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ABSTRACT 

I 

Abstract 

Karst aquifers are important water resources for drinking water supply, especially in alpine 

regions. Recent studies estimate that over 800 Mio. people worldwide rely on drinking water from 

karst areas. In view of the increasing water demand in many parts of the world, karst aquifers 

offer an enormous potential for future water supply. Karst springs often show a high variability 

in water quantity and quality because of the special characteristics of karst aquifers. Karst aquifers 

reveal a strong hydraulic anisotropy and heterogeneity and are therefore highly vulnerable to 

contamination. To use these kind of water resources, adapted management strategies and 

especially a detailed knowledge of the functioning of the respective aquifer is of special 

importance. In view of the increasing water demand and climate change, a profound 

understanding of the hydrogeological conditions is essential. 

Within this thesis, alpine karst aquifers were investigated in order to develop conceptual models 

for the different aquifers to gain a better knowledge of the functioning of these aquifers for their 

use for water supply.  

Extensive field studies and hydrochemical analysis were carried out and resulted in a 

hydrogeological conceptual model for the karst aquifer system drained by the Marulbachquelle 

(MBQ), which is presented in chapter 2. In this study, hydrogeochemical investigations 

characterized the water of a spring draining a complex carbonate-gypsum karst system. The 

reaction of the spring to a rainfall event was examined to identify the relevant hydrological 

processes controlling the hydrochemistry of the spring, and to understand water-rock interactions 

and conduit-matrix exchange. Comparisons of ion ratios show that both carbonate and gypsum 

rocks influence the water chemistry of the spring. A conceptual model of the spring behavior 

during low-flow and high-flow conditions, including conduit-matrix interaction, was developed 

which can explain the observations. Results of this study demonstrated that 1) during low-flow 

conditions, the spring is characterized by high sulfate content, while after rainfall events, the water 

chemistry is dominated by bicarbonate; 2) a change in water chemistry is associated with a 

significant shift from low-flow to high-flow conditions; and 3) conduit-matrix exchange is an 

important factor as shown by the discharge-sulfate relationship and clearly influences the 

behavior of the spring and the matrix acts as water storage. 

The study in chapter 2 gives general information about the functioning of the aquifer but no 

information about the contamination dynamics. Therefore, the second study of this thesis 

(chapter 3) focuses on the characterization of the contamination dynamics and the development 

of a real-time warning system for organic and bacterial contamination.  
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A fluorescence-based multi-parameter approach was used to characterize the dynamics of organic 

carbon, faecal bacteria, and particles at three alpine karst springs. At the first system, peak A 

fluorescence and total organic carbon (TOC) were strongly correlated, indicating that a large part 

of the organic matter is related to humic-like substances. Protein-like fluorescence and 

cultivation-based determinations of coliform bacteria also had a significant correlation, indicating 

that protein-like fluorescence is directly related to faecal pollution. Additionally, there was a 

strong correlation between small particle fractions, a secondary turbidity peak and bacteria. At 

one of these springs, discharge was constant despite the reaction of all other parameters to a 

rainfall event. The results of this study demonstrated that 1) all three springs showed fast and 

marked responses of all investigated water-quality parameters after rain events; 2) a constant 

discharge does not necessarily mean constant water quality; 3) at high contamination levels, 

protein-like fluorescence is a good indicator of bacterial contamination, while at low 

contamination levels no correlation between protein-like fluorescence and bacterial values was 

detected; and 4) a combination of fluorescence measurements and particle-size analysis is a 

promising approach for a rapid assessment of organic contamination, especially relative to time-

consuming conventional bacterial determination methods. 

The study described in chapter 3 showed that protein-like fluorescence is a promising tool for a 

real-time contamination indication system. As the transport properties and transport behaviour of 

tryptophan and humic substances are still insufficiently known, chapter 4 focuses on the transport 

behaviour of tryptophan and humic-like substances. 

In the study described in chapter 4, a comparative tracer test in a karst experimental site was 

conducted to investigate the transport properties and behavior of tryptophan and humic acid. 

These two tracers were compared with the conservative tracer uranine. Fluorescence 

measurements were conducted with an online field fluorometer and in the laboratory. The 

obtained breakthrough curves (BTCs) and the modeling results demonstrate that 1) the online 

field fluorometer is suitable for real-time fluorescence measurements of all three tracers; 2) the 

transport parameters obtained for uranine, tryptophan and humic acid are comparable in the fast 

flow areas of the karst system 3) the transport velocities of humic acid are slower and the resulting 

residence times are accordingly higher, compared to uranine and tryptophan in the slower and 

longer flow paths; 4) the obtained BTCs reveal additional information about the investigated karst 

system. As a conclusion, the experiments show that the transport properties of tryptophan are 

similar to those of uranine while humic acid is partly transported slower and with retardation. 

These findings allow a better and quantitative interpretation of the results when these substances 

are used as a natural faecal and contamination indicators. 
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Climate change and heavy rainfall events are special challenges in managing alpine karst aquifers 

which possess an enormous potential for future drinking water supply. In the study described in 

chapter 5, we present the results of investigations of a high alpine karst system in the UNESCO 

Biosphere Reserve Großes Walsertal in Austria, which has a clearly defined catchment and is 

drained by only one spring system. The results show that 1) the investigated system is a highly 

dynamic karst aquifer with distinct reactions to rainfall events in discharge and electrical 

conductivity; 2) the estimated transient atmospheric CO2 sink for the investigated karst system is 

about 270 t/a; 3) the calculated denudation rate for the outcropping carbonate rocks in the 

investigation area is between 23 and 47 mm/1000a and 4) the rainfall discharge behavior and the 

internal flow dynamics can be successfully simulated using the modelling package KarstMod. 

The modelling results indicate the importance of matrix storage in determining the discharge 

behavior of the spring, especially during low-flow periods. Especially with regard to climate 

change, this research can contribute and initiate a better understanding and management of alpine 

karst aquifers. 

This thesis presents different water quality and water quantity aspects related to karst aquifers in 

the Lechquellen Mountains in Vorarlberg, Austria. The investigation approach and the obtained 

results lead to a better understanding of the karst systems and deliver a valuable base for the use 

of these aquifers for drinking water supply.  
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Kurzfassung 

Karstaquifere sind wichtige Wasserressourcen für die Trinkwasserversorgung, vor allem in 

alpinen Regionen. Neue Studien schätzen, dass weltweit über 800 Mio. Menschen auf 

Trinkwasser aus Karstgebieten angewiesen sind. Angesichts des steigenden Wasserbedarfs in 

vielen Teilen der Welt bieten Karst-Aquifere ein enormes Potenzial für die zukünftige 

Wasserversorgung. Karstquellen weisen aufgrund der besonderen Eigenschaften der Karst-

Aquifere oft eine hohe Variabilität der Wassermenge und -qualität auf. Karst-Aquifere weisen 

eine starke hydraulische Anisotropie und Heterogenität auf und sind daher sehr anfällig für 

Verunreinigungen. Um diese Art von Wasserressourcen nutzen zu können, sind angepasste 

Managementstrategien und vor allem eine detaillierte Kenntnis der Funktionsweise des jeweiligen 

Aquifers von besonderer Bedeutung. Angesichts des steigenden Wasserbedarfs und des 

Klimawandels ist ein tiefgreifendes Verständnis der hydrogeologischen Verhältnisse unerlässlich. 

Im Rahmen dieser Arbeit wurden alpine Karst-Aquifere untersucht, um konzeptionelle Modelle 

für die verschiedenen Aquifere zu entwickeln, um ein besseres Wissen über die Funktionsweise 

für ihre zukünftige Nutzung für die Wasserversorgung zu erhalten.  

Umfangreiche Felduntersuchungen und hydrochemische Analysen wurden durchgeführt und 

führten zu einem hydrogeologischen Konzeptmodell für das von der Marulbachquelle entwässerte 

Karstaquifersystem, das in Kapitel 2 vorgestellt wird. In dieser Studie wurde das Wasser einer 

Quelle, die ein komplexes Karbonat-Gipskarst-System entwässert, hydrogeochemisch untersucht. 

Die Reaktion der Quelle auf ein Niederschlagsereignis wurde untersucht, um die relevanten 

hydrologischen Prozesse zu identifizieren, die die Hydrochemie der Quelle beeinflussen, und um 

die Wasser-Gesteins-Wechselwirkungen und den Conduit-Matrix-Austausch zu verstehen. 

Vergleiche von Ionenverhältnissen zeigen, dass sowohl Karbonat- als auch Gipsgesteine die 

Wasserchemie der Quelle beeinflussen. Es wurde ein konzeptionelles Modell des Quellverhaltens 

unter Niedrig- und Hochwasserbedingungen, einschließlich der Conduit-Matrix-

Wechselwirkung, entwickelt, das die Beobachtungen erklären kann. Die Ergebnisse dieser Studie 

zeigen, dass 1) die Quelle unter Niedrigwasserbedingungen durch einen hohen Sulfatgehalt 

gekennzeichnet ist, während nach Niederschlagsereignissen die Wasserchemie von 

Hydrogenkarbonat dominiert wird; 2) eine Änderung der Wasserchemie mit einer signifikanten 

Verschiebung von Niedrigwasser- zu Hochwasserbedingungen verbunden ist und 3) wie die 

Abfluss-Sulfat-Beziehung zeigt, ist die Conduit-Matrix-Wechselwirkung ein wichtiger Faktor, 

der das Verhalten der Quelle deutlich beeinflusst. 

Die Studie in Kapitel 2 gibt allgemeine Informationen über die Funktionsweise des Aquifers, aber 

keine Informationen über die Dynamik der Kontamination. Daher konzentriert sich die zweite 
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Studie dieser Arbeit (Kapitel 3) auf die Charakterisierung der Kontaminationsdynamik und die 

Entwicklung eines Echtzeit-Warnsystems für organische und bakterielle Kontaminationen.  

Mit Hilfe eines fluoreszenzbasierten Multiparameter-Ansatzes wurde die Dynamik von 

organischem Kohlenstoff, Fäkalbakterien und Partikeln an drei alpinen Karstquellen 

charakterisiert. Beim ersten System waren die Peak A-Fluoreszenz und der gesamte organische 

Kohlenstoff (TOC) stark korreliert, was darauf hindeutet, dass ein großer Teil der organischen 

Substanz mit huminstoffähnlichen Substanzen in Verbindung steht. Proteinähnliche Fluoreszenz 

und kultivierungsbasierte Bestimmungen von coliformen Bakterien wiesen ebenfalls eine 

signifikante Korrelation auf, was darauf hinweist, dass die proteinähnliche Fluoreszenz direkt mit 

fäkalen Verunreinigungen zusammenhängt. Zusätzlich gab es eine starke Korrelation zwischen 

kleinen Partikelfraktionen, einem sekundären Trübepeak und Bakterien. An einer dieser Quellen 

war der Abfluss trotz der Reaktion aller anderen Parameter auf das Niederschlagsereignis 

konstant. Die Ergebnisse dieser Studie zeigten, dass 1) alle drei Quellen nach Regenereignissen 

schnelle und deutliche Reaktionen aller untersuchten Wasserqualitätsparameter aufwiesen; 2) ein 

konstanter Abfluss nicht unbedingt eine konstante Wasserqualität bedeutet; 3) bei hohen 

Verschmutzungsgraden die proteinähnliche Fluoreszenz ein guter Indikator für bakterielle 

Verunreinigungen ist, während bei niedrigen Verschmutzungsgraden keine Korrelation zwischen 

proteinähnlicher Fluoreszenz und bakteriellen Werten festgestellt wurde; und 4) eine 

Kombination aus Fluoreszenzmessungen und Partikelgrößenanalyse ein vielversprechender 

Ansatz für eine schnelle Beurteilung der organischen Verschmutzung ist, insbesondere im 

Vergleich zu zeitaufwendigen konventionellen bakteriellen Bestimmungsmethoden. 

Die in Kapitel 3 beschriebene Studie zeigte, dass die proteinähnliche Fluoreszenz ein 

vielversprechendes Werkzeug für ein Echtzeit-Kontaminationsanzeigesystem ist. Da die 

Transporteigenschaften und das Transportverhalten von Tryptophan und Huminstoffen noch 

unzureichend bekannt sind, konzentriert sich Kapitel 4 auf das Transportverhalten von 

Tryptophan und huminstoffähnlichen Stoffen. 

In der in Kapitel 4 beschriebenen Studie wurde ein vergleichender Tracerversuch in einem 

Epikarstsystem durchgeführt, um die Transporteigenschaften und das Verhalten von Tryptophan 

und Huminsäuren zu untersuchen. Diese beiden Tracer wurden mit dem konservativen Tracer 

Uranin verglichen. Die Fluoreszenzmessungen wurden mit einem Online-Feldfluorimeter und im 

Labor durchgeführt. Die erhaltenen Durchgangskurven und die Modellierungsergebnisse zeigen, 

dass 1) das Online-Feldfluorimeter für Echtzeit-Fluoreszenzmessungen aller drei Tracer geeignet 

ist; 2) die Transportparameter von Uranin, Tryptophan und Huminsäuren in den schnellen 

Fließwegen des Karstsystems vergleichbar sind; 3) dass in den langsameren und längeren 

Fließpfaden, im Vergleich zu Uranin und Tryptophan, die Transportgeschwindigkeiten von 
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Huminsäuren langsamer und die Verweilzeiten entsprechend höher sind; 4) die erhaltenen 

Durchgangskurven zusätzliche Informationen über das untersuchte Karstsystem liefern. 

Zusammenfassend zeigen diese Experimente, dass das Transportverhalten von Uranin und 

Tryptophan vergleichbar ist während Huminsäuren langsamer und verzögert transportiert werden. 

Diese Erkenntnisse erlauben eine bessere und quantitative Interpretation von Ergebnissen wenn 

diese Substanzen als natürliche Fäkal- und Kontaminationsanzeiger verwendet werden. 

Klimawandel und Starkregenereignisse sind besondere Herausforderungen bei der 

Bewirtschaftung alpiner Karstgrundwasserleiter. In der in Kapitel 5 beschriebenen Studie werden 

die Ergebnisse von Untersuchungen eines hochalpinen Karstsystems im UNESCO-

Biosphärenreservat Großes Walsertal in Österreich vorgestellt, das über ein klar definiertes 

hydrogeologisches Einzugsgebiet verfügt und von nur einem Quellsystem entwässert wird. Die 

Ergebnisse zeigen, dass 1) das untersuchte System ein hochdynamischer Karst-Aquifer mit 

ausgeprägten Reaktionen auf Niederschlagsereignisse von Schüttung und elektrischer 

Leitfähigkeit ist; 2) die geschätzte transiente atmosphärische CO2-Senke für das untersuchte 

Karstsystem ca. 270 t/a beträgt; 3) die berechnete Denudationsrate für die auftretenden 

Karbonatgesteine im Untersuchungsgebiet zwischen 23 und 47 mm/1000a beträgt und 4) das 

Niederschlags- Abflussverhalten und die innere Strömungsdynamik des untersuchten 

Karstsystems erfolgreich mit dem Softwarepaket KarstMod simuliert werden kann. Die 

Modellierungsergebnisse zeigen die Bedeutung der Matrix als Speicher, insbesondere in 

Niedrigwasserperioden. Gerade im Hinblick auf den Klimawandel kann diese Forschung einen 

Beitrag zum besseren Verständnis und Management der alpinen Karstaquifere leisten und 

initiieren. 

In dieser Arbeit werden verschiedene Aspekte der Wasserqualität und Wasserquantität im 

Zusammenhang mit Karstaquiferen im Lechquellengebirge in Vorarlberg, Österreich, vorgestellt. 

Der Untersuchungsansatz und die erzielten Ergebnisse führen zu einem besseren Verständnis der 

jeweiligen Karstsysteme und liefern eine wertvolle Grundlage für die zukünftige Nutzung dieser 

Aquifere für die Trinkwasserversorgung.  
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Chapter 1 

1 Introduction 

1.1 General Motivation and Background 

Karst describes a comprising terrain with a distinctive hydrology and landforms that are formed 

by a combination of high rock solubility and well developed secondary (fracture) porosity. 

Generally karst areas are characterized by sinking streams, swallow holes, caves, depressions and 

(large) springs (Ford and Williams, 2007). Karst aquifers are developed especially in soluble 

rocks such as limestone and dolomite (Ford and Williams, 2007). Karst can also occur in other 

rock types with a predominantly carbonatic composition, including carbonatic conglomerates 

(Goeppert et al., 2011) and carbonatic metamorphic rocks such as marble, calcite or schist 

(Skoglund and Lauritzen, 2011). Gypsum, anhydrite and other evaporitic formations are also 

highly karstifiable (Goldscheider and Drew, 2007). 

A schematic overview of typical karst features occurring in alpine areas is given in Figure 1. 

 

Figure 1: Schematic overview of typical karst features in an alpine karst aquifer. 

Generally, karst aquifers are formed by chemical dissolution of soluble rocks. In the case of 

carbonate rocks, CO2 from the atmosphere and/or soil zone plays a critical role in karstification 

(Ford and Williams, 2007). Karstification is caused by water (containing CO2) from the 

atmosphere or from the soil entering the geological underground and circulating in small fissures 

and fractures of carbonate rocks (Goldscheider et al., 2020), and enhances the primary low 

porosity of the rock matrix. The process of karstification is a self-amplifying process (Fig. 2): 
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higher through-flow and chemical dissolution occurs along the fractures, leading to a fissured 

network, which causes a secondary porosity. The accelerated growth of their apertures than leads 

to the formation of a hierarchically-connected network of fractures, conduits and caves, often 

converging into one master conduit drained by a large spring (Dreybrodt, 1990). Therefore, karst 

aquifers are often described as having a triple porosity structure.  

 

Figure 2: Schematic description of the karstification process and its influence on the hydrodynamic behavior of spring 

discharge (Hartmann et al., 2014). 

While flow in karst conduits is rapid and often turbulent, flow in the surrounding matrix is much 

slower and laminar. However, water storage in conduits is often limited, while the majority of 

water storage occurs in the surrounding matrix (Ford and Williams, 2007). The interaction 

between karst conduits and the matrix is an often described process in the literature (e.g. Ford and 

Williams, 2007) but quantitative descriptions of this process are rare because the exchange 

process itself is hard to observe directly. The following figure shows a general conceptual 

description of this process. 

 

Figure 3: Conceptual description of the interaction between karst conduits and the surrounding rock matrix for 

different hydrological conditions (modified after Goldscheider, 2005a). 

Furthermore, there is a duality of recharge and infiltration in karst areas. Recharge can either be 

autogenic (from the karst area itself) or allogenic (from adjacent non-karst areas). The infiltration 

into the aquifer occurs either concentrated via swallow holes (e.g. shafts or dolines, Fig. 1) or 
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diffuse into small fissures or through the overlying soil (Goldscheider and Drew, 2007). Within 

the vadose zone, the water flow is vertically down to the phreatic zone (Fig. 1), either concentrated 

and rapid via vertical shafts or diffuse and slow through the matrix. The groundwater flow in the 

phreatic zone is mostly concentrated in often highly conductive conduits (Chen, 2017). 

Depending on the distribution of the hydraulic heads within the karst aquifer, the conduits 

exchange water with the adjacent matrix (e.g. Frank et al., 2019). 

Compared to other groundwater systems, karst aquifers are considered as highly vulnerable 

because contaminants can easily reach the groundwater. This is due to the high permeability in 

the solutionally enlarged fissures and channels and to the lack of effective attenuation mechanisms 

(Ford and Williams, 2007). In many karst regions, the soil cover is thin or even completely absent. 

Consequently, the breakdown of contaminants by microorganisms and by physical and chemical 

processes, which normally occur effectively in the soil zone, is weak. Where streams directly sink 

underground, the soil-zone is completely bypassed. Furthermore, the recharge water can pass 

quickly through the unsaturated zone via shafts and fissures (Fig. 1). In consequence, the 

unsaturated zone looses its filtration function, which normally delays the arrival of contaminants 

and further attenuates them by physical and chemical processes (Leibundgut, 1998). In the 

saturated zone, mainly dilution and dispersion take place.  

Hence, karst aquifers show a large heterogeneity of groundwater flow, which often is completely 

independent of topography. Therefore, conventional hydrogeological methods like pumping tests 

and potentiometric surface mapping are often not suitable for karst aquifers. Karst aquifers often 

require special techniques for investigation, like natural and artificial tracer tests (Maliva, 2016). 

Nevertheless, karst areas and karst aquifers are of special importance, especially for drinking 

water supply. 

Recent studies estimate that continuous carbonate rocks cover about 9 % of the planet’s dry and 

ice-free land surface and about 6 % are covered by discontinuous carbonate rocks or mixed with 

evaporites (Goldscheider et al., 2020). In whole Europe, about 14 % of the land surface is covered 

by carbonate outcrops (Chen et al., 2017). Figure 4 shows an extract of the World Karst Aquifer 

Map (WOKAM) of the alpine region with the study area of this thesis.  

Stevanović (2018) estimated that in total, about 800 Mio. people worldwide rely on drinking water 

from karst aquifers. For example in Austria, while only 25 % of the land surface is covered by 

karstifiable carbonate rocks (Chen et al., 2017), over 50 % of the population depends on drinking 

water from karst aquifers, including large cities like Vienna, Salzburg and Innsbruck (Kralik, 

2001). 

In view of climate change and increasing water demand in many parts of the world the importance 

of karst aquifers will rise and especially such high alpine karst aquifers offer an enormous 
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potential for future water supply. On the other hand, especially in the alpine region, the climate 

change will have a direct impact on the water cycle and therefore, the quantity and quality of 

water resources. Such impacts can include floods, droughts, higher frequency of extreme weather 

(again especially in alpine regions), higher water levels, and water temperatures. 

 

Figure 4: Extract of the World Karst Aquifer Map (WOKAM, Chen et al., 2017) to illustrate the appearance of karst 

areas in the European Alps. Red rectangle = study area. 

Such alpine karst systems are especially vulnerable under changing climatic conditions because 

snowmelt in mountainous environments (itself highly sensitive to changing climate conditions) is 

an important factor for aquifer recharge (Finger et al., 2012; Gremaud et al., 2009). The discharge 

regime of mountainous karst aquifers and the future water availability in their forelands will be 

significantly affected by the changing precipitation and temperature (Finger et al., 2013). 

Especially the increased frequency of extreme events due to climate change will lead to many 

challenges in karst water management. The high variability in water availability and water quality 

requires rapid estimation strategies of contamination parameters and adapted management and 

protection strategies to ensure a sustainable water supply. 

1.2 Objectives and Approaches 

The aim of this thesis is a contribution to a better understanding of alpine karst systems and their 

hydraulic functioning, particularly regarding the high variability of water quality. Since many 

people in alpine areas are depending on drinking water from karst springs, an exemplary 

investigation of alpine karst aquifers in the Lechquellen Mountains in Austria (Fig. 5) is presented 

in this thesis. In the whole investigation area, 185 sampling locations (springs and streams) were 

investigated (Fig. 5).  
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Figure 5: Geological map of the investigation area Lechquellen Mountains with the most important geological units 

in the respective focus areas, together with all sampling and measuring locations in the upper Lech Valley and in the 

Großes Walsertal. Blue borders indicate the karst aquifers investigated in detail and described in chapters 2, 3, 4 

and 5. 

The Lechquellen Mountains are formed by two geological units, the Penninic and Austroalpine 

nappes. The Triassic Arlberg and Partnach formations are the oldest formations in the study area. 

These are overlain by the Raibl Group, which consist of dark, indurated limestone and slatey, 

impermeable marls, as well as gypsum and rauhwackes. The Hauptdolomit-Plattenkalk Fm. lies 

above the Raibl Group and covers most of the study area. Above this formation follow Jurassic 

limestone formations.  

The thesis focuses on four areas with special characteristics. Study 1 and 2 focus on a karst aquifer 

(Marulbachquelle, MBQ) with special geological features, namely gypsum layers underlying 

carbonatic layers. The Marulbachquelle is intended to be used for drinking water supply in the 

future while the other spring investigated in study 2 (chapter 3), the Schwarzbachquelle (SBQ) is 

already used for drinking water supply for the village Lech. Study 3 (chapter 4) focuses on a small 

epikarst system with typical karst features, like fractures and karren. This system is characterised 
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by high flow velocities and is the only permanent inflow into Lake Formarinsee. Study 4 

(chapter 5) focuses on a karst aquifer with a clearly defined catchment that is only drained by one 

single spring system. This aquifer is characterised by a thick main dolomite/limestone complex.  

The investigation approach includes the development of conceptual hydrogeological models by 

using different hydrological and hydrogeological methods, e.g. tracer tests and hydrochemical 

analysis. Based on the conceptual models, the investigated karst systems could be described in 

more detail.  

The first investigated aquifer is a complex carbonate-gypsum karst aquifer with gypsum layers 

underlying the karstified limestone-dolomite formation. In this context, the following research 

questions have arisen: 

 How does the spring water chemistry react during a stable period interrupted by a heavy 

rain event?  

 Can major ion concentrations be used to describe the relevant hydrological processes and 

the main factors controlling the hydrogeochemical characteristics of the investigated 

spring? 

 Can natural tracers be used to verify and to quantify possible water exchange between 

conduits and the surrounding matrix during low-flow and during high-flow conditions? 

Such hydrochemical analysis can contribute to a better understanding of the functioning of a karst 

aquifer. Because karst aquifers are also very vulnerable to contamination, the development of 

rapid determination methods of contamination parameters are essential. A fluorescence-based 

multi-parameter approach is a promising tool to characterize the dynamics of organic carbon, 

faecal bacteria and particles. Two large karst springs were investigated and compared. The main 

research questions therefore are:  

 How do the measured parameters react to hydrological events and are there any 

differences between the investigated springs and catchments? 

 What information about the contamination dynamics can be obtained from turbidity and 

particle-size distribution? 

 Is there any relation between fluorescence values and other water quality parameters, 

especially TOC and fluorescence and between protein-like fluorescence and cultivation-

based determinations of bacteria? 

 Is fluorescence spectroscopy a valuable tool to measure organic and faecal 

contamination? Can a certain combination of these techniques be used as a real-time 

indication system? 
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Tryptophan-like fluorescence is a promising indicator for bacterial contamination and is used by 

other studies as a real-time water quality indicator. Because the transport behaviour of tryptophan 

and also of humic substances is still insufficiently known, a tracer test in a well-studied model 

(epi)karst aquifer was conducted where tryptophan and humic acid (as humic acid sodium salt) 

were used as artificial tracers and compared to the conservative tracer uranine. The main research 

questions were: 

 Are there any differences in the transport properties between the ideal conservative tracer 

and the two natural tracers that were here used as artificial tracers? 

 Can online field measurements (field fluorometer) be used to measure tryptophan and 

humic-acid in near real-time? 

 Do the results of the tracer test deliver any additional information about the investigated 

karst system? 

With regard to climate change, high alpine karst aquifers will become more important for future 

water supply. We investigated a high alpine karst system with a clearly defined catchment, which 

has only one spring as outlet. Such karst systems are quite rare but scientifically valuable, 

especially for water- and mass balance calculations. This study focuses on the following research 

questions: 

 How much does the investigated karst system contribute to the atmospheric CO2 sink?  

 What is the denudation rate for carbonate rocks in the investigated system and can it be 

compared to other studies of alpine karst systems? 

 Can the internal flows within the karst aquifer (conduit – matrix) be assessed by 

modelling the rainfall-discharge behaviour? 

By addressing these specific research questions, a profound understanding of the investigated 

karst systems could be developed. The carried out investigation procedure allows new insights 

into the hydraulic processes and water quality dynamics of alpine karst systems and can therefore 

also contribute to a better protection and utilization of alpine karst aquifers. 

1.3 Structure of the Thesis 

The structure of the present thesis is of a cumulative type, consisting of four studies (chapters 2, 

3, 4 and 5) that cover different aspects of karst hydrogeology and a section with summarized 

conclusion and outlook (chapter 6). The studies in the chapters 2, 3 and 4 are published in ISI-

listed journals, the study in chapter 5 is submitted. 

Chapter 2 presents the results of hydrogeochemical investigations, which were used to 

characterize the water of a spring draining a complex carbonate-gypsum karst system. The spring 
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reaction to a rainfall event was examined to identify the relevant hydrological processes 

controlling the hydrochemistry and further to understand water-rock interactions and conduit-

matrix exchange. 

Chapter 3 shows the results of a fluorescence-based multi-parameter approach to characterize 

dynamics of organic carbon, faecal bacteria and particles at alpine karst springs. The correlation 

between the investigated parameters were presented and it was demonstrated that a combined 

measurement of tryptophan-like fluorescence and particle-size distribution is a promising 

approach for the rapid assessment of organic contamination, especially relative to time-

consuming conventional bacterial determination methods. 

As fluorescence measurements (especially of tryptophan-like fluorescence) become more and 

more popular to determine faecal contamination in real time, it was of special need to enhance 

the knowledge about the transport properties of tryptophan and also of humic-like substances. 

Chapter 4 presents the results of a comparative field tracer test to evaluate these transport 

properties in comparison with the conservative tracer uranine. Laboratory measurements were 

compared with online field fluorometer measurements in order to demonstrate the suitability of 

these instruments for real-time measurements.  

Chapter 5 presents the results of the investigations of a high alpine karst system, which has only 

one spring as major outlet. For this system, the contribution to the CO2 sink and the denudation 

rate for the carbonate rocks were determined and compared to other studies of alpine karst 

systems. Furthermore, the applicability of the modelling package KarstMod was tested and the 

modelling results were used to assess the internal flows within the aquifer. 

In chapter 6, a summary and conclusion of the major results and highlights are given, to 

understand the meaning of the findings for the research regarding hydraulic processes and water 

quality dynamics especially of alpine karst system.  
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Chapter 2 

2 Sulfate variations as a natural tracer for conduit-matrix 

interaction in a complex karst aquifer  

 

Reproduced from: Frank, S., Goeppert, N., Ohmer, M., Goldscheider, N. (2019) Sulfate 

variations as a natural tracer for conduit-matrix interaction in a complex karst aquifer, 

Hydrological Processes, 33, 9, 1292-1303, https://doi.org/10.1002/hyp.13400. 

 

Abstract 

Large areas of Europe, especially in the Alps, are covered by carbonate rocks, and karst springs 

are an important source for drinking water supply. Because of their high variability and 

heterogeneity, understanding the hydrogeological functioning is of particular importance for 

protection of karst aquifers. In this study, hydrogeochemical investigations characterized the 

water of a spring draining a complex carbonate-gypsum karst system in the Alps. The reaction of 

the spring to a rainfall event was examined to identify the relevant hydrological processes 

controlling the hydrochemistry of the spring, and to understand water-rock interactions and 

conduit-matrix exchange. A fast and marked reaction of discharge and electrical conductivity was 

observed. The main cations are Ca2+ and Mg2+ which showed a distinct decrease after the rainfall. 

Bicarbonate and sulfate were identified as major anions. While HCO3
- showed only minor 

fluctuations, SO4
2- decreased by 72 % after the rain event. Comparisons of ion ratios show that 

both carbonate and gypsum rocks influence the water chemistry of the spring. The rainfall event 

caused a dilution effect, but dilution alone cannot explain the observed water chemistry. A 

conceptual model of the spring behavior during low-flow and high-flow conditions, including 

conduit-matrix interaction, was developed which can explain the observations. This study aims 

to give new insights into the highly dynamic exchange processes between karst conduits and the 

surrounding matrix and the results demonstrated that 1) during low-flow conditions, the spring is 

characterized by high sulfate content, while after rainfall events, the water chemistry is dominated 

by bicarbonate. These findings show the dependency of water chemistry from the lithology; 2) a 

change in water chemistry is associated with a significant shift from low-flow to high-flow 

conditions; 3) conduit-matrix exchange is an important factor as shown by the discharge-sulfate 

relationship and clearly influences the behavior of the spring.  
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2.1 Introduction 

About 14 % of Europe is covered by carbonate rocks. Water from these karst areas contributes 

significantly to the water supply of many countries. In Austria, 25 % of the land surface is covered 

by carbonate rocks (Chen et al., 2017), and over 50 % of the population, including large cities, 

such as Vienna, Salzburg and Innsbruck, depend on drinking water from karst aquifers (Kralik, 

2001). In view of increasing water demand, high alpine karst aquifers in particular offer an 

enormous potential for future water supply. At the same time, such karst aquifers are vulnerable 

to contamination, because contaminants can easily enter the subsurface and spread all over the 

conduit system with little to no natural degradation. Therefore, the hydrogeological investigations 

and protection of karst aquifers are of particular importance (Zwahlen, 2004).  

Understanding of alpine hydrogeology must continuously advance, since recharge processes, 

drainage structures and potentially available water resources are generally insufficiently known, 

especially in alpine karst aquifer systems (Goldscheider, 2011).  

The main complications in karst areas are variability and heterogeneity. Karst aquifers can be 

described as having triple porosity; intergranular porosity within the matrix rock and small 

fracture porosity which are usually generalized as matrix, and large conduit porosity (e.g. Smart 

and Hobbs, 1986; White, 2003). Many karst simulation models, like the double continuum 

approach (DC) or the combined discrete-continuum approach (CDC) only use dual porosity, i.e. 

conduit and matrix (Hartmann et al., 2014). 

Most karst aquifers cannot be separated into purely diffuse or conduit flow but rather a 

combination of these two flow types (e.g. Atkinson, 1977; Ford and Williams, 2007.). This view 

of karst aquifers suggests that they constitute a two-component system, in which a majority of the 

storage occurs within the matrix porosity and in fractures, while the majority of flow and transport 

occurs in the conduits. 

Conduits can be connected to surface water through swallow holes. This allows extensive mixing 

of groundwater and surface water which results in natural changes in the chemical composition 

of the groundwater and also increases the vulnerability to contamination (Field, 1988; Martin and 

Dean, 2001; White et al., 1995).  

When contaminants directly enter a vadose or non-pressurized conduit system, there is little 

impact on water quality within the intergranular porosity because the tainted waters are rapidly 

transported and discharged at springs (Mahler and Lynch, 1999; Meiman et al., 1988). Thus, only 

the water quality of springs is affected and there is only little long-term impact on the stored 

groundwater reservoir (Martin and Screaton, 2001). However, if conduit water and matrix water 
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do mix, contaminants can reside in the matrix porosity, resulting in long residence times in the 

groundwater reservoir (Katz et al., 1999) and therefore long-term impacts on water quality.  

Conduit-matrix interaction can be described as a gradient inversion within the karst system 

between low-flow and high-flow conditions and vice versa. Due to an increase of hydraulic 

pressure in the conduits and the rise of the water table, water is pressed into the matrix and the 

unsaturated zone. Later on, during low-flow conditions, the conduits drain these zones again. 

However, this phenomenon is difficult to observe directly.  

Understanding and quantification of the extent of exchange between the different porosity 

systems within karst aquifers is therefore critical to determine the sources of spring water and the 

potential for contamination. 

The hydraulic interaction between karst conduits and the adjacent rock matrix for different 

hydrologic conditions was described by means of a tracer breakthrough curve in an alpine karst 

system by Goldscheider (2005b). Instances of fluid transfer between karst conduits and the 

surrounding limestone matrix have been outlined by Raeisi et al. (2007) by specific electrical 

conductivity measurements within a stream cave. Another indication of conduit-matrix 

interaction was given by Mitrofan et al. (2015) by monitoring the natural flux of chloride in a 

karst spring and applying mass balance calculations. 

Although there have been numerous studies focusing on karst aquifers and surface 

water/groundwater exchange (e.g. Lakey and Krothe, 1996; Green, 1997), questions remain about 

the rates and extent of mixing between conduit and matrix water, especially as they relate to 

lithology. 

The hydrogeochemical evolution of groundwater is affected by many natural factors, including 

the composition of rain water, geological structures, mineralogy of the aquifer and water-rock 

interaction along the flow paths (e.g. Barberá and Andreo, 2015; López-Chicano et al., 2001; 

Yuan et al., 2017).  

Previous studies showed that water chemistry, especially the spatial variations of major ion 

concentrations, can be used to determine recharge, flow paths, sources of solutes and the 

interactions between groundwater and the surrounding lithology (e.g. Andreo et al., 2016; Lang 

et al., 2006; Wu et al., 2009). Major ion concentrations can also be used to identify the interactions 

between shallow and deep aquifers (Carucci et al., 2012) and to identify groundwater mixing and 

the consequent implications for drinking uses (Barbieri et al., 2017). 

Therefore, water chemistry can significantly contribute to understand complex aquifer hydrology 

and hydrological processes in the karst aquifer (e.g. Glynn and Plummer, 2005). 
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The purpose of this study is to examine the interaction between conduit and matrix water together 

with the lithology in a complex gypsum carbonate karst system in the Austrian Alps and to 

develop a better understanding of the hydrological processes occurring in complex karst aquifers. 

The investigated spring was selected because 12 individual water samples taken during different 

hydrological conditions in 2014 and 2015 and analyzed for major ion concentrations indicated 

distinct differences, especially in sulfate concentrations and therefore pointed out the need for a 

more detailed monitoring campaign.  

At the investigated spring, physico-chemical parameters were measured and the chemical 

composition of the spring water was determined during a hydrologically stable period interrupted 

by a rainfall event in order to identify possible variations in water characteristics caused by this 

rainfall event.  

The main objectives of this study are 1) to systematically investigate the distribution of major ion 

concentrations during a hydrologically stable period interrupted by a rainfall event; 2) to identify 

the dominant hydrological processes and the main factors controlling the hydrogeochemical 

characteristics of the investigated spring; 3) to obtain insights into interaction of groundwater with 

the surrounding lithology and 4) to verify possible exchange of water between conduits and the 

surrounding matrix porosity during low-flow and high-flow conditions by means of natural 

tracers.  

Understanding of hydrological processes and the hydraulic functioning of the investigated karst 

system are important for the protection of the karst spring and for the future use of this spring as 

drinking water source. 

2.2 Study Area 

2.2.1 Geological Setting 

The investigated spring (Marulbach Spring, MBQ) is located in the Lechquellen Mountains in the 

Austrian Alps in the Federal State of Vorarlberg (Fig. 6a).  

Two main geological units form the Lechquellen Mountains in the investigation area, the Penninic 

and Austroalpine nappes. The oldest formations in the study area are the Triassic Arlberg and 

Partnach Formations. These are overlain by the Raibl Fm. This formation consists of dark, 

indurated limestone and slatey, impermeable marls, as well as gypsum and rauhwackes. Above 

the Raibl Fm. lies the Hauptdolomit-Plattenkalk Fm. (upper Carnian – upper Norian) which 

covers most of the study area. Moderately karstifiable dolomite (Goldscheider and Goeppert, 
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2004) builds up most of the summits in the investigation area (Fig. 6b). The thickness of the whole 

formation can be up to 2000 m (Friebe, 2004).  

Above 1800 m asl, most areas are poorly covered by alpine and nival vegetation. Nevertheless, 

some parts of the investigation area are used as cattle pasture. 

 

Figure 6: Location of the test site in the federal state of Vorarlberg in Austria (red rectangle); b) Geological map of 

the investigation area with the monitored spring (MBQ). (basemap: Land Vorarlberg – data.vorarlberg.gv.at and 

Geological Map of Vorarlberg, 1:100000). 

2.2.2 Hydrogeology 

The site is located at the continental water divide between the catchment of the Rhine (North Sea) 

in the northwest and the catchment of the Danube (Black Sea) in the southeast.  

The large Marulbach Spring (MBQ) drains into the Laguz stream with a measured discharge of 

168 L/s to 232 L/s during the study period. The minimum and maximum discharges of MBQ were 
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88 L/s and 909 L/s respectively (Land Vorarlberg, 2018). The spring is located directly on the 

border of the Lechtal nappe and the Rhenodanubian Flysch zone. The spring itself is a karst spring 

and the outlet lies in the Hauptdolomit-Plattenkalk formation (Fig. 7). The catchment of the 

second important spring (Trübbachspring, TBQ, Fig. 6b) encompasses only gypsum layers of the 

Raibl Fm. 

 

Figure 7: Cross-section A-A’ through the main catchment area of Marulbach Spring, Legend see Figure 6. 

In the investigation area, most precipitation contributes to recharge due to scarce vegetation and 

easy infiltration due to distinct fracturing and karstification. The Plattenkalk shows karren 

features (Goldscheider & Goeppert, 2004). The underlying Raibl Fm. with its marly layers forms 

a major aquitard (Plan et al., 2009). The limestone lenses within the transition zone of the 

Dolomite and Raibl Fm. and especially the porous rauhwackes and gypsum rocks form thin karst 

aquifers if they are contiguous. 

2.3 Materials and Methods 

Discharge, electrical conductivity (EC) and water temperature of Marulbach Spring (MBQ) have 

been continuously monitored (at 5 min to 15 min intervals) by the Water Management Department 

of the Vorarlberg State Administration since the year 2000 and these data were used for this study.  

During the detailed monitoring period from 17.-29.09.2015 water samples were collected at two 

hour to four hour intervals, manually and with an automatic sampler, in 50 mL PE bottles (Rixius 

AG, Mannheim, Germany) for subsequent laboratory chemical analysis. Water samples were 

filtered with cellulose acetate membrane filters (0.45 µm, 25 mm, Sartorius AG, Göttingen, 

Germany) and split for the analysis of anions and cations. The samples for the analysis of cations 

were acidified with HNO3 (65 %) on-site and all samples were stored at 4 °C until analysis. 

Alkalinity was measured as triplicate by volumetric titration on site using an alkalinity test (Merck 

KGaA, Darmstadt, Germany) and the mean value was taken, while all other major components 
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(Ca2+, Mg2+, Na+, K+, SO4
2-, Cl-, NO3

-) were measured in the laboratory using an IC system 

(DIONEX ICS-1100 and ICS-2100, Sunnyvale, USA). 

The major ions calcium, magnesium, bicarbonate and sulfate are generally provided by the 

dissolution of carbonates (calcite/dolomite) and gypsum. The dissolution of calcite, dolomite and 

gypsum can be expressed as follows: 

CaCO3 + H2O + CO2 → Ca2+ + 2HCO3
-       (1) 

CaMg(CO3)2 + 2H2O + 2CO2 → Ca2+ + Mg2+ + 4HCO3
-    (2) 

CaSO4·2H2O → Ca2+ + SO4
2- +2H2O      (3) 

For quality control of our ion analysis, we computed the charge balance error for every sample 

according to (DIN 38402-61, 2014). 

�� = ∑ ���,	
∑ ���,��	(∑ ���,	
∑ ���,�)×�.��	 × 100      (4) 

where k is the index of cations, j is the index of anions and ceq is the respective equivalent 

concentration. 

The Spearman’s rank correlation (rs) was computed using PAST software (Version 3.20) to 

determine the nonparametric correlation based on a rank transformed method by using the 

following equation (Press et al., 1992). 

�� = ∑ (��
��)(��
�̅)����
�∑ (��
��) ���� �∑ (��
�̅) ����

       (5) 

The data of two variables xi and yi are ranked independently among themselves to Ri and Si. If 

there are identical values within one data set, called ties, the mean of the ranks was calculated. 

2.4 Results and Discussion 

2.4.1 Observed time series and statistical analysis 

During the sampling campaign, the cumulative rainfall was 32 mm with the major rain event 

starting on the evening of the 22nd and lasting until noon of the 23rd for a total of 25.3 mm. The 

snow line during these days was at around 1900 m asl, so a large proportion of precipitation in 

the higher regions of the catchment was snow. The influence of the snow melt on the discharge 

and EC of MBQ could be seen in the subsequent days. The summary statistics of all measured 

parameters during the investigation period was computed using PAST software and is given in 

table 1. 
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Table 1: Summary statistics of the measured parameters during the investigation period. 

  Q T EC Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- NO3
- Cl- 

  [L/s] [°C] [µS/cm] [mg/L] [mg/L] [mg/L] [mg/L] [mg/L] [mg/L] [mg/L] [mg/L] 

n 1152 748 1152 103 103 103 103 103 103 103 103 

Min.  168 4.70 309 42.50 12.95 0.30 0.16 149.50 38.30 1.22 0.28 

Max.  232 4.84 501 73.50 17.35 1.06 0.37 164.75 136.18 2.14 0.65 

Mean  192 4.76 389 55.57 14.87 0.60 0.25 156.99 78.91 1.62 0.47 

S.D. 16 0.03 48 8.36 0.96 0.17 0.05 3.23 26.60 0.19 0.09 

CV [%] 8.33 0.63 12.34 15.04 6.46 28.33 20.00 2.06 33.71 11.73 19.15 

 
The complete results of the sampling and monitoring campaign of MBQ are shown as a time 

series in Fig. 8. Within one hour after the start of rain, the discharge of MBQ began to increase, 

and reached a maximum of 232 L/s after 19 hours. During the recession period, another two 

distinct discharge peaks on the evenings of the 24th and 25th (resulting from snow melt in the 

higher areas of the catchment) were observed.  

The major rainfall event led to a decrease of EC from 501 to 309 µS/cm. A five hours time lag 

between increase of discharge and decrease of EC was observed. The steep increase of discharge 

likely resulted from a hydraulic pressure pulse or piston effect, caused by the rapid rainfall 

infiltration (Ravbar et al., 2011). According to the method proposed by (Ashton, 1966), the 

resulting conduit volume is between 2160 m³ and 3485 m³. The water temperature of MBQ is 

almost constant between 4.7 °C and 4.8 °C, but the rain event led to a slightly higher water 

temperature. 

The main rain event also had a significant influence on water chemistry; a distinct decrease of 

major ion concentrations. Ca2+ concentration fell from 73.5 mg/L to 42.5 mg/L (a decrease of – 

41 %) around 12 h after the rainfall. The pattern of Mg2+ concentration is very similar to that of 

Ca2+, it decreased from 17.4 mg/L to 12.9 mg/L. The variations in Na+ and K+ concentrations are 

almost negligible throughout the whole investigation period, even after the rain event. 

The major anions are bicarbonate and sulfate with minor concentrations of nitrate and chloride. 

HCO3
- shows only minor fluctuations with a slight decrease around five hours after the rainfall. 

A major decrease of SO4
2- was measured (72 %) from 136.2 mg/L to 38.3 mg/L around eight 

hours after the rain event. Slight fluctuations of the sulfate concentration was measured during 

the two snow melt periods (corresponding to the later discharge surges). 

The patterns of the saturation indices (SI, calculated using PhreeqC) of the relevant minerals 

calcite, dolomite and gypsum show a similar behavior as the corresponding ions. The water is 

saturated with respect to calcite (~ 0.08) and undersaturated with respect to dolomite (~ -0.41) 

and gypsum (~ -1.58). The freshly infiltrating water after the rain event causes a minor decrease 

of the saturation indices of calcite and dolomite but a major decrease of the saturation index of 
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gypsum. Therefore, after the rain event, especially the dissolution of gypsum has a greater 

influence on water chemistry in the spring than calcite and dolomite dissolution. 

For quality control, the charge balance error of all ion samples is also given in figure 6. According 

to DIN 38402-61, 2014 a charge balance error of ± 5 % is acceptable. Of 103 analyzed samples, 

99 are acceptable with a charge balance error less than 5 %. 

 

Figure 8: Temporal patterns of major ion concentrations of MBQ and saturation indices of calcite, dolomite and 

gypsum together with discharge, EC, rainfall and air temperature during the investigation period. As quality check for 

the ion analysis results, the charge balance error is given for all samples. The red dotted lines indicate the tolerable 

error according to DIN 38402-61. Numbers 1 to 9 indicate the position of the according ion measurements in 

figures 9 and 10. The grey bar indicates the main rain event. 
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2.4.2 Geochemical Investigations 

The analysis of the spring water demonstrated that Ca2+, Mg2+, HCO3
- and SO4

2- are the dominant 

ions. If Ca2+, Mg2+ and HCO3
- result only from the dissolution of dolomite, the samples should be 

distributed along the 1:1 line (charge balance) of Ca2+ + Mg2+ and HCO3
- (Fig. 9a). If the 

dissolution of calcite was the only source of Ca2+ and HCO3
-, the ratio of Ca2+ and HCO3

- should 

also be 1:1 (Fig. 9b). If the dissolution of calcite and dolomite occurred side-by-side, the 

theoretical ratio of Ca2+ and HCO3
- would be between 1:1 and 1:2. However, in this study, the 

water samples are located below the 1:1 line of Ca2+ + Mg2+ and HCO3
- (Fig. 9a) indicating that 

dissolution of dolomite is not the only source of Ca2+ and Mg2+. The excess of Ca2+ indicates that 

another source for the excess Ca2+ must be present. The dissolution of gypsum leads to more Ca2+ 

in the spring water. As shown in Fig. 9c, the ratio of Ca2+ and SO4
2- is greater than 1, indicating 

that gypsum dissolution is one of the Ca2+ sources in the spring water. In order to determine the 

contribution of the dissolution of carbonate and gypsum minerals to the spring water chemistry, 

the ratios of Ca2+ + Mg2+ and HCO3
- + SO4

2- were plotted (Fig. 9f).  

 

Figure 9: Ion ratios of all measurements: a) Ca2++Mg2+:HCO3
-; b) Ca2+:HCO3

-; c) Ca2+:SO4
2-; d) HCO3

-:SO4
2-; 

e) Ca2+:Mg2+ f) Ca2+ + Mg2+:HCO3
-+SO4

2-; Red rectangles with numbers 1 to 9 indicate the same measurements as 

given in figures 6 and 8. Bold numbers 4 and 6 indicate the last value before the rain event and the first value after the 

rain event.  

The samples from this study were distributed along the 1:1 line, showing that the dissolution of 

both, carbonate and gypsum rocks is the only source of the major ions, consistent with previous 

studies of carbonate-gypsum karst aquifers (e.g. Yuan et al., 2017). In the investigated system, 
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sulfate and bicarbonate are the dominating anions. While during and after the rain event the 

bicarbonate concentration remains more or less constant, the sulfate concentration shows a slight 

increase during the dry period (Numbers 1 – 4, Fig. 9d). Directly after the rain event, the sulfate 

concentration decreases (Numbers 5 – 6, Fig 9d) before it returns to the values prior to the rain 

event (Numbers 7 – 9, Fig. 9d). 

Prior to the rain event, the Ca2+:Mg2+ ratio was between 2.34 and 2.51 (Numbers 1 – 4, Fig. 9e). 

Because of the decrease in Ca2+ concentration, the ratio is shifted towards Mg2+ after the rain 

event with a value of 2.02 (Number 6, Fig. 9e). Because the main source of Mg2+ in the area is 

dolomite, the Ca2+ can either originate from the Hauptdolomit-Plattenkalk formation or the 

gypsum deposits of the Raibl Group. The shift towards magnesium demonstrates the increasing 

influence of the Ca2+-Mg2+-HCO3
--rich water after the rain event compared to the Ca2+ -SO4

2--

water prior to the rain event. 

A comparison of the Ca2+:HCO3
- with the Ca2+:SO4

2- ratio also shows the influence of the 

lithology on water chemistry. The pre-event water shows a Ca2+:HCO3
- ratio of 1.21 to 1.44 

(Numbers 1 – 4, Fig. 9b). The excess of Ca2+ originates from gypsum dissolution. After the rain 

event, the ratio drops to 0.86 (Number 6, Fig. 9b). The change in ratio of Ca2+:SO4
2- is the inverse. 

Prior to rain, the ratio is between 1.60 and 1.26 (Numbers 1 – 4, Fig. 9c), while after the rain event 

the ratio increases to 2.75 (Number 6, Fig. 9c). The amount of water flowing through the gypsum 

layers of the Raibl Group decreases, and thus the Ca2+:SO4
2- decreases, while the Ca2+ - HCO3

--

part increases. Further after the rain event, the influence of sulfate-rich water increases again, 

while the influence of bicarbonate-rich water decreases. 

2.4.3 Hysteresis of sulfate and EC 

To illustrate the influence of the piston effect on the sulfate concentration and EC of MBQ, the 

sulfate concentration and EC are displayed versus discharge (Fig. 10a and 10b). The time series 

shows a clear hysteresis. At the beginning of the sampling campaign, the sulfate concentration 

was around 89 mg/L and discharge was around 185 L/s. The smaller rain events on September 

17th and 18th caused only slight EC and sulfate variations. After that, the sulfate concentration and 

EC increased while the discharge stayed almost constant. Initially the increase of the sulfate 

concentration continues, while the discharge also started to rise during the main rain event. About 

five hours after the start of the rain event, a notable decrease in the sulfate concentration was 

measured. This was caused by infiltrating meteoric freshwater reaching the spring. The influence 

of the snow melt and therefore the slightly increased discharge can also be seen in the two smaller 

loops on the 25th and 26th of September. With the subsequent decrease of discharge, an increase 

in EC and sulfate concentration back to values prior to the rain event was observed. 
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Figure 10: Electrical conductivity (EC) versus discharge and b) sulfate concentration versus discharge. Numbers 1 to 

9 and red dots indicate the position of the corresponding points in Figs. 8 and 9. 

2.4.4 Correlation Analysis 

The investigated spring showed a fast and dramatic response for discharge and EC. The main 

cations also reacted to the rain event, with major changes in Ca2+ and Mg2+-concentrations, but 

only minor changes in Na+ and K+. The main anions HCO3
- and SO4

2- also showed a fast reaction 

to the rainfall event. Only minor changes were measured in NO3
- and Cl--concentrations.  

To better understand the relation between the different parameters and components, a correlation 

analysis was done for all parameters. In Table 2, the Spearman’s rank correlation (rs), the 

significance (p) and the number of samples (n) are given. 

The strongest correlation exists for EC and Ca2+ and for EC and SO4
2- with rs values of 0.944 and 

0.988. This highlights the importance of the gypsum layers for the EC and water chemistry of 

MBQ. The strong dependence of EC and sulfate was also confirmed by the additional water 

samples that were taken at MBQ during 2014 and 2015.  

Strong correlations were also found for Mg2+ and Na+ with EC with values of 0.820 and 0.832. 

Strong negative correlations were found for major cations and discharge (-0.699 to -0.715) as well 

as between discharge and EC (-0.801), which demonstrates the importance of EC as a stable and 

robust parameter to deduce the basic characteristics of a karst aquifer, especially regarding the 

timing of the arrival of surface water at the spring as also demonstrated by other studies (e.g. 

Raeisi et al., 2007; Ravbar et al., 2011). 
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Especially notable in water chemistry is the strong decrease of sulfate after the rain event from 

136 mg/L to 38 mg/L with an almost constant HCO3
- - concentration. This implies a significant 

change in the flow regime at different water levels in the system. 

Table 2: Spearman's rank correlation (rs), significance (p value) and the number of samples (n) for the sampling period 

at MBQ for all relevant parameters. 

rs                                        
p                                         
n 

Q EC T Ca2+ Mg2+ Na+ K+ HCO3
- SO4

2- NO3
- Cl- 

Q   
-0.8009                 

< 0.0001           
103 

0.0971                    
0.3294                           

103 

-0.7145                      
< 0.0001                                 

103 

-0.6991                   
< 0.0001                           

103 

-0.7092                      
< 0.0001         

103 

-0.4288                       
<0.0001                              

103 

0.2508                     
0.0106                               

103 

-0.7694                           
< 0.0001                             

103 

0.1558           
0.1161                              

103 

-0.1910                           
0.0533                              

103 

EC     
-0.0097                                  
0.9227                              

103 

0.9440                        
< 0.0001                             

103 

0.8202                            
< 0.0001                            

103 

0.8320                               
< 0.0001                              

103 

0.4790                              
< 0.0001                   

103 

-0.3722                          
< 0.0001                             

103 

0.9878                                    
< 0.0001                             

103 

-0.0846                              
0.3955                           

103 

0.3032                           
0.0018                          

103 

T       
-0.0066                          
0.9469                             

103 

-0.0139                              
0.8891                               

103 

-0.0686                              
0.4914                               

103 

0.0089                           
0.9291                              

103 

0.3403                        
0.0004                              

103 

0.0149                         
0.8816                             

103 

-0.0297                      
0.7657                                

103 

0.1072                          
0.2811                               

103 

Ca2+         
0.8012                      

< 0.0001                              
103 

0.8338                     
< 0.0001                               

103 

0.5100                         
< 0.0001                               

103 

-0.3316                       
0.0006                               

103 

0.9519                        
< 0.0001                                

103 

-0.0701                  
0.4818                                

103 

0.3400                     
0.0004                             

103 

Mg2+           
0.6675                        

< 0.0001                                    
103 

0.4015                  
< 0.0001                                      

103 

-0.2510                   
0.0106                               

103 

0.8141                         
< 0.0001                               

103 

-0.1500                          
0.1304                       

103 

0.2807                        
0.0041                              

103 

Na+             
0.5206                       

< 0.0001                                 
103 

-0.4589                        
< 0.0001                               

103 

0.8341                         
< 0.0001                          

103 

-0.0751                         
0.4510                        

103 

0.3063                     
0.0016                        

103 

K+               
-0.1881                        
0.0571               

103 

0.4790                        
< 0.0001                             

103 

0.0395                      
0.6922                            

103 

0.1832                   
0.0639                              

103 

HCO3
-                 

-0.3541     
0.0002                              

103 

-0.0153                           
0.8782                               

103 

-0.1635                            
0.0989                             

103 

SO4
2-                   

-0.0565                
0.5701                                  

103 

0.3337                         
0.0006                               

103 

NO3
-                     

0.2311                       
0.0189                            

103 

2.4.5 Mixing Calculation 

The first hypotheses is that at low-flow conditions, the flow paths are almost solely along or on 

top of the Raibl Group (Fig. 11, low-flow) and the gypsum layers within this group lead to a Ca2+-

SO4
2--type water discharging at MBQ. At high-flow conditions, more water is seeping through 

the Hauptdolomit-Plattenkalk Fm. and the water level in the whole system rises which means that 

more Ca2+-Mg2+-HCO3
- -type water reaches MBQ (Fig. 11, high-flow). During the dry period 

after the rain event, the values readjust back to low-flow as before the rain event. 

This hypothesis of the flow behavior can only explain a part of the observed chemical variations 

at MBQ. This model implies a dilution effect of the sulfate-rich water, when fresh water infiltrates 

through the Hauptdolomit-Plattenkalk Fm. At MBQ, an increase of discharge from 168 L/s to 
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232 L/s (38 %) was observed. In contrast, the sulfate concentration decreased from over 136 mg/L 

to 38 mg/L (72 %).  

 

Figure 11: Cross sections and conceptual model of the flow behavior during low-flow and high-flow conditions. Legend 

see Figure 6. 

Thus, the resulting sulfate concentration at MBQ after the rainfall event cannot result simply from 

dilution.  

Therefore, a mixing calculation for the investigated system was conducted and can be expressed 

as follows: 

QMBQ = Qgypsum + Qcarbonate       (6) 

QMBQCMBQ = QgypsumCgypsum + QcarbonateCcarbonate     (7) 

Where QMBQ is the total discharge at MBQ and Qgypsum and Qcarbonate are the respective discharge 

contributions from the carbonate formations and gypsum layers. CMBQ is the total sulfate 

concentration at MBQ and Ccarbonate and Cgypsum are the respective sulfate concentrations of the 

carbonate rocks and of the Raibl Group/gypsum. In this study, we assume that the sulfate 

concentration of the Raibl Group/gypsum is around 1050 mg/L, which is similar to the sulfate 

concentration measured at a nearby spring (TBQ, Fig. 6b) with only Raibl Group/gypsum in the 

catchment area (mean value of 6 measurements).  
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During low-flow conditions Qcarbonate is 146 L/s compared to Qgypsum with 22 L/s which gives a 

total discharge at MBQ of 168 L/s. During high-flow conditions Qgypsum declined to 8 L/s while 

Qcarbonate increased to 224 L/s which relates to a total discharge at MBQ of 232 L/s.   

This mixing calculation shows a decrease of the sulfate component of 63% from low-flow 

conditions to high-flow conditions, while the total discharge at MBQ only increases by 38%. The 

discrepancy of the theoretical value of 72% compared to the calculated value of 63% may either 

result from the uncertainty of our model (e.g. the assumed sulfate concentration within the 

gypsum layers) or from geochemical processes occurring in the investigated system that we did 

not consider in our model (e.g. dissolution and precipitation processes). Besides conduit and 

matrix, the contribution of water from a “third type”, small fractures and fissures, might also be 

a reason for the discrepancy of the measured value from the theoretical value. 

However, these results are a clear evidence of conduit-matrix exchange processes occurring in 

this karst system. 

2.4.6 Conceptual Model 

The fast and marked reaction of the spring after a rainfall event indicates fast flow components, 

which result mainly from conduit-flow. The observed hydrochemistry also indicates that matrix-

flow, together with flow in small fractures and fissures, is an important factor. During stable low-

flow conditions, the main flow paths near the spring are in conduits and are located on top or 

within the Raibl Fm. and this sulfate-rich water contributes 22 L/s to the spring discharge. During 

high-flow conditions, the gradients reverse. In this case, the hydraulic head within the conduits is 

greater than the head in the surrounding matrix and causes a water flow from the conduits to the 

matrix (Fig. 12, high-flow). Therefore, more water from the overlying carbonate layers 

contributes to the discharge of the spring, while the percentage of the contribution of the sulfate 

water from the Raibl Fm. decreases. During low-flow conditions, the hydraulic head changes 

again and water, now with high sulfate content from the matrix, flows back to the main conduits 

and contributes predominantly to the spring discharge (Fig. 12, low-flow). 

These findings may also help to improve hydrologic models of karst aquifers, which 

conceptualize the transport of a natural tracer and consider mixing and the exchange of the tracer 

between conduits and the matrix (Cornaton and Perrochet, 2002; Hartmann et al., 2013). The 

results can also improve estimations of residence times and mixing fractions of the water in karst 

aquifers. 
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Figure 12: Interaction between the main flow paths in conduits and the surrounding matrix during high-flow conditions 

and low-flow conditions. 

2.5 Conclusion 

A high-resolution monitoring of physico-chemical parameters was conducted at an alpine karst 

spring (MBQ) in Vorarlberg, Austria, during a hydrologically stable period in September 2015 

interrupted by one major rain event. 

This study demonstrated that the lithology, especially the carbonate formations and the underlying 

gypsum layers play an important role for the water chemistry of the investigated MBQ.  

A fast and marked response of discharge and EC to the rainfall event was observed. In response 

to the rain event the major cations Ca2+ and Mg2+ showed a fast and distinct reaction. Regarding 

major anions, SO4
2- showed a significant decrease after the rain event while all other anions, 

including bicarbonate, remained more-or-less constant.  

During low-flow conditions, the spring is characterized by high sulfate contents while during and 

directly after rainfall events the water chemistry is shifted to Ca2+ - Mg2+ - HCO3
- water, 

infiltrating from the surface through the carbonate formations overlying the gypsum layers. These 

hydrogeochemical investigations indicate that the main flow paths of the whole system are located 

on top or within the gypsum deposits.  

The behavior of the spring discharge and the sulfate content also indicates that not only a dilution 

effect was observed but also that conduit-matrix exchange is an important factor regarding the 

discharge-sulfate relationship.  

Our conceptual model can explain these observed behaviors. During high-flow conditions, the 

hydraulic head in the main conduits is greater than in the surrounding matrix, therefore water 

from the conduits is pressed into the matrix and is stored there until the flow conditions reverse. 

During low-flow, water from the matrix, now with a high sulfate load originating from gypsum 

deposits within the Raibl Fm., flows back into the main conduits and is discharged at MBQ. 
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The results of the hydrogeochemical investigations and the developed conceptual model also 

show the possibility to use natural tracers to investigate complex karst systems especially in 

regard to water-rock and conduit matrix interaction. 

To validate and to verify this conceptual model, a tracer test during different hydrological 

conditions at MBQ should be performed. The shape of the break-through curve can give 

additional information about the conduit-matrix interaction as also demonstrated by 

Goldscheider (2005b). 

The conducted investigations can contribute to a better understanding of complex karst aquifers 

and to a better utilization and protection of karst springs especially in regard to contaminant 

transport and high and low-flow behavior of the spring. This conceptual model can also help to 

improve numerical models of karst aquifers if volumes and exchange rates are implemented. 
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Chapter 3 

3 Fluorescence-based multi-parameter approach to 

characterize dynamics of organic carbon, faecal 

bacteria and particles at alpine karst springs 

Reproduced from: Frank, S., Goeppert, N., Goldscheider, N. (2018) Fluorescence-based 

multi-parameter approach to characterize dynamics of organic carbon, faecal bacteria 

and particles at alpine karst springs, Science of the Total Environment, 615, 1446-1459, 

https://doi.org/10.1016/j.scitotenv.2017.09.095.  

 

Abstract 

Karst springs, especially in alpine regions, are important for drinking water supply but also 

vulnerable to contamination, especially after rainfall events. This high variability of water quality 

requires rapid quantification of contamination parameters. Here, we used a fluorescence-based 

multi-parameter approach to characterize the dynamics of organic carbon, faecal bacteria, and 

particles at three alpine karst springs. We used excitation emission matrices (EEMs) to identify 

fluorescent dissolved organic material (FDOM). At the first system, peak A fluorescence and total 

organic carbon (TOC) were strongly correlated (Spearman’s rs of 0.949), indicating that a large 

part of the organic matter is related to humic-like substances. Protein-like fluorescence and 

cultivation-based determination of coliform bacteria also had a significant correlation with 

rs = 0.734, indicating that protein-like fluorescence is directly related to faecal pollution. At the 

second system, which has two spring outlets, the absolute values of all measured water-quality 

parameters were lower; there was a significant correlation between TOC and humic-like 

fluorescence (rs = 0.588-0.689) but coliform bacteria and protein-like fluorescence at these two 

springs were not correlated. Additionally, there was a strong correlation (rs = 0.571-0.647) 

between small particle fractions (1.0 and 2.0 µm), a secondary turbidity peak and bacteria. At one 

of these springs, discharge was constant despite the reaction of all other parameters to the rainfall 

event. Our results demonstrated that i) all three springs showed fast and marked responses of all 

investigated water-quality parameters after rain events; ii) a constant discharge does not 

necessarily mean constant water quality; iii) at high contamination levels, protein-like 

fluorescence is a good indicator of bacterial contamination, while at low contamination levels no 

correlation between protein-like fluorescence and bacterial values was detected; and iv) a 
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combination of fluorescence measurements and particle-size analysis is a promising approach for 

a rapid assessment of organic contamination, especially relative to time-consuming conventional 

bacterial determination methods. 

3.1 Introduction 

In Europe, about 22 % of the land surface is characterized by karstifiable rocks,  in Austria about 

25 % of the land surface is covered by carbonate rocks (Chen et al., 2017) and karst water 

contributes about 50 % to the total drinking water supply (Kralik, 2001). The largest water 

resources in Austria are in high alpine karst regions, which, in light of increasing water demand, 

offer an enormous potential for future water supply. At the same time, karst aquifers are 

vulnerable to contamination because recharge to karst aquifers occurs directly, through dolines, 

fissures or swallow holes, or indirectly through the often thin soil overlying the limestone 

bedrock. Almost no filtration of contaminants occurs between point of recharge and discharge at 

springs, which often have strong and rapid variations in discharge and water quality in response 

to rainfall events (Pronk et al., 2007).  

Many constituents of natural fresh waters like dissolved organic material (DOM) or bacteria can 

be used as a signature of its origin (Birdwell and Engel, 2009). Improvements in fluorescence 

spectroscopy allow the characterization of fluorescent dissolved organic matter (FDOM) and have 

led to the understanding that DOM is a complex mixture of soluble organic compounds that vary 

in their reactivity and ecological role in natural spring waters. The samples in this study were 

measured with a technique that is based on the simultaneous scanning of emission and excitation 

wavelengths to generate excitation-emission matrices (EEMs). The excitation wavelengths (ex) 

are wavelengths delivered to the aqueous sample, thus inducing fluorescence, whereas the 

emission wavelengths (em) are the wavelengths of the resulting fluorescence (Butturini and 

Ejarque, 2013). Most identifiable fluorophores in natural, non-contaminated waters are attributed 

to humic-like and protein-like fluorescence (Coble, 1996; Baker and Genty, 1999; Fellman et al., 

2010).  

Dissolved humic substances in natural waters are mostly derived from dead and decaying soil 

detritus, aquatic plants, animals, and debris (Hongve, 1999). Aquatic fulvic substances are derived 

from tree and other plant residues, which contain more phenolic and lignin-derived organic 

compounds than those found in soil (Chen et al., 2003). Protein-like fluorescence is related to a 

mixture of amino acids, free or bound in proteins or other organic materials with similar 

fluorescence characteristics, and is described as an indicator of biologic activity (Maie et al., 2007; 

Fellman et al., 2010). So far, more studies have investigated the fluorescence properties of organic 

matter in marine waters (e.g., Coble et al., 1990; Senesi et al., 1991; Mobed et al., 1996) than in 
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freshwater, and protein-like fluorescence is less well understood than humic- and fulvic-like 

fluorescence.  

Some studies of freshwaters have used organic matter fluorescence as a tracer of groundwater 

flow in aquifers by comparing fluorescence with other natural tracers (e.g. Baker and Lamont-

Black, 2001) or for the understanding of the interaction between surface water and groundwater 

and their biogeochemical processes (Lapworth et al., 2009). Studies of karst aquifers have 

investigated the fluorescence properties of organic material present in cave waters (e.g., Baker 

and Genty, 1999; Ban et al., 2008), and the relation between DOM in spring waters and infiltration 

processes (Mudarra et al., 2011). Quiers et al. (2014) used the fluorescence signal of DOM to 

characterize the recharge to and vulnerability of a karst aquifer. 

Determann et al. (1998) investigated protein-like fluorescence from marine ecosystems relative 

to that of bacterial (laboratory) cultures. The data of Determann et al. (1998) and Quiers et al. 

(2014) show tryptophan-like fluorescence to be directly related to the microbial activity of 

bacteria. Other studies also strongly support the relation between amino- acid-like DOM and 

biological activity and further indicate that amino-acid-like DOM is produced during conditions 

of high bacterial growth (e.g., Stedmon and Markager, 2005; Elliott et al., 2006; Hudson et al., 

2008; Fellman et al., 2010).  

Faecal pollution of spring waters is typically determined via faecal indicator organisms such as 

E. coli. Although the use of E. coli as a faecal indicator is under discussion, the study of Sinreich 

et al. (2014) concluded that E. coli proved to be an adequate indicator for the arrival of bacterial 

pathogens, viruses and protozoa at karst springs. Standard culture-based techniques to determine 

E. coli require between 18 and 24 h incubation time, which is often too long to prevent 

contaminated water from entering the distribution network. Contamination of drinking water can 

lead to infectious diseases, caused by pathogenic bacteria, viruses, or other parasites (WHO, 

2011).  

Other indirect methods to determine faecal contamination in near real-time, like the measurement 

of the enzymatic activity, were investigated by Ryzinska-Paier et al. (2014) and Ender et al. 

(2017). Both studies show only a low level of correlation between E. coli and -D-glucuronidase 

(GLUC) enzymatic activity and conclude that the measurement of GLUC activity cannot 

substitute conventional culture-based determinations of E. coli. Stadler et al. (2010) used the 

spectral absorption coefficient (SAC) at 254 nm as a real-time early warning proxy for faecal 

pollution events. They concluded that SAC254 measures the detectable fractions of DOM that are 

leached from the land surface (e.g. humic substances) but their approach is only suitable for 

diffuse faecal pollution sources and point pollution sources are unlikely to be detectable. 

Furthermore the quantity of faecal pollution can only be determined by using event type, site 
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specific calibrations. This fact highlights the need for other advanced measurement techniques, 

such as fluorescence spectroscopy, to determine faecal contamination in near real-time.  

Sorensen et al. (2015) used tryptophan-like fluorescence as a real-time indicator of faecal 

contamination in drinking water supplies. They compared tryptophan-like fluorescence with other 

traditional indicators and found tryptophan-like fluorescence to be the most effective indicator of 

the presence/absence of thermotolerant (faecal) coliforms. Sorensen et al. (2016) found 

tryptophan-like fluorescence to be predominantly associated with fluorophores <0.22 µm, hence 

is likely more mobile and transported more easily in groundwater than bacterial index organisms. 

Thus, tryptophan-like fluorescence can also serve as a more precautionary indicator of smaller 

enteric viruses. Khamis et al. (2015) tested two in-situ tryptophan-like fluorometers and the 

influence of turbidity and temperature on the measurements. They concluded that in-situ 

monitoring of reactive DOM using submersible sensors represents a sensitive and cost-effective 

solution.  

To confirm the suitability of fluorescence measurements to determine organic and faecal 

contamination, in this study other water quality parameters, such as faecal indicator bacteria 

(E. coli), particle-size distribution and turbidity, were determined and compared to fluorescence 

measurements. Although the measurement of turbidity provides no information about the origin 

and nature of the measured particles, the analysis of the particle-size distribution (PSD) itself can 

be a valuable tool for specifying the type of turbidity and to identify particle classes related to 

microbial contamination (Pronk et al., 2007; Ender et al., 2017). Especially in karst conduits, 

where suspended mineral particles play an important role in the transport and attenuation of 

contaminants, such as pathogenic microorganisms (Mahler et al., 2000; Goldscheider et al., 2010), 

the PSD was used to study the sediment dynamics and sediment-contamination interactions 

(Mahler and Lynch, 1999; Vesper and White, 2004). The studies of Baker (2005) and Khamis et 

al. (2015) showed the need to measure turbidity and temperature simultaneously with 

fluorescence because both parameters are used for correcting the fluorescence measurements.    

The aim of this study is to characterize the dynamics of organic matter in three different spring 

waters, collected from karst springs in the Lechquellen Mountains using fluorescence 

spectroscopy. Here we measured faecal-indicator bacteria (FIB, E. coli) using both fluorescence-

based and conventional culture-based methods to test the reliability of the fluorescence method 

to measure organic faecal contamination of natural karst springs. Therefore, the relation between 

fluorescence, total organic carbon (TOC), bacteria, and PSD was investigated. The principal 

research questions are: 

 How do the measured parameters react to hydrological events and are there any 

differences between the springs and catchments? 
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 What information about the contamination dynamics can be obtained from turbidity and 

particle-size measurements?  

 Is there any relation between fluorescence values and other water quality parameters, 

especially between TOC and fluorescence and between protein-like fluorescence and 

cultivation-based determinations of bacteria? 

Is fluorescence spectroscopy a valuable tool to measure organic and faecal contamination? Can a 

certain combination of the techniques be used as a real-time indication system? 

3.2 Study site and Methods 

3.2.1 Study Site 

The springs investigated are in the Lechquellen Mountains in the Austrian Alps in the federal 

state of Vorarlberg (Figure 13a). The relief ranges from 560 m a.s.l. (at the district capital of 

Bludenz) to the summit of Mt. Rote Wand (2704 m a.s.l.). Two geological units form the 

Lechquellen Mountains in the investigation area, the Penninic and Austroalpine nappes. The 

Hauptdolomit-Plattenkalk formation covers most of the study area and the Hauptdolomit, in 

particular, constitutes most of the summits. According to Goldscheider and Goeppert (2004), the 

Hauptdolomit is only moderately karstified while the Plattenkalk is the main karst aquifer.  

One of the two karst aquifers investigated has one spring (Marulbach Sping, MBQ) as the only 

outlet (Figure 13b). The catchment area is mainly overlain by Hauptdolomit, which is underlain 

by the Raibler formation. The second karst aquifer has two springs (Weißbach Spring, WBQ, and 

Schwarzbach Spring, SBQ) as outlets (Figure 13c). The southern part of this catchment is mainly 

overlain by Arlberg limestone and the Raibler formation, whereas the summits on the northern 

border of the catchment consist of Hauptdolomit (Geologische Bundesanstalt, 2007).   

MBQ (1220 m a.s.l.) is located at the southern side of the Großes Walsertal Valley (Figure 13b) 

and is one of the sources of the Marulbach Stream. As there are some areas in the Großes 

Walsertal with water shortage in the summer months, MBQ is continuously monitored by the 

Water Management Department of Vorarlberg and is planned to be used as drinking water source 

in the future. WBQ (1540 m a.s.l.) and SBQ (1529 m a.s.l.) are the two main springs in the Upper 

Lech Valley, and are located about 4.5 km west of the village Lech (Figure 13c). In both 

catchments, which are about the same size, there are some alpine cattle pastures (Figures 13b and 

13c). 

The three springs were selected for investigation because they are the largest karst springs in the 

Upper Lech Valley and the Großes Walsertal Valley. They already are or could be used for 

drinking water supply in the future. The WBQ acts as overflow of the SBQ, which has an almost 
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constant discharge of 140 L/s and is used as main drinking water supply of the village Lech, 

whereas discharge from WBQ is highly variable, ranging from less than 100 L/s to more than 

1200 L/s. 

 

Figure 13: a) Location of the two test sites in the federal state of Vorarlberg in Austria; b) Marulbach Spring (MBQ) 

with the main catchment area and cattle pasture areas; c) Schwarzbach Spring (SBQ) and Weißbach Spring (WBQ) 

with main catchment and cattle pasture areas (basemap: Land Vorarlberg – data.vorarlberg.gv.at). 

3.2.2 Physicochemical data 

The three springs were monitored continuously for 10 days (MBQ) and 6 days (WBQ and SBQ), 

respectively, in September 2015. WBQ and SBQ also were continuously monitored for 6 days in 

September 2013. Water temperature and electrical conductivity (EC) were measured continuously 

at 5 to 15 minutes intervals. At WBQ, a CTD sensor (Ott Hydromet GmbH, Kempten, Germany) 

was used to measure water temperature (precision ± 0.1 °C), EC (± 1 µS/cm) and water level 

(± 0.1 cm). Discharge measurements were done using the salt dilution method with point 

injection. Water level was converted into continuous discharge using the following stage (x) – 

discharge (y) relationship which was obtained by plotting the 13 measured discharge values 

versus the according water level data (polynomial regression): 

! = 0.8108#$ − 31.753# + 422.69      (8) 

At SBQ, water temperature (± 0.05 °C) and EC (± 1 µS/cm) was measured using a multi-

parameter sensor  (MPS-K16, Seba Hydrometrie GmbH & Co. KG, Kaufbeuren, Germany), 

which was installed inside the spring house. Discharge at SBQ was calculated by adding the 
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discharge from the overflow (discharge measurements were done using the salt dilution method 

and water level data were recorded with a CTD sensor, Ott Hydromet GmbH, Kempten, Germany) 

to the extracted water data provided by the water supplier. MBQ is continuously monitored by 

the Water Management Department of Vorarlberg, and their data for EC, discharge and 

temperature were used for this study. 

3.2.3 Total organic carbon (TOC) and faecal indicator bacteria (FIB) 

At MBQ, water samples for TOC were collected at 2h intervals, and at WBQ and SBQ, at 2- to 

4h intervals; all samples were collected in 50-mL brown glass bottles. The samples were acidified 

with HCl (37 %) to stabilize the sample and to prohibit algae growth. The removal of inorganic 

carbon (HCO3
-) is achieved by acidifying and by air injection prior analysis. Measurements were 

done in the laboratory at the Institute of Applied Geosciences, Karlsruhe Institute of Technology 

(KIT), with a TOC analyzer (vario TOC cube, Elementar Analysensysteme GmbH, Hanau, 

Germany). All samples were analysed in triplicate and the mean value was computed and used as 

TOC concentration. 

For the analysis of faecal indicator bacteria, 97 water samples were collected at MBQ at mostly 

2h intervals in 100 mL bottles containing sodium thiosulfate. The bottles were stored in the dark 

at 4 °C and analysed within 10 h after sampling for total coliforms and E. coli, which is widely 

accepted as faecal indicator. The same procedure was used for the 58 samples collected at WBQ 

and the 56 samples collected at SBQ. Bacteria were identified as the most probable number 

(MPN) per 100 mL following the Colisure-Quanti-Tray/2000 method (IDEXX Laboratories Inc. 

Westbrook, USA), which is approved by the U.S. EPA and included in the Standard Methods for 

Examination of Water and Wastewater. This method was used because it enabled a higher 

temporal flexibility during the sampling campaigns. The microbial detection range of the testing 

method is from 1 MPN/100 mL to 2419 MPN/100 mL. 

3.2.4 Fluorescence spectroscopy 

The state-of-the-art measurement technique for CDOM fluorescence is the excitation-emission 

matrix (EEM). EEMs were obtained by using the Aqualog fluorometer (Horiba, Ltd., Kyoto, 

Japan) for the samples collected in 2015 and an LS 55 fluorescence spectrometer (PerkinElmer, 

Waltham, USA) for the samples collected in 2013. Briefly, an EEM is acquired by simultaneous 

scanning of the absorbance (excitation) spectrum and of the fluorescence emission spectrum at 

each excitation wavelength. The samples were analysed in a quartz cuvette with a path length of 

10 mm maintained at a constant temperature of 20 °C. For each sample, a simultaneous scan of 

excitation and emission wavelength from 240-600 nm with 3 nm intervals was performed. A 

deionized water blank was used to validate the performance of the instrument and to measure the 
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signal-to-noise ratio. First and second order Rayleigh scattering was removed by nullifying the 

signal intensities of the Rayleigh lines. The Raman scatter line is removed by subtracting the 

blank from the sample EEM. EEMs were corrected for inner filter effects (IFE) using the parallel 

absorbance measurement from the blank and from the sample (Gilmore, 2011). The algorithm 

used for correction is based on Eq. 2 applied to each excitation-emission wavelength coordinate 

of the EEM. 

./0123 =  .56� 10789:;< 789:=        (9) 

where Fideal is the ideal fluorescence-signal spectrum expected in the absence of IFE, Fobs is the 

observed fluorescence signal, and AbsEx and AbsEm are the measured absorbance values at the 

respective excitation and emission wavelength-coordinates of the EEM (Gilmore, 2011). 

Fluorescence intensity calibration to Raman Units (R.U.) was done using the Raman peak of pure 

water, following the procedure of Lawaetz and Stedmon, (2009). To determine the fluorescence 

intensities, the peak-picking technique was used (Coble, 1996).  

In accordance with Coble (1996), peak A was identified at excitation wavelength (ex) 240-260 nm 

and emission wavelength (em) 400-480 nm in all samples, while peak C was mainly identified at 

ex 330-360 nm and em 420-480 nm. Protein-like fluorescence was identified at ex 270-280 nm 

and em 300-350 nm and marked with peak T. The samples were not diluted. 

3.2.5 Particle-size distribution 

At WBQ (2013 and 2015) and SBQ (2013), the PSD was measured using a portable particle 

counter (Abakus mobile fluid, Markus Klotz GmbH, Bad Liebenzell, Germany), which counts 

suspended particles in the range of 0.9-139 µm and groups them into up to 32 definable size 

classes. The measuring procedure starts with a rinsing process followed by the actual 

measurement in which 10 mL of the sample pass through a small glass tube. The tube is irradiated 

by a laser beam and the particles contained cause a decrease in the laser light at the detector. The 

extent of the decrease is determined by assuming an equivalent spherical diameter of the particle 

and thereby the size of the particle. In this study, 32 particle size classes were measured but only 

four particle-size classes were of special interest: 0.9-1.0 µm (hereinafter 1.0 µm), 1.1-2.0 µm 

(2.0 µm), 2.1-5.0 µm (5.0 µm) and 5.1-10.0 µm (10.0 µm). These size fractions were compared 

with FIB as coliform bacteria and E. coli have a size of about 1-3 µm (Reshes et al., 2008). 
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3.3 Results and discussion 

3.3.1 Single-spring system (Marulbach Spring) 

The Marulbach Spring had a low TOC content ranging from 0.66 mg/L to 2.05 mg/L (Table 3). 

The lowest values were measured before the rain event that started on the evening of the 22nd of 

September 2015, and the maximum value was measured shortly after the end of this event. The 

values for intrinsic fluorescence for peaks A, C, and T correspond to the values of TOC. Peak A 

(humic-like) reached a maximum of 2.47 R.U. with mean values before the rain event of around 

1.00 R.U. The maximum measured fluorescence intensity for peak C (humic-like) was 1.23 R.U. 

with mean values of around 0.40 R.U. before the rainfall. Peak T (protein-like) reached a 

maximum of 0.47 R.U. The coefficients of variation (CV) for peaks A, C and T were in the range 

of 13.9-34.8 %, which was very similar to the CV for TOC (33.1 %). Coliform bacteria reached 

a maximum of 816 MPN/100 mL about 12 h after the start of the rainfall event. The values for E. 

coli range from <1 to 53 MPN/100 mL and correspond temporally to the total coliforms. In 

addition, EC and discharge (Q) were recorded. There is a large difference between the minimum 

and maximum EC values (309-501 µS/cm). The maximum occurred during the rain event and 

was followed by a steep decrease, reaching the minimum 16 h after the start of the rain event. The 

discharge showed the reverse pattern with a steep increase starting around 4 h before the decrease 

of EC. The steep increase in Q likely resulted from a hydraulic pressure pulse, also known as the 

piston effect, caused by the rainfall (Ravbar et al., 2011). The maximum discharge recorded 

during the monitored time period was 232 L/s. 
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Table 3: Summary statistics for total organic carbon (TOC), bacteria, fluorescence peaks A, C, and T, electrical 
conductivity (EC), temperature (T), and discharge (Q) measured during the investigation periods in September 2013 
and September 2015 for the three springs. S.D., standard deviation; CV, coefficient of variation; n.m., not measured. 

 

    MBQ (2015) SBQ (2013) SBQ (2015) WBQ (2013) WBQ (2015) 

  Altitude [m a.s.l.] 1220 1529 1529 1540 1540 

TOC 

n 96   50   45 

Min. [mg/L] 0.66   0.19   0.20 

Max. [mg/L] 2.05 n.m. 0.78 n.m. 0.77 

Mean [mg/L] 1.21   0.30   0.29 

S.D. 0.40   0.12   0.11 

CV [%] 33.1   40.0   37.9 

total               
coliforms 

n 97   56   58 

Min. [MPN/100 mL] 13.4   2   < 1 

Max. [MPN/100 mL] 816.4 n.m. 119.8 n.m. 214.3 

Mean [MPN/100 mL] 77.0   34.4   47.2 

S.D. 115.8   33.0   45.1 

CV [%] 150.4   95.9   95.6 

E. coli 

n 97   56   58 

Min. [MPN/100 mL] < 1   < 1   < 1 

Max. [MPN/100 mL] 53.0 n.m. 14.8 n.m. 14.8 

Mean [MPN/100 mL] 6.9   3.0   3.3 

S.D. 10.9   4.3   4.1 

CV [%] 158.0   144.7   124.2 

Peak A 

n 96 14 50 18 45 

Min. [R.U.] 0.82 0.20 0.23 0.25 0.23 

Max. [R.U.] 2.47 0.50 0.52 0.42 0.51 

Mean [R.U.] 1.41 0.36 0.32 0.29 0.31 

S.D. 0.49 0.09 0.08 0.04 0.07 

CV [%] 34.8 25.0 25.0 13.8 22.6 

Peak C 

n 96 14 50 18 45 

Min. [R.U.] 0.39 0.15 0.10 0.11 0.10 

Max. [R.U.] 1.23 0.29 0.23 0.22 0.24 

Mean [R.U.] 0.69 0.21 0.13 0.14 0.13 

S.D. 0.25 0.04 0.03 0.03 0.04 

CV [%] 36.2 19.0 23.1 21.4 30.8 

Peak T 

n 96 14 50 18 45 

Min. [R.U.] 0.28 0.16 0.09 0.13 0.02 

Max. [R.U.] 0.47 0.18 0.29 0.17 0.27 

Mean [R.U.] 0.36 0.17 0.15 0.15 0.14 

S.D. 0.05 0.01 0.07 0.01 0.04 

CV [%] 13.9 5.9 46.7 6.7 28.6 

EC 

n 904 772 601 725 601 

Min. [µS/cm] 309 165 186 165 177 

Max. [µS/cm] 501 212 218 212 209 

Mean [µS/cm] 388 193 207 192 198 

S.D. 53.3 13.7 10.4 13.3 10.4 

CV [%] 13.7 7.1 5.0 6.9 5.3 

T 

n 1160 1728 601 725 601 

Min. [°C] 4.31 3.95 3.65 3.88 4.02 

Max. [°C] 4.46 4.28 3.84 4.15 4.63 

Mean [°C] 4.37 4.08 3.76 3.98 4.20 

S.D. 0.03 0.08 0.06 0.08 0.12 

CV [%] 0.7 2.0 1.6 2.0 2.9 

Discharge 

n 905 1619 601 1728 601 
Min. [L/s] 168 136 134 144 139 
Max. [L/s] 232 148 145 652 480 
Mean [L/s] 194 142 140 393 229 

S.D. 17.3 3.5 3.0 128,8 89.8 
CV [%] 8.9 2.5 2.1 32.8 39.2 
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At spring MBQ, marked changes were measured in fluorescence peak intensity, TOC, FIB, EC, 

and Q in response to rainfall on September 23, 2015 (Figure 14). Similar temporal patterns for 

fluorescence intensities and TOC were recorded at 11 smaller karst springs in the Großes 

Walsertal Valley (Supplementary 1). 

 

Figure 14: Temporal patterns in peak A, C, and T fluorescence intensities at MBQ Spring. Temporal patterns in TOC, 

bacteria, EC, discharge, and rainfall are also shown. The numerals 1, 2, and 3 indicate the position of the EEMs shown 

in Figure 13. 

Coliform bacteria, E. coli, TOC, and fluorescence started to increase about 6 h after rainfall began 

and reached maximum values about 15 h after the start of rain.  

The EEM spectra of MBQ evolved from before the rain event to about 3 days afterwards reveal 

three main fluorescence peaks (Figure 15). Humic-like substances, peak A and peak C are 

described to represent widespread aromatic humic substances with a high molecular weight and 

are highest in wetlands and forested environments. Both substances are mainly derived from 

terrestrial plant or soil organic matter (Fellman et al., 2010). In our study, protein-like 

fluorescence could not be attributed either to pure tryptophan or pure tyrosine. Excitation 

wavelengths of both substances are 270-280 nm but tryptophan has a maximum fluorescence at 

an emission wavelength of 348 nm and tyrosine at 303 nm (Ghisaidoobe and Chung, 2014). The 

tryptophan and tyrosine signals represent amino acids, free or bound in proteins. In our samples, 

we found either a complex mixture of both substances or their respective degradation products, 

which are in both cases shifted to slightly higher emission wavelengths (Determann et al., 1998). 

Determann et al. (1998) also found the fluorescence signal from living bacteria to be remarkably 
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constant and dominated by a blue-shifted tryptophan fluorescence. In our study, this fluorescence 

peak was referred to as protein-like fluorescence which was identified at ex 270-280 nm and em 

300-350 nm and marked with T. This fluorescence resembles free tryptophan or tyrosine and may 

indicate intact proteins or less degraded peptide material. This material may originate either from 

terrestrial plant or soil organic matter as well as from microbial processing (Fellman et al., 2010). 

The results of our fluorescence measurements at MBQ, especially peak T, compared to the 

obtained bacterial values, indicate a strong relation of these parameters and that the obtained 

fluorescence signature may originate from the decay of bacteria or cell dissolved organic material 

originating from the land surface as also described by Coble et al. (2014). 

 

Figure 15: Temporal evolution of the EEM spectra recorded at MBQ. Peak A and C indicate humic-like fluorescence 

while peak T indicates protein-like fluorescence. Numbers 1 (21.09.2016, 6 a.m.), 2 (23.09.2016, 8 p.m.) and 3 

(25.09.2016, 10 p.m.) show the position of the EEMs in the timeline of Figure 14. 

3.3.2 Dual-spring system (Schwarzbach- and Weißbach Spring) 

At WBQ and SBQ, which drain the same karst aquifer, measured values for fluorescence, TOC, 

coliform bacteria, E. coli and EC are similar (summary statistics provided in Table 3), but 

discharge at the two springs follow very different temporal patterns even though WBQ is 

considered to be the overflow outlet of SBQ (Figures 16 and 18). For the investigation period in 

September 2015 the minimum values for TOC are 0.19 (SBQ) and 0.20 mg/L (WBQ), while the 

maximum values were observed after the major rainfall event and are 0.78 and 0.77 mg/L. The 

highest values for the fluorescence peaks A and C were measured at the same time as maximum 

TOC values were recorded. Peak A reached values of 0.52 (SBQ) and 0.51 R.U. (WBQ) 

respectively, peak C reached 0.23 (SBQ) and 0.24 R.U. (WBQ) respectively while protein-like 

fluorescence (peak T) showed values between 0.29 (SBQ) and 0.27 R.U. (WBQ) but no clear 

correlation with the other parameters could be identified. The range in coefficient of variation for 

fluorescence was similar to that of TOC (22.6-46.7 %). These values are comparable to the MBQ 
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Spring. The minimum and maximum values for coliforms and E. coli at WBQ and SBQ were 

substantially lower than at MBQ Spring. The maximum for E. coli was 14 MPN/100 mL at both 

springs for the measurements conducted in September 2015. 

 

Figure 16: Temporal patterns of Peak A, C and T fluorescence intensities of WBQ together with TOC, bacteria, EC, 

discharge and rainfall during the investigation period. Numbers 1, 2 and 3 indicate the position of the EEMs shown in 

Figure 13. The figure also shows the particle-size distribution of 4 different fractions. Dotted lines (a) and (b) indicate 

the peak position of the particle fractions and turbidity. 

Similar to MBQ, there was a marked response in all parameters measured at WBQ, with the 

exception of peak T, to the rain event (Figure 16). Discharge began to increase about 6 h after the 
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major rainfall event began and about 1 h before the decrease of the EC. Fluorescence peaks A and 

C reached their maximum about the same time that the maximum TOC values were recorded. 

Fluorescence peak T remained relatively constant during the whole time. Coliform bacteria and 

E. coli became much more variable after the major rain event, but showed no distinct peak and 

no clear correlation to other parameters. Measured bacteria values and peak T at WBQ are much 

lower than those at MBQ.  

Turbidity and all particle fractions first peaked about 9 h after rainfall began, but still during the 

rising limb of the hydrograph (Figure 16; dotted line a). This turbidity and particle signal likely 

originates from a hydraulic pressure pulse that leads to a remobilization of sediments from inside 

the karst network (autochthonous). The turbidity and the 1.0 µm particle fraction had a second 

peak about 25 h after rainfall began (Figure 16; dotted line b). This second peak is attributed to 

the arrival of turbid water from the land surface that entered the karst network (allochthonous). 

This second peak also correlated with the fluorescence peaks A and C and the TOC peak, 

consistent with TOC and humic-like and fulvic-like substances originating from the soil and the 

land surface. These results are similar to those of previous studies of turbidity and particle-size 

investigations in karst springs (e.g. Massei et al., 2003; Goldscheider et al., 2010). The slight 

increase of coliform bacteria occurred at about the same time as the second turbidity peak and the 

second peak of the 1.0 µm fraction of the particles, indicating the arrival of faecal bacteria 

originating from the land surface, as described by Pronk et al. (2007).  

The measured EEM spectra for WBQ, similar to MBQ, show three distinct peaks which represent 

humic-like substances (peaks A and C) and protein-like substances (peak T, Figure 17). 

 

Figure 17: Temporal evolution of the EEM spectra recorded at WBQ. Peak A and C indicate humic-like fluorescence 

while peak T indicates Tryptophan-like fluorescence. Numbers 1 (03.09.2016, 2 a.m.), 2 (04.09.2016, 4 p.m.) and 3 

(05.09.2016, 10 a.m.) show the position of the EEMs in the timeline of Figure 16. 
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The temporal evolution of the data from the September 2013 measurement period for WBQ is 

given in Supplementary 2. The results from 2015 are largely consistent with the results from 2013.  

Water quality parameters measured at SBQ varied similar to those measured at WBQ, even 

though SBQ has an almost constant discharge of 140 L/s (Figure 18). Fluorescence peaks A and 

C reached their maximum at the same time that the TOC peak occurred. The peaks arose around 

26 h after the start of rainfall and 1 h later than at WBQ. For fluorescence peak T no clear 

correlation to other parameters could be identified, although a slight increase after the rain event 

was observed. 

 

Figure 18: Temporal patterns of Peak A, C and T fluorescence intensities of SBQ together with TOC, bacteria, EC, 

discharge and rainfall during the investigation period 2015. Note the almost constant discharge of 140 L/s. 

Time series for all parameters measured during September 2013 are given in Supplementary 3. 

Discharge, EC and the other parameters show again almost the same behavior as in 2015. In 2013 

the particle-size distribution was also measured at SBQ Spring. The particles showed the same 

behavior as at WBQ Spring, with two distinct peaks for the 1.0 and 2.0 µm fractions. The second 

peak of the smaller particle fractions correlated with peak A and peak C fluorescence, indicating 

the arrival of the recharging surface water. 

3.3.3 Comparison of the three springs 

All three springs showed fast and marked responses to rainfall events for virtually all of the 

parameters measured. The only exception is the SBQ Spring, where an almost constant discharge 
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of 140 L/s was recorded (Figure 18), while all other parameters reacted to the rainfall. We 

hypothesize that SBQ (base-flow spring) is fed by a conduit of finite capacity so that discharge 

does not increase but instead the water overflows into conduits which then feed WBQ (overflow 

spring; Fig. 19). The measurements at SBQ demonstrate that constant discharge does not 

necessarily signify invariable water quality. 

TOC concentrations and fluorescence intensities for Peaks A, C and T at MBQ were typical of 

those reported for other studies of karst spring waters (e.g. Batiot et al., 2003; Mudarra et al., 

2011; Tissier et al., 2013). Fluorescence intensities and TOC concentrations at WBQ and SBQ 

dual-spring system are lower than those at MBQ, likely as a result of the higher altitude of the 

dual-spring system, which corresponds to thin soils and minor or absent vegetation in the 

catchment areas. Nevertheless, a marked increase in TOC concentration and fluorescence 

intensities of peaks A, C and T was recorded at all three springs after a major rainfall event. The 

fluorescence intensity values of peaks A, C and T were correlated with the TOC concentration at 

each spring. 

 

Figure 19: Conceptual diagram to illustrate the functioning of WBQ-SBQ system. The base-flow spring is fed by a 

conduit of finite capacity, the excess water discharges via the overflow spring. 

The best correlation between TOC and fluorescence was at MBQ with calculated coefficients of 

determination (R²) between 0.91 and 0.98 between TOC and peaks A, C and T. For SBQ and 

WBQ, the correlation was 0.69 and 0.76 for fluorescence peaks A and C, respectively, which 

indicates a strong correlation between the two variables. Only for peak T, no correlation was 

found at SBQ and WBQ Springs.  

In Table 4, the Spearman’s rank correlation (rs), the significance (p), and the number of samples 

(n) are given for MBQ. 
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Table 4: Spearman’s rank correlation (rs), significance (p value) and the number of samples (n) for the sampling period 

at Marulbach Spring (MBQ) for all relevant parameters. 

rs                       
p                      
n 

Q EC coliforms E. coli TOC Peak A Peak C Peak T 

Q   
-0.827        
<0.001               

96 

0.773        
<0.001             

96 

0.598          
<0.001          

96 

0.801          
<0.001             

96 

0.806         
<0.001            

96 

0.786           
<0.001         

96 

0.809          
<0.001             

96 

EC     
-0.728              
<0.001            

96 

-0.584              
<0.001            

96 

-0.949            
<0.001              

96 

-0.964            
<0.001             

96 

-0.940             
<0.001              

96 

-0.887               
<0.001              

96 

coliforms       
0.596                       

<0.001                     
96 

0.729                 
<0.001                

96 

0.706                     
<0.001           

96 

0.684                      
<0.001                   

96 

0.734                         
<0.001                      

96 

E. coli         
0.601                    

<0.001                    
96 

0.567                      
<0.001                     

96 

0.601                  
<0.001                      

96 

0.578                      
<0.001                         

96 

TOC           
0.949                      

<0.001                       
96 

0.934            
<0.001                    

96 

0.883                      
<0.001                     

96 

Peak A             
0.962                     

<0.001                          
96 

0.880                    
<0.001                       

96 

Peak C               
0.881                          

<0.001                      
96 

The strongest correlations were between TOC and the three fluorescence peaks. Correlations 

between coliform bacteria, E. coli and the three fluorescence peaks were less strong but still 

significant, with the best correlation between coliforms and peak T. This supports the findings of 

Elliott et al. (2006), who reported that at least some of the tryptophan-like fluorescence can have 

a direct bacterial origin. Sorensen et al. (2015) and Sorensen et al. (2016) also report that 

tryptophan-like fluorescence is more resilient in groundwater than bacteria and therefore could 

also be an indicator of some smaller, more easily transported pathogenic enteric viruses which 

are beyond the scope of this study. Furthermore, tryptophan-like fluorescence has the advantage 

of potentially detecting the presence of coliforms in viable but nonculturable states Sorensen et 

al. (2015). The IDEXX test, used in this study only measures the viable bacterial state. 

Correlations between EC and TOC and EC and fluorescence peaks were significant and negative; 

recharging rain water leads to an increase of discharge and, with a slight delay, to a decrease of 

EC. As EC decreased, TOC, fluorescence values, and FIB began to increase, indicating the arrival 

of the fresh surface water. EC is a simple and robust parameter to deduce the characteristics of 

the investigated karst aquifers, with respect to the arrival of surface water at the springs. 

Correlations between parameters also were investigated for WBQ and SBQ (September 2015 

data, Table 5). 
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Table 5: Spearman's rank correlation (rs) with significance (p value) and the number of samples (n) for all relevant 

parameters measured for SBQ (light blue) and WBQ (white). 

rs                             
p                             
n 

Q EC TOC coliforms E. coli Peak A Peak C Peak T 1.0 µm 2.0 µm 5.0 µm 10.0 µm 

Q  
-0.907   
<0.001                 

45 

0.651                    
<0.001                        

45 

0.530                      
<0.001                     

45 

0.477                     
<0.001                          

45 

0.383                      
0.004      

45 

0.226                       
0.094                        

45 

-0.005                     
0.969                         

45 

0.877                         
<0.001                            

45 

0.898                        
<0.001                    

45 

0.789                        
<0.001                        

45 

0.602                      
<0.001                           

45 

EC 
-0.036                  
0.802                 

50 

 
-0.582                    
<0.001             

45 

-0.493                       
<0.001                         

45 

-0.463                      
<0.001                     

45 

-0.324                            
0.015                                

45 

-0.187                         
0.167              

45 

-0.005                           
0.971                                

45 

-0.809                         
<0.001                      

45 

-0.793                      
<0.001                       

45 

-0.672                      
<0.001             

45 

-0.439                            
<0.001                            

45 

TOC 
0.086                  
0.553                        

50 

-0.373                  
0.008                     

50 

 
0.561                   

<0.001                    
45 

0.653                      
<0.001                         

45 

0.588                       
<0.001                   

45 

0.524                        
<0.001                      

45 

-0.026                       
0.847      

45 

0.774                     
<0.001                        

45 

0.744                           
<0.001                         

45 

0.660                         
<0.001                           

45 

0.343                             
0.010                               

45 

coliforms 
0.129                
0.373                    

50 

0.490                   
<0.001                         

50 

0.772                          
<0.001                    

50 

 
0.575                     
0.001                          

45 

0.681                    
<0.001                         

45 

0.649                        
<0.001                    

45 

0.233                     
0.084                               

45 

0.647                 
<0.001                      

45 

0.613                         
<0.001                        

45 

0.475                           
<0.001                          

45 

0.167                         
0.219                              

45 

E. coli 
0.131               
0.366                         

50 

-0.350                    
0.013                    

50 

0.778                   
<0.001                         

50 

0.811                   
0.001                          

50 

 
0.664         

<0.001                        
45 

0.635                        
<0.001                          

45 

0.192                        
0.156                        

45 

0.641                           
<0.001                          

45 

0.571         
<0.001                       

45 

0.415                      
0.001                        

45 

0.094                            
0.491                        

45 

Peak A 
0.050                    
0.729          

50 

-0.225                         
0.116                                

50 

0.689                      
<0.001                   

50 

0.683                    
<0.001                         

50 

0.703                         
<0.001                        

50 

 
0.897                            

<0.001                     
45 

0.327                       
0.014                              

45 

0.584                      
<0.001                       

45 

0.526                        
<0.001                       

45 

0.415                        
0.001                        

45 

0.097                         
0.477                           

45 

Peak C 
0.118                      
0.416                       

50 

-0.247                       
0.083      

50 

0.743                    
<0.001                      

50 

0.724                        
<0.001                    

50 

0.718                       
<0.001                          

50 

0.809                            
<0.001                  

50 

 
0.366                    
0.005                       

45 

0.472                             
<0.001                          

45 

0.398                          
0.002                           

45 

0.268                      
0.045                     

45 

-0.060                      
0.660                     

45 

Peak T 
-0.107                    
0.461                         

50 

-0.061                           
0.676                                

50 

0.364                    
0.009                                  

50 

0.164                     
0.254                               

50 

0.252                      
0.077                      

50 

0.415                      
0.003                              

50 

0.338                   
0.016      

50 

 
0.022                     
0.871                       

45 

-0.037                       
0.785                              

45 

-0.039                         
0.777                                

45 

-0.122                          
0.369     

45 

1.0 µm          
0.972                       

<0.001                           
45 

0.883                            
<0.001                              

45 

0.606                         
<0.001            

45 

2.0 µm           
0.929                      

<0.001                          
45 

0.699                       
<0.001                            

45 

5.0 µm            
0.857            

<0.001                              
45 

The correlations between TOC and the three fluorescence peaks were at SBQ and WBQ lower 

than at MBQ. Similar, the correlations between coliform bacteria, E. coli and the three 

fluorescence peaks also were slightly lower than at MBQ. The lowest correlations were for 

bacteria and peak T fluorescence at both springs. We hypothesize that this is because TOC and 

bacteria values at WBQ and SBQ are substantially lower than at MBQ, because of less developed 

soil and vegetation and fewer cattle farming activities in the dual-spring catchment. In this study 

a good correlation between bacteria and peak T fluorescence was detected at MBQ, where 

coliform bacteria and E. coli reached values of 816 MPN/100 mL and 53 MPN/100 mL 

respectively. The corresponding values for peak T fluorescence were up to 0.47 R.U. At 

WBQ/SBQ, coliform bacteria and E. coli only reached values up to 214 MPN/100 mL and 

14 MPN/100 mL. Peak T fluorescence was measured with 0.29 R.U. This also supports the 

findings of Sorensen et al. (2016) who described tryptophan-like fluorescence to be an effective 

indicator of coliform bacteria only where tryptophan-like fluorescence exceeded 0.4 µg/L 
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dissolved tryptophan. At WBQ the Spearman’s rs was also computed for the correlations between 

bacteria and particles. For both coliform bacteria and E. coli, the correlation decreased as particle 

size increased. 

3.4 Conclusion 

Three alpine karst springs in Austria were monitored at high resolution during two hydrologically 

stable periods in September 2013 and 2015 interrupted by one major rain event. Fluorescence 

characteristics, particle-size distribution and physico-chemical parameters were used to 

characterize the dynamics of organic carbon, faecal bacteria, and particles discharging from the 

springs following a rainfall event.  

A fast and marked response of all recorded water quality parameters to rainfall events was 

observed at all three investigated springs. Even though a constant discharge at SBQ was 

measured, all other parameters at this spring reacted to the rainfall event. These findings 

demonstrated that a constant discharge does not necessarily mean constant water quality. 

We found a high correlation at all three springs and a simultaneous response to the rain event of 

TOC and fluorescence peaks A and C. These observations showed that an important amount of 

TOC from the two catchments is related to FDOM, especially to humic-like and protein-like 

substances and mainly originated from the decomposition of organic material from plants and 

animals from the land surface. 

We detected a simultaneous increase of turbidity and all measured particle fractions after the rain 

event, followed by a secondary turbidity peak, where a further increase of the smaller particle 

fractions as well as TOC and fluorescence was observed. The first peak is attributed to 

autochthonous turbidity originating from the remobilization of sediments from the karst network 

itself while the second turbidity peak represents the allochthonous sediments from the soil and 

land surface. Because TOC and faecal bacteria also mainly originate from the land surface, they 

showed a good correlation with the secondary turbidity peak and the second peak of the 1.0 and 

2.0 µm particle fraction as also detected by Pronk et al. (2007). 

At high contamination levels, as at MBQ, a strong correlation between protein-like fluorescence 

peak T and faecal indicator bacteria was detected. At this spring, fluorescence spectroscopy 

(tryptophan-like fluorescence) could be used for a near real-time assessment of faecal 

contamination. Sorensen et al. (2016) concluded that tryptophan-like fluorescence is only an 

effective indicator of coliforms where it exceeds 0.4 µg/L dissolved tryptophan. Therefore, peak T 

fluorescence measurements are not suitable to determine precise bacterial values.   
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A difference in the strength of the correlation between TOC, bacteria and fluorescence was 

observed between the two spring systems, which originated from higher values of TOC, bacteria 

and fluorescence at MBQ compared to WBQ/SBQ. We hypothesize, that the higher values were 

caused by the different altitude and therefore the different soil formation and vegetation in the 

two catchments as well as different cattle farming activities.  

Because of a significant negative correlation between EC, discharge, TOC, FIB and fluorescence, 

EC is a simple but stable parameter to determine the basic characteristics of the investigated karst 

aquifers and is a good indicator for the arrival of surface water. 

Neither the measurement of tryptophan-like fluorescence nor the determination of the particle-

size distribution can substitute conventional bacterial determination methods to determine faecal 

pollution, but the simultaneous monitoring of particle-size distribution and intrinsic fluorescence 

might be a valuable tool to act as an early warning system for organic contamination processes, 

originating from the land surface, and can also help to estimate bacterial contamination in near 

real-time.  

The results presented in this study highlight the vulnerability of karst aquifers to organic 

contamination, especially during and after rainfall events, and demonstrate the utility of advanced 

measurement techniques, such as fluorescence spectroscopy and particle-size measurements, to 

detect and predict the contamination variability, especially with regard to the time consuming 

conventional methods. 
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Chapter 4 

4 Field tracer tests to evaluate transport properties of 

Tryptophan and humic acid in karst       

 

Reproduced from: Frank, S., Goeppert, N., Goldscheider, N. (2020), Field tracer tests to 

evaluate transport properties of Tryptophan and humic acid in karst, Groundwater, 

https://doi.org/10.1111/gwat.13015 

 

Abstract: 

The monitoring of water quality, especially of karst springs, requires methods for rapidly 

estimating and quantifying parameters that indicate contamination. In the last few years, 

fluorescence-based measurements of tryptophan and humic acid have become a promising tool to 

assess water quality in near real-time. In this study, we conducted comparative tracer tests in a 

karst experimental site to investigate the transport properties and behavior of tryptophan and 

humic acid in a natural karst aquifer. These two tracers were compared with the conservative 

tracer uranine. Fluorescence measurements were conducted with an online field fluorometer and 

in the laboratory. The obtained breakthrough curves (BTCs) and the modeling results demonstrate 

that i) the online field fluorometer is suitable for real-time fluorescence measurements of all three 

tracers; ii) the transport parameters obtained for uranine, tryptophan and humic acid are 

comparable in the fast flow areas of the karst system; iii) the transport velocities of humic acid 

are slower and the resulting residence times are accordingly higher, compared to uranine and 

tryptophan, in the slower and longer flow paths; iv) the obtained BTCs reveal additional 

information about the investigated karst system. As a conclusion, the experiments show that the 

transport properties of tryptophan are similar to those of uranine while humic acid is partly 

transported slower and with retardation. These findings allow a better and quantitative 

interpretation of the results when these substances are used as natural fecal and contamination 

indicators. 
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4.1 Introduction 

To protect drinking water from contamination, the rapid estimation of water-quality parameters 

has become a major task. In the last few years, fluorescence-based measurements of tryptophan 

and humic substances have become a promising tool for the rapid assessment of bacterial and 

other organic contamination (Sorensen et al., 2015; Frank et al., 2018; Sorensen et al., 2018). 

With this method, it is possible to locate contamination origin and to monitor how contamination 

spreads through the karst aquifer network in near real-time (Ediriweera and Marshall, 2010).  

Dissolved humic substances in natural waters are mainly derived from dead and decaying soil 

detritus, aquatic plants and debris (Hongve, 1999). Humic substances are heterogeneous 

molecular compounds resulting from abiotic and biotic reactions in soil (Piccolo et al., 2018). The 

presence of humic acid in water can have a significant adverse impact on the treatability of that 

water and decreases the success of disinfection processes (Oliver et al., 1983).  

Tryptophan is a fluorescent amino acid containing an amino group, a carboxylic acid group and 

a side chain indole. Tryptophan is essential for humans and is used in the biosynthesis of proteins. 

Tryptophan is often used as an indicator of biological activity (Fellman et al., 2010; Maie et al., 

2007). Determann et al. (1998) and Quiers et al. (2014) showed that tryptophan-like fluorescence 

is directly related to microbial activity of bacteria, and Sorensen et al. (2015) demonstrated that 

it can be used to investigate the biological quality of drinking water.  

So far, several studies use dissolved tryptophan and humic substances as indicators of water 

quality (e.g. Cumberland et al., 2012; Baker et al., 2015; Sorensen et al., 2018), however, the 

behavior and transport properties of these substances with respect to flow velocities, residence 

times and especially degradation processes are still insufficiently known, although they are crucial 

to accurately determine organic contamination, especially at fast reacting karst springs.  

To determine these relevant parameters, we conducted a tracer test, comparing tryptophan and 

humic acid to the conservative tracer uranine in a well-studied karst experimental site. The 

fluorescent dye uranine is commonly used as an almost ideal conservative tracer because of its 

low detection limit and favorable properties (Käss, 2004).  

Generally, tracer tests are powerful tools to study groundwater flow and contaminant migration, 

especially in karst systems (Göppert and Goldscheider, 2007). Artificial tracers have been applied 

in the identification of recharge areas, flow directions and velocities and groundwater 

vulnerability (Käss, 2004; Goldscheider, 2008; Massei et al., 2006) and to characterize transport 

processes in natural streams (Boulton et al., 2010; Lemke et al., 2013). Numerous mathematical 

models have been developed to estimate transport parameters from the observed break through 

curves (BTC, e.g. Kreft and Zuber, 1978; Maloszewski et al., 1992; Berkowitz et al., 2006).  
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In this study, we compared tryptophan and humic acid with the conservative tracer uranine in a 

pristine karst experimental site in the Austrian Alps, in order to identify differences between the 

ideal conservative tracer and the two natural organic compounds that were used as artificial tracers 

in this study. We determined flow velocities, residence times, dispersion and retardation of 

tryptophan and humic acid in a natural karst groundwater system during different hydrological 

conditions in order to achieve a better understanding of these two substances, which is important 

with respect to their utilization as water quality indicators. Additionally, we compared novel 

fluorescence-based online field measurements and conventional laboratory analyses of water 

samples in order to test and evaluate the near real-time detection and quantification of tryptophan 

and humic-acid by means of field instruments. 

4.2 Materials and Methods 

4.2.1 Study Site 

A well-investigated small-scale epikarst system representing a model karst aquifer that can be 

used as an ideal experimental site for field-scale tracer tests was chosen as test site (Goeppert and 

Goldscheider, 2019). The karst system is located west of Lake Formarin in Western Austria (Fig. 

1a) and consists of a swallow hole, where the three tracers were injected, and a downstream spring 

that served as monitoring and sampling site (Fig. 1b). At high-flow conditions, an overflow spring 

exists between the swallow hole and the sampling point (Fig. 1b). The catchment area consists of 

highly karstified limestone (Plattenkalk Formation) and the spring can be characterized as a 

typical epikarst spring with shallow flow paths between the swallow hole and the outlet. The main 

advantages of this study area for the conducted comparative tracer tests are: 

- short distances (linear distance between the injection point and the spring outlet is 235 m) 

and relatively high flow velocities resulting in short experiment durations 

- relatively simple hydrogeological conditions with an active swallow hole connected to a 

perennial karst spring 

- low and constant background concentrations of tryptophan and humic substances at the 

spring 

- good accessibility of the study site 

These advantages make this study area an ideal site for the evaluation of the transport properties 

of different substances in groundwater.  
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Figure 20: a) Location of the test site in Western Austria (basemap: World Karst Aquifer Map, modified after Chen et 

al., 2017); b) detailed view of the karst experimental site (basemap: data.vorarlberg.gv.at). 

The injection and monitoring for the first test series were done from 16. to 18. August 2017 under 

the same conditions for all three tracers, with direct injection of the dissolved tracers into flowing 

water and constant spring discharge between 29 L/s and 31 L/s (mean to high flow) during the 

monitoring period. The second test series was conducted from 7. to 9. September 2017 with 

constant discharge conditions between 7.5 and 8.5 L/s (low-flow conditions). A third test with 

uranine and tryptophan was conducted from 6. to 7. July 2017 under low to mean flow conditions 

(discharge between 14 L/s and 14.5 L/s). To compare the three tracers, within each test series, 

water samples were taken manually and analyzed in the laboratory. An online field fluorimeter 

(FF) was used for each test series, to test its applicability to detect and to measure the three tracers 

in real time and in higher resolution. 

4.2.2 Used Tracers 

Uranine (AppliChem GmbH, Darmstadt, Germany), L-Tryptophan (Sigma-Aldrich/Merck 

KGaA, Darmstadt, Germany) and humic acid (as Humic Acid sodium salt, Sigma-Aldrich/Merck 

KGaA, Darmstadt, Germany) were used as tracers. The structural formulas, the solubility in water 

and the main optical properties of the three tracers are given in Table 1. 
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Table 6: Structural formula and properties of the three used tracers. 

 uranine l-tryptophan humic acid 

structural formula 

 
 

macromolecule 

without defined 

structural formula 

solubility [g/L] (H2O, 

20°C) 
>600a 10b n.n. 

peak em [nm] 512a 350c 

Peak 1: 380-480d 

Peak 2: 420-480d 

 

peak ex [nm] 491a 280c 
Peak 1: 250-260d 

Peak 2: 330-350d 

a Käss 2004  b Römpp Enzyklopädie Online  c Lakowicz 2006  d Parlanti et al. 2000 

Uranine shows the strongest fluorescence of all fluorescence tracers (Käss, 2004). The detection 

limit of uranine is extremely low (~0.005 µg/L); its solubility is very high, and it is harmless for 

the environment (Behrens et al., 2001). Therefore, uranine is widely used for hydrogeological 

tracer tests.  

L-Tryptophan is an aromatic, proteinogenic amino-acid with a carboxylic acid group and a side 

chain indole and is one of three fluorescent amino acids. The fluorescence properties of 

tryptophan are used to investigate the dynamics of dissolved natural organic material (Wagner, 

2014). 

Humic substances have a polymeric composition without a reproducible structure. They consist 

of aliphatic and heterocyclic structures which give them the optical property of fluorescence (Sun 

et al., 2010). Humic substances are decomposition products of dead herbal and animal material 

which develop through biological conversion in soil and water. Depending on their origin, humic 

substances created in water have a smaller size and are generally younger than humic substances 

from soil. The fluorescence properties of humic substances are depending on the amount of 

aromatic structures and their actual size (Wagner, 2014). 

Because environmental conditions can have a complex influence on the characteristics of 

especially tryptophan and humic acid fluorescence (Sun et al., 2010; Chen and Kenny, 2007), a 

comparative tracer test with uranine was conducted to determine the transport properties 
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(transport velocities, residence times, dispersion and retardation) of the two used substances. 

Sorensen et al. (2018) used tryptophan as an indicator of fecal pollution and observed good 

correlation between dissolved tryptophan (tryptophan-like fluorescence) and thermotolerant 

coliforms, and Sorensen et al. (2016) demonstrated that the majority of the tryptophan-like 

fluorescence signal was within the <0.22 µm size fraction. Therefore, for this study a tryptophan 

solution was used as tracer. 

4.2.3 Tracer measurements 

The three tracers were analyzed directly on site with an online field fluorometer (FF) GGUN-

FL30 (Albillia Co., Neuchâtel, Switzerland) with optics for uranine, tryptophan and amino G acid. 

In addition, water samples were taken in 4 to 30 min intervals for analysis in the laboratory. All 

water samples were collected in 50 mL brown glass bottles and stored in the dark at 4 °C until 

analysis. In the laboratory, uranine was measured with a LS55 fluorescence spectrometer (Perkin 

Elmer Inc., Waltham, USA) and tryptophan and humic acid were analyzed with the Aqualog 

fluorometer (Horiba Ltd., Kyoto, Japan). All samples were analyzed in a quartz cuvette with a 

path length of 10 mm maintained at a constant temperature of 20 °C.  

With the Aqualog, excitation-emission matrices (EEMs) were acquired by simultaneous scanning 

of the absorbance (excitation) and the fluorescence emission spectrum at each excitation 

wavelength. For the samples analyzed with the Aqualog, a simultaneous scan of excitation and 

emission wavelength from 240 to 600 nm with 5-nm intervals was performed. A deionized water 

blank was used to validate the performance of the instrument and to measure the signal-to-noise 

ratio. First and second order Rayleigh scattering was removed by nullifying the signal intensities 

of the Rayleigh lines. The Raman scatter line was removed by subtracting the blank from the 

sample EEM. EEMs were also corrected for inner filter effects (IFE) using the parallel absorbance 

measurement from the blank and from the sample, following the procedure of Gilmore (2011). 

To determine the fluorescence intensities, the peak-picking technique was used (Coble, 1996). In 

accordance with Fellman et al. (2010), the tryptophan peak was identified at excitation 

wavelength (ex) 270-280 nm and emission wavelength (em) between 330-370 nm. In the field, 

humic acid was determined using the Amino G Acid channel of the FF. In the EEM, it was 

identified at ex 320-375 nm and em 430-500 nm. 20 µL of a pH 10 buffer solution were added 

to the water samples analyzed for uranine (with LS55) and tryptophan (with Aqualog) to increase 

the fluorescence yield. Samples were not diluted. 
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4.2.4 Modelling of the breakthrough curves (BTCs) 

To model the BTCs in this karst system (with major conduits), the commonly used advection-

dispersion model (ADM, Kreft and Zuber, 1978) was used: 

�>(#, ?) = @
A∙CD∙�EF∙GH∙I JJDKL M#N OIP
 JJDK 

E∙GH∙ JJD
Q      (10) 

Where C is the tracer concentration in the water (µg/L), M is the injected tracer mass (mg), Q is 

the discharge or pumping rate (m³/s), t0 is the mean flow time, PD is the dispersion parameter 

(reciprocal Péclet Number, RS = STU∙V), t is a time variable (s), DL is the longitudinal dispersion 

coefficient (WX = YX ∙ Z) (m²/s), v is the effective flow velocity Z =  V
CD  (m/s), x is the distance 

between injection and sampling point (m) and αL is the longitudinal dispersivity (m).  

The observed BTCs during low-flow conditions show a more pronounced tailing compared to 

mean- to high-flow conditions. To model these BTCs a 2-Region Nonequilibrium model (2RNE, 

Field and Pinsky, 2000) was used. This model accounts for exchange between mobile and 

immobile fluid regions in a karst system. Water in the immobile fluid region is assumed as 

stagnant relative to the water flowing in the mobile fluid region. Therefore, the advection-

dispersion equation is extended by two parameters, a partitioning coefficient  between mobile 

and immobile fluid regions and a mass transfer coefficient  between the two regions. For 

simplification, only the dimensionless form is given here (modified after Field and Pinsky, 2000 

and Toride et al., 1999). 

[ \]�\^ = P
G1

\ ]�\_ − \]�\_ − `(�P − �$)      (11) 

(1 − [) \] \^ = `(�P − �$)       (12) 

where C represents the dimensionless solute concentration and T and Z dimensionless time and 

space variables. The Péclet number Pe is defined by the model parameters mean flow velocity 

(vm) and dispersion coefficient D. 

RM = VU=S = V
a         (13) 

where x is the flow distance and  the dispersivity. The dimensionless partitioning coefficient  

(0 ≤ b ≤ 1) indicates the proportion of mobile water, while the mass transfer coefficient  

describes the exchange rate between the two fluid regions. 
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The 2RNE model was already successfully applied to the simulation of breakthrough curves from 

tracer tests in karstic and non-karstic environments (e.g. Birk et al., 2004; Geyer et al., 2007; 

Lauber et al., 2014; Ender et al., 2018). 

Because the observed BTCs of all three tracers show two individual peaks during mean- to high-

flow conditions, both peaks were modelled separately according to the multi-dispersion model 

(MDM) from Maloszewski et al. (1992). The different peaks can be modeled by superposition of 

two or more advection-dispersion models (Seaman et al., 2007). For each peak, t0 and D have to 

be determined individually.  

The modelling was done with the software package CXTFIT (Toride et al., 1999) where both, the 

ADM and the 2RNE model, are implemented. 

4.2.5 pH-dependence of tracer fluorescence 

For all three tracers, a laboratory experiment was conducted to investigate the pH dependence of 

fluorescence. Diluted solutions were prepared from a stock solution (1 g/L) for each tracer. The 

pH adjustment was done by adding microliters of concentrated NaOH and HCl respectively. The 

pH reading was conducted with a WTW SenTix 940 sensor (Xylem Analytics Germany Sales 

GmbH & Co. KG, WTW; Weilheim; Germany). The fluorescence intensities of all samples were 

measured at a constant temperature of 20 °C with a LS55 fluorescence spectrometer (uranine) and 

an Aqualog fluorimeter (tryptophan and humic acid). The fluorescence peaks were identified at 

the wavelength described above. The results of the fluorescence measurements at different pH 

values for all three tracers are given in the following figure. 

 
Figure 21: Dependency of the fluorescence intensity of the pH value for a) uranine; b) tryptophan; c) humic acid; the 

highest measured fluorescence intensity was assumed as 100 %. 

Uranine fluorescence is highly influenced by the pH; the highest fluorescence intensities (FI) were 

measured at alkaline pH over 10, as also described in Käss (2004). Tryptophan also shows higher 

FI at alkaline pH, but the fluorescence is more or less constant in the pH range between 5 and 8 

(Sun et al., 2010). The influence of the pH is also visible for humic acid, which shows higher 

fluorescence at alkaline values but is also more or less constant in the range 6 to 8. During the 

investigation period, the spring water had constant pH between 7.8 and 8.0. 
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4.3 Results and Discussion 

4.3.1 Comparison of field and laboratory measurements 

A comparison of the measured uranine concentrations with the LS55 and the FF gives a satisfying 

consistency, with an R² of 0.995 and a = 0.960 (Appendix 1a). For tryptophan, comparison of the 

measured concentrations with the Aqualog in the laboratory and the FF shows an R² value of 0.98 

and a = 1.003 which also indicates a satisfying consistency (Appendix 1b). For humic acid, 

comparison between the laboratory and on-line measurements indicate a good performance of the 

FF with an R² of 0.97 and a = 0.995 (Appendix 1c), slightly lower than for uranine and tryptophan. 

The measurement of an uranine sample with the Aqualog produced an EEM that reveals the 

maximum fluorescence at ex 490 nm and em of 515 nm (Fig. 22a). The EEM scan also shows a 

secondary fluorescence maximum at ex 320 nm (Fig. 22a). 

The produced EEM spectrum for Tryptophan shows a clearly identifiable peak at ex between 270 

and 280 nm and em between 330 and 370 nm (Fig. 22b), which is very similar to other studies 

(e.g. Fellman et al., 2010; Coble, 1996). 

The produced EEM spectrum for humic acid sodium salt shows more than one identifiable peak 

(Fig. 22c). The excitation and emission wavelengths where the peak was identified in this study 

with the Aqualog were ex 320-350 nm and em 400-480 nm (according to Coble, 1996 and 

Parlanti et al., 2000). To identify the humic acid with the FF, the channel for amino G acid was 

used, which is at a similar wavelength than the one used from the EEMs. 

 

Figure 22: a) EEM spectra of uranine recorded with the Aqualog, which shows ex and em of the main and secondary 

uranine fluorescence peak; b) EEM spectra of tryptophan which shows the main tryptophan fluorescence peak; c) EEM 

spectra of humic acid. 

4.3.2 BTCs and obtained transport parameters 

To obtain high-resolution results, the breakthrough curves (BTCs) for all test series (mean- to 

high-flow, low- to mean-flow and low-flow) were produced from the FF data that were also used 
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for modeling. During mean- to high-flow, uranine was first detected 22 min after the injection 

and reached a maximum of 20.1 µg/L after 32 min (Fig. 23a). The BTC shows a second peak after 

63 min with a concentration of 4.2 µg/L. The total recovery was 74 % which indicates that the 

monitored spring is the major outlet of the system, but infiltration into deeper parts of the aquifer 

also occurs. This conclusion is supported by other tracer tests performed in this system (Goeppert 

and Goldscheider, 2019). 

An explanation of the observed multi-peaks and tailing effects could be different flow-paths with 

different lengths, dispersivities, and flow velocities (Goldscheider et al., 2008). The overflow 

spring (Fig. 1b), which is only active during high-flow conditions at the main spring (>25 L/s), 

indicates the existence of at least a secondary flow path.  

The observed BTC for tryptophan (Fig. 23b) has an almost identical shape compared to the 

uranine BTC. Tryptophan was first detected 22.5 minutes after injection and reached a maximum 

concentration of 80.4 µg/L after 32 minutes. Again, the BTC shows a second peak after 62.5 

minutes with a concentration of 15.3 µg/L. The calculated total recovery of tryptophan was 

70.6 %, slightly lower than for uranine.  

Although the recovery rates of uranine and tryptophan are comparable, additional processes in 

the aquifer, such as degradation and sorption, can occur. Some studies found for example, that 

bacteria were able to degrade aromatic amino acids (Janke, 1950; Aklujkar et al., 2014), which 

might be a possible explanation for the slightly lower recovery, although it is quite unlikely that 

these processes occur in the investigated system because of the short transit times, high flow 

velocities, and short distances. 

The BTC of humic acid again shows two distinct peaks: the first occurs after 33 min with a 

maximum concentration of 1373.0 µg/L, while the second peak was recorded after 78 min with a 

concentration of 218.4 µg/L (Fig. 23c). This is a delay of about 15 min compared to uranine and 

tryptophan. The shape of the first peak is similar to uranine and tryptophan, while the second peak 

is flatter and wider compared to the other two tracers. The total recovery of humic acid is 76 %, 

which is slightly higher compared to uranine and tryptophan. 
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Figure 23: Breakthrough curves (BTCs) of the tracer a) uranine, together with the recovery and the modelled BTC for 

both peaks and the wrapped curve; b) tryptophan, together with the recovery and the modelled BTC for both peaks and 

the wrapped curve, c) humic acid, together with the recovery and the modelled BTC for both peaks and the wrapped 

curve. Concentrations are normalized [c/M]. 

The second test series was conducted in the same system during low-flow conditions. The results 

show BTCs for all three tracers with only one identifiable peak (Fig. 24) which show a more 

pronounced tailing compared to the BTCs observed during high-flow conditions. The modelling 

for these BTCs was done with a two – region nonequilibrium model (2RNE). 
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Figure 24: Breakthrough curves (BTCs) during low-flow conditions of a) uranine; b) tryptophan; c) humic acid, each 

time together with the recovery and the modelled BTC. 

During low-flow, uranine was first detected 59.5 min after the injection and reached a maximum 

of 24.8 µg/L after 89 min (Fig. 24a). These observed time values are 2.7 times higher compared 

to high-flow conditions. The total recovery was 60.8 % which is lower than during high-flow and 

also indicates that the monitored spring is the major outlet of the system, but infiltration into 

deeper parts of the aquifer also occurs. 
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The observed BTC for tryptophan (Fig. 24b) has an almost identical shape compared to the 

uranine BTC. Tryptophan was first detected 60.5 minutes after injection and reached a maximum 

concentration of 99.2 µg/L after 90.5 minutes. This is again 2.7 times more compared to low-flow 

conditions. The calculated total recovery of tryptophan was 59.7 %, slightly lower than that for 

uranine.  

The recovery rates of uranine and tryptophan are also comparable during low-flow conditions, 

but additional processes in the aquifer, such as degradation and sorption, can occur and cannot be 

excluded. Compared to high-flow conditions, the transit times are higher and the resulting flow 

velocities are lower. 

The BTC of humic acid shows a similar shape compared to uranine and tryptophan (Fig. 24c). 

Humic acid was first detected 65 min after injection and the peak occurred after 92.5 min with a 

concentration of 1885 µg/L. This is a slight delay compared to uranine and tryptophan. The total 

recovery of humic acid is 60.5 %, which is in a similar range as the other two tracers. The 

partitioning coefficient  is between 0.77 for uranine and 0.68 for humic substances. This means 

that between two-thirds and three-quarters of the water can be considered as mobile.  

A third tracer test was conducted with uranine and tryptophan during low- to mean discharge 

conditions (14.5 L/s and 14 L/s respectively). The BTCs show only one peak with a similar shape 

compared to the curves obtained during low-flow conditions. The obtained values for uranine and 

tryptophan are also comparable. The BTCs, modelled BTCs, recovery rates and the corresponding 

data are given in Appendix 2 and Table 2.  

Table 2 gives an overview of all parameters obtained from the three tracer tests.  

During mean- to high-flow conditions, the time of first detection (t1), tp and the corresponding 

vmax and vp for the first tracer peak, are comparable for all three tracers. The modelled parameters 

v, t0 and longitudinal dispersion (D) were determined for both peaks for the conservative tracer 

uranine. The retardation factor was set to 1.0. The determined values for v and t0 for uranine were 

used as fixed input parameters for the modelling of the other two tracers. While the mean transit 

time is comparable for uranine and tryptophan, the mean transit time for the second peak of humic 

substances is about 20 % higher compared to the other two tracers. The modelled retardation 

factor for the secondary humic acid peak is 1.5 compared to uranine (1.0 = no retardation). 

During low-flow conditions, t1, tp and the corresponding velocities vmax and vp are comparable for 

all three tracers with a slight delay and slighty lower velocities for humic substances. To 

determine retardation, the same procedure as during high-flow was applied. Compared to uranine 

and tryptophan, a retardation factor of 1.11 was determined for humic substances. 
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Retardation processes seem to have no influence on tryptophan because the modelled retardation 

factor is also 1.0 for both peaks during high-flow and for the BTC during low-flow (like the 

conservative uranine). Retardation seems to have a larger influence on the humic acid tracer, 

especially on the second peak during high-flow but it is also visible during low-flow.  

Because uranine can be considered as an almost ideal conservative tracer, the slower transport of 

humic acid can be attributed to a reactive transport behaviour of the humic substances. For these 

kinds of substances, adsorption and desorption processes are of particular importance. Because 

of the higher flow velocities in the main flow path during mean- to high-flow (one major conduit), 

these factors are almost negligible. Factors influencing the retardation are different surface 

conditions and different properties of the aquifer material (Aklujkar et al., 2014), which play a 

more important role in the secondary flow path, which is longer, more diffuse and the transport 

occurs slower.  

The blurrier peak in the EEM spectrum of humic acid apparently also leads to a more blurred 

signal in the FF, which might also influence the shape of the humic acid BTC. The tracers uranine 

and tryptophan produce a clear fluorescence signal which can be seen in the smooth BTCs of 

these two tracers (Fig. 3a and b). In comparison to this, the humic acid FF signal is associated 

with a certain degree of variation, especially at lower concentrations. 
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Table 7: Overview of the obtained and calculated transport parameters for all three test series. Bold numbers indicate fixed values during modelling. * BTCs and modelled BTCs are shown in 

Appendix 2. 

   mean- to high-flow (ADM/MDM) low- to mean-flow* (2RNE) low-flow (2RNE) 

      Uranine Tryptophan Humic acid Uranine Tryptophan Uranine Tryptophan Humic acid 

  symbol unit 1st Peak 2nd Peak 1st Peak 2nd Peak 1st Peak 2nd Peak      

Experimental conditions      
  

   

Injection quantity M g 1.0 4.0 80.0 0.8 3.2 0.8 3.2 65 

Spring discharge Q L/s 30 31 29 14.5 14.0 8.5 7.5 7.5 

Basic parameters      
  

   

Time of first detection t1 min 22.0 22.5 23.0 57.5 58.0 59.5 60.5 65.0 

Peak time tp min 32.0 63.0 32.0 62.5 33.0 78.0 81.5 81.5 89.0 90.5 92.5 

Peak concentration Cp µg/L 20.1 4.2 80.4 15.3 1372.9 218.4 20.8 101.0 24.8 99.2 1885 

Normalized peak concentration Cp/M m-3 0.020 0.004 0.020 0.004 0.017 0.003 0.038 0.032 0.031 0.031 0.029 

Maximum velocity vmax m/min 10.7 10.4 10.2 4.1 4.1 3.9 3.9 3.6 

Peak velocity vp m/min 7.3 3.8 7.3 3.8 7.1 3.0 2.9 2.9 2.6 2.6 2.5 

Recovery R % 73.9 70.6 76.1 69.1 67.8 60.8 59.7 60.5 

Modelled parameters               
  

      

Coefficient of determination R² - 0.98 0.98 0.96 0.98 0.98 0.99 0.99 0.99 

Mean flow velocity v m/min 7.0 3.5 7.0 3.5 7.0 3.5 2.6 2.6 2.4 2.4 2.4 

Mean transit time t0 min 33.6 67.1 33.6 67.1 33.6 67.1 90.4 90.4 97.9 97.9 97.9 

Partitioning coefficient  - - - - - - - 0.83 0.81 0.78 0.76 0.70 

Transfer coefficient  - - - - - - - 1.05 1.01 1.12 1.06 1.01 

Longitudinal dispersion D m2/min 15.7 23.7 15.7 23.7 15.7 23.7 6.2 6.2 5.0 5.0 5.0 

Retardation factor Rf - 1.00 1.00 1.00 1.00 1.03 1.48 1.00 1.00 1.00 1.00 1.11 
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4.4 Conclusion 

Given the importance of real time water quality indicators, many studies use tryptophan as fecal 

indicator (e.g. Sorensen et al., 2015; Frank et al., 2018) and humic substances as contaminant 

vector. There is the need to enhance the knowledge about the transport behaviour of these two 

substances.   

In this study, we conducted three tracer tests in a karst experimental site, where we compared the 

transport of tryptophan and humic acid with the conservative tracer uranine. The main conclusions 

can be summarized as follows: 

 Tracer test results show that modern online field fluorometers can be used to measure 

fluorescence of tryptophan and humic acid in near real-time and in high resolution.  

 The transport parameters obtained for the conservative tracer uranine and tryptophan, 

especially the flow velocities, transit times, and dispersion, are almost identical. The 

recovery rates of uranine and tryptophan are also comparable. All three tracer tests 

indicate that no reduction or retardation occurs in the investigated flow system for 

dissolved tryptophan.   

 However, humic acid is transported slower compared to uranine and tryptophan. 

Therefore, the calculated and modelled transport parameters of humic substances are 

different. In this case, retardation occurs. The retardation factors for humic substances 

(between 1.1 and 1.5 in our study) indicate that sorption processes have a distinct 

influence on humic substances.  

The tracer test also led to a better understanding of the investigated aquifer. During mean- to high-

flow conditions, the breakthrough curves of all three tracers show two clearly identifiable peaks, 

which indicate at least two flow paths. This was also verified with subsequent tracer tests 

conducted in this system and is dependent on the discharge of the spring. At low-flow conditions 

only one flow path is active and the resulting BTCs have only one peak. 

The observed and calculated transport parameters (residence time, mean flow-velocity, 

retardation) in the investigated system, lead to the conclusion that tryptophan behaves like a 

conservative tracer without retardation and reduction, at least in fast-flowing karst aquifer 

systems. On the other hand, this study also shows that humic substances underly no reduction in 

fast-flowing areas, but reduction and retardation occur in slower flow-paths.  

Therefore, these results can contribute to a better and quantitative interpretation when these two 

substances are used as fecal and contamination indicators. 
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Chapter 5 

5 Improved understanding of dynamic water and mass 

budgets of high alpine karst systems obtained from 

studying a well defined catchment area 

 

Reproduced from: Frank, S., Goeppert, N., Goldscheider, N. (2020) Improved 

understanding of dynamic water and mass budgets of high alpine karst systems obtained 

from studying a well defined catchment area, Hydrological Processes, submitted. 

 

Abstract 

Large areas of Europe, especially in the Alps, are covered by carbonate rocks and in many alpine 

regions, karst springs are important sources for drinking water supply. Because of their high 

variability and heterogeneity, the understanding of the hydrogeological functioning of karst 

aquifers is of particular importance for their protection and utilization. Climate change and heavy 

rainfall events are major challenges in managing alpine karst aquifers which possess an enormous 

potential for future drinking water supply. In this study, we present research from a high alpine 

karst system in the UNESCO Biosphere Reserve Großes Walsertal in Austria, which has a clearly 

defined catchment and is drained by only one spring system. Results show that (i) the investigated 

system is a highly dynamic karst aquifer with distinct reactions to rainfall events in discharge and 

electrical conductivity; (ii) the estimated transient atmospheric CO2 sink is about 270 t/a; (iii) the 

calculated carbonate rock denudation rate is between 23 and 47 mm/1000a and (iv) the rainfall-

discharge behavior and the internal flow dynamics can be successfully simulated using the 

modelling package KarstMod. The modelling results indicate the importance of matrix storage in 

determining the discharge behavior of the spring, particularly during low-flow periods. This 

research can contribute and initiate a better understanding and management of alpine karst 

aquifers under conditions of climate change. 
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5.1 Introduction 

Carbonate rocks, representing potential karst aquifers, cover about 15% of the world’s land 

surface (Goldscheider et al., 2020) and karst water resources are important for the drinking water 

supply of approximately 750 million people worldwide (Stevanović, 2018). In Austria, 25% of 

the land surface is covered by carbonate rocks (Chen et al., 2017), but over 50% of the population, 

including large cities like Vienna, Salzburg and Innsbruck, depend on drinking water from alpine 

karst aquifers (Kralik, 2001).  

High-alpine karst aquifers offer a high potential for future water supply. Karst aquifers have 

complex and original characteristics, which make them different from other aquifer types 

(Bakalowicz, 2005) and often very vulnerable to contamination, especially after rain events, 

because recharge occurs directly through dolines, fissures or swallow holes. Consequently, karst 

springs often show strong and rapid variations in discharge and water quality in response to rain 

events (Pronk et al., 2007). 

The complex hydrogeological behavior of karst aquifers results from the complex interaction of 

many geological and hydrological variables as the evolving porosity and permeability of 

carbonate rocks, which are the result of chemical interaction of the carbonate rocks and water 

flowing through them. The water flow is important for the aquifer development, because this flow 

serves as primary transport mechanism in the dissolution of carbonate rocks (Petalas et al., 2018).  

Several studies have been conducted in order to understand and describe the hydrogeological 

functioning of karst aquifers and the complex behaviors of karst springs (e.g. Birk et al., 2004; 

Goldscheider, 2005b; Liñán Baena et al., 2009; Vigna and Banzato, 2015; Filippini et al., 2018). 

Because springs in this environment are often directly related to precipitation and recharge in the 

catchment, especially shallow and fast flow karst systems can be investigated by means of tracer 

tests and hydrograph and chemograph analysis (Hilberg and Kreuzer, 2013). Another important 

process, which is often described in the literature (e.g. Martin and Dean, 2001; Frank et al., 2019), 

is the interaction between karst conduits and the surrounding matrix. This process is important, 

as the matrix can act as a water storage, particularly during dry periods. Nevertheless, a qualitative 

and quantitative description of this process is rare. Within this study, this process was investigated 

for the investigated karst system in Austria and its importance during low-flow conditions is 

shown. 

In addition to the already complex behavior of karst systems, climate change is a challenge in 

managing such alpine karst aquifers. The understanding of the functioning of these complex karst 

aquifers is important for the utilization and protection of karst springs, particularly in high alpine 

regions.  
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Models of karst aquifers can provide valuable information about the functioning of the aquifer. 

Many models were applied to alpine karst aquifers (e.g. Hartmann et al., 2012; Dobler et al., 2013; 

Chen and Goldscheider, 2014). Distributed karst models discretize the karst system in two- or 

three-dimensional grids and require the assignment of characteristic hydraulic parameters and 

system states to each grid cell (Hartmann et al., 2014). Lumped approaches conceptualize the 

physical processes at the scale of the whole karst system without modeling spatial variability in 

detail (Hartmann et al., 2014). Such reservoir models usually have a quite simple structure and 

are well suited to simulate the relation between input (rainfall) and output (discharge at the 

spring). These models can not only contribute to a better understanding of the aquifer but also 

provide a valuable tool to manage these aquifers in regard to climate change.  

To predict future climate change and its consequences, it is also crucial to quantify the sources 

and sinks of the greenhouse gas CO2. Carbonate rock weathering (both dissolution and 

reprecipitation of carbonate) plays an important role, especially in karst areas (e.g. Hartmann, 

2009; Liu and Zhao, 2000).   

Within this study, we investigated a high alpine karst system in Vorarlberg, Austria, which has 

only one spring as major outlet and very clear catchment boundaries. Such hydrological systems 

are quite rare but scientifically valuable for water- and mass balance calculations that can then be 

transferred to other hydrogeological systems with less clear boundaries.  

This study aims to provide new insights into the dynamics of high-alpine karst systems using a 

well-defined catchment as study area. The possible atmospheric CO2 sink for the studied karst 

system was calculated according to the hydrochem-discharge method of Liu and Zhao (2000). In 

addition, the denudation rates for carbonate rocks in the investigated system were calculated and 

compared to values from other studies and finally, the KarstMod modelling package (Mazzilli et 

al., 2017) was used to simulate the rainfall-discharge behavior during a time period not affected 

by snowmelt. The modelling results were also used to assess the internal flows within the karst 

aquifer and to demonstrate the importance of the matrix for water storage in low-flow periods. 

5.2 Materials and Methods 

5.2.1 Study Area 

The alpine study site Disnergschroef (Figs. 25 and 26) is located in the UNESCO Biosphere 

Reserve Großes Walsertal in the federal state of Vorarlberg in Austria (Fig. 26a). The study site 

receives the highest precipitation amounts in Austria. According to Werner (2007) the mean 

annual precipitation in the Disnergschroef area is between 2100 mm and about 2700 mm in the 

peak areas. Precipitation data from gauging stations at Koerbersee (1675 m a.s.l.), Sonntag/Stein 
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(1750 m a.s.l.) and Formarinalpe (1880 m a.s.l.), which are located west, east and southeast of the 

study area, confirm the precipitation variations. Highest precipitation rates are during the summer 

months, while lowest rates are measured during winter. 

 
Figure 25: Overview of the Disnergschroef Karst Plateau; b) Top of the karst plateau with typical karst features, 

dolines and depressions; c) Depression in the karst plateau, where water directly enters the karst aquifer; d) View of 

the QGA spring outlets. 

The relief of the investigation area (catchment of Gadenalpe spring = QGA, Figs. 25d, 26b) ranges 

from 1400 m a.s.l. to over 2400 m a.s.l. with steep slopes and deep valleys. The Disnergschroef 

karst area (Figs. 25a, 26b) belongs to the Northern Calcareous Alps and consists of a thick Main 

Dolomite-Limestone complex (Carnian – Norian) with distinct karst features. The karst plateau 

shows no surface runoff and is characterized by dolines, depressions, shafts and small caves.  

The Main Dolomite also constitutes most of the summits surrounding the karst area. The cross 

section through the investigation area (A’-A, Fig. 26c) shows that a main fault separates the 

Triassic Main Dolomite-Limestone formation from Cretaceous and older deposits. The dolomite-

limestone formation is underlain by the Raibl Fm. which consists of dark, indurated limestone 

and slatey, impermeable marls, as well as gypsum and rauhwackes and locally overlain by 

Jurassic limestone formations. In the area below the spring outlet, the Cretaceous and older 

deposits are covered by morainic sediments (Fig. 26c). 

The spring consists of 4 main outlets very close to each other (Fig. 25d, summarized as QGA in 

the following). The point of measurement (QGA) is a few meters further downstream where the 



CHAPTER 5 

69 

individual spring outlets flow together. The springs emerge from the dolomite/limestone 

formation. 

Above 1800 m a.s.l. most of the area is sparsely covered by alpine vegetation (Fig. 25). The study 

site and the springs are only accessible in the summer month because of high amounts of snow in 

winter and due to the risk of avalanches.  

Two tracer tests, performed in July/August 2013 and July/August 2015, indicate that the whole 

karst plateau is principally drained by QGA. Two kilograms of the fluorescent tracer 

Amidorhodamine G were used for each tracer test. The injection points were located near the top 

of the Disnergschroef karst plateau at an elevation of about 2300 m a.s.l. (Fig 26b/c). The tracer 

was injected into a small stream, fed by snow melt water, which seeps into the karst aquifer a few 

meters further downstream and had a discharge of about 0.4 L/s. The injection was conducted 

after several days without rain. In total 25 springs and river locations in the Großes Walsertal 

valley and in the upper Lech valley were investigated with water samples or activated charcoal 

bags (Fig. 26b). Only one sampling location (QGA) led to positive tracer detection results in water 

samples and charcoal bags. Positive water samples were also collected further downstream 

following the small stream fed by QGA. All other water samples and charcoal bags were negative. 

This is evidence that the karst plateau is principally drained by the QGA spring system. The karst 

plateau can therefore be considered as a sort of natural lysimeter. Such an alpine system is quite 

unique and scientifically valuable because transferable detailed water and mass balances can be 

calculated. 
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Figure 26: a) Location of the study area in the federal state of Vorarlberg in Austria (basemap: World Karst Aquifer 

Map, modified after Chen et al., 2017), b) Detailed view of the study site Disnergschroef with the tracer test sampling 

locations (basemap: Land Vorarlberg – data.vorarlberg.gv.at) and c) geological cross section through the test site. 

5.2.2 Hydrological- and physicochemical data 

The QGA spring was monitored continuously from 25.07.2016 to 12.07.2019. Water level 

(precision ± 0.1 cm), water temperature (± 0.1 °C) and specific electrical conductivity (EC, 

± 1 µS/cm) were measured at 15 min intervals with a CTD sensor (Ott Hydromet GmbH, 

Kempten, Germany). Discharge measurements were undertaken using the salt dilution method 

with point injection. Water level was converted into continuous discharge using the following 
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stage (x in cm) – discharge (y in L/s) relationship, which was obtained by plotting the 

22 measured discharge values versus the corresponding water level data (polynomial regression). 

! = 1.437#$ − 8.2128#       (14) 

The obtained R² value for the polynomial regression was 0.99. 

Rainfall data were obtained from three stations Koerbersee, Formarinalpe and Sonntag/Stein. For 

this publication the mean values of the three stations were taken as representative precipitation 

values. 

Potential evapotranspiration (PET) was estimated by using the Haude method (DVWK, 1996). 

Rbc = d ∙ (M�PE − M2PE)       (15) 

M�PE = 6.11 ∙ 10( e.fg∙h Le<h)        (16) 

M2PE = i ∙ M�PE         (17) 

Where f is the Haude factor for the individual months (f = 0.25 for August, f = 0.23 for September, 

f = 0.22 for October, f = 0.20 for November) and es14-ea14 is the vapor saturation deficit of air at 

14:00 MEZ, calculated using measured air temperature (T) and relative humidity U at 14:00 MEZ. 

For this calculation, the air temperature and humidity data of the station Koerbersee were taken 

as humidity data were only available from this station. 

To estimate the contribution of carbonate rock weathering to the atmospheric CO2 sink, the 

hydrochem-discharge method was employed (Liu and Zhao, 2000). The flux (F) of the 

atmospheric CO2 consumed in carbonate rock weathering can be estimated by: 

. = P
$ ∙ jk�lm
n ∙ o ∙ @pq @rpqLs       (18) 

Where [HCO3
-] is the HCO3

- concentration in water, MCO2 and MHCO3- are the respective molecular 

weights, Q is the discharge and ½ means that only half of the carbon in solution is from 

atmospheric CO2 (Liu and Zhao, 2000).  

Alkalinity was measured as triplicate by volumetric titration on site, using an alkalinity test 

(Merck KGaA, Darmstadt, Germany) and the mean value was taken as result. In total, 

34 alkalinity measurements were conducted in different time intervals and during different 

hydrological conditions. The 34 individual bicarbonate concentrations were plotted versus the 

electrical conductivity measured at the same time. A continuous bicarbonate time series was then 

obtained by a linear regression. 

! = 1.4743# + 20.218        (19) 
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Where y is the electrical conductivity in µS/cm and x is the bicarbonate concentration in mg/L. 

The obtained R² value for the linear regression was 0.93. 

5.2.3 Modelling with KarstMod 

The modelling platform KarstMod (Mazzilli et al., 2017) is dedicated to karstic groundwater flow 

simulation. It provides an adjustable modelling platform for discharge simulations and 

hydrodynamic analysis and can reproduce the conceptual structure of karst models known in the 

literature (e.g. Fleury et al., 2007; Butscher and Huggenberger, 2008). The model is set up as a 

two-level structure. Level 1 consists of compartment E (soil and epikarst), which represents the 

infiltration zone and is influenced by precipitation (P) and evapotranspiration (ET). The water 

flows then to the second level, which consists of compartments C (conduits), M (matrix) and L 

(highly capacitive matrix) which represent the different sub-systems of the saturated zone (Sivelle 

et al., 2019). The configuration of the KarstMod reservoir model used in this study is shown in 

Figure 3. For better realism, all output discharge is set through reservoir C and compartment L is 

not used as the investigated system is a very responsive watershed. 

 

Figure 27: Structure of the selected rainfall-discharge reservoir model. 

The modelling is based on the balance equations given by Mazzilli et al. (2017) and consists of 

compartments E, M and C. 

0t
0C = R − bc − ot@ − ot]       (20) 

0@
0C = ot@ − o@] − o@�       (21) 

0]
0C = ot] + o@] − o]�        (22) 

ot@ = ut@ × bC if bC > 0, otherwise ot@ = 0     (23) 

ot] = ut] × (bC − b^wx1�w530]) if bC > b^wx1�w530], otherwise ot] = 0 (24) 

o@� = u@� × yC        (25) 

o]� = u]� × �C         (26) 
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Et, Mt and Ct are the water levels in the Epikarst, Matrix and Conduit reservoirs. kAB is the 

recession coefficient associated with the flow from reservoir E → M, E → C, M → C and C → S. 

QAB is the discharge from A to B (e.g. E → C) and is computed by the product of QAB (e.g. QEC) 

and the total surface of the recharge area (RA). With the model configuration chosen for this study, 

the discharge at the outlet QS is given by: 

o� = z{ × o]�         (27) 

The rainfall-discharge model is calibrated using a quasi-Monte-Carlo procedure with a Sobol 

sequence sampling of the parameter space (Sobol, 1977; Mazzilli et al., 2017). The performance 

criteria in KarstMod are the Nash-Sutcliffe efficiency coefficient (NSE, Nash and Sutcliffe, 1970) 

and the modified Balance Error (BE), defined as follows: 

|}b = 1 − ∑(A~89
A9�=) 
∑(A~89
A=���)        (28) 

�b = 1 − �∑(A~89
A9�=)
∑ A~89 �       (29) 

where Qobs is the observed discharge, Qsim is the simulated discharge and Qmean is the average 

observed discharge. A NSE of 1 is a perfect match between model and observations while a NSE 

of 0 indicates that the model performs equally to the mean of the observed data. A BE of 1 means 

that the simulated discharge is equal to the observed discharge. The KarstMod platform uses an 

aggregated objective function defined as the weighted sum of the two performance criteria 

(Baudement et al., 2017) according to equation: 

�56� = �|}b + (1 − �)�b       (30) 

With Wobj as the objective function and w as the weight defined by the user (0 ≤ w ≤ 1). In this 

study we used w = 0.9. KarstMod proposes to use the simulation results from all parameter sets 

with a Wobj > 0.7 to evaluate the uncertainty of the simulation results. This approach is derived 

from the Regional Sensitivity Analysis (Hornberger and Spear, 1981) and the Generalized 

Likelihood Uncertainty Estimation (Beven and Binley, 1992).  

In the model, three periods must be taken into account, the warm-up, calibration and validation 

periods. The warm-up period corresponds to the time interval after which the initialization bias is 

deemed to be negligible (Baudement et al., 2017). The simulation results of this period are not 

considered for the calibration.  

For this study, time periods during summer and autumn (August – November, August – October), 

which are not influenced by snowmelt, were chosen for three consecutive years (2016 – 2018) for 

modelling in order to simulate the rainfall-discharge behavior and the internal flows within the 

karst aquifer as a reaction to rainfall events. 
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A sensitivity analysis was also carried out. Indices are calculated using the Sobol procedure as 

described in Saltelli (2002). The sensitivity index Si for parameter Xi with respect to the simulated 

discharge QS is defined as the fraction Vi of the variance V (QS) of the simulated discharge, which 

is due solely to the parameter Xi (Baudement et al., 2017). 

}/ =  �����          (31) 

The total sensitivity index STi measures the contribution of Xi to the output variance, including 

the interactions of Xi, of any order, with other input variables (Saltelli et al., 2007). By default, 

the sensitivity indices provided by KarstMod are obtained based on N = 1000 x (npar + 2) 

parameter set, where npar is the number of parameters to be calibrated (Baudement et al., 2017). 

5.3 Results and Discussion 

5.3.1 Temporal evolution of discharge, EC and bicarbonate 

During the investigation period from 25. July 2016 to 12. July 2019, the cumulative rainfall was 

6287 mm (Tab. 1). The temporal evolution of the monitored parameters discharge, electrical 

conductivity and rainfall are shown as time series in Figure 28. The hydrograph reveals distinct 

increases in response to recharge events with a delay of only a few hours, as also observed by 

many other studies of karst aquifers (e.g. Mudarra and Andreo, 2010; Vigna and Banzato, 2015; 

Frank et al., 2019). The highest discharge values, with up to 2200 L/s, were recorded after major 

rainfall events in the summer month of 2016, 2017 and 2019. Low-flow values during time 

periods without rainfall in autumn and winter are as low as 10 L/s. The mean discharge for the 

whole investigation period was 237 L/s. After each recharge period, EC rose progressively during 

the recession period until the next rainfall event. The mean EC for the whole period was 

168 µS/cm. 
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Figure 28: Time series of rainfall, electrical conductivity and discharge of the investigated spring as well as calculated 

bicarbonate concentration and bicarbonate flux. 

The bicarbonate flux of the investigated spring was obtained using the calculated continuous 

HCO3
- data and the according discharge values. The flux varies between 1 g/s and over 210 g/s 

after heavy rain events with a mean of 22.5 g/s. The exceptionally dry summer 2018 shows clearly 

the lowest discharge values and accordingly the lowest bicarbonate flux. Table 7 gives an 

overview of the previously mentioned parameters for different time periods. 
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Table 8: Overview of the values for mean discharge, mean EC, mean bicarbonate, mean bicarbonate flux and rainfall 

for different time periods. 

The mean discharge is significantly lower for the hydrological year 2017/2018 compared to the 

hydrological year 2016/2017 because of the dry summer 2018. Accordingly, the rainfall during 

the hydrological year 2016/2017 was almost 500 mm more compared to 2017/2018. The mean 

discharge during the snowmelt periods is always greater compared to low-flow periods in autumn 

and winter. The mean EC is greater during low-flow periods and accordingly the calculated mean 

bicarbonate concentration is greater during low-flow. Because discharge is always higher during 

snowmelt, the calculated mean bicarbonate flux is therefore more or less the same. An exception 

is the low-flow period from November 2018 to February 2019 because of the exceptionally dry 

summer 2018. The rainfall during the period March 2018 to June 2018 was only 389 mm while 

during the same periods in the year 2017 and 2019, the rainfall is two times higher. During this 

period in 2018, the mean discharge is as low as 20 L/s and accordingly the mean bicarbonate flux 

is also very low.  

For the time periods August – November 2016, August – November 2017 and August – October 

2018 (used for modelling and not influenced by snow melt), cross-correlations were calculated to 

compare rainfall with the discharge and EC behavior of the investigated spring (Fig. 5). Highest 

correlation was found for rainfall vs. discharge with a time lag of 5.5 hours. Negative correlations 

were calculated for rainfall vs. EC and for discharge vs. EC. The time lag for rainfall vs. EC is 

8.5 hours while the time shift for discharge vs. EC is 3.0 hours. This means that discharge starts 

to rise 5.5 hours after the rain event and EC starts to decrease about 8 h after the rain event. The 

time lag between increase of discharge and decrease of EC likely results from a hydraulic pressure 

pulse, also known as piston effect (Ravbar et al., 2011). These results also coincide with the results 

obtained from the tracer tests, where time of first detection was 8.5 hours after the injection. 

 

Time 
mean discharge              

[L/s] 

mean EC                    

[µS/cm] 

mean HCO3
-                     

[mg/L] 

mean HCO3
- - flux                   

[g/s] 

sum rainfall                     

[mm] 

total period 237 168 100 22.5 6284 

hydrological year (Nov. 16 – Oct. 17) 335 166 99 38.0 2218 

hydrological year (Nov. 17 – Oct. 18) 164 159 94 14.0 1759 

low-flow (Nov. 16 - Feb. 17) 137 194 118 24.4 403 

low-flow (Nov. 17 - Feb. 18) 197 160 95 18.4 839 

low-flow (Nov. 18 - Feb. 19) 20 186 113 2.2 749 

snowmelt (March 17 - June 17) 371 158 94 33.9 706 

snowmelt (March 18 - June 18) 205 145 85 14.9 389 

snowmelt (March 19 - June 19) 254 179 108 18.4 623 
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Figure 29: Cross correlation between time series of rainfall, discharge and electrical conductivity (for the same time 

periods that were used for modelling. There is a slight time lag of a few hours between each correlation. 

5.3.2 Denudation rates and carbonate rock weathering 

By using hydrochemical and discharge data, the flux of atmospheric CO2 consumed in carbonate 

rock weathering can be estimated using formula 5. The CO2 sink was calculated for different time 

periods, given in Table. 2. During the three investigated low-flow periods (November 2016 – 

February 2017, November 2017 – February 2018, November 2018 – February 2019) the CO2 sink 

varies between 3.7 and 31.3 t a-1 km-2. The very low value of 3.7 t a-1 km-2 is again related to the 

very dry summer 2018. Accordingly, the estimated transient CO2 sink for the investigated karst 

plateau is between 25.2 and 212.8 t a-1 during low-flow. For the snowmelt periods (March 2017 

– June 2017, March 2018 – June 2018 and March 2019 – June 2019) the CO2 sink varies between 

29.1 and 58.3 t a-1 km-2. Again, the lowest value is related to the dry summer 2018. For the whole 

karst plateau, the transient CO2 sink is between 197.9 and 396.4 t a-1. during snowmelt. For the 

whole investigation period, the calculated atmospheric CO2 sink is 39.7 t a-1 km-² which means 

270 t a-1 for the entire karst plateau. 

Table 2 gives an overview of the relevant parameters for the calculation of the CO2 sink. 

These values show that the investigated karst system contributes to the atmospheric CO2 sink, at 

least on relatively short time scales. 

 

 

 



CHAPTER 5 

78 

Table 9: Relevant parameters and the calculated CO2 sink. For comparison, values for the Tsanfleuron-Sanetsch area 

(mean values for one hydrological year, Zeng et al., 2012) and South China and North China (Liu & Zhao, 1999) are 

given. 

Test site Time period  
Area            

[km²] 

HCO3
- concentration           

[g/L] 

runoff module                 

[L s-1km-2]  

atmospheric CO2 sink                      

[t a-1km-2] 

Disnergschroef (A) 

total period 6.8 0.100 34.9 39.7 

hyd. year (Nov. 16 – Oct. 17) 6.8 0.099 49.3 55.5 

hyd. year (Nov. 17 – Oct. 18) 6.8 0.094 24.1 25.8 

Nov. 16 - Feb. 17 6.8 0.118 20.1 27.0 

Nov. 17 - Feb. 18 6.8 0.095 29.0 31.3 

Nov. 18 - Feb. 19 6.8 0.113 2.9 3.7 

March 17 - June 17 6.8 0.094 54.6 58.3 

March 18 - June 18 6.8 0.085 30.1 29.1 

March 19 - June 19 6.8 0.108 37.4 45.9 

Other studies of the atmospheric CO2 sink in alpine regions also found that the CO2 sink is about 

four times higher in the melting season compared to the freezing season, because the effect of 

higher flow rates overrides the effect of lower bicarbonate concentrations (Zeng et al., 2012). Our 

study also shows higher values during the melting season but approximately only two times higher 

compared to low-flow periods. Other studies also showed that CO2 consumption by chemical 

weathering is highly sensitive to climate change, especially to changes in precipitation, 

temperature and runoff patterns (Hartmann, 2009), which is especially important for the alpine 

region and can be seen during the dry summer period in 2018 in this study. 

In addition to the CO2 sink, the denudation rates for calcite and dolomite in the investigated 

system were also calculated, assuming that pure calcite and pure dolomite occur as a mixture in 

the aquifer. The denudation rate is considered as the rate of lowering of a karst surface due to the 

chemical dissolution of bedrocks (Gabrovšek, 2009). Kaufmann and Braun (2002) showed that 

denudation processes result in a landscape evolution almost twice as effective as the purely 

erosional evolution of an insoluble landscape. Denudation rates depend on climatic, lithological 

and structural factors (Gabrovšek, 2009). Input parameters are the mean Ca2+ concentration (15 

individual measurements) with 21.1 mg/L and the mean Mg2+ concentration (15 individual 

measurements) with 9.9 mg/L. The denudation rates were calculated for the hydrological year 

2016/2017 and for the hydrological year 2017/2018. The assumed runoff was 335 L/s (2016/2017) 

and 164 L/s (2017/2018) respectively and the recharge area is 6.8 km². The density of pure calcite 

is 2.7 t/m³ and 2.9 t/m³ for pure dolomite.  

Approximately 126 t/a of calcite are removed from the system by dissolution, which equals a 

calcite denudation rate of 6.9 mm/1000 years. Some 794 t/a of dolomite are removed from the 

system annually, which means a denudation rate of 40.2 mm/1000 a. In total, the calculated 

denudation rate for the carbonate rocks in the investigated system is therefore 47.1 mm/1000 a, 

calculated with values of the hydrological year 2016/2017. With values of the following 
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hydrological year, 62 t/a of calcite and 389 t/a of dolomite are removed from the system, which 

equals a denudation rate of 3.4 mm/1000 a for calcite and 19.7 mm/1000 a for dolomite. In total, 

the denudation rate for carbonate rocks is 23.1 mm/1000 a.  

The main factors affecting denudation rates are climate (infiltration, temperature and the amount 

of CO2 available) and lithology (Dreybrodt, 1988; Appelo and Postma, 2005; Gabrovšek, 2009). 

The denudation rates, calculated in other studies, vary between 4 and 193 mm/1000 a (Fig. 30). 

 

Figure 30: Relation between denudation rate of carbonate rocks and runoff. Data from Bakalowicz (1979), Gams 

(2004), Gunn (1981), Kunaver (1979), Plan (2005), Yoshimura & Inokura (1997), White (1984). 

The relation between the denudation rate of carbonate rocks and runoff (Fig. 30) clearly reflects 

the sensitivity of denudation and carbonate rock weathering from the runoff change. The larger 

the runoff, the more intensive is the carbonate rock weathering and denudation. The calculated 

values from the investigated system are about 40 to 60 % lower compared to expected values 

(Fig. 30). The reason for that might be either the quite low mean annual temperature in this area 

or the general geological situation. The rocks in the study area are described as dolomite/limestone 

formation while the majority is less soluble dolomite. 

5.3.3 Modelling Results with KarstMod 

The model has been calibrated and validated for the outlet of the karst plateau (QGA) using hourly 

data for discharge and rainfall. The observed and modelled discharge together with the rainfall 

during the investigation period are given in Fig. 31a and 31c. Time periods not influenced by 

snowmelt were chosen (August-November 2016 and 2017, August – October 2018), in order to 
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reduce the uncertainty of the model introduced by snowmelt and to simulate the direct reaction to 

rainfall events. 

 

Figure 31: a) Rainfall during the investigation periods in 2016, 2017 and 2018, together with b) the internal flows 

between the different compartments and c) observed and simulated discharge values for the respective time period. 

According to the performance criteria (Tab. 9) and the shape of the simulated discharge curve, 

the model shows a good fit to the observed data. The NSE is 0.83 for the calibration period and 

0.76 for the validation period. The BE is close to 1 for both, the calibration period and the 

validation period. The objective function gives values of 0.85 for the calibration period and 0.79 

for the validation period. These performance values are similar to those from other studies using 

KarstMod (e.g. Baudement et al., 2017; Poulain et al., 2018; Sivelle et al., 2019). 

The optimum value determined for the recharge area is 6.9 km². This modelling result confirms 

the delineation of the recharge area by geographical and geological information (6.8 km², see 

Fig. 2b) and also demonstrates that the karst system is mainly drained by the investigated QGA 

spring. 

Table 10: Performance of the model for calibration and validation period (NSE = Nash Sutcliff Efficiency, 

BE = Balance Error, Wobj = Objective function). 

Performance criteria Calibration period Validation period 

NSE 0.83 0.76 

BE 0.99 0.99 

Wobj = 0.9NSE + 0.1BE 0.85 0.79 

All simulations (10000) with a performance criteria Wobj > 0.8 are graphically represented in 

figure 8. For each parameter calibrated, a scatterplot of the values of the objective function 
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(calibration period) against the values of the parameter is given. Based on a equifinality analysis, 

these plots show that the model has found an optimum for the calibration. The parameter set 

associated with the highest performance criteria was kept and used to draw the simulated 

discharge curve given in figure 31. 

 

Figure 32: Analysis of the sensitivity of the input parameters of the rainfall-discharge model with a Monte-Carlo 

procedure. Wobj = objective function. The best fit with the objective function chosen is marked with a red dot and the 

respective value is given for each parameter. 
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In addition, table 10 gives the first-order and total-effect sensitivity indices. The total-effect index 

indicates the overall sensitivity of the model performance (assessed by the objective function) to 

the parameters, within the previously user-defined range of variations. The most sensitive 

parameters are kMC, RA and kEC, while the least sensitive parameters are kEM and kCS. 

Table 11: Sensitivity indices (first-order index and total-effect index). 

Parameter first-order index (Si) total-effect index (STi) 

kMC 0.58 0.66 

RA 0.08 0.16 

kEC 0.11 0.15 

kEM 0.08 0.10 

kCS 0.07 0.07 

Considering the internal flow dynamics of a karst aquifer is important to quantify potential 

pollution but also to predict and manage spring discharge scenarios regarding climate change. 

Figure 7b gives an overview of the internal flows between the different compartments of the 

KarstMod model.  

The flow from compartment E (epikarst) to compartment C (conduit) is highly variable, 

depending on the input signal (rainfall). The highest internal flow with the highest variability (also 

depending on the input signal) occurs between E and M (matrix). Internal flow from M to C is 

more or less constant for the whole investigation period with only slight increases directly after 

rainfall events, when the whole water level in the system rises. The matrix acts as a buffer and a 

storage for water and slowly releases the water into the conduits and thence to the spring 

(Fig 31b). Matrix storage is therefore particularly important for the discharge of the spring during 

low-flow periods (baseflow).  

This modelling result also matches the geological setting in the investigated system, where the 

Main Dolomite-Limestone formation is several hundred meters thick and outlines the importance 

of the matrix-storage for the whole aquifer. 

A conceptual model of the internal flow dynamics inside the investigated system is given in 

Figure 33. 

Other models of karst aquifers (e.g. Chen and Goldscheider, 2014; Baudement et al., 2017; Lončar 

et al., 2018) also show that the resulting hydrographs are composed of rapid-flow and slow-flow 

components (baseflow, M→C) as described by, for example, Ford and Williams (2007). Different 

amounts of internal flows in other studies are presumably the result of different structures 

(lithology, thickness etc.) of the respective aquifers. 
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Figure 33: Conceptual model of the flow dynamics inside the investigated karst aquifer. E→C = flow from compartment 

E to C, E→M = flow from compartment E to M and M→C = flow from compartment M to C and spring discharge. 

5.4 Conclusion 

With these investigations in a high alpine karst system with a clearly defined catchment, we 

obtained new and improved knowledge about the dynamic water and mass balances of alpine 

karst systems.  

Tracer tests show that the investigated karst plateau has only one major spring as outlet. The 

surface catchment area of this spring is about 6.8 km² which was also confirmed by the KarstMod 

model (6.9 km²).  

While the observed discharge values show a rapid and marked increase after rainfall events, the 

recorded specific electrical conductivity values decrease accordingly. Measured and calculated 

bicarbonate values react the same way to rainfall events as EC. The bicarbonate-EC relation 

illustrates that bicarbonate is the major anion as the karst system consists of a mixture of limestone 

and dolomite. The calculated bicarbonate flux at the investigated spring QGA varies between 1 

and over 210 g/s.  

The calculated value for the atmospheric CO2 sink for the Disnergschroef area is 39.7 t a-1 km-2 

(mean value for the whole investigation period). This value is lower compared to areas with pure 

limestone outcrops e.g. in southern and northern China. However, there is still a significant 

contribution of carbonate rock weathering to the transient atmospheric CO2 sink in the study area. 

Results of this study also show that the melting period contributes more to the CO2 sink then low-

flow conditions, because the higher discharge overrides the lower bicarbonate concentrations as 
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also shown by Zeng et al. (2012). Nevertheless, future research is needed to evaluate the effect of 

the CO2 sink in longer time scales (e.g. CO2 degassing again from the river back to the 

atmosphere) or if this effect permanently removes CO2 from the atmosphere.  

The calculated denudation rate for carbonate rocks in our study site is between 23.1 mm/1000 a 

and 47.1 mm/1000 a, which is slightly lower compared to other studies of karst areas in Europe 

(e.g. Plan, 2005). The reason for this might be different climatic and geological conditions. 

Within this study, a reservoir model, based on KarstMod, has been applied to the Disnergschroef 

karst system. Based on this model, the internal flow dynamics of the karst system and the reaction 

of the system to rainfall events could be described. The simulated discharge curve shows a good 

fit to the measured discharge curve. Furthermore, the performance criteria of the model compared 

to the measured discharge values show that KarstMod is a valuable tool to simulate the discharge 

behavior of the investigated spring in response to rainfall events. The model also gives 

information about the internal flows between the different model compartments. The highest 

variability of the internal flow was observed between Epikarst and Matrix, while the flow from 

Matrix to Conduits is almost constant and is responsible for the observed baseflow at the spring. 

This demonstrates the importance of the matrix as water storage especially during dry conditions.  

Future KarstMod model applications in alpine regions should consider snowmelt periods and 

should couple runoff models with mass transport models, e.g. to simulate the CO2 sink of karst 

areas. These kinds of models and the information obtained can be of major interest for the 

management of karst springs, especially in regard to flood events occurring after heavy rainfall 

events, and also to assess the effects of climate change in alpine areas. 
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Chapter 6 

6 Conclusion and Outlook 

6.1 General Overview 

A profound understanding of karst aquifer systems is of special importance especially regarding 

the sustainable management of karst water resources. High alpine karst areas offer an enormous 

potential for future water supply, but because of the remoteness and special climatic effects, the 

understanding of the functioning of these high alpine karst aquifers is even more important for a 

proper and sustainable management. 

In this thesis, new innovative methods and approaches were applied, to characterize different  high 

alpine karst systems in the Lechquellengebirge in Vorarlberg, Austria. 

In order to study and to quantify conduit-matrix interaction, which is an often described process 

in karst systems, a high resolution hydrochemical monitoring was used. A quantitative description 

of this process was possible in the investigated system because of its special geological situation. 

By applying mixing calculations the results of this study show the importance of the matrix as a 

water storage, especially during low-flow periods. The results allow a better description of the 

aquifer behaviour during low-flow and high-flow conditions. 

A typical challenge in karst systems are the strong water quality fluctuations, especially after rain 

events. Contamination events occur because of the special characteristics of karst aquifers (high 

variability of flow and transport) as described in chapter 1. To examine the correlations between 

physicochemical parameters, particles, faecal bacteria and natural fluorescence, a high-resolution 

monitoring was conducted at two karst springs. After rainfall events two turbidity peaks and at 

the same time two peaks of the small particle fractions were observed. At the time of the secondary 

peak, a high correlation between small particles, conventional cultivation based determinations 

of faecal bacteria and tryptophan-like fluorescence was found. As a result, tryptophan-like 

fluorescence can act as a real-time indicator of E. coli and together with the analysis of the 

particle-size distribution can act as an early warning system for faecal contamination. 

In study two, tryptophan showed a good correlation to coliform and faecal bacteria, but the 

transport behaviour and transport properties were still insufficiently known. An artificial tracer 

test was conducted in a small epikarst system to compare the transport behaviour of tryptophan 

and humic acid with an almost ideal conservative tracer uranine. The breakthrough curves and 

the determined results indicate an almost identical behaviour of uranine and tryptophan, while the 

humic acid tracer showed retardation processes. 
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In chapter 5, a karst system, which has a clearly defined catchment and only one spring as major 

outlet of the whole system, was investigated. We used the software package KarstMod to 

simulated the rainfall-discharge behaviour of the investigated spring and to simulate and calculate 

the respective contributions of the conduits and of the matrix to the spring discharge. The 

modelling results indicate the importance of the matrix as a water storage, especially during low-

flow conditions. For this karst system, the hydrochem-discharge method (Liu & Zhao, 2000) was 

used, to calculate the contribution of the investigated karst system to the atmospheric CO2 sink. 

The results and the comparison to other karst areas show, that the investigated system contributes 

to the transient atmospheric CO2 sink, which is an important aspect regarding climate change. 

6.2 Perspective and Outlook 

 Refining of the hydrogeological conceptual models 

The development of hydrogeological conceptual models was necessary for all investigated karst 

aquifers in this study, to gain a proper understanding of the functioning. In all systems, natural 

tracers (e.g. stable isotopes, natural fluorescence) but also artificial tracers could help to assess 

the groundwater transit-time distribution and flow components in the respective system. The 

results could help to refine the previous developed hydrogeological conceptual models and also 

to check the results obtained from modelling. 

 Improved hydrological and hydrochemical monitoring 

The hydrochemical sampling for all investigated karst systems could be extended to longer time 

periods and especially to time periods where snow-melt occurs in order to assess and better 

understand the influence of snow melt water, especially for the matrix storage. Moreover, more 

detailed rainfall data, directly from the investigated catchments would deliver more precise input 

data, especially for the modelling procedures. Radar data of the precipitation could also be used 

after a calibration and validation with ground based weather stations. Another important factor, 

especially for modelling is the evapotranspiration, where more detailed data might especially 

improve the modelling results.  

 Improved fluorescence monitoring of natural compounds 

Current instruments allow the online monitoring of the most important natural fluorescence 

compounds at springs (e.g. GGUN-FL30, Albillia Co) which can be equipped with special optics 

e.g. for tryptophan-like fluorescence measurements. Artificial tracers (e.g. uranine) can also be 

measured in real-time with these devices. Until now, especially the sources of these natural 

fluorescence compounds in the catchments are not fully clear. A monitoring of the input water 
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e.g. at sinking streams could help to understand the development of the fluorescence compounds 

in the aquifer. 

 Using distributed karst catchment models (together with regional climate models) 

More complex, distributed karst models, could be used in the investigated systems to obtain more 

detailed spatially distributed information about the karst systems. The model, developed by Chen 

& Goldscheider (2014) which was applied to a complex folded alpine karst system in Austria 

could also be applied to the investigated karst systems in the Lechquellengebirge. For the 

prediction of the behaviour of the karst systems in the future with respect to climate change, the 

climatic input data are of special importance. As also advised by Chen (2017) precipitation and 

temperature time series should be downscaled from regional climate models to study and predict 

the dynamics of water fluxes and storages within the studied catchments. 

6.3 Transferability aspects 

The section of the World Karst Aquifer Map (WOKAM, Fig. 31) shows the high proportion of 

carbonate rocks, especially in the northern calcareous Alps. These wide areas, dominated by karst 

with similar characteristics to those investigated in this thesis, offer an enormous potential for 

future water supply but face similar challenges in terms of water quantity and quality. 

 

Figure 34: Extract of the World Karst Aquifer Map (WOKAM, Chen et al., 2017) to illustrate the appearance of karst 

areas in the European Alps. 

The applied approaches and methods used in this thesis, including tracer tests, hydrochemical 

investigations, on-site monitoring of water quality by using parameters like natural fluorescence, 

particle-size distribution and analysis of faecal indicator bacteria by using standard cultivation-
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based methods (e.g. Idexx Colisure) are valuable tools to study such alpine karst aquifers, even 

in remote areas with restricted infrastructure.  

In view of climate change and the increasing water demand in many areas, the sustainable use 

and management of karst water resources will become more important and will require more 

specific and more detailed investigations of karst aquifers.  

Some useable investigation approaches for mountaineous karst aquifers were presented in this 

thesis and are easily transferable to other mountaineous karst aquifers. The obtained information 

are valuable in order to improve the understanding of the functioning of alpine karst aquifers and 

also to improve the usage and management of these aquifers. 
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Supplementary Information 

Supplementary Material – Chapter 3 

Supplementary 1: Minimum and maximum values of TOC and peaks A, C, and T fluorescence obtained of 11 other 

karst springs in the Großes Walsertal Valley during the dry period in the sampling campaign 2015. 

Sampling        
Site 

TOC Peak A Peak C Peak T 

Min. [mg L-1] Max. [mg L-1] Min. [R.U.] Max. [R.U.] Min. [R.U.] Max. [R.U.] Min. [R.U.] Max. [R.U.] 

FQ0 0.32 0.41 0.74 0.75 0.43 0.48 0.37 0.41 

FQ1 0.40 0.46 0.74 0.80 0.46 0.48 0.41 0.45 

FQ2 0.59 0.68 0.85 0.91 0.51 0.55 0.44 0.47 

FQ3 0.62 0.70 0.88 0.89 0.53 0.54 0.43 0.45 

FBM 0.66 0.69 0.93 0.98 0.59 0.62 0.48 0.49 

FBG 0.73 0.73 0.98 1.04 0.57 0.60 0.52 0.52 

LAQ1 0.56 0.57 0.79 0.82 0.48 0.49 0.51 0.54 

LAQ2 0.47 0.57 0.84 0.88 0.49 0.56 0.46 0.48 

GA1 0.61 0.72 0.92 0.95 0.51 0.52 0.45 0.46 

GA2 0.58 0.71 0.94 1.01 0.58 0.60 0.42 0.43 

ASQ 0.45 0.47 0.80 0.82 0.44 0.48 0.39 0.40 
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Supplementary 2: Temporal evolution of Peak A, C and T fluorescence intensities of WBQ together with EC, discharge, 

turbidity and rainfall during the investigation period September 2013. The figure also shows the particle-size 

distribution of 4 different particle fractions. The particle-size distribution showed two distinct peaks for the 1.0 and 2.0 

µm fractions around 9 h and    25 h after the start of the rainfall, at the same time when two peaks for turbidity were 

observed. The fluorescence peaks A and C also correlated with the second particle peak but show a slight time shift of 

1 to 2 h. 
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Supplementary 3: Temporal evolution of Peak A, C and T fluorescence intensities of SBQ together with EC, discharge 

and rainfall during the investigation period September 2013. The figure also shows the particle-size distribution of 4 

different particle fractions. The slightly higher discharge in 2013 compared to 2015 is most probably the result of 

construction works at the overflow outlet of SBQ during spring and summer 2015. The fluorescence intensities were in 

the same range as 2015 but show a slightly slower increase after the rainfall resulting from a different sampling 

location. 
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Supplementary Material – Chapter 4 

 

Supplementary 5: a) Measured uranine concentration with the field fluorometer (FF), compared to the measured 
concentration with the LS55 in the laboratory, 1b) comparison of the measured tryptophan concentration of the FF and 
the Aqualog, 1c) comparison of the measured humic acid concentration of the FF and the Aqualog. 

 

 

Supplementary 6: a) Break through curve (BTC) of uranine and the corresponding recovery (discharge 8.5 L/s), b) BTC 
of tryptophan and the corresponding recovery (discharge 7.5 L/s). 


