in y-direction inside the channel at L3 =

(
1 +

1
15

)
2D. Initially the flow field is set to

U0 = 0.02 m
s in x-direction. The velocity of the moving cylinder in x-direction is prescribed and set to UC = 0.02 m

s . The
upper and lower walls move with a velocity of UW = 0.1 m

s and −UW = −0.1 m
s respectively in x-direction. The mentioned

values for the wall and cylinder velocities are set at time t = 0 s, which corresponds to an impulsive motion [43]. The
velocity boundaries at the walls are implemented by a non-local regularized approach (see boundary scheme BC4 in [52]),
which is second order accurate for straight walls. In x-direction of the channel periodic boundaries [53] are applied. For
the description of the cylinder boundary both MBM and PSM are utilized. The shear rate of the flow is defined as

κ =
2UW

L4
. (38)

The Reynolds number is given by

Re =
D2κ

ν
, (39)
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Fig. 3. Geometrical description of the Galilean invariance benchmark case.

Table 1
Discretization parameters for resolutions N = 20, 40, 80, 160, 320.
N uL MaL ∆x/m ∆t/s τ

20 0.041 0.070 2.500 × 10−3 2.029 × 10−3 0.714
40 0.020 0.035 1.250 × 10−3 5.071 × 10−4 0.714
80 0.010 0.018 6.250 × 10−4 1.268 × 10−4 0.714

160 0.005 0.009 3.125 × 10−4 3.170 × 10−5 0.714
320 0.003 0.004 1.563 × 10−4 7.924 × 10−6 0.714

where ν is the kinematic viscosity. The Reynolds number is set to 11.36. If a reference frame is assumed with reference
speed Uref = −0.02 m

s in x-direction, the cylinder is static with UC + Uref = 0.0 m
s . Therefore, the upper wall velocity and

lower wall velocity is UW + Uref = 0.08 m
s and −UW + Uref = −0.12 m

s respectively. Accordingly, the initial condition of
the flow field is changed to U0+Uref = 0.0 m

s . These two reference frames allow the estimation of the Galilean invariance.
The used error criterions errL2 and errL∞ are based on the L2 and the L∞ norm. The errL2 for the quantity χ is given by

errL2 (χ) =

√∑M
m=0

[
χ ref (tm) − χ (tm)

]2∑M
m=0

[
χ ref (tm)

]2 , (40)

where M denotes the number of considered time steps and χ ref is a reference solution. Analogously, the errL∞ (χ) can be
written as

errL∞ (χ) =

∑M
m=0 max|χ ref (tm) − χ (tm) |∑M

m=0 max|χ ref (tm) |
. (41)

Eqs. (40) and (41) are used to calculate both grid and Galilean invariance errors. For the estimation of the grid error only
the results of the static configuration (Uref = −0.02 m

s ) are taken into account. The reference solution in the error norms
χ ref(tm) is set to the corresponding highest grid resolution obtained by the static cylinder configuration. In contrast, the
calculation of Galilean invariance errors χ (tm) is carried out with the moving cylinder configuration. The related reference
solution χ ref(tm) is computed in the static configuration at the same resolution. This choice separates the grid error of
the static configuration from the Galilean invariance error. The considered quantities in this benchmark case are the force
signals in x- and y-direction Fx and Fy.

gerrL2
(
Fx, Fy

)
=

1
2

[
errL2 (Fx) + errL2

(
Fy

)]
. (42)

In Eq. (42), a global error gerrL2
(
Fx, Fy

)
out of these two quantities can be computed as the arithmetic mean of errL2 (Fx)

and errL2
(
Fy

)
.

3.2. Influence of refill and volume approximation methods

For the evaluation of the refill methods we use BOUZIDI and for the volume approximation techniques PSMM2. The
benchmark case is simulated for 5 different resolutions N = 20, 40, 80, 160, 320, where N is related to the diameter of
the cylinder D. We use diffusive scaling ∆t ∝ ∆x2 to decrease the Mach number error term with the resolution. The used
discretization parameter are depicted in Table 1.

Additionally the parasitic frequencies due to the tested refill and volume approximation methods are investigated.
Firstly, the force signals of Fx and Fy are filtered by a high-pass filter (HP) to filter out the underlying frequency that is
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Fig. 4. Force signals Fx and Fy for BOUZIDI at N = 20 using EQ, NEQ and EXTRA refill algorithms.

induced by the eccentricity of the cylinder. The high-pass filter cutoff frequency of 2 Hz is estimated based on the static
cylinder configuration. Then, power spectra (PS) of the filtered force signals are calculated. The characterization of the
power spectrum is done by the frequency of the highest peak

fpara(χ ) = f (max(PS(HP(χ )))) , (43)

which describes the parasitic frequency with the highest power. As a reference value, the frequency of the cylinder motion
with respect to the used grid resolution can be estimated by

fgrid =
UC

∆x
. (44)

Additionally, the total power is calculated by integrating the power spectrum over the observed frequency range

Ptotal(χ ) = 2
∫ fmax

2
PS(HP(χ ))df , (45)

where the maximal frequency is related to the time step size by fmax = 1/(2∆t). Consequently, the total power Ptotal is a
measure to characterize the intensity of the occurring parasitic frequencies.

The instantaneous force signals Fx and Fy, using refill methods, for the resolution of N = 20 are illustrated in Fig. 4. It
can be seen that the EQ exhibits the highest fluctuations in comparison to NEQ and EXTRA. This insight coincides with
earlier studies [26,43]. For the quantification of the increased parasitic frequencies the L2 and L∞ errors are calculated
in Table 3. These errors are given by Eqs. (40) and (41) using the time interval t ∈ [3, 10] and ∆t as ensemble time to
capture fluctuations at high frequencies. The errL∞ (Fx) for the EQ at N = 20 is nearly doubled in comparison to NEQ and
EXTRA. The effect is also visible for Fy, but shifted to higher resolutions. With increasing resolution the difference between
EQ in comparison to NEQ and EXTRA is more pronounced. This can be deduced from the smaller averaged experimental
order of convergence EOC (see Table 4). The total power of the force signals Ptotal supports these statements, because
both Ptotal(Fx) and Ptotal(Fy) of EQ are significantly higher in comparison to NEQ and EXTRA (see Table 2). At higher grid
resolutions this leads to an increase in power by an order of magnitude. The frequencies fpara(Fx) and fpara(Fy) are in good
agreement with the grid frequencies fgrid. Exceptions for fpara(Fx) are found at N = 20 for EXTRA and EQ, where fpara(Fx)
represents a multiple of fgrid. The higher errors and the lower convergence speed can be explained by the neglection of
the non-equilibrium contribution in the refill scheme. The results of EXTRA and NEQ are hardly different. The significant
differences is that the extrapolation direction is in lattice link direction c i in case of NEQ and in discrete normal direction
cn for EXTRA. Furthermore, the velocity in the equilibrium distribution is extrapolated in case of EXTRA and set to the wall
velocity in NEQ. This implies that neither the extrapolation direction nor the used velocity have a substantial influence
on the results. The slightly reduced gerrL2 (Fx, Fy) and the lower total power of Ptotal(Fx) and Ptotal(Fy) justify our selection
to use NEQ in the subsequent studies.

The temporal evolution of Fx and Fy, using volume approximation techniques, for N = 20 is shown in Fig. 5. The
course of POLYGON and EPSILON is significantly smoother, because the secondary violating Galilean invariance peaks
have disappeared. The intrinsic continuous nature of POLYGON and EPSILON are responsible for this favourable feature.
In contrast, SS shows secondary peaks. Therefore, the Galilean invariance L2 and L∞ errors depicted in Table 3 are greatly
increased. This is due to the higher total power Ptotal of the parasitic frequencies, see Table 2. Although 100 subcells were
used for the SS, the errL∞ (Fx) at N = 20 is increased approximately sevenfold in comparison to POLYGON and EPSILON.
This behaviour can be linked to the used subgrid in SS. The volume approximation in each cell results in discrete values
for the solid fraction. The jump from one discrete value to the next introduces the secondary peaks. This influence of the
secondary peaks is also visible, if the parasitic frequencies fpara(Fx) with the highest power are considered. The parasitic

130 6 Evaluation of Fluid-Solid Interface Approaches for Vortex-Induced Vibrations



680 M. Haussmann, N. Hafen, F. Raichle et al. / Computers and Mathematics with Applications 80 (2020) 671–691

Fig. 5. Force signals Fx and Fy for PSMM2 at N = 20 using SS, POLYGON and EPSILON volume approximation algorithms.

Table 2
Power spectrum related quantities Ptotal(Fx), Ptotal(Fy), fpara(Fx) and fpara(Fy) of computations with EQ, EXTRA, NEQ, EPSILON, POLYGON, SS at
N = 20, 40, 80, 160, 320.

N EQ EXTRA NEQ EPSILON POLYGON SS

Ptotal(Fx)/(N)2 20 3.46 × 10−08 2.01 × 10−08 1.34 × 10−08 4.62 × 10−10 8.26 × 10−11 1.01 × 10−08

40 9.89 × 10−09 3.90 × 10−09 3.29 × 10−09 1.86 × 10−11 6.62 × 10−11 1.91 × 10−09

80 2.15 × 10−09 3.25 × 10−10 2.87 × 10−10 3.72 × 10−11 1.33 × 10−11 5.18 × 10−10

160 4.81 × 10−10 4.05 × 10−11 3.76 × 10−11 3.21 × 10−12 1.63 × 10−12 6.75 × 10−11

320 1.38 × 10−11 1.90 × 10−12 1.88 × 10−12 2.52 × 10−13 2.93 × 10−13 2.76 × 10−12

fpara(Fx)/Hz 20 112.00 24.00 7.97 8.03 7.92 80.00
40 15.98 15.98 15.98 16.00 15.96 160.00
80 31.98 31.98 31.98 31.99 31.99 320.00

160 63.98 63.98 63.98 63.98 63.98 640.01
320 127.71 127.71 127.71 127.96 128.22 1,280.40

Ptotal(Fy)/(N)2 20 7.57 × 10−08 6.85 × 10−08 6.69 × 10−08 1.84 × 10−09 5.67 × 10−09 6.60 × 10−09

40 6.28 × 10−09 3.12 × 10−09 2.84 × 10−09 3.34 × 10−10 2.70 × 10−10 9.72 × 10−10

80 1.34 × 10−09 2.99 × 10−10 2.58 × 10−10 1.67 × 10−10 8.16 × 10−11 3.93 × 10−10

160 3.37 × 10−10 3.59 × 10−11 3.16 × 10−11 3.53 × 10−11 3.24 × 10−11 9.08 × 10−11

320 6.02 × 10−12 3.54 × 10−13 3.36 × 10−13 3.50 × 10−13 2.76 × 10−13 1.50 × 10−12

fpara(Fy)/Hz 20 8.04 8.03 8.03 7.98 8.03 8.03
40 16.02 16.02 16.01 16.05 16.03 160.01
80 32.01 32.01 32.01 31.98 32.04 319.97

160 63.98 63.98 63.98 63.98 63.98 63.98
320 127.71 256.18 256.18 128.22 128.22 5,119.82

frequency fpara(Fx) for SS is in fact ten times the grid frequency fgrid due to the refinement level of nref = 10. The higher the
refinement level nref and the associated set of discrete values, the smaller the amplitudes of the secondary fluctuations. As
a consequence Ptotal is decreased. Since an increase in the refinement level nref > 10 leads to a significant rise in computing
time, higher refinement levels are not considered here. In Table 4, the averaged experimental order of convergence EOC of
SS and EPSILON is close to one, whereas the EOC for POLYGON is slightly higher with a value of EOC = 1.18. The higher
convergence speed and the physically motivated volume approximation method, which is also suitable for arbitrarily
shaped objects, lead us to the decision to use POLYGON for further studies.

If we compare the Galilean invariance errors based on the refill methods and volume approximation methods, it
is clearly visible that the volume approximation method errors are smaller (see Fig. 6). Also the total power Ptotal is
significantly reduced, if volume approximation methods are applied. This is to be expected and corresponds with findings
of previous studies [27]. The destruction and creation of fluid nodes in MBM induce the highly oscillating course at small
resolutions. Nevertheless, the higher convergence speed of the refill based methods leads to comparable results for MBM
and PSM at high resolutions.

3.3. Influence of fluid–solid interface approaches

For the selection of one suitable scheme, each for MBM and PSM, it is necessary to take into account the grid error
and the Galilean invariance error. The grid error is estimated for the case of the non-moving cylinder to isolate the
grid dependency. The L2 and L∞ grid errors and Galilean invariance errors are depicted in Tables 6 and 7. These error
calculations use the time interval t ∈ [3, 10] and ∆t as ensemble time to resolve fluctuations at high frequencies.

6.3 Results of the Galilean invariance benchmark 131



M. Haussmann, N. Hafen, F. Raichle et al. / Computers and Mathematics with Applications 80 (2020) 671–691 681

Fig. 6. Global Galilean invariance error gerrL2 (Fx, Fy) for t ∈ [3, 10] of computations with SS, POLYGON, EPSILON, EQ, NEQ and EXTRA.

Table 3
Force signal Galilean invariance errors errL2 (Fx), errL∞ (Fx), errL2 (Fy) and errL∞ (Fy) for t ∈ [3, 10] of computations with EQ, EXTRA, NEQ, EPSILON,
POLYGON, SS at N = 20, 40, 80, 160, 320 against the corresponding static configuration solution.

N EQ EXTRA NEQ EPSILON POLYGON SS

errL2 (Fx) 20 0.05974 0.04696 0.03839 0.00750 0.00495 0.03332
40 0.03068 0.01935 0.01765 0.00141 0.00281 0.01363
80 0.01464 0.00608 0.00573 0.00193 0.00109 0.00746

160 0.00686 0.00198 0.00190 0.00060 0.00048 0.00265
320 0.00384 0.00163 0.00162 0.00021 0.00050 0.00207

errL∞ (Fx) 20 0.19335 0.11521 0.07754 0.00881 0.00807 0.05792
40 0.08908 0.04420 0.03257 0.00146 0.00315 0.02459
80 0.05469 0.01719 0.01638 0.00186 0.00135 0.01507

160 0.02791 0.00430 0.00371 0.00081 0.00071 0.00839
320 0.02730 0.00233 0.00214 0.00026 0.00066 0.00538

errL2 (Fy) 20 0.29286 0.28290 0.27955 0.04912 0.08672 0.09165
40 0.07871 0.05767 0.05521 0.02152 0.01783 0.03334
80 0.03597 0.01764 0.01642 0.01468 0.01032 0.02107

160 0.01797 0.00614 0.00577 0.00691 0.00649 0.01035
320 0.00860 0.00233 0.00227 0.00284 0.00297 0.00547

errL∞ (Fy) 20 0.69075 0.72356 0.67947 0.08161 0.23721 0.25333
40 0.22019 0.14832 0.15505 0.03419 0.05379 0.11422
80 0.15194 0.06826 0.06083 0.02257 0.01641 0.06062

160 0.10692 0.02304 0.02115 0.01035 0.00981 0.03420
320 0.05206 0.00736 0.00645 0.00458 0.00453 0.01921

Table 4
Experimental order of convergence (EOC) obtained by the Galilean invariance (GI) global error
gerrL2 (Fx, Fy) for t ∈ [3, 10] of computations with SS, POLYGON, EPSILON, EQ, NEQ and EXTRA.

EQ EXTRA NEQ EPSILON POLYGON SS

GI EOC20,40 1.69 2.10 2.13 1.30 2.15 1.41
EOC40,80 1.11 1.70 1.72 0.47 0.85 0.72
EOC80,160 1.03 1.55 1.53 1.14 0.71 1.13
EOC160,320 1.00 1.04 0.98 1.30 1.01 0.79
EOC 1.21 1.60 1.59 1.05 1.18 1.01

The averaged global errors gerrL2 (Fx, Fy) are illustrated in Fig. 7. The course of the grid errors are quite similar for all
MBM: BOUZIDI, CLI, FH and YU. In contrast, the Galilean invariance errors exhibit larger differences. The CLI shows the
highest Galilean invariance errors at small and intermediate resolutions. Since both YU and CLI are a unified interpolated
bounce back approach, YU should be preferred due to smaller errors and a higher Galilean invariance convergence rate
(Table 5). BOUZIDI and FH produce similar results, notwithstanding the different idea behind these schemes. In summary,
YU is chosen as the representative of MBM for the following VIV simulations due to the best averaged grid and Galilean
invariance EOC .
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Fig. 7. Global Galilean invariance and grid errors gerrL2 (Fx, Fy) for t ∈ [3, 10] of computations with BOUZIDI, CLI, FH, YU, PSMM2 , PSMM3 and HLBM.

Table 5
Experimental order of convergence (EOC), obtained by the global Galilean invariance (GI) and grid (G) error gerrL2 (Fx, Fy)
for t ∈ [3, 10] of computations with BOUZIDI, CLI, FH, YU, PSMM2 , PSMM3 and HLBM.

BOUZIDI CLI FH YU PSMM2 PSMM3 HLBM

G EOC20,40 0.68 0.71 0.57 0.85 1.17 1.01 1.74
EOC40,80 3.01 2.96 3.10 3.17 1.56 1.14 1.69
EOC80,160 1.30 1.33 1.32 1.15 1.35 1.55 0.23
EOC 1.66 1.67 1.66 1.72 1.36 1.23 1.22

GI EOC20,40 2.13 1.89 2.26 2.19 2.15 1.65 1.05
EOC40,80 1.72 1.45 1.69 1.47 0.85 0.99 0.84
EOC80,160 1.53 1.77 1.22 1.77 0.71 0.85 0.66
EOC160,320 0.98 1.78 0.97 2.06 1.01 0.70 0.63
EOC 1.59 1.72 1.54 1.87 1.18 1.05 0.80

All PSM configurations reveal a distinct convergence speed. Examining the approaches individually in Table 5, it can
be seen, that PSMM2 results in higher values for both grid and Galilean invariance EOC . While PSMM2 and HLBM show
comparable results considering the grid errors at high resolutions (Fig. 7(a)), HLBM performs significantly worse than
both PSMM2 and PSMM3 for the Galilean invariance (Fig. 7(b)). Despite its superior convergence behaviour, the PSMM2
approach exhibits a grid error errL2 (Fx), that is three times larger than PSMM3 with HLBM residing in between for N = 20.
Increasing the grid resolution does slightly change the relation of PSMM2 and PSMM3. Since the grid errors for each scheme
use different reference solutions, the direct comparison of the relative errors is only reliable for small resolutions. This
statement results from the assumption that the differences between the respective reference solutions are smaller than the
grid errors at coarse resolutions. The grid error of HLBM indicates a reduced convergence speed at high resolutions. If we
look at the Galilean invariance error, it can be seen that the PSMM2 configuration has the smallest errL∞ (Fx) and errL∞ (Fy)
at each resolution. For the following VIV simulations it is recommended to use the configuration with fluctuations as
small as possible. Therefore, we decided to use PSMM2 from here on.
The comparison of the class of PSM and MBM clearly displays the advantages and drawbacks. PSM are known for their
small fluctuations due to the continuous description of the simulation domain. Therefore, all tested PSM are characterized
by small Galilean invariance errors. Only with resolutions of N = 160 and N = 320, MBM return comparable errors.
As a further remark, the interpolated MBM suffer from inaccuracy in the estimation of the momentum transfer at
boundaries [23,43]. This leads to a net mass flux, that impedes mass conservation near the boundary. On the contrary,
PSM avoid this issue due to the continuous description of the flowfield. This represents a distinct advantage of PSM due
to superior mass conservation. The grid convergence study for the static cylinder shows an increased error for PSM and
a worse grid convergence order. The fact that the position information of the boundary is taken into account in the MBM
explains the higher grid convergence order.

4. Results of the vortex-induced vibration benchmark

4.1. Benchmark description

A cylinder in a freestream is investigated. The geometrical description is depicted in Fig. 8. The position of the cylinder
and the size of the simulation domain are inspired by [54,55]. The cylinder is centrally positioned in y-direction at
L4 = 10D, where D is the cylinder diameter. On the upper and lower boundary, slip conditions are applied. The original
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Table 6
Force signal Galilean invariance errors errL2 (Fx), errL∞ (Fx), errL2 (Fy) and errL∞ (Fy) for t ∈ [3, 10] of computations with BOUZIDI, CLI, FH, YU, PSMM2 ,
PSMM3 and HLBM at N = 20, 40, 80, 160, 320 against the corresponding static configuration solution.

N BOUZIDI CLI FH YU PSMM2 PSMM3 HLBM

errL2 (Fx) 20 0.03839 0.08928 0.05101 0.03628 0.00495 0.01617 0.01413
40 0.01765 0.02662 0.02046 0.01146 0.00281 0.00891 0.00960
80 0.00573 0.01389 0.00708 0.00551 0.00109 0.00527 0.00872

160 0.00190 0.00361 0.00244 0.00210 0.00048 0.00282 0.00530
320 0.00162 0.00090 0.00214 0.00038 0.00050 0.00160 0.00264

errL∞ (Fx) 20 0.07754 0.26045 0.13193 0.07699 0.00807 0.02462 0.01722
40 0.03257 0.07085 0.04274 0.03091 0.00315 0.01710 0.01097
80 0.01638 0.03258 0.01985 0.01428 0.00135 0.00713 0.01075

160 0.00371 0.00896 0.00507 0.00479 0.00071 0.00507 0.00613
320 0.00214 0.00257 0.00309 0.00088 0.00066 0.00243 0.00348

errL2 (Fy) 20 0.27955 0.42179 0.34597 0.31647 0.08672 0.07827 0.08855
40 0.05521 0.11165 0.06237 0.06607 0.01783 0.02120 0.03995
80 0.01642 0.03658 0.01851 0.02244 0.01032 0.00985 0.01890

160 0.00577 0.01119 0.00854 0.00607 0.00649 0.00558 0.01220
320 0.00227 0.00340 0.00347 0.00158 0.00297 0.00356 0.00864

errL∞ (Fy) 20 0.67947 1.16934 0.90536 0.79474 0.23721 0.26282 0.12937
40 0.15505 0.37760 0.20399 0.22751 0.05379 0.06593 0.06261
80 0.06083 0.11486 0.07386 0.07413 0.01641 0.01803 0.02950

160 0.02115 0.03358 0.03002 0.01923 0.00981 0.00992 0.02190
320 0.00645 0.01061 0.00888 0.00551 0.00453 0.00733 0.01596

Table 7
Force signal grid errors errL2 (Fx), errL∞ (Fx), errL2 (Fy) and errL∞ (Fy) for t ∈ [3, 10] of computations with BOUZIDI, CLI, FH, YU, PSMM2 , PSMM3 and
HLBM at N = 20, 40, 80, 160 against the corresponding resolution N = 320.

N BOUZIDI CLI FH YU PSMM2 PSMM3 HLBM

errL2 (Fx) 20 0.01714 0.01953 0.01831 0.01928 0.03819 0.01298 0.02888
40 0.00434 0.00477 0.00463 0.00498 0.02080 0.00533 0.01381
80 0.00076 0.00090 0.00082 0.00073 0.00709 0.00318 0.00285

160 0.00023 0.00025 0.00023 0.00025 0.00295 0.00083 0.00280

errL∞ (Fx) 20 0.01619 0.01841 0.01706 0.01658 0.03630 0.01436 0.02021
40 0.00321 0.00358 0.00339 0.00342 0.02001 0.00487 0.01273
80 0.00097 0.00111 0.00102 0.00093 0.00669 0.00339 0.00250

160 0.00018 0.00019 0.00018 0.00018 0.00284 0.00077 0.00235

errL2 (Fy) 20 0.00458 0.00390 0.00425 0.00740 0.06959 0.01066 0.04099
40 0.00923 0.00953 0.01061 0.00978 0.02707 0.00642 0.00708
80 0.00092 0.00093 0.00095 0.00090 0.00913 0.00214 0.00363

160 0.00046 0.00048 0.00048 0.00049 0.00339 0.00099 0.00271

errL∞ (Fy) 20 0.00447 0.00407 0.00409 0.00541 0.08291 0.01228 0.03627
40 0.00751 0.00767 0.00861 0.00808 0.03050 0.00580 0.00637
80 0.00084 0.00085 0.00087 0.00083 0.00945 0.00241 0.00332

160 0.00041 0.00042 0.00042 0.00043 0.00368 0.00105 0.00262

Fig. 8. Geometrical description of the VIV benchmark case.

proposed domain by Placzek et al. [54] suggested a height of L3 = 10D. In the present study the height of the simulation

domain is doubled to L3 = 20D in order to reduce the influence of the slip boundaries on the results. The algorithm of the
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employed straight slip boundary condition is described in [56]. The velocity inlet and pressure outlet boundaries follow
a non-local regularized approach (see boundary scheme BC4 in [52]). The velocity at the inflow is slowly increased by a
smooth function during the first two simulation seconds to avoid instabilities due to non-equilibrium contributions. At
t = 2 s the velocity in x-direction is kept constant to the freestream velocity U∞ = 2 m

s . The Reynolds number for this
flow is given by

Re =
U∞D

ν
. (46)

The Reynolds number is set to 100 in order to be able to study the Karman vortex street regime. The wake flow is therefore
laminar and two-dimensional [57]. The investigated aerodynamic quantities are the drag coefficient

CD =
Fx

0.5ρDU2
∞

(47)

and the lift coefficient

CL =
Fy

0.5ρDU2
∞

. (48)

Another important quantity is the Strouhal number that is defined as

St = fst
D
U∞

, (49)

where fst is the Strouhal frequency. The Strouhal frequency is the vortex shedding frequency of the cylinder at rest.
However, the vortex shedding frequency of the cylinder in motion is denoted by fvs. The dimensionless vortex shedding
frequency of the moving cylinder f ∗

vs, also named reduced frequency is defined analogous to the Strouhal number as

f ∗

vs = fvs
D
U∞

. (50)

Three different configurations of this benchmark are examined. The first one is a static configuration, i.e. the cylinder
is fixed. The other two configurations deal with a moving cylinder. The forced oscillation of the cylinder is obtained by
prescribing the cylinder motion. The cylinder motion is assumed to be purely sinusoidal and can be described by

y(t) = ymax sin(2π fext) (51)

where y is the transverse displacement of the cylinder centre, ymax is the amplitude and fex the prescribed excitation
frequency. Thus, the cylinder motion and the occurring wake regimes are adjustable by the two parameter ymax, fex. For
convenience, we nondimensionalize the set of variables to the non-dimensional amplitude

A∗
=

ymax

D
(52)

and a frequency ratio

F =
fex
fst

. (53)

This configuration can be seen as a one-way coupled fluid–solid interface approach: The flowfield is affected by the
cylinder motion, however the flow influence on the motion is neglected. In contrast, the free oscillation of the cylinder
covers the effects of the flowfield on the cylinder motion. Therefore, the vertical motion is governed by the differential
equation of an undamped oscillator

mÿ + ky = Fy, (54)

where m is the mass of the cylinder and k the spring constant of the elastic mounting. Since no external forces are present,
the natural frequency of the cylinder is given by

fn =
1
2π

√
k
m

. (55)

The time integration of Eq. (54) is done by a blended procedure [58]. The prediction of the cylinder acceleration ÿn+1 for
the time step tn+1 can be written as

ÿn+1
=

F n
y

m
−

k
m

yn. (56)

This acceleration is used via linear approximations to evaluate the cylinder velocity ẏn+1 and the displacement yn+1. At
timestep t + 1 they are written as

ẏn+1
= ẏn + ∆tÿn+1, (57)
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Table 8
Discretization parameters for resolutions N = 10, 20, 40, 80.
N uL MaL ∆x/m ∆t/s τ

10 0.1 0.173 5.00 × 10−3 2.500 × 10−4 0.53
20 0.05 0.087 2.50 × 10−3 6.250 × 10−5 0.53
40 0.025 0.043 1.25 × 10−3 1.563 × 10−5 0.53
80 0.0125 0.022 6.25 × 10−4 3.906 × 10−6 0.53

Table 9
Strouhal number St , mean drag coefficient C̄D and maximum lift coefficient CL,max of
computations with YU and PSMM2 at N = 10, 20, 40, 80. Comparison against reference
data of Stansby et Slaouti [60], Anagnostopoulos [61], Henderson [62], Zhou et al. [63],
Shiels et al. [59], Placzek et al. [54].
Reference St C̄D CL,max

Stansby et Slaouti [60] 0.166 1.32 0.35
Anagnostopoulos [61] 0.167 1.20 0.27
Henderson [62] 0.166 1.35 0.33
Zhou et al. [63] 0.162 1.48 0.31
Shiels et al. [59] 0.167 1.33 0.33
Placzek et al. [54] 0.169 1.37 0.33

Lower bound 0.162 1.20 0.27
Upper bound 0.169 1.48 0.35

Method N

PSMM2 10 0.171 1.46 0.32
PSMM2 20 0.171 1.41 0.35
PSMM2 40 0.169 1.39 0.34
PSMM2 80 0.170 1.38 0.34
YU 10 0.166 1.38 0.30
YU 20 0.169 1.38 0.32
YU 40 0.168 1.37 0.33
YU 80 0.168 1.37 0.34

and

yn+1
= yn + ∆t[(1 − θ )ẏn + θ ẏn+1

], (58)

where θ is the blending factor. The blending factor is set to θ = 0.5 so that the numerical damping is small [58]. Both
parameter m and k of Eq. (54) can be transferred to non-dimensional parameters

m∗
=

m
0.5ρD2 , (59)

and

k∗
=

k
0.5ρU2

∞

, (60)

according to the work of Shiels et al. [59]. Furthermore, Shiels et al. [59] introduce the effective rigidity

k∗

eff = k∗
− 4(π f ∗

vs)
2m∗, (61)

and shows that this single parameter is able to describe distinct pairs of k∗ and m∗ even if they are equal to zero.

4.2. Fixed cylinder

The simulations are performed for a static cylinder. In Table 8, the used discretization parameters for the four grid
resolutions N = 10, 20, 40, 80 are displayed, where N is related to the diameter of the cylinder. The physical time steps
∆t are diffusively scaled with the physical grid spacing, i.e. ∆t ∝ ∆x2.

In Table 9, the mean drag coefficient C̄D, the Strouhal number St and the maximum occurring lift coefficient CL,max are
depicted for different references. Additionally the results of the present study for different grid resolutions are shown.
The statistics for the results are obtained after 40 Strouhal periods tst =

1
fst

and last for 60 Strouhal periods. It can be
seen that the reference values vary in a certain interval marked with upper and lower bound. The span of the intervals is
related to different methods, resolutions and geometrical configurations. The chosen methods YU and PSMM2 show even
for the smallest resolution of N = 10 aerodynamic coefficients that are inside the reference interval.

However, the Strouhal number for PSMM2 is slightly higher in comparison to the reference data. Both methods show
that the quantities are converging at high grid resolutions. At a grid resolution of N = 40 each quantity differs to its
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Table 10
Mean drag coefficient C̄D , maximum lift coefficient CL,max and lift coefficient amplitude based on the
power spectrum CL,max,PS of computations with YU and PSMM2 at N = 40. Comparison against reference
data of Placzek et al. [54].

F C̄D CL,max

Placzek et al. [54] 0.9 1.50 0.14
Placzek et al. [54] 1.1 1.75 0.72

CL,max,PS err(CL,max)

PSMM2 0.9 1.52 0.15 0.13 0.135
PSMM2 1.1 1.77 0.78 0.77 0.018
YU 0.9 1.51 0.20 0.14 0.422
YU 1.1 1.76 0.80 0.77 0.042

corresponding quantity at a grid resolution of N = 80 by less than one percent. Additionally, the temporal discretization
at N = 40 uses approximately 940 time steps to describe one Strouhal period tst . Therefore, we decided to use N = 40
for the moving cylinder configurations.

4.3. Forced cylinder oscillations

The cylinder motion is now prescribed by Eq. (51) and characterized by the non-dimensional parameters amplitude
A∗ and frequency ratio F . The amplitude is fixed to A = 0.25 and the frequency ratio is varied to obtain different types
of responses.

4.3.1. Locked region
The lock-in region is defined as the pure sinusoidal lift response that follows the frequency of the cylinder motion fex.

These locked configurations are investigated for a frequency ratio of F = 0.9 and F = 1.1. The lift coefficient signals for
YU and PSMM2 and the according spectral analyses are illustrated in Fig. 9. The dimensionless frequency f ∗ is defined as

f ∗
=

f
fex

. (62)

Analogously, the dimensionless time t∗ is given by

t∗ = tfex. (63)

The spectral analyses clearly indicates for both schemes and frequency ratios that the main frequency is f ∗
≈ 1.0.

Consequently, the lift response follows fex instead of the Strouhal frequency fst . The amplitude is enhanced with a
higher frequency ratio and suppressed with a lower frequency ratio in comparison to the static case. If we look at the
instantaneous lift signal for F = 0.9, parasitic fluctuations of both signals are visible. The error estimation of the parasitic
frequencies is obtained by the use of the power spectrum (PS). The root mean square (rms) amplitude of lift coefficient
CL,rms,PS is defined as

CL,rms,PS =

√
max |PS(CL)|. (64)

Under the assumption of a pure sinusoidal signal the amplitude based on the power spectrum CL,max,PS can be obtained
by

CL,max,PS =
√
2CL,rms,PS. (65)

The related error criterion err(CL,max) to estimate the highest fluctuations is calculated by

err(CL,max) =
|CL,max − CL,max,PS|

|CL,max,PS|
. (66)

Table 10 shows the results for PSMM2 and YU in comparison to the reference data [54] and the error criterion err(CL,max).
YU demonstrates higher fluctuations (err(CL,max) = 0.422) as PSMM2 (err(CL,max) = 0.135) for F = 1.1. This insight
coincides with the results of Section 3.3 and can be traced back to the algorithm. Remarkably, the fluctuations are much
smaller when F = 1.1. For YU the fluctuations are smaller by one magnitude. The comparison to the reference data
shows that the mean drag coefficients C̄D of both schemes and frequency ratios are in good agreement. However, the
maximum lift coefficient CL,max shows higher deviations, in particular the value of YU at F = 0.9. This is reasoned by the
high fluctuations. If, on the other hand, the amplitude based on the power spectrum CL,max,PS is taken into account, the
lift values show a higher consistency to the reference values.
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Fig. 9. Lift coefficient response CL and power spectrum PS(CL) for frequency ratios F = 0.9 and F = 1.1 of computations with YU and PSMM2 at
N = 40.

4.3.2. Unlocked region
The simulation of the unlocked wake is done by frequency ratios f = 0.5 and F = 1.5. The unlocked region is

characterized by a non pure sinusoidal signal. A certain beating behaviour is now visible [64]. Both the Strouhal frequency
fst and the motion frequency fex influence the lift course. Therefore, we can define a beating frequency fb to describe the
periodicity of the signal. In Fig. 10 the instantaneous lift signal for YU and PSMM2 are depicted for F = 0.5 and F = 1.5.
For F = 0.5 the beating frequency corresponds to fex. If we look at the spectral analysis, fst and fex are covered in the
spectral plot 10(b) at f ∗

≈ 1.00 and f ∗
≈ 2.00. This is in good agreement with the reference data [54]. YU indicates

higher fluctuations in the course in comparison to the PSMM2.
In the case of F = 1.5, the beating frequency is estimated to f ∗

= 0.125. The related PS(CL) in Fig. 10(d) again shows
two peaks at f ∗

= 0.67 and f ∗
= 1.00. The missing peak of the beating frequency is traced back to the low differences

between the amplitudes indicating a less energetic beating [54]. Both lift signals obtained by YU and PSMM2 exhibit only
minor fluctuations. It can be seen that the single amplitudes in one beating period are slightly different, which is justified
by the enlarged beating period at F = 1.5.

4.4. Free cylinder oscillations

The motion of the cylinder is now governed by the differential Eq. (4.1). The utilized time integration algorithm for
this two-way coupled fluid–solid interface approach is depicted in Section 4.1. Different parameter pairs of mass m and
spring constant k are inserted to simulate a range of effective rigidities k∗

eff . In Fig. 11, the mean drag coefficient C̄D, the
maximum lift CL,max, the non-dimensional amplitude A∗ and the reduced frequency f ∗ are plotted against k∗

eff for YU and
PSMM2. Furthermore the reference data of Shiels et al. [59] is chosen for comparison. In Fig. 11(a), it can be seen that in
the region of k∗

eff ∈ [0, 5] that A∗ reaches a maximum and the corresponding aerodynamic coefficients are also increased.
The reduced frequency in Fig. 11(b) exhibits that the frequency is shifted to the natural frequency of the cylinder fn.
Therefore this region is named resonant. Shiels et al. [59] emphasize that the lock-in region, i.e. the coincidence of the
cylinder motion frequency and the Strouhal frequency, only occurs at k∗

eff = 0 and should not be mixed up with the
resonant region. At higher values k∗

eff > 5, the Strouhal frequency fst and the aerodynamic coefficients of the static case
are recovered. Also, in the region of k∗

eff < 0, the considered values asymptotically converge towards the values of the fixed
cylinder configuration. The maximum lift coefficient values CL,max for k∗

eff < 0 in Fig. 11(c) are plotted with opposite sign.
This is related to the phase shift between the cylinder motion and the lift signal [59]. The comparison of both methods
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Fig. 10. Lift coefficient response CL and power spectrum (PS(CL)) for frequency ratios F = 0.5 and F = 1.5 of computations with YU and PSMM2 at
N = 40.

to the reference data shows that both methods are able to cover the courses of the reference data. Minor deviations are
recorded in the mean drag coefficients in Fig. 11(d), which are slightly overestimated. One reason for this is the higher
mean drag coefficient in the fixed configuration of C̄D = 1.37 for YU and C̄D = 1.39 for PSMM2 in comparison to C̄D = 1.33.
Also, the reduced frequencies are overestimated, which can be explained by the increased Strouhal number (Table 9).

5. Conclusion and outlook

The present work demonstrates the suitability of distinct MBM and PSM to simulate VIV. The force signals of a cylinder
in a Couette flow were examined in two different reference frames. Firstly, three refill methods and volume approximation
methods were tested regarding Galilean invariance. NEQ refill method for MBM and POLYGON approximation were chosen
by reason of the increased averaged Galilean invariance EOC = 1.59, respectively EOC = 1.18. Four different MBM and
three different PSM were then applied and benchmarked with respect to Galilean invariance and grid convergence. It
could be shown that the YU scheme had a high grid convergence order of EOC = 1.72 and a high Galilean Invariance
convergence order of EOC = 1.87. In the group of PSM the PSMM2 configuration showed preferable features such as low
fluctuations in the moving case. The YU and PSMM2 were used in the simulation of transverse oscillation cylinder in a
freestream at Re = 100. Both configurations were able to predict the reference data in the static case. At a resolution
of N = 40 the relative error of both configurations was less than 1% in comparison to N = 80. The forced oscillation
simulation for PSM and YU showed a high conformity to the reference solution both in the lock-in and the lock-out
region for the aerodynamic coefficients and the spectral analysis results. YU suffered from higher parasitic secondary
fluctuations by comparison to PSMM2. In case of the free oscillation simulation both schemes were able to follow the course
of the reference data with varying effective rigidity k∗

eff . In summary, YU and PSMM2 are suitable methods to simulate VIV
phenomena. The Galilean invariance benchmark results indicate that at low resolutions PSMM2 is the preferable method
due to less parasitic fluctuations. At higher resolutions the increased grid and Galilean invariance convergence order of
YU leads to a higher accuracy. The choice of a suitable scheme should therefore be made on the used grid resolution.

Further work should be done to integrate fluctuation suppressing schemes as the local iteration refilling scheme [27]
to improve the results of MBM VIV simulations. Also the inclusion of IBM in the test framework is preferable, especially
if deformable geometries are to be considered.
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Fig. 11. Amplitude A∗ , reduced frequency f ∗
vs , maximum lift coefficient CL,max and mean drag coefficient C̄D for different effective rigidities k∗

eff of
computations with YU and PSMM2 at N = 40. Comparison against the reference data of Shiels et al. [59].
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The following abbreviations are used in this manuscript.

BOUZIDI: Bouzidi boundary
CLI: central linear interpolation
EOC: experimental order of convergence
EPSILON: epsilon boundary layer algorithm
EQ: equilibrium refill algorithm
EXTRA: normal extrapolation refill algorithm
FH: Filippova and Hänel scheme
HLBM: homogenized lattice Boltzmann method
HP: high-pass filter
IBM: immersed boundary methods
LBE: lattice Boltzmann equation
LBM: lattice Boltzmann method
MBM: moving boundary methods
NEQ: non-equilibrium refill algorithm
POLYGON: polygon approximation algorithm
PS: power spectrum
PSM: partially saturated methods
PSMM2: partially saturated method B2M2
PSMM3: partially saturated method B2M3
rms: root mean square
SS: supersampling algorithm
VIV: vortex-induced vibrations
YU: Yu interpolation scheme
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ABSTRACT

In this paper we use a fluid-structure interaction (FSI) approach to simulate a Cori-
olis mass flowmeter (CMF). The fluid dynamics are calculated by the open source
framework OpenLB, based on the lattice Boltzmann method (LBM). For the structural
dynamics we employ the open source software Elmer, an implementation of the finite
element method (FEM). A staggered coupling approach between the two software
packages is presented. The finite element mesh is created by the mesh generator Gmsh
to ensure a complete open source workflow. The Eigenmodes of the CMF, which are
calculated by modal analysis are compared with measurement data. Using the estimated
excitation frequency, a fully coupled, partitioned, FSI simulation is applied to simulate
the phase shift of the investigated CMF design. The calculated phaseshift values are
in good agreement to the measurement data and verify the suitability of the model to
numerically describe the working principle of a CMF.

Keywords OpenLB · Elmer · Open source · FSI · LBM
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1 Introduction

The exact measurement of mass flow of fluids is important in many branches of technology, for
example chemical, oil and gas industry. It is needed to control processes and ensure safety, filling
batches, inventory and others. The Coriolis mass flow meter (CMF) is an accurate instrument,
which is becoming increasingly important in various applications [1]. It consists of one or multiple
measuring tubes that are stimulated to vibrate by an electromagnetic pulse generator. The fluid to
be investigated is directed through the tubes. Due to inertia, the Coriolis force causes a phase shift
of the vibration, which is detected by sensors on both ends of the system. As the mass flow of the
conveyed fluid is proportional to the Coriolis force, it can be determined directly.

CMFs have been widely described by analytical and structural models [2, 3, 4, 5, 6, 7]. These
models have helped to understand the fundamental principle of CMF devices. Nevertheless, the
influence of the fluid was greatly simplified and the practical operation could not be described com-
pletely. Therefore, fluid-structure interaction (FSI) models were developed to realize the operating
principle, which means that the fluid motion is affected by the measuring pipe oscillation and the
pipe motion in turn by the hydrodynamic forces. In recent years, iterative two-way FSI models,
which consist of a separated computational fluid dynamics (CFD) solver and a computational
structural mechanics (CSM) solver, were applied to simulate CMF.

Bobovnik et al. [8] used two different solvers to simulate a straight tube. Commercially available
finite volume code for three dimensional turbulent fluid flow and finite element code for a shell
structure were coupled. Five different tube lengths were studied simulating free tube vibration. The
results for phase shift and frequency were similar to an analytical Flügge shell and potential flow
model. In 2008, Mole et al. [9] extended the three dimensional numerical model of Bobovnik et
al. [8] to deal with forced vibration. The study comprises the investigation of meter sensitivity at
different Reynolds numbers. A maximum decrease of 0.4 % was observed for the lowest Reynolds
number. This deviation is known as the low Reynolds number effect. The same numerical model
was used by Bobovnik et al. [10] to study the influence of the design parameters on the installation
effects of a CMF. Installation effects are measured as change of meter sensitivities from fully
developed to disturbed fluid flow. Considering a single straight tube the errors vary with sensor
positions and decrease with increasing tube length. In contrast, Kumar [11] claimed that a CMF
is not sensitive to flow profiles. The FSI model of ANSYS-CFX was used to consider a straight
single tube. The results were quite similar for the shorter tube lengths in comparison to previous
studies [8]. In contrast, the longer tubes showed a higher deviation, which was attributed to the
different resolution. By changing the viscosity, the Reynolds number was varied and the deviation
in meter sensitivity could be captured. It was found that at low Reynolds numbers the oscillating
viscous fluid forces become relatively strong and interact with the oscillating Coriolis force, which
changes the measurement results. To further investigate the effect of the Reynolds numbers, Kumar
and Anklin [12] investigated a curved double tube CMF with an FSI simulation. The meter deviation
at low Reynolds numbers were found in good agreement to measurement data. The low Reynolds
number effect was indicated as correctable, if the viscosity of the examined fluid is known. Also
Rongmo and Jian [13] used the ANSYS-CFX FSI module to study the low Reynolds number effect
in a U-tube CMF. They assumed that arising deviations may be due to those different damping
factors. Damping influences the natural frequency of the tube and was expected to change the meter
sensitivity.

The aforementioned studies employ traditional discretization methods like the finite volume
method (FVM) for the fluid solver. Meanwhile, alternative approaches, such as the lattice Boltzmann
method (LBM), have received increasing attention. Its highly efficient parallel algorithm [14, 15]
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and the applicability to a wide range of flow phenomena, e.g. flows in complex geometry [16, 17]
or turbulent flows [18, 19] offer a high potential.

One of the first approaches that couple LBM to a structural solver can be found by Scholz et
al. [20]. They propose an anisotropic p-adaptive method for elastodynamic problems and show a
higher convergence rate in comparison to a uniform p-version. Especially, the load transfer between
the fluid and structural mesh were discussed. Geller et al. [21] used a partitioned approach to address
the famous two-dimensional FSI benchmark case proposed by Turek and Hron [22]. The proposed
coupling approach by Geller et al. [21] leads to consistent quantitative result. A further study to
validate an LBM solver coupled to a p-FEM solver with the Turek and Hron [22] benchmark was
published by Kollmannsberger et al. [23]. The staggered coupling was shown to be sufficient for
simulating the reference case due to the weaker impact of the additional mass effect at small time
steps. In contrast, Li et al. [24] claimed that the added mass effect has a major influence on accuracy
and stability. They shown that the use of a non-staggered coupling approach based on subiterations
reduce the effect of artificially added mass. Based on the previously mentioned studies [23, 21, 20],
Geller et al. [25] extended the developed FSI approach to address three dimensional benchmark
problems.

In contrast, this paper aims to demonstrate the feasibility of a complete open source FSI
workflow to simulate a CMF. Therefore, OpenLB [26, 27], an open source implementation of LBM,
is coupled to the open source FEM framework Elmer [28]. The implemented coupling procedure
uses a staggered approach. A modal analysis of the CMF geometry is executed to extract the
excitation frequency. The obtained excitation frequency is applied in a frequency response test to
evaluate the transient structural setting. The partitioned FSI approach is used to calculate the phase
shift. Both the Eigenfrequencies and the phase shift values are compared to measurement data. The
evaluation and validation of a complex engineering problem with a partitioned FSI approach using
LBM is a novelty. As a further highlight the new FSI workflow is built on open source frameworks
to ensure additional adaptions in the coupling interface.

The paper is structured as follows, Section 2 introduces the applied FSI approach covering the
fluid and structural models. In Section 3 the CMF test case is depicted in detail. The related modal
analysis and the subsequent phase shift calculation results, using the FSI approach, are presented
and compared to the measurement data in Section 4. Finally, Section 5 summarizes the findings and
draws a conclusion.

2 Methodology
Firstly, the governing equations for the fluid domain presented. Afterwards the LBM and the
moving boundary approach is introduced. Next, the Navier–Cauchy equation and the applied
solution routine for the structural domain are shown. Finally, the FSI approach to coupling the
structural an the fluid domain is presented, including the coupling conditions and implementation
details.

2.1 Fluid Domain
2.1.1 Navier–Stokes Equations

The incompressible Navier–Stokes equations consist of the continuity equation

∂ufα
∂xα

= 0, (1)
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and the momentum equation, which reads

∂ufα
∂t

+
∂ufαu

f
β

∂xβ
=
∂T fαβ
∂xβ

− 1

ρf
∂p

xα
, (2)

where Greek indices obey the Einstein notation, ufα is the fluid velocity, p is the pressure field, T fαβ
is the fluid stress tensor and ρf is the fluid density. Assuming a Newtonian fluid, the fluid stress
tensor is given by

T fαβ = νf

(
∂ufα
∂xβ

+
∂ufβ
∂xα

)
, (3)

where νf is the kinematic viscosity.

2.1.2 Lattice Boltzmann Method

The discretization of the kinetic Boltzmann equation on an equidistant Cartesian grid yields a finite
number of particle distribution functions fi . The resulting lattice is defined by d dimensions and q
lattice velocities ci, i = 0, 1, ..., q− 1. In the present work the D3Q19 velocity set is applied, which
is given by

ci =





(0, 0, 0), i = 0,

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1, 2, ..., 6,

(±1,±1, 0), (±1, 0,±1), (0,±1,±1), i = 7, 8, ..., 18.

(4)

The choice of the collision operator is justified by the higher computation performance and the lower
memory demand in the used LBM implementation. The violation of the rotational invariance [29]
in comparison to D3Q27 can be neglected in the laminar flow regime.

The lattice Boltzmann equation without external forces is given by

fi
(
xLB + ci, t

LB + 1
)

= fi
(
xLB, tLB

)
+ Ωi, (5)

where fi is the particle distribution function at discrete lattice position xLB and time step tLB. The
collision operator Ωi is implemented by a single-relaxation time model proposed by Bhatnagar,
Gross and Krook [30]. It can be defined as

Ωi = −1

τ

(
fi(t

LB,xLB)− f eqi (ρLB,uLB)
)
, (6)

where τ is the relaxation time towards the discrete particle distribution function at equilibrium state
f eqi , ρLB is the lattice density and uLB the velocity field. Hence, the collision operator conserve
mass and momentum. The particle distribution function equilibrium f eqi is described by a low Mach
number truncated Maxwell-Boltzmann distribution

f eqi
(
ρLB,uLB

)
= ρLBωi

[
1 +

ciαu
LB
α

c2
s

+
uLB
α uLB

β (ciαciβ − c2
sδαβ)

2c4
s

]
, (7)

where ωi are the lattice weights obtained by the Gauss-Hermite quadrature [31, 32], cs = 1/
√

3 is
the speed of sound of the lattice and δαβ is the Kronecker delta.

The discrete moments of the particle distribution functions fi result in macroscopic flow quanti-
ties. The density ρLB, the momentum ρLBuLB and the momentum flux Π are respectively obtained
by the zeroth, first and second moments, which are given by

ρLB =

q−1∑

i=0

fi , (8)
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ρLBuLB =

q−1∑

i=0

cifi, (9)

Παβ =

q−1∑

i=0

ciαciβfi . (10)

The relaxation time τ is coupled with the lattice kinematic viscosity νLB through

νLB = c2
s (τ − 0.5) . (11)

Taking a simplified isothermal equation of state into account, the lattice pressure is related to the
lattice density by

pLB = c2
sρ

LB. (12)

The lattice Mach number MaLB is written as

MaLB =
uLB
char

cs
, (13)

where uLB
char is the characteristic lattice velocity. In the incompressible limit (MaLB → 0), the

incompressible Navier–Stokes equations (see Eqs. (1) and (2)) are recovered.
Finally, the lattice Boltzmann algorithm is parted into two steps: local collision step and

subsequent streaming step. The local collision step is represented by the right-hand side of Eq. (5)
and the streaming step is associated with the left-hand side of Eq. (5).

2.1.3 Moving Boundary Methods

A fluid-solid interface is required for the simulation of FSI. The lattice Boltzmann method typ-
ically uses three groups of approaches to describe this type of interface, namely the partially
saturated methods [33, 34], the immersed boundary methods [35, 36, 37] and the moving boundary
methods [38, 39, 40]. In the present study, the latter type of interface description is applied.

A moving fluid-solid interface inside the fluid domain can be described by the position of its
boundary, which changes over time. The current boundary position indicates fluid and solid nodes.
If a former solid becomes a fluid node, a refill algorithm is applied to reconstruct the unknown
particle distribution functions. Hence, moving boundary methods are conceptually parted into a
velocity boundary formulation and a refill algorithm. For a better comprehension, the introduced
index conventions are displayed in Fig. 1. The index b is related to the boundary node positioned
inside the solid domain. In direction ci the wall is intersected at xLB

w . The locations xLB
f , xff and

xfff denote the corresponding fluid nodes in this direction. The distance between xw and xf is
given by the normalized distance q, which is calculated by

q =
|xLB

f − xLB
w |

|xLB
f − xLB

b |
. (14)

Position xLB
new indicates nodes, where a refill algorithm is necessary. The nodes in discrete normal

direction cn are identified by xLB
n , xLB

nn and xLB
nnn. This subscript convention is also used for velocity

uLB and density ρLB.
The present work uses the curved boundary condition proposed by Bouzidi et al. [41], which

represents an extension of a half-way bounce back boundary scheme. Thereby a linear interpolation
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xLB
b

xLB
f

xLB
ff

xLB
fff

xLB
new

xLB
n

xLB
nn

xLB
nnn

boundary
wall

xLB
w cn

cī ciq

uLB
w

Figure 1: Illustration of the used indexing convention.

is utilized to take the distance to the boundary into account for increased accuracy. The unknown
populations fī(xLB

f , tLB + 1) after the streaming step are calculated by

fī(x
LB
f , tLB+1) =

{
2qfi(x

LB
b , tLB + 1) + (1− 2q)fi(x

LB
f , tLB + 1)− 2wi

c2s
ci · uLB

w (t) for q < 1
2
,

1
2q
fi(xb, t

LB + 1) + 2q−1
2q
fī(x

LB
ff , t

LB + 1)− 1
q
wi

c2s
ci · uLB

w (t) for q ≥ 1
2
,

(15)
where index ī denotes a quantity in the opposite direction of the one with index i. The half-way
bounce back condition is recovered for q = 1/2.

For the refill algorithm, a second order extrapolation scheme can be found in [40]

fi(x
LB
new, t

LB) = 3fi(x
LB
n , tLB)− 3fi(x

LB
nn , t

LB) + fi(x
LB
nnn, t

LB). (16)

Hereby the particle distributions fi(xLB
new, t

LB) are extrapolated by the particle distribution functions
in discrete normal direction cn.

A further necessary step for FSI is the calculation of the hydrodynamic forces that act on the
interface. Therefore, a Galilean invariant momentum exchange approach [42] is used. The boundary
force that acts on a solid node xLB

b can be calculated by

F LB(xLB
b , tLB) =

∑

i∈L

[
(ci − uLB

w (t))fi(x
LB
b , t+ 1)− (cī − uLB

w (t))fī(x
LB
f , tLB + 1)

]
, (17)

where L is the set of fluid-solid links. This formulation is suitable for the precise description of
the boundary force of moving fluid-solid interfaces and avoids the disadvantages of a conventional
momentum exchange calculation [43, 42].

2.2 Structural Domain
2.2.1 Navier–Cauchy Equation

The present work uses the Navier–Cauchy equation to describe the structural motion. Therefore, the
structral moition is assumed to be linear elastic. The equation of motion for a linear elastic structure
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in differential form reads

ρs
∂2Φβ

∂t2
=
∂T sαβ
∂xα

+ ρsF s
β , (18)

where Φβ is the structural displacement, ρs is the solid density, F s
β is the body-force acting on the

structure. Thereby, the Cauchy stress tensor T sαβ can be written as

T sαβ = µs
(
∂Φα

∂xβ
+
∂Φβ

∂xα

)
+ λs

∂Φγ

∂xγ
δαβ, (19)

where µs and λs represents the first and second Lamé constants. Both Lamé constants can be defined
by Young’s modulus E and the Poisson’s ratio νs as

µs =
E

2 ((1 + νs)
(20)

and
λs =

νsE

(1 + νs) (1− 2νs)
. (21)

2.2.2 Direct Methods

This linear Navier–Cauchy equation can be solved by a direct method. Therefore, the Elmer solver
module is used, which provides the LAPACK collection to address band matrices. Direct methods
are known for their robustness, but their scaling of order n3 leads to a high memory demand.
Nevertheless, the present work uses a direct method solution procedure due the stability advantages.
Further information can be found, e.g. in the book of Larson and Bengzon [44].

2.3 Fluid-Structure Interaction
2.3.1 Coupling Conditions

The FSI problem has to fulfill certain coupling conditions on the interface I(t), based on physical
principles [45].

Kinematic condition The kinematic condition describes the continuity of the velocities on the
interface, i.e.

uf (x, t) = us(x, t) on I(t). (22)

The use of Lagrangian and Eulerian coordinate systems for the different solvers requires a mapping
procedure.

Dynamic condition The dynamic condition ensures that the forces that act on the interface are
balanced due to Newton’s third law ’Actio est Reactio’. The coupling condition reads

F f (x, t) = −F s(x, t) on I(t). (23)

Due to the different coordinate systems, a mapping procedure is also required here.

Geometric condition The third coupling condition is the geometric condition. The condition
ensures that the domain is continuous at the interface, i.e.

xf (t) = xs(t) on I(t). (24)

Hence, the fluid and solid domains cannot overlap or separate at the interface.
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2.3.2 Segregated Approaches

There are several mathematical and technical problems involved in the analysis of FSI. In most
cases, two different subsystems are used for the governing equations. Even for one subsystem the
uniqueness of the solution can be shown only locally in time. One fundamental problem is the
different nature of the partial differential equations. Incompressible Navier–Stokes are of parabolic
type, but the structural equation is of hyperbolic type. Therefore, the different coupling conditions
are difficult to ensure on the interface.

Segregated approaches are typically used to address FSI. The idea is to combine two different
solvers, where each solver is specialized to solve either a fluid or a structural problem. The coupling
is then fulfilled by an outer control instance. Due the maturity of each solver, this approach is often
a quick possibility to treat complex application problems. A common segregated two-way coupled
FSI workflow is illustrated in Fig. 2. The CFD solver on the left side of the sketch, numerically

Figure 2: Segregated two-way coupled fluid structure interaction workflow.

solves the Navier–Stokes equations on the fluid domain. The solution of the fluid field allows
to extract the hydrodynamic forces at each grid point in the solid fluid interface that act on the
solid. This force information is transferred to the CSM solver by an interface. The CSM solver
(right side of the sketch) uses the transferred force information as a boundary condition in the
structural simulation. The result of the numerical solution of the Navier–Cauchy equation provides
the deformed fluid solid interface and the according displacement velocity on each grid point. Next,
the information is transferred again by the interface operation to the fluid solver. The fluid solver in
turn, uses the deformed interface and the displacement velocity as a boundary condition. This whole
process is executed in each coupling period, until a certain time or convergence criterion is fulfilled.

2.3.3 Implementation

The FSI process which uses Elmer and OpenLB is depicted in Fig. 3. Note that a data based
workflow is used to exchange information between the applications. Currently, the interface allows
parallel execution of OpenLB, while Elmer is running in serial mode. A detailed explanation of
each step in the workflow is given in the following procedure, which is executed for every coupling
step.

1. The OpenLB instance calculates the hydrodynamic forces acting on the boundary for each
solid node according to Eq. (17).
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Figure 3: Fluid structure interaction workflow using OpenLB and Elmer.

2. The hydrodynamic forces are communicated and collected from each worker to the master
process.

3. The master process maps the collected boundary forces to the finite element grid by integrating
the force on each finite element mesh point.

4. The mapped boundary forces are written into an Elmer input deck file (.sif).

5. Elmer is restarted by the master process using the input deck file (.sif) and a related restart
file (.dat).

6. The Elmer instance is closed after the displacement velocity and the deformed mesh is written
to disk as an unstructured mesh file (.vtu) and a new Elmer restart file (.dat) is created.

7. The master process reads the mesh file (.vtu) and uses the built-in OpenLB voxelizer, which
decides whether a point is outside or inside the fluid domain and allows the later distance
calculation.

8. The master process maps the displacement velocity of the FEM grid to the LBM link inter-
section points xw by a linear interpolation procedure and distributes the information to each
worker process.

9. The OpenLB instance reconstructs the particle distribution functions for the fresh nodes by
using the extrapolation refill algorithm (see Eq. (16)).

10. The collide and stream algorithm is executed (see Eq. (5)).

11. After the streaming step is executed, the unknown particle distribution function are calculated
by the curved boundary approach using the mapped displacement velocity (see Eq. (15)).

3 Setup of the Coriolis Mass Flowmeter Test Case
The investigated CMF geometry is depicted in Figure 4. The CMF geometry consists of a flow
divider that distributes the incoming mass flow in two U-shaped measuring pipes. After the flow
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passed both measuring pipes, a flow combiner unite the streams. The oscillation of the measuring
pipe is initialized by an electromagnetic exciter at the top of both measuring pipes. The resulting
oscillation signal is captured at sensor position 1 and 2. In addition, two node plates are used
to damp the oscillation at the end of the pipes. The structural and fluid properties used in the

Figure 4: Geometry representation and description of the investigated CMF without outer housing.

simulations are listed in Table 1 unless otherwise specified. The structural properties correspond to
steel. The fluid density ρf is chosen according to the density of water, but the dynamic viscosity ηf

is greatly increased to ensure a laminar flow.

Table 1: Structural and fluid properties.

Structural properties Fluid properties

ρs 7870 kg/m3 ρf 998 kg/m3

E 210 GPa ηf 0.207 Pas
νs 0.3

3.1 Boundary Conditions and Initial Conditions
3.1.1 Structural Domain

For the structural simulation setting, a zero displacement condition at the flanges is used, i.e.

Φflanges = 0 m. (25)

Figure 5 indicates the flange faces in green, where this boundary condition is set. At the sensor
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Figure 5: Boundary faces at the flanges (green).

exciter position an excitation load is applied

Fx = Fx,max sin(2πfexct) for t <
1

fexc
, (26)

where Fx,max = 100N and fexc is the excitation frequency. The force is only acting in the first
period to excite the Eigenmode.

3.1.2 Fluid Domain

A Dirichlet velocity condition is applied as a boundary condition for the fluid domain at the inlet

ufy,inlet =

[
1−

( r
R

)2
]
ufy,max, (27)

where R is the inlet radius and uy,max is the maximum velocity calculated according the used mass
flow. This Poiseuille profile assumes a fully developed laminar pipe flow which is justified by an
inlet Reynolds number of Reinlet < 337. The pressure on the outlet is set by a Dirichlet condition
to

poutlet = 0 Pa. (28)

As FSI is known to be time-consuming it is recommended to start the simulation with a converged
flow field. Therefore, the fluid geometry is simulated without the structural simulation to initialize
the flow field. On the measuring pipe walls no-slip boundary conditions are set. The flow velocity
at the inflow is increased at the inlet for 5 seconds until the desired mass flow is reached. This
initialization procedure prevents occurring pressure waves due to high gradients and adjusts the
non-equilibrium parts of the particle distribution functions.

3.1.3 Coupling Conditions

On each grid point at the interface I(t) of fluid and solid, the mapped time dependent hydrodynamic
force is applied via

F s(t) = F f (t) on I(t). (29)
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Thus the dynamic coupling condition is fulfilled. The velocity on the fluid structure interface is
given by

uf (t) = us(t+ ∆tc) on I(t+ ∆tc), (30)

where ∆tc is the coupling period. The occurring time shift is related to the staggered coupling
scheme (see Sec. 2.3.2). The geometric condition of the interface is also influenced by the coupling
period and is written as

xf (t) = xs(t+ ∆tc) on I(t+ ∆tc). (31)

3.2 Mesh Generation

3.2.1 Structural Domain

The computational mesh for the structural simulation is generated by the open source FEM pre-
processor Gmsh [46]. The mesh element is chosen according to the geometry pre-processor of
OpenLB, because the extraction of a triangulated surface mesh out of tetrahedral volume mesh is
straightforward. The choice of other mesh element shapes would lead to an additional triangulation
step in every coupling period. In Table 2, the characteristic length scales of the FEM elements in
the according regions are shown. Regions, where simulation results are extracted or high gradients

Table 2: Averaged characteristic length scales of the finite element mesh regions.

Region ∆xs in m

Outer housing 0.035
Body 0.030
Sensors and exciter 0.005
Measuring pipes 0.010
Node plates 0.005

may occur, are refined. Therefore, the sensor positions and the measuring pipes require small mesh
elements. The maximal mesh element size is chosen with respect to the largest mesh element size
that is used for the housing ∆xs = 0.035 m. The generated volume mesh in clip representation is
depicted in Figure 6. The mesh contains 52624 nodes and 163164 elements. The five predefined
regions support different refinement layers. This geometry adaptive mesh allows to reduce the
amount of mesh points by consistent accuracy of the displacement signal at the sensor positions.
The quality of the mesh was evaluated with the mesh criteria of Gmsh. Furthermore, the connection
of critical mesh regions were checked, see Figure 7. Particularly in locations where elements are
perpendicular to each other, defects may occur.

3.2.2 Fluid Domain

The meshing procedure for LBM is straightforward due to the equidistant uniform Cartesian mesh.
The used discretization parameters for the two desired mass flows 20 000 kg

h
and 40 000 kg

h
are shown

in Table 3. The resulting grid consists of 1.286 million grid cells. Figure 8 shows the voxelized
measuring tubes at the beginning of the simulation. Additional two layers of solid cells cover the
measuring pipes to allow the fluid-solid interface motion due to the pipe oscillation.
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Figure 6: Clip representation of the volume mesh.

Table 3: LBM discretization parameters for the both investigated mass flows.

Mass flow in kg
h

∆xf in m ∆tf in s MaLB

20 000 4.056 · 10−3 1.177 · 10−4 8.660 · 10−3

40 000 4.056 · 10−3 5.885 · 10−5 8.660 · 10−3

4 Results of the Coriolis Mass Flowmeter Test Case
After the mesh generation is completed, the Eigenfrequencies for the FEM mesh are calculated. The
detection of the excitation frequency is a preliminary for the later phase shift calculation. Therefore,
a modal analysis is performed with the structural solver Elmer.

4.1 Modal Analysis
The first modal analysis describes the condition for the measuring pipes filled with resting air. The
structural parameters of steel are listed in Table 1. Due to the low density of air compared to steel,
the additional mass of air can be neglected.

Using the zero displacement boundary condition (see Eq. (25)), the first ten Eigenfrequencies
of the FEM grid are calculated. The resulting values are shown in Table 4. A closer look to each
Eigenfrequency reveals the physical meaning. The searched excitation mode is found at mode
number 2 and the Coriolis twist mode corresponds to mode number 8. The excitation mode is
related to a parallel movement of the pipes towards and away from each other. On the contrary, the
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(a) Node plate – measuring pipes (b) Sensor – measuring pipes (c) Exciter – measuring pipes

Figure 7: Connection of the critical mesh regions.

Table 4: First ten Eigenfrequencies of the modal analysis and their physical meaning.

Mode ω2 in Hz2 f in Hz Physical meaning

1 2.92 · 105 86.02
2 4.29 · 105 104.28 excitation mode
3 6.01 · 105 123.42
4 9.50 · 105 155.14
5 1.11 · 106 167.65
6 1.48 · 106 193.85
7 2.25 · 106 238.87
8 3.03 · 106 277.26 Coriolis twist mode
9 6.40 · 106 402.60

10 8.05 · 106 451.44

Coriolis twist introduces an additional twist of the pipes. For a better illustration both modes are
displayed in a front and top view in Figure 9. The next step is the test of the transient structural
simulation. Two major aspects are investigated: on the one hand the stability of the transient
settings are estimated and on the other hand the resonant behavior are tested. The used structural
boundary conditions are described in Section 3.1.1. In the first case, an excitation frequency
different from the Eigenfrequency is selected to fexc = 50 Hz. In Figure 10, the structural response
over time is plotted. It can be seen that the amplitude is strongly decreasing after the first period
and no resonance is observable. This behavior was expected, because the excitation frequency
and the Eigenfrequency are mismatched. Nevertheless, the transient simulation is stable over
the entire simulation time. In the second configuration the excitation frequency is chosen with
the Eigenfrequency to fexc = 104.28 Hz. The displacement signal is depicted in Figure 11. The
resonance is now clearly visible, which indicates that the results of the modal analysis are reliable
and the transient simulation is also stable in the resonant case.

Additionally a further modal analysis is examined for water conveying tubes, which are used in
the FSI case. Hereby, the additional mass of water cannot be neglected. The water filled tubes are
approximated by a fictitious density of the tubes ρsfictitious = 12 319 kg

m3 , which is calculated by the
total mass of the measuring pipes divided by the volume of the structural pipe domain. The results
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Figure 8: Voxelized measuring pipes of the LBM grid.

are summarized and compared to the measurement data in Table 5. The excitation frequencies for

Table 5: Excitation and Coriolis twist frequency for water and air filled tubes in comparison to
measurement data.

Simulation Measurement Error in %

fexc,air 104.28 101.00 3.24
fexc,water 83.94 81.41 3.11
fCoriolis,air 277.26 249.00 11.35
fCoriolis,water 222.92 205.00 8.74

air and water are in good agreement to the measurement data (error ≈ 3%). The errors for the
Coriolis frequency seems to be squared due to the higher mode.

4.2 Phase Shift Calculation
After the modal analysis has determined the Eigenfrequency of the pipes filled with water, the
transient fluid structure simulation is used to extract the phase shift. Firstly, the fluid field is
initialized according to Section 3.1.2. The simulation procedure, which is described in Section 2.3.3,
is executed in every coupling step ∆tc. The coupling period is chosen to the fluid time step ∆tf to
minimize the time shift problem of the staggered approach. The simulation takes a total of 15 cycles
which corresponds to approx. 0.18 s at the Eigenfrequency. Every cycle consists of 202 coupling
steps. The displacement signal is extracted at the sensor positions S1_plus, S1_minus, S2_plus
and S2_minus, where plus and minus indicate the left and right measuring pipe, respectively. The
written data files are post processed to extract the phase shift and the frequency of the displacement
signals. The displacement signals of sensor S1_plus and S2_plus are depicted in Figure 12. It can
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(a) Mode 2, front view (b) Mode 2, top view (c) Mode 8, front view (d) Mode 8, top view

Figure 9: Geometry displacement due to excitation mode (mode 2) and Coriolis twist mode (mode
8).

Figure 10: Structural response at frequency fexc = 50.00 Hz.

be seen that the signal is almost sinusoidal in the first 5 cycles and the amplitude slowly decays
over time. The last depicted periods show irregularities and differ from the expected pure sinusoidal
course of the displacement signal. Furthermore a frequency analysis is performed to estimate
resonance frequency. The results can be seen in Figure 13. The highest peak at 84.12 Hz in the
frequency analysis is in good agreement with the estimated excitation frequency. A discrete Hilbert
transformation is applied on the displacement signal to calculate the phase shift, see Figure 14. The
stability of the FSI system is given for the first 8 cycles of the simulation. The symmetry condition,
which should be fulfilled due to a axial-symmetric geometry, is only slightly violated. The error
of the averaged phase shift value φsim with respect to the experimental data φref is smaller than
5%, which is shown in Table 6. The relative errors for a mass flow of 20 000 and 40 000 kg

h
are less

than 5%. Numerical experiments with a lower amount of coupling steps are diverging in the first
period, which indicates that the reduction of coupling steps does not lead to satisfactory results.
Consequentially, 202 coupling periods are necessary to stabilize the simulation.
The simulation runtime was evaluated on a single node which consists of two deca-core Intel Xeon
E5-2660 v3 processors. The comparison of the runtime to other numerical FSI simulations is
depicted in Table 7. It can be seen that both computation time and calculated periods of the present
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Figure 11: Structural response at frequency fexc = 104.28 Hz.

Figure 12: Displacement signal of sensor position S1_plus and S2_plus.

study are comparable to literature values. The computation runtime is estimated to 65 hours and
over 3000 coupling steps are performed. It is noticeable that the computing time has hardly changed
over the years. This is a consequence of the segregated approach, if two solvers are involved in
the FSI approach. The partitioning of the fluid and the solid domain differs due to the numerical
method and geometrical constraints. This implies that the exchanged information are collected
and communicated between the solvers, which is a time consuming step that is very difficult to
parallelize.

Table 6: Phaseshift errors for different mass flows and coupling steps per period.

Mass flow in kg
h

φsim in mrad φref in mrad Error in % Coupling steps

20 000 - 0.62 Instable 51
20 000 - 0.62 Instable 101
20 000 0.59 0.62 4.7 202
40 000 1.18 1.23 4.1 202
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Figure 13: Discrete Fourier analysis of the displacement signal.

Figure 14: Phaseshift of the displacement signal.

5 Conclusion and Outlook

An FSI approach was presented for the simulation of a CMF. Thereby, the open source framework
OpenLB and Elmer were used to create a segregated approach. The target equations of the structural
and fluid domain were described. In addition, the coupling conditions and the implementation
were outlined in detail. The FEM mesh generation process utilized the open source meshing tool
Gmsh to ensure a complete open source workflow. A modal analysis was performed to extract
the excitation frequency of water and air conveying pipes. The found excitation frequency was
in good agreement to experimental measurements (error ≈ 3%). Afterwards, the FSI simulation,
which uses the determined excitation frequency, was executed. The FSI simulation was stable
for several cycles and allows to extract the phase shift with a sufficient precision (error ≈ 5%).

Table 7: Comparison of computation time between the present approach to literature values.

Study Coupling resolution Periods Computation time in h

Bobovnik et al. (2013) [10] 70 43 72-96
Kumar et al. (2011) [12] 20 15 60
Mole et al. (2008) [9] 140 15 72
Present 202 15 65
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Therefore, the presented FSI approach for CMF is able to describe the operating principle of a CMF.
Furthermore, the runtime time of the created FSI coupling were comparable to literature approaches
using commercial software.

Nevertheless, certain issues should be addressed in future studies. The FSI simulation becomes
unstable after several periods. The reasons for this upcoming instability could be diverse. Firstly,
the coupling time step could be decreased to reduce the time shift problem of the staggered
coupling approach. Unfortunately this leads to an extended calculation time. Another possibility is
the introduction of a subiteration scheme [47] that reduces the added mass effect due to the time
shift. Further improvements can be made by the calculation of the hydrodynamic force, because
momentum exchange based approaches suffer from inaccuracy, if too few points are used for
integration. Therefore, a stress based calculation proposed in Geller et al. [21] may be an alternative.
Furthermore, the applied linear mapping method between the uniform Cartesian LBM grid and the
unstructured FEM grid can be improved by using more complex mapping methods [25].
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8
Conclusion and Outlook

The main objective of this thesis is to show that LBM is an outstanding tool for

the simulation of engineering applications, particularly when turbulent flows are

considered. This thesis makes important contributions to all four areas of numer-

ical simulation: method development, implementation, validation and applica-

tion. The individual contributions to each area are highlighted in the following

paragraphs.

MethodDevelopment A novel LBM NWM-LES method was proposed that is able

to simulate high Reynolds number flows on highly underresolved grids. Based

on the collision operator study, the BGK collision operator was chosen due to its

low numerical dissipation. The near wall region is modeled by a wall function

and a wall-adaptive SGS model controls the introduced turbulent viscosity.
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Implementation The LBM NWM-LES method was implemented in a highly mod-

ular fashion to allow extensibility to various boundary schemes and wall func-

tions. This made it possible to extend the approach by a velocity boundary for-

mulation that is able to handle curved boundaries. Furthermore, distinct fluid-

solid interfaces were implemented in OpenLB. A coupling procedure between the

fluid solver OpenLB and the structural solver Elmer was established to simulate

FSI.

Validation The collision operator comparison revealed that BGK is suitable for

DNS simulation due to its low dissipative behavior, if the spatial and temporal

solution is chosen with respect to the Kolmogorov scales. The occurring instabil-

ities at underresolved grid configurations are visible for TRT, BGK and ELB. The

proposed literature value for the “magic parameter” [40, 41] required further

scaling to yield any stable results. A constant “magic parameter” was not able

to enhance the stability in comparision to BGK. The ELB scheme showed neither

increased stability due to entropy correction nor improved accuracy. In contrast,

the RLB scheme leads to stable results at each setting tested. The increased en-

ergy dissipation at low grids, however, greatly limits the accuracy. The stability

of MRT is strongly influenced by the Mach number. If the Mach number is kept

constant, the scheme is stable even at low resolutions. On the other hand, if the

Mach number is reduced, an overestimated energy budget at high wave num-

bers leads to instabilities. The validation of the wall function algorithm showed

that the choice of the extrapolation scheme as velocity boundary scheme and the

Musker profile as wall function leads to accurate results in comparison to a DNS

reference solution. The grid convergence of the proposed algorithm could be

shown for both, the validation and within the application case. The investigation

of different fluid-solid interface approaches revealed that the Yu scheme [111]
as a representative of the moving boundary methods and the PSMM2 configura-

tion [73, 49, 81] as a representative of the partially saturated methods showed

preferable features. At low resolutions, PSMM2 is the preferable method due to

less parasitic fluctuations. In contrast, the increased grid and Galilean invari-
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ance convergence order of the Yu scheme leads to a higher accuracy at higher

resolutions.

Application The novel NWM-LES method was applied to simulate a CMF and

an IC-engine. The pressure drop simulation of the CMF was in good agreement

with the experimental data and showed to be suitable for addressing engineering

applications at high Reynolds numbers. A comparison for the IC-engine test case

between OpenLB using the NWM-LES implementation and OpenFOAM showed

that both solvers were able to predict the time-averaged and the RMS velocity of

the PIV experiment with a high accuracy. A comparison of the computational de-

mand revealed that the simulation process in OpenLB is approximately 32 times

faster for the investigated setup. This significant difference in performance with

comparable accuracy underlines the suitability of the proposed LBM algorithm

for NWM-LES and indicates that LBM is a valuable and viable alternative to

FVM. Especially industrial applications can benefit from the faster calculation

speed to perform simulations “overnight”, which previously took weeks to con-

duct. The investigation of the transversely oscillating cylinder in a free stream

demonstrated that the tested Yu scheme and PSMM2 scheme are both suitable

methods to simulate VIV phenomena. The CMF investigation showed that the

found excitation frequency of the modal analysis were in good agreement with

the experimental measurements. The FSI simulation was stable over several cy-

cles and the estimated phase shift values corresponded well with the experimen-

tal data. Thus, it could be shown that the proposed FSI approach can reproduce

the working principle of a CMF. In addition, the runtime of the generated FSI

coupling was comparable to literature approaches using commercial software.

The main aim of this thesis, the demonstration that LBM is able to simulate

engineering applications, was reached. The application to a CMF, IC-engine

and VIV revealed that both turbulent flow and FSI simulation with LBM lead to

precise and reliable results compared to experimental and numerical reference

data. Moreover, the fast and efficient implementation of the new LBM NWM-
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LES method in OpenLB surpasses recent implementations of the FVM in terms

of calculation speed.

Future Studies

Nevertheless, future studies have to be carried out to extend the presented stud-

ies and to allow further application cases. The study of DHIT for distinct collision

operators should be expanded to include recently developed LBM schemes such

as the cumulant lattice Boltzmann [35, 32, 33], the Karlin–Bösch–Chikatamarla

(KBC) model [51, 11] or the recursive regularization procedure [63, 20]. Differ-

ent canonical flow types should also be investigated to determine the suitability

of the individual collision operators as an implicit LES model.

The proposed wall model should be tested with wall functions capable of describ-

ing, inter alia, pressure gradients, separation and recirculation, variable physical

properties and compressibility effects. The implementation of a generalized wall

function [96, 21, 78], which is able to model these flow phenomena, is therefore

a further important step towards the modeling of complex turbulent boundary

layers. Additionally, the evaluation of more advanced turbulent models, e.g.,

models based on dynamic procedures [39], the scale similarity hypothesis [6]
or wall-adapted SGS models [72], is recommended to further improve the accu-

racy [89, 85]. Especially for the simulation of IC engine flows, turbulent reactive

flows play a decisive role. Therefore, further modeling approaches based on de-

tailed chemistry with a large number of species as well as tabulated chemistry

should be investigated. This represents a special challenge for LBM due to the

high memory requirements [30].

In the case of fluid-solid interfaces, pressure fluctuation schemes such as the

local iteration refilling scheme [16] should be tested to improve the results of

VIV simulations using moving boundary methods and for the interface descrip-
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tion in the FSI simulation. Especially for FSI, the introduction of a subiteration

scheme [46] that reduces the added mass effect due to the time shift should

be considered. Furthermore, the calculation of the hydrodynamic force can be

improved, if a stress based calculation [37] is used instead of the momentum

exchange based calculation. The used linear mapping method between the uni-

form Cartesian LBM grid and the unstructured FEM grid can be improved by

using more complex mapping methods [36].

Finally, LBM needs additional research, especially in the field of turbulent flows

to reach the maturity of traditional methods. Nevertheless, the development of

implicit and explicit LES models using mesoscopic information could substan-

tially improve the accuracy and applicability of LBM LES. Combined with the

shown high performance capabilities and the possibility to address multiphys-

ical phenomena, LBM is a promising method for LES. Also, the wide field of

turbulent FSI application could become available in the future.
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B List of OpenLB Test and Application Cases

The following table lists the presented test cases and the related commit hashes

in the OpenLB git repository on the master branch.
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