

Advances in additive manufacturing of fusion materials

31st Symposium on Fusion Technology (SOFT2020) 20TH – 25TH SEPTEMBER 2020, virtual edition

Institut für Neutronenphysik und Reaktortechnik

Design, Analysis and Fabrication

<u>Heiko Neuberger</u>¹, Francisco A. Hernández¹, Michael Rieth², Simon Bonk², Ludek Stratil³, Oliver Müller⁴, Kai-Uwe Volker⁵,

- ¹ Karlsruhe Institute of Technology (KIT), Institute of Neutron Physics and Reactor Technology (INR)
- ² Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM)
- ³ Institute of Physics of Materials ASCR, Brno, Czech Republic
- ⁴ Hermle Maschinenbau GmbH, Ottobrunn, Germany
- ⁵ PHA Werkstofftechnik, Lüdinghausen, Germany

Advances in additive manufacturing of fusion materials

1) Introduction

- Institute KIT INR ٠
- Development organization for DEMO Breeder Blanket (BB)
- How to proceed from the ITER TBM towards DEMO BB ٠

2) Additive Manufacturing Technologies

- Brief Overview on technologies for metals, application of: ٠
- Selective Laser Melting \rightarrow BB internal structures ٠
- Cold Spray based AM \rightarrow First Wall

3) Strategy towards full scale BB First Wall

Within the conceptual phase \rightarrow now - 2024 and beyond ٠

4) Conclusions

About the Institute for Neutron Physics and Reactor Technology

https://www.inr.kit.edu/index.php

- Active in nuclear safety analysis, system dynamics and experiments
- In Fusion: Neutronics, Near-Plasma component development
- 10 years of experience in fabrication for fusion blankets
- Established a powerful network for key technologies (Industry + research associations)
 - \rightarrow ~ 20 competences combined
 - \rightarrow Check state of the art / compare to BB specs
 - \rightarrow identify technological limits towards BB realization
 - \rightarrow Address development needs
 - \rightarrow place development contracts to overcome technological limits

Industry		Materials	Research associations
pro beam Electron Beam welding CONTROL Thermal treatments Electrical discharge machining	Machining, Cold Spray		Institut für Angewandte Materialien (IAM)
Hans Henselinger Chemical Selective Laser Melting Chamical Surface Surface Surface	TRUMPF Laser Welding	VERISTOF- TECHNIK	
Selective Laser Melting			Institute of Physics of Materials Creck Academy Creck Academy Greek Academy

H. Neuberger, Advances in additive manufacturing of fusion materials, 31st Symposium on Fusion Technology (SOFT2020)

Development organization for DEMO Breeder Blanket (BB) for BB

- Address the fabrication developments on sub-component level
 - \rightarrow Consider welding interfaces between sub-components
 - \rightarrow Addressed welding within "conventional technologies"
 - \rightarrow Focus on structural material for HCPB Breeder Blankets, EUROFER
 - \rightarrow Presently concentrate resources on fabrication First Wall
 - → Most demanding sub-component
- Stay flexible in development, not too focused on details \rightarrow specs evolve and frequently change
- The BB shall be built at reasonable cost + acceptable reliability
- 30 years time horizon \rightarrow for sure needed \rightarrow presently many key issues are not solved
- Important: Keep up do date in manufacturing developments

\rightarrow Therefore we also address Additive Manufacturing since 2015

State of the art in fabrication of fusion devices reflected by ITER

- First Wall (a) ...
- ... Internal structures e.g. Cooling/Stiffening Plates (b)
- Demonstrated in TBM relevant scale and compatible to conventional technologies
 - → CEA: Machining, Laser and HIP (Reference for ITER)
 - \rightarrow KIT: Electrical Discharge Machining + Forming + Machining
- manifold and assembly of the TBM box (c) was demonstrated by (CEA)

ITER TBM First Wall vs. DEMO Breeding Blanket First Wall

- Karlsruhe Institute of Technology
- However: wide gap exists in between TBM and DEMO BB fabrication
- Limits in key technologies are reached for TBM, extrapolation not realistic
- Some new solutions are needed

 \rightarrow In detail: see comparison of specifications for TBM and BB First Wall

		MMS SM
Specifications	First Wall for Test Blanket Module ITER	First Wall for DEMO Breeder Blanket
BB overall dimensions:	~ (1.6 h x 0.5 w x 1 d) m ³ Channel length: ~ 2.5 m	~ (12 h x 2 w x 1 d) m ³ (SMS) ~ (2 h x 2 w x 1 d) m ³ (MMS)
Shape:	U-shaped, 2 bends, plane surface	3D-surface, "roof-top-shape "
Channels Cross Section (CS): Structured channels required (e.g. dimples of semi-detached ribs) ?	~ 12.5 x 12.5 mm ² Not mandatory	~ comparable CS as TBM At least locally in some blankets
Manufacturing cost and procurement:	Only few experimental units procured	Mass production compatible
Existing conv. technologies cover specifications?	Yes, procurement for ITER is launched	No → AM may provide options

2 Additive Manufacturing Technologies

- Huge diversity of processes / variations exists, no details here
- However: All AM processes have one thing in common:

→ A product is built by adding material
→ instead of subtracting material (e.g. machining)

- Material added as powder, wire, solid, ... Deposition energy is provided by Laser, EB, kinetic, ...
- For HCPB BB fabrication: Selected two most developed and promising technologies:

Powder Bed Laser Beam Fusion = Selective Laser Melting (SLM)

- \rightarrow Good for thin walled and high complex components
- \rightarrow box internal structures

Direct Energy Deposition Cold Spray + machining:

- \rightarrow Larger dimensions and deposition rate
- \rightarrow less complex structures
- → selected for First Wall

 \rightarrow 2 independent development approaches in 2015 + 2017

2.1 Selective Laser Melting How Selective Laser Melting (SLM) works

- Inside of a process confinement (a) of a SLM machine
- A product (b) is built in slices layer by layer on top of a building platform (c)
- During fabrication the product is fully surrounded in metal powder
- Local solidification is provided by a Laser (d) according to the geometry data of the product
- Details see internet (produces of SLM machines)

Examples of Selective Laser Melting fabricated test parts

- Started benchmarking studies among different suppliers
- Ordered EUROFER-like mixed metal powder batches
- Procured demonstration parts with increasing complexity and dimensions
 - \rightarrow material characterization specimen
 - \rightarrow thin- and double wall structures
 - \rightarrow samples with BB relevant cooling channels
 - \rightarrow Parts to verify numerical distortion prediction tools

How good are material properties of SLM- compared to conventional EUROFER ?

- Very Important question, strong interactions with material science
- To obtain tempered martensite post heat treatment after SLM is needed
- To reduce porosity after SLM a HIP cycle is recommended
- The specified chemical composition and a high cleanness of the powder is mandatory
- For detailed results: see papers in material journals, published soon:

→ M. Rieth: Specific Additive Manufacturing Processes for Nuclear Fusion Applications

 \rightarrow L. Stratil: Microstructural and mechanical characterization of EUROFER prepared by LBM

SLM products demonstrate promising properties close to conventional EUROFER

Technological limits in SLM: geometry restrictions

- Not every geometry can be "just built", supports may be needed
- Important to understand reasons: Where and why supports ?
 - \rightarrow Follow design guidelines

•

- \rightarrow Use assistance by suppliers to improve results
- \rightarrow Take into account critical issues already during design
- Examples: angles, geometry of arches, wall thickness, orientation during production ...

Technological limits in SLM: maximum dimensions

- Size limits in SLM driven (confinement \rightarrow inert + dust protection)
- Presently max. part dimensions ~ 500 x 300 x 800, details internet
- Scale up to full dimensions and "print" integral BB not applicable
- However options for expand dimensional limits were developed by KIT (already presented):
 - \rightarrow Assemble Hybrid Components by welding from SLM-produced + conv. Segments
 - \rightarrow SLM applied as Continuous production with "printed" confinement chamber extension

Technological limits in SLM: deformations due to thermal gradients

- Thermal gradients inside the powder bed lead to deformations:
 - \rightarrow Important to optimize design + orientation for mitigation
 - \rightarrow Example: Version 1 vs. Version 2:
 - \rightarrow Similar part, two orientations, two different results ...

- However production time: version $2 \rightarrow \sim 10 \text{ x}$ number of layers, $\sim 3 \text{ x}$ production time
- Increasing parts height \rightarrow increasing again thermal gradients in powder bed

Technological limits in SLM: innovation to mitigate gradients

- Innovation to mitigate gradients \rightarrow "printed resistive heater coils"
- Possible because R $_{\rm powder}$ >> R $_{\rm SLM\ product}$ Printed coils are operated as in-situ temperature monitoring and regulation device
- Heater coils (C) placed on feedthroughs (F) on platform (P)
- Better than just heating building platform surface

 \rightarrow Now, measurement and regulation inside powder bed

 \rightarrow T_{max} is in the centre of powder bed (where it should be)

How to continue development for SLM

- SLM has been demonstrated as goal oriented option
 - \rightarrow Feasibility of BB relevant internal complex components
 - \rightarrow Innovations have been developed to overcome limits
- KIT INR: continue to build demonstration and performance testing parts (hybrid components)
- Passing material qualification activity to material science
 - \rightarrow Qualification and implementation into Codes and Standards
 - \rightarrow Address irradiation program for SLM processed EUROFER

Cold Spray in combination with machining and HIP

- CS = powder deposition via kinetic energy
- Provides option to temporarily fill cavities with non-metallic and water soluble material (process configuration → Hermle)
- The integral process chain applied for cooling plate fabrication consists of 6 Steps:

http://werkstoffwoche.de/fileadm in/user_upload/Hermle_Praesent ation__Additive_Fertigung_mit_d er_MPA_Technologie_.pdf

Process configuration customized for BB First Wall application

- Goal: Simplify licensing by:
 - \rightarrow Excluding CS deposited material from structural function of the product ...
 - \rightarrow ... and use CS only as pressure seal during a HIP weld (a)
 - \rightarrow HIP weld joins substrate plate to cover plate \rightarrow provides pressure (b) barrier

Process configuration customized for BB First Wall application

- Detailed modifications are
 - \rightarrow machine additional groove in step 3
 - \rightarrow introduce one additional planarization by machining \rightarrow step 6
 - \rightarrow install and join a cover plate by EB (Steps 7) and HIP (Step 8)

Fabrication experiments results in 2020

- Semi-detached V-shaped ribs were firstly demonstrated of inside of a channel
 - \rightarrow Riveting pins machined on HHF side of the channel
 - \rightarrow Ribs build by SLM were installed and attached onto pins
 - \rightarrow Installation time \sim 1 min / rib "by hand"
 - \rightarrow Can be automated
 - \rightarrow Soon tested is hydraulic experiments

- General improvement of process parameters is ongoing, e.g.:
 - \rightarrow Optimization of geometry of grooves on top of the filled channels
 - \rightarrow Round edges to improve adhesion between CS and substrate by
 - \rightarrow Improvement is verifies by Destructive Examination presently

Substrate plate with rounded edges with temporarily filled cavities before...

...during and ...

...after Cold Spray deposition

- Experiments to optimize planarization and
- preparation of HIP-welding ...

This is where we are now... Lost some weeks due to CORONA Step will be completed (hopefully) by end of 2020 \rightarrow

- Installation of cover plate on top of channels by EB-weld
- and Diffusion welding (HIP) will be demonstrated by end 0f 2020

 \rightarrow Technology is available and parameters tested \rightarrow surface conditioning, EB and HIP process

EB welding parameters to seal contact surfaces and T/t- curves for HIP

- Non-planar demonstration parts in medium scale are also addressed
- Two cold formed and heat treated shells are processed
 - \rightarrow CS deposition is planned by end 2020
 - \rightarrow Fabrication of the cover plate +
 - \rightarrow EB and HIP for installation of the cover plate is planned in 2021

HTE-structures are included:

- 1 smooth,
- 1 laser structured
- 1 with semi detached ribs Parts used in experiments

10

- Spherical shell segment: Origin: machined from full
 - \rightarrow Machining and deposition are planned by end 2020
 - \rightarrow Machining of cover plate + EB + HIP in 2021

Specifications:

- 130 x 150 mm²
- One meandering channel
- Smooth channel internal surface

Mid-term demonstrators by end of conceptual phase \rightarrow 2024:

- Use max. dimensions of available equipment, has to fit into CS machine (a)
- Both Shells (substrate + cover) machined from the full
- Channel Cross section will be FW relevant (b)
- Shape will be relevant but scaled down (c)
- Three identic parts are built for NDE, DE and testing
- Qualification procedures will be addressed
- Notified bodies will be involved to agree licencing aspects

3 Strategy towards full scale First Wall Defined beyond 2027 (if CS + HIP demonstrated successfully)

- Adapt integral process setup towards full scale serial production
- In terms of Cold Spray + machining:

 \rightarrow Use portal machines, comparable equipment exists e.g. in shipbuilding

3 Strategy towards full scale First Wa

Problems in procurement of full scale semi finished FW shells

- Machine SMS shells from full \rightarrow block with 12 x 2 x 5 m³ = \sim 1000 t
- Apply forming from sheets will significantly exceeded limits for MMS (even for SMS)
 - \rightarrow Apply experiences in forming for TBM,
 - \rightarrow Extrapolate the numbers for TBM and BB development
 - \rightarrow Neither free bending nor deep drawing provide solutions

3 Strategy towards full scale First Wall

High deposition rate cladding (also an AM-process) may be an option

- To be considered to building of semi finished Breeder Blanket First Wall shells
- In SMS full scale dimensions and complex geometry
- How does it work?

https://www.mfgneweyele.com/archiv es/4/57088/Advanced Mfg-Solutionsaug20/Wire-Arc-Additive-Manufacturing.aspx

- → Build up a part by ADDING layer by layer using conventional welding technology (e.g. TIG)
- → Deposition is applied in alternation with machining to build precise external contours
- → technology may be an option for production of semifinished solid FW shells
- → Shells can be processed used CS + HIP routine described before
- \rightarrow However: Welding on the plasma facing side !

4 Conclusions

- Many key issues are still not solved, not only in fabrication
- There is not "the one" process covering all requirements for a fusion BB

 \rightarrow Neither AM nor conventional technologies

- But: Additive Manufacturing provides new opportunities and aspects
 - \rightarrow Cold Spray as customized AM process \rightarrow promising for the First Wall
 - \rightarrow Selective Laser Melting applied for BB internal structures
 - → Important to combine all existing technologies wisely to overcome limits and create new opportunities
- Licensing and material properties verification remain the key issue
 - \rightarrow To be addresses by material science

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.