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Abstract 

During the 20th century, life expectancy increased dramatically. From a 
medical standpoint, the major contributors to this success were widespread 
improvement of hygiene and the introduction of vaccination programs. 
Vaccines were the first systematically developed biological products to be 
applied as medical compounds and therefore paved the way towards modern 
pharmaceutical biotechnology. After insulin and human growth hormone, one 
of the earliest biotechnologically produced pharmaceutical products was a 
recombinant vaccine, in particular a recombinant hepatitis B surface antigen 
virus-like particle (VLP). VLPs lack viral infectious nucleic acids but resemble 
the virus they are derived from, thus inducing an immune response. While this 
Hepatitis B vaccine is still in use today, the application of VLPs diversified 
greatly as seen from numerous pre-clinical and clinical studies. VLPs are 
investigated as potential vaccines against infectious diseases, immunological 
disorders, or cancer. Their strong immunogenicity is harnessed for the display 
of foreign antigenic epitopes on the VLP, resulting in chimeric VLPs (cVLPs). 
As such, they have been shown to induce immune responses against cancer 
cells, overcoming the natural immunological self-tolerance towards cancer 
antigens. This being said, their high potential comes with challenges, for 
example associated with their molecular design and the production process. 
The aim of the molecular design is to create immunogenic and stable VLP 
candidates. However, the process to find viable VLP candidates is typically 
empirical, bringing along challenges such as a low solubility after expression 
in recombinant hosts or a lack of VLP immunogenicity. The VLP production 
process lacks tailored purification methods, resulting in lower productivities as 
compared to more established biopharmaceutical products, such as monoclonal 
antibodies. Additionally, VLP processing comes with the need to design VLP-
specific process steps, such as the dis- and reassembly of the particles. Tackling 
these challenges would benefit from data-driven approaches, such as process 
analytical technology (PAT), molecular modeling, and machine learning. 
These would enhance process and product understanding, reduce experimental 
effort, and enable efficient monitoring and control of the processes.  

Therefore, the goal of this thesis was to find answers to several of these 
challenges by implementing data-driven approaches to accompany the 
development of tailored process steps. In the first part of this thesis, VLPs and 
their production processes are reviewed, the advantages of the implementation 
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of PAT are described, the challenges associated with their molecular design 
are elucidated, and the opportunities of the application of machine learning to 

VLP development and processing are pointed out. 

The second part of this thesis describes five studies, addressing various 
challenges associated with VLP design and bioprocessing. The first study 
(Chapter 3) focuses on a unique VLP-specific process step. For improved 
stability, homogeneity, and immunogenicity, VLPs have to be dis- and 
reassembled. Starting from a high pH solution containing disassembled VLPs, 
reassembly is achieved by increasing ionic strength and lowering the pH. Most 
laboratory-scale processes utilize dialysis for this buffer exchange, while cross-
flow filtration (CFF) for buffer exchange is more scalable, reduces the buffer 
consumption, and improves the yield. Compared to dialysis, CFF requires 
more technical knowledge and knowledge of the VLP reassembly progress 
during the process. A comprehensive monitoring strategy would therefore be 
highly beneficial to implement (near-) real-time control of the VLP reassembly 
process by CFF. In this first study, a set-up was developed to monitor VLP 
reassembly by CFF with an on-line measurement loop comprising two different 
spectroscopic sensors. A potential control strategy for the VLP assembly 
process was seen in monitoring static and dynamic light scattering. The 
maximum of the static light scattering signal coincided with the maximum 
VLP concentration. This information is valuable, since after the VLP peak 
concentration, a degradation phase was observed, which has to be omitted to 
optimize VLP yield and purity. Analysis of the second derivative ultraviolet 
and visible (UV/Vis) spectra proved to be a useful orthogonal method to 
monitor VLP assembly, especially with the so-called a/b-ratio. The a/b-ratio, 
which changed over the course of the processes, describes the solvatization of 
tyrosine. The observation of the change in the a/b ratio is consistent with the 
fact that tyrosine 132 is embedded in a hydrophobic pocket after assembly. 
Additionally, a partial least squares regression model based on the recorded 
UV/Vis spectra estimated VLP concentrations, with the potential to be 
applied as a (near) real-time model. The established monitoring strategy was 
used to investigate optimal process conditions for three chimeric hepatitis B 
core antigen (HBcAg) constructs. This resulted in different process times to 
reach the maximum VLP concentration. The cVLP with strongest negative 
zeta potential assembled the latest, probably due to repulsive electrostatic 

forces, demanding higher ionic strength buffers for reassembly. 
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The importance of the zeta potential for VLP processing was part of the 
motivation for the second study (Chapter 4). Zeta potential and other process-
relevant biophysical parameters can only be measured when the molecules are 
produced experimentally in sufficient quantities. It would therefore be 
desirable to predict these properties, thus saving resources. It was already 
shown that surface properties can be derived from three-dimensional (3-D) 
structures. However, 3-D structures of novel molecules are not available and 
their experimental creation is lengthy and laborious. An alternative is 
computational 3-D structure generation based on template modeling and 
molecular dynamics (MD) simulations. This in silico workflow typically 
requires significant user interaction, expert knowledge to design and steer the 
simulations, and much computational power. To overcome these limitations, 
a robust and automated 3-D structure generation workflow was established in 
this study. The workflow is data dependent, minimizes user interaction, and 
reduces required computational resources. The input to the developed 
workflow was an amino acid sequence and a structure template. The template 
was automatically downloaded from a protein structure database, cleaned, and 
the structure was homology modeled, followed by an energy minimization. A 
data-dependent 3-step MD simulation refined the structure, where a 
continuously increasing region of the molecule was simulated, until, finally, the 
entire molecule was simulated freely. The 3-step MD simulation approach was 
a major contributor to a reduction in required computational resources by first 
simulating structurally particularly uncertain areas of the molecule separately. 
Often, MD simulations are terminated after a fixed simulation time. In this 
study, the developed data-dependent simulation control terminated the 
simulations, when a Window of Stability (WoS) of 2 ns was reached, defined 
by the root mean square deviation (RMSD) of atom coordinates. This ensured 
that the MD simulation fluctuations were comparable between all simulated 
constructs in said WoS at the end of the simulation. The workflow resulted in 
reasonable simulation times (6.6-37.5 h) and high overall structural quality for 
the three chimeric HBcAg dimer structures. To demonstrate the applicability 
of the method, a case study was conducted in which the in silico surface charge 
of HBcAg dimers was correlated to the experimental zeta potential of entire 
capsids, showing high linear correlation. The extraction of the surface charge 
from the WoS was more robust than from a single simulation snapshot, 
underpinning the usefulness of the developed approach. 

The third study (Chapter 5) addresses the problem that VLPs are often 
processed with technologies originally developed for products that are smaller 
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in size. This often results in processing limitations, such as low binding 
capacity of the chromatography resins used in the downstream process. 
Therefore, a new purification strategy was developed, integrating three 
different size-selective methods, as they seemed promising for selective 
separation of VLPs from impurities. The methods were precipitation/re-
dissolution, CFF, and size-exclusion chromatography (SEC). Three process 
variants were designed and examined, where the best consisted of 
precipitation, wash, and re-dissolution on a CFF unit, followed by purification 
by a multimodal SEC column. This process showed the highest purity and a 
high yield and productivity. The developed processes were comparable or 
superior to literature processes. Further, monitoring and fractionation of the 
permeate stream allowed to identify product-containing fractions for selective 

pooling. Thus, product concentration and purity can be adjusted. 

One of the major problems in cVLP molecular design is that candidates are 
often insoluble upon expression. The process to identify insoluble VLP 
constructs is typically empirical and thus time-consuming and resource-
intensive. This challenge can be met by a model that predicts cVLP solubility. 
In Chapter 6, a soft ensemble vote classifier (sEVC) was developed as a 
machine learning tool to predict cVLP solubility, based on 568 different amino 
acid sequences and 91 different hydrophobicity scales. The ensemble model 
unifies the prediction of individual classifiers, which were one-level decision 
trees. The decision trees were trained with a hydrophobicity feature based on 
one hydrophobicity scale each. Stratified training set sampling and feature 
selection benefitted the model construction. Best models showed a Matthew’s 
correlation coefficient (MCC) of >.6, which is comparable or superior to 
literature solubility model statistical values. Additionally, feature selection 
allowed to identify characteristic features of the investigated solubility 
problem, pointing out the importance of different amino acids for cVLP 
solubility. The analysis suggested that arginine might have an important role 
in recruiting VLP subunits during capsid assembly. 

The last study was built on the model and results of Chapter 6, with the aim 
to optimize prediction outcomes and to extract more hidden information from 
the data. Systematic misclassification was observed in the previous study. This 
was addressed with an optimization algorithm adjusting the prediction of the 
model, when these systematic misclassifications were observed in the training 
set. A second optimization strategy synthesized and optimized hydrophobicity 
scales specifically for the presented cVLP solubility problem. Hereby, the 
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importance of tryptophan as a possible disruptor of protein folding was 
suggested based on the data. The best model created with the developed 
optimization workflows resulted in an external test set MCC of .77 (accuracy 
of .88) and is therefore significantly better than the non-optimized model and 
literature solubility models. Finally, the sEVC framework was evaluated in a 
case study to predict ammonium sulfate concentrations, as required for VLP 
precipitation (applied in Chapter 5). Therefore, the model was redesigned to 
function as a regression tool. It was evaluated with data of the precipitation 
of ten cVLPs by ammonium sulfate. The linear fit showed a promising 
correlation with an R2 of .69. 

In summary, an array of methods has been developed, from both a process 
development and computational development point of view, which may pave 
the way towards a VLP platform process. The integration of data-driven 
approaches, such as PAT, 3-D structure modeling, and machine learning can 
benefit both the performance and the understanding of VLP processing in the 
biopharmaceutical industry. 
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Zusammenfassung 

Im Laufe des 20. Jahrhunderts stieg die Lebenserwartung deutlich an. Aus 
medizinischer Sicht trugen vor allem die umfassende Verbesserung der Hygiene 
und die Einführung von Impfprogrammen zu diesem Erfolg bei. Impfstoffe 
waren die ersten biologischen Produkte, die systematisch als medizinische 
Präparate eingesetzt wurden, und ebneten damit den Weg zur modernen 
pharmazeutischen Biotechnologie. Nach Insulin und menschlichem 
Wachstumshormon war eines der frühesten biotechnologisch hergestellten 
pharmazeutischen Produkte ein rekombinanter Impfstoff, im Speziellen ein 
virusähnliches Partikel (virus-like particle, VLP) auf Basis von rekombinantem 
Hepatitis-B-Oberflächenantigen. VLPs beinhalten keine infektiösen viralen 
Nukleinsäuren und sie ähneln dem Virus, von dem sie abgeleitet sind, wodurch 
sie eine Immunantwort induzieren können. Obwohl dieser Hepatitis-B-
Impfstoff gegenwärtig noch verwendet wird, ist die heutige Anwendung von 
VLPs sehr unterschiedlich, wie aus zahlreichen präklinischen und klinischen 
Studien hervorgeht. VLPs werden als mögliche Impfstoffe gegen 
Infektionskrankheiten, immunologische Erkrankungen oder Krebs untersucht. 
Ihre starke Immunogenität wird für die Präsentierung von fremdantigenen 
Epitopen auf den VLPs genutzt, was sie zu chimären VLPs (chimeric virus-

like particles, cVLPs) macht. Als solche induzieren sie nachweislich 
Immunantworten gegen Krebszellen und überwinden die natürliche 
immunologische Selbsttoleranz gegenüber Krebsantigenen. Allerdings ist ihr 
hohes Potenzial mit Herausforderungen verbunden, beispielsweise im 
Zusammenhang mit ihrem molekularen Design und dem Produktionsprozess. 
Das Ziel des molekularen Designs ist die Entwicklung immunogener und 
stabiler VLP-Kandidaten. Der Prozess, um geeignete VLP-Kandidaten zu 
finden, ist jedoch typischerweise empirisch und bringt Herausforderungen wie 
eine geringe Löslichkeit nach der Expression in rekombinanten Wirten oder 
unzureichende VLP-Immunogenität mit sich. Dem VLP-Produktionsprozess 
mangelt es an maßgeschneiderten Aufreinigungsmethoden, was im Vergleich 
zu etablierten biopharmazeutischen Produkten, wie z.B. monoklonalen 
Antikörpern, zu einer geringeren Produktivität führt. Hinzu kommt, dass bei 
der VLP-Prozessierung VLP-spezifische Prozessschritte, wie z.B. die Zerlegung 
und Reassemblierung der Partikel, entworfen werden müssen. Die Bewältigung 
dieser Herausforderungen würde von datengestützten Ansätzen wie der 
prozessanalytischen Technologie (process analytical technology, PAT), der 
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molekularen Modellierung und dem maschinellen Lernen profitieren. Diese 
würden das Prozess- und Produktverständnis verbessern, den experimentellen 
Aufwand reduzieren und eine effiziente Überwachung und Steuerung der 
Prozesse ermöglichen. 

Daher war es Ziel dieser Arbeit, Antworten auf mehrere dieser 
Herausforderungen zu finden, indem datengestützte Ansätze implementiert 
wurden, um die Entwicklung maßgeschneiderter Prozessschritte zu begleiten. 
Im ersten Teil dieser Arbeit werden VLPs und ihre Produktionsprozesse 
besprochen, die Vorteile der Implementierung von PAT beschreiben, die 
Herausforderungen im Zusammenhang mit ihrem molekularen Design 
beleuchtet und die Möglichkeiten der Anwendung des maschinellen Lernens 
bei der VLP-Entwicklung und -Prozessierung aufgezeigt. 

Der zweite Teil dieser Arbeit beschreibt fünf Studien, die darauf abzielen, 
Antworten auf einige der mit dem VLP-Design und der biotechnologischen 
Verfahrenstechnik verbundenen Herausforderungen zu finden. Die erste Studie 
(Kapitel 3) befasst sich mit einem besonderen VLP-spezifischen Prozessschritt. 
Für eine verbesserte Stabilität, Homogenität und Immunogenität müssen 
VLPs zerlegt und wieder reassembliert werden. Ausgehend von einer Hoch-
pH-Lösung, die zerlegte VLPs enthält, wird die Reassemblierung durch die 
Erhöhung der Ionenstärke und die Senkung des pH-Wertes erreicht. Die 
meisten Prozesse im Labormaßstab nutzen die Dialyse für diesen 
Pufferaustausch, während die Querstromfiltration (cross-flow filtration, CFF) 
für den Pufferaustausch besser skalierbar ist, den Pufferverbrauch reduziert 
und die Ausbeute verbessert. Im Vergleich zur Dialyse erfordert die CFF mehr 
technisches Wissen und Kenntnisse über den VLP-
Reassemblierungssfortschritt während des Prozesses. Eine umfassende 
Überwachungsstrategie wäre daher sehr vorteilhaft, um eine (Beinahe-) 
Echtzeit-Kontrolle des VLP-Reassemblierungsprozesses durch CFF zu 
implementieren. In dieser ersten Studie wird ein Aufbau zur Überwachung der 
VLP-Reassemblierung durch CFF mittels einer Online-Messschleife mit zwei 
verschiedenen spektroskopischen Sensoren beschrieben. Eine mögliche 
Kontrollstrategie für den VLP-Assemblierungsprozess wurde in der 
Überwachung der statischen und dynamischen Lichtstreuung gesehen. Das 
Maximum des statischen Streulichtsignals fiel mit der maximalen VLP-
Konzentration zusammen. Diese Information ist sehr wertvoll, da nach diesem 
VLP-Konzentrationsmaximum eine Degradationsphase beobachtet wurde, die 
vermieden werden sollte, um Ausbeute und Reinheit der VLPs zu optimieren. 
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Die Analyse der zweiten Ableitung der ultravioletten und sichtbaren 
(ultraviolet and visible, UV/Vis) Spektren erwies sich als praktikable 
orthogonale Methode zur Überwachung der VLP-Assemblierung, insbesondere 
mit dem sogenannten a/b-Verhältnis. Das a/b-Verhältnis, welches sich im 
Zeitverlauf der Prozesse änderte, beschreibt die Solvatisierung von Tyrosin. 
Die Beobachtung der Veränderung des a/b-Verhältnisses deckt sich mit der 
Tatsache, dass Tyrosin 132 nach der Assemblierung in einer hydrophoben 
Tasche eingebettet wird. Zusätzlich konnte ein Modell der Regression der 
partiellen kleinsten Quadrate (partial least squares), das auf den 
aufgezeichneten UV/Vis-Spektren basiert, die VLP-Konzentrationen 
abschätzen mit dem Potential, als (Beinahe-) Echtzeitmodell angewendet zu 
werden. Die etablierte Überwachungsstragie wurde genutzt um optimale 
Prozessbedingungen für drei chimäre hepatitis B core antigen (HBcAg)- 
Konstrukte zu ermitteln. Dies resultierte in unterschiedlichen Prozesszeiten, 
um die maximale VLP-Konzentration zu erreichen. Das cVLP mit dem 
stärksten negativen Zetapotential assemblierte am spätesten, wahrscheinlich 
aufgrund abstoßender elektrostatischer Kräfte. Es erfordert daher Puffer mit 

höheren Ionenstärken für die Reassemblierung. 

Die Bedeutung des Zetapotenzials für die VLP-Prozessierung war Teil der 
Motivation für die zweite Studie (Kapitel 4). Das Zetapotential und andere 
biophysikalische Parameter können nur gemessen werden, wenn Material 
experimentell in ausreichenden Mengen produziert wurde. Es wäre daher 
wünschenswert, diese Parameter vorherzusagen, um Ressourcen zu sparen. Es 
wurde bereits gezeigt, dass Oberflächeneigenschaften aus dreidimensionalen (3-
D) Strukturen abgeleitet werden können. 3-D-Strukturen neuartiger Moleküle 
sind jedoch nicht verfügbar und ihre experimentelle Erzeugung ist langwierig 
und mühsam. Eine Alternative ist die rechnergestützte 3-D-Strukturerzeugung 
mit Template-Modellierung und Molekulardynamik-Simulationen (MD). 
Dieser in silico Arbeitsablauf erfordert üblicherweise signifikante 
Benutzerinteraktion, Expertenwissen, um die Simulationen zu designen und zu 
steuern, und viel Rechenleistung. Um diese Limitationen zu überwinden, wurde 
in dieser Studie ein robuster und automatisierter Arbeitsablauf zur Erzeugung 
von 3-D Strukturen etabliert. Der Arbeitsablauf ist datenabhängig, minimiert 
Benutzerinteraktion und reduziert die benötigte Rechenleistung. Die Eingabe 
in den entwickelten Arbeitsablauf war eine Aminosäuresequenz und eine 
Strukturvorlage. Die Vorlage wurde automatisch von einer 
Proteinstrukturdatenbank heruntergeladen, bereinigt und die Struktur wurde 
Homologie-modelliert, gefolgt von einer Energieminimierung. Eine 
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datenabhängige dreistufige MD-Simulation verfeinerte die Struktur, wobei ein 
kontinuierlich zunehmender Bereich des Moleküls simuliert wurde, bis 
schließlich das gesamte Molekül frei simuliert wurde. Der dreistufige MD-
Simulationsansatz lieferte hierbei einen großen Beitrag zur Reduktion der 
benötigten Rechenleistung, in dem strukturell besonders unsichere Bereiche 
des Moleküls zunächst gesondert simuliert wurden. Oft werden MD-
Simulationen nach einer bestimmten Simulationszeit beendet. In dieser Studie 
beendete die entwickelte datenabhängige Simulationskontrolle die 
Simulationen, wenn ein Stabilitätsfenster (Window of Stability, WoS) von 2 ns 
erreicht wurde, definiert durch die Wurzel der mittleren quadratischen 
Abweichung (root mean square deviation, RMSD) der Atomkoordinaten. Dies 
stellte sicher, dass die Fluktuationen der MD-Simulation zwischen allen 
simulierten Konstrukten innerhalb des genannten WoS am Ende der 
Simulation vergleichbar waren. Der Arbeitsablauf führte zu angemessenen 
Simulationszeiten (6,6-37,5 h) und einer hohen Gesamtstrukturqualität für die 
drei chimären HBcAg-Dimere. Um die Anwendbarkeit der Methode zu 
demonstrieren, wurde eine Fallstudie durchgeführt, in der die in silico 
Oberflächenladung von HBcAg-Dimeren mit dem experimentellen Zeta-
Potential ganzer Kapside korreliert wurde, was eine hohe lineare Korrelation 
zeigte. Die Extraktion der Oberflächenladung aus dem WoS war robuster als 
aus einem einzelnen Simulationsschnappschuss, was die Nützlichkeit des 
entwickelten Ansatzes unterstreicht. 

Die dritte Studie (Kapitel 5) befasst sich mit dem Problem, dass VLPs häufig 
mit Technologien prozessiert werden, die ursprünglich für kleinere Produkte 
entwickelt wurden. Dies führt oft zu Prozesslimitationen wie geringe 
Bindekapazitäten von Chromatographieharzen, die im downstream process 

verwendet werden. Daher wurde eine neue Aufreinigungsstrategie entwickelt, 
die drei verschiedene größenselektive Methoden integriert, da sie für die 
selektive Abtrennung von VLPs von Verunreinigungen vielversprechend 
erschienen. Die Methoden waren Fällung/Rücklösung, CFF und 
Größenausschlusschromatographie (size exclusion chromatography, SEC). Es 
wurden drei Verfahrensvarianten entwickelt und untersucht, wobei die beste 
aus Fällung, Waschen und Rücklösung auf einer CFF-Einheit, gefolgt von einer 
Reinigung durch eine multimodale SEC-Säule bestand. Dieses Verfahren zeigte 
die höchste Reinheit sowie eine hohe Ausbeute und Produktivität. Die 
entwickelten Verfahren waren den in der Literatur beschriebenen Verfahren 
vergleichbar oder überlegen. Die Überwachung und Fraktionierung des 
Permeatstroms ermöglichte es zudem, produkthaltige Fraktionen für das 
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selektive Vereinigen zu identifizieren. Auf diese Weise können 
Produktkonzentration- und Reinheit eingestellt werden. 

Eines der Hauptprobleme beim Molekulardesign von cVLPs ist, dass die 
Kandidaten bei der Expression oft unlöslich sind. Der Prozess zur 
Identifizierung unlöslicher VLP-Konstrukte ist typischerweise empirisch und 
deshalb Zeit- und Ressourcenintensiv. Diese Herausforderung kann mit einem 
Modell bewältigt werden, welches die Löslichkeit von cVLPs vorhersagt. In 
Kapitel 6 wurde ein Soft Ensemble Vote Classifier (sEVC) als Werkzeug auf 
Basis von maschinellem Lernen zur Vorhersage der cVLP-Löslichkeit 
entwickelt, basierend auf 568 verschiedenen Aminosäuresequenzen und 91 
verschiedenen Hydrophobizitäts-Skalen. Das Ensemble-Modell aggregiert die 
Vorhersage der einzelnen Klassifikatoren, bei denen es sich um einstufige 
Entscheidungsbäume handelt. Diese wurden jeweils mit einem 
Hydrophobizitäts-Merkmal auf der Grundlage einer Hydrophobizitäts-Skala 
trainiert. Stratifizierte Trainingssatzprobenahme und Merkmalsauswahl 
kamen der Modellbildung zugute. Die besten Modelle wiesen einen Matthew-
Korrelationskoeffizienten (Matthew’s correlation coefficient, MCC) von >0,6 
auf, der mit den statistischen Größen von Löslichkeitsmodellen aus der 
Literatur vergleichbar oder diesen überlegen ist. Zusätzlich ermöglichte die 
Merkmalsauswahl (feature selection) die Identifizierung charakteristischer 
Eigenschaften (features) des untersuchten cVLP-Löslichkeitsproblems, wobei 
die Bedeutung verschiedener Aminosäuren für die cVLP-Löslichkeit 
hervorgehoben wurde. Die Analyse legte nahe, dass Arginin eine wichtige Rolle 
bei der Rekrutierung von VLP-Untereinheiten während der 

Kapsidassemblierung spielen könnte. 

Die letzte Studie baute auf dem Modell und den Ergebnissen von Kapitel 6 
auf, mit dem Ziel, die Vorhersageergebnisse zu optimieren und mehr versteckte 
Informationen aus den Daten zu extrahieren. In der vorherigen Studie wurde 
eine systematische Fehlklassifikation beobachtet. Dies wurde mit einem 
Optimierungsalgorithmus angegangen, der die Vorhersage des Modells 
anpasste, wenn diese systematischen Fehlklassifikationen im 
Trainingsdatensatz beobachtet wurden. Eine zweite Optimierungsstrategie 
synthetisierte und optimierte Hydrophobizitäts-Skalen spezifisch für das 
vorgestellte cVLP-Löslichkeitsproblem. Dabei wurde die Bedeutung von 
Tryptophan als möglicher Disruptor der Proteinfaltung anhand der Daten 
vorgeschlagen. Das beste Modell, das mit den entwickelten 
Optimierungsworkflows erstellt wurde, zeigte einen MCC von 0,77 
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(Korrektklassifikationsrate von 0,88) in Bezug auf das externe Test-Set. 
Schließlich wurde das sEVC-Framework in einer Fallstudie evaluiert, um 
Ammoniumsulfatkonzentrationen vorherzusagen, wie sie für die VLP-Fällung 
erforderlich sind (wie auch in Kapitel 5 angewandt). Daher wurde das Modell 
so umgestaltet, dass es als Regressionswerkzeug fungiert. Es wurde mit Daten 
der Ammoniumsulfat-induzierten Fällung von zehn cVLPs bewertet. Die 

lineare Regression zeigte eine vielversprechende Korrelation mit einem R2 von 
0,69. 

Zusammenfassend lässt sich sagen, dass sowohl von dem Standpunkt der 
Prozessentwicklung als auch von der computergestützen Entwicklung aus eine 
Reihe von Methoden entwickelt wurde, die den Weg zu einem VLP-
Plattformprozess ebnen könnten. Die Integration von datengesteuerten 
Ansätzen wie PAT, 3-D-Strukturmodellierung und maschinelles Lernen kann 
sowohl der Effizienz als auch dem Verständnis der VLP-Prozessierung in der 
biopharmazeutischen Industrie zugutekommen. 
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1 Introduction 

The 20th century has seen the most substantial number of medical 
revolutions in the human history, bringing along fundamental 
improvements in the health of everyone – from children to the elderly. 
Whereas in 1900 infectious diseases such as smallpox, measles, 
diphtheria, and pertussis were among the leading causes of death, their 
incidence has been radically reduced or even eliminated throughout the 
20th century, as was the case with smallpox in 1979 (Centers for Disease 
Control and Prevention, 1999; Fenner et al., 1988). The most valuable 
contribution to this development was accomplished by widespread 
improvement of hygiene and through the introduction of vaccination 
programs, especially by reducing child mortality (Janeway, Murphy, 
Travers, & Walport, 2008; McGovern & Canning, 2015). The origin of 
vaccine technology is often referred to as Edward Jenner’s experiments 
with immunization against smallpox by infection with the, for humans, 
less harmful cow pox (Gross & Sepkowitz, 1998). Almost 100 years later, 
Louis Pasteur’s work laid the fundament for modern vaccinology by 
describing the idea of attenuation for vaccination against veterinary 
diseases and, most notably, for rabies in humans (Pasteur, 1885). Since 
then, the portfolio of vaccine formats expanded rapidly and now includes 
live attenuated pathogens, killed whole organisms, purified proteins or 
polysaccharides, or more recently, genetically engineered vaccines 
(Plotkin, 2014). The first genetically engineered vaccine was developed 
to prevent Hepatitis B virus (HBV) infection, based on a Hepatitis B 
surface antigen virus-like particle (VLP) that is expressed in yeast cells 
(McAleer et al., 1984). A list of licensed VLP vaccines is shown in 
Table 1.1. Since then, the number of exploratory and approved 
genetically engineered vaccines has been on the rise, with the VLP-based 
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human papillomavirus (HPV) (Bryan, Buckland, Hammond, & Jansen, 
2016) and meningococcus group B vaccine (Giuliani et al., 2006) as 
prominent examples. With the numbers of available vaccines increasing, 
the technological portfolio is expanding as well. From messenger 
ribonucleic acid (mRNA) vaccines, to deoxyribonucleic acid (DNA) 
vaccines, to various types of VLP vaccines, recent research is exploring 
many ways to address previously unmet medical needs. This increased 
diversity of the vaccine portfolio comes with an urgent demand for novel 
production technologies. This includes synthesis of the product (upstream 
processing, USP), purification from product- or process-related 
contaminants (downstream processing, DSP), formulation to ensure 
immunogenicity and stability, and logistics (Kaufmann, Juliana 
McElrath, Lewis, & Del Giudice, 2014; Ladd Effio & Hubbuch, 2015; 
Plotkin, Robinson, Cunningham, Iqbal, & Larsen, 2017; S. Wang, Liu, 
Zhang, & Qian, 2015).  

Table 1.1 : Licensed VLP vacc ine products (Huzair & Sturdy, 2017;  
Lua et al . ,  2014).  

Targeted 

disease 

Trade name Country and 

year of first 

approval 

Producer at time of 

approval 

Hepatitis B Recombivax 

HB 

West Germany, 
1986 

Merck Sharp & Dohme 

Hepatitis B Engerix-B  Belgium, 1986 SmithKline Biologicals 
Hepatitis B GenHevac-B France, 1989 Pasteur Vaccins 
Cervical cancer 

and genital 
warts 

Gardasil US, 2006 Merck Sharp & Dohme 

Cervical cancer  
and genital 
warts 

Cervarix EU, 2007 GlaxoSmithKline 

Hepatitis E Hecolin China, 2011 Xiamen Innovax 
Biotech 

 

As one of the newer technologies, VLPs are studied for various 
applications, such as cancer and malaria vaccines and as carrier for the 
delivery of nucleic acids or proteins. The application of VLPs as 
recombinant vaccine technology brings along many advantages. These 
include the generally high application safety and their potential to induce 
both cellular and humoral immune responses, including the breakage of 
immunological self-tolerance towards cancer antigens. In order to fulfill 
their potential to combat cancer or other previously unmet medical 
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needs, challenges associated with their production process demand 
solutions to facilitate the development process. The challenges for process 
development include, but are not limited to, low dynamic binding 
capacity in bind-and-elute chromatography (Ladd Effio & Hubbuch, 
2015), the necessity of additional, specific process steps, such as dis- and 
reassembly or conjugation reactions (Peacey, Wilson, Baird, & Ward, 
2007; Pomwised, Intamaso, Teintze, Young, & Pincus, 2016; Q. Zhao, 
Allen, et al., 2012; Q. Zhao, Modis, et al., 2012), or the lack of knowledge 
about the relation between the amino acid sequence of the VLP 
candidates and their immunogenicity, structure, process and phase 

behavior (Karpenko et al., 2000; Roseman et al., 2012).  

In the last decades, regulatory authorities have strongly encouraged to 
build quality into processes by implementing process analytical 
technology (PAT) (FDA & Others, 2004; ICH, 2009). Monitoring of 
processes with PAT does not only enable a direct response to process 
variations, but also generates a great amount of data that directly 
contributes to process understanding. The availability of large amounts 
of data comes with opportunities, but also challenges. Biopharmaceutical 
process development has seen the advent of data science and machine 
learning in recent years, aiming to harness the great amount of data 
available to generate predictive models and to increase product and 
process understanding (Charaniya, Hu, & Karypis, 2008; Gangadharan 
et al., 2019; Tulsyan, Garvin, & Ündey, 2018). Applications range from 
identifying critical process parameters during fermentation (Buck, 
Subramanian, & Block, 2002), over artificial neural networks (ANNs) for 
mechanistic chromatography modeling (G. Wang, Briskot, Hahn, 
Baumann, & Hubbuch, 2017b), to clustering algorithms for evaluation of 
protein formulations (Klijn & Hubbuch, 2019). With the rapidly 
increasing computational resources available at ever lower costs, 
opportunities arise for molecular modeling to be included in the research 
and development process, for example to facilitate the prediction 
immunogenicity from three-dimensional (3-D) structures (Joshi, 
Cheluvaraja, Somogyi, Brown, & Ortoleva, 2011). 

In the following subchapters, the structure and function of VLPs are 
described (Chapter 1.1). A typical production process of VLPs is 
illustrated and its challenges are discussed (Chapter 1.2). Finally, data-
driven approaches, such as PAT (Chapter 1.3), molecular modeling 
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(Chapter 1.4), and machine learning methods (Chapter 1.5) are 
described in the context of the processes investigated in this thesis. 

1.1 Virus-Like Particles 

VLPs are macromolecular protein-based nanostructures that resemble 
the virus they are derived from. VLPs are highly immunogenic but not 
infectious as they do not contain viral nucleic acids (Chackerian, 2007). 
They can be subdivided into non-enveloped and enveloped VLPs. The 
latter are formed by secretion and envelopment in the host cell membrane 
(Kushnir, Streatfield, & Yusibov, 2012). Enveloped VLPs are for example 
expressed in a Baculovirus/insect cell system or mammalian cells, while 
non-enveloped VLPs are produced in Escherichia coli (E. coli) or yeast 
systems. Enveloped VLPs pose very different challenges with regard to 
their stability, expression systems, and purification compared to non-
enveloped VLPs. The challenges associated with enveloped VLPs are 
reviewed elsewhere (Dai, Wang, & Deng, 2018). In the following pages, 
VLPs are discussed with a focus on non-enveloped VLPs, as these were 
investigated in this thesis.  

The recently developed VLPs for human use are almost exclusively 
chimeric VLPs (cVLPs) (Mohsen, Speiser, Knuth, & Bachmann, 2020; 
Mohsen, Zha, Cabral-Miranda, & Bachmann, 2017; Ong, Tan, & Ho, 
2017). CVLPs can be created by recombinant insertion of foreign peptide 
sequences into viral structure proteins, as schematically shown in 
Figure 1.1. Another option is chemical linkage of peptides to the surface 
of VLPs, for example by click chemistry (Brune et al., 2016). This bears 
the potential of a universal VLP platform but adds another process step.  

Recently, a great number of preclinical and clinical trials have been under 
way for diverse applications of VLPs, including vaccines against cancer 
(Klamp et al., 2011; Mohsen et al., 2020), Alzheimer’s disease (Maphis 
et al., 2019), Malaria (Chan et al., 2019), and Influenza (Buffin et al., 
2019). Animal health is another domain for which VLP vaccines are 
increasingly considered as high potential strategies (Crisci, Bárcena, & 
Montoya, 2013). The wide spectrum of investigated applications for VLP 
vaccines illustrates that research and industry both acknowledge the 
potential that originates in the VLPs’ unique structural properties and 
their functional versatility (Lua et al., 2014). 
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Figure 1.1 :  Schematic representation of a virus- l ike part icle (VLP) 
and a chimeric VLP (cVLP) and their respect ive capsomere 
structures . The immune response towards a VLP is directed against 
the VLP-forming recombinant v irus protein.  The immune response  
towards a cVLP is ideally directed against the inserted foreign 
epitope (i l lustrated in red).  

The biophysical prerequisite for the formation of VLPs is the natural 
property of some virus proteins to self-assemble to capsids after 
recombinant expression in various hosts, such as bacteria, yeast, or 
mammalian cell lines (Grgacic & Anderson, 2006). The assembly is 
initiated from morphological capsid subunits, termed capsomeres. These 
can be as simple as a virus protein homodimer, as for hepatitis B core 
antigen (HBcAg) capsomeres (J. Kim, 2016), or more complicated, such 
as heterohexamers in the Picornaviridae family that includes polio or 
enterovirus (Rustmeier, Strebl, & Stehle, 2019). The structure of VLPs 
is similar to the virus they were derived from, while they lack infectious 
nucleic acids (Chackerian, 2007; Kushnir et al., 2012). Their size ranges 
from 25 nm to 200 nm (Chung et al., 2010; Reiter et al., 2019).  

In a study on Ag-coated nano-beads, 40 nm was shown to be the ideal 
size for uptake into dendritic cells (Fifis et al., 2004). Thus, their 
particulate nature probably is the reason that many VLPs can induce 
cytotoxic T cell responses through the major histocompatibility complex 
I pathway (Storni et al., 2002). Additionally, the highly repetitive surface 
structure of VLPs results in high B cell immunogenicity, triggering strong 
and long-lasting IgG responses (Fehr, Skrastina, Pumpens, & 

…AYKLRNASE..

…AYKGGEIKSGGASE..

against
VLP backbone

Immune response

against
foreign epitope

Capsomere VLP

Chimeric Capsomere Chimeric VLP Immune response
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Zinkernagel, 1998). Depending on the VLP design, they are applied as 
vaccines against infectious diseases, autoimmune disorders, or cancer. 
Especially the latter requires breaking the self-tolerance of the immune 
system against tumor-associated epitopes (Ong et al., 2017). For an 
efficient immune response against tumor cells, the combination of strong 
B cell responses and T cell responses induced by many VLPs is promising 
(Chackerian, 2007). HBcAg and Qβ VLPs only induce cytotoxic T cell 
responses, when adjuvanted to stimulate the immune system, for example 
with aluminium salts (Chackerian, 2007). This said, more recent results 
in animal models point at the potency of a strong B cell response inducing 
auto-antibodies against a tumor-associated cell lineage marker (Klamp 
et al., 2011). These results encourage the development of VLPs to apply 
them as vaccine against infectious diseases, autoimmune disorders, and 
cancer. 

Since VLPs are protein-based structures, many of the platform 
technologies for the purification of other biopharmaceuticals, such as 
monoclonal antibodies, serve as a valuable toolbox. However, the VLPs’ 
unique structure and large size pose challenges and opportunities that 
are elucidated in the following discussion of VLP production processes. 

1.2 Production Process of Virus-Like Particles 

VLP production processes are built on the same principle as many other 
biopharmaceutical processes. They begin with the USP, the actual 
biotechnological synthesis of the molecules. Starting from a cryo-culture, 
the inoculation train is scaled to production scale. After the harvest of 
the feed stock or cells, DSP of the product is initiated, consisting of 
product capture, purification, and polishing. Finally, the product is 
formulated and filled. 

1.2.1 Expression and Lysis 

Recombinant expression of VLPs can be performed in genetically 
modified bacteria, yeast, insect, plant, and mammalian cells (Kushnir et 
al., 2012; Vicente, Roldão, Peixoto, Carrondo, & Alves, 2011). A typical 
process is illustrated in Figure 1.2. VLPs can be expressed either intra- 
or extracellularly, depending on the expression system and the viral 
protein (Ladd Effio & Hubbuch, 2015). While E. coli is a highly efficient 
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host for the expression of non-enveloped VLPs, it cannot be applied to 
enveloped VLPs and produces VLPs intracellularly (J. Liu et al., 2016). 
Intracellular products are released from the cell by lysis. Common 
techniques are ultrasonic disruption (Ladd Effio, Baumann, et al., 2016; 
Wenger, DePhillips, & Bracewell, 2008) for lab scale processes or high-
pressure homogenization for large-scale production (Cook et al., 1999; Z. 
Jiang, Tong, Cai, Xu, & Lou, 2011; Lünsdorf, Gurramkonda, Adnan, 
Khanna, & Rinas, 2011). After expression or lysis for extracellular or 
intracellular products, respectively, a solid-liquid separation step follows 
to remove the cells or cell debris, leaving the product in the liquid phase. 

 

Figure 1.2 :  Typical  production process of v irus- l ike part icles . 
Frequently used unit operations are indicated in gray ital ics .  

1.2.2 Capture and Purification 

The capture and purification train typically consists of unit operations 
such as chromatography, filtration, precipitation, and (ultra-) 
centrifugation (Ladd Effio & Hubbuch, 2015). Purification of virus-like 
particles has to deal with the challenge of increased particle size, which 
limits the diffusion into the pores of chromatography beads. Therefore, 
alternative chromatography technologies, such as monoliths (Burden, 
Jin, Podgornik, & Bracewell, 2012), membrane stacks (Ladd Effio, Hahn, 
et al., 2016; Vicente et al., 2008), or core bead resins (Lagoutte et al., 
2016) are investigated. However, the VLPs’ large size is not only a 
challenge but also an opportunity, which can be exploited in filtration 
processes (Negrete, Pai, & Shiloach, 2014; Vicente et al., 2014), 
precipitation processes (H. J. Kim et al., 2010), size-exclusion 
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Shake flasks or fermenter
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diafiltration
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Chromatography

Harvest
Recovery of cells
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Clarification
Cell debris removal
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Dis- and Reassembly
Improval of homogeneity

and immunogenicity
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Formulation
Buffer exchange and
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chromatography (SEC) (Ladd Effio, Oelmeier, & Hubbuch, 2016), and 
ultracentrifugation (Ausar, Foubert, Hudson, Vedvick, & Middaugh, 

2006).  

1.2.2.1 Ultracentrifugation and Chromatography 

While ultracentrifugation is a common technique for lab-scale 
purification of VLPs (Ausar et al., 2006; X. Jiang, Wang, Graham, & 
Estes, 1992; Mason et al., 1996), its application in large-scale processes 
is limited (Kleiner, Hooper, & Duerkop, 2015). Reasons for that include 
variability of the process and difficulty to scale up. In the study by 
Kleiner et al., filtration was suggested as a viable alternative to 
ultracentrifugation (Kleiner et al., 2015). Another study circumvented 
ultracentrifugation by a combination of polyethylene glycole (PEG) 
precipitation combined with an anion exchange (AEX) chromatography 
step (Koho et al., 2012). While their process led to high purities, the 
concentration of recovered VLP was lower than with ultracentrifugation. 
Reasons for that could be that the interior of the applied Q Sepharose 
XL chromatography beads is inaccessible to the purified norovirus VLPs 
as they are four times larger than the bead pores (Yao & Lenhoff, 2004). 
This in turn leads to low capacity in the bind-and-elute chromatography 
step. The fact that VLPs are larger than the typical pore size is harnessed 
by the core bead technology, in which only the interior of the beads is 
functionalized (Weigel et al., 2014). Impurities enter the pores and are 
bound to the strong multimodal ligands, while VLPs flow through (Reiter 
et al., 2019). Affinity media based on heparin or metal ions have also 
shown promising results for the purification of HPV and norovirus VLPs, 
respectively (Koho et al., 2015; Minkner et al., 2018). Generally, various 
processes exist that apply chromatography to VLP processes, many of 
which report comparably low dynamic binding capacity (Ladd Effio & 
Hubbuch, 2015). 

1.2.2.2 Precipitation and Re-Dissolution 

Precipitation and re-dissolution has been used in several studies as highly 
selective and efficient VLP capture and purification step (Kazaks et al., 
2017; H. J. Kim et al., 2010; Koho et al., 2012; Tsoka, Ciniawskyj, 
Thomas, Titchener-Hooker, & Hoare, 2000; Zahin et al., 2016). The 
selectivity derives from the size-dependency of precipitation methods 
along with the large size difference between VLPs and other solutes 
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(Rothstein, 1993). Precipitation agents used in above-mentioned studies 
are PEG and the kosmotropic salt ammonium sulfate. There are two 
theories explaining the mechanism of PEG precipitation. The excluded 
volume theory of Atha and Ingham assumes that a volume around PEG 
molecules is inaccessible for proteins (Atha & Ingham, 1981). By 
increasing the PEG concentration, the accessible volume decreases. Thus, 
the VLP concentration in the remaining volume increases, leading to 
precipitation. Another theory describing the micro-scale inhomogeneities 
in solutions is the preferential solvation theory (Ben-Naim, 1988). 
Applied to aqueous PEG-protein systems, Arakawa and Timasheff state 
that PEG interacts preferentially with water and therefore is excluded 
from the surface of the protein (Arakawa & Timasheff, 1985). Both 
theories imply that larger proteins, having a larger surface, are 
precipitating at lower concentration of the precipitant. Arakawa and 
Timasheff investigated this effect also for anorganic salts (Arakawa & 
Timasheff, 1982). The preferential solvation induced by ammonium 
sulfate results in similar conclusions as for precipitation with PEG – the 
proteins precipitate, where larger proteins are more prone to precipitation 
due to their larger surface. However, surface charge is thought to have a 
greater effect than size for precipitation by kosmotropic salts (Curtis, 
Montaser, Prausnitz, & Blanch, 1998). Therefore, precipitation of VLPs 
with ammonium sulfate is straightforward due to their large size, but the 
required ammonium sulfate concentration still depends on the VLP 

surface charge. 

Re-dissolution of VLPs is most often realized by centrifugation and 
resuspension of the VLP-containing pellet in a precipitant-free buffer or 
solubilization buffer (Kazaks et al., 2017; Koho et al., 2012; Masuda et 
al., 2018; Tsoka et al., 2000; Zahin et al., 2016). After resuspension, 
additional purification can be realized by dialysis of re-dissolved product 
and centrifugation of undissolved contaminants, AEX chromatography, 

or SEC (Masuda et al., 2018; Zahin et al., 2016). 

1.2.2.3 Filtration for Clarification, Capture, and Purification of Virus-

Like Particles 

Carvalho and colleagues point out that a platform process for VLP 
production should include techniques that exploit properties that are 
comparably constant for different candidates or products (Carvalho, 
Silva, Moleirinho, et al., 2019). Filtration serves this purpose as it is 
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based almost exclusively on the size of the solutes. Generally, filtration 
for bioprocesses can be divided into dead-end filtration and cross-flow 
filtration (CFF). High capacity dead-end filtration is realized by depth 
filtration, often applied to clarify solutions early in the process (Besnard 
et al., 2016). Size-selective dead-end membrane filtration is applied for 
sterile filtration (Carvalho, Silva, Moreira, et al., 2019). CFF retains and 
recirculates the product, which flows over a membrane in each 
recirculation, thus depleting smaller solutes and solvent (van Reis & 
Zydney, 2007). Therefore, CFF can be additionally used for 
concentration of the product. By implementing an input stream of 
diafiltration buffer to the recirculation loop, CFF serves to exchange the 
buffer. 

Filtration has been successfully applied for clarification of VLP solutions 
(Carvalho, Silva, Moreira, et al., 2019; US Patent 6,602,697, 2003; Cook 
et al., 1999; Tretyakova et al., 2016), purification of VLPs (Carvalho, 
Silva, Moleirinho, et al., 2019; Kleiner et al., 2015), VLP reassembly 
(Liew, Chuan, & Middelberg, 2012), and formulation (Carvalho, Silva, 
Moleirinho, et al., 2019). Most of these applications are membrane-based 
filtration, such as micro-, ultra-, or diafiltration. The diverse application 
of membrane filtration technology to VLP processing in these studies is 
illustrated by Figure 1.3. Hereby, the selected pore size or molecular 
weight cut-off (MWCO) determines the applications of filtration. With 
0.2 µm pore size, bacteria, spores, and dust are retained and VLPs and 
other solutes pass the filter (Huhti et al., 2010). In a publication on 
human immunodeficiency virus VLPs, capture and concentration was 
realized with a MWCO of 500 kDa, for example (Negrete et al., 2014). 
In a study on VLP reassembly by cross-flow filtration, a 30 kDa MWCO 
membrane was employed and compared to dialysis with 10 kDa MWCO 

(Liew et al., 2012). 



1 Introduction 

11 
 

Pore size
0.2 µm 100-1000 kDa

MWCO MWCO
10-30 kDa

Sterile filtration Concentration

Buffer exchange

Purification Purification of
subunits

Reassembly of
subunits by

buffer exchange

Bacteria

VLPs

VLP subunits

Buffer components

Nucleic acids

Host cell proteins

 

Figure 1.3 :  I l lustrat ion of the applicat ion of membrane fi ltrat ion 
to virus- l ike particle  (VLP) processes.  With di fferent pore s izes and 
molecular weight cut-offs (MWCOs),  f i l tration serves as a too l for 
steps throughout the process ranging from clari f icat ion to ster i le  
f i l tration o f the formulated product. The i l lustrated steps can be 
found in various publicat ions (Carvalho , Si lva, Moleir inho, et al . ,  
2019; Carvalho , Si lva,  Moreira, et al . ,  2019; Huhti et al . ,  2010; Liew 
et al . ,  2012; Negrete et al . ,  2014; Tretyakova et al . ,  2016).  

In CFF, the flux across the membrane is determined by various 
parameters, including the membrane surface area, geometry, and pore 
size, the feed flow rate, and the viscosity and composition of the media 
(Van Reis et al., 1997; van Reis et al., 1997; van Reis & Zydney, 2007). 
Common problems in CFF processing are fouling, concentration 
polarization, or formation of a gel layer, all of which decrease the 
membrane flux. The occurrence of these events is dependent on a complex 
interplay of above-mentioned parameters (Bacchin, Si-Hassen, Starov, 
Clifton, & Aimar, 2002). Therefore, different approaches have been 
evolved to manage these challenges in process development. These 
include detailed studies of these parameters, modeling, and monitoring 
with process analytical technology (PAT) (Bacchin et al., 2002; 
Fernandez-Cerezo, Wismer, Han, & Pollard, 2019; Huter & Strube, 2019; 
Watson et al., 2016). 
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1.2.3 Dis- and Reassembly 

Non-enveloped VLPs are regular oligomers, such as 240-mers (Wynne, 
Crowther, & Leslie, 1999) or 360-mers (Nilsson et al., 2005). As 
mentioned above, yeast and E.coli are popular expression systems for 
non-enveloped VLPs, resulting in high product yield of in vivo assembled 
particles (J. Liu et al., 2016). Often, these VLPs have structural defects 
and are inhomogeneous (Q. Zhao, Allen, et al., 2012). Therefore, VLPs 
are often dis- and reassembled, resulting in higher homogeneity and 
stability (Gallagher, Torian, McCraw, & Harris, 2017; Mach et al., 2006; 
McCarthy, White, Palmer-Hill, Koenig, & Suzich, 1998; Pattenden, 
Middelberg, Niebert, & Lipin, 2005; Q. Zhao, Allen, et al., 2012). 
Interestingly, dis- and reassembly also improved immunogenicity by 
increasing virion-like reactivity for HPV VLPs, as was done for the 
licensed HPV vaccine Gardasil (Q. Zhao, Modis, et al., 2012). 
Additionally, dis- and reassembly with an intermediate purification step 
allows for removal of contaminants contained in the void inside in vivo 

assembled VLPs (Link et al., 2012; Ren, Wong, & Lim, 2006).  

The disassembled and assembled state is reached through a change in 
the quaternary structure of proteins. The mechanism behind this change 
is based on changes in disulfide linkages, weak electrostatic and 
hydrophobic interaction, temperature, and conformational changes 
(Ceres & Zlotnick, 2002; Hanslip, Zaccai, Middelberg, & Falconer, 2006; 
Kegel & Van Der Schoot, 2004; M Li et al., 1997; McCarthy et al., 1998; 
Sapp, Fligge, Petzak, Harris, & Streeck, 1998; Wingfield, Stahl, Williams, 
& Steven, 1995). While disulfide bridges stabilize the assembled capsids, 
they were found to not be required for assembly of HPV VLPs 
(Mukherjee, Thorsteinsson, Johnston, Dephillips, & Zlotnick, 2008). 
Mechanistic studies on HBcAg VLPs suggest that high ionic strengths 
induce a conformational change of capsomeres to an assembly-active 
state (Ceres & Zlotnick, 2002). A similar effect is thought to lead to an 
increase of assembly rate by bivalent cations (Choi, Gyoo Park, Yoo, & 
Jung, 2005; Stray, Ceres, & Zlotnick, 2004). Assembly from reduced 
HBcAg dimer structures was faster than from oxidized dimers, suggesting 
a geometrical effect induced by oxidation that is unfavorable for assembly 
(Selzer, Katen, & Zlotnick, 2014). 

Disassembly of VLPs is achieved by lowering the ionic strength, adding 
of a reducing agent to break disulfide bridges, if present, the addition of 
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chaotropic agents, such as urea or guanidine hydrochloride, and 
increasing the pH (Mach et al., 2006; McCarthy et al., 1998; S. Singh & 
Zlotnick, 2003; Wingfield et al., 1995; A Zlotnick et al., 1996). This 
process step is typically realized by addition of NaOH, denaturant or 

chaotropic agent to the VLP sample, and by subsequent incubation. 

The resulting capsomeres are then either directly reassembled or purified 
by filtration or chromatography, for example by SEC (Link et al., 2012; 
Mach et al., 2006; Ren et al., 2006; A Zlotnick et al., 1996). Reassembly 
is initiated by decreasing pH and increasing ionic strength, e.g. with NaCl 
or Na2SO4, typically by buffer exchange via dialysis or gel filtration 
(Mach et al., 2006; Wingfield et al., 1995; A Zlotnick et al., 1996). CFF 
has been employed as a scalable alternative to the lab-scale dialysis and 
gel filtration processes for the assembly of murine polyomavirus VLPs 
(Liew et al., 2012). Transfer to CFF increased yield and decreased buffer 

consumption. 

1.2.4 Polishing, Formulation, and Logistics 

Purity guidelines for vaccine products discriminate between product- and 
process-related contaminants (US Food and Drug Administartion & 
CBER, 1999). The majority of process-related contaminants, such as host 
cell proteins, DNA, cell debris and culture media are removed during 
capture and purification. The polishing step plays an important role in 
reducing product-related contaminants, such as aggregates, misfolded 
proteins or disassembled particles (Ladd Effio & Hubbuch, 2015). Typical 
unit operations for polishing are SEC (Carvalho et al., 2016; Lagoutte et 
al., 2016), CFF, and sterile filtration (Wagner et al., 2014). Polishing by 
CFF can easily be combined with a buffer exchange into the formulation 
buffer. Additives for increased storage stability include sugars, such as 
sucrose or sorbitol, surfactants, such as polysorbate 20 or 80, and amino 
acids, such as L-histidine (Mohr, Chuan, Wu, Lua, & Middelberg, 2013). 
To induce high and sustained immune responses, VLPs are often 
combined with adjuvants such as AS04 for Cervarix and Merck 
aluminium adjuvant for Gardasil (Garçon et al., 2011; Shi et al., 2005). 
Licensed HBV and hepatitis E virus vaccines are also formulated with 

aluminium adjuvant (Jain et al., 2015). 

Considering the logistical challenge of distributing vaccines to remote 
parts of the earth, potentially with risks in breaking the cold chain, a 
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stable formulation is mandatory (Lloyd & Cheyne, 2017). Next to liquid 
formulations, freeze-drying is a frequent formulation strategy, leading to 
significantly enhanced product stability (Lang et al., 2009; Tumban et 
al., 2015). Another strategy to increase the stability of VLPs is to 
introduce disulfide bridges that stabilize the VLP structure (Ashcroft et 
al., 2005; Lu, Chan, Ko, Vanlang, & Swartz, 2016). 

1.3 Process Analytical Technology 

The 2004 published FDA Guidance for Industry on the implementation 
of PAT in pharmaceutical processes has been adopted more rapidly for 
small molecules than for biologics (FDA & Others, 2004; Rüdt, Briskot, 
& Hubbuch, 2017). Reasons for this include the biological molecules’ 
complexity and the complexity of the associated processes. PAT is 
believed to increase process understanding and to enable automation, 
thus decreasing process costs (Rolinger, Rüdt, & Hubbuch, 2020). While 
at-line and on-line methods such as high-performance liquid 
chromatography (HPLC) have been implemented for biologics (Rathore, 
Yu, Yeboah, & Sharma, 2008; Tiwari, Kateja, Chanana, & Rathore, 
2018), analysis of process streams with in-line sensors, such as 
spectroscopic tools, is desirable as it delivers real-time results, does not 
require sample preparation, and is non-destructive (Rolinger et al., 2020). 

1.3.1 Implementation of Process Analytical Technology for Virus-

Like Particle Processes 

The field of PAT for VLP processing is still at an early stage. In a review 
on analytical technologies for Influenza VLPs, the lack of suitable 
methods for in-line analysis of the process stream has been pointed out 
(Thompson, Petiot, Lennaertz, Henry, & Kamen, 2013). Another review 
points out the potential of HPLC methods to serve as PAT for viral 
vaccines (Kramberger, Urbas, & Štrancar, 2015). As stated above, in-line 
methods have the potential to grant (near) real-time information about 
the process and should therefore be considered as PAT for VLP 
processing. Spectroscopic methods are regarded as the most promising 
toolbox for in-line sensors and include ultraviolet and visible (UV/Vis) 
absorbance spectroscopy, fluorescence spectroscopy, light-scattering 
spectroscopy, and infrared spectroscopy (Rolinger et al., 2020; Rüdt et 
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al., 2017). Various studies implemented spectroscopic techniques for the 
analysis of VLP stability or process steps, many of which refer to the 

potential to apply these techniques as a PAT tool. 

1.3.1.1 Fluorescence Spectroscopy 

Porcine circovirus type 2b VLP assembly and disassembly was analyzed 
by fluorescence spectroscopy analysis (M. Fang et al., 2016). The 
formation of disulfide bonds and the increase of define structures in 
assembled capsids was seen as one of the major drivers for the increased 
fluorescence. Intrinsic fluorescence has been monitored in studies 
investigating the pH and temperature stability of norovirus VLPs (Ausar 
et al., 2006), the HPV VLP dis- and reassembly process (Hanslip et al., 
2006; Rajendar et al., 2013), disassembly of HBcAg VLPs (S. Singh & 
Zlotnick, 2003), and pH and temperature stability of the Marburg and 
Ebolavirus (Hu et al., 2011).  

1.3.1.2 Light Scattering Spectroscopy 

Light scattering methods, such as static or dynamic light scattering (SLS, 
DLS) are especially useful to detect the formation or disruption of the 
particulate assembled structures and have been applied to Marburg virus 
VLPs, Ebola virus VLPs, HBcAg VLPs, and HPV VLPs (Ausar et al., 
2006; Hu et al., 2011; A. Zlotnick, Ceres, Singh, & Johnson, 2002; Adam 
Zlotnick, Johnson, Wingfield, Stahl, & Endres, 1999). In the product 

stream, the typical VLP concentration � is low compared to other 

bioprocesses. However, the intensity of scattered light �� for Rayleigh 
scattering is strongly influenced by the particle diameter (Bohren & 
Huffman, 2004). It is proportional to the sum of the product of 

concentration � of species � with its diameter �� to the power of six 
(Equation 1.1), making VLPs well detectable with light-scattering 

technologies. 

�� ∝ ∑����
 �1. 1� 
With lasers operating at >600 nm, most VLPs are typically in the size-
range for Rayleigh scattering (Hosokawa, Nogi, Naito, & Yokoyama, 
2012). Static light scattering models can therefore be applied to estimate 
molecular weight or root mean square radius (Lutomski et al., 2018; 
Pease et al., 2009; Somasundaram et al., 2016). This relation is less 
relevant for diffusion coefficient measurements by DLS, as particles with 
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a size equal to or larger than the wavelength of the laser can still be 
measured. However, in DLS, large particles overshadow smaller solutes 

due to their strong contribution to ��. This in turn can facilitate the 
measurement of diffusion coefficients of large particles at low 
concentrations (Bohren & Huffman, 2004). A solute’s diffusion coefficient 
is estimated by the method of cumulants in DLS (Koppel, 1972). The 
translation of the diffusion coefficient to a hydrodynamic diameter or 
radius is realized with the Stokes-Einstein-Equation (Equation 1.2). 

� = ���
3π�� , �1. 2� 

where �� is Boltzmann’s constant, � is the absolute temperature, � is 
the dynamic viscosity of the medium and d is the hydrodynamic 
diameter. 

1.3.1.3 UV/Vis Absorbance Spectroscopy and Other Technologies 

UV/Vis absorbance spectroscopy is routinely applied for concentration 
determination, based on the absorbance of aromatic side chains. 
Additionally, UV spectroscopy is sensitive to changes in disulfide bonding 
(Wetlaufer, 1963). This is particularly interesting, as disulfide bonds form 
in some VLPs upon assembly (Mukherjee et al., 2008). Another 
interesting approach is second derivative analysis of protein UV/Vis 
spectra, as has been pioneered by Ragone et al. and Mach and Middaugh 
(Mach & Middaugh, 1994; Ragone, Colonna, Balestrieri, Servillo, & 
Irace, 1984). While Mach & Middaugh point out the potential of 
wavelength shifts that occur when aromatic side chains move into 
different environments, Ragone et al. describe the ratio of peak-trough 
distances in the wavelength second derivative spectrum. The shift of the 
minimum of the second derivative at different wavelengths, for example 
at around 292 nm for tryptophan, was used in a study investigating 
norovirus VLP stability dependent on pH and temperature (Ausar et al., 
2006).  

Other technologies for the analysis of VLP dis- and reassembly are 
resistive-pulse sensing (Harms, Selzer, Zlotnick, & Jacobson, 2015), SEC 
(Ceres & Zlotnick, 2002; Ladd Effio, Oelmeier, et al., 2016), asymmetrical 
flow field-flow fractionation (Liew et al., 2012), or circular dichroism 
spectroscopy (Hu et al., 2011; S. Singh & Zlotnick, 2003). Fourier-
transform infrared spectroscopy has been applied to detect poliovirus 
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infection in cell culture (Lee-Montiel, Reynolds, & Riley, 2011). It 
therefore seems to be a promising technology for VLP titer monitoring 

during USP. 

1.3.2 Multivariate Data Analysis 

Often used in combination with UV/Vis absorbance spectroscopy, 
multivariate data analysis is a powerful tool to analyze and steer 
processes (Rüdt et al., 2017). As such, principal component analysis 
(PCA) and partial least square (PLS) regression are the most popular 

techniques.  

1.3.2.1 Principal Component Analysis 

PCA is a common tool for classification, dimension reduction, and 
pattern identification (Wold, Esbensen, & Geladi, 1987). PCA 

approximates a given data table X by a matrix of scores T and loadings 

P resulting in error E as defined by Equation (1.3).  

X = TP� + E �1. 3� 
In most cases, the data are centered and scaled to unit variance for PCA. 
Often applied in the exploratory data analysis, PCA can be used to reveal 
patterns in a data set, as for example done for cell culture experiments 
(Bakker, Thomassen, & van der Pol, 2010; Mercier, Diepenbroek, Dalm, 
Wijffels, & Streefland, 2013; Suarez-Zuluaga, Borchert, Driessen, Bakker, 
& Thomassen, 2019). Furthermore, PCA is used to study the evolution 
of the seasonal influenza, potentially improving the forecast for the design 
of seasonal vaccines, and was used to help identify the origin of the ‘swine 
flu’ H1N1 virus (Konishi, 2019; Solovyov, Palacios, Briese, Lipkin, & 
Rabadan, 2009). It has been applied to study different vaccine 
formulations with respect to immune response data (Phanse et al., 2014). 
Fourier-transform infrared spectroscopy in combination with PCA was 
used to analyze freeze-dried vaccine formulations, for example to 
differentiate between formulations of different virus content (Hansen et 
al., 2015). 

1.3.2.2 Partial Least Squares Regression 

The estimation of response variables, such as a solute concentration, 
requires regression models. Compared to PCA, these models are applied 
to systems with both predictor variables X and one or more response 
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variables Y. PLS regression models are based on the transformation of 
the data to a latent variable space, similar to PCA (Wold, Sjöström, & 
Eriksson, 2001). In bioprocesses, PLS has been used to estimate 
component concentrations from spectral data (Andris, Rüdt, Rogalla, 
Wendeler, & Hubbuch, 2018; Brestrich, Rüdt, Büchler, & Hubbuch, 
2018; Großhans et al., 2018). Similar to PCA, the data is often centered 
and scaled. However, for spectral data, scaling amplifies noise and should 
typically be omitted (Rüdt et al., 2017). While both X and Y data are 
reduced in their dimension similar to PCA, the explained variance is not 
maximized to create latent variables. For PLS, the goal of the algorithm 
is to maximize the covariance between the dimension-reduced X and Y 
data (Wold et al., 2001). The model results in an approximation of the 

X data by 

X = TP� + E, �1. 4� 
where T and P are scores and loadings, respectively, and E is the residual 

for the X data. The description of the Y data in reduced dimension is 

Y = UQ� + G, �1. 5� 
where U and Q are scores and loadings, respectively, and G is the residual 

for the Y data. The core of the PLS model is the maximization of the 
covariance between T and U, which is iteratively solved for the individual 

components of T and U. The regression model results from the latent X 

variables and the Y loadings (Equation (1.6�. 

Y = TQ� + F, �1. 6� 
where F is the residual of the estimated Y data. With the transformation 

of X by the weights W to the latent variables T = XW, the model can be 
rewritten to 

Y = XWQ� + F. �1. 7� 

1.4 Molecular Design Challenges 

The decision to approve and license a vaccine candidate is based on the 
demonstration of its efficacy and safety (Baylor, 2016). The safety of a 
VLP candidate depends largely on its purity and sterility. High purity 
and sterility are ensured with purification and polishing methods as 
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described above. The efficacy of a VLP is based on its capability to 
induce protecting and long-lasting specific immune responses against the 
target antigen, ideally inducing neutralizing antibodies (Kushnir et al., 
2012). The immunogenicity of VLPs can depend on a variety of factors, 
one of which is the correct and high density display of the antigenic 
epitopes (Frietze, Peabody, & Chackerian, 2016; O’Rourke, Peabody, & 
Chackerian, 2015). Although the selection of epitopes to display on the 
VLP is often rational, a strong empirical element is involved in this 
process. This element can, for example, be simple screenings, but also 
vast library VLP display systems (O’Rourke et al., 2015). Another 
approach is the in silico analysis and design of vaccines. A great variety 
of models is described in literature, such as 3-D structure-based models 
or amino acid sequence-based models. These tackle different challenges, 
such as the prediction of immunogenicity, stability, or manufacturability. 
Therefore, the following section briefly touches upon 3-D structural 
analysis of capsid structures, and will then illustrate the most common 
problem in early VLP candidate process development, i.e. VLP solubility 
and assembly competence. 

1.4.1 3-D Structural Analysis of VLPs  

The scientific community has built databases containing 3-D structural 
data of tens of thousands of proteins and nucleic acids (www.rcsb.org) 
(Berman et al., 2000). 3-D structures contain valuable information on 
the geometry of the molecule(s), the interaction between side chains, and 
the nature and structure of the surface. While there is a great number of 
structures available, a vast number of protein structures, especially for 
newly discovered molecules, remains unresolved. The complexity of the 
structure determination workflow is high and the process is time-
consuming (Steinbrener et al., 2010). Impressive time-lines have been 
realized in the structure determination of the main protease of SARS-
CoV-2, due to the pressing need of a 3-D structure (Linlin Zhang et al., 
2020). Computational technologies advance structure determination, 
such as homology modeling and molecular dynamics (MD) simulations. 
MD simulation aims to study the molecules’ dynamic behavior or 
structure based on an atomistic or coarse grained simulation (Geng, 
Chen, Ye, & Jiang, 2019). For these simulations, 3-D structures are 
required, which can be retrieved from above-mentioned databases. If 
these structures are unavailable, homology modeling can serve with a 
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means to estimate the unknown 3-D structure by comparing sequence 
motifs with the proteins in the vast library of 3-D structures (Raval, 

Piana, Eastwood, Dror, & Shaw, 2012). 

The application of 3-D structural analysis for vaccines includes 
description or prediction of immunogenicity, stability, and structure. 
Antibody-epitope complexes were studied to elucidate molecular 
interaction and identify potent VLP candidate structures (Roseman et 
al., 2012). Capsid structures have been investigated with MD simulations 
for analysis of stability and structure (Freddolino, Arkhipov, Larson, 
McPherson, & Schulten, 2006; Joshi et al., 2011; Roberts, Kuiper, 
Thorley, Smooker, & Hung, 2012; G. Zhao et al., 2013). Using small 
building blocks of murine polyomavirus VLPs, the suitability of linkers 
for the insertion of foreign epitopes has been evaluated (Lua, Fan, Chang, 
Connors, & Middelberg, 2015). 3-D structures of 1918 different Influenza 
VLPs have been investigated to elucidate possible routes for design of 
seasonal Influenza vaccines (McCraw et al., 2018). 

3-D structure-based analysis can be envisaged to result in predictive 
models for various process- and product-relevant biophysical and 
physicochemical parameters, such as solubility, viscosity, or surface 
charge. However, with the high computational cost of MD simulations, 
it is hard to compete with advanced high-throughput laboratory 
techniques, when a large number of candidates have to be screened in a 
short time frame (Ladd Effio, Baumann, et al., 2016; Mohr et al., 2013). 
To simplify simulations, capsid subunits can be used, as mentioned 
above. However, this simplification often does not allow to describe the 
modeled properties, as was the case for an immunogenicity predictor 
(Joshi et al., 2011). 

1.4.2 Virus-Like Particle Solubility and Assembly 

Of the many properties that are of interest for the success of a product, 
protein solubility can lead to a molecule’s failure very early in the process 
(Sormanni, Amery, Ekizoglou, Vendruscolo, & Popovic, 2017). For intra- 
and extracellular products, a well soluble product is found in the 
supernatant after cell lysis or cell removal, respectively. When VLPs or 
other proteins are overexpressed in hosts such as E. coli, low solubility 
means that the viral proteins are only detectable in inclusion bodies 
(Karpenko et al., 2000). Several approaches exist that extract VLPs from 
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inclusion bodies by solubilization (Bustos-Jaimes, Soto-Román, 
Gutiérrez-Landa, Valadez-García, & Segovia-Trinidad, 2017; Murthy, Ni, 
Meng, & Zhang, 2015; A. Singh, Upadhyay, Upadhyay, Singh, & Panda, 
2015; Y. Zhang et al., 2020). While this is a possible DSP route, it comes 
with increased experimental effort, requirement of solution additives, and 
results in VLPs that are inherently more difficult to handle.  

Besides solubilization of inclusion body proteins, there are VLP-specific 
strategies to circumvent the challenge of low solubility. In literature, the 
problem of low solubility often is linked to the lack of particle assembly, 
as insoluble proteins cannot assemble to VLPs. The problem of insoluble 
expression or lack of particle assembly is characteristic of recombinant 
cVLPs (Chackerian, 2007; Jegerlehner et al., 2002; Karpenko et al., 
2000). This challenge can be overcome when working with chemical 
linkage of peptides to platform VLP structures, that themselves are 
soluble (Frietze et al., 2016). Techniques for coupling include click 
chemistry (Brune et al., 2016), chemical linkage to VLP surface groups 
(typically cysteine or lysine) by, for example, sulfo-SMCC chemistry 
(Peacey et al., 2007; Pomwised et al., 2016), or enzymatic linkage 
(Schoonen, Pille, Borrmann, Nolte, & van Hest, 2015). If a VLP scaffold 
and peptide linkage platform process is established, this can be a viable 
solution to deal with hydrophobic inserts. However, increased cost of 
production and decreased scalability via this process route explain that 
recombinant insertion is still the more popular strategy (Frietze et al., 
2016).  

Several studies on VLP assembly do not differentiate between soluble 
and insoluble expression but analyze total expression (including soluble 
and insoluble protein) and the presence of macromolecular structures, or 
analyze immunogenicity of purified lysates (Schödel et al., 1996; Ulrich 
et al., 1992). In other research on the solubility of in vivo assembled 
cVLPs, solubility is linked to the capability of the structure to self-
assemble (Karpenko et al., 2000). In a study on woodchuck hepadnavirus 
VLPs, which is similar to HBcAg, low (soluble) expression levels 
correlated with low particle assembly (Billaud et al., 2005). This makes 
sense, as low concentration of soluble constructs point at aggregation and 
potentially presence of the product in inclusion bodies. This aggregated 
state of the proteins would make assembly of VLPs impossible. It is 
plausible that there are constructs, which are soluble and expressed at 
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high levels but that do not assemble to VLPs. However, researchers 
choose the insertion position rationally so that it theoretically does not 
interfere with assembly (Chackerian, 2007). It is therefore reasonable to 
believe that the case of strong soluble expression but low assembly is 
relatively rare. It can therefore be hypothesized, that constructs 
incapable of assembly to VLPs are probably found in the solid phase 
after cell lysis, i.e. they are aggregated and found in inclusion bodies. 
This hypothesis is supported by results of a study on RNA Phage MS2 
VLPs, which found that the insertion of hydrophobic peptides can cause 
protein folding defects, leading to aggregation (Peabody et al., 2008). 
Earlier studies also acknowledge that inserted hydrophobic amino acids 
or amino acids with large residues, such as tryptophan, may interfere 
with assembly and lead to aggregation (Karpenko et al., 2000). Next to 
hydrophobicity, charge plays an important role for assembly competence 
(Billaud et al., 2005; Whitacre, Lee, & Milich, 2009). 

Charge is an easily accessible property, dependent only on the pH and 
the presence of charged amino acids. Conversely, hydrophobicity in the 
context of proteins is a multifaceted property. Its relevance ranges from 
subnanoscale to nanoscale interactions in hydrophobic interaction 
chromatography (G. Wang, Hahn, & Hubbuch, 2016), protein folding, 
and aggregation (Lauer et al., 2012; Tanford, 1962; Valerio et al., 2005), 
to macroscale implications such as surface tension and viscosity (Galm, 
Amrhein, & Hubbuch, 2017). However, a hydrophobicity value cannot 
be derived as straightforward as the charge. For the derivation of the 
hydrophobic component of solvatization of proteins, no consistent and 
accurate approach exists (Harris & Pettitt, 2016). An early notion is the 
measurement of transfer free energies of amino acids from the protein 
interior, modeled by ethanol, for example, into water (Tanford, 1962). 
This idea of hydrophobicity was captured by various researchers in so-
called hydrophobicity scales. A hydrophobicity scale assigns a particular 
hydrophobicity value to each amino acid. Meanwhile, a great number of 
hydrophobicity scales, derived from experimental or theoretical studies, 
have been described (Simm, Einloft, Mirus, & Schleiff, 2016). This said, 
the scales do not agree on the order of the amino acids’ hydrophobicity 
values (Harris & Pettitt, 2016). The outcome they have in common is 
that large, hydrophobic amino acids are more likely to be buried in the 
interior of a protein. This agrees with the observation that large 
hydrophobic residues interfere with capsid assembly (Karpenko et al., 
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2000), and that hydrophobic amino acids may disrupt folding of chimeric 
viral proteins (Peabody et al., 2008). 

1.5 Machine Learning for Biopharmaceuticals 

Machine learning tools begin to find their way into biopharmaceutical 
process development and manufacturing. The availability of today’s 
powerful computational resources, the development and application of 
diverse machine learning tools, and the increasing amount of data 
available promote their implementation. A great diversity of methods are 
applied to various problems in manufacturing, development, and 
research, hinting towards the potential of machine learning in 

biopharmaceutical processes. 

1.5.1 Machine Learning Applied to Biopharmaceutical 

Manufacturing, Development, and Research 

In biopharmaceutical manufacturing, multivariate statistics have gained 
a foothold for batch process monitoring (Joeris, Frerichs, Konstantinov, 
& Scheper, 2002; Larsson, Liljas, & van der Spoel, 2012). Batch processes 
with little production history are a challenge, as limited amount of data 
is available for modeling (Tulsyan, Garvin, & Ündey, 2019). Gaussian 
processes have been used to generate in silico bioprocess data to address 
this problem (Tulsyan et al., 2018). Similar problems exist in 
chromatography modeling. The lack of data for calibration of the 
mechanistic model has been addressed by generating in silico data with 
an ANN model (G. Wang, Briskot, Hahn, Baumann, & Hubbuch, 2017a). 
The combination of mechanistic modeling and ANNs has also been used 
for root-cause investigation for chromatography process deviations (G. 

Wang et al., 2017b).  

The development process for USP, DSP, and formulation can also benefit 
from machine learning by prediction of metabolite production and 
optimizing processes and formulations, for example. Generalized linear 
models have been applied to predict lactate production of Chinese 
hamster ovary cells by training on gene expression data at various 
conditions (Zampieri, Coggins, Valle, & Angione, 2017). With a deep Q-
learning algorithm, liquid-liquid extraction processes were optimized 
based on model data (Hwangbo, Öner, & Sin, 2019). Optimized 



1.5 Machine Learning for Biopharmaceuticals 

24 
 

formulations of pharmaceuticals have been predicted by deep learning 
methods trained on data of various existing formulations (Yilong Yang 
et al., 2019). This approach is also conceivable for formulation of 
biopharmaceutical drugs. 

In addition, biopharmaceutical research has seen an advent of machine 
learning, for example in the prediction of protein solubility or the 
prediction of aggregating domains in proteins. Support-vector machines 
(SVM) and random forests (RF) have been successfully employed to 
predict protein solubility by various researchers (Agostini, Vendruscolo, 
& Tartaglia, 2012; Magnan, Randall, & Baldi, 2009; Samak, Gunter, & 
Wang, 2012). Another application was using SVM and RF as feature 
selection tool to identify features important to protein aggregation (Y. 

Fang, Gao, Tai, Middaugh, & Fang, 2013). 

1.5.2 Fundamentals and Good Practice in Machine Learning 

It stands to reason to apply machine learning to tasks, which are beyond 
human capabilities or which require highly repetitive action (Shalev-
Shwartz & Ben-David, 2014). This includes very large and complex data 
sets, which can be handled with current computational power. Generally, 
machine learning algorithms can be subdivided into supervised and 
unsupervised learning methods. Unsupervised methods learn from 
patterns in the input data set, oblivious to response variables (Shalev-
Shwartz & Ben-David, 2014). These are for example clustering 
algorithms or compression algorithms (Hinton, Sejnowski, Poggio, & 
others, 1999). Supervised methods learn from the input data, while being 
informed about the response data of a training set. Supervised machine 
learning methods include SVM, RF, ANN, or decision trees (Kubat, 
2017). This said, most machine learning algorithms can be applied both 
in supervised and unsupervised form. In supervised learning, one can 
discriminate between classification and regression algorithms. Regression 
algorithms predict continuous variables, while classification algorithms 
predict dichotomous or multicategory data, i.e. discrete classes.  

1.5.2.1 Model Evaluation 

Several simple metrics exist to characterize the performance of regression 
learners, such as the root mean square error or the R2 (Kubat, 2017). 
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Classification learners are characterized by metrics such as accuracy, 
precision, or recall, defined by the contingency matrix (Figure 1.4). 
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Figure 1.4 :  Contingency matrix for a binary classi f ication 
problem. The derivation of accuracy, recal l ,  and precis ion from the 
contingency matrix is shown. 

Accuracy defines the percentage of correctly predicted classes. The recall 
defines the number of true positives correctly predicted of all positives 
and the precision describes the ratio of correctly predicted positives to 
all predicted positives. These measures are useful, but prone to bias for 
situations of class imbalance (Powers, 2011). Assume a situation, where 
90% of training samples are negative and 10% are positive. The model 
could be the evaluation of a test for a disease, where it is very important 
to identify the few positives of the suspected ill. If trained on the 
accuracy, the model could favor solutions where all observations are 
predicted negative, since this would already lead to an accuracy of .9. 
This can be regarded as a failure of the algorithm, as positive samples 
are completely ignored. An alternative metric is Matthew’s correlation 

coefficient  

788 = �. × �/ − 0. × 0/
;��. + 0.���. + 0/���/ + 0.���/ + 0/� , �1. 8� 

where, similar to the accuracy, the entries of the contingency matrix are 
used for calculation. MCC ranges from -1 to +1, where +1 is perfect 
prediction, -1 is complete disagreement between prediction and reality, 
and 0 represents random prediction. It is considered the least biased 
singular metric for binary classification evaluation (Chicco & Jurman, 
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2020; Powers, 2011). The MCC for the example above is not defined since 

�. + 0. = 0. If we assume a closely related case, in that one of the 

observations is predicted as �., and the rest negative, this results in 90 

observations �/, and 9 observations 0/. An MCC of 0.31 and an 
accuracy of .91 would result. If we now consider a case, where nine out 
of the ten positive cases are identified, but 20 negative cases are predicted 
positive, the accuracy would decrease to .79, but the MCC would increase 
to .45. Compared to the previous example, the model deteriorates with 
regard to accuracy but improves, when the MCC is the evaluation metric. 
The prediction of 20 patients to have an illness they actually do not have 
could be mitigated by further analyses. Missing actually sick patients, 
however, could be fatal. Therefore, the MCC is the better metric for this 
example. Generally, because it is less prone to class imbalance, it is best 
practice to utilize MCC as a single performance evaluation metric instead 

of accuracy. 

1.5.2.2 Bias-Variance Dilemma and Ensemble Learners 

The design of a model always bears the potential of over- and 
underfitting. This is also referred to as the bias-variance dilemma 
(Geman, Bienenstock, & Doursat, 1992). A biased model ignores much 
of the training data, and is therefore underfitted. This model results in 
small differences when trained with different training sets. A model that 
includes a lot of information of the training set is an accurate predictor 
for the training set, but shows high variance with respect to other 
training data. It is overfitted. The optimal model lies in between but is 
often difficult to ascertain. There are different approaches to reduce 
variance or bias, one of which involves the combination of several learners 
into a single output model (Re & Valentini, 2012). These ensemble 
methods aggregate the prediction of individual models, which are often 
either biased or show high variance, so-called ‘weak learners’. For 
example, this method was applied to genetic programming and improved 
the model with regard to its variance (Keijzer & Babovic, 2000). 
Classification and regression tree performance has been improved 
significantly with regard to variance, when ensemble methods were 
applied (Breiman, 1998; Schapire, 1999). In bioinformatics, ensemble 
learning was competitive with or superior to other machine learning 
methods for gene function prediction (M. Re & G. Valentini, 2010). 
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1.5.2.3 Data Pre-Treatment 

Next to data evaluation, proper pre-treatment of the data is of utmost 
importance. There are sophisticated ways to deal with missing data, 
transform or scale data, select features, or reduce the dimension of the 
problem otherwise prior to building the actual model (Kubat, 2017). 
When designing a machine learning study, it is paramount to split the 
data into a training and a test set. The latter is not involved in model 
generation, but may only be used for evaluation of the model (Kubat, 
2017). A larger training set benefits model construction but limits the 
evidence given by testing the model with the test set. To evaluate 
different models, cross-validation using the training data is useful. 
Validation methods include leave-one-out, k-fold, and Monte Carlo cross-
validation (Shalev-Shwartz & Ben-David, 2014; Smyth, 1996).  

While this section barely covers the vast field of machine learning, it 
gives an impression on how bioprocessing could benefit from these data-
driven approaches, given the studies are well-designed, both from an 
experimental and a statistical point of view. 
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2 Thesis Outline 

2.1 Research Proposal 

Virus-like particles (VLPs) are an emerging class of vaccines, which is 
applied and investigated for the prevention or treatment of infectious 
diseases, immunological disorders, and cancer. VLPs are composed of 
viral proteins, resemble the virus they are derived from, but lack its 
infectious nucleic acids. Their repetitive surface and particulate structure 
are key to the strong immunogenic responses that VLP vaccines can 
induce. However, their complexity also poses challenges for VLP 
molecular design and process development. In the development of 
chimeric VLPs (cVLPs), which are VLPs presenting foreign antigenic 
epitopes, a significant fraction of candidate molecules is found to be 
insoluble or incapable of capsid assembly. The process to identify viable 
candidates is still largely empirical and therefore laborious. For 
purification of VLPs, technologies originally developed for much smaller 
biopharmaceutical molecules, such as antibodies, are utilized. However, 
the large size of VLPs can be challenging, for example with regard to 
their limited diffusion compared to smaller molecules or due to pore size 
limitations. Additionally, VLP processing adds process steps, which are 
not yet part of an already established platform process, calling for 
development and optimization of tailored methods. Important examples 
are the dis- and reassembly of VLPs, which are typically achieved by 
titration or buffer exchange by dialysis.  

2 
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With limited experience available, tackling these challenges can 
significantly benefit from a data-driven approach, for example by 
implementing process analytical technology (PAT), data scientific 
methods, such as machine learning, or molecular modeling. The objective 
of this research is to implement data-driven approaches to advance the 
process development of VLPs, especially for VLP-specific processing 
challenges.  

Regulatory authorities encourage the implementation of quality-by-
design, which implies building quality into the process instead of testing 
it into the product. PAT is widely acknowledged as an important 
contributor to accomplish this goal. While many approaches for PAT in 
biopharmaceutical processing have been described, VLP processes 
generally lack PAT implementation. Additionally, VLP processing 
includes process steps that are unique, such as VLP dis- and reassembly. 
VLPs are disassembled by increasing pH and concentration of chaotropic 
solutes by titration, for example. The reassembly of VLPs is typically 
realized by dialysis exchanging the buffer for a neutral pH and high ionic 
strength buffer, thus removing the chaotrope. Higher yield and lower 
buffer consumption can be achieved by applying cross-flow filtration 
(CFF) to VLP assembly. However, no approach exists that implements 
PAT into the (re-)assembly process. In the first study of this thesis, CFF 
will be implemented to realize reassembly of different cVLPs based on 
hepatitis B core antigen (HBcAg). The goal of this study is, firstly, to 
identify the impact of process parameters, such as the transmembrane 
pressure (TMP), on the product yield and degradation. Secondly, the 
implementation of two different spectroscopic sensors into an on-line loop 
as PAT tool to monitor VLP formation will be realized. Lastly, factors 
affecting the required ionic strength for reassembly of the different species 
will be described. The questions that should be answered with this study 
are whether the VLP reassembly process by CFF can be monitored and 
potentially controlled with the integrated sensors and how mechanical 
process parameters and the different investigated cVLP constructs affect 
the assembly reaction. 

Since the inserted amino acids in the different cVLPs are on the surface 
of the capsid, the physicochemical surface properties of cVLPs are 
probably relevant for processing, for example during capsid reassembly. 
It would be valuable to predict cVLP surface properties, such as surface 
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charge, to narrow down the design space for process development. The 
prediction of surface properties requires three dimensional (3-D) 
structures. For new molecules, these are not available and must either 
be generated experimentally, which is laborious, or predicted 
computationally based on the amino acid sequence. The number of 
investigative molecules and therefore structures is high in early vaccine 
development. It would therefore be beneficial to create a high-throughput 
and automated structure preparation workflow. Thus, the second study 
in this thesis aims to develop such a workflow for HBcAg dimers and to 
evaluate its potential with a case study on HBcAg surface charge. The 
predicted surface charge will be correlated with experimentally derived 
zeta potential data of entire VLP capsids. This study should evaluate 
whether an automated and data-dependent workflow can increase 
robustness of feature extraction with reasonable required computational 
resources, while allowing to extract meaningful surface data for 

correlation with experimental results. 

The size of VLPs is much larger than other typical biopharmaceutical 
molecules, such as monoclonal antibodies. Their large size poses 
challenges for purification, as it for example limits the capacity in bind-
and-elute chromatography, the work horse in traditional 
biopharmaceutical downstream processing. This said, VLP separation 
would benefit from their increased size when applying size-selective 
methods. These include filtration, size exclusion chromatography (SEC), 
and precipitation/re-dissolution. The third study will investigate the 
integration of these technologies for capture and purification of an 
HBcAg VLP. This will be realized by a sequence of precipitation, 
purification, and re-dissolution of VLPs on a CFF unit. Subsequently, 
the re-dissolved product will be purified by a multimodal SEC (mmSEC) 
in flow-through mode. These methods will be integrated into one unit 
operation. Consistent with the first study, process monitoring will be 
implemented, in order to make decisions on the fractionation of the 
purified product stream. The main hypothesis behind this study is that 
the combination of several size-selective methods in one unit operation is 
a powerful approach to VLP purification, which should be evaluated with 
the example of precipitation/re-dissolution, CFF and SEC.  

While in this study, VLP solubility was decreased artificially using the 
precipitant ammonium sulfate, cVLP solubility during expression in 



2.1 Research Proposal 
 

32 
 

hosts, such as Escherichia coli, is a significant challenge. The process of 
identifying soluble and assembly-competent vaccine candidates is largely 
empirical and would benefit from a predictive toolbox. In the fourth 
study, a predictive solubility model based on a large dataset of several 
hundred VLP candidates’ solubility and amino acid sequence data will 
be developed. Since solubility is strongly affected by the molecules’ 
hydrophobicity, the implementation of hydrophobicity scales in a 
machine learning framework will be investigated as a cVLP solubility 
model. Additionally, statistical analysis of the models will be applied to 
reveal characteristics of the data to better understand the mechanisms 
behind VLP solubility. They hypotheses behind this study are I) that 
hydrophobicity scales are useful tools for solubility prediction, II) that 
feature selection is a potent tool to select hydrophobicity scales for a 
solubility model, and that III) a simple and interpretable machine 
learning model can help extract hidden information from the data. 

In a final, fifth study, the potential to optimize the developed machine 
learning approach will be investigated. Characteristics of the resulting 
data of the preceding study will be used to fine tune the model. 
Additionally, an algorithm for synthesis of hydrophobicity scales 
specifically for the VLP solubility problem will be developed. This 
algorithm could serve to build better models and learn about the 
importance of certain amino acids with regard to their contribution to 
cVLP solubility. Precipitation of VLPs, as investigated in the third 
study, occurs through hydrophobic interaction. The concentration of 
ammonium sulfate required to precipitate cVLPs is therefore probably 
related to their hydrophobicity. Thus, the model will be redesigned to 
serve as a regression tool to predict precipitating ammonium sulfate 
concentrations from the cVLP amino acid sequences in a case study. The 
questions this study should answer are I) whether the sEVC solubility 
model performance can be boosted with optimization strategies, II) 
whether well-performing amino acid scales can be generated using this 
worklow, and III) whether the sEVC framework can be redesigned to 
function as a regression model for other biophysical parameters. 
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2.2 Outline and Author Statement 

In several of the following manuscripts, first authorship was shared 
(contributed equally) among colleagues and me. This was undertaken to 
elevate the quality of our common publication. A detailed listing of 
author contributions signed by the respective authors is added as a 

separate supplement to the examination copy.  
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Chapter 3: Process Monitoring of Virus‐Like Particle 

Reassembly by Diafiltration with UV/Vis Spectroscopy and 

Light Scattering 

Matthias Rüdt*, Philipp Vormittag*, Nils Hillebrandt, Jürgen Hubbuch 

* contributed equally 

Biotechnology and Bioengineering (2019), Volume 116, Pages 1366-1379 

 

In Chapter 3, a set-up for process monitoring of VLP reassembly by CFF 
was developed. Three different cVLPs were reassembled at three different 
TMPs. The goal of this study was to implement two different 
spectroscopic sensors to monitor VLP assembly. A UV/Vis absorbance 
spectrometer was implemented to monitor concentration and the 
hydrophobic environment of tyrosine and tryptophan. A light scattering 
photometer provided with SLS and DLS data, informing about the 
quaternary structure of the VLPs. The combination of the sensors 

allowed to differentiate between HBcAg dimers, VLPs, and aggregates. 

The implementation of this elaborated measurement loop was 
undertaken to learn about the VLP reassembly by CFF and to lay the 
groundwork for monitoring and control of this process. The VLPs are 
faced with a high-ionic strength environment during assembly, which led 
to aggregation and product degradation for long process times, as could 
be observed with all sensors and derived metrics. Additionally, the 
evaluation of three different cVLPs could grant an insight on the 
influence of the inserted epitope for the VLP reassembly process. For 
example, the strongest charged HBcAg construct required higher ionic 
strength to reach the maximum VLP concentration. The evaluation of 
the process data allowed to identify three different phases for the 
assembly of HBcAg VLPs in a CFF unit. After an initial lag-phase, the 
second phase describes VLP assembly until a maximum was reached, 
which was followed by a degradation phase. The identification of this 
third phase is paramount in process control, as it has to be avoided for 

maximum yield and product quality.  

This study was a cooperation between my colleague Matthias Rüdt and me. 
While his focus was the implementation of light scattering and absorbance 
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spectroscopy sensors for measurement of protein quaternary structure on a 
CFF unit, my focus lay in developing a PAT method for monitoring and 
potential control of the VLP reassembly process and to learn about the 
influence of mechanical process parameters as well as the biophysical 
properties of the cVLPs on the reassembly process. 

The experimental and theoretical work behind this study was extensive 
and benefitted greatly from the collaboration of my colleague Matthias 
Rüdt and me. Our joint contribution to this study includes a literature 
review, experimental realization of the processes together with our master 
student Nils Hillebrandt, optimization of the CFF set-up, the online 
measurement loop, selection of the sensors, analysis of the data, critical 
discussion of the data, graphical illustration, and drafting and revising 
the manuscript. While my focus in the literature review lay on the VLP 
assembly process, both from a theoretical and practical point of view, 
Matthias Rüdt’s focus were general PAT methods and the 
implementation of these in the process environment. My colleague and I 
chose the specific PAT methods in joint discussion.  

The development of the reassembly process required establishment of the 
expression of different cVLPs, their purification, and development of the 
actual CFF reassembly process, which was conducted by me. Matthias 
Rüdt’s focus in realizing this research was the implementation of 
multimodal spectroscopic tools in a software framework to retrieve data 
on the CFF process. He contributed majorly to software programming, 
accessing and treatment of the data of the different sensors, and 
implementation of the PLS model. The construction and optimization of 
the CFF set-up was conducted both by Matthias Rüdt and me. During 
the master thesis of Nils Hillebrandt, who worked on this project, we 
optimized the on-line measurement loop, so that pressure pulsations, and 
air bubbles – both deteriorating measurement quality – could efficiently 
be reduced. Measures included the implementation of a glass fiber depth 
filter to trap bubbles and large particles and the inclusion of a flow 
restrictor. These pre-experiments required lengthy preparations by all 
three parties to establish the knowledge required to conduct the final 

nine processes for the paper. 

The joint realization of this project allowed Matthias Rüdt to learn about 
the implementation of multimodal spectroscopy for the assessment of 
tertiary and quaternary protein structure changes. It allowed me to learn 
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about the three technical phases of assembly, the inhibition of assembly 
by aggregation, the dependency of assembly on the VLP zeta potential, 
and the possibility to use the established PAT set-up as a control tool 
for VLP reassembly processing. 
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Chapter 4: High-Throughput Computational Pipeline for 3-D 

Structure Preparation and In Silico Protein Surface Property 

Screening: A Case Study on HBcAg Dimer Structures 

Marieke Klijn*, Philipp Vormittag*, Nicolai Bluthardt, Jürgen Hubbuch 

* contributed equally 

International Journal of Pharmaceutics (2019), Volume 563, Pages 337-

346 

 

In Chapter 4, an automated, high-throughput computational pipeline 
was developed, which creates refined 3-D structures from an amino acid 
sequence input and which was evaluated with a case study on HBcAg 
surface charge. The knowledge on surface properties of VLP candidates 
can be indicative of developability and can narrow down the design space 
for processes. Surface properties can be assessed by the analysis of 3-D 
structures, which are not known in early development. Therefore, a 
computational method including template structure retrieval, homology 
modeling, and molecular dynamics (MD) simulation was developed. 

The main outcomes of the study were I) that the automated workflow 
has the potential to significantly speed up 3-D structure generation, II) 
that the workflow could be run on desktop computers and did not require 
computer clusters, III) that the derived surface charge of the HBcAg 
dimer 3-D structures correlated with experimentally measured VLP zeta 
potential, and IV) that the evaluation of 1000 simulation snapshots 
resulted in more robust feature data than evaluation of a single 

simulation end-point. 

This study was a cooperation between my colleague Marieke Klijn and 
me. While her focus was the development of a high-throughput (HT) 
computational pipeline for structure curation and preparation for 
consistent evaluation of 3-D molecular features, my focus lay in extending 
this workflow by a data-dependent multi-step MD simulation to refine 
homology modelled 3-D structures.  

Selection of the VLPs for this study was done by me. The design of the 
curation and preparation workflow was mainly executed by Marieke 
Klijn. The actual application to the HBcAg molecules was done by 
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Nicolai Bluthardt. I designed the 3-step MD simulation workflow, which 
evolved from pre-experiments. In various literature studies a fixed 
simulation time is employed, e.g. 30-100 ns (simulated time). During pre-
experiments, I observed that the structural fluctuations, indicated by the 
root mean square deviation (RMSD) of atom coordinates, were very 
diverse at fixed time points for different HBcAg constructs. This was the 
case, even though only few amino acids were different between the 
molecules. Therefore, I programmed a MATLAB script, which 
terminated the MD simulation after a stability criterion was reached. 
Additionally, I implemented a 3-step simulation approach, in which a 
continuously larger part of the molecule was simulated, while the 
positions of the other atoms were constrained. This allowed to focus 
computational power on the structurally most uncertain regions. These 
regions were the inserted epitopes and adjacent amino acids, whereas the 
conserved region of the HBcAg template required less structural 

refinement.  

Marike Klijn and I selected the zeta potential as a case study, since it is 
a VLP experimental property of the whole capsid, while the surface 
charge was retrieved from the structural subunit of a dimer. A correlation 
of these data would allow VLP researchers to create the much simpler 
HBcAg dimer 3-D structure instead of the entire capsid structure to 
estimate VLP zeta potential, thus saving computational resources. I was 
responsible for the required production and measurement of pure VLPs, 
which was needed to retrieve the experimental data. Marieke Klijn and 
I analyzed the data, drafted the manuscript, created graphical 
illustrations, and revised the manuscript critically. All authors read and 
approved the final manuscript. 

In summary, this project allowed Marieke Klijn to realize a HT 
computational 3-D structure generation pipeline, which is characterized 
by standardized, automated, and parallelizable workflows, allowing for 
consistent and robust 3-D structure generation for feature extraction. 
This project resulted in a computationally inexpensive workflow that 
allowed me to create HBcAg capsomer 3-D structures and to demonstrate 
that a correlation between in silico-derived surface charge and 
experimental VLP zeta potential exists, building the foundation for 
extraction of different features and the application to larger datasets. 
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Chapter 5: Integrated Process for Capture and Purification of 

Virus-Like Particles: Enhancing Process Performance by Cross-

Flow Filtration 

Nils Hillebrandt*, Philipp Vormittag*, Nicolai Bluthardt, Annabelle 
Dietrich, Jürgen Hubbuch 

* contributed equally 

Frontiers in Bioengineering and Biotechnology (2020), accepted article 

 

The integration of three size-selective separation techniques for VLP 
capture and purification was investigated in Chapter 5. The large size of 
VLPs poses challenges for many traditional biopharmaceutical DSP unit 
operations, such as in bind-and-elute chromatography. Other techniques, 
such as precipitation/re-dissolution, filtration, and SEC can benefit from 
the large size difference between VLPs and impurities. Therefore, a 
process was developed that started by precipitating product, washing and 
re-dissolving the product in diafiltration mode on a CFF unit, and 
optionally leading the product-containing permeate stream through an 
mmSEC column, binding residual impurities. The inclusion of this 
mmSEC column led to the best purities combined with high yield and 
productivity. The permeate stream was monitored with an ultraviolet 
(UV) absorbance sensor of a chromatography system, which also 
integrated a fractionator, allowing for UV-based pooling decisions of the 
collected permeate fractions. 

This study showed that I) the integration of three size-selective 
techniques results in high purities compared to literature processes and 
a centrifugation-based reference process, II) productivity and yield was 
higher than the reference process, and that III) data-dependent process 
control can be realized with the UV-monitored permeate stream, 
optimizing the output stream of this unit operation with regard to 
concentration and purity. Since VLPs share the attribute of large size, 
this process could be the foundation for a platform process for non-

enveloped VLPs.  

To enhance the quality of this research, this project was conducted 
together with my colleague Nils Hillebrandt. The study was designed 
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mutually throughout our joint work on VLP CFF processes. Nils 
Hillebrandt hereby worked on the implementation of a flow sensor for 
monitoring and control of the permeate flow rate, while I lay my 
concentrated on the precipitation behavior of cVLPs with regard to the 
CFF system. My main focus in this study was to evaluate the hypothesis 
that VLP purification can benefit from the combination of size-selective 
methods in one unit operation, while Nils Hillebrandt’s focus rather lay 

on extending the typical mode of application of CFF. 

The processes required substantial preparations, which were only 
realizable by the contributions of both Nils Hillebrandt and me, while we 
were supported in parts by our student Annabelle Dietrich. She prepared 
buffers, drew and partly analyzed samples, and helped with the system 
set-up. Prior to the published processes, several pre-experiments were 
carried out to optimize the set-up, which was done both by Nils 
Hillebrandt and me. Analytics were performed by Nils Hillebrandt and 
me, except for high-throughput capillary gel electrophoresis (HT-CGE), 
which was performed by Nicolai Bluthardt. Evaluation of the analytical 
results was done both by Nils Hillebrandt and me. While Nils Hillebrandt 
lay his focus on the automated time-alignment of on-line and off-line 
measurement data, I focused on the individual evaluation of the SEC, 
multi angle light scattering, and HT-CGE measurement data. The largest 
part of the evaluation was the consolidation and interpretation of all 
measurement results in the context of the aligned on-line data. This was 
done in collaborative work between Nils Hillebrandt and me. We 
interpreted the data in the context of the developed set-up and its utility 
for VLP DSP processes. Nils Hillebrandt and I drafted the manuscript, 
created the graphical illustrations, and revised the manuscript critically. 
For the benefit of the readers, we created a detailed supplementary 
material section to enable reproduction of our set-up. All authors read 
and approved the final manuscript. 

Overall, the realization of this project allowed me to evaluate an 
integrated CFF-based precipitation and re-dissolution process for capture 
and purification of VLPs. This process utilizes the – in bind-and-elute 
chromatography problematic – large size of VLPs for efficient separation. 
Since the separation was mainly by size, its transferability to other VLPs 
seems straightforward and may therefore advance VLP process 
development into the direction of a platform process. 
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Chapter 6: Ensembles of Hydrophobicity Scales as Potent 

Classifiers for Chimeric Virus-Like Particle Solubility - an 

Amino Acid Sequence-Based Machine Learning Approach 

Philipp Vormittag, Thorsten Klamp, Jürgen Hubbuch 

Frontiers in Bioengineering and Biotechnology (2020), Volume 8, Article 

395, Pages 1-15 

 

Chapter 6 describes the establishment of a machine learning tool to 
predict VLP candidate solubility. The machine learning tool is a soft 
ensemble vote classifier (sEVC), which is based on individual one-level 
decision trees. The decision trees are trained on features from training 
data to predict test data. The entire dataset comprised 568 different 
HBcAg cVLP amino acid sequence and binary solubility data. The 
derived features were hydrophobicities calculated from the amino acid 
sequences and 91 different hydrophobicity scales. The models performed 
comparably or better than reported literature performance data of other 
solubility models. The simple architecture allowed to preserve the 
physicochemical information contained in the hydrophobicity scales 
largely. Thus, interpretation of the model led to the proposition of an 
arginine-mediated recruitment of HBcAg subunits during VLP assembly. 
While the experimental data was provided by Thorsten Klamp, the 
establishment of the model framework, the theoretical work, the 
statistical evaluation, drafting of the manuscript, and creating the 
graphical illustration was done by me. All authors read, critically revised, 
and approved the final manuscript. 

In detail, the establishment of the classification model required a 
literature review of machine learning in general, machine learning applied 
to biopharmaceutical processes, existing solubility models, 
hydrophobicity scales, hydrophobicity in general, and VLP structural 
behavior. The implementation of the model was realized with a custom-
written MATLAB code. In order to understand and characterize the 
model, a thorough study of model parameters, such as the training set 
size, and the number of included decision trees was investigated in a great 
number of randomized experiments. The design of the framework would 



2 Thesis Outline 

43 
 

allow to apply it to other molecules or biophysical parameters. With 
minor adaptations, it could also be used for regression. 
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Chapter 7: Optimization of a Soft Ensemble Vote Classifier for 

the Prediction of Chimeric Virus-Like Particle Solubility and 

Other Biophysical Properties 

Philipp Vormittag, Thorsten Klamp, Jürgen Hubbuch 

Frontiers in Bioengineering and Biotechnology (2020), Volume 8, 

Article 881, Pages 1-17 

In chapter 7, the established solubility prediction framework of chapter 
6 is optimized with two different strategies and modified to serve as a 
regression tool. The dataset of 568 cVLPs, investigated both in chapter 
6 and 7, is created by all possible combinations of 71 different inserts and 
8 different insertion strategies. An insertion strategy defines, where in 
the HBcAg molecule the foreign epitope is inserted and which amino 
acids are deleted. Systematic misclassification based on these insertion 
strategies was observed and served as the basis for a first optimization 
strategy. This optimization algorithm identified systematic 
misclassification and adjusted the prediction of the model accordingly in 
an iterative process. A second optimization algorithm modified or 
synthesized amino acid hydrophobicity scales to better model the 
solubility of the training data set, resulting in better model performance 
on the external test set. Lastly, synthesized hydrophobicity scales were 
used in a modified model for regression of ammonium sulfate precipitant 
concentration data required for precipitation of ten cVLPs. 

For this study, the same experimental data set as in chapter 6 was used, 
which was provided by Thorsten Klamp. The establishment of the 
optimization algorithms within the model framework, the theoretical 
work, the statistical evaluation, drafting of the manuscript, and creating 
the graphical illustration was done by me. All authors read, critically 

revised, and approved the final manuscript. 

In detail, the establishment of the optimization algorithms required a 
literature review of machine learning in general, machine learning applied 
to biopharmaceutical processes, existing solubility models, 
hydrophobicity scales, hydrophobicity in general, VLP structural 
behavior, and optimization algorithms in general. A number of pre-
experiments was required to determine the optimal optimization 
parameters to avoid early optimization termination, e.g. in a local 
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minimum. Repurposing of the model to work as a regression tool was 
achieved by utilizing aggregated decision tree child node probabilities as 
a continuous prediction value. The implementation of the optimization 
algorithms and the regression model was realized with a custom-written 

MATLAB code. 
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Abstract 

Virus-like particles (VLPs) have shown great potential as 
biopharmaceuticals on the market and in clinics. Non-enveloped, in vivo-
assembled VLPs are typically dis- and reassembled in vitro to improve 
particle stability, homogeneity, and immunogenicity. At industrial scale, 
cross flow filtration (CFF) is the method of choice for performing 
reassembly by diafiltration. Here, we developed an experimental CFF 
setup with on-line measurement loop for the implementation of process 
analytical technology (PAT). The measurement loop included an 
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ultraviolet and visible (UV/Vis) spectrometer as well as a light-scattering 
photometer. These sensors allowed for monitoring protein concentration, 
protein tertiary structure, and protein quaternary structure. The 
experimental setup was tested with three hepatitis B core antigen 
(HBcAg) variants. With each variant, three reassembly processes were 
performed at different transmembrane pressures (TMPs). While light 
scattering provided information on the assembly progress, UV/Vis 
allowed for monitoring the protein concentration and the rate of 
VLP assembly based on the microenvironment of Tyrosine-132. VLP 
formation was verified by off-line dynamic light scattering (DLS) and 
transmission electron microscopy (TEM). Furthermore, the experimental 
results provided evidence of aggregate-related assembly inhibition and 
showed that off-line size exclusion chromatography (SEC) does not 
provide a complete picture of the particle content. Finally, a partial least 
squares (PLS) model was calibrated to predict VLP concentrations in the 

process solution. Q2 values of 0.947 to 0.984 were reached for the three 
HBcAg variants. In summary, the proposed experimental setup provides 
a powerful platform for developing and monitoring VLP reassembly steps 
by CFF. 
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3.1 Introduction 

Virus-like particles (VLPs) are biopharmaceuticals with potential 
applications against various diseases such as viral and bacterial 
infections, cancer, Alzheimer’s disease, and autoimmune disorders 
(Bachmann & Whitehead, 2013; Klamp et al., 2011; Kushnir et al., 2012; 
Lua et al., 2014; Middelberg et al., 2011). They are generally designed to 
trigger an immune response by presenting antigens on their surface. 
These antigens are either part of the native viral capsid or introduced 
artificially. Chimeric VLPs were, for example, constructed based on 
hepatitis B core antigen (HBcAg) (Arora, Tyagi, Swaminathan, & 
Khanna, 2012; Klamp et al., 2011; Whitacre et al., 2009), hepatitis B 

surface antigen (Kaslow & Biernaux, 2015), GH1-Qβ(Low et al., 2014), 
and murine polyomavirus VP1 (MuPyVP1) (Middelberg et al., 2011). 
VLPs are resilient to most environmental stresses, have great potential 
to be produced inexpensively, and efficiently elicit potent immune 
responses due to their repetitive and particulate structure (Chuan, 
Wibowo, Lua, & Middelberg, 2014; Kumru et al., 2014). 

Similar to viruses, VLPs are assemblies of one or several types of capsid 
proteins forming a higher-order structure (Lua et al., 2014). VLPs are 
expressed in genetically modified host organisms (Kushnir et al., 2012; 
Lua et al., 2014; Vicente, Roldão, et al., 2011). Subsequent production-
scale purification most frequently consists of precipitation, 
chromatography, and ultrafiltration/diafiltration (UF/DF) (Ladd Effio 
& Hubbuch, 2015). In vivo self-assembled, non-enveloped VLPs are often 
disassembled and subsequently reassembled to remove impurities from 
within the capsid (Link et al., 2012; Ren et al., 2006). Disassembling and 
reassembling also leads to increased structural homogeneity, improved 
overall stability, and enhanced antigenicity (Mach et al., 2006; Q. Zhao, 
Allen, et al., 2012; Q. Zhao, Modis, et al., 2012). An overview of a typical 
VLP production process is given in Figure 3.1. 
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Figure 3.1 :  I l lustrat ion o f a typical virus- l ike partic le  (VLP) 
production process.  The downstream processing train may consist o f 
eight or more unit operations.  The unit operation investigated here 
– the VLP reassembly – is marked in blue.  

Generally, a change in the quaternary structure of virus-like particles 
(VLPs) is induced by altering their physicochemical environment, i.e. the 
ionic strength of the protein solution, the pH, or the concentration of a 
reducing agent (Q. Zhao, Allen, et al., 2012). At lab scale, dialysis is the 
most common method for buffer exchanges (Mach et al., 2006). Dialysis 
has, however, some drawbacks such as long processing times and 
significant buffer consumption (Kurnik et al., 1995). In preparative 
downstream processes, cross-flow filtration (CFF) is more popular 
because of its simple scalability, reduced buffer consumption, and 
reduced processing time (Jornitz & Meltzer, 2008; Kurnik et al., 1995). 
CFF has been successfully applied to VLPs for capture, buffer exchange, 
and concentration (Russell et al., 2007; Vicente et al., 2014; Vicente, 
Roldão, et al., 2011). Compared to dialysis and batch diafiltration, 
assembly of VLPs by constant volume diafiltration was shown to increase 
VLP yield (Liew et al., 2012). Despite the many advantages, CFF may 
also cause problems due to protein-membrane interaction (Hanemaaijer, 
Robbertsen, van den Boomgaard, & Gunnink, 1989; Ko, Pellegrino, 
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Nassimbene, & Marko, 1993) which was observed to impact process 
performance (Peixoto, Sousa, Silva, Carrondo, & Alves, 2007). To reduce 
these problems, CFF process time has to be minimized while maximizing 
the process efficiency. 

Process analytical technology (PAT) (Bakeev, 2010; Roch & Mandenius, 
2016; Rüdt et al., 2017) is thus of interest to monitoring the assembly 
progress. Protein concentration measurements allow to detect protein 
adsorption to the membrane. Particle size measurements provide 
information on the assembly progress of the capsid proteins into VLPs. 
Previous publications have also reported effects of the VLP tertiary 
structure on ultraviolet and visible (UV/Vis) and fluorescence absorption 
spectra (Ausar et al., 2006; M. Fang et al., 2016; Hanslip et al., 2006; Hu 
et al., 2011; Rajendar et al., 2013). Following a systematic approach to 
process monitoring, a combination of PAT sensors should be chosen 
which allows to monitor protein concentration, protein tertiary structure, 
and protein size. 

In this study, we developed a CFF setup consisting of a commercial lab-
scale CFF device with a custom-made on-line measurement loop for 
process analytical instrumentation. The online measurement loop 
included a light-scattering photometer (dynamic light scattering (DLS) 
and static light scattering (SLS)) and a UV/Vis absorption spectrometer. 
DLS allowed for monitoring the mean hydrodynamic diameter of 
particles. SLS outputs an aggregated scattered-light intensity influenced 
by the particle concentrations and the diameters. Finally, UV/Vis 
spectroscopy provided information on the protein concentration and on 
changes in the tertiary structure by second derivative spectroscopy (W. 
Jiskoot & Crommelin, 2005). The usefulness of the custom-made setup 
was tested for monitoring the reassembly of three different chimeric 
HBcAg variants at three different transmembrane pressures (TMPs). 

3.2 Materials and Methods 

3.2.1 Experimental Setup 

A custom-made setup was developed for the CFF experiments. Figure 3.2 
shows the setup as a piping and instrumentation diagram. A KrosFlo 
KRIIi CFF unit with a modified polyethersulfone (mPES) hollow fiber 
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membrane module (10 kDa cutoff, 13 cm2 membrane area) and a 50 mL 
conical tube retentate reservoir (all Spectrum Labs, Rancho Dominguez, 
USA) made up the core of the CFF unit. A Topolino magnetic stirrer 
(IKA Werke, Staufen im Breisgau, DE) ensured homogeneous mixing of 
the retentate reservoir. A T-piece with injection plug (Fresenius Kabi, 
Bad Homburg, DE) was inserted into the retentate line as sample port 
to draw liquid for off-line analytics. The retentate reservoir was modified 
with two additional polyether ether ketone capillaries to supply the on-

line measurement loop with liquid from the process. 

 

Figure 3.2 :  Piping and instrumentation diagram of the experimenta l 
setup. At the bottom right, the online measurement loop is shown. 
The remaining piping is required for the cross- f low fi l tration (CFF) 
unit . Al l sensors are connected to a computer for capturing the data 
central ly . Electronic communication l ines are indicated by dashed 
l ines. I-5 is  a pinch valve actuated by a c losed- loop controller for 
the transmembrane pressure . The letters indicate: C control , I  
indicate , P pressure, R record, U multivariable, W weight, DAD 
diode array detector, LS l ight scattering.  

In the direction of flow, the on-line measurement loop consisted of a 

Gilson Minipuls 3 peristaltic pump, a 0.7 µm particle retention Minisart 
glass fiber syringe filter (Sartorius Stedim Biotech, Göttingen, DE), a 
Zetasizer Nano ZSP photometer (Malvern Instruments, Malvern, GB) 
with a 10 mm pathlength flowcell (Hellma Analytics, Müllheim, DE), an 
Ultimate DAD-3000 diode array detector (DAD) (Dionex Corporation, 
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Sunnyvale, US) with a 0.4 mm pathlength flowcell, and a FR-902 flow 
restrictor (GE Healthcare, Chalfont St Giles, GB). The pump of the on-
line measurement loop was controlled via a NI USB-6008 data acquisition 
device (National Instruments, Austin, USA). 

3.2.2 Proteins, Chemicals, and Buffers 

Three chimeric HBcAg constructs , i.e. VLP A, B, and C provided by 
BioNTech Protein Therapeutics GmbH (Mainz, DE), were used in this 
study. The HBcAg variants were recombinantly modified in the major 
immunodominant region (MIR) to display three different peptides on 
their surfaces (see also Figure 3.3). All variants were present as 
homodimer stock solutions in disassembly buffer (3.5 M urea, 50 mM 
Tris(hydroxymethyl)-aminomethane, pH 9.0) as obtained after 
purification (see also Figure 3.1). Protein concentration calculations were 
based on extinction coefficients derived from the primary structure as 
provided by the ProtParam tool (Gasteiger et al., 2005) of the Swiss 
Institute of Bioinformatics. The purity of the stock solutions was 
characterized by reversed-phase chromatography based on the 
absorbance at 280 nm as described in the Appendix A, Supplementary 
Material S3.2. Immediately before each experiment, stock solutions were 
diluted with disassembly buffer to a protein concentration of 1 g/L (by 

ultraviolet (UV) absorbance at 280 nm) and filtered through a 0.2 µm 
polyethersulfone (PES) filter (VWR International, Radnor, US). The 

reassembly buffer was a high-salt buffer at pH 7.0. 

 

Figure 3.3 :  An assembled hepatit is B core antigen virus- l ike 
part icle is shown on the le ft s ide (PDB ID 1QGT, (Wynne et  al . , 

1999)) . The right s ide shows a cartoon of a s ingle homodimer 
(adapted from PDB ID 4BMG, (Alexander et al . ,  2013)). The 
tryptophan (Trp) and tyrosine (Tyr) s ide chains are depicted as 
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sticks and colored in yel low and red, respect ive ly.  Tyros ine and 
tryptophan side chains located in the base of the molecule are 
numbered. These residues undergo a change of hydrophobicity in 
their environment during assembly.  The major immunodominant 
region loop, whereto the fore ign epitope is inserted, is shown in blue.  

For size-exclusion chromatography (SEC), 50 mM potassium phosphate 
at pH 7.0 was used as running buffer. If not mentioned otherwise, 
chemicals were purchased from Merck KGaA (Darmstadt, DE). All 
buffers and solutions were prepared with ultrapure water (arium pro UV, 

Sartorius, Göttingen, DE) and filtered through a 0.2 µm pore size Supor 
filter (Pall, Port Washington, US) immediately before each experiment. 

3.2.3 VLP Reassembly Monitoring 

The CFF unit and the measurement loop were filled with ultrapure water 
for pre-experimental preparation. The lamps of the DAD were turned on 

at least 1 h before starting the experiments. 

At the end of the equilibration phase, the absorbance signal was zeroed 
in ultrapure water. Subsequently, the CFF unit and measurement loop 
were first flushed with disassembly buffer and then changed into 25 mL 
of protein solution. The CFF pump was set to 70 mL/min corresponding 

to a shear rate of approximately 6000 s-1 in the hollow fibers. The 
measurement loop pump 1 mL/min and data acquisition were started. 

After 5 min, constant TMP diafiltration was initiated by applying a 
TMP of 0.25 bar, 0.5 bar, or 1 bar with reassembly buffer as diluent. 
0.4 mL samples were taken every 0.5 diafiltration volumes (DVs) via the 
sample port. Experiments were stopped after 3 DV except for VLP C for 
which the runs had to be terminated early due to membrane clogging. 
After each run, the CFF membrane was cleaned with ultrapure water, a 
0.1 M sodium hydroxide solution, and a 15 vol% ethanol solution. 

3.2.4 Off-Line Sample Analysis 

For SEC analysis, samples were centrifuged (Centrifuge 5810R, 
Eppendorf, Hamburg, DE) at 3220 rcf for 5 min to settle large particles. 
The supernatant was analyzed with a Sepax SRT SEC-1000 column 
(Sepax Technologies, Newark, US) on an Ultimate 3000 RS ultra high 
performance liquid chromatography (UHPLC) system consisting of a 
Pump HPG-3400RS, an Autosampler WPS-3000TFC, a Column 
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Compartment TCC-3000RS, and a DAD-3000 controlled by Chromeleon 
version 6.8 SR15 (all Thermo Fisher Scientific, Waltham, US). The run 
duration was 7 min with a flow rate of 0.8 mL/min and SEC buffer as a 
mobile phase. 20 µL were injected for each analysis. Samples were 
analyzed in triplicates. 

Off-line DLS analysis was performed using a sample volume of 45 µL in 
a 3x3 mm quartz cuvette (Hellma Analytics, Müllheim, DE) and the 
same DLS photometer as mentioned above. Unfiltered samples were 
measured three times, each measurement consisting of 12 to 14 10 s runs 
at 25 °C, and 173 ° backscatter. Lower and upper limits for data 
processing were 1 nm and 6000 nm, respectively. The measurements were 
compared based on the VLP peak diameter in the regularization fit. 

The photometer was also used for electrophoretic mobility measurements 
of pooled and formulated samples of each construct. The samples of 
different TMPs were pooled and dialyzed into a pH 7.2 buffer of 50  mM 

Tris and 100 mM sodium chloride. Samples were filtered with a 0.2 µm 
PES filter (VWR International, Radnor, USA) and concentration was 
adjusted with Vivaspin 20 filters with a 30 kDa pore rating (Sartorius, 

Göttingen, DE). 50 µL of sample was inserted into buffer-filled folded 
disposable capillary cells (DTS1070, Malvern Instruments Ltd., Malvern, 
UK) using a diffusion barrier technique (Patent WO2012083272A1). 
Samples were measured in pentaplicates in automatic mode. Each 
measurement comprised a 120 seconds equilibration and five runs with 
up to 15 sub runs. The measurements were performed at 60 mV and 
25 °C. Zeta potential was calculated by Zetasizer Software version 7.12 
(Malvern Instruments Ltd., Malvern, UK) assuming a material refractive 
index of 1.45, absorption of 0.001, a viscosity of 0.8872 mPas, a dielectric 
constant of 78.54, and a Smoluchowski approximation of 1.5 
(Smoluchowski, 1921). 

The VLPs were furthermore imaged by transmission electron microscopy 

(TEM) on a Titan3 80-300 microscope (FEI Company, Hillsboro, US) at 
80 kV in bright field mode. For sample preparation, carbon-coated 400-
mesh copper grids (Plano GmbH, Wetzlar, DE) were first hydrophilized 
with a 1% (w/v) alcian blue 8GX (Alfa Aesar, Ward Hill, US) for 2 min 
and washed 5 times with ultrapure water. Subsequently, the grids were 

incubated for 2 min with the 0.2 µm filtered 0.3 g/L to 0.5 g/L 
VLP solutions. The samples were negatively stained with a 1% (w/v) 
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ammonium molybdate(VI) solution (Acros Organics, Geel, BE) at pH 7.2 
for 45 s, washed, and air-dried. VLP diameters were measured with 
ImageJ 1.52a (NIH, USA). TEM images were processed by adjusting 
contrast and lightness to improve visibility of the VLP particles using 
RawTherapee version 5.5 (Gábor Horváth) image processing software. 

3.2.5 Data Acquisition and Analysis 

During experiments, all integrated sensors communicated with a custom 
application developed in MATLAB (version R2016b, The Mathworks, 
Natick, US). Next to starting and stopping measurements, the 
application gathered the sensor signals (3 pressure signals, the permeate 
weight, zaverage, and UV/Vis absorbance spectra). Communication and 
control were performed through software libraries provided by the 
different instrument softwares. The signals were displayed on the 
graphical user interface (GUI) and stored on the hard drive with a time 
stamp. For calculating the permeate volume, the density of the permeate 

was assumed to be 1 g/cm3. Data acquisition and analysis of light 
scattering and UV/Vis measurements were performed as described below. 

3.2.5.1 Light-Scattering Measurements 

The Zetasizer Nano ZSP was utilized for DLS and SLS measurements 
using the chromatography flow standard operating procedure of the 
Zetasizer software (version 7.12, Malvern Instruments). The Zetasizer 
acquires data in a back-scattering geometry at 173 °. Each measurement 
duration was 10 s. While DLS measurements were exported on-line, SLS 
data was extracted off-line. From the DLS measurement, the z-average 
was obtained as calculated by the Zetasizer software by the method of 
cumulants (Koppel, 1972). Viscosity (0.8872 mPas), refractive indices 
(protein 1.45; water 1.33) (as provided by the Zetasizer software), 
temperature (25 °C), and flow rate (1 mL/min) were assumed to be 
constant for the calculation of the z-average. The z-average data was 
subsequently filtered by a moving median over 60 s to remove outliers. 
The SLS signal was not filtered. The transition from process phase I to 
process phase II was detected from the scattered-light intensity by the 
CUSUM algorithm (Grigg, Farewell, & Spiegelhalter, 2003; Page, 1954). 
The transition from process phase II to process phase III was set at the 

global maximum of the scattered-light intensity. 
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3.2.5.2 UV/Vis Absorption Measurements and Processing 

During VLP assembly, UV/Vis spectra were continuously acquired at 
1 Hz in the spectral range from 240 nm to 340 nm with a resolution of 
1 nm. To gain information on the local environment of aromatic amino 
acids, the spectral data was filtered by a moving average over 30 s and 
the second derivatives were computed with a Savitzky-Golay filter 
(Savitzky & Golay, 1964) of order 5 with a 9-point window (Ausar et al., 
2006; W. Jiskoot & Crommelin, 2005). An example spectrum with the 
subsequent data evaluation is shown in Figure S3.1 in the Appendix A. 
The resulting second-derivative spectra were interpolated with a cubic 
spline to a final resolution of 0.01 nm. From the interpolated data, the 
location of the minimum near 292.5 nm was used as a measure of 
tryptophan solvent exposure (W. Jiskoot & Crommelin, 2005; Mach & 
Middaugh, 1994). The exposure of tyrosine was assessed based on the 
a/b-ratio as defined by Ragone et al. (Ragone et al., 1984). Briefly, the 

vertical distance between trough and peak near 285 nm a was normalized 

by the trough-peak distance near 294 nm b. The inflection point of the 
a/b-ratio over time was computed by taking the first derivative with a 
second-order Savitzky-Golay filter (window width 501 points 

corresponding to 8.35 min) and finding the minimum. 

3.2.5.3 Partial Least Squares Model Calibration 

Partial least squares (PLS) model calibration was performed in 
MATLAB (version 2016a). For each VLP, a PLS model was calibrated 
based on the UV/Vis spectroscopic data in combination with the off-line 
SEC VLP concentration. Data of all three TMPs were included into one 
model. PLS model calibration was performed similarly as described 
previously (Großhans et al., 2018). The data were first preprocessed and 
subsequently fitted with a PLS-1 model by the SIMPLS algorithm (de 
Jong, 1993). For preprocessing, a Savitzky-Golay filter with a second-
order polynomial was applied on the spectra and, optionally, the first or 
second derivative was taken. Cross-validation was performed by 
iteratively excluding one sample of each CFF run (1/7, resp. 1/6 of the 
data), calibrating a PLS model on the remaining samples (6/7, resp. 5/6 
of the data), and calculating a residual sum of squares on the excluded 
run. This procedure was repeated until all runs had been excluded once. 
All residual sums of squares for the different submodels were 
subsequently accumulated yielding the predictive residual error sum of 
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squares (PRESS). The PRESS was scaled according to Wold et al. by 
the number of samples and latent variables used in the PLS model (Wold 
et al., 2001). Based on the scaled PRESS, an optimization was performed 
using the built-in genetic algorithm of MATLAB for integers (Deep, 
Singh, Kansal, & Mohan, 2009). The genetic algorithm optimized the 

window width of the Savitzky-Golay filter 5 ≤ w ≤ 21, the order of 

derivative 0 ≤ n ≤ 2, as well as the number of latent variables for the 

PLS-1 model 4 ≤ N ≤  14. The root mean square error of cross-validation 
(RMSECV) was calculated from the PRESS by dividing by the total 

number of samples. The Q2 and R2 values were calculated by dividing the 
PRESS, respectively the residual sum of squares, by the summed squares 
of the response corrected to the mean (Wold et al., 2001). 

3.3 Results 

In this study, a new UF/DF setup with on-line measurement loop was 
developed to monitor VLP reassembly steps. In the measurement loop, a 
UV/Vis spectrometer and a light-scattering photometer were integrated. 
Furthermore, an application was implemented in MATLAB providing a 
GUI, communication capabilities to the different sensors, as well as a 
common time base for all performed measurements. This allowed for 
acquiring and synchronizing measurements in a controlled manner. 
Within the application, UV/Vis spectra, DLS measurements, pressure, 
and weight readings were immediately available for processing and 
display. To demonstrate the advantages of this experimental setup, nine 
UF/DF runs with three different HBcAg constructs at three different 

TMPs were performed. 

3.3.1 Monitoring of Standard Processes Parameters 

During the UF/DF processes, the initial buffer was replaced by 
reassembly buffer to form HBcAg VLPs from homodimers. In Table 3.1, 
process data of all runs are summarized (original data presented in 
Figure S3.2 in the Appendix A). The table also shows that the feed stock 
purity of VLP A was higher than VLP C and VLP B. At 0.25  bar TMP, 
VLP A, B, and C showed nearly constant increases in permeate mass 
over time implicating constant fluxes. The average flux for these three 

runs was 25.8 L/m2h to 29.1 L/m2h. At 0.5 bar and 1 bar TMP, the 
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average flux was higher for all three VLPs (from 36.3 L/m2h to 

48.7 L/m2h). CFF processes at 0.5 bar and 1 bar TMP showed a 
decreasing flux over time after an initial constant phase (except for 
VLP B at 0.5 bar). A decrease in flux at constant TMP indicates the 
formation of a fouling layer on the membrane (Huisman, Prádanos, & 
Hernández, 2000; van den Berg & Smolders, 1990). 

Table 3.1 :  Process data is summarized for a l l performed runs .  

  VLP A   VLP B   VLP C  
TMP / bar 0.25 0.5 1 0.25 0.5 1 0.25 0.5 1 
Feed stock puritya / %  73.5   22.6   44.1  
Zeta potentialb / mV  − 7.9(7)   − 11.8(6)   − 9.5(8)  
Total run time / min 118 78 75 133 75 79 108 71 70 
Mean flux / (Lm-2h-1) 30.5 46.9 48.4 26.8 48.7 45.9 27.6 36.3 40.0 
Max. VLP conc. / (g/L) 0.248 0.275 0.250 0.126 0.133 0.116 0.134 0.103 0.126 
Inflection a/b-ratio / DV 1.5 0.8 0.7 1.5 1.4 0.7 1.6 0.9 0.6 
VLP peak diameterc / nm 40(6) 46(11) 42(7) 35(5) 40(11) 46(10) 41(12) 48(5) 36(11) 

Note. TMP: transmembrane pressure; VLP: Virus- l ike partic le.  
a assessed by reversed-phase chromatography as described in the 
Appendix A, Supplementary Material S3.2.  
b denotes median and median abso lute deviat ion in parenthesis .  
c denotes mean and standard deviat ion o f al l DLS acquisit ions 
(n=36−42) in parenthesis .  

3.3.2 Process Monitoring with On-Line PAT Sensors 

In Figures 3.4, 3.5, and 3.6, the on-line PAT sensor measurements as well 
as SEC off-line analytics are shown for VLP A, B, and C, respectively. 
All data were plotted over DV indicating the progress of buffer exchange. 
Each figure shows the absorbance at 280 nm, off-line VLP concentration 
measurements by SEC, second-derivative spectral analysis, and light-
scattering data. It is important to note that an insufficient scattered-
light intensity was recorded for VLP C at 1 bar TMP due to an 
incorrectly set laser attenuation. The corresponding light-scattering 
results were excluded. The run could not be repeated because of material 

constraints. 
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Figure 3.4 :  The figure displays the on-l ine sensor measurements as 
wel l as of f- l ine analyt ics against the DV of VLP A. The rows display 
measurements of di f ferent sensors . Top row: Off- l ine VLP ♢ and 
aggregate ○ concentration measurements by SEC, UV absorbance at 
280 nm – .  Middle row: DLS and SLS measurements . Roman numbers 
indicate the dif ferent process phases. Bottom row: Second derivat ive  
spectral analysis for tyros ine (a/b-rat io) and tryptophan (location 
of the minimum around 292.5 nm). The inflection point o f the a/b-
ratio  is  marked by a vertical  bar. The columns correspond to 
di fferent TMPs. Left column: 0.25 bar, middle column: 0 .5 bar, right 
column: 1 bar. At 0.25 bar TMP the z-average is corrupted with 
noise early in the process. DV, diaf i l tration volume; VLP, virus- l ike 
part icle;  SEC, s ize-exc lusion chromatography; UV, ultraviolet;  DLS, 
dynamic l ight scattering; SLS, stat ic l ight scattering; TMP, 
transmembrane pressure .  

Off-line SEC was performed in triplicates resulting in standard deviations 
smaller than 0.011 g/L. In all runs, the off-line VLP concentration first 
remained at zero followed by an increase to the maximum VLP 
concentration. Thereafter, the concentration was approximately constant 
or decreased slightly. Depending on the TMP, off-line VLP concentration 
started to increase at 0.5 DV to 1.5 DV. The onset occurred at a DV 
that was lower the higher the TMP. The maximum observed VLP 
concentration was between 0.248 g/L and 0.275 g/L for VLP A, between 
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0.116 g/L and 0.133 g/L for VLP B, and between 0.103 g/L and 
0.134 g/L for VLP C. The SEC aggregate content was between 5% and 

15% of the VLP concentration. 

 

Figure 3.5 :  The figure displays the on-l ine sensor measurements as 
wel l as o f f- l ine analyt ics against the DV of VLP B. The rows display 
measurements of di f ferent sensors . Top row: Off- l ine VLP ♢ and 
aggregate ○ concentration measurements by SEC, UV absorbance at 
280 nm – .  Middle row: DLS and SLS measurements . Roman numbers 
indicate the dif ferent process phases. Bottom row: Second derivat ive  
spectral analysis for tyros ine (a/b-rat io) and tryptophan (location 
of the minimum around 292.5 nm). The inflection point o f the a/b-
ratio  is  marked by a vertical  bar. The columns correspond to 
di fferent TMPs. Left column: 0.25 bar, middle column: 0 .5 bar, right 
column: 1 bar. DV, diafi ltrat ion vo lume; VLP, virus- l ike partic le ; 
SEC, size-exc lusion chromatography; UV, ultraviolet ; DLS, dynamic 
l ight scatter ing; SLS, static l ight scattering; TMP, transmembrane 
pressure.  

UV absorbance at 280 nm decreased in all runs over time. Small step-
like decreases were due to sampling for off-line analytics. The drawn 
sample volume was replaced by reassembly buffer resulting in dilution of 
the process liquid. For VLP A, B, and C, a rapid decrease in the 
absorbance at 0.25 bar TMP occurred towards the end of the runs, 
suggesting a loss of protein. 
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Solvatization of aromatic amino acids and particle formation were 
observed during CFF by on-line UV/Vis and light-scattering 
measurements. UV/Vis spectral data were examined by second 
derivative analysis. From the derived spectra, characteristics were 
calculated for the solvatization of tryptophan (location of the minimum 
around 292.5 nm) and tyrosine (a/b-ratio) (W. Jiskoot & Crommelin, 
2005). For all runs, a shift towards longer wavelengths of the tryptophan 
minimum was observed, while the a/b-ratio decreased. Both trends 
indicated an increase in the mean hydrophobicity around tryptophans 
and tyrosines. Especially for higher TMPs, the characteristics followed a 
sigmoidal curve shape. The inflection points of the a/b-ratio in all runs 
were marked by a vertical line and were located either around 0.8 DV or 
1.5 DV (see Table 3.1). 

DLS measurements were interpreted based on the z-average. In all 
experiments, an initial phase of relatively constant z-average values 
below 20 nm was observed. The second phase was characterized by a 
rapid increase in z-average to around 40 nm for TMPs of 0.5 bar and 
1 bar. At a TMP of 0.25 bar, the second phase showed a larger increase 
of the z-average to 50 nm to 80 nm. The third phase resulted in relatively 
constant z-averages over time. 

SLS measurements are influenced by the particle diameter and 
concentration. Similar to the z-average, scattered-light intensities started 
to increase after an initial constant phase. The increase continued even 
after the z-average reached a plateau and eventually flattened. For 
VLP A and C at 0.25 bar TMP, scattered-light intensities rapidly 
decreased towards the end of the runs. 

At 0.5 bar and 1 bar, z-averages, scattering intensities, and SEC VLP 
concentrations of each run started to increase simultaneously within off-
line time resolution. Interestingly, for processes at 0.25 bar, the z-
averages and scattering intensities increased earlier than VLP and 
aggregate concentration by SEC. The initial increase in phase II at 

0.25 bar ended at high z-averages > 45 nm, not observed in the other 
processes. In all runs, the inflection point of the a/b-ratio occurred 
around the steepest increase in the VLP concentration by SEC. 
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Figure 3.6 :  The figure displays the on-l ine sensor measurements as 
wel l as o f f- l ine analytics against the DV of VLP C. The rows display 
measurements of di f ferent sensors . Top row: Off- l ine VLP ♢ and 
aggregate ○ concentration measurements by SEC, UV absorbance at 
280 nm – .  Middle row: DLS and SLS measurements . Roman numbers 
indicate the dif ferent process phases. Bottom row: Second derivat ive  
spectral analysis for tyros ine (a/b-rat io) and tryptophan (location 
of the minimum around 292.5 nm). The inflection point o f the a/b-
ratio  is  marked by a vertical  bar. The columns correspond to 
di fferent TMPs. Left column: 0.25 bar, middle column: 0 .5 bar, right 
column: 1 bar. DLS and SLS measurements at 1 bar were excluded 
because of an errat ical ly set laser attenuator. DV, diafi ltrat ion 
volume; VLP, v irus- l ike partic le;  SEC, size-exclusion 
chromatography; UV, ultravio let; DLS, dynamic l ight scattering; 
SLS, static l ight scatter ing; TMP, transmembrane pressure.  

3.3.3 Selective Prediction of VLP Concentration by PLS Modeling 

The PLS model calibration results are shown in Figure 3.7 and Table 3.2. 
Figure 3.8 shows the PLS regression coefficients. All PLS models were 
fitted to the second derivative of the UV/Vis spectral data with 6 to 9 

latent variables. The achieved Q2 values were 0.984, 0.984, and 0.947 for 
VLP A, B, and C, respectively. 
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Figure 3.7 :  A PLS model was f itted to the UV/Vis spectral data 
for each construct to predict the concentrat ion of assembled VLPs. 
The concentration estimated by the calibrated PLS model i s 
compared to o f f- l ine analytics in the current plot. Each TMP is  
re flected by a color. The markers show the concentrat ion measured 
by of f- l ine analytics while the l ines correspond to the concentrations 
estimated by the PLS model . PLS, partial least squares;  UV/Vis , 
ultravio let and vis ible,  VLP, virus- l ike partic le;  TMP, 
transmembrane pressure .  

Table 3.2 :  Spectral preprocessing parameters, parameters for the 
PLS model , and the prediction qual ity of the chemometric models  
are summarized. PLS, part ial least squares , VLP, virus- l ike partic le,  
RMSECV, root mean square error of cross-validat ion. 

 VLP A VLP B VLP C 

No. of samples 21 21 18 
No. of cross-validation groups 7 7 6 
No. of latent variables 6 9 7 
Window Savitzky-Golay filter 7 9 9 
Derivative 2 2 2 
R2 0.995 0.997 0.994 
Q2 0.984 0.984 0.947 
RMSECV / (g/L) 0.01 0.01 0.01 
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Figure 3.8 :  Regression coeff ic ients of the three PLS models. Each 
row corresponds to the regression coef fic ients of one VLP in black 
whi le the other regression coef fic ients are supplemented in gray. 
PLS, partial least squares; VLP, virus- l ike partic le .  

3.3.4 Analysis of Post-Assembly Samples 

Off-line DLS data was measured at the end of all processes. The 
VLP peak diameter data is shown in Table 3.1. The mean diameter 
across all runs was 41 nm with a standard deviation of 11 nm. VLP B 
had the most negative zeta potential with -11.8(6)  mV, followed by 
VLP C with -9,5(8)  mV, and VLP A with -7,9(7)  mV. 

TEM images (Figure 3.9) showed hollow spherical particles with a mean 
diameter of 33(3)  nm, 32(2)  nm, and 31(2)  nm for the formulated and 
filtered solution of VLPs A, B, and C, respectively. This result is well in 
agreement with the DLS measurements and literature data (Crowther et 
al., 1994). 
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Figure 3.9 :  Transmission e lectron microscopy micrographs o f the  
formulated virus- l ike part icles (VLPs) A, B, and C after the end o f 
the assembly process by cross- f low fi ltrat ion.  

3.4 Discussion 

3.4.1 On-line Measurement Setup 

As shown in Figure 3.2, the experimental setup included a flow restrictor 
and a filter next to the sensors in the on-line measurement loop. The flow 
restrictor and filter were added to improve the measurement quality. The 
flow restrictor set a minimal back pressure in the measurement loop 

reducing pressure fluctuations and air bubbles. The filter (cut-off 0.7 µm) 
retained bubbles and large particles adversely affecting light-scattering 
measurements. The light-scattering measurements depend strongly on 

the particle diameter d (Bohren and Huffman, 2004). Thus, large 
particles, such as air bubbles or large aggregates, can completely 
overshadow the light scattering of smaller particles in SLS and DLS 
measurements. 

3.4.2 Interpretation of SLS and DLS Measurements 

During VLP reassembly, anticipated particles in the process solution 
were homodimers, VLPs, VLP aggregates, and process-related impurities, 
all of which contributed to light scattering. Thus, the scattered-light 
intensity is a sum signal generated by all scattering species. By neglecting 
any interaction between the particles and assuming Rayleigh scattering, 

the scattered-light intensity ��  can be described as  

��∞ @ ����

�

�3. 1� 



3 Monitoring of VLP Reassembly by Diafiltration 

67 
 

where i iterates over all species, ci is the molar concentration of species i, 

and di is the diameter of species � (Bohren & Huffman, 2004). Based on 
this formula, it can be verified that particle agglomeration and 
concentration leads to increased scattered-light intensities. 

The z-average is the intensity-weighted harmonic mean hydrodynamic 
diameter (J. C. Thomas, 1987). Therefore, the z-average is not 
proportional to the concentration but reflects an apparent mean particle 
diameter. A small fraction of large particles can still significantly increase 
the z-average. During reassembly, an increase of scattered-light intensity 
and z-average was expected because of the formation of VLPs and 
aggregates. 

3.4.3 DLS Measurements in Flow 

DLS measures the time correlation of scattered-light intensity. In 
contrast to the typical DLS measurement setup, the time correlation in 
the on-line measurement loop was not only influenced by diffusion but 
also by convective flow (Berne & Pecora, 2000). It has been previously 
demonstrated that the convective flow results in increased estimated 
diffusion coefficients and thus in reduced particle diameters (Leung, Suh, 
& Ansari, 2006). The effect was shown to be more pronounced for larger 
particles. Consequently, underestimation of particle sizes was expected 
to be more pronounced for aggregates than VLPs than homodimers. No 

effect on SLS was expected from convective flow. 

3.4.4 General Considerations on the VLP Assembly Processes 

During the diafiltration process, the disassembly buffer was gradually 
exchanged by an assembly buffer. The chemical environment of the 
HBcAg dimers increasingly favored assembly. This is different to the 
conventional approach in VLP kinetic studies where the composition of 
the assembly reaction liquid is usually adjusted by rapid dilution 
(Mukherjee et al., 2008; Adam Zlotnick et al., 1999). In said studies, 
assembly equilibrium phases were reached in a few minutes. Given the 
comparably large time frame of diafiltration experiments (75 min to 
135 min), we assume that the VLP concentration was almost exclusively 

dependent on the buffer composition. 
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Figure 3.10 illustrates the formation of particles out of HBcAg dimers 
during a diafiltration process and expected sensor responses. The 
diafiltration process was split into phases I to III based on different 
reactions occurring during each phase. 

 

Figure 3.10 :  Theoret ical cons iderat ion of particle formation during 
the assembly process by cross- f low fi ltrat ion (CFF). Homodimers , 
aggregates, and virus- l ike part icles (VLPs) are shown as schematics.  
The expected development o f static l ight scattering (SLS), z-
average, and VLP concentrat ion signals is  shown over the CFF 
process  progress subdivided into four phases. In the process , the 
buffer o f a homodimer solution is gradually exchanged by assembly 
buffer to initiate VLP assembly. In phase I, few aggregates are 
formed and no assembly takes place . The formation of aggregates 
increases the l ight-scattering signals while the VLP concentrat ion 
remains at zero . As a consequence of exceeding a critical buffer 
composition, VLPs start to form in phase IIa, v isualized by an 
increase in VLP concentration.  The l ight-scattering signals continue 
to increase as a response to particle formation. In phase IIb, 
assembly continues, indicated by a further increase in VLP 
concentrat ion and static  l ight scatter ing. The z-average remains 
comparably constant as i ts value is  already c lose to the actual  VLP 
diameter and is thus only marginal ly influenced by further assembly.  
In phase III ,  the assembly reaction is no longer proceeding. Part icles 
are depleted resulting in a decrease in the l ight-scatter ing signals .  
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Phase I Phase IIa Phase IIb Phase III

z
-a

v
e

ra
g
e

V
L

P
 c

o
n

c
e
n

tr
a
ti
o

n
S

L
S

 i
n
te

n
s
it
y
 

Only 

homodimers
Beginning of VLP 

assembly and 
aggregation

VLP assembly Maximal VLP 
concentration

Protein degradation 
and loss



3 Monitoring of VLP Reassembly by Diafiltration 

69 
 

In phase I, buffer exchange starts but no assembly occurs, i.e. the VLP 
concentration remains zero. However, aggregates may form resulting in 
an increase in scattered-light intensity and z-average, as seen in 
Figures 3.4, 3.5, and 3.6. 

In phase II, homodimers assemble into VLPs. Native HBcAg VLPs are 
30 nm to 34 nm in diameter (Crowther et al., 1994). VLP concentration 
increases to its maximum, while the scattered-light intensity and z-
average continue to rise. To explain the sensor response more 
comprehensively, phase II was subdivided into two subphases, IIa and 
IIb. In subphase IIa, z-average and scattered-light intensity both 
increase. In subphase IIb, scattered-light intensity further increases while 
z-average remains constant. The increase in scattered-light intensity is 
caused by the ongoing formation of VLPs and aggregates. Conversely, 
the z-average stagnates, as it is an intensity-weighted harmonic mean. 
Native HBcAg VLPs are 30 nm to 34 nm in diameter (Crowther et al., 
1994). When the z-average is close to the size of VLPs, further assembly 
has only a small effect on the z-average, while the scattered-light 

intensity still increases due to the formation of particles. 

In phase III, the VLP concentration no longer increases. Thus, the end 
of the assembly process is reached. A loss of aggregates is reflected by a 
decrease in z-average and scattered-light intensity. A decrease in 
scattered-light intensity and UV absorbance with constant z-average 
reflects a decrease in overall protein concentration with constant particle 
size distribution. 

Towards the end of some processes (most pronounced for VLP A and C 
at 0.25 bar), both light-scattering signals decreased combined with a 
decrease in the UV signal at 280 nm. Thus, the protein concentration 
decreased due to adsorption to the CFF membrane or retention on the 
measurement loop filter. The elevated salt concentration of the process 
liquid at this stage of the process may have promoted adsorption of 
protein to the hollow fiber membrane (Hanemaaijer et al., 1989). In both 
runs, the z-average started to decrease already earlier than the UV signal 
at 280 nm around the location of the inflection point of the a/b-ratio 
while the UV absorbance was still approximately constant. This could 
indicate a partial disintegration of aggregates. Phase III was generally 
short, as either its onset was close to the final DV or the process was 

stopped early due to membrane fouling. 
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The assembly of HBcAg VLPs also induces changes in mean 
hydrophobicity around aromatic amino acids as capsid assembly relies 
on hydrophobic interaction forces (Venkatakrishnan & Zlotnick, 2016; 
Wynne et al., 1999). Tyrosine-132 is especially important for the 
assembly (C. R. Bourne, Katen, Fulz, Packianathan, & Zlotnick, 2009). 
In homodimers, tyrosine-132 is highly solvent-exposed, as shown in 
Figure 3.3. After VLP assembly, tyrosine-132 is buried in a hydrophobic 
pocket of the neighboring homodimer. During diafiltration, the 
solvatization of tyrosine changes because of aggregation as well as VLP 
assembly. If the mean effect on hydrophobicity by aggregation is small 
compared to the mean effect caused by assembly, the change over time 
of the a/b-ratio correlates to the rate of assembly. As a result, the a/b-
ratio’s inflection point marks the point of the highest rate of assembly. 
Similarly, the increase in the wavelength of the tryptophan absorption 
minimum marks an increase in hydrophobicity around tryptophans. 
Since the change in the solvent exposure of tryptophans during VLP 
assembly is less pronounced, the effect is weaker and more biased by 
aggregation. 

3.4.5 Cross-Flow Filtration for VLP Assembly 

VLP A was assembled from the purest dimer stock solution of the three 
investigated VLPs. The process was thus expected to perform 
comparably well. This agreed with the experimental results at 0.5 bar 
and 1 bar TMP. The observed z-averages of 28 nm to 29 nm in phase III 
showed that there was a significant fraction of VLPs. Few large particles 
were generated while other factors such as the flow reduced the z-average 
compared to off-line DLS analytics (see Table 3.1). The higher final z-
average and an elevated scattered-light intensity at 0.25 bar TMP 
provided evidence of the formation of large aggregates. The observations 
made for VLP A were in general also applicable to VLP B and C. Both 
VLPs were adversely affected at lower TMPs by aggregation reflected by 

increased z-averages and light-scattering intensities. 

A further interesting result of this study was the clustering of the 
inflection points of the a/b-ratio either around 1.5 DV or around 0.8 DV. 
An early inflection point is consistent with early VLP formation. 
Conversely, a late inflection point correlated to an early increase in 
aggregates. By keeping in mind that the DV is indicative of the progress 
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of buffer exchange, the conclusion may be drawn that VLP assembly is 
inhibited by aggregates. Indeed, a similar conclusion was previously 
proposed for MuPyVP1 VLPs (Y. Ding, Chuan, He, & Middelberg, 
2010). Ding and coworkers described a competition of capsomere 

association into aggregates and precursors of MuPyVP1 VLPs. 

The results of the diafiltration experiments for all VLPs showed that a 
low TMP of 0.25 bar lead to an increased aggregation propensity and an 
increased process time compared to the other conditions. At 0.5 bar and 
1 bar TMP, the process time, VLP concentration, and aggregate content 
depended on the VLP construct and stock purity but were not solely 
dependent on the TMP. For increased yield and decreased aggregate 
content, it could be helpful to introduce a further purification step for 
VLP B and C. In all runs, aggregate concentration by SEC did not reflect 
the data obtained by light scattering. The reason for this seemed to be 
that large aggregates were depleted during sample preparation or in the 
SEC column. As a consequence, light scattering provided a more 
complete picture of the aggregate content. 

Process phase III is characterized by product loss. The process should 
therefore be terminated at the end of phase II. It is worth noting that 
the end of phase II is influenced by the VLP construct but seems to be 
independent of the applied TMP. No plateau or decrease in assembly was 
observed for VLP B. VLP B was charged strongest, requiring higher ionic 
strengths to overcome the electrostatic charges of the homodimers during 
assembly (see Table 3.1). Zeta potentials of VLP A and C are similar. 

For both, a transition into phase III was observed. 

To compare the assembled VLPs with standard characterization 
methods, we performed DLS and TEM measurements on the assembled 
VLPs. Off-line DLS VLP peak diameters with a mean of 41 nm and a 
standard deviation of 11 nm are comparable to that of wild type HBcAg 
VLPs (typically 30 nm to 34 nm (Crowther et al., 1994)). No significant 
influence of the TMP or construct on the final VLP peak diameter could 
be observed. TEM measurements confirmed the existence of assembled 
VLPs for all three constructs in the expected size range. 

In summary, the analytical measurements of the VLP size and structure 
confirm the information obtained from the PAT tools. 
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3.4.6 Benefits of Using PAT for Process Development and 

Production 

PAT is currently a frequently investigated approach to increasing the 
acquired information about unit operations in biopharmaceutical process 
development and production by timely measurements. Generating 
information on the process in (near) real time potentially results in a 
better understanding, faster optimization, and reduced off-line analytical 

samples (Bakeev, 2010). 

Here, the UV absorbance at 280 nm provided insight into changes in the 
concentration of protein and other absorbing species in real time. This 
can be of advantage for assessing the membrane performance (e.g. 
membrane fouling, pore rating out-of-specification, or membrane 
damage). A mechanistic understanding is, however, often not possible 
solely based on a single wavelength. A more in-depth view on the on-
going processes during UF/DF could be realized based on the acquired 
UV/Vis spectra. For HBcAg, tyrosine-132 is especially important for the 
VLP assembly. The a/b-ratio provides a mechanistic insight into the 
assembly reaction based on the mean tyrosine solvatization. Next to 
means for quantification, the UV/Vis spectrometer implemented in the 
presented setup thus provides mechanistic process understanding. 
Furthermore, other UV/Vis chromophores are phenylalanine, 
tryptophan, and disulfide bridges (W. Jiskoot & Crommelin, 2005). 
These may be affected during the assembly of other VLPs. For example, 
during the assembly of human papilloma virus-like particles, disulfide 
bridges are the key to the formation of higher-order structures (Maolin 
Li, Beard, Estes, Lyon, & Garcea, 1998). An assembly process with these 
VLPs could therefore be monitored with a UV/Vis spectrometer. 

Another changing protein attribute which can be monitored is the 
particle size. The significant increase in size has a large impact on the 
scattering characteristics of the process fluid. The light-scattering 
photometer thus allowed for the detection of the start of the assembly 
reaction and maximum VLP concentration. Light-scattering photometers 
are universal detectors that are not dependent on the protein primary 
structure. As a consequence, any VLP assembly reaction can be 
monitored with this technique. In development and production, light-
scattering detectors provide the means for detecting the ideal point to 
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stop CFF or to initiate the next process step. This can improve the 
product quality (as process phase III is omitted) and allow for process 

intensification. 

Generally, the on-line sensors provide data with high temporal resolution 
which typically is difficult to achieve with off-line analytics. In 
consequence, smaller changes in process characteristics (e.g. assembly 
onset, end of phase II) can be detected. This may be helpful for the 
further assessment of different processes in development or for detecting 
deviations or hidden trends in production. 

For process monitoring in production, it may be beneficial to retrieve 
VLP concentrations in real time. A PLS model was thus developed to 
demonstrate the possibility to monitor VLP concentration on-line by 
UV/Vis spectroscopy. The model was optimized by a constrained 
heuristic search algorithm. The minimal number of four latent variables 
was set to reflect the minimal amount of independent UV-active species 
(VLP concentration, deoxyribonucleic acid (DNA) concentration, urea 
concentration, and aggregates). Reliable VLP concentration estimations 
were possible for all three constructs. In production, UV/Vis 
measurements in conjunction with a PLS model could thus be used for 
the real-time assessment of the assembly progress and ultimately for 
process control. Based on the regression coefficients of the PLS model 
(Figure 3.8), it is clearly visible that the fine structure of the tyrosine 
and tryptophan absorption is of major importance for the regression. 
Therefore, the PLS model accesses information similar to that provided 
by the a/b-ratio and the tryptophan minimum. The differences between 
the regression coefficients for VLP A, B, and C were attributed to the 
changing purity of the stock solutions. Provided that no additional 
chromophores are introduced into the MIR, a universally applicable PLS 
model for different HBcAg constructs is conceivable. This may be 

evaluated further in future studies. 

3.5 Conclusion and Outlook 

In this study, we investigated HBcAg assembly by diafiltration of three 
different constructs at three different TMPs. We developed an on-line 
measurement setup consisting of a UV/Vis and a light-scattering sensor 
(DLS and SLS) with a unified software platform. This setup allowed for 
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monitoring mean particle sizes, hydrophobicity around tyrosine and 
tryptophan as well as the protein concentration. VLP particle formation 
was verified by off-line DLS measurements and TEM imaging. Based on 
the acquired UV/Vis spectra, we calibrated three PLS models for 
estimating VLP concentrations in real-time. Regarding process 
performance, we observed that processes with hollow fiber modules at 
0.25 bar TMP resulted in increased aggregation. In all processes, the 
maximum rate of assembly occurred around two characteristic DV. This 
behavior was interpreted as a result of aggregation-related inhibition of 
VLP assembly, which makes it especially important to prevent 
aggregation in a VLP assembly process. The maximum VLP 
concentration coincided with the maximum light-scattering intensity. 
Thus, the light scattering peak or the calibrated PLS model could 
potentially be used as PAT decision tools for VLP assembly process 
control leading to improved product quality and intensified processes. In 
summary, the established setup has shown great potential for improving 
process monitoring, development, and understanding during VLP 
assembly by diafiltration. 

In the future, strategies may have to be developed for process control 
during VLP reassembly. The proposed setup allowed for monitoring 
central quality attributes during the process with and without calibrated 
chemometric models. It is therefore a good starting point for any further 
research in this direction. From a process development point of view, the 
current results have not yet shown a reduced process efficiency at the 
highest TMP. A further increase in TMP may thus be attractive. 
Alternative membrane options, such as membrane cassettes, could 
strongly affect the process and may be interesting to evaluate with the 
setup. 
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Appendix A: Supplementary Material 

The Supplementary Material associated with this chapter contain the 

following information: 

 S3.1: Calculation of Local Hydrophobicity around Aromatic 
Amino Acids 

 S3.2: Reversed-Phase Chromatography  
 S3.3: Cross-Flow Filtration (CFF) Process Progress 
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Abstract 

Knowledge-based experimental design can aid biopharmaceutical high-
throughput screening (HTS) experiments needed to identify critical 
manufacturability parameters. Prior knowledge can be obtained via 
computational methods such as protein property extraction from three 
dimensional (3-D) protein structures. This study presents a high-

4 
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throughput 3-D structure preparation and refinement pipeline that 
supports structure screenings with an automated and data-dependent 
workflow. As a case study, three chimeric virus-like particle (VLP) 
building blocks, hepatitis B core antigen (HBcAg) dimers, were 
constructed. Molecular dynamics (MD) refinement quality, speed, 
stability, and correlation to zeta potential data was evaluated using 
different MD simulation settings. Settings included two force fields 
(YASARA2 and AMBER03) and two pKa computation methods 
(YASARA and H++). MD simulations contained a data-dependent 
termination via identification of a 2 ns Window of Stability, which was 
also used for robust descriptor extraction. MD simulation with 
YASARA2, independent of pKa computation method, was found to be 
most stable and computationally efficient. These settings resulted in a 
fast refinement (6.6 – 37.5 hours), a good structure quality (-1.17 - -1.13) 
and a strong linear dependence between dimer surface charge and 
complete chimeric HBcAg VLP zeta potential. These results indicate the 
computational pipeline’s applicability for early-stage candidate 
assessment and design optimization of HTS manufacturability or 

formulability experiments.
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4.1 Introduction 

Virus-like particles (VLPs) are macromolecular assemblages, which in 
their simplest form consist of multiple copies of one viral structural 
protein (Kushnir et al., 2012). Their particulate and highly repetitive 
structure invokes an immune response similar to that of native viruses, 
but VLPs are incapable of reproduction as viral nucleic acids are lacking 
(Chackerian, 2007; Kushnir et al., 2012). VLPs can therefore provide 
immunization against the virus they were derived from, as was done for 
hepatitis B virus (HBV; Engerix B, Recombivax) (McAleer et al., 1984) 
and human papilloma virus (HPV, Cervarix; Gardasil) (Bryan et al., 
2016). Immunization unrelated to the native virus can be achieved with 
chimeric VLPs (cVLPs), which are VLPs containing a foreign antigenic 
epitope. These antigenic epitopes can be inserted into a capsid forming 
protein at either the N-terminus, C-terminus, or major immunodominant 
region (MIR) (Pumpens & Grens, 2001). This insertion aims to trigger 
an immune response, adjuvanted by the particulate and repetitive VLP 
structure (Kratz, Böttcher, & Nassal, 1999). CVLPs are increasingly used 
in preclinical and clinical studies (Mohsen et al., 2017). An example of a 
cVLP that received positive opinion of the European Medical Agency is 
a malaria vaccine based on a HBV surface antigen VLP with an inserted 
segment of the Plasmodium falciparum circumsporozoite protein (Nielsen 
et al., 2018).  Another platform for chimeric antigen display is the HBV 
core antigen (HBcAg) protein. Chimeric HBcAg VLPs with foreign and 
self-epitopes have been shown to induce strong B cell responses, a 
characteristic that can be used to develop VLPs for treatment of cancer 
(Fehr et al., 1998; Klamp et al., 2011; Milich, Sallberg, & Maruyama, 
1995).  

CVLP development involves screening large numbers of candidate 
epitope insertions (Pumpens et al., 2008). During screenings, cVLPs are 
evaluated based on immunogenicity, structure stability, and assembly-
competence (Chackerian, 2007; X. Ding, Liu, Booth, Gao, & Lu, 2018). 
For example, fewer than 50% of inserted peptides in the HBcAg platform 
resulted in a properly assembled and soluble VLP (Jegerlehner et al., 
2002). Structural stability and solubility are not only desired in the final 
formulation to ensure product efficacy, quality, and safety, but also 
throughout downstream processing to ensure manufacturability 
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(Buckland, 2005; X. Ding et al., 2018; Vicente, Roldão, et al., 2011). 
During manufacturing, VLPs are exposed to different environmental 
conditions such as changes in pH, ionic strength, and temperature. These 
conditions influence physicochemical properties of VLPs, which in turn 
determine critical evaluation parameters such as the structural stability 
and assembly-competence (Priddy & Middaugh, 2014). High-throughput 
screening (HTS) experiments allow for workload reduction in virus and 
VLP studies to determine optimal processing (Hämmerling, Ladd Effio, 
Andris, Kittelmann, & Hubbuch, 2017; Ladd Effio & Hubbuch, 2015) 
and formulation (Hämmerling, Lorenz-Cristea, Baumann, & Hubbuch, 
2017) parameters. HTS design for VLP studies can be further optimized 
by search space minimization and manufacturability assessment using 
prior knowledge of physicochemical properties obtained computationally 
from three-dimensional (3-D) protein structures (X. Ding et al., 2018; 
Lua et al., 2014; Vicente, Mota, Peixoto, Alves, & Carrondo, 2011). 
Physicochemical properties that are most important for virus particles 
include electrostatic surface charge (Ghanem et al., 2016; Mellado et al., 
2009; Schijven & Hassanizadeh, 2010). Research on bacteriophage MS2 
showed correlation between experimentally determined virus surface 
charge using zeta potential measurements, and computationally 
calculated protein charge (Penrod, Olson, & Grant, 1996). Moreover, 
experimentally determined protein zeta potential showed stronger 
correlation with calculated protein charge using only capsid surface 
atoms compared to protein charge calculated using all MS2 capsid atoms. 
Other research showed that calculated protein charge using the surface 
of a single MS2 capsid protein was in agreement with experimentally 
determined protein zeta potential of the entire MS2 capsid (Lošdorfer 
Božič & Podgornik, 2017). Ionizable groups of a protein determine 
protein properties such as surface charge, structure, and stability 
(Johnston, Søndergaard, & Nielsen, 2011). Therefore, both 3-D structure 
preparation and in silico determination of surface charge require an 
estimation of the pKa of titratable groups. Fast and fairly accurate pKa 
estimation methods have been developed, such as methods to monitor 
pKa shifts during a molecular dynamics (MD) simulation (Krieger, 
Nielsen, Spronk, & Vriend, 2006) or to process a large number of 
structures parallelized in a short time (Anandakrishnan, Aguilar, & 

Onufriev, 2012). 
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Candidate cVLP 3-D structures have to be available for computational 
physicochemical property extraction. As it would be impractical to 
produce all candidates and experimentally determine their 3-D 
structures, an in silico 3-D structure preparation approach is needed. 
This approach would require an automated and high-throughput 
framework to support screening a large number of cVLPs to minimize 
manual effort. These requirements can be met with homology modeling. 
Homology modeling can be performed using several approaches (Forster, 
2002; Venselaar et al., 2010), but all resulting 3-D structures remain only 
an estimation of reality. Further model refinement is needed to meet 
structure quality requirements and should therefore include an MD 
simulation step (Fan & Mark, 2004). Structure refinement requires the 
selection of a force field. The choice depends on the application and it 
can be notoriously difficult to identify the best-performing force field for 
a particular application. Novel self-parameterizing knowledge-based force 
fields, such as YASARA2, have been developed to improve the 
calculation of torsional angles and have shown to be useful and accurate 
for the physical correction of proteins by energy minimization (Krieger 
et al., 2009). Several authors have analyzed the performance of different 
open-source force fields by comparing in silico structural data to NMR 
experimental data (Beauchamp, Lin, Das, & Pande, 2012; Best, Buchete, 
& Hummer, 2008; Lange, Van Der Spoel, & De Groot, 2010). In general, 
modern force fields perform reasonably accurate and reproducible for MD 
simulation of proteins (Martín-García, Papaleo, Gomez-Puertas, 
Boomsma, & Lindorff-Larsen, 2015).  

For VLPs, in silico experiments have most frequently been applied to 
study capsid stability using complete VLP capsid 3-D structures. All-
atom MD simulations of complete capsids are as challenging as they are 
computationally expensive and can only be done using relatively short in 

silico timescales. Reported simulations reach <10 ns per day on super-
computers (Freddolino et al., 2006; Roberts et al., 2012; G. Zhao et al., 
2013) or 30 ns/day when using constrained bond-lengths (Larsson et al., 
2012). However, modeling VLP structural transitions (e.g., self-assembly, 
capsid disintegration) requires a much larger timescale (µs or ms) 
(Mansour, Sereda, Yang, & Ortoleva, 2015). Compared to all-atom MD 
simulations, computational expense has been reduced to reach these 
relatively large timescales using coarse-grained (Arkhipov, Freddolino, & 
Schulten, 2006; Reddy & Sansom, 2016; Reddy et al., 2015) or multi-
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scale (Ayton & Voth, 2010; Cheluvaraja & Ortoleva, 2010; Joshi et al., 
2011; Machado, González, & Pantano, 2017; Miao, Johnson, & Ortoleva, 
2011) models in various capsid studies. Supercomputers, such as the Blue 
Waters supercomputer with 128000 cores, were used and a simulation 
duration of several days for a single VLP was reported (G. Zhao et al., 
2013). In silico candidate screening would require an equal amount of 
simulations as available cVLP candidates. Depending on the application, 
this could involve screening of hundreds of cVLP candidates. In this case, 
simulation time would go up to the order of magnitude of a year, even 
with the use of a supercomputer. Time requirement, super computer 
availability, and respective expertise hamper the implementation of these 
methods in computational high-throughput candidate screenings. 
Simulation simplification, by using only a single capsid protein or capsid 
building blocks models (Lua et al., 2015; Lin Zhang et al., 2013), aids in 
resolving these limitations. Monomers and pentamers were compared to 
an entire VLP 3-D capsid model to evaluate the applicability to 
immunogenicity prediction (Joshi et al., 2011). Joshi and coworkers 
showed that the immunogenicity predictor (epitope flexibility) was 
dependent on the complete capsid construct and thus a complete VLP 
capsid 3-D model was required to capture this effect. This requirement 
is not expected for the evaluation of surface charge as it has been shown 
that MS2 capsid protein surface charge descriptors have a high 
correlation to experimental zeta potential data of entire structure 
(Lošdorfer Božič & Podgornik, 2017; Penrod et al., 1996). In addition, 
this case study used chimeric HBcAg structures that differ only in the 
epitope located on the outer VLP surface. Therefore, the influence of 
dimer contact area on possible zeta potential changes observed for entire 
chimeric HBcAg VLP structures was considered to be minimal. Thus, 
surface charge after 3-D structure preparation of HBcAg dimers was 
evaluated based on its correlation to experimental zeta potential obtained 
for entire HBcAg VLP structures. Monomers were not considered as 
model simplification, since only dimers or larger assemblies (i.e., capsids) 
are present under physiological conditions (Adam Zlotnick, Tan, & 
Selzer, 2013).  

This study presents a computationally inexpensive, high-throughput, and 
entry-level pipeline to obtain 3-D structures. Time and computational 
effort were minimized by automated homology modeling including novel, 
data-dependent, and stepwise MD simulation for homology model 
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refinement. Refinement termination was determined data-dependently 
via identification of a 2 ns Window of Stability (WoS) consisting of 1000 
structural snapshots. The WoS was used to calculate the median 
structure quality and median surface charge based on all 1000 structural 
snapshots to account for MD simulation fluctuations. As a case study, 
three chimeric HBcAg dimer structures were processed under similar 
environmental conditions, each with a unique antigenic epitope insert. 
Homology model construction and subsequent refinement performance 
was evaluated based on simulation quality, speed, and stability. The 
median surface charge was used to investigate the application of the 
prepared structures for surface property extraction. This was evaluated 
based on the correlation between in silico calculated surface charge 
extracted from chimeric HBcAg dimers and experimental zeta potential 
obtained with complete chimeric HBcAg VLPs. To identify performance 
sensitivity, MD simulations using two different force fields (YASARA2 
and AMBER03) and two high-throughput methods for pKa value 
computation (H++ and YASARA) were compared. The presented case 
study of three chimeric HBcAg dimers was performed to show the 
potential of the proposed high-throughput and automated structure 
preparation pipeline to explore computationally determined 

physicochemical protein surface properties.  

4.2 Materials and Methods 

4.2.1 Sample Preparation 

Recombinant chimeric HBcAg constructs used in this study (referred to 
as VLP A, VLP B, and VLP C irrespective of being an HBcAg dimer or 
VLP) were modified in the MIR to display foreign epitopes on the VLP 
surface. Constructs were expressed and purified according to the 
production protocol generously provided by BioNTech Protein 
Therapeutics GmbH (Mainz, DE). Purified and assembled VLPs were 
stored at -20 °C and dialyzed into a 50 mM Tris (Merck KGaA, 
Darmstadt, DE) buffer at pH 7.2 containing 100 mM NaCl (Merck 
KGaA, Darmstadt, DE) for analysis. Buffer was prepared with ultrapure 
water (PURELAB Ultra, ELGA LabWater, Lane End, UK) and filtered 
through a 0.20 µm pore size Supor filter (Pall, Port Washington, NY, 
USA). Samples were brought to room temperature and filtered through 
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a 0.20 µm polyethersulfone (PES) filter (VWR International, Radnor, 
PA, USA) before measurements. Required VLP sample concentrations 
were obtained using Vivaspin 20 filters with a 30 kDa pore rating 
(Sartorius, Goettingen, DE). VLP concentration was determined with a 
NanoDrop2000c UV-Vis spectrophotometer (Thermo Fischer Scientific, 
Waltham, MA, USA). The E1% (280 nm) extinction coefficient was 
calculated by the online Swiss Institute of Bioinformatics ProtParam tool 
(https://web.expasy.org/protparam.html) based on the primary 
structure of the HBcAg monomer (Gasteiger et al., 2005).  

4.2.2 Zeta Potential  

Electrophoretic mobility measurements were performed with the 
Zetasizer Nano ZSP (Malvern Instruments Ltd., Malvern, UK). Folded 
disposable capillary cells (DTS1070, Malvern Instruments Ltd., Malvern, 
UK) were filled with the appropriate buffer and 50 µL of a 1 g/L VLP 
sample. VLP samples were inserted by employing the diffusion barrier 
technique (US Patent 2017/0269030 A1, 2017) using a 200 µL round, 
0.5 mm thick Corning Costar gel-loading tip (Corning Inc., Corning NY, 
USA). Six replicates were measured at 25 °C in automatic mode, where 
each measurement consisted of 120 seconds equilibrium time and five 
runs with a maximum of 15 sub runs. The applied voltage was set to 
60 mV and the dispersant was set to water. A material refractive index 
of 1.45 and absorption of 0.001 AU was used. The average zeta potential 
was calculated by Zetasizer Software (version 7.12, Malvern Instruments 
Ltd., Malvern, UK) with the measured average electrophoretic mobility, 
a viscosity of 0.8872 mPas, a dielectric constant of 78.54, and 
Smoluchowski’s approximation of 1.5 (Smoluchowski, 1921). For each 
VLP sample, outlier detection was performed with MATLAB (version 
2017b, MathWorks, Natick, MA, USA), using the inter quartile range 
rule with a whisker length of 0.75 (Moore, McCabe, & Craig, 2009), 
followed by median zeta potential calculation. 
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Figure 4.1 :  Computational pipel ine for high-throughput homology 
model  surface property data extraction.  Four stages are depicted:  
(1) Curation: epitope insertion using homology model ing (Modeller) , 
fol lowed by an energy minimizat ion run (YASARA); (2) Preparation: 
computed pKa values (H++) are assigned, fol lowed by an energy 
minimizat ion in a simulat ion cel l (YASARA); (3) Simulat ion: 3-step 
data-dependent molecular dynamic (MD) simulation (YASARA) 
terminated by identif icat ion o f a 2 ns Window of Stabil i ty (WoS);  
(4) Evaluation: surface area selection and extraction o f surface 
property data for each snapshot in the WoS (YASARA). 
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4.2.3 Computational Methods 

Figure 4.1 depicts the computational pipeline used to compute surface 
property information from dimer chimeric HBcAg structures. Required 
input is a template 3-D structure, the target sequences, and experimental 
conditions (i.e., oligostate, pH, and salt concentration). 3-D structure 
curation and MD scene preparation, described in section “Structure and 
Scene Preparation”, were performed fully automated by employing an in-
house developed MATLAB script (version 2017b, MathWorks, Natick, 
MA, USA). All depicted steps in section Curation and Preparation in 
Figure 4.1 were an automated operation of either MATLAB, YASARA 
(version 16.9.23, YASARA Biosciences GmbH, Vienna, AT), Modeller 
(version 9.18, University of California, San Francisco, CA, USA) (Fiser 
& Šali, 2003), H++ (Virginia Tech, Blacksburg, VA, USA, 
biophysics.cs.vt.edu) or Python (version 2.7.13, Python Software 
Foundation, Wilmington, DE, USA) sub scripts. These steps resulted in 
prepared scenes for MD simulation of each VLP construct. MD 
simulation of the prepared scene is described in section “Molecular 
Dynamics” and extraction of VLP surface properties is described in 
section “Data Processing”. The 3-D structure quality was monitored 
throughout the workflow with the quality Z-score. This is the mean value 
of the WHAT IF parameters Packing1, PhiPsi and Backbone (Krieger et 
al., 2009; Vriend, 1990). Quality parameters were calculated using the 
YASARA2 force field in a TIP3P water (Jorgensen, Chandrasekhar, 
Madura, Impey, & Klein, 1983) filled cubic cell, with walls extended 10 Å 

from the 3-D structure.  

4.2.3.1 Structure and Scene Preparation 

The three HBcAg structures used in this study were based on C-
terminally truncated and histidine(His)-tagged HBcAg, which were 
modified in the MIR. All experimental structures have an identical C-
terminus. Therefore, it was assumed that the His-tag would not have a 
significant impact on the relative assessment of 3-D structural 
biophysical parameters. To avoid homology modeling of the His-tag, the 
C-termini of the input target sequences matched the template structure 
C-terminus. The 3-D crystal structure of C-terminally truncated (1-149) 
hexameric HBc Y132A was obtained from the online research 
collaborator for structural bioinformatics protein data bank (RCSB PDB, 
www.rcsb.org), under PDB ID 4BMG with a resolution of 3 Å (Alexander 
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et al., 2013; Berman et al., 2000). All non-protein molecules were removed 
and the hydrogen bonding network was optimized with YASARA 
(Krieger, Dunbrack, Hooft, & Krieger, 2012). The multimeric state was 
corrected to obtain a dimeric 3-D structure, which resulted in the 
template structure shown in Figure 4.1. Subsequently, homology 
modeling was performed to adjust the template structure to the target 
sequence using Modeller. The automodel function constructed five 
homology models, where gap initiation and extension penalties for 
sequence alignment were set to -600 and -400, respectively. Obtained 
homology models were superposed in YASARA and their atom 
coordinates averaged (referred to as homology structure). The hydrogen 
network was optimized and an energy minimization was run with the 
averaged structure at experimental pH and using the AMBER99 force 
field (J. Wang, Cieplak, & Kollman, 2000). After steepest descent 
minimization, the procedure continued by simulating annealing using 2 fs 
time steps. Atom velocities scaled down by 0.9 every 10th step until the 
energy improved by less than 0.05 kJ/mol per atom during 200 steps. 
The resulting structure is referred to as the curated structure in 
Figure 4.1. The curated structure was uploaded to the H++ webserver 
using a Python web scraping algorithm (selenium library) to compute 
pKa values (Anandakrishnan et al., 2012). The external and internal 
dielectric constant were set to 80 and 10, respectively, and salinity and 
pH were set equal to experimental conditions (i.e., 0.1 molar salinity and 
pH 7.2). Obtained pKa values and the resulting 3-D structure were 
automatically downloaded and used to build an MD simulation cell. 
Additionally, to investigate the effect of H++ computed pKa values, pKa 
values computed by YASARA were used instead of H++ (Krieger et al., 
2006). The simulation cell contained the prepared 3-D structure, which 
included computed pKa values as well as (de)protonated termini based 
on the experimental pH and computed pKa values. Cell walls were built 
at a distance of 10 Å from the refined 3-D structure. After simulation 
cell construction, a neutralization run was performed. TIP3P water 
molecules (Jorgensen et al., 1983) were added to the simulation cell 
(water density was set to 0.997) as well as salt ions (set to experimental 
conditions).The final step of MD scene preparation was an energy 
minimization using identical settings as described before. This resulted 

in the prepared MD scene depicted in Figure 4.1.  
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4.2.3.2 Molecular Dynamics 

Prepared MD scenes with H++ pKa values were simulated using the 
YASARA2 or the AMBER03 force field (Duan et al., 2003), and with 
YASARA pKa values using YASARA2, (Krieger et al., 2009; Krieger & 
Vriend, 2015) with a cutoff of 7.86 Å (Krieger, Darden, Nabuurs, 
Finkelstein, & Vriend, 2004) and long range Coulomb interactions using 
the particle mesh Ewald method (Essmann et al., 1995). Temperature 
was controlled by rescaling velocities using a modified Berendsen 
Thermostat (Berendsen, Postma, Gunsteren, Dinola, & Haak, 1984; 
Krieger et al., 2004). Hardware consisted of two Windows 10 computers 
with an Intel i7-6700 CPU and a GeForce GTX 1080 GPU. Results of 
the second computer are shown in Appendix B, Figure S4.2, S4.3, S4.4, 
and S5. Intramolecular forces were calculated every 2 fs (1 fs for 
AMBER03) and intermolecular, non-bonded Van der Waals, and 
electrostatic forces every 4 fs  (2 fs for AMBER03) to improve 
performance and subsequently scaled by 2 (Grubmüller & Tavan, 1998). 
MD scene snapshots were saved every 2 ps and superposed on the 
prepared structure to calculate a root-mean-square deviation (RMSD) of 
atom coordinates. The simulation was automatically performed in three 
RMSD-controlled steps. In step 1, only the epitope and five adjacent 
amino acids were simulated. All other amino acid atom positions were 
constrained. In step 2, 18 additional amino acids towards the N-terminus 
and ten amino acids towards the C-terminus (i.e., the dimer spike 
consisting of two alpha-helical hairpins) were simulated without position 
constraints. Other amino acids were simulated with free side chain atoms 
but fixed backbone atom positions. In step 3, all atom positions were 
unconstrained. All H-bonds were constrained during step 1 and step 2 
using the linear constraint solver (LINCS) algorithm (Hess, Bekker, 
Berendsen, & Fraaije, 1997). In step 3, all H-bond constraints were 
removed after 0.2 ns and the time steps for intermolecular forces and 
intramolecular forces were reduced to 2 fs and 1 fs, respectively. The 
simulation advanced to the next step when the moving average (window: 
0.15 ns, sampling rate: 10 ps) RMSD change was below a set threshold 
of 0.75 Å/ns for 0.1 ns. A penalty of 0.02 ns was used if the rate of RMSD 
change was above the threshold. Step 3 was terminated based on the 
RMSD coefficient of variance (CV) in a window of the last 2 ns of 
simulation. MD simulation was terminated when the window CV fell 
below 2.5%, using a sampling rate of 2 ps. The snapshots of the obtained 
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WoS were used for the calculation of quality and descriptors. Simulations 
that did not reached a WoS within 30 ns were manually stopped. 

4.2.3.3 Data Processing  

The homology structure and all MD snapshots of the WoS obtained with 
H++ or YASARA pKa values and YASARA2 or AMBER03 force field 
were analyzed based on their solvent accessible surface area (SASA). 
Structure SASA was calculated by finding all points a 1.4 Å water 
probe’s oxygen nucleus can reach while rolling over the protein surface 
approximated by YASARA’s numeric algorithm. Contribution of the 
intra-dimer surface was excluded. Molecular parameters were 
automatically extracted using similar settings as in the MD simulation. 
Surface charge was calculated for all atoms contributing to the SASA and 
the resulting surface charge was divided by the total SASA. This was 
done to exclude size effects that can occur between different epitope 
insertions. In silico zeta potential values were obtained via linear 
transformation of surface charge data. Linear transformation included 
normalization of in silico data between 0 and 1 and transformation using 
the minimum and maximum of the experimental data, as shown by 

Equation (4.1). 
-ABCDEFGHCI = J-AEHCI  ∙ �-IDL −  -I�E�M + -I�E �4. 1� 

Normalized in silico data is indicated as ỹnorm, experimental minimum 
and maximum data are represented by ymax and ymin, respectively. 
Descriptors derived from each snapshot in the WoS are reported as 
medians and corresponding median absolute deviation (MAD). 
Correlation between linear transformed in silico data and experimental 
data was evaluated based on the Pearson correlation coefficient (PCC). 
PCC was calculated with the corrcoef function available in MATLAB. 
The error between in silico and experimental data was evaluated with 

the mean squared error (MSE), obtained with Equation (4.2).  

7NO =  1
6 @�-� − -A��P

E

�QR
�4. 2� 

where n is the sample size, yi experimental data, and ỹi in silico generated 
data. 
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4.3 Results and Discussion 

4.3.1 Quality  

Figure 4.2 shows an overview of structural quality Z-scores during 
curation, preparation, and simulation of each chimeric HBcAg dimer. 
The structural quality Z-score is an average of three parameters: (1) 3-D 
direction-dependent packing normality, (2) position normality of residues 
and secondary structural motifs in the Ramachandran plot, and (3) 
backbone conformation normality (Krieger et al., 2009). A value below -
2 is considered to represent a poor structure and Z-scores close to or 
above zero indicate more reliable structures. Separate parameter values 
can be found in Appendix B, Figure S4.1. Quality Z-score differences 
were observed throughout the structure preparation workflow and 
between different identified windows of stability. The template structure 
quality Z-score (-1.18) increased after homology modeling with 0.12 and 
0.16 for VLP B and VLP C, respectively. VLP A showed a 0.03 quality 
Z-score decrease compared to the template structure. Underlying 
parameters showed that VLP A’s backbone conformation quality 
decreased roughly 1.5  times more than the other constructs. This is 
attributed to the amount of additional atoms included in the homology 
model. VLP A contains 17% additional atoms compared to the template 
structure, while VLP B and VLP C contain 13% and 11% additional 
atoms, respectively. The other two underlying quality parameters 
(packing normality and Ramachandran plot position normality) show a 
similar trend between VLP constructs when comparing the template and 
homology structure (data shown in Appendix B  S.4.1, Figure  S4.1). The 
observed quality improvement of homology structures VLP B and 
VLP C, which is dominated by Ramachandran position normality 
parameter improvement, might be an effect of the restraint-based 
homology modeling and knowledge-based loop modeling used by Modeller 
(Forster, 2002; Krieger, Nabuurs, & Vriend, 2003). Quality Z-scores of 
curated and prepared structures were between -1.44 and -1.62, which is 
between 22% and 37% lower compared to the template structure. Both 
structures are evaluated after energy minimization at experimental pH, 
where prepared structures included H++ computed pKa values and the 
curated structures did not. Energy minimization is used to remove global 
errors in 3-D structures, such as steric clashes. However, optimization of 
global and local structural quality with an energy minimization run is 
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not trivial. Energy minimization may result in lower quality structures 
because global errors are removed but local errors accumulate (Krieger 
et al., 2009; Xu & Zhang, 2011). This may explain quality decrease of 
curated and prepared structures, when compared to the template and 
homology structures. A similar decrease in quality Z-score after energy 
minimization with an AMBER99 force field has been reported before 
(Krieger et al., 2009). Structural issues present in curated and prepared 
structures were resolved by running an MD simulation with the 
YASARA2 force field, independent of the used pKa computation method. 
Mean quality Z-scores of all VLP constructs for MD simulation WoS 
without H++ (-1.17) and MD simulation WoS with H++ (-1.13) were 
comparable to the template. This shows there is no quality loss after 
completing the proposed structure preparation pipeline with the 
YASARA2 force field. Additionally, the coefficients of quality Z-score 
variance of 2.0% and 1.6% for the MD simulation with and without H++ 
pKa values, respectively, reflected that there is no quality influence of 
the inserted epitope length. However, a decrease in quality is seen for the 
WoS obtained with the MD simulation using the AMBER03 force field 
(WoS A03), represented by a mean quality Z-score of -1.87 considering 
all VLP constructs. This corresponds to observations previously reported 
about diverse structure quality values obtained with different force fields 
(Spronk, Linge, Hilbers, & Vuister, 2002). Quality Z-scores for 
intermediate structures and final MD simulation WoS showed that 
chimeric HBcAg dimer structure quality in this dataset was mostly 
influenced by the force field and an MD simulation, independent of the 
used pKa computation method. 
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Figure 4.2 :  Overview of quali ty Z-scores for the template , homology 
structure, curated structure , Window of Stabi l i ty (WoS) without 
H++ and the YASARA2 force f ie ld (“ WoS w/o H++”), the prepared 
structure, WoS obtained with H++ and the AMBER03 force f ie ld 
(“ WoS A03”), and WoS obtained with H++ and the YASARA2 force 
fie ld (“ WoS”) . The quality Z-score is an average value o f the WHAT 
IF quali ty factors 3-D packing (QUACHK), Ramachandran Z-score 
(RAMCHK) and backbone conformation (BBCCHK) (Krieger et  al . ,  

2009) .  A median value and median absolute deviat ion as error bar 
is shown for the WoS qual ity Z-scores . A dashed l ine is used to guide  
the eye between the dif ferent qual ity Z-scores. VLP: virus- l ike 
part icle.  

4.3.2 MD Simulations 

All chimeric HBcAg homology models were refined with MD simulations. 
This was done because MD simulations correct structural errors present 
in homology models (Fan & Mark, 2004). An MD simulation results in a 
change of atom coordinates, which is measured by the RMSD of those 
atom coordinates. Structure refinement is achieved upon stabilization of 
atom positions, referred to as the equilibrium state. This state is 
identified by a plateau of the RMSD value over simulation time. Plateau 
identification is frequently done subjectively based on visual inspection 
of RMSD plots. This approach is not recommended as it was shown to 
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be biased in a survey among researchers in the field (Knapp, Frantal, 
Cibena, Schreiner, & Bauer, 2011). To avoid subjective plateau 
identification, this study employed automated equilibrium state 
determination based on the average RMSD slope. Automated 
determination was used within a 3-step MD simulation. In each step a 
growing part of the chimeric HBcAg dimer structure was refined until an 
equilibrium was identified. Separate refinement of structure parts was 
used to reduce simulation time in addition to automated identification of 
the equilibrium state. The simulation was terminated when equilibrium 
was reached for the full chimeric HBcAg dimer structure. This state is 
referred to as the Window of Stability (WoS), which was defined as a 
2  ns simulation window where the coefficient of variance of the RMSD 
in step 3 was below 2.5%. The 3-step MD simulation was specifically 
implemented for the HBcAg dimer structure, as sequences differ only in 
the MIR. For other applications (i.e., formulation condition screening of 
a single protein or a diverse protein dataset) a 3-step MD simulation may 
not be necessary, and a WoS could be determined in one simulation step.  

 

Figure 4.3 :  Progress of molecular dynamics s imulations for virus-
l ike part icles (VLP) A, B, and C presented by root-mean-square 
deviat ion (RMSD) of atom coordinates (Å) over s imulation time 
(ns).  Three di fferent s imulation steps are separated by vertical  l ines ,  
where vert ical l ines indicate s imulation trans ition points. From 0 ns 
to dotted l ine: s imulat ion o f epitope and five adjacent amino ac ids ; 
from dotted to dashed l ine: s imulation o f hepatitis B core antigen 
(HBcAg) dimer spike ; from dashed l ine to the end of s imulation: fu l l  
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dimer simulation. The highlighted area is defined as the 2 ns Window 
of Stabi l i ty (WoS).  

Figure 4.3 shows the progress of 3-step MD simulations with the 
YASARA2 force field and H++ computed pKa values for all three VLPs. 
Every 0.002  ns the atom coordinate RMSD was calculated by 
superposing a simulation snapshot on the prepared structure. Overall 
simulation time ranged from 4.0 ns to 19.9 ns and the absolute RMSD 
increased to 2.10±0.04 Å to 7.52±0.15 Å during MD simulation. The in 

silico time span difference between structures to reach the WoS is in 
agreement with other work, where structure stability was achieved 
earlier, later, or not at all, depending on the protein (Fan & Mark, 2004). 
VLP C showed the lowest RMSD increase (2.1 Å±0.04 in the WoS) and 
shortest simulation time (6.6 h; in silico: 4.01 ns). VLP A resulted in the 
largest RMSD increase (7.52±0.15 Å in the WoS) and longest simulation 
time (37.5 h; in silico: 19.89 ns). Simulation time increased from VLP C 
to VLP B to VLP A, which corresponds to the number of inserted atoms 
of 11%, 13% and 17%, respectively. Step 1, which simulates the inserted 
epitope and five adjacent amino acids, showed 32.1% to 69.2% of the 
total RMSD change. This is a relatively large percentage considering 
step 1 accounted for 3.6% to 12.5% of the total simulation time. The 
epitope was not part of the template 4BMG crystal structure and 
therefore it was inserted with homology modeling. Homology models 
typically have errors in the secondary structure and atomic packing 
which should be resolved during MD simulation (Fan & Mark, 2004). 
This is presumably one factor contributing to the relatively large RMSD 
change observed in step 1, which only refined the inserted epitope and 
five adjacent amino acids. Another factor that can influence the observed 
RMSD profile of the epitope is its flexible design. It was stated that 
epitope flexibility allows for efficient presentation to the immune system 
(Schumacher et al., 2018), but increased structure flexibility can also 
result in larger RMSD change during MD simulation. Other parts of the 
HBcAg dimer are less flexible. Therefore, only small deviations in atom 
coordinates of the less flexible and conserved region of chimeric HBcAg 
(i.e., the molecule base and lower part of the spike) were observed when 
comparing MD simulation steps. This is also illustrated by Figure 4.4, 
where the RMSD per residue number is shown.  
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Figure 4.4 :  Local  structural changes during molecular dynamics 
(MD) s imulat ion represented by root-mean-square deviation (RMSD) 
of atom coordinates (Å) over res idue number (- ).  Initial structures 
were compared with last MD simulation snapshots o f virus- l ike 
part icles (VLP) A, B, and C, respect ive ly, with the YASARA2 force  
fie ld and H++ computed pKa values . Vertical l ines mark the 
inserted epitope exemplari ly for VLP A. 

Figure 4.4 shows that regions around the epitope show higher RMSD 
values than other regions. Simulation speed improved due to bond and 
regional atom constraints and due to an increased time step for force 
calculation in the first two steps of the simulation. On average, step 1 
was 72% (21.26 ns/day) and step 2 was 69% (20.82 ns/day) faster 
compared to step 3 without constraints and with a smaller time step 
(12.32 ns/day). This supports the expected simulation speed 
improvement by employing a data-dependent 3-step method. This 
corresponds to the previous statement that simulation design should be 
adjusted to the application and starting structure to obtain optimal speed 
and stability output. With the used simulation approach, the 2 ns WoS 
of three chimeric HBcAg dimers were created on a Windows 10 computer 
with an Intel i7-6700 CPU and a GeForce GTX 1080 GPU in 66.0 h of 
computational time using the YASARA2 force field and H++ computed 
pKas. Simulations with H++ pKa values and YASARA2 as force field 
were also run on another computer containing similar hardware to 
evaluate reproducibility. No significant difference in simulation outcome 
were found, including calculation of quality and surface charge. More 
detailed information on reproducibility can be found in Appendix B, 

Figure S4.2 to S4.5. 
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Figure 4.5 :  Progress o f MD simulation for virus- l ike partic les (VLP) 
A, B, and C presented by root-mean-square deviation (RMSD) of 
atom coordinates (Å) over s imulation time (ns) for (A) MD 
simulation without H++ with YASARA2 as force fie ld (“ w/o H++”) 
and (B) MD simulation with H++ and AMBER03 as force fie ld 
(“ A03”).  Three di f ferent s imulation steps are separated by vert ical  
l ines,  where vertical  l ines indicate s imulat ion transition points.  
From 0 ns to dotted l ine : s imulat ion of epitope and five adjacent 
amino acids; from dotted to dashed l ine : s imulation o f Hepatitis B 
core antigen (HBcAg) dimer spike; from dashed l ine to the end of 
s imulation:  ful l d imer simulation. The highl ighted area is defined as 
the 2 ns Window of Stabi l i ty (WoS).  

Two additional simulations were performed, the first to evaluate the 
effect of different pKa value computation methods and the second to 
compare MD simulation with YASARA2 to a standard force field for 
protein simulations, AMBER03. Figure 4.5A shows the progress of MD 
simulations using the YASARA2 force field and with YASARA 
computed pKas (w/o H++) and Figure 4.5B shows MD simulations with 
the AMBER03 force field with H++ computed pKas (A03). During MD 
simulations w/o H++, RMSD increased by 2.46±0.05 Å to 8.95±0.17 Å 
in 5.5 ns to 12.6 ns corresponding to 11.0 h to 30.5 h of computational 
time. The total computational time of 59.6 h for MD simulations without 
H++ computed pKa values was comparable to 66.0 h for MD simulations 
with H++ pKa values. This shows that the pKa calculation method did 
not have a significant influence on MD simulation performance. MD 
simulations with AMBER03 resulted in RMSD values of 5.10±0.16 Å to 
13.66±0.25 Å. MD simulation took 18.42 ns to 30.0 ns which corresponds 
to a total computational time of 156 h. For A03, the MD time step had 
to be reduced to 1 fs for intramolecular and to 2 fs for intermolecular 
forces to avoid simulation failure. Structure instability also prevented the 
transition to MD simulation step 3 for VLP A, which is elucidated by a 
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fluctuating RMSD curve in Figure 4.5. Furthermore, VLP C did not 
reach a WoS within 30 ns. Both results indicated that using AMBER03 
resulted in less stable simulations compared to simulations with 
YASARA2. Simulations with H++ or YASARA computed pKa values 
using the YASARA2 force field have shown the best performance based 
on simulation time, simulation stability and overall completion of the 3-
step MD simulation method. This indicates that MD simulations 
evaluated in this study benefitted from the empirical data that is 
embodied in a force field containing knowledge-based potentials (Krieger 
et al., 2009; Sippl, 1990). Evaluation of this method based on other 
(refined) force fields and other software platforms would give more 
detailed insight into simulation performance. 

4.3.3 Zeta Potential 

Zeta potential was experimentally determined for all three HBcAg VLP 
constructs and compared to in silico determined total surface charge 
based on the HBcAg dimer structures. This was done to determine the 
applicability of the prepared structures for computational surface 
property extraction. Surface charge was extracted as the HBcAg VLP 
structures only differ in the surface exposed MIR. Therefore, it was 
assumed that the observed zeta potential differences occur due to the 
changes on the outer surface of the entire VLP structure (Lošdorfer 
Božič, Siber, & Podgornik, 2012). The obtained in silico surface charge 
extracted from the homology model and three different WoS, for each of 
the three chimeric HBcAg dimer structures, are shown in Figure 4.6. 
Linear transformation of in silico data was applied to obtain comparable 
scales and different MD simulation refinement settings were used to 
determine the effects on in silico generated data and the respective 
correlation to experimentally determined zeta potential. Linear 
transformation resulted in ranking three VLPs according to their zeta 
potential. Figure 4.6 shows that zeta potentials of complete cVLPs were 
ranked correctly by all dimer structures, which causes overlaying symbols 
at [-11.70, -11.70] and [-7.94, -7.94]. The main difference is seen for VLP 
C, which has an experimental zeta potential of-9.50±0.69 mV. This data 
point was used to evaluate the influence of pKa value computation 

method and force field selection on in silico surface charge calculations.  
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Figure 4.6 :  In s i l ico computed zeta potentia l (mV) plotted against 
experimentally determined zeta potential (mV). Symbols represent 
in s i l ico data based on the homology structure (“ Homology”, red 
open circ le), Window of Stabi l i ty (WoS) obtained without H++ and 
with YASARA2 (“ WoS w/o H++”, purple diamond),  WoS obtained 
with H++ and AMBER03 (“ WoS A03”, purple square),  and WoS 
obtained with H++ and YASARA2 (“ WoS” , blue fi l led c ircle) . The 
diagonal l ine represents theoret ical data with a Pearson corre lation 
coef fic ient o f 1 (PCC = 1). X-axis error bars represent the median 
absolute deviat ion (MAD) of experimental data and y-axis error bars  
represent MAD for in si l ico data po ints . For each in s i l ico data 
ser ies the PCC and mean squared error (MSE) are calculated (n = 3) 
and l is ted.  

The evaluation parameters, PCC and MSE, are listed for each data series 
in Figure 4.6. A PCC value above 0.900 indicates a strong linear 
dependency with experimental data (Rodgers & Nicewander, 1988). This 
was seen for all evaluated data series because of the limited dataset size, 
but small differences were observed for VLP C’s surface charge. WoS 
simulated without H++ pKa values and WoS with H++ pKa values 
showed the highest PCC, with values of 0.954 and 0.946, respectively. 
Transformed VLP C surface charges for WoS w/o H++ (-8.44±1.18) and 
WoS with H++ (-8.33±1.43) were also comparable, which resulted in a 
0.07 MSE difference in favor of WoS w/o H++. The WoS transformed 
surface charge distribution, represented by the MAD, shows an overlap 
between these two values. This indicates there is no significant influence 
of the used pKa value computation methods in correlation to 
experimental data. This result was reproducible (data shown in Appendix 
B, Figure S4.2 to S4.5). Transformed surface charges based on the 
homology structure (-10.89) and WoS A03 (-10.82±1.11) showed a 

Structure MSE PCC

Homology 0.64 0.915

WoS w/o H++ 0.38 0.954

WoS A03 0.58 0.922

WoS 0.45 0.946
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weaker correlation than the WoS previously discussed. This is shown by 
MSE values of 0.64 and 0.58, respectively. Linear dependency is also 
weaker compared to the other two WoS, where the homology structure 
showed a PCC of 0.915 and WoS obtained with AMBER03 showed a 
PCC of 0.922. As mentioned during the discussion of the MD simulations, 
VLP A did not complete step 2 and VLP C did not reach a WoS when 
the AMBER03 force field was used during MD simulation. Presumably 
this also caused the decreased correlation to experimental data. This 
leads to the conclusion that for this case study the largest positive effect 
was obtained with the YASARA2 force field, regardless of the used pKa 
values, when evaluating the correlation between in silico HBcAg dimer 
surface charge and complete cVLP zeta potential. The observed force 
field effect should be confirmed with a larger dataset. Nevertheless, 
results indicate that surface properties extracted from structures 
obtained with the presented pipeline can represent experimental 
behavior. It should be noted that the applicability of chimeric dimer 3-D 
structure surface charge to quantitatively predict complete cVLP zeta 
potential lies outside the scope of this case study, and should be 

investigated using a more diverse sample space.   

All evaluated WoS show a relatively large coefficient of variation (10%–
16%) regarding the in silico zeta potential, which means there is a 
significant variation in protein surface property value within the WoS. 
For example, VLP A simulated with H++ pKa values and the 
YASARA2 force field resulted a maximum in silico zeta potential of -
5.74 mV and minimum of -11.07 mV within its 2 ns WoS. This 
emphasizes cautiousness regarding the use of a single MD simulation 
snapshot because a snapshot can theoretically take any random value 
within the WoS.  The use of a single snapshot can decrease correlation 
accuracy and thereby reduce the reliability of computational protein 
structure-based models. Therefore, a robust central tendency describing 
statistic which is less sensitive for outliers, such as the median (Andersen, 
2008), is considered appropriate for the extraction of protein surface 
property information within a WoS. The presented computational 
pipeline did not only show the potential of a high-throughput approach 
for 3-D structure preparation, but also how a WoS can provide an 
objective MD simulation termination to reduce computational effort and 
a robust descriptor extraction platform. The approach could be used for 
other proteins, such as antibodies, and other prediction targets, such as 
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assembly competence, solubility, or surface hydrophobicity. A variety of 
proteins and other prediction targets should be investigated to determine 
the full potential of the proposed computational 3-D structure 
preparation pipeline. 

4.4 Conclusion 

A computationally inexpensive, fully automated, and data-dependent 
pipeline for high-throughput 3-D structure preparation and refinement 
was constructed and evaluated using a case study of three chimeric 
HBcAg dimers. Structure quality, computational speed, simulation 
stability, and zeta potential correlation have been evaluated for three 
different simulation settings. This was done by homology modeling and 
subsequent structure refinement with 2 different force fields (YASARA2 
or AMBER03) and 2 different pKa values (H++ or YASARA computed 
pKa values). All evaluation parameters showed to be mainly influenced 
by the choice of force field, where YASARA2 showed a more stable 
performance than AMBER03. YASARA2 simulations using either pKa 
computation method resulted in comparable average quality Z-score (-
1.17 and -1.13). All three chimeric HBcAg dimer structures, modelled 
and refined with YASARA2, were obtained within 59.6 to 66.0 h (in 

silico time of ~4 ns to ~20 ns per structure) on a powerful yet ordinary 
desktop computer. These simulation times were ~2.4 times shorter than 
simulations using the AMBER03 force field. Computational efficiency 
was achieved by designing a 3-step MD simulation refinement 
complementary to the structures in question. This design resulted in 
simulating 31.2% to 69.2% of the total RMSD change in 3.6% to 12.5% 
of the simulation time. In addition, homology model refinement included 
a data-dependent simulation termination based on a 2 ns WoS, which 
was also be used for robust surface property descriptor extraction. 
Validity of the calculated surface property was exemplarily evaluated by 
correlating in silico determined surface charge, based on the chimeric 
HBcAg dimer structures, to experimental zeta potential of the entire 
VLP structure. The use of dimers instead of entire VLP structures 
contributed to the relative short simulation time, while a high correlation 
(PCC of ~0.950) to experimental zeta potential was maintained. The case 
study showed promising results for high-throughput in silico surface 
property screening, but its full potential should be further explored with 
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a larger dataset. The simple, standardized, and automated framework 
allows for the implementation of the computational pipeline in 
manufacturability and formulability screening studies for early candidate 
assessment. 
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Appendix B: Supplementary Material 

The Supplementary Material associated with this chapter contains the 

following information: 

 S4.1 Quality Parameters 
 S4.2 Reproducibility of Simulation 
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Abstract 

Virus-like particles (VLPs) are emerging nanoscale protein assemblies 
applied as prophylactic vaccines and in development as therapeutic 
vaccines or cargo delivery systems. Downstream processing (DSP) of 
VLPs comes both with challenges and opportunities, depending on the 
complexity and size of the structures. Filtration, precipitation/re-
dissolution and size-exclusion chromatography (SEC) are potent 
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technologies exploiting the size difference between product and 
impurities. In this study, we therefore investigated the integration of 
these technologies within a single unit operation, resulting in three 
different processes, one of which integrates all three technologies. VLPs, 
contained in clarified lysate from Escherichia coli, were precipitated by 
ammonium sulfate, washed, and re-dissolved in a commercial cross-flow 
filtration (CFF) unit. Processes were analyzed for yield, purity, as well 
as productivity and were found to be largely superior to a reference 
centrifugation process. Productivity was increased 2.6-fold by transfer of 
the wash and re-dissolution process to the CFF unit. Installation of a 
multimodal SEC column in the permeate line increased purity to 96% 
while maintaining a high productivity and high yield of 86%. In addition 
to these advantages, CFF-based capture and purification allows for 
scalable and disposable DSP. In summary, the developed set-up resulted 
in high yields and purities, bearing the potential to be applied as an 
integrated process step for capture and purification of in vivo-assembled 
VLPs and other protein nanoparticles.
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5.1 Introduction 

Vaccination has reduced morbidity and mortality world-wide, especially 
since the introduction of the World Health Organization’s Expanded 
Programme on Immunization (Greenwood, 2014). Expansion of the 
vaccine portfolio by virus-like particles (VLP) has opened up new 
opportunities, such as the prevention or treatment of cancer (Bolli et al., 
2018; Bryan et al., 2016; F.-X. Ding et al., 2009; Goldinger et al., 2012; 
Klamp et al., 2011; Lizotte et al., 2016; Mohsen, Heath, et al., 2019; 
Mohsen, Vogel, et al., 2019; Palladini et al., 2018). However, especially 
VLP downstream processing (DSP) faces major challenges, such as low 
yields and the lack of platform processes or rapid analytical techniques. 
This is due to the complexity of the product and the associated processes, 
resulting in high development and production costs (Ladd Effio & 
Hubbuch, 2015). The structural properties of VLPs are similar or 
identical to the corresponding virus structure they are derived from 
(Zeltins, 2013). Composed of at least one type of viral structural protein, 
they are in a size range of approximately 25 nm to 200 nm (Chung et al., 
2010; Reiter et al., 2019). Incorporation of foreign epitopes into VLP-
forming viral structural proteins results in so-called chimeric VLPs 
(Pumpens & Grens, 2001). In a previous study, we observed that upon 
insertion of smaller peptides, the size of chimeric hepatitis B core antigen 
(HBcAg) VLPs remained comparable to native HBcAg VLPs with a 
diameter of 31±2 to 33±3 nm (Rüdt, Vormittag, Hillebrandt, & 
Hubbuch, 2019; Selzer & Zlotnick, 2017). During production, the size 
difference between VLPs and host cell proteins (HCPs) as well as other 
smaller contaminants can be exploited for DSP of VLPs (Ladd Effio & 
Hubbuch, 2015).  

A typical VLP production process is shown in Figure 5.1 including unit 
operations such as centrifugation, filtration, and chromatography. Bind 
and elute chromatography, the work horse in biopharmaceutical 
manufacturing for capture, purification, and polishing, suffers from low 
dynamic binding capacities (Ladd Effio & Hubbuch, 2015), diffusion 
limitations (Kramberger et al., 2015), and often too small pore sizes 
(Kattur Venkatachalam, Szyporta, Kiener, Balraj, & Kwang, 2014) for 
the purification of VLPs. Size differences between VLPs and the bulk of 
host cell contaminants can be exploited by size-sensitive techniques such 
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as size-exclusion chromatography (SEC) – especially for analytical 
purposes (Ladd Effio, Hahn, et al., 2016) –, precipitation, filtration, and 
ultracentrifugation (Ladd Effio & Hubbuch, 2015). While 
ultracentrifugation is applied to lab-scale processes (Ausar et al., 2006; 
X. Jiang et al., 1992; Mason et al., 1996), scalability and variability 
issues, among others, hamper its application to industrial-scale processes 
(Kleiner et al., 2015; Koho et al., 2012).  

Fermentation
Batch cultivation

Purification
E.g. by chromatography

Polishing
E.g. by chromatography

Harvest
Centrifugation and recovery

of cells

Lysis
Disruption of cells to release

internal protein

Clarification
Cell debris removal e.g. by

centrifugation or depth
filtration

Dis- and Reassembly
Optional; e.g. by titration or

cross-flow filtration

Formulation
Buffer exchange and

concentration

Capture
Removal of majority of

contaminants

 

Figure 5.1 :  Typical production process  for intrace l lular ly produced, 
in vivo-assembled virus- l ike part icles (VLPs). Virus structural  
prote ins can be expressed in a variety o f host systems, such as 
Escherichia col i ,  yeast or plant cel ls (Ladd Eff io & Hubbuch, 2015).  
After harvest and lysis , cel l  debris are removed by sol id- l iquid 
separat ion and the VLPs remain in solut ion. VLPs are then captured 
and purif ied, fo l lowed by an optional dis- and reassembly step, which 
has shown to increase VLP stabil ity, homogeneity and 
immunogenic ity (Klamp et al . ,  2011;  Mach et al . ,  2006;  Q. Zhao,  
Al len, et al . ,  2012).  Final ly,  the product is  polished and formulated. 
The process steps that were invest igated as integrated unit 
operations in this study are highlighted in blue.  

Originally developed for the fractionation of blood by Edward Cohn and 
coworkers in the 1940s (Cohn, 1941; Cohn et al., 1946), precipitation of 
contaminants or native precipitation of the product are promising 
alternatives for protein separation and purification (Martinez, Spitali, 
Norrant, & Bracewell, 2019). In this context, native precipitation has 
been reported as highly selective for VLPs (H. J. Kim et al., 2010; Koho 
et al., 2012; Tsoka et al., 2000; Zahin et al., 2016), since larger proteins 
or protein assemblies are more susceptible to precipitation (Rothstein, 
1993). The steric exclusion effect associated with the frequently applied 
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precipitant polyethylene glycol (PEG) generally leads to steeper slopes 
in the precipitation curves for larger proteins (Iverius & Laurent, 1967; 
Sim et al., 2012). For precipitation with kosmotropic salts, surface charge 
is however thought to have a greater effect than size (Curtis et al., 1998). 
Separation of product-containing precipitate and supernatant can be 
achieved by centrifugation or filtration. While PEG has been successfully 
applied to VLP precipitation (Koho et al., 2012; Tsoka et al., 2000), its 
application is limited when filtration is used as solid-liquid separation 
technique, as filtration performance is impaired by a PEG-induced 
viscosity increase (Z. Li & Zydney, 2017; Plisko, Bildyukevich, Usosky, 
& Volkov, 2016). Next to PEG of various molecular weights, the 
kosmotropic salt ammonium sulfate ((NH4)2SO4) is a commonly applied 
precipitant (Kazaks et al., 2017; H. J. Kim et al., 2010; Zahin et al., 
2016). In a study on adenovirus (Schagen et al., 2000), dead-end filtration 
has been applied to retain (NH4)2SO4-precipitated virus but exhibited 
only 46-61% recovery from the filter. As an alternative to dead-end 
filtration, cross-flow filtration (CFF) in diafiltration (DF) mode has been 
applied to recover precipitated monoclonal antibodies (mAbs) 
(Hammerschmidt, Hobiger, & Jungbauer, 2016; Kuczewski, Schirmer, 
Lain, & Zarbis-Papastoitsis, 2011; Venkiteshwaran, Heider, Teysseyre, & 
Belfort, 2008). Precipitate was retained by a microfilter, allowing for a 
wash in DF mode. In CFF, turbulent flow along the membrane surface 
ensures better recovery from the filter (Davies & Smith, 2010), also 
reducing concentration polarization and fouling (van Reis & Zydney, 
2007). A main advantage of precipitate recovery by CFF over 
centrifugation lies in avoiding the compaction of precipitate that occurs 
during centrifugation, which allows for shorter precipitate re-dissolution 
times using CFF (Hammerschmidt et al., 2016). Additionally, in the 
above-mentioned studies, precipitation and wash were conducted as 
integrated CFF-based process steps that showed a higher wash efficiency 
as compared to centrifugation (Hammerschmidt et al., 2016; Kuczewski 

et al., 2011). In these studies, the precipitate was re-dissolved by dilution. 

This said, it seems promising to dissolve precipitated product by DF into 
a re-dissolution buffer. Product could subsequently be recovered in the 
permeate stream as it passes the microfilter. Implementing this approach, 
the permeate can be separated into fractions allowing for purity increase 
and concentration adjustment by strategic pooling while undissolved 
contaminants are retained by the microfilter. 
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In our experience with DSP of Escherichia coli (E. coli)-derived VLPs, 
HCP reduction poses a minor challenge as compared to nucleic acid 
depletion, demanding for a purification method to reduce the nucleic acid 
burden. One commonly applied strategy is the supplementation of lysate 
with Benzonase, a nucleic acid digestion enzyme (U.S. Patent No. 
5,173,418, 1992). In recent years, a novel multimodal SEC (mmSEC) 
medium Capto Core 400/700 has been developed that found successful 
application in the purification of VLPs, decreasing impurity levels 
significantly (Lagoutte et al., 2016; Somasundaram et al., 2016; D. Zhao 
et al., 2015). Integration of a precipitation, wash, and re-dissolution step 
on a CFF system together with this novel mmSEC medium seems 
therefore promising.  

In the light of the above, the objective of our study was to develop an 
integrated membrane-aided precipitation, wash, and re-dissolution 
process for capture and purification of VLPs. The set-up was realized on 
a commercial CFF unit coupled to a basic preparative chromatography 
system for monitoring of ultraviolet (UV) absorbance at 280 nm and 
fractionation. Three process variants were developed, the simplest of 
which comprised precipitation, wash, and re-dissolution within an 
integrated CFF-based set-up (Figure 5.2, Process Basic). To improve 
product purity, this method was further either extended by installation 
of a Capto Core 400 column in the CFF permeate line (Process mmSEC) 
or by pretreatment of the lysate with Benzonase prior to the precipitation 
step (Process Nuclease). As a model VLP, a C-terminally truncated 
chimeric HBcAg VLP was investigated. The three process variants were 
compared to a centrifugation-based precipitation, wash and re-

dissolution process (Process Reference).  
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Figure 5.2 :  Schematic overview of the processes investigated in this  
study. The Reference process i s shown at the top, consist ing of 

N
u

c
le

a
s
e

D
ilu

ti
o

n
In

c
u
b

a
ti
o
n

U
F

/D
F

In
c
u

b
a
ti
o

n
 b

u
ff

e
r,

n
u

c
le

a
s
e

F
ra

c
ti
o

n
a
ti
o

n

W
a
s
h

b
u

ff
e

r

C
o

n
d

it
io

n
in

g
N

u
c

le
ic

 a
c
id

 d
ig

e
s

ti
o

n
N

u
c

le
o

ti
d

e
 r

e
m

o
v
a
l

B
a
s
ic

(N
H

4
) 2

S
O

4

s
o
lu

ti
o

n

T
it
ra

ti
o
n

P
re

c
ip

it
a

ti
o

n
C

la
ri

fi
e

d
 l

y
s

a
te

P
re

c
ip

it
a
te

 r
e

c
o

v
e

ry
 a

n
d

 w
a

s
h

R
e

-d
is

s
o

lu
ti

o
n

 a
n

d
 p

ro
d

u
c
t 

re
c

o
v
e
ry

C
la

ri
fi

e
d

 l
y
s

a
te

D
F

 I
D

F
 I

I

F
ra

c
ti
o

n
a
ti
o
n

W
a

s
h

b
u

ff
e
r

F
ra

c
ti
o

n
a
ti
o

n

R
e
-d

is
s
o
lu

ti
o

n
 

b
u
ff

e
r

V
L

P
  

  
  

  
  

  
  

 V
L
P

p
re

c
ip

it
a
te

  
  

  
  

  
  

  
 N

u
c
le

ic
 a

c
id

  
  

  
  

  
  

  
 H

C
P

  
  

  
  

  
  

  
 H

C
P

p
re

c
ip

it
a

te
  

  
  

  
  

  
  

 N
u
c
le

a
s
e

  
  

  
  

  
  

  
 N

u
c
le

o
ti
d

e

R
e
fe

r
e

n
c
e

(N
H

4
) 2

S
O

4

s
o

lu
ti
o

n
W

a
s
te

W
a

s
h

 b
u

ff
e
r

R
e
-d

is
s
o
lu

ti
o

n
 b

u
ff
e

r

C
e

n
tr

if
u

g
a

ti
o

n
R

e
-s

u
s
p
e

n
s
io

n
D

e
c
a
n

ta
ti
o

n
C

e
n

tr
if

u
g

a
ti

o
n

C
e

n
tr

if
u

g
a

ti
o

n
R

e
-s

u
s
p

e
n
s
io

n

W
a

s
te

T
it
ra

ti
o

n

W
a

s
te

P
re

c
ip

it
a
ti

o
n

W
a
s

h
R

e
-d

is
s
o

lu
ti

o
n

C
la

ri
fi

e
d

 l
y
s
a

te
P

re
c

ip
it

a
te

 r
e
c

o
v
e

ry
P

re
c

ip
it

a
te

 r
e
c

o
v
e

ry
P

ro
d

u
c

t 
re

c
o

v
e

ry

m
m

S
E

C

R
e

-d
is

s
o

lu
ti

o
n

 a
n

d
 p

ro
d

u
c

t 
re

c
o

v
e

ry

D
F

 I
I

F
ra

c
ti
o

n
a
ti
o

n

R
e

-d
is

s
o

lu
ti
o

n
 

b
u

ff
e
r

m
m

S
E

C

c
o

lu
m

n



5.2 Materials and Methods 

110 
 

centri fugation-based prec ipitat ion, wash, and re-disso lution. Process 
transfer to a cross- f low fi ltration (CFF) unit resulted in the Basic  
process . Transferred process  steps are wash and re-disso lution, 
highlighted in blue and green, respectively . Wash and re-disso lution 
are mult iple process  steps consisting of repeated centrifugation 
(highlighted in yel low) in the Reference process . In the Basic 

process , these are reduced to two consecutive diafi ltration (DF) 
steps by simply switching between diaf i l trat ion buffers (Figure 5.3) . 
Alternative CFF process variants, ei ther Nuclease or mmSEC , are 
modif ications from the Basic process . The Nuclease process adds a 
nucleic acid digestion and a 300 kDa wash step preceding 
precipitation and continues l ike the Basic process. The mmSEC  
process  sequence is identical to the Basic process sequence but has 
a modi fied re-dissolut ion step (DF II) including a multimodal s ize-
exclusion chromatography (mmSEC) column in the permeate l ine .  
(NH 4) 2SO4 :  ammonium sulfate; HCP: host cel l protein. UF/DF: 
ultrafi l tration/diafi l tration, VLP: v irus- l ike part icle.  

5.2 Materials and Methods 

5.2.1 Materials, Buffers, and VLPs 

All chemicals were purchased from Merck Millipore (Darmstadt, DE), 
unless otherwise stated. Solutions and buffers were prepared with 
ultrapure water (PURELAB Ultra, ELGA LabWater, Lane End, UK). 
A buffer consisting of 50 mM Tris, 100 mM NaCl, 1 mM EDTA 
(AppliChem GmbH, Darmstadt, DE), pH 8 was used as lysis buffer. The 
wash buffer was created from lysis buffer that was adjusted to 
0.25% (v/v) polysorbate 20 (AppliChem GmbH, Darmstadt, DE) with a 
10% (v/v) polysorbate 20 stock solution and to 150 mM (NH4)2SO4 
(AppliChem GmbH, Darmstadt, DE) with a 1 M (NH4)2SO4 stock 
solution.  In the Nuclease process and respective experiments, the 
digestion and nuclease wash buffers were both 50 mM Tris at pH 8, 
containing 20 mM NaCl, 0.2 mM EDTA, and 2 mM MgCl2. The re-
dissolution buffer was 50 mM Tris at pH 8 for all experiments. All buffers 
were pH-adjusted with 32% HCl. BioNTech Protein Therapeutics 
generously provided the chimeric HBcAg VLP plasmid. HBcAg was 
expressed in E. coli and liberated by lysis as described in Appendix C, 
Supplementary Material S5.1. Its extinction coefficient at 280 nm of 
1.558 L g-1 cm-1 was derived from the web-tool ProtParam (Gasteiger et 
al., 2005) and used for all methods. E. coli lysate was diluted to ensure 
a consistent HBcAg content, resulting in HBcAg concentrations between 

2.60 g/L and 2.66 g/L, used as lysate for all processes and experiments. 
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5.2.2 Precipitation and Re-Dissolution Screening 

For processes Reference, Basic, mmSEC, and Nuclease, optimal 
parameters for the precipitation were determined in screening 
experiments. Screening experiments for precipitant concentration were 
performed at a small scale in reaction tubes. Lysate was used either 
untreated or pretreated. Pretreatment comprised overnight dialysis with 
Slide-A-Lyzer G2 cassettes (10 kDa, 3 mL, Thermo Scientific, Rockford, 
US-IL) into the digestion buffer with or without addition of >114 U/mL 
of Benzonase (Sigma Aldrich, Saint Louis, US-MO) to the lysate. In 
1.5 mL reaction tubes, 170 µL or 200 µL of these solutions, adjusted to 
0.25% (v/v) polysorbate 20, were mixed with different volumes of 
(NH4)2SO4 stock solution and incubated for 30 min at room temperature 
(RT), which was between 22 °C and 23 °C for all experiments. The 
solution was spun down at 17000 rcf for 2 min in a tabletop centrifuge 
and the supernatant was recovered. For screening of the incubation time 
during precipitation, untreated lysate was precipitated in a 20 mL batch, 

sampled at 10 min intervals, and treated as described above. 

Small-scale re-dissolution experiments were conducted to test the 
influence of solution components on re-dissolution efficiency. Pooled 
fractions F3-F11 of the mmSEC process were concentrated to 7.74 g/L 
using 50 mL VivaSpins with 100 kDa molecular weight cut-off (MWCO) 
(Sartorius Stedim Biotech GmbH, Göttingen, DE). In 1.5 mL tubes, 
0.5 mL of concentrated HBcAg solution was mixed with 0.5 mL of five 
different solutions. Solutions were a) 200 mM NaCl, 50 mM Tris, 2 mM 
EDTA, pH 8.0, b) 40 mM NaCl, 50 mM Tris, 2 mM EDTA, pH 8.0, c) 
200 mM NaCl, 50 mM Tris, 0.4 mM EDTA, 4 mM MgCl2, pH 8.0, d) 
supernatant of the precipitation step during the Reference (Section 2.5) 
process, and e) supernatant of the wash step during the Reference 
process. Solutions were adjusted to 0.25% (v/v) polysorbate 20 and then 
to 150 mM (NH4)2SO4 for precipitation. Samples were incubated for 
30 min at 300 rpm and 23 °C in a thermo-shaker Thermomixer comfort 
(Eppendorf, Hamburg, DE) and subsequently centrifuged at 15294 rcf in 
an Eppendorf 5810R centrifuge for 20 min at 20 °C. Supernatant was 
removed by pipetting. A volume of 1 mL re-dissolution buffer was added 
and the pellet was resuspended. The reaction tubes were incubated at 
10 rpm at RT in an overhead shaker LD-79 (Labinco, Breda, NL) for 
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60 min, centrifuged with identical settings, and the supernatant was 
recovered. 

5.2.3 Cross-Flow Filtration Instrumentation and Set-Up 

The CFF precipitation, wash, and re-dissolution set-up (Figure 5.3) was 
based on a KrosFlo Research KRIIi CFF system with automatic 
backpressure valve (Spectrum Labs, Rancho-Dominguez, US-CA) with a 
stirred cell (Sartorius Stedim Biotech GmbH, Göttingen, DE) as 
reservoir, and 0.2 µm 200 cm2 Hydrosart or 300 kDa MWCO 200 cm2 
polyether sulfone (PES) membranes (both Sartocon Slice 200) with 
corresponding membrane holders (all Sartorius Stedim Biotech GmbH, 
Göttingen, DE). The three stirred cell inlet ports were connected to 
retentate, wash buffer, and re-dissolution buffer lines. A Sensirion Liquid 
Flow Meter SLS-1500 (Sensirion AG, Stäfa, CH) was installed at the 
permeate outlet of the membrane holder and connected with a 1/16” 
polyether ether ketone capillary with 0.75 mm inner diameter to the wash 
valve of an ÄKTA Start (GE Healthcare, Uppsala, Sweden). On-line 
ÄKTA Start UV sensor data were converted to on-line concentration 
data applying Beer’s law using the HBcAg extinction coefficient. The 
permeate was fractionated in either 15 mL (wash) or 5 mL (re-
dissolution) fractions in 15 mL tubes (Corning, Reynosa, MX-TAM). In 
all presented filtration processes, a constant permeate flow rate of 
2 mL/min was set and maintained using the automatic backpressure 
valve either by manual valve control (Process Basic) or automatic control 
(Processes mmSEC and Nuclease). Therefore, the backpressure valve 
controller was fed with flow rate data of the flow meter (at >1 Hz) 
instead of transmembrane pressure data as in normal operation mode 
using a custom-written communication MATLAB 2018b script (The 
Mathworks, Natick, US-MA). Flow rate, path, and control were 
optimized in pre-experiments, and data were temporally aligned 
considering delay volumes (for more detail see Appendix C, 
Supplementary Material S5.2).  

5.2.4 Precipitation, Wash, and Re-Dissolution Process by Cross-

Flow Filtration 

Diluted lysate, adjusted to 0.25% (v/v) polysorbate 20, was filled into 
the aforementioned stirred cell with three inlets and two outlets. One 
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outlet was capped with an injection plug (Fresenius Kabi, Bad Homburg, 
DE) for sampling, the other outlet either closed or connected to the 
suction port of the CFF feed pump. A Minipuls 3 peristaltic pump 
(Gilson, Villiers le Bel, FR) was used to pump 1 M (NH4)2SO4 solution 
at 1 mL/min through one of the inlet ports of the cell up to a final 
concentration of 150 mM (NH4)2SO4 (Figure 5.3). The flow rate was 
monitored using a Sensirion Liquid Flow Meter SLS-1500. The stirred 
cell was set to minimal stirring speed. The solution was incubated for 
30 min at RT. During incubation, 250 µL samples were taken every 
10 min. 

 

Figure 5.3 :  Piping and instrumentation diagram of the precipitation 
and cross‐ f low fi ltrat ion (CFF) setup. The set-up used for wash and 
re-disso lution of the CFF processes Basic and Nuclease is  shown. 
For process Nuclease ,  the depicted set-up was used with di f ferent 
membranes (300 kDa and 0.2 µm) for the respective wash steps.  The 
mmSEC process inc luded an additional multimodal s ize-exclus ion 
chromatography column (mmSEC) in the permeate stream, 
highlighted in blue .  The prec ipitation set-up cons ists o f the 
components highl ighted in gray on the le ft and the st irred reservoir .  
Prec ipitant was ammonium sul fate ((NH4)2SO4) . Gray highlighted 
components were removed after complet ion of precipitation. C: 
contro l; F: f low rate ; I : indicate; P: pressure; R: record; U: 
mult ivariable ; UV: ultraviolet .  

Three wash and re-dissolution process variants were examined, referred 
to as Basic, mmSEC, and Nuclease (Figure 5.2). The Basic process 
consisted of wash and re-dissolution of precipitate suspension by constant 
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volume DF against wash and re-dissolution buffer, respectively, and 
fractionation of the permeate. CFF feed flow rate in all filtration steps 
was 30 mL/min. Compared to the Basic process, the mmSEC process 
included a Capto Core 400 HiScreen column (GE Healthcare, Uppsala, 
SE) with a nominal column volume of 4.7 mL in the permeate line 
downstream of the fractionation valve of the ÄKTA Start (Figure 5.3). 
The Nuclease process was conducted like the Basic process with 
additional pretreatment of the lysate prior to precipitation. The lysate 
was diluted 1:5 with a buffer containing 50 mM Tris and 2.5 mM MgCl2 
at pH 8 to optimize the conditions for the digestion of nucleic acids by 
Benzonase, resulting in the composition of the digestion buffer. 

Benzonase was added to a concentration of ≥114 Units/mL and 
incubated overnight for 16 h at 80 rpm and 23 °C in a 225 mL tube in a 
MaxQ 6000 Shaker (Thermo Scientific, Marietta, US-OH). The solution 
was concentrated fivefold by ultrafiltration (UF) in the CFF unit with 
the 300 kDa membrane. The solution was diafiltered for five diafiltration 
volumes (DV) using nuclease wash buffer. The permeate of UF and DF 
was fractionated into 15 mL fractions. The retentate was processed 
analogous to the lysate in the other processes. 

5.2.5 Centrifugation-Based Wash and Re-Dissolution 

In a centrifugation-based process (Figure 5.2, process Reference), 
precipitation was performed identically to the experimental procedure for 
the CFF runs, whereas wash and re-dissolution were performed as a 
centrifugation protocol. The suspension of 20 mL was centrifuged at 
17387 rcf at 20 °C for 20 min. Supernatant was removed and the pellet 
was resuspended. The procedure including centrifugation and 
resuspension was repeated with re-dissolution buffer. The suspension was 
transferred into a stirred cell and stirred at minimal speed. After 1 h, 
2 h, and 3 h, a sample was taken, spun down at 17000 rcf for 2 min in a 
table top centrifuge Heraeus Pico 17 (Thermo Electron LED GmbH, 

Osterode am Harz, DE), and the supernatant was recovered.  

5.2.6 Analytical Characterization 

Size-exclusion chromatography was coupled with a diode array detector 
(DAD), multi-angle light scattering (MALS), and quasi-elastic light 
scattering (QELS) to quantify and specify differently sized species. An 
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Agilent BioSEC-5 4.6 × 300 mm, 5 µm, 1000 Å column (Agilent, Santa 
Clara, US-CA) was used at a Dionex Ultimate 3000 RS UHPLC system 
controlled by Chromeleon version 6.8 SR15 (Thermo Fisher Scientific, 
Waltham, US-MA). The method was isocratic for 14 min at a flow rate 
of 0.4 mL/min with 50 mM potassium phosphate buffer at pH 7.4. The 
injection volume was 20 µL. The outlet of the DAD was connected to a 
Dawn Heleos 8 MALS/QELS system (Wyatt Technology Corporation, 
Santa Barbara, US-CA). MALS and QELS data were analyzed with the 
ASTRA V software (Version 5.3.4.15, Wyatt Technology Corporation, 
Santa Barbara, US-CA) and resulted in root mean square radius (rms) 
and molecular weight (both assessed by MALS) and hydrodynamic 
radius (assessed by QELS). For protein separation and quantitation, a 
Caliper LabChip GX II (PerkinElmer, Waltham, US-MA) high-
throughput capillary gel electrophoresis (HT-CGE) device was employed. 
An HT Protein Express LabChip and the corresponding HT Protein 
Express Reagent Kit were used and results analyzed with LabChip GX 
software (Version 4.2.1745.0, PerkinElmer, Waltham, US-MA). Analyses 
were performed using the HT Protein Express 200 assay in reduced mode 
using dithiothreitol (DTT, Amresco, Solon, US-OH) according to the 
assay standard operation procedure provided by the manufacturer. For 
data analysis, all peaks of 21.5 ± 1 kDa were regarded as HBcAg 
monomers, which is the form in which HBcAg is present after sample 
preparation. The range derived from experiments with pure HBcAg. For 
SDS PAGE, LDS sample buffer, MES running buffer, and NuPage 4-12% 
BisTris Protein Gels were used and run on a PowerEase 500 Power 
Supply (all Invitrogen, Carlsbad, US-CA) in reduced mode with 50 mM 
DTT in the sample solution according to the manufacturer's manual with 
minor adaptations. The gel was stained with a Coomassie blue solution. 
CFF re-dissolution samples of fractions with maximum concentration 
were analyzed by transmission electron microscopy (TEM) on a Fecnei 
Titan3 80 – 300 microscope (FEI company, Hillsboro, US-OR). Samples 
were adjusted to 0.5-1 g/L with ultrapure water and filtered with a 
0.2 µm syringe filter. Sample preparation and image analysis were 
conducted similarly to previous studies with chimeric HBcAg VLPs 
(Rüdt et al., 2019). Hydrophilization and staining solutions were 
1% (w/v) alcian blue 8GX (Alfa Aesar, Ward Hill, US-MA) in 1% acetic 
acid solution and 2% ammonium molybdate(VI) (Acros Organics, Geel, 
BE) solution (pH 6.25, adjusted with NaOH), respectively.  
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5.2.7 Calculation of Yield, Purity, and Productivity Measures 

The yield T of a process was calculated by 

T = ∑ UVW
XYZ[Q\]^_]
U`a\^]X

, �5.1� 

where U`a\^]X is the mass of HBcAg, calculated from the processed lysate 

volume and HBcAg concentration as determined by HT-CGE, and UVW 
is the mass of HBcAg in re-dissolution fraction F as determined by SEC, 

where fractions were considered from fraction F\]^_] to FXYZ. HT-CGE 
purity was determined by the ratio of HBcAg concentration to total 
protein concentration in HT-CGE samples. SEC purity was calculated 
by the ratio of HBcAg peaks to total peak area at 280 nm (for details on 
peak identification, the reader is referred to Appendix C, Supplementary 
Material S5.3). A260/A280 was calculated by dividing the cumulated 
peak areas at 260 nm by the cumulated peak areas at 280 nm. Absolute 

spatial productivity . was calculated by 

. = Ubcdef,_XdghX_XZ
ij_gdX\\

, �5.2� 

where Ubcdef,_XdghX_XZ is the accumulated mass of pooled fractions and 

ij_gdX\\ the time to complete the process starting with precipitated 
material through to recovery of the product. Relative spatial productivity 
was derived by the ratio of absolute productivities to the absolute 
productivity of the Reference process. 

5.3 Results 

5.3.1 Precipitation 

In pre-experiments, 150 mM (NH4)2SO4 was determined as optimal 
concentration for all process variants, where most of the product is found 
in the precipitate. Figure 5.4 shows HT-CGE and SDS PAGE data of 
the clarified supernatant of small-scale precipitation experiments from I) 
lysate, II) lysate with added Benzonase dialyzed against digestion buffer 
overnight, and III) lysate dialyzed against digestion buffer over night 
without addition of Benzonase. The total protein concentration in the 
supernatant (Figure 5.4A) was higher for almost all (NH4)2SO4 
concentrations for precipitation from untreated lysate than for dialyzed 
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samples, as had been expected due to depletion of molecules during 
dialysis. HBcAg concentrations in all three experiments (Figure 5.4B) 
were comparable, except for the region between 100 mM and 150 mM 
(NH4)2SO4, where supernatant HBcAg concentrations during 
precipitation from non-dialyzed lysate dropped significantly at 100 mM 
(NH4)2SO4, while the dialyzed samples remained at comparably constant 
HBcAg concentrations from 0 mM to 100 mM (NH4)2SO4. SDS PAGE 

analysis (Figure 5.4C) showed similar results based on band intensities.  

 

Figure 5.4 :  Total protein and hepatit is B virus core antigen 
(HBcAg) concentrat ion in the supernatant after prec ipitat ion 
depending on ammonium sul fate ((NH 4) 2SO4) concentration.  Total  
prote in concentrat ion by reducing high-throughput capil lary gel  
electrophores is (HT-CGE) is shown in (A) ,  HBcAg concentration by 
HT-CGE in (B) .  Experiments I-II I represent prec ipitat ion (Prec .) 
from I) lysate (-♢- ) ,  I I) lysate with added Benzonase dialyzed 
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against digestion buffer overnight (-♢-), and III) lysate dialyzed 
against digest ion buffer overnight without addit ion o f Benzonase 
(-♢-). Experiments I- II I are also shown as reducing SDS PAGE scans 
(C) ,  where lanes 1-8 show (NH 4) 2SO4  concentrations . The HBcAg 
band is indicated by arrows.  

To validate that precipitation incubation time is sufficient at larger scale, 
HBcAg concentration in the supernatant was investigated in 10 min 
intervals at the previously determined 150 mM (NH4)2SO4. Precipitation 
of HBcAg was already completed directly after addition of (NH4)2SO4, 
judging visually based on SDS PAGE scans (Figure 5.5). It has to be 
noted that to the first sampling time 2-3 min have to be added, 
accounting for drawing of samples, transferring the samples into reaction 
tubes, and centrifugation of the samples. Interestingly, during titration 
of the untreated lysate with (NH4)2SO4, we observed a rapid increase in 
turbidity when a concentration of 100 mM (NH4)2SO4 was exceeded. 
Nevertheless, 150 mM (NH4)2SO4 and a precipitation duration of 30 min 
were chosen to include a safety margin, which was successful in all 
processes. 

 

Figure 5.5 :  SDS PAGE scan of 1) Invitrogen Mark 12 Unstained 
Standard, 2) hepatiti s B virus core antigen (HBcAg)-containing 
E. col i lysate,  3-6) supernatant o f prec ipitation experiments with 
150 mM ammonium sul fate direct ly, 10, 20, and 30 min after 
ammonium sul fate addition, and 7) pure chimeric HBcAg sample.  
Molecular weights of the proteins contained in the standard are 
shown on the le ft .  
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5.3.2 Centrifugation-Based Reference Process 

After precipitation, solid-liquid separation aims at separating the 
contaminant solutes and precipitation buffer from the precipitated 
product. A wash step increases the efficiency of contaminant removal. 
The Reference process was based on centrifugal solid-liquid-separation 
for precipitate recovery, wash, and re-dissolution. HBcAg concentration 
of re-dissolution supernatant increased over the first 3 h and was 
1.67 g/L, 1.80 g/L, and 1.85 g/L, respectively (Figure 5.6A). Table 5.1 
shows the re-dissolution concentration and purity measures after 3 h, 
where SEC purity was 76%, HT-CGE purity was 83%, and A260/280 
was 0.87. After precipitation, which was conducted identically for all 
CFF processes and the Reference process, the Reference process was 
completed in 4.5 h. Time-specific productivities of all processes were 
calculated based on mg HBcAg per hour relative to the Reference process 
productivity. Therefore, the relative productivity of the Reference 
process is 100%, as shown in Table 5.1. Assuming a similar area foot 
print of the unit operations, a spatial component of the productivity was 
neglected.  

Table 5.1 . Summary of re-dissolut ion process data for 
centri fugation (Reference) and cross- f low f i l tration (Basic ,  mmSEC ,  
Nuclease) processes . Process data above the thin horizontal border 
are calculated based on a pool of al l fractions. Results below this  
border are based on a fraction pool that aimed for a product 
concentrat ion o f at least 1 g/L and a maximum yield. This was not 
possible for the Nuclease process . Values are calculated us ing tota l 
hepatit is B virus core antigen concentrations except A260/A280, 
which is based on all spec ies in the size-exc lusion chromatography 
(SEC) chromatogram (Appendix C, Supplementary Materia l 
Figure S5.3.1). Best results o f each table column are underl ined. 

 
Mass† Yield‡ Conc.† SEC 

purity† 

A260/

A280† 

HT-CGE 

purity 

Relative 

productivity† 

 mg % gL-1 % Area - % % 

Reference 30.73 72 1.85 76 0.87 83 100 

Basic CFF,§ 36.26 82 0.38 73 1.02 96 264 

mmSEC CFF,§ 37.82 86 0.34 96 0.73 96 239 

NucleaseCFF,§ 9.72 22 0.18 86 0.82 98 8 

Basic CFF,¶ 25.19 57 1.01 78 0.96 95 248 

mmSEC CFF,|| 30.01 68 1.00 98 0.70 96 269 
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C F F  cross- f low fi ltrat ion process , †  assessed by SEC, ‡  for def inition 
see Material and Methods Equation (4.1) , §  Pool of al l 
fractions,  ¶  Pool of fract ions F3-F7, | |  Pool o f fractions F3-F8.  
Process data for pools were calculated by accumulating fraction 
process data. A260/A280: absorbance ratio o f the sample at 260 nm 
to 280 nm; Conc.:  concentrat ion; HT-CGE: high-throughput 
capi l lary gel e lectrophores is ; SEC: size-exc lusion chromatography 

    

 

Figure 5.6 :  Re-disso lution protein concentrat ion (conc.) and purity .  
Each figure co lumn represents a re-disso lution process variant: (A) 
Reference and (B) Basic ,  mmSEC and Nuclease .  In subf igure (A) ,  
the Reference process  concentrat ion and purity data is shown based 
on of f- l ine analysis o f the supernatant after centri fugation. Top row: 
Off- l ine concentrat ions (♢) were derived from size-exc lus ion 
chromatography (SEC) peak areas of hepatiti s B virus core antigen 
(HBcAg) spec ies (Appendix C, Supplementary Material S5.3).  
Bottom row: SEC purity (♢) is defined as percentage o f HBcAg peak 
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area at 280 nm with respect to the area o f al l  SEC peaks at 280 nm. 
A260/A280 (♢) is  def ined as quotient of the cumulated SEC peak 
areas at 260 and 280 nm, respect ive ly.  Dotted l ines are added to 
guide the eye . In subf igure (B) ,  on- l ine monitoring of the permeate 
concentrat ion and of f- l ine analysis o f the corresponding permeate 
fractions (F, indicated by vertical l ines) during cross- f low fi l tration 
(CFF) are shown. The metrics o f subfigure (A) are shown in 
subfigure (B) using the same symbols.  Addit ional to these metrics,  
prote in concentrations (─ ) are shown. Protein concentrations are 
based on absorbance at 280 nm assuming the chimeric HBcAg 
extinction coef fic ient .  

5.3.3 Cross-Flow Filtration-based Wash and Re-Dissolution 

Processes – On-Line Monitoring and Off-Line Analysis 

While in the centrifugation-based Reference process, wash, re-
dissolution, and product recovery steps have to be performed individually 
(Figure 5.2, Reference), the CFF set-up allows for process step 
integration. Diafiltration with a wash buffer retains the product while 
depleting solutes continuously. Diafiltration into a re-dissolution buffer 
replaces the wash/precipitation buffer and re-dissolves the product, 
which is then able to pass the 0.2 µm membrane. This additionally 
ensures that larger particles, such as insoluble precipitate, are removed 
by retention. The developed set-up facilitates fractionation of the 
permeate stream enabling individual analysis of the fractions 
(Figure 5.3).  

In the presented CFF processes, the wash step was stopped when the 
initially saturated on-line UV absorbance in the permeate fell below 
4 mAU (for visualization of this process see Appendix C, Supplementary 
Material S5.4). Product loss during the wash step was determined by 
HT-CGE. HBcAg concentrations in wash fractions were 0.02-0.03 g/L. 
The additional wash step prior to precipitation of the Nuclease process 
resulted in less than 0.1 mg HBcAg loss (analyzed by SEC). After 
precipitation and wash, re-dissolution of the product was initiated by 
switching DF buffer lines from wash buffer to re-dissolution buffer. 
Figure 5.6B depicts on-line and off-line process data over time for the re-
dissolution step in the three CFF process variants. Upon DF into re-
dissolution buffer, on-line permeate concentrations for all process 
variants increased to a maximum after a lag phase of nearly 2 min and 
subsequently decreased exponentially. The process was stopped as soon 
as the on-line absorbance dropped below 4 mAU (on-line concentration 
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of 0.01 g/L). The final retentate was analyzed for unrecovered product 
by HT-CGE. It showed a negligible HBcAg mass of <0.5 mg for processes 
Basic and mmSEC, as opposed to 22.4 mg in the Nuclease process. The 
maximum on-line concentrations were 2.3 g/L, 2.2 g/L, and 0.4 g/L for 
processes Basic, mmSEC and Nuclease, respectively. The curve shapes of 
the off-line HBcAg concentration are in good agreement with the on-line 
data. In all three CFF processes, SEC purities were the lowest in fraction 
F1 and constantly increased to the purity maximum which coincided 
with the concentration maximum. Maximum purities were 82%, 99%, 
and 94% for processes Basic, mmSEC, and Nuclease, respectively. The 
SEC A260/A280 coefficient showed a nearly inverse progression 
compared to SEC purity data.  

5.3.4 Comparison of Process Data 

As seen from summarized process data (Table 5.1), processes Basic and 
mmSEC showed higher HT-CGE purities and VLP yields compared to 
the Reference process. SEC purity was comparable between the 
Reference and the Basic process, while it was highest for the mmSEC 

process. The mmSEC process also showed lowest A260/A280 with 0.73. 
The relative productivities of processes Basic and mmSEC were higher 
than the Reference and the Nuclease process with >239%. While 
processes Basic and mmSEC were superior with regard to aforementioned 
process data, their concentrations were lower with 0.34-0.38 g/L as 
compared to 1.85 g/L for the Reference process. To increase pool 
concentrations, higher concentrated fractions can be selected for pooling. 
Strategic pooling increased concentrations for processes Basic and 
mmSEC to 1 g/L while maintaining purity and productivity. However, 
the yield decreased to 57-68%. Overall, the mmSEC process showed 
highest recovered mass, yield, SEC purity, and lowest A260/A280, along 
with high productivity and HT-CGE purity, both for strategic pooling 
and pooling of all fractions. 

The Nuclease process showed great product loss during re-dissolution, as 
mentioned above. It exhibited the lowest yield and relative productivity 
of 22% and 8%, respectively. Due to low concentrations, purity is not 
comparable to the other processes. For completeness, these values are 
plotted in Figure 5.6B and shown in Table 5.1. Compared to the other 
processes, the precipitation process following nuclease treatment started 
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with altered solution conditions regarding NaCl, MgCl2, EDTA, and 
impurity concentrations. Five screening experiments were designed to 
investigate the influence of solution conditions during precipitation on 
re-dissolution efficiency. The recovery of HBcAg in the re-dissolution 
experiments was 82±1%, indicating no significant difference in HBcAg 
recovery between the investigated experimental conditions.  

5.3.5 VLP Size Analysis 

SEC, coupled to DAD, MALS, and QELS, detected three peaks 
attributed to HBcAg (compare Appendix C, Supplementary 
Material S5.3 for peak identification). A main peak was identified with 
15.3-15.5 nm rms radius and 16.4-17.7 nm hydrodynamic radius, 
corresponding to 79-84% of the HBcAg peak area in the CFF processes. 
In the Reference process, it was 65%. The two earlier-eluting peaks 
showed 24.4-25.2 nm and 30.4-32.0 nm radius, respectively. The 
molecular weights were 3.8-4.1 MDa, 7.5-7.8 MDa, and 12.2-12.7 MDa 
for the three peaks in ascending order by radius. Figure 5.7 shows TEM 
micrographs of the processes Basic, mmSEC, Nuclease, and the Reference 
process. Graphical analysis resulted in average radii of 13.4±1.2 nm, 
14.6±1.5 nm, 13.6±1.2 nm, and 15.3±1.8 nm, respectively, not showing 
distinct species as observed in SEC. While samples from processes 
mmSEC and Reference showed a spatially equal distribution of VLPs, 

Basic and Nuclease samples appeared clustered. 

 

Figure 5.7 :  Transmission electron microscopy micrographs o f re-
disso lution peak samples of four processes: Basic ,  mmSEC ,  Nuclease ,  
and the Reference centri fugation process. The magni ficat ion was 
27,000- fold.  
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5.4 Discussion 

5.4.1 Interpretation of Analytical Methods 

In this study, SEC and HT-CGE have been applied to determine 
concentrations and to identify the quantified species. It is therefore 
important to discuss the meaning of the analytical data as determined 
for the presented processes. HT-CGE has been employed as, compared 
to SDS PAGE, a high-throughput compatible and quantitative size-
dependent concentration analytical technique. HT-CGE purity informs 
about the relative HBcAg fraction of the total protein content, i.e. 
HBcAg protein purity. SEC is applied to assess particle size and 
molecular weight, HBcAg and contaminant concentrations, and 
additionally provides spectral data of the sample.  

The ratio of the absorbance at 260 nm to the absorbance at 280 nm 
(A260/A280) is characteristic for the ratio of nucleic acid to protein 
concentration, whereby higher A260/A280 values indicate a larger 
fraction of nucleic acids (Wilfinger, Mackey, & Chomczynski, 1997). SEC 
purity describes purity based on all species absorbing at 280 nm, such as 
proteins and nucleic acids. 

 

Figure 5.8 :  I l lustration o f the interdependence of derived purity 
measures.  Virus- l ike part icles (VLPs) with di fferent degree o f 
contamination by host cel l prote ins (HCPs) and nucleic acids (NAs) 
are shown. Size-exclusion chromatography (SEC) provides the 
A260/A280 (ordinate) and SEC purity (diagonal axis).  A high-
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throughput capil lary gel electrophores is (HT-CGE) prote in assay 
provides the HT-CGE purity (absc issa). The gray highlighted area 
is characterized by identical  SEC purity,  while HT-CGE purity 
and/or A260/A280 describe the composition of the contaminants. A 
pure hepatitis B virus core antigen VLP sample is characterized by 
100% SEC purity, 100% HT-CGE purity and an A260/A280 of ~0.7 

The combination of these two purity measures together with the 
A260/A280 are thus seen to be powerful to describe a sample. Figure 5.8 
illustrates the connection between these measures. For example, samples 
with high HT-CGE purity but lower SEC purity therefore probably also 
show increased A260/A280 values, indicating nucleic acid contamination. 
It is important to note that SEC measurements are more accurate than 
HT-CGE measurements for concentration determination. This being 
said, SEC could only be applied to rather clean, non-turbid samples (see 
also Appendix C, Supplementary Material S5.1). Therefore, SEC rather 
was applied to assess concentrations during re-dissolution while lysate 
and precipitation/wash samples were assessed by HT-CGE. Yields were 
calculated based on lysate HBcAg concentrations and re-dissolution 
sample concentrations and are therefore based on both HT-CGE and 
SEC measurements. Discussion on comparability of yields can be found 
in Appendix C, Supplementary Material S5.2. 

Off-line SEC and HT-CGE analysis indicated that mainly HBcAg species 
pass through the membrane upon re-dissolution. It was therefore 
reasonable to convert the on-line UV absorbance into an on-line HBcAg 
concentration value, applying the HBcAg coefficient. The good 
agreement between on-line and off-line concentration profiles underlines 
the usefulness of this approach. However, the mmSEC process set-up 
included an additional purification step between the UV flow cell and the 
fraction collector, making off-line samples purer than the on-line 
measured permeate stream.  

The MALS detector coupled to the SEC system provides an estimate of 
molecular weight. HBcAg capsids naturally occur as 180-mer with 
icosahedral symmetry T=3 and as 240-mer with symmetry T=4 (Wynne 
et al., 1999). As SEC is incapable of separating different capsid 
symmetries, the molecular weight measured is the average weight of T=3 
and T=4 capsid species. The theoretical molecular weight for a chimeric 
T=4 capsid is 4.8 MDa and a T=3 capsid is 3.6 MDa. The SEC-MALS-
derived molecular weights of the latest-eluting HBcAg peak were between 
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3.8 and 4.1 MDa, representing 18%/82% and 43%/57% mixture of 
T=3/T=4 capsids, respectively. In vitro, HBcAg VLPs are 
predominantly T=4, but can shift towards higher percentage of T=3 
symmetry capsids upon VLP modification (Böttcher, Wynne, & 
Crowther, 1997; Rybka et al., 2019; A Zlotnick et al., 1996). As an 
orthogonal method, TEM imaging confirmed the presence of 
approximately 30 nm sized nearly spherical particles. TEM image-based 
size measurements did not result in significant differences between the 
VLP sizes in samples of the different processes. Due to graphical sizing 
inaccuracies, TEM was unable to resolve different HBcAg species as 
observed with SEC. These three differently sized HBcAg species, of which 
the smallest corresponds to the typical size of an HBcAg VLP, were 
observed in all CFF processes and the Reference process. Interestingly, 
the VLP fraction of these three peaks was similar in all the CFF processes 
but higher than in the reference process. It would be interesting to 
analyze these species separately in the following process steps, such as 
disassembly, which is, however, out of the scope of this study. 

5.4.2 Precipitation of Chimeric HBcAg VLPs  

Precipitation of complex mixtures involves interactions that are only 
partly understood (Przybycien, 1998). This has also recently been 
pointed out in a study on PEG-induced precipitation of mAbs (Großhans, 
Suhm, & Hubbuch, 2019). Although differences were small in our study, 
variations of HBcAg concentrations were observed especially at 100 mM 
(NH4)2SO4, where supernatant concentrations after precipitation from 
untreated lysate were lowest. This is in accordance with previously 
reported results on mAb precipitation from complex mixtures in the 
study mentioned above, where precipitation from a complex mixture led 
to higher precipitation propensity of product molecules (Großhans et al., 
2019). This rapid decrease in HBcAg solubility at 100 mM concurs with 
the observed rapid turbidity increase at 100 mM (NH4)2SO4 at a larger 
scale during the CFF and centrifugation processes. Experiments on 
precipitation incubation time revealed that the investigated HBcAg 
VLPs precipitate almost immediately, which is fast compared to 
incubation times of 15 min – 4 h for different VLPs and precipitants 
stated in literature (Koho et al., 2012; Schagen et al., 2000; Tsoka et al., 
2000). 
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5.4.3 Product Loss in the Nuclease Process 

The Nuclease process showed significantly lower concentrations of 
recovered HBcAg, making it difficult to compare this process variant to 
the other processes. Due to its low relative productivity and comparably 
complicated process route, it is not competitive with the Reference 

process and the other CFF processes Basic and mmSEC. The low yield 
observed in this process is mainly due to incomplete re-dissolution, with 
22.4 mg of HBcAg in the final retentate. In order to reveal the effect of 
different solution conditions during the precipitation step, this was 
investigated in small-scale re-dissolution experiments. However, no 
significant differences could be identified when investigating the influence 
of NaCl, EDTA, MgCl2, and contaminants with regard to this problem. 
Further reasons could be the additional wash step by DF on a membrane 
of different material or overnight incubation at RT, resulting in 
irreversible precipitation. Apart from low yields, its low relative 
productivity derives from the 16 h Benzonase incubation, yet only 
increases to 42% if an incubation time of 1 h at optimized digestion 
conditions would be considered. From a scientific standpoint, it would be 
interesting to identify which factors contributed to the low re-dissolution 
yields, whereas from a technical standpoint this process route cannot be 
justified. 

5.4.4 Benefits of Process Transfer to a Cross-Flow Filtration Unit 

The main advantage in implementing CFF for precipitation/re-
dissolution lies in the combination of product recovery by membrane 
retention with the capability of exchanging the product-containing buffer 
in a single process step. During CFF wash steps, impurities smaller than 
0.2 µm are expected to be washed out with the permeate. Impurity 
depletion was observed in all processes indicated by the decrease of on-
line UV absorbance. HBcAg VLPs are expected to be retained by the 
membrane due to the size of their precipitate, as was seen for mAb 
precipitate in previous studies (Hammerschmidt et al., 2016; Kuczewski 
et al., 2011). Although HT-CGE results point at minor product loss 
during wash, it is important to note, that all proteins of 19.5-21.5 kDa 
were assigned to HBcAg in our analysis due to sizing inaccuracies. 
Therefore, product loss is expected to be lower than reported. The wash 
process step was comparable for processes Basic and mmSEC. Higher 
protein purities in the CFF processes are probably due to a more efficient 
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wash as compared to the centrifugation-based Reference process, 
whereby interstitial pellet liquid cannot be removed. However, in the 
Basic process, SEC purity was slightly lower and A260/A280 higher than 
in the Reference process. This indicates that the main impurity in the 
Basic process are nucleic acids. This is in accordance with previous 
unpublished results of CFF-based processes from our group. It may be 
suggested that DNA interacts with the VLPs in the kosmotropic 
environment during precipitation and wash which hampers its depletion 
during the wash step.  

As opposed to re-dissolution of the compact pellet in the Reference 

process, re-dissolution from a turbid solution in CFF-based processes was 
expected to improve process performance. This was for example observed 
by the increased yields of processes Basic and mmSEC compared to the 
Reference process. Product loss in the Reference process can be 
attributed to unrecoverable interstitial pellet liquid and high precipitate 
compaction (Hammerschmidt et al., 2016), which leads to slower and 
incomplete re-dissolution. This is in agreement with comparably slow re-
dissolution in the Reference process. As a result, CFF processes Basic 

and mmSEC showed strongly enhanced relative productivities. 
Additionally, CFF process durations are reduced by minimizing manual 
handling compared to the Reference process. The mmSEC process 
showed superior SEC purity compared to all other processes. As discussed 
above, the main contaminant in the Basic process are nucleic acids. 
These were efficiently depleted in the mmSEC process, leading to 
excellent purity, while maintaining the increased yield of the Basic 

compared to the Reference process, underpinning the usefulness of the 
mmSEC column in the permeate line (Figure 5.3).  

In summary, process transfer to the CFF set-up led to improved yields, 
accelerated re-dissolution kinetics, and process intensification by 
integrating multiple process steps into one unit operation. Compared to 
literature VLP processes showing a 31-76% recovery (Carvalho, Silva, 
Moleirinho, et al., 2019; D. Zhao et al., 2015), up to 95% protein purity 
(Wetzel et al., 2018), and a 78% nucleic acid reduction (Carvalho, Silva, 
Moleirinho, et al., 2019), the process data of the mmSEC process are 
comparable or superior while applying only a single unit operation after 
lysate clarification. The main drawback of the CFF-based processes were 
lower product concentrations as compared to the Reference process. The 
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exponential permeate concentration decrease observed for all re-
dissolution processes, as expected for non-retained species in DF (Kurnik 
et al., 1995), results in decreased concentrations when aiming for a 
maximized process step yield.  Although the re-dissolution concentration 
profile cannot be improved from a technical point of view, this effect can 
be ameliorated by strategic pooling. This was exemplified by creating 
1 g/L pools, which resulted in improved purity and 18-25% yield 
decrease. Alternatively, collection of all fractions followed by a 
concentration process via UF could maximize both yield and 
concentration. Another interesting option would be loading the permeate 
onto an anion exchange column or membrane as a polishing step to bind 
VLPs, deplete (NH4)2SO4, and achieve further purification from other 
contaminants while obtaining concentrated VLPs in the elution step. 
While it seems reasonable to dissolve the precipitated product by dilution 
to avoid DF-associated concentration decrease, DF shows several 
advantages. Considering 0% retention, 40% of (NH4)2SO4 is theoretically 
found in fractions 1-2, which could be discarded due to low VLP 
concentrations. On the contrary, all (NH4)2SO4 remains in the product 
solution for re-dissolution by dilution as used in several concepts for mAb 
capture processes (Hammerschmidt et al., 2016; Kuczewski et al., 2011; 
Z. Li, Gu, Coffman, Przybycien, & Zydney, 2019). This drawback may 
be circumvented by employing dead-end filtration to drain precipitate 
before re-dissolution (Chen et al., 2016; W. Liu et al., 2019; Lohmann & 
Strube, 2020). This approach was not considered in this study to avoid 
unknown effects of draining, precipitate compaction on the membrane, 
and uncontrolled concentration increase on product stability and yield. 
DF allows for highly efficient (NH4)2SO4 removal in the retentate 
enabling maximum re-dissolution and therefore yield. Conversely, 
comparable levels of (NH4)2SO4 can only be reached by dilution to very 
large volumes. Especially if a UF step is established after re-dissolution, 
a simple DF step after concentration can remove residual (NH4)2SO4 

efficiently. 

To the best of our knowledge, this is the first study to present a fully 
integrated CFF system-based precipitation, wash and re-dissolution set-
up for VLP capture and purification that includes DF-based re-
dissolution. The presented approach showed exceptionally good 
performance with regard to yield, purity, and productivity while being 
based on a simple lab-scale set-up with basic commercial devices. As a 
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filtration-based process, it exhibits good scalability and the possibility of 
disposable manufacturing (van Reis & Zydney, 2007). For vaccines, 
especially cancer vaccines, which are envisaged to be produced as 
personalized medicine (Buonaguro, Aurisicchio, Buonaguro, & Ciliberto, 
2013; Castiblanco & Anaya, 2015; Rammensee & Singh-Jasuja, 2013), 
this highly efficient, easy-to-control, and scalable process could enable 
distributed manufacturing of personalized protein nanoparticle-based 

therapeutics. 

5.4.5 Considerations for Method Transfer 

From a technical point of view, CFF process control of the presented 
method can be achieved by maintaining a constant transmembrane 
pressure (TMP) or permeate flow rate. In case of TMP-based control, 
low TMP values are required to obtain the target permeate flow rate due 
to the large membrane pore size of 0.2 µm. During wash and re-
dissolution in processes Basic and mmSEC, the TMP was in the range of 
0.01 bar to 0.02 bar. Therefore, a careful adjustment of the TMP is 
recommended to avoid exceeding the maximum flow rate of the mmSEC 
column. Nevertheless, a constant flow rate is advantageous for 
fractionation and mmSEC separation. 

The prerequisites for the successful application of this process to the 
purification of other VLPs are the ability I) to precipitate the target 
product, II) to retain the majority of impurities in solution, III) to re-
dissolve the product, and IV) to avoid electrostatic or hydrophobic 
interaction between product and impurities or matrices, such as the 
membrane material. These prerequisites are probably fulfilled – to 
varying degrees – for most non-enveloped VLPs.   

Precipitation of the target product might require adaption of the 
precipitant concentration or agent for different VLPs. From unpublished 
results of our group, we learned that the precipitation of other chimeric 
HBcAg VLPs required ammonium sulfate concentrations of 0.1 M to 1 
M. Their large size compared to the typical contaminants facilitates the 
precipitation of VLPs while retaining most impurities in solution. The 
application of this process to smaller product molecules (such as 
capsomers) could also be feasible, if a suitable precipitation method is 
developed, which retains impurities in solution. Product re-dissolution 
and hydrophobic or electrostatic interactions are influenced by the 
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solution conditions, which might need to be optimized, presumably with 
a focus on the optimum solution pH. 

Compared to the here investigated non-enveloped VLPs, enveloped VLPs 
might pose a challenge due to their lower stability (Dai et al., 2018). 
VLPs derived from other hosts such as yeast or plants require changes 
in the lysis procedure and bring along a different impurity profile than 
E. coli. This said, the separation in the presented process is largely based 
on the size difference between product and impurities, which should be 
comparable for other hosts. Extracellularly produced VLPs could benefit 
from the higher purity of the starting material and therefore potentially 
result in yet higher purities using this process. Conclusively, the transfer 
of this method to the purification of other VLPs probably requires few 
adaptations, mainly regarding the development of optimal solution 
conditions for VLP precipitation and re-dissolution in small scale. 

5.5 Conclusion and Outlook 

In this study, we have developed a set-up for integrated capture and 
purification of VLPs within a CFF unit. Clarified lysate was precipitated, 
washed, and re-dissolved. Three CFF process variants were investigated 
and characterized for yield, purity, and relative productivity and were 
compared to a centrifugation-based Reference process. Process transfer 
of the Reference process to the CFF unit led to increased purities, 
probably attributed to a more efficient wash step. The mmSEC process, 
integrating an additional purification step by an mmSEC column in the 
permeate line, was superior to all tested variants and the Reference 

process resulting in the highest purity and productivity. As one single 
unit operation, it compares favorably to entire DSP processes found in 
the literature and shows great potential for disposable and scalable 
manufacturing. Another key advantage of CFF processes is the 
possibility to fractionate the VLP-containing permeate, allowing for 
efficient pooling with regard to the desired target process data and 
product analytical profile. In the future, this mainly size-based DSP step 
could be applied to other VLPs or similarly sized therapeutics with only 
minor adaptations, laying the foundation for a platform process for 
protein nanoparticles. 



5.5 Conclusion and Outlook 

132 
 

Acknowledgements 

The authors would like to thank Matthias Rüdt and Thorsten Klamp for 
proofreading as well as Steffen Großhans and Sebastian Andris for 
inspiring discussions. The authors express their gratitude to Reinhard 
Schneider for technical and scientific support in performing TEM 
imaging. The authors would also like to thank BioNTech Protein 
Therapeutics, especially Thorsten Klamp and Anja Wilming, for the 
provision with VLP sequence data and production plasmids, without 

which this work would not have been possible.  

Appendix C: Supplementary Material 

The Supplementary Material associated with this article contains the 
following information: 

 S5.1: Chimeric HBcAg Expression and Cell Lysis 
 S5.2: CFF Set-up and Temporal Alignment 
 S5:3: SEC Analysis 
 S5.4: CFF Wash and Re-dissolution Process Data 
 S5.5: Analytical Considerations 

 

 



 

133 
 

 

 

 

 

6 Ensembles of Hydrophobicity Scales as 

Potent Classifiers for Chimeric Virus-Like 

Particle Solubility – an Amino Acid 

Sequence-based Machine Learning 

Approach 

Philipp Vormittaga, Thorsten Klampb, Jürgen Hubbucha * 

a Institute of Process Engineering in Life Sciences, Section IV: 
Biomolecular Separation Engineering, Karlsruhe Institute of Technology, 
Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany 

b BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany 

* Corresponding author 

 

Abstract 

Virus-like particles (VLPs) are protein-based nanoscale structures that 
show high potential as immunotherapeutics or cargo delivery vehicles. 
Chimeric VLPs are decorated with foreign peptides resulting in structures 
that confer immune responses against the displayed epitope. However, 
insertion of foreign sequences often results in insoluble proteins, calling 
for methods capable of assessing a VLP candidate’s solubility in silico.  

6 
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The prediction of VLP solubility requires a model that can identify 
critical hydrophobicity-related parameters, distinguishing between VLP-
forming aggregation and aggregation leading to insoluble virus protein 
clusters. Therefore, we developed and implemented a soft ensemble vote 
classifier (sEVC) framework based on chimeric hepatitis B core antigen 
(HBcAg) amino acid sequences and 91 publicly available hydrophobicity 
scales. Based on each hydrophobicity scale, an individual decision tree 
was induced as classifier in the sEVC. An embedded feature selection 
algorithm and stratified sampling proved beneficial for model 
construction. With a learning experiment, model performance in the 
space of model training set size and number of included classifiers in the 
sEVC was explored. Additionally, seven models were created from 
training data of 24-384 chimeric HBcAg constructs, which were validated 
by 100-fold Monte Carlo cross-validation. The models predicted external 
test sets of 184-544 chimeric HBcAg constructs. Best models showed a 
Matthew’s correlation coefficient of >0.6 on the validation and the 
external test set. 

Feature selection was evaluated for classifiers with best and worst 
performance in the chimeric HBcAg VLP solubility scenario. Analysis of 
the associated hydrophobicity scales allowed for retrieval of biological 
information related to the mechanistic backgrounds of VLP solubility, 
suggesting a special role of arginine for VLP assembly and solubility. In 
the future, the developed sEVC could further be applied to 
hydrophobicity-related problems in other domains, such as monoclonal 
antibodies.
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6.1 Introduction 

New formats of targeted therapies are emerging, such as virus-like 
particles (VLPs) (Ong et al., 2017). VLPs are highly immunogenic 
macromolecular assemblages based on viral proteins, resembling the 
structure of the virus they were derived from (Kushnir et al., 2012). Since 
they lack viral nucleic acids, the particles are non-infectious (Chackerian, 
2007; Kushnir et al., 2012). VLPs are on the market as vaccines against 
the virus they were derived from, e.g. human papillomavirus-VLPs 
against human papillomavirus infection to prevent cervical cancer, or 
hepatitis B surface antigen-VLPs against hepatitis B virus infection 
(Bryan et al., 2016; McAleer et al., 1984). An approach increasingly 
investigated is the display of foreign epitopes on a VLP scaffold resulting 
in chimeric VLPs (cVLPs) (Ong et al., 2017). They benefit from the 
inherent immunogenicity of a viral structure coupled with the structure 
of a foreign target antigenic epitope (Pumpens & Grens, 1999). Hepatitis 
B core antigen (HBcAg) has been widely applied as a VLP platform for 
chimeric antigen display due to its excellent stability, successful 
production in a high diversity of expression systems, and induction of 
strong B- and T-cell responses (Jegerlehner et al., 2002; Klamp et al., 
2011; Pumpens & Grens, 1999). The foreign peptide is typically 
introduced genetically into the VLP at the N-terminus, C-terminus, or 
preferably in the major immunodominant region (MIR) (Karpenko et al., 
2000; Pumpens & Grens, 2001). However, insertion of a foreign epitope 
often results in insoluble, misassembled or aggregated capsids, lacking 
the desired immunogenicity (Billaud et al., 2005; Gillam & Zhang, 2018; 
Karpenko et al., 2000). The process of identifying soluble cVLP 
constructs is highly empirical and time-consuming (Chackerian, 2007). 
While few reports studied cVLP solubility based on sequence data, the 
number of observations included in these studies is limited (Billaud et 
al., 2005; Janssens et al., 2010; Karpenko et al., 2000). Early development 
of cVLPs would therefore greatly benefit from a model to predict 
solubility which is probed using a large data set.  

A variety of general approaches to predict protein solubility exists that 
are based on information from three-dimensional (3-D) structures and 
simulations and/or amino acid sequence information. For a detailed 
overview of aggregation and solubility prediction tools, we refer to a 
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recent review (Trainor, Broom, & Meiering, 2017). 3-D structure-based 
methods include the prediction of soluble expression by molecular 
dynamics (MD)-simulated unfolding combined with a support vector 
machine (SVM) architecture (Schaller, Connors, Oelmeier, Hubbuch, & 
Middelberg, 2015), dynamic exposure of hydrophobic patches in MD 
simulations (Chennamsetty, Voynov, Kayser, Helk, & Trout, 2009; 
Jamroz, Kolinski, & Kmiecik, 2014), and projection of sequence-based 
methods onto 3-D structures (Sormanni, Aprile, & Vendruscolo, 2015; 
Zambrano et al., 2015). Although high-throughput 3-D structure 
generation of VLP building blocks has been described previously (Klijn, 
Vormittag, Bluthardt, & Hubbuch, 2019), the computational cost of 
creating 3-D structures is still high, limiting the applicability of this 
approach in candidate selection for several hundred molecules. Amino 
acid sequence-based methods can be distinguished into amino acid 
composition-based algorithms such as machine learning approaches using 
SVM or random forest classifiers (Agostini et al., 2012; Magnan et al., 
2009; Samak et al., 2012; Xiaohui, Feng, Xuehai, Jingbo, & Nana, 2014; 
Yang Yang, Niroula, Shen, & Vihinen, 2016) and sliding-window-based 
algorithms, such as AGGRESCAN, Zyggregator, and CamSol (Conchillo-
Sole et al., 2007; Sormanni et al., 2015; Tartaglia et al., 2008). 
Interestingly, sequence-based methods have been reported to be superior 
to solvent-accessible surface-based methods in the prediction of 
monoclonal antibody aggregation (Hebditch, Roche, Curtis, & 

Warwicker, 2019). 

The above-mentioned methods have in common that their goal is to 
identify proteins or patterns in proteins that are prone to aggregation 
and therefore have a higher chance to be insoluble upon expression. In 
the following section, we will discuss why hydrophobic interactions play 
a special role for VLP solubility and why the application of current 
models is difficult for the cVLP solubility problem. 

HBcAg has been extensively studied in a C-terminally truncated form 
with amino acids 150-183 removed, termed Cp1-149. It assembles to VLPs 
while being easier to handle in experiments and processes than the full-
length HBcAg. This is attributed to the removal of the strongly positively 
charged C-terminal amino acids that bind nucleic acids (Alexander et al., 
2013; Gallina et al., 1989; Wizemann & von Brunn, 1999; A Zlotnick et 
al., 1996). The smallest HBcAg species observed in physiological solutions 
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are dimers, stabilized by an intermonomer disulfide bridge and a 
hydrophobic core (Wynne et al., 1999). The dimeric Cp1-149 aggregates 
aggressively and readily forms capsids at low concentrations, neutral pH, 
and low salt (Ceres & Zlotnick, 2002). Capsid formation is an entropy-
driven process relying on hydrophobic interaction and is therefore similar 
to protein aggregation (Ceres & Zlotnick, 2002; Gorbenko & Trusova, 
2011). Since capsids can exist in much higher concentrations in 
physiological buffers than dimers, the solubility limitation introduced by 
insertion of a foreign epitope is most probably related to an interference 
with the assembly reaction (Billaud et al., 2005; Chackerian, 2007). 
Investigation of chimeric HBcAg VLP assembly by diafiltration showed 
a dependence of the assembly reaction on the inserted epitope sequence 
(Rüdt et al., 2019). When the assembly reaction is hampered by the 
insertion of a foreign epitope, the strong entropic drive for protein-protein 
interaction probably leads to insoluble aggregates as opposed to soluble 
capsids. Ordered aggregation of dimers to capsids can therefore be 
assumed as a prerequisite for high-level soluble expression, whereby 
hydrophobicity plays a major role. Therefore, an appropriate measure of 

hydrophobicity is paramount to describing the cVLP solubility problem. 

The hydrophobic effect is described by the free energy change of water 
surrounding a solute. For amino acids in specific, it has been investigated 
based on organic solvent-water partition coefficients, for example (Nozaki 
& Tanford, 1971). This partition coefficient might be suitable for the 
description of solute distribution in such systems. Protein folding, 
however, is a much more complicated matter influenced by more and 
different properties of the amino acids than their tendency to accumulate 
in a certain phase and is still not fully understood (Garde & Patel, 2011; 
Harris & Pettitt, 2016). To overcome the limitation of this definition of 
hydrophobicity for biological systems, so-called hydrophobicity scales 
have been developed. These are, for example, based on the analysis of 
the distribution of amino acids in the core or surface of the protein 
(Naderi-Manesh, Sadeghi, Arab, & Moosavi Movahedi, 2001), 
thermodynamic calculations elevating different aspects of solvation 
(Chothia, 1976; von Heijne & Blomberg, 1979), or peptide retention times 
in reversed-phase chromatography (Wilce, Aguilar, & Hearn, 1995). 
These scales have in common that they try to describe the hydrophobic 
effect in the interplay with other factors related to geometries and 
electrostatic contributions. It is therefore important to note that 
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throughout this manuscript, hydrophobicity is referred to as a value 
describing the tendency of proteins, amino acids, or functional groups to 
influence a biological process towards an outcome that is thought to be 
connected with hydrophobicity, such as aggregation, rather than its strict 
thermodynamic definition for smaller solutes (Harris & Pettitt, 2016). 
Hydrophobicity scales assign each proteinogenic amino acid a particular 
hydrophobicity value. These hydrophobicity values can be used to 
calculate overall protein hydrophobicity or regions within the molecule. 
Simm and colleagues (Simm et al., 2016) identified 98 protein 
hydrophobicity scales in the literature. These scales have been derived 
using experimental and theoretical techniques based on a great variety 
of training data, ranging from small to large sets of proteins, peptides, 
single amino acids, or 3-D structures. Application of a hydrophobicity 
scale to a new problem requires that an appropriate scale is chosen. This 
can be based on comparison of the investigated experimental conditions 
to the framework in which the hydrophobicity scales were derived or the 
choice of frequently applied hydrophobicity scales. None of these two 
approaches is recommended as they both introduce bias into the model. 
Feature selection algorithms can help overcoming this bias and selecting 
the appropriate scales using a set of training data. In a study on 
aggregation-prone regions of 354 peptides, feature selection has been 
successfully employed to derive critical features for peptide or protein 
aggregation (Y. Fang et al., 2013). The most important 16 critical 
features were incorporated in SVM and random forest architectures. In 
another study, an SVM architecture using 40 features was applied (Tian, 
Wu, Guo, & Fan, 2009). These methods project the problem onto a space 
of a dimension of the number of feature variables. This could also be 
applied to hydrophobicity values calculated by several hydrophobicity 
scales. Another approach is to regard each hydrophobicity scale 
individually to be included in a classifier in a one-dimensional input data 
space. Reflecting upon hydrophobicity scales, this is reasonable since each 
of the scales were derived to be individual measures of hydrophobicity. 
Considering them individually, the physicochemical meaning behind the 
scales remains largely unchanged. The strength of this method comes 
with the combination of several classifiers. This results in potent 
ensembles that incorporate the classifiers’ strengths, while ideally 
overshadowing their weaknesses in classification (Re & Valentini, 2012). 
In an article on hydrophobicity scale optimization by a genetic algorithm, 
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the authors pointed out, that statistical methods may have strong 
prediction performance, but may not be applicable to new or even to 
similar problems and small data sets (Zviling, Leonov, & Arkin, 2005). 
Therefore, preserving physicochemical information in hydrophobicity 

scales was one important goal in this research. 

In summary, ensemble methods based on hydrophobicity scales promise 
to be a potent tool to describe classification or regression problems 
related to hydrophobicity. The cVLP solubility problem calls for a 
method that ascertains critical features of the molecules in an aggregating 
environment, capable of distinguishing between structures that probably 
aggregate to soluble VLPs and those that aggregate to insoluble 
structures. The objective of this study was to create an interpretable 
protein solubility model framework and to uncover information about the 
VLP solubility problem that will aid in engineering soluble cVLP 
candidates. Therefore, a soft ensemble vote classifier (sEVC) was 
developed and implemented, which consists of individual decision trees, 
each based on a hydrophobicity scale including an embedded feature 
selection algorithm. Physicochemical information contained in the 
hydrophobicity scales was largely conserved by I) using each scale as an 
individual classifier within an ensemble and II) by implementing a simple 
one-level decision tree as classifier. Feature selection was implemented to 
boost model performance and identify the most relevant hydrophobicity 
scales for chimeric HBcAg VLP solubility. The applicability of the model 
was evaluated with 568 chimeric C-terminally truncated HBcAg VLP 
constructs using 91 hydrophobicity scales. 

6.2 Materials and Methods 

6.2.1 VLP Solubility Data 

Chimeric HBcAg VLP constructs were based on His-tagged C-terminally 
truncated HBcAg (Schumacher et al., 2018). The molecules were created 
using 82 different peptide inserts and eight different insertion strategies, 
a total of 691 chimeric VLP constructs, which were experimentally tested 
for solubility. The peptides are inserted into the HBcAg molecule in the 
MIR. An insertion strategy defines where exactly in the MIR the peptide 
is inserted and which amino acids are deleted. Inserts that have not been 
tested with all eight insertion/deletion strategies were excluded from this 
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study. The final data set comprised 568 chimeric HBcAg VLPs with all 
possible combinations of strategies A-H and inserts 1-71. Solubility was 
evaluated by SDS-PAGE after lysis of the expression host Escherichia 

coli (E. coli). Solubility was treated as a binary class system with class 
labels ‘soluble’ or ‘positive’ or ’1’ and ‘insoluble’ or ‘negative’ or ‘0’. 
Throughout this paper, an ‘observation’ is referred to one of the 568 
chimeric HBcAg VLP constructs. Class ‘soluble’ was attributed to 283 
of 568 observations, while 285 of 568 were class ‘insoluble’. With 
49.8%/50.2% class division, the data set can be considered as a balanced 

classification problem. 

6.2.2 Data Set Division 

Model training, model evaluation, and data processing were performed 
with MATLAB R2018a (The Mathworks, Natick, US-MA). Models were 
always generated by and calculated on randomly selected validation 
subsets (or with stratified random sampling). In this article, 
randomization is achieved by using the randn command of MATLAB, 
which generates pseudorandom values. Seven data subsets containing 

6]_^[Y observations were created prior to model construction, where 

6]_^[Y = k24, 24 ,24, 48, 96, 192, 384m. These data sets were constructed 

once and the remainder of available data 6]X\] was used as an external 
test set. Observations were drawn from the data set by stratified 
sampling aiming at a balanced representation of strategies and inserts, 
i.e. the respective strata. Stratified sampling was achieved by limiting 
the occurrence of strategies and inserts in the data set. The maximum 

allowed number of inserts in the sampled data set was 6[Y\X_],n^o =
+5*6�*p q ErstWu

EWuvwsrv
x, where 6[Y\X_]\ = 71. The maximum allowed number of 

strategies was accordingly ErstWu
EvrstrwyWwv

, where 6\]_^]Xf[X\ = 8. When the 

maximum number of a certain insert or strategy in the training set was 
reached, all identical inserts or strategies, respectively, were made 
unavailable to random selection in order to sample the strata evenly.  

6.2.3 Hydrophobicity Scales 

98 hydrophobicity scales were retrieved from a recent article on peptide 
classification (Simm et al., 2016), originally derived from AAindex 
(Kawashima et al., 2007), the SPLIT 4.0 server (Juretić, Trinajstic, & 
Lucić, 1993), and ProtScale (Gasteiger et al., 2005). Each scale was 
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centered and scaled to unit variance. Reversed scales were excluded if 
there was a complementary, non-reversed scale available, resulting in 91 

scales (see Appendix D, Supplementary Material Table S6.1).  

6.2.4 Hydrophobicity Scale-Based Soft Decision Tree Ensemble 

Vote Classifier 

The model generation comprised a feature selection, an sEVC informed 
by classifiers based on hydrophobicity scales, and a Monte Carlo cross-
validation (MC-CV) procedure. Figure 6.1 illustrates the construction of 
the sEVC. Feature values were computed from amino acid sequences and 

hydrophobicity scales. A hydrophobicity scale assigns each amino acid a 
hydrophobicity value. The sum over the amino acids results in the feature 
value. 73 amino acids in N- and 71 amino acids in C-terminal direction 
were omitted in the calculation, as they were identical for all constructs. 
Each classifier in the sEVC was constructed from feature values 
calculated for each observation in the training set using one 
hydrophobicity scale. The individual classifiers based on this feature 
value were decision trees with one split (also called decision stumps) 
which were trained based on Gini’s diversity index (Gini, 1912; Windeatt 
& Ardeshir, 2004). This one-level tree design ensures that a simple 
hydrophobicity threshold decides about the predicted class. Decision 
trees were constructed using the fitctree function of MATLAB’s statistics 

and machine learning toolbox. The resulting 6]_XX\ decision trees assigned 
each observation a class decision and a class probability. For a hard 
ensemble vote classifier, the probabilities are equal to 1. In the here 
applied sEVC, the class probability is the probability estimate derived 
from the associated child node in the decision tree. The class decision 
and the associated class probability becomes the decision tree’s vote. The 
votes of all decision trees for a particular observation are summed up in 
the sEVC. The class that has a higher sum of probability values is the 

elected class.  
Figure 6.2 shows the procedure for model construction from stratified 
training set selection, over model selection by MC-CV through to model 
construction and prediction. Model performance was evaluated by 100-
fold MC-CV. During validation, 50% of the data was used for training 

and the remaining data was predicted. MC-CV samples 6h^`[,]_^[Y 
randomly without replacement. Compared to k-fold cross-validation, the 
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number of cross-validation groups in MC-CV is not governed by the 
choice of their sizes, and observations can be sampled in different cross-
validation sets. The information on the model performance can then be 
used to inform about optimal classifier numbers for construction of the 
model. For the final model, the entire training data set is used for model 
training and feature selection. The embedded feature selection sorts the 
features with decreasing feature importance. In 91 models, the best 1-
91 classifiers are included. The resulting classifiers are used to predict the 
external test set.  

 

Figure 6.1 :  Workflow of the ensemble vote c lassi f ier. The ensemble 
vote c lass i f ier is constructed by computation of feature values from 
virus- l ike partic le sequence data and 91 hydrophobic ity scales. With 
the training set features, one- level dec is ion trees are induced. The 
individual decis ion trees’  accuracy in predicting the training set i s 
defined as the feature importance. In the ensemble model,  each 
decis ion tree contributes a so lubil ity decis ion with assoc iated 
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probabi l i ty. The results are aggregated and the most probable class  
is chosen by the ensemble .  

 

Figure 6.2 :  Modeling workf low compris ing strati f ied sampl ing, a 
learning experiment,  model selection, and construction.  Strati f ied 
sampl ing results in training sets o f 6]_^[Y = k24, 48, 96, 192, 384m data 
points . These training sets are spli t in 100- fold Monte Carlo cross -
validation to inform about the optimal number o f classi f iers . The 
training set is then used to construct a model with preceding feature 
selection to predict the external  test set.  The largest training set i s 
addit ional ly uti l ized for a learning experiment exploring the 
performance of the model in the space of training set s ize and number 
of included dec is ion trees.  

6.2.5 Model Performance Evaluation 

The performance of the sEVC was evaluated based on Matthew’s 
correlation coefficient  

788 = �. × �/ − 0. × 0/
;��. + 0.���. + 0/���/ + 0.���/ + 0/� , �6.1�  

where �., �/, 0., and 0/ stand for true positive, true negative, false 
positive, and false negative classification of the model subsets, 
respectively (train, validation, and test contingency matrix). The MCC 
is considered to be the least biased singular metric to describe the 
performance of binary classifiers, especially for cases of class imbalance 
(Chicco & Jurman, 2020; Powers, 2011). Another metric that was used 

is the accuracy ) as defined in Equation (6.2). 
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) = �. + �/
�. + �/ + 0. + 0/ �6.2� 

6.2.6 Feature Selection 

The model generation was preceded by an embedded feature selection. 
The decision trees were evaluated individually to assess feature 
importance (Figure 6.1). The feature importance was defined as the 
accuracy of the individual decision trees for the prediction of the training 
set. While the MCC is a less biased metric (Powers, 2011), it is not 
defined for cases where terms in the denominator are zero, which was the 
case for the smallest training sets. For comparability, accuracy was 
subsequently used as the feature importance metric throughout this 
study. Feature importance was computed for every model and for each 
validation run. The features (and thus the respective decision trees) were 
then sorted in descending order according to their importance, so that 
most important features were chosen first during model generation.  

6.2.7 Learning Experiment 

To explore the model design space with further scrutiny, the model’s 
performance was characterized in a learning experiment. To investigate 
the effect of training set size, the number of training observations was 

varied in steps of 5% of the 6]_^[Y = 384 data set from 5% to 95%, 
resulting in 19 different training set sizes (see also Figure 6.2). The 
external test set was composed of the remaining 184 observations. The 
training sets were drawn randomly without stratified sampling from the 

stratified 6]_^[Y = 384 data set. The remainder of the 384 observations 
was not used or evaluated. The number of included decision trees (1-91) 
was screened in addition to the training set size. Thus, a matrix of 

19×91 individual model settings was created. Each model setting was 

repeated ten times resulting in 19×10×91 models. Each training set was 

sampled individually for all 19×10×91  models, resulting in 17290 
training sets. Feature selection was performed 17290 times, i.e. 
individually for each of the models. Model performance was evaluated 
based on the external test set and the training set. The median and 
median absolute deviation (MAD) of the ten model repetitions were 
computed. They were the basis for the discussion of model performance 
at respective training set sizes and included number of decision trees.  
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6.2.8 Systematic Misclassification 

To evaluate systematic misclassification, the frequency of true and false 
predictions were evaluated for each insertion strategy. The relative 

frequency of strategies found within the classification groups �., �/, 0., 

and 0/ was calculated by summing up their occurrence in the respective 
groups in the 17290 models of the learning experiment and normalizing 
it by the overall occurrence of the strategies in all classification groups 
and all models.  

6.2.9 Model Generation 

The sEVC workflow comprises stratified training set selection, model 
validation by MC-CV and prediction of an external test set (Figure 6.2). 
The number of included decision trees was a hyperparameter that was 

screened for the model generation on the 6]_^[Y =
k24, 24, 24, 48, 96, 192, 384m data sets. The optimal number of included 
decision trees in the MC-CV validation procedure should inform about 
the best model for the prediction of the external test set. This relationship 
was investigated for all seven training sets.  

6.3 Results and Discussion 

6.3.1 Data Set Construction 

The data set consists of observations that can be assigned to 71 unique 
peptide inserts and 8 unique insertion strategies. Stratified sampling was 
used to build a representative training set from the full data set. 

Figure 6.3 shows seven training sets comprising 6]_^[Y =
k24, 24, 24, 48, 96, 192, 384m observations sampled by 2-D stratified 
sampling in a grid of inserts over insertion strategies. Soluble constructs 
are marked in blue and insoluble constructs are marked in red. The 

fraction of soluble constructs in the training set �\g` is between .46 and 
.54, resulting in a maximum deviation of .04 from the expected value 

�\g`,]g]^` = .498. In the seven models, deviation of �\g` from the 
theoretically expected value of �\g`,]g]^` = .498 derives from random 
sampling but is limited due to stratified sampling. From Figure 6.3G, it 
can be seen that the choice of the insert is strongly influencing solubility, 
while the insertion strategy only has an effect on solubility for a small 
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number of constructs. This pattern is confirmed when considering the 
entire solubility matrix (Solubility Data Table in the Appendix D, 
Supplementary Material S6.6), underpinning the usefulness of stratified 
sampling especially for smaller data sets. With 24 training examples, only 
a third of the 71 inserts are represented by the training set. To investigate 
the influence of this potential lack of information during model training, 
three different training sets with 24 samples have been created. 

 

Figure 6.3 :  Model training sets  1-7 ((A)-(G)) created by strati f ied 
sampl ing of 6]_^[Y = k24, 24, 24, 48, 96, 192, 384m data points. Strat if ied 
sampl ing was informed by the construction of the entire data set ,  
where eight insertion strategies were used for 71 dif ferent inserts , 
amounting to a total of 568 observations . While for the sampl ing 
procedure the so lubil i ty data o f the observations were unknown, 
their so lubil ity c lass  is  i l lustrated for interpretation purposes . Blue 
represents soluble and red represents insoluble observations . The 
fraction of soluble observations is indicated above the plots by �\g`.  
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6.3.2 Influence of Training Set Size and Number of Decision Trees 

in the Ensemble Vote Classifier 

The sEVC’s performance characteristics were evaluated in a learning 
experiment exploring the space of training set size and number of 

included classifiers, i.e. decision trees. In this experiment, 190×91 models 
were created using the best 1 - 91 decision trees as determined 
individually for each model by the feature selection algorithm. The 
highest median training MCC can be observed at low training set sizes 

of ≤ 57 (Figure 6.4A). Note that a brighter color corresponds to better 
model performance (higher MCC) and lower model variability (lower 
MAD of MCC). Most models with an MCC > .80 are found at the 
smallest training set size of 19. This concurs with the area where the 

MAD is greatest with ≥ .06 (Figure 6.4B). Larger MAD values indicate 
greater variation between the model repetitions. This suggests a high 
dependency of model performance on the individual random sampling of 
the training set. Increasing training set size results in lower training MCC 
and MAD of MCC. MAD is smaller since more information is available 
during model training. Additionally, large training sets have a higher 
probability to contain a significant fraction of identical training 

observations in the ten different random samplings.  

Decision trees with lowest feature importance are included in the models 
with the largest number of included decision trees due to feature 
selection. Model performance aggravation due to inclusion of these 
decision trees was the case for larger training sets, where median training 
MCC decreases with the number of included decision trees.  

The external test set observations are identical for all models, while the 
training set and therefore the resulting model is individually different. 

Median test set MCC is < .48 for low training set sizes ntrain ≤ 38 
(Figure 6.4C). Most models of this size produce a test set median MCC 

of ≤ .54, compared to training MCC of ≥ .8 for most models, suggesting 
an overfitted model for small training data sets. The largest MCC of the 

external test set predictions are found at training set sizes ≥ 249 and at 
> 23 and < 65 number of included decision trees, which is also 
overlapping largely with the region of lowest MCC MAD with many 

models showing a test set MAD ≤ .01 (Figure 6.4D). Therefore, in this 

area, the best models are found having high MCC (most ≥ .6) on the 
test set and low MAD of MCC. The difference between training and 
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external test set MCC in this area is ≤.1. Thus, the training set is a good 
indicator of model performance in said area.  

 

Figure 6.4 :  Model performance based on training and external test 
data described by (A)  the median Matthew’ s correlation coef fic ient 
(MCC) and (B) the median absolute deviat ion (MAD) of the MCC 
for training data and (C) median MCC and (D)  MAD of MCC for 
external test data. Each rectangle represents a decaplicate o f a 
model with the number of training examples shown on the y-axis and 
the number o f included dec is ion trees  in the ensemble classi f ier on 
the x-axis . The training observations were randomly sampled from 
the strat if ied dataset with 6]_^[Y = 384.  The dec is ion trees are sorted 
in descending order by feature importance. This means , that at po int 
6 on the x-axis , the results o f the models including the 6 best 
decis ion trees are shown. White/bright color denotes high median 
MCC values and low MAD of the MCC, dark (vio let or blue) color 
denotes low median MCC values and high MAD of the MCC, relat ive 
to al l MCC data in the learning experiment.  A well-predicting and 
reproducible model has high MCC and low MAD, respect ive ly (both 
bright).  
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It has to be noted that the model performance was evaluated on 

randomly chosen subsets of the stratified 6]_^[Y = 384 data set, 
constraining the benefits from stratified sampling. Stratified sampling can 
be expected to decrease overfitting and variation seen for low training 
set sizes, as the probability of drawing a non-representative sample set is 
drastically reduced, as discussed both above and below.  

6.3.3 Selection of Models Based on Stratified Training Sets 

In the seven models created by stratified samplings, the shaded area, 
representing the model’s MAD of validation MCC, is decreasing with 
increasing training set size (Figure 6.5). This was expected due to the 
increasing amount of information available during model training. The 

sets with 6]_^[Y = 24 were constructed three times to investigate the 
robustness of small training set sizes. Of these, the first has a smaller 
MAD area than the other two, which can possibly be attributed to a 
‘lucky’ stratified sampling. With only 24 samples, the MC-CV comprises 
12 validation training and 12 validation test observations, resulting in 
potentially larger artifacts of random selection. Also, stratified sampling 
based on the insert does not have a strong effect, since only a maximum 
of 24 different inserts of the total 71 inserts are chosen, leaving 47 inserts 
unrepresented. Validation MCCs are comparably stable over the number 
of included decision trees. Some of the models show a slight MCC increase 
over the first number of included decision trees (models 1-3 and 5) and 
some show a gradual but shallow decline at larger numbers of included 
decision trees (> 50; models 4, 6, and 7). This underlines the effect seen 
in the learning graph while being less pronounced, which probably can 
be attributed to the more balanced training data set. Most of the models 
result in validation MCCs of around .6, whereas model 3 of training set 

size 6]_^[Y = 24 has a significantly lower validation MCC of around .2. 
When considering the MCC of the external test sets, each of the models 
shows adequate performance when a minimum number of decision trees 
was included. At around 30 decision trees, the models have an external 
test set MCC that is either above or close to their overall median MCC. 
The test set MCCs at 30 decision trees are > .6 for all models, except 
model 2 with an MCC of .56. The mean MCC of all seven models’ 
external test data over decision tree numbers was computed to inform 
about the average model performance dependent on the number of 
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included decision trees (data not shown). It was optimal at 29 and 30 
decision trees, both with a mean MCC of .61.  

 

Figure 6.5 :  Val idat ion and external test set Matthew’ s correlat ion 
coef fic ient (MCC) on strati f ied training data with training set s ize 
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of (A) 24, (B) 48 and 96, and (C) 192 and 384 observations,  
depending on the number of inc luded dec is ion trees. Validation 
median and median absolute deviat ion (MAD) are calculated from 
100-fo ld Monte Carlo cross-val idat ion. The median is shown as red 
dots connected by a l ine to guide the eye . The shaded area represents  
the MAD around the median and are colored from yellow over orange 
to pink with increasing training set s ize.  The black l ine represents 
the performance of the model on the external  test set of s ize 6]X\] =
568 − 6]_^[Y.  

At larger training set sizes, the trend in validation data is more 
translatable to the trend in external test data, while at low training set 
sizes of 24 observations, the model should only partially rely on validation 
data and may include a minimum number of decision trees to avoid 
overfitting. Another reason for this is feature selection, which is 
performed on a potentially unrepresentative data set. It can therefore 
result in prioritizing decision trees that fit unrepresentative data but not 
the entire data set well. Comparison of the model’s performance to other 
published models can be difficult since many report their results as 
accuracies - typically in the range of .62 - .83 (Hebditch, Carballo-
Amador, Charonis, Curtis, & Warwicker, 2017; Idicula-Thomas, 
Kulkarni, Kulkarni, Jayaraman, & Balaji, 2006; Magnan et al., 2009; 
Smialowski et al., 2006). In the ideal balanced case, the MCC of these 
models would be .24 - .66 (for the explanation on the relation of MCC 
and accuracy see Appendix D, Supplementary Material S.6.2). However, 
many of those models are not based on a balanced data set, which would 
then lead to a lower MCC. The model presented in this paper shows 
MCC values close to the best MCC estimates of previously published 
models. In a review on HBcAg cVLPs, insert charge was described to be 
the most important parameter for solubility of cVLP candidates 
(Whitacre et al., 2009). Construction of a decision tree on a scale that 
rates aspartic acid and glutamic acid with -1, arginine and lysine with 
+1, and all other amino acids with 0, resulted in an MCC of 0.38 on the 

external test set using the 6]_^[Y = 384 training and corresponding test 
set (data not shown). The correlation of insert charge to cVLP solubility, 
as described in the above-mentioned review, was therefore observed with 
the data set investigated in this article. It was not as strong as the 

predictions of the sEVC based on hydrophobicity scales. 

Some trends with regard to the number of included decision trees have 
been uncovered and discussed. However, it has to be noted that the 
effects are quite small over a wide range of included decision trees, 
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especially with stratified training sets. On the one hand, this indicates 
that the model performs well over a large space of a chosen number of 
classifiers and training set sizes. On the other hand, it highlights the 
potential of the ensemble classifier to include more orthogonal scales that 
could describe more aspects in the data and therefore result in even better 
models. In a very simple way, the orthogonality of the scales can be 
analyzed by principal component analysis (PCA). PCA on the 91 
normalized hydrophobicity scales revealed that the first principal 
component already explains 68.8% of the variance (Appendix D, 
Supplementary Material Figure S6.1). This may be expected, when 
considering how the scales were derived. Many of the hydrophobicity 
scales originate in some way from other scales being only slightly 
modified. It would therefore be highly interesting to investigate the sEVC 
framework constructed with a set of scales that complement each other 
to explain more of the variance found in the data and result in even 

better models.  

6.3.4 The Potential of Feature Selection to Retrieve Biological 

Information 

Feature selection is an important tool to boost model performance. It can 
also serve to retrieve biological information with respect to the modeled 
problem. Accuracy was chosen as metric for feature importance to avoid 
cases where the MCC is not defined. Decision trees that individually 
classify more observations of the training set correctly therefore have 
higher feature importance. In the learning experiment, 19 different 

training set sizes (6]_^[Y = 19, 38, … , 364) were evaluated 910 times, 
giving a statistically strong insight into feature importance in the range 
of tested training set sizes.  

Median feature importance ranges from .54 to .85 (Figure 6.6) and shows 
an MAD of .02 to .04, while MAD increases towards lower accuracies 
(data of accuracies and MAD in Appendix D, Supplementary Material 
Table S6.2). This median feature importance value is valid for the entire 
training data set of 384 observations. It describes, in the framework of 
the presented chimeric HBcAg VLP solubility problem, which decision 
tree, and therefore hydrophobicity scale, is most suitable for the 
distinction of soluble and insoluble constructs independent of the training 
set size.  
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Figure 6.6 :  Median feature importance measured by the median 
training set accuracy of the individual scales in al l 190×91 models  
in the learning experiment. Median accuracy of scales was sorted in 
descending order, so that scale 1 has highest accuracy and therefore 
highest feature importance,  whi le  scale 91 has lowest feature 
importance. The IDs of the scales (i .e . feature names) are noted 
below in respective order.  

Feature importance can be used to obtain a biological interpretation of 
the model based on the characteristics of the hydrophobicity scales with 
highest feature importance (best) and lowest feature importance (worst). 
Feature importance describes their quality to predict within the cVLP 
solubility problem. With the first three scales, feature importance 
declines more than with the following 57 scales. The last four scales 
decrease markedly in feature importance. The best scale SET3 originates 
from a study on the prediction of transmembrane helical regions (Zviling 
et al., 2005). In this study, a genetic algorithm optimization approach 
amplified hydrophobicity and hydrophilicity of hydrophobic and 
hydrophilic amino acids, respectively, compared to the input scales. 
Insoluble expression results from protein-protein interaction leading to 
the formation of aggregates, potentially leading to inclusion bodies 
(Carrio & Villaverde, 2005). Transmembrane regions in proteins are 
naturally hydrophobic (Silverman, 2003) and in the absence of 
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membranes therefore prone to protein-protein aggregation. The good 

performance of this scale suggests that findings on hydropathy based on 
the propensity to form transmembrane helices is comparable to the 
solubility investigated in this study. The scale VHEG790101 has second-
highest feature importance and was derived using surface accessibility 
data from Chothia’s study of 1976 (Chothia, 1976; von Heijne & 
Blomberg, 1979). Free transfer energies of residues from polar to non-
polar solvent were calculated adding protonation energies for charged 
residues. This highlights the benefit of amplifying hydrophilicity of 
charged residues for application in the VLP solubility scenario. In a 
machine learning study on protein aggregation, VHEG790101 was also 
rated as an important feature to predict aggregation propensity (Y. Fang 
et al., 2013). The EISEN scale has similar but slightly lower feature 
importance, which can be explained by the fact that its hydrophobicity 
values are simply the average of five scales’ normalized hydrophobicity 
values among which is the scale of Chothia and Von Heijne (Eisenberg, 
Weiss, Terwilliger, & Wilcox, 1982). 

WILM950103reverse, the scale that has lowest feature importance, is 
based on C4 reversed phase chromatography retention times of peptides 
(Wilce et al., 1995). Retention on chromatography columns is often based 
on small fractions of the molecular surface and cannot directly be 
translated to properties related to the entire molecule (Hebditch et al., 
2019). ZIMJ680101 was created by statistical analysis based on only 40 
proteins. The space of applicability of this scale is probably limited and 
it therefore performs badly in the VLP solubility scenario. In the above-
mentioned study by Fang and colleagues, ZIMJ680101 also was rated as 
an important feature (Y. Fang et al., 2013), highlighting that a direct 
comparison between the presented model and Fang’s model cannot easily 
be drawn. The third-worst scale is one of seven hydrophobicity scales 
derived from a study on solvent-accessibility of amino acids (Naderi-
Manesh et al., 2001). Scales NADH010101-7 are created by information 
theory and represent the self-information derived from different 
thresholds of solvent-accessibility. These aim to describe the amino acids’ 
surface accessibility within a protein. From scales 1 to 7, the threshold 
for surface accessibility was increased from 5% to 50% of its maximum 
accessibility. Scales 1 and 2 with 5% and 9% threshold ranked at 27 and 
26 in feature importance analysis. Increased thresholds of 16%, 20%, 25%, 
and 36% resulted in feature importance ranks of 36, 43, 47, and 39. Scale 
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7 with 50% accessibility threshold is significantly worse with position 89 
of 91 scales in feature selection. This comparison suggests that there is a 
dependence of the threshold set in the study by Naderi-Manesh and 
colleagues on the performance of these scales in the solubility model. The 
scales with low threshold (5% and 9%) only count residues as inaccessible 
if they are almost completely buried, thus boosting the hydrophobicity 
of very hydrophobic amino acids relative to the other amino acids. On 
the contrary, with the cut-off of 50% accessibility, amino acids that have 
a significant share of solvent-accessible surface but still below 50% will 
be regarded as hydrophobic. The lower threshold is probably more 
applicable to the cVLP solubility problem, since the aim of the epitope 
design is to expose rather than bury it. This in turn means that the 
insertion of typically strongly buried hydrophobic residues can corrupt 
protein folding by their orientation to a protein core, potentially leading 
to misfolded proteins that aggregate to insoluble clusters. The feature 
importance ranking of these scales might indicate that, for solubility, 
strongly hydrophobic residues have a significant influence on solubility, 
while residues that are somewhat hydrophobic, but still have some 
solvent-accessible area are not as critical. This argument also supports 
that chromatography-based scales may not be the best choice to describe 

macro-properties such as solubility, as discussed above. 

To retrieve information related to the hydrophobicity of individual amino 
acids, it is valuable to analyze hydrophobicity values of the normalized 
best and worst scales compared to the median of all hydrophobicity 
scales. If a particular scale performs better in feature selection than 
average, this can probably be attributed to the fact that the 
hydrophobicity values of certain amino acids are different from the 
median value. Figure 6.7 shows normalized hydrophobicity scale values 
for all amino acids for A) the three best and B) the three worst scales in 
the scope of this study. In the following, the hydrophobicity values of the 
highlighted scales are discussed in reference to the individual amino acid 
median hydrophobicity value and its MAD (of all 91 hydrophobicity 
scales). The three best scales are SET3, VHEG790101, and EISEN, in 
descending order. They have in common that arginine (single-letter code 
R, as indicated in Figure 6.7) has a significantly lower hydrophobicity 
value than in most other scales. This value falls well below the MAD 
range of the hydrophobicity value of all scales for arginine. Alanine (A) 
and glycine (G) are attributed a slightly larger hydrophobicity value than 
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within the MAD of their distribution. SET3 and VHEG790101 also rate 
hydrophobicity of aspartic acid (D) lower and asparagine (N) higher 
compared to the MAD range. Compared to the median and the other 
two scales, SET3 has a markedly low hydrophobicity value for 

phenylalanine (F). 

 



6 Ensembles of Hydrophobicity Scales as Classifiers for cVLP Solubility 

157 
 

| 

Figure 6.7 :  Normal ized hydrophobic ity scale values for the 20 
prote inogenic amino acids . Amino acids are shown on the x-axis  
indicated by s ingle- letter code. In each graph, 91 scales’  amino acid 
hydrophobic ity values are represented by black dots , their median 
is shown as a blue l ine with a shaded blue area representing the 
median absolute deviat ion. A dashed, horizontal l ine through zero is  
shown to guide the eye. The scale indicated by a subf igure ti tle i s 
highlighted in red for (A) the three scales  with highest median 
feature importance and (B) the three scales with lowest median 
feature importance as determined in the learning experiment.  The 
normalized scales’  s ign was changed so that hydrophobicity o f 
aspartic  acid is always negative . 

The three worst scales are NADH010107, ZIMJ680101, and 
WILM950103reverse, in descending order. For the worst scales, it is more 
difficult to identify patterns in the deviation from the median 
hydrophobicity values. However, a general trend in the worst three scales 
is that hydrophobicity values of hydrophobic amino acids are particularly 
low while charged amino acids are about average or above. Overall, the 
consensus of the best scales is that arginine should be attributed a lower 
hydrophobicity value than the population of scales would suggest, while 
alanine should be more hydrophobic than in most of the scales. Other 
charged amino acids are partly rated slightly less hydrophobic, such as 
aspartic acid and lysine. The worst scales’ accuracies are probably lower 
since a number of hydrophobic amino acids’ hydrophobicity values are 
comparably low, while, compared to the population of hydrophobicity 
scales, a number of charged or polar amino acids’ hydrophobicity values 
are relatively high. Amino acids such as cysteine or phenylalanine show 
conflicting trends in the worst and best scales and thus no conclusion 
thereof can be drawn.  

The above analysis suggests that a unique property of arginine might 
contribute to its special scale position having both absolute lowest and 
relatively low hydrophobicity in the three best scales. Arginine’s role as 
an agent to reduce protein-protein interactions and increase solubility is 
only partially understood (Arakawa et al., 2007). As free amino acid in 
high concentrations (1 M), it has been shown to interact favorably with 
almost all amino acid side chains and peptide bonds. This means, that 
arginine can reduce both hydrophobic and electrostatic interactions 
(Arakawa et al., 2007). As an additive, arginine favorably interacts with 
tryptophan and therefore can suppress hydrophobic interactions leading 
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to aggregation (Tsumoto et al., 2004). Exactly this effect is thought to 
bear the potential of introducing protein-protein interactions when 
arginine is present in abundance in the amino acid sequence of a protein 
(Warwicker, Charonis, & Curtis, 2014). This conclusion was drawn by 
investigating the ratio of lysine to arginine (K/R) to highlight the specific 
effects of arginine on protein solubility as compared to lysine, since both 
bear one positive charge. It has also been shown that decreasing arginine 
content could increase solubility of a single-chain variable fragment 
(Austerberry et al., 2019). A negative arginine-related solubility effect 
was also seen in a study on a large data set of E. coli expressed proteins 
(Price et al., 2011). In this study on cVLPs, higher arginine content leads 
to decreased hydrophobicity values, which in turn leads to higher 
probability for soluble classification. This effect was observed although 

the K/R ratio (U2,6��/1� = .32) was strongly unfavorable considering 
the results of Warwicker and colleagues (Warwicker et al., 2014). 
Another study showed that mutations from surface lysines to arginine in 
GFP could enhance its chemical stability (Sokalingam, Raghunathan, 
Soundrarajan, & Lee, 2012). However, protein folding was found to be 
aggravated. Protein solubility is a very complex topic and depends on a 
variety of factors of different dimensions, which is illustrated by the 
cVLP solubility problem. HBcAg dimers have low solubility in 
physiological pH and ionic strength, since hydrophobic and other 
interactions strongly favor VLPs (Ceres & Zlotnick, 2002). The assembly 
is an entropy-driven mechanism and is therefore similar to protein 
aggregation (Ceres & Zlotnick, 2002; Gorbenko & Trusova, 2011). 
Association relies on weak protein-protein interactions of HBcAg, such 
as hydrophobic interaction in a tyrosine pocket (C. R. Bourne et al., 
2009) in the base of the molecule. This ordered aggregation is probably 
mandatory for the soluble state of HBcAg at the high expression levels 
in E. coli’s cytosol, since HBcAg dimers were found to be aggressively 
aggregating and forming capsids already at low concentrations (Ceres & 
Zlotnick, 2002). Protein insolubility during expression can therefore 
exhibit an entirely different origin than for other proteins – the 
association of the HBcAg proteins to structures that are not VLPs but 
unordered aggregates, which themselves are not soluble. Truncated wild-
type HBcAg (Cp1-149, based on UniprotID: P03147 (The UniProt 
Consortium, 2018)) contains eight arginine residues with a K/R of .25, 
even though the arginine-rich C-terminus of the full-length HBcAg is not 
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considered. To investigate this relationship with cVLPs, a one-level 
decision tree solely based on K/R ratio of all 568 observations was 
constructed, resulting in an inverse relationship as observed by 
Warwicker and colleagues (Warwicker et al., 2014). With the VLP 
solubility data, K/R values below the cut point are predicted as soluble 
with an Accuracy of .65 and MCC of .3, while in Warwicker’s study 
lower K/R lead to higher chances of insolubility. Arginine-based 
interactions could therefore be hypothesized to be of great importance in 
the recruitment of other HBcAg molecules to form VLPs eventually. 
Therefore, arginine’s property to increase protein-protein interactions 
when present in the amino acid sequences can be assumed to enhance 
VLP assembly, which is mandatory for significant levels of soluble 
HBcAg. Following this reasoning, substitution of arginine with lysine 
would maintain overall protein charge but probably promote the 
existence of either soluble HBcAg dimers incapable of assembly or 

insoluble HBcAg aggregates. 

The role of arginine can also be discussed with respect to other amino 
acids. Tryptophan is not present in abundance in truncated wild-type 
HBcAg. Four tryptophan residues build the core of the HBcAg helices 
and are paired with either tyrosine, phenylalanine, or arginine residues 
(see also Appendix D, Supplementary Material Figure S6.2). Since 
arginine-tryptophan interactions were found to be extraordinarily strong 

(Arakawa et al., 2007), additional tryptophans in the epitope may result 

in misfolding during protein expression, since abundant arginines and 
other residues interact favorably with the tryptophans in the epitope 
region. This would give reason to the low feature importance observed in 
the three worst scales, which underrate tryptophan hydrophobicity. In 
the data set, 0, 1, or 2 tryptophans are introduced compared to the wild-
type Cp1-149. Interestingly, observations containing two additional 
tryptophans are all insoluble, while observations containing zero or one 
additional tryptophan are found both in the soluble and in the insoluble 
group. As discussed above, valine probably also plays a vital role that is 
shown by its low hydrophobicity values in the worst scales. Arginine-
valine interaction was found to be the only unfavorable interaction in 
single amino acid experiments (Arakawa et al., 2007). With the above 
reasoning, this could hamper assembly of HBcAg VLPs and therefore 
decrease VLP solubility. 
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6.3.5 Systematic Classification Errors Based on Insertion Strategies 

The average model performance with respect to the eight insertion 
strategies is related to properties of the utilized molecules that are 
strongly associated with the presented problem. If a strategy has a 

significantly higher relative frequency of 0. classifications than 0/ 
classifications, the sEVC model systematically overestimates the 
solubility of observations created with this strategy. This indicates a 
particularly bad performance of this strategy. From Figure 6.8, it can be 
seen that this is the case for strategy H, both in training (A) and external 
test sets (B). During model construction, it would therefore be interesting 
to tweak strategy H’s solubility prediction so that the numbers of 

strategy H’s 0. = 0/. This can of course only be done for constructs 
where there is already a significant influence visible in the training set 
and when the training set is large enough. If a strategy is more numerous 

in the 0/ than in the 0. group, the opposite case is true, where the 
model underestimates its solubility. These strategies are systematically 
good for solubility with respect to the model. This can, for example, be 
observed for strategy E. Its solubility prediction could be tweaked to 
higher solubility during model training. From the insertion sites and 
deletions that are different in the eight strategies we could, however, not 
find a relation that would explain the above-mentioned behavior. This 
relationship could be related to 3-D properties that cannot be explained 
by the 2-D amino acid sequence information only. The same approach 
has been tested on the 71 inserts, where no significant effects could be 
observed on the comparably large amount of different inserts and 
therefore their rarer occurrence (data not shown). The presented model 
performance analysis, which is based on the particular training set 
structure, can be used as a potent tool to learn about the characteristics 

of the data set and to boost model performance. 
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Figure 6.8 :  Relative frequency o f classi f ication groups based on 
insertion strategies  A-H in (A)  the training set and (B) the external 
test set o f the 17920 models  in the learning experiment.  Strategy E 
and H are marked additionally to guide the eye. TP: true positive;  
TN: true negative ; FP: false positive; FN: false negative.  

6.4 Conclusion and Outlook 

In this article, we presented a novel solubility prediction framework based 
on experimental and theoretical hydrophobicity scales that was applied 
to the prediction of chimeric HBcAg VLP solubility. In summary, little 
information was fed into our model, i.e. publicly available sequences, 

hydrophobicity scales, and solubility data.  

The best models predicted with an MCC of > .6 on the external test set. 
Stratified training set sampling based on information on the inserted 
peptide sequence and the insertion strategy proved beneficial especially 
for small training set sizes. Evaluation of the contingency matrix revealed 

that certain epitope insertion strategies were overrepresented in the 0. 

or the 0/ group of both training and test set and were therefore 
particularly limiting or promoting, respectively, for cVLP solubility. 
Detailed assessment of the best and worst features, i.e. hydrophobicity 
scales, suggested a special role for arginine for soluble cVLP expression. 
Contrary to reports on the solubility of other proteins, a large arginine 
content did not disrupt but rather improved cVLP solubility. We 
hypothesized that arginine’s positive interaction with almost all amino 
acids plays a crucial role in recruiting HBcAg dimers or larger building 
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blocks to form a capsid, which in turn is required for meaningful levels 
of HBcAg concentrations in physiological buffers.  

The presented framework proved to be applicable to small and larger 
training set sizes and could, with minor adaptations, be transferred to 
the prediction of monoclonal antibody solubility or even other biophysical 
properties. In the future, an informed design of scales that are orthogonal 
could greatly benefit the presented approach, as it would diversify the 
classifiers’ performances and therefore benefit the ensemble classifier. 
Additionally, it would be interesting to evaluate the model as a regression 
tool, avoiding the discretization that is performed during the sEVC 
procedure. Our results also suggest that building a global solubility model 
for all proteins is highly challenging and may only be feasible if a 
balanced data set of equally represented protein classes at very high 
observation numbers is available.  
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Chimeric virus-like particles (cVLPs) are protein-based nanostructures 
applied as investigational vaccines against infectious diseases, cancer, and 
immunological disorders. Low solubility of cVLP vaccine candidates is a 
challenge that can prevent development of these very substances. 
Solubility of cVLPs is typically assessed empirically, leading to high time 
and material requirements. Prediction of cVLP solubility in silico can 
aid in reducing this effort. Protein aggregation by hydrophobic 
interaction is an important factor driving protein insolubility. In this 
article, a recently developed soft ensemble vote classifier (sEVC) for the 
prediction of cVLP solubility was used based on 91 literature amino acid 
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hydrophobicity scales. Optimization algorithms were developed to boost 
model performance, and the model was redesigned as a regression tool 
for ammonium sulfate concentration required for cVLP precipitation. 
The present dataset consists of 568 cVLPs, created by insertion of 71 

different peptide sequences using eight different insertion strategies.  

Two optimization algorithms were developed that (I) modified the sEVC 
with regard to systematic misclassification based on the different 
insertion strategies, and (II) modified the amino acid hydrophobicity 
scale tables to improve classification. The second algorithm was 
additionally used to synthesize scales from random vectors. Compared to 
the unmodified model, Matthew’s Correlation Coefficient (MCC) and 
accuracy of the test set predictions could be elevated from .63 and .81 to 
.77 and .88, respectively, for the best models. This improved performance 
compared to literature scales was suggested to be due to a decreased 
correlation between synthesized scales. In these, tryptophan was 
identified as the most hydrophobic amino acid, i.e. the amino acid most 
problematic for cVLP solubility, supported by previous literature 
findings. As a case study, the sEVC was redesigned as a regression tool 
and applied to determine ammonium sulfate concentrations for the 
precipitation of cVLPs. This was evaluated with a small dataset of ten 

cVLPs resulting in an R2 of .69. 

In summary, we propose optimization algorithms that improve sEVC 
model performance for the prediction of cVLP solubility, allow for the 
synthesis of amino acid scale tables, and further evaluate the sEVC as 
regression tool to predict cVLP-precipitating ammonium sulfate 
concentrations.  
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7.1 Introduction 

Protein solubility is a generally recognized problem in biopharmaceutical 
drug development. The fact that poor solubility can hamper a molecule’s 
development is a well-known challenge in chimeric virus-like particle 
(VLP) process development. VLPs are multimeric structures based on 
viral proteins, which are employed as vaccines or delivery vehicles for 
proteins or nucleic acids (Bryan et al. 2016; Kaczmarczyk et al. 2011; 
McAleer et al. 1984; Muratori, Bona, and Federico 2010; Strods et al. 
2015). For example, VLPs are applied as vaccines against hepatitis B 
virus or human papillomavirus (McAleer et al. 1984; Bryan et al. 2016). 
Chimeric VLPs (cVLPs) are VLPs decorated with foreign epitopes 
altering the function of the unmodified VLPs by, for example, directing 
the patient’s immune response towards the inserted epitope (Klamp et 
al. 2011; Yoshikawa et al. 1993). While this flexibility of antigenic display 
is one of the major advantages of VLPs (Pumpens et al. 2008), 
recombinant insertion of epitopes often results in expression of insoluble 
structures (Billaud et al. 2005; Karpenko et al. 2000). Factors affecting 
cVLP solubility have been described as, for example, insert charge 
(Whitacre, Lee, and Milich 2009), amino acid side chain volume 
(Karpenko et al. 2000), or the content of specific amino acids, such as 
tryptophan or arginine (Vormittag, Klamp, and Hubbuch 2020). None of 
these individual attributes describe the cVLP solubility landscape 
comprehensively. This is underlined by findings, in which combining 
different attributes improved the solubility model’s performance 
(Vormittag, Klamp, and Hubbuch 2020). Each amino acid makes a 
unique contribution to protein solubility, e.g. based on its charge, volume 
or specific interactions. In recent years, a great number of so-called 
hydrophobicity scales have been derived that aim to serve in an (almost) 
calibration-free model to describe hydrophobicity-related problems based 
on amino acid-specific hydrophobicity values.  

Already in 1962, Tanford pointed out that hydrophobic interaction is a 
key factor influencing the stability of globular protein conformation 
(Tanford 1962). Nozaki and Tanford measured transfer free energies of 
amino acid side chains into ethanol and dioxane, deriving an early 
hydrophobicity scale (Nozaki and Tanford 1971). They describe the 
hydrophobicity scale value of an amino acid as, for example, its tendency 
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to be located in the interior of a protein. This idea of a scale to describe 
an amino acid’s tendency to partition into exterior or interior regions of 
a protein is an assumption that does not take into account 3-D-specific 
effects. If 3-D-specific effects were negligible, a linear or non-linear 
function should exist that perfectly describes a protein’s solubility based 
on its amino acid composition. The fact that this is probably not the case 
has been extensively shown, directly or indirectly, for example, by several 
studies on protein solubility prediction yielding only about 60-80% 
accuracy (Hebditch et al. 2017; Idicula-Thomas et al. 2006; Magnan, 
Randall, and Baldi 2009; Smialowski et al. 2006), or detailed mechanistic 
studies on protein structure and assembly. The latter is illustrated by 
the complex behavior of VLPs. Tyrosine can be regarded as a 
hydrophobic (aromatic ring) or polar (hydroxyl group) amino acid. 
Interestingly, it is required for Hepatitis B core antigen (HBcAg) to form 
capsids, buried in a hydrophobic pocket (Wynne, Crowther, and Leslie 
1999). A mutational form, replacing tyrosine 132 by alanine, prohibits 
particle assembly (Bourne et al. 2009). The predominant quaternary 
structure of this HBcAg mutant is therefore a dimer instead of the 180- 
or 240-meric capsid. This comes with great changes in physicochemical 
and biophysical behavior as the mass of a solvatized entity differs by 90- 
to 120-fold. Obviously, this behavior cannot be explained by one 
universal hydrophobicity scale, as this is an effect with a strong 3-D 
spatial component.  

In a recent article by our group, we applied a soft ensemble vote classifier 
(sEVC) with embedded feature selection to predict cVLP solubility, 
based on 91 hydrophobicity scales (Vormittag, Klamp, and Hubbuch 
2020) to harness the information contained in multiple scales. This can 
help overcome the limitations of a sequence-based approach by expanding 
the dimensionality of the sequence-based descriptions by using different 
scales in one model. In said study, a feature selection algorithm selected 
the best features to be included in the model based on a training set. 
Individual hydrophobicity scale performance for classification ranged 
from 54 to 85%, which underpins that hydrophobicity scales cannot be 
universal. The choice of hydrophobicity scales by the algorithm and the 
analysis of the best- and worst-performing scales revealed dominant roles 
for arginine and tryptophan in cVLP solubility. In another study on the 
prediction of peptide aggregation propensity, feature selection has been 
successfully employed to select the best of 560 features, showing some 
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overlap with regard to best features with our previous study (Fang et al. 
2013). Both these publications combine theoretical physicochemical data 
with statistical methods to predict a biophysical property by selecting 
appropriate physicochemical measures. Compared to pure statistical 
regression, these models therefore contain physicochemical information, 
which is advantageous for calibration on smaller datasets and for 
interpretation of the data. 

Zviling and colleagues came to similar conclusions in their work on the 
prediction of transmembrane helical regions (Zviling, Leonov, and Arkin 
2005). Based on two existing amino acid scales, provided by Kyte and 
Doolittle and Goldman, Engelmann and Steitz (Engelman, Steitz, and 
Goldman 1986; Kyte and Doolittle 1982), they generated a set of new 
hydrophobicity scales by optimization using a genetic algorithm on a 
cross-validation set. Both Zviling’s and our approach combine real 
experimental physicochemical data, contained in hydrophobicity scales, 
with a statistical adjustment to the problem to be modeled. This ensures 
that prediction is based on actual physicochemical groundwork. The 
degree of statistical adjustment, however, is larger, when a 20-
dimensional function is optimized, such as by optimization of scale tables 
in Zviling’s work, than with calibration of decision trees that only shift 

classification borders in the one-dimensional target function space.  

The present article describes approaches to optimize and tweak our 
recently developed model to improve prediction accuracy, learn more 
about the data, and to extend the model to other biophysical parameters. 
An optimization procedure for the synthesis of amino acid scale tables is 
one approach to improve model performance. To ensure that overfitting 
is avoided, this approach would benefit from a large balanced dataset, as 
was used in our recent study. These synthesized scales would be tailored 
to the problem they are optimized on and therefore have the potential to 
improve model performance and reveal dominant roles of amino acids for 
classification of the dataset. 

In our previous study, we demonstrated the potential of optimizing the 
model’s prediction based on the contingency matrices of the individual 
insertion strategies (Vormittag, Klamp, and Hubbuch 2020). The dataset 
used consisted of 568 chimeric HBcAg constructs, created by a grid of 71 
different inserts and eight insertion strategies. The eight different 
insertion strategies in this study define where in the major 
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immunodominant region of the HBcAg molecule the epitope is inserted 
and which amino acids are deleted. The different strategies are meant to 
optimize the integration of the foreign epitope into the VLP sequence 
and would ideally result in an integration that produces a soluble cVLP. 
Analyzing the strategies showed that the model systematically 
overestimated or underestimated certain insertion strategies with respect 
to the predicted solubility (Vormittag, Klamp, and Hubbuch 2020). To 
recapitulate briefly, a strategy that is overrepresented in the training 

false-positive (0.) group has overestimated solubility in relation to the 
other strategies. This means that this strategy is particularly bad for 
solubility in the perspective of the training dataset. The model is, at this 
stage, incapable of describing this different behavior. As previously 
suggested, this could be related to 3-D phenomena that cannot be 
described by a sequence-based approach (Vormittag, Klamp, and 
Hubbuch 2020). Knowledge of the above-described systematic 
misclassification helps a) to conclude that this insertion strategy may be 
disadvantageous with respect to solubility, and b) to adjust the model, 
so that the model’s blind spot is compensated. The latter can be achieved 
by modifying the model predictions specifically for those insertion 
strategies, for which systematic misclassification can be observed in the 
training set. 

The introduction of a foreign epitope to be displayed on the VLP surface 
has implications on many facets of the product and the process. The main 
question addressed by our work – the solubility of cVLP candidates after 
cell lysis – is typically a decision point where candidates drop out of the 
candidate pool. In this large dataset, this leaves half of the candidates to 
choose from (Vormittag, Klamp, and Hubbuch 2020). This number will 
be cut down to very few candidates throughout the development process. 
Besides solubility, several other biophysical or physicochemical 
parameters are determinants in the development process of a cVLP 
candidate. The most important property is the candidates’ ability to 
induce an immune response against the target structure, the basis for its 
efficacy (Roseman et al. 2012; Frietze, Peabody, and Chackerian 2016; 
Klamp et al. 2011). Therefore, the introduced foreign epitope has to be 
properly displayed and accessible on the molecular surface, which is 
something that can very probably not be described by amino acid scale-
based models and requires detailed 3-D structural studies (Roseman et 
al. 2012). Another process-related property that can vary among the 
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candidates is their structural and phase behavior as a function of the 
solution environment. VLPs are complex nanostructures which are held 
together by intra- and intermolecular forces, such as electrostatic and 
hydrophobic interactions and disulfide bonds. Their complex structural 
behavior is dependent on the introduced foreign epitope. In a previous 
work by our group, we investigated the re-assembly of disassembled 
HBcAg cVLPs (in the form of HBcAg dimers) by increasing ionic 
strength by diafiltration (Rüdt et al. 2019). We observed that the 
diafiltration volumes – an indicator of progress in buffer exchange and 
therefore ionic strength – that were required to complete the VLP 
assembly reaction varied between the three constructs. Based on zeta 
potential measurements, this behavior could be related to surface charge. 
In another study, a high-throughput 3-D structure generation workflow 
was developed that we applied on exactly these three constructs in their 
disassembled form to calculate a surface charge that correlated well with 
the zeta potential measurements (Klijn et al. 2019). This is a good 
example of in silico representations of physicochemical properties, which 
pave the way for model-assisted rather than empirical process 
development. This said, it seemed promising to test the sEVC model to 
predict other process-related properties. One such property is the 
required concentration of ammonium sulfate to precipitate cVLPs, a 
typical process step in cVLP downstream processing (Hillebrandt et al. 
2020). Precipitation of cVLPs can typically be achieved with an 
ammonium sulfate concentration that leaves most of the contaminants 
in solution (Kazaks et al. 2017). Once the supernatant containing these 
contaminants is discarded, the cVLPs can be resolubilized, resulting in 
high yields with the potential of increasing product concentration. The 
ammonium sulfate concentration required for cVLP precipitation is 
typically determined in screening experiments (Hillebrandt et al. 2020). 
To reduce required time and resources, regression for the estimation of 
the ammonium sulfate concentration for different cVLPs would therefore 

be highly interesting. 

We have recently shown that ensembles of individual classifiers based on 
hydrophobicity scales and amino acid sequences are potent classifiers for 
cVLP solubility. The objective of this study is to evaluate the potential 
of different optimization strategies to improve our recently developed 
sEVC framework and to apply the sEVC to another biophysical 
parameter. We therefore combined the sEVC with optimization 



7.2 Materials and Methods 

170 
 

algorithms to improve generated models and to learn more about the 
data obtained. Optimization algorithms employed in this study aimed to 
(I) reduce systematic misclassification based on insertion strategies, (II) 
optimize and generate amino acid scale tables, and (III) combine both 
optimization strategies to maximize model performance. Finally, we show 
some perspective on how to apply the model to another biophysical 
parameter, i.e. ammonium sulfate concentration for cVLP precipitation, 

by transforming the model to a regression tool. 

7.2 Materials and Methods 

7.2.1 Dataset 

For an overview of the methodology applied to this work, we recommend 
reading our previous article on the sEVC for chimeric VLP solubility 
prediction (Vormittag et al., 2020). The dataset is equivalent to that 
used in said previous study, comprising amino acid sequence and binary 
solubility data of chimeric HBcAg constructs. Chimeric HBcAg was 
based on C-terminally truncated, His-tagged Hepatitis B virus core 
protein, modified with 71 different inserts and eight unique insertion 
strategies. An insertion strategy describes where in the major 
immunodominant region of HBcAg the foreign epitope is inserted and 
how many amino acids of the native protein are deleted. All possible 
combinations of the 71 inserts and eight strategies result in 568 
constructs/observations. The literature hydrophobicity scales used in this 
study can be found in our recent work and the Supplementary Material 
Table S7.1, originally derived from AAindex (Kawashima et al., 2007), 
the SPLIT 4.0 server (Juretić et al., 1993), and ProtScale (Gasteiger et 
al., 2005) and put together by Simm and colleagues (Simm et al., 2016). 
Reversed scales were treated as duplicates, and therefore removed if a 
non-reversed scale was available, resulting in 91 hydrophobicity scales. 
For all models, a training set of 384 observations was used, which was 
created once by stratified sampling based on the identity of the inserts 
and insertion strategies (Vormittag et al., 2020). The remaining 184 
observations were used as an external test set. For Monte Carlo cross-
validation (MC-CV), a 1:1 random split of the training set was applied 

to each validation run. 
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7.2.2 Soft Ensemble Vote Classifier 

The sEVC applied in this study is described in detail in the above-
mentioned recent study by our group and was only slightly modified. 
Briefly, the sEVC aggregates the solubility predictions of individual 
classifiers, which classify based on hydrophobicity features calculated by 

hydrophobicity scales and sequence data. The features 0� are derived by 

accumulating hydrophobicity values of amino acids �-��,,�, as 
prescribed by a hydrophobicity scale, for the entire amino acid sequence 

[,,R, ,,P, … , ,,E] of each observation p (Equation [7.1]).  

0� = @ �-��,,�,��
DD�,�

DD�,�

�7.1� 

Classifiers are one-level decision trees induced from these hydrophobicity 
features, trained using Gini’s diversity index as impurity measure (Gini 
1912; Windeatt and Ardeshir 2004). The classifiers return a class 
(‘soluble’/+1 or ‘insoluble’/-1) with a probability associated with the 
respective child node in the decision tree. The classifier’s vote v is the 
probability with the sign associated with the respective class and 
therefore falls between -1 and +1. Aggregation of all votes vi results in 
the continuous prediction value p of the sEVC, which is normalized by 
the number of included scales n, again falling between -1 and +1, as 
explained by Equation (7.2).  

p = ∑ �W����
E �7.2�

This continuous prediction value is subsequently discretized, where 

for p > 0, the prediction is ‘soluble’ or +1 and for p ≤ 0, it is ‘insoluble’ 
or -1. In the sEVC, an embedded feature selection algorithm informs 
about the potency of the individual classifiers to predict solubility and 
sorts them according to their feature importance, namely their 
Matthew’s correlation coefficient (MCC) on prediction of the training 
data as defined in Equation (7.3). 

788 = �. × �/ − 0. × 0/
;��. + 0.���. + 0/���/ + 0.���/ + 0/� �7.3� 

�., �/, 0., and 0/ are true-positive, true-negative, false-positive, and 
false-negative classifications (contingency matrix of training, validation, 
and test set). In our previous study, feature selection was based on 
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accuracy, which is, however, biased when unbalanced datasets are 
considered (Powers, 2011). For model validation, an MC-CV procedure 
with embedded feature selection is run to inform about the optimal 
number of included classifiers. The sEVC could theoretically be composed 
of any combination of available classifiers, where each combination is an 
individual model. In this study, the n best classifiers, according to feature 
selection, are included, where n ranges from 1 to the maximum number 
of available classifiers. For the dataset of literature scales, n is 91. In the 
scale generation procedure described below, n ranges from 1 to 16. 

The training/validation set is selected randomly from the full training 
set in each MC-CV run. The sEVC including 1 to n classifiers, sorted by 
descending feature importance, is probed on these MC-CV datasets. In 
the original study on the sEVC, model validation datasets were newly 
constructed for each of the 91 models, while in this study, the same MC-
CV dataset within one MC-CV run is used for all n models. This is 
reasonable as each of the models is evaluated on the same dataset within 
one MC-CV run, thus increasing comparability while reducing 
computational resources. The validation procedure informs about the 
model performance dependent on the number of included classifiers. This 
information can be used for generation of the final model based on all 
training data to predict the external test set. 

7.2.3 Optimization Based on Insertion Strategies 

An optimization algorithm focusing on the insertion strategies was 
developed, based on a loop of model generation, evaluation, and 
modification (Figure 7.1A). The dataset used for this optimization 
procedure is the training set of 384 observations and all 91 literature 
hydrophobicity scales (Supplementary Material Table S1). In the first 
iteration, a 25-fold MC-CV is computed and an accumulated validation 
set contingency matrix is calculated. This matrix contains information 

on the accumulated number of validation �., �/, 0., and 0/ 
classifications dependent on the insertion strategy for all 25 MC-CV runs. 

The largest absolute value of 0/ − 0. classifications defines which 
strategy’s prediction is modified in this iteration and what the sign of 

this modification is. If 0/ > 0., it is positive, if 0/ < 0., it is negative. 

A strategy that has more 0/ than 0. should be classified more positively 

by the classifier, in order to push 0/ observations into the �. group. 
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This is realized by modifying the accumulated continuous prediction 
values (compare also Equation [7.2]) of the sEVC. A modification vector 

U contains the information on how this aggregated prediction value is 
modified individually for each strategy, imaginable as shifting the 
classification boundary (Figure 7.1A) (while, in fact, the predictions are 
shifted instead of the classification boundary). In each iteration, the 
vector is changed by an absolute 0.01 for the strategy and sign identified 
as described above. The first iteration is calculated on an unmodified 

model, providing the modification vector for the second iteration. 

In each iteration, the sEVC modified by the previous modification vector 
is evaluated in the 25-fold MC-CV, resulting in a new median validation 
MCC value, i.e. target function to be maximized. This value is the 
median of all models’ median validation MCC. Therefore, the target 
function takes into account the entire model space of 1 to 91 included 
classifiers. If this is in an acceptable range (equal to or at maximum 0.05 
worse than the best previous median MCC), then the accumulated 
contingency matrix of this iteration is used to calculate a new 
modification vector for the next iteration. The acceptable range was 
determined in pre-experiments, so that early termination of the algorithm 
was avoided while limiting model deterioration. If the MCC is better than 
the best MCC so far, the modification vector is stored as best 
modification vector, and future iterations are compared to this MCC. If 
the MCC is worse and outside the acceptable range, the modification 
vector is reset to the current best modification vector. If for 50 times, no 
improvement on the MCC has been made, the optimization is stopped. 
For the evaluation of optimized model performance, the model with the 
best MCC during optimization is chosen and the respective modification 
vector is applied within the sEVC in order to predict in 1000-fold MC-
CV and to predict the external test set. For each of the 91 models, the 
validation procedure results in a median validation MCC and accuracy. 
For evaluation, the median of these values (‘overall median’) is compared 
for the MCC and accuracy, respectively. The metric to compare initial 
and optimized model performance is the change of these values in 
percent, where the difference between optimized and initial performance 
values is divided by their maximum range, i.e. 1 and 2 for accuracy and 
MCC, respectively. 



7.2 Materials and Methods 

174 
 

 

Figure 7.1 : Workf low of optimizat ion procedures. (A) The insertion 
strategy optimizat ion is based on modi fying the classi f ier for a 
spec if ic strategy to increase model performance.  In a 25-fo ld Monte 
Carlo cross -validat ion (MC-CV), the previous modi fier is  evaluated 
and a new modif ier is derived, based on systematic misc lass i f ication 
in the false-pos it ive and negative group, speci f ic for certain insertion 
strategies . This results in the current modi f ier m c u r r en t  and current 
Matthew’ s correlation coef fic ient MCC cu r r e n t .  I f MCC c u r r en t  is  better 
than previous best MCC, the best MCC and modi fier are updated 
and used for the next iterat ion. I f the MCC c u r r e n t  is  lower than the 
best MCC within a defined acceptance marg in o f 0.05,  the current 
modif ier is used for the next i teration. If i t i s below this acceptance 
margin, the MCC and modif ier are reset to the previous best MCC 
and modi fier . I f for 50 times, no improvement on the MCC has been 
made,  the iterat ion is stopped. (B) Scale optimizat ion and synthesis  
are based on an optimizat ion of the individual  amino acid’ s 
hydrophobic ity values in the hydrophobicity scale . In each iteration 
the previous scale i s  modif ied and probed in 25- fold MC-CV, 
resulting in a current MCC and scale s .  The iterat ion rules  are 
comparable to the insertion strategy optimization, with the 
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di fference that the acceptance margin is higher with 0 .2 and the 
modif ied scales, as opposed to the modi fiers  in the insertion strategy 
optimization, are stored and updated. 

7.2.4 Synthesis of Amino Acid Scales 

A second algorithm was created to modify amino acid scales to I) 
synthesize new amino acid scales and II) optimize existing scales 
specifically for the presented VLP solubility problem (Figure 7.1B). The 
two algorithms are almost identical and are, in the following, explained 
by the example of scale synthesis. Each scale is optimized from an initial 
scale that contains normally distributed pseudorandom numbers for each 

of the 20 encoded amino acids. In each iteration, the scale 4 of the 

preceding run is adjusted with a modifier U (Equation [7.8] and [7.9]). 

The modifier is designed to move the average 0. and 0. feature value 
in the direction of the classification boundary, which is the cut point of 
the one-level decision tree, thus aiming to decrease false classification. 
This is done independent of insertion strategies. The modifier’s direction 

is determined by average feature values of the classification groups 0/ 

and 0. and the difference in frequency of individual amino acids. The 

average feature values 0�� and 0�� and mean amino acid frequency 

vectors ,�� and ,�� are derived from a 25-fold MC-CV run with the scale 
4 of the previous iteration. Herein, the amino acid frequency vectors 
describe the frequency of the individual amino acids within the groups of 

FN and FP classification, respectively. The average feature values ���, 

���, and their differences are  

��� = ,′��4, �7.4� 
��� = ,′��4, �7.5� 

and 

Δ� = ��� − ��� . �7.6� 
The vector of the difference in amino acid frequency is given by 

Δ,��,�� =  �,�� − ,��� �7.7� 
The modifier used in this optimization loop is vector 

U =  Δ�Δ,��,�� , �7.8� 
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which is used in a centered and unit variance-scaled form U� . In each 
iteration, a scale is modified as prescribed in Equation (7.9). 

4��R = 4� + +U�, �7.9� 
where 4� and 4��R are the previous and the modified scale, respectively, 

and + is the modification rate, which was 1% for scale synthesis. After 
modification, the new scale is also centered and scaled to unit variance. 
Therefore, the extent of modification is comparable in all iterations, as it 
corresponds to an average of 1% of unit variance.  

The modified scale is probed in a 100-fold MC-CV run resulting in a 
median MCC value. This current MCC value is compared to the best 
previous MCC value. If it is better, it is stored as the new best MCC 
value with associated new best scale. If it is worse, the new scale is still 
accepted, as long as the MCC does not fall below an acceptance margin, 
which is 0.2, where the scale and MCC are reset to the previous best 
iteration. The acceptance margin is larger than in the insertion strategy-
based optimization, as model performance fluctuated more with this 
second optimization strategy. If no new best scale is created for 50 times 
consecutively, the optimization is stopped and the best scale and MCC 
are returned. For the generation of scales, either the full training set or 
subsets thereof were used. When the full training set is used, one scale is 
generated by the algorithm. When two (equally sized) subsets are used, 
two scales are generated by the algorithm. The algorithm was run with 
up to 16 subsets, which in turn resulted in 16 different scales. Subsets 
were either created by random split into evenly sized subsets or split by 
insertion strategies.  

Additionally, this algorithm was used to optimize literature scales. Based 
on the full training set with 384 observations, the 91 literature scales 
were used as scales in an initial iteration, where the optimization was 
performed for each scale individually at a rate of 5%. Other parameters 
were identical to the scale generation procedure. 

7.2.5 Analysis of Performance Data for Optimizations 

Evaluation of optimized and non-optimized models was always based on 
1000-fold MC-CV, returning median MCC and median absolute deviation 
(MAD) of MCC. The external test set consisted of 184 observations, 
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remaining after stratified sampling of 384 training observations from the 
full dataset. For all models, the same external test set was used.  

7.2.6 Redesigning the Model for Regression of Precipitation Data 

Ten cVLP constructs of strategy H were experimentally evaluated for 
cVLP-precipitating ammonium sulfate concentration. The ammonium 
sulfate concentration screening procedure was performed as described in 
a recent article on precipitation of HBcAg VLPs (Hillebrandt et al., 
2020). Briefly, clarified E. coli lysate, containing HBcAg VLPs, was 
adjusted to 0.25% polysorbate 20 and then precipitated with 4 M 
ammonium sulfate stock solution to different target concentrations. The 
ammonium sulfate concentration required to precipitate most of the 

cVLPs was determined visually based on SDS PAGE scans.  

Scales generated by the above-described algorithm, that is those derived 
from randomly splitting the training set into eight equal parts, were used 
to train a model based on all observations with insertion strategy H. 
Evaluation of the model was performed on the prediction of the 1000-
fold MC-CV set for eight models composed of 1-8 classifiers. As opposed 
to the classification for solubility, the continuous prediction value of the 
models (compare also Equation [7.2]) was not discretized. The mean 
resulting prediction value of the MC-CV runs was subsequently used to 
be correlated with the experimental data in linear regression. The order 
of the scales was derived from feature selection. The data were fit using 
MATLAB’s fitlm function and evaluated by the ordinary R2.  

7.3 Results and Discussion 

7.3.1 Optimization Based on Insertion Strategies 

An optimization procedure was developed, which, based on 25-fold MC-
CV, adjusts the model’s predictions for the insertion strategies 
individually based on a modification vector. This modification vector is 
applied before discretizing the continuous scale of the aggregated sEVC 
votes by increasing (higher solubility) or decreasing (lower solubility) the 

continuous prediction value.  

The optimized model, obtained after 130 iterations, showed an increase 
in median validation MCC values from .63 to .69 (Table 7.1). Most 
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notable modifications are made on predictions of insertion strategies E 
and H, resulting in a strategy-specific accuracy increase of 12% for both 
strategies, while the MCC increased by 8% for strategy E and decreased 
by 1% for strategy H.  This is also illustrated by the number decrease of 
these strategies in the respective false classification groups (Figure 7.2). 

Overall, there is a similar true-positive (�.� and false-negative �0/� 
number, indicated by the mean over insertion strategies (red line), while 

true negative (�/� is increased and false positive (0.) decreased. The 

constant numbers in 0/ are explained by the increase in the number of 

strategy H in this group, balancing out the decrease of strategy E in 0/. 

Making strategy H more negative pushed 0.-classified observations to 

�/, but also �. to 0/. Strategy E performed better in this regard, as 

we only see a minor increase in the number of E in 0.. 

 

 

 

 

| 

Table 7.1 :  Modi ficat ion vector and summarized model Monte Carlo 
cross-val idat ion (MC-CV) performance data for the insertion 
strategy optimization. The final  modi fication vector (U� with 
elements for each strategy is shown, af fect ing the continuous 
prediction values after aggregation of al l  votes (Figure 7.1A). 
Accuracy (A) and Matthew’ s  Correlat ion Coeffic ient (MCC) before 
(start) and after optimization (opt) are shown for each strategy. The 
percent change values in accuracy and MCC are calculated by the 
absolute change in accuracy and MCC, respectively , div ided by the 
range of the statistica l value (1 for accuracy, 2 for MCC). Overal l 
median is based on the median performance data of the 1000- fold 
MC-CV. The MC-CV results in 91 values , which are the median o f 
the 1000 MC-CV runs for each number of included c lass i f iers 
individual ly.  These values are i l lustrated for the optimized model in 
Figure 7.3A, right. The overall median describes the median of these 
91 values,  which is the optimizat ion target funct ion. Overal l median 
MCC and accuracy are also shown for strategy-based optimizat ion 
of scales optimized and synthesized with the scale table optimizat ion 
algorithm. *Change of MCC and accuracy of optimized/generated 
scales are calculated relative to the performance of l i terature scales 
without optimizat ion (A s t a r t and MCC s ta r t) .  
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Best modification vector for insertion strategy-based optimization only 

Strategy A B C D E F G H   

�  0.01 0 -0.01 0 0.59 -0.1 0 -0.5   

Insertion strategy-based optimization only 

Strategy A B C D E F H I Overall median 

Astart 0.87 0.78 0.83 0.87 0.78 0.83 0.92 0.58 0.81 
Aopt 0.88 0.78 0.83 0.87 0.90 0.83 0.92 0.70 0.84 
Achange 1% 0% 0% 0% 12% 0% 0% 12% 4% 

MCCstart  0.75 0.56 0.66 0.74 0.64 0.67 0.83 0.39 0.63 

MCCopt  0.76 0.56 0.65 0.74 0.79 0.66 0.83 0.37 0.69 

MCCchange 1% 0% 0% 0% 8% 0% 0% -1% 3% 
 

Insertion strategy-based optimization combined with scale generation and 

optimization 

Optimization of literature scales: Aopt 0.86 

 Achange* 5% 

 MCCopt 0.72 

 MCCchange*  5% 

Generation of scales: Example subset S8,1: Aopt 0.86 

 Achange* 5% 

 MCCopt 0.73 

 MCCchange*  5% 

 

 

 

Figure 7.2: Relat ive frequency of c lass i f ication groups based on 
insertion strategies A-H in the fi rst i teration (left) and the best 
optimization iterat ion (r ight) during insertion strategy-based 
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optimization with the 91 l i terature scales.  The mean of the relative 
frequencies within a class i f ication group is shown for the f i rst 
iterat ion (Mean s t a r t) and for the best optimizat ion (Meanop t),  
indicating that through optimization, the FP group decreases in 
mean relat ive frequency while the TN group increases in mean 
re lative frequency. Strategies E and H are marked additional ly to 
guide the eye. TP: true positive; TN: true negative; FP: false 
positive; FN: false negative.  

During the optimization, both median validation and training MCC as 
well as external test set MCC of 91 models are increasing (Figure 7.3A, 
left). Their maxima approximately coincide, underpinning the usefulness 
of the validation MCC-based optimization procedure. While this median 
MCC of all models (including 1-91 classifiers) describes the general 
tendency of model improvement, it is also valuable to have a closer look 
on the improvement of the individual 91 models.  

During the optimization, both training and test MCC increase for most 
models, when 1 to about 80 classifiers are included (Figure 7.3B). 
However, models deteriorate at roughly >80 included classifiers. This 
said, the most important area is where the MCC is maximal (30-40 for 
the test set). Here, the optimization algorithm continuously improves the 
models with regard to training and test set MCC, where the last iteration 
shows highest MCC values for the individual models. To select the 
appropriate number of included classifiers, validation data is useful. The 
validation data of the optimized model generally follows the course of the 
external test data (Figure 7.3A, right). Their maxima do not coincide. 
However, choice of the best model with regard to validation MCC also 
produces a reasonable model for the prediction of test data with a test 
MCC of .65 at 48 included scales. Interestingly, the optimum number of 
included classifiers with regard to test MCC is 34 with an MCC of .70 
(Table 7.2), similar to an optimum of 29-30 included classifiers as 
described in our previous study with the basic sEVC (Vormittag et al., 
2020). 
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Figure 7.3 : Matthew’ s correlat ion coef f ic ient (MCC) during 
insertion strategy-based model  optimization. Scales used were the 
unmodif ied 91 l iterature scales . Median MCC are shown for training,  
validation,  and test data over optimization iterations (A, left) .  
Validation and test MCC are shown over number o f included 
class i f iers in the soft ensemble vote classi f ier (sEVC) (A, right) for 
the best model in the optimization procedure. The median abso lute 
deviat ion (MAD) of the validation MCC above and below the median 
validation MCC is visual ized with a shaded area.  Training and test 
MCC over number of included c lass i f iers are shown for the 
optimization iterat ions unti l the best i teration, where median 
validation MCC was highest (B) .  Optimization iterat ions are 
i l lustrated by a colormap, where dark blue represents the fi rst 
iterat ion and dark red the best iteration, highlighted by the black 
dots .  



7.3 Results and Discussion 

182 
 

7.3.2 Synthesis and Optimization of Amino Acid Scale Tables 

Another option to optimize the model relates to the amino acid scale 
tables. The target for such optimizations was seen in the feature values 

and amino acid composition in the 0. and 0/ groups. Adaptation of the 
scale tables was performed, in a way that amino acids predominant in 
the respective groups were altered in their scale table values to push 
observations that have been predicted falsely over the classification 
boundary, i.e. decision tree cut point. This is illustrated by the following 

example. Let us assume that 0. has a lower mean feature value than 

0/, and, for example, that valine has a higher frequency in 0. than 0/. 

Observations in 0. are classified positive but their data label is negative 

or insoluble. If we wanted observations of 0. to be classified rather 
insoluble, their feature value would have to be increased for false 
observations to cross the classification boundary. This said, the 
classification boundary is not static, but changes with alterations in the 
amino acid scale table. Therefore, small increments are made and scale 

improvement is monitored. Note that the aim is to increase 0. 

hydrophobicity, but decrease 0/ hydrophobicity. Considering that valine 

is more frequently observed in the 0. group, increasing valine’s 
hydrophobicity value in the scale would be beneficial, as it would increase 

the average 0. hydrophobicity value more than the average 0/ 

hydrophobicity value. If this is executed for all amino acids, the 0. 

feature value would ideally be increased and the 0/ feature value 
decreased, increasing overall correlation. 

This optimization procedure has been performed on the entire training 
dataset (384 observations) and equally sized subsets, where the number 
of subsets, and therefore synthesized scales, was 1-16, resulting in subsets 
with 384 to 24 training examples. Each of the optimization procedures 
was performed 20 times, resulting in 320 scale tables S[number of scales], [number 

of repetition]. For evaluation of the synthesized scales, the MCC of the 
external test set prediction at optimal number of classifiers as determined 
by validation (maximum validation MCC) is compared (Figure 7.4). This 
validation-based model selection is a useful strategy to select the optimal 
number of included classifiers and thus the model. Additionally, the 
maximum MCC of the external test set prediction is evaluated. Both 
metrics increase to a maximum from one to five generated scales, where 
the median of maximum test MCC is .71 and the median of test MCC 
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at maximum validation MCC is .70. From this maximum towards a 
higher number of training subsets and likewise number of synthesized 
scales, there is a tendency of decreased model performance. Also, best 
test MCC and test MCC at best validation diverge more, probably since 
training subsets become smaller and the probability of more 
unrepresentative scales being synthesized rises, thus potentially 
decreasing the power of validation for model selection. From this data 
and with the present dataset, it would be recommended to synthesize 
scales from five subsets, although most other scales also perform 
reasonably well.  

 

Figure 7.4 : Test set Matthew’ s correlation coef f ic ient (MCC) of 
synthesized scales. For each number of training subsets/synthesized 
scales, 20 repet it ions of scale generat ion were performed. Median 
and median absolute deviation (MAD) of best test set MCC and test 
set MCC of best model  by validation MCC are shown. 

The overall best scale table with regard to best test MCC at maximum 
validation MCC is S1,5 with test MCCvali,max=.77 (Table 7.3), which is 
significantly better than with literature scale tables with test 
MCCvali,max=.63. With respect to the 20 repetitions of scale synthesis, 
median test MCC at maximum validation MCC for one scale is worse 
than for five scales (Figure 7.4). The best scale table with five scales, 
S5,17, shows MCCvali,max=.75. For the best model by validation MCC, 
these scale tables show a test set accuracy of .86 and .88, respectively, 
corresponding to 155 and 158 correctly classified constructs in the test 
set of 184 observations.  
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The generation of subsets for scale synthesis was additionally 
investigated with subsets containing one insertion strategy each, 
amounting to eight different subsets. The median of maximum test set 
MCC and test MCC at maximum validation MCC were .67±.03 and 
.65±.03, respectively (data not shown). They were comparable to 
randomized training subset generation with eight subsets, showing a 
maximum test set MCC and a test MCC at maximum validation MCC 
of 0.66±0.04 and 0.65±0.04, respectively (Figure 7.4). Therefore, 
strategy-based generation of subsets for scale synthesis was not 
advantageous to random subset generation. 

 

Figure 7.5 : Training, validation and test sets Matthew’ s corre lation 
coef fic ient (MCC) of optimized (le ft) and original (right) 91 
l iterature hydrophobic ity scales . The shaded area represents the 
median abso lute deviation (MAD) during 1000-fo ld Monte Carlo 
cross-val idat ion.  

Optimization of the 91 literature scales with the same algorithm that 
synthesized scales as described above resulted in an improvement of 
training, validation and test set MCC over the whole model space 
(Figure 7.5). A greater rate during optimization was chosen (5%), as the 
lower rate employed for scale synthesis resulted in early optimization 
termination with no significant improvements in model performance 
(data not shown). 

7.3.3 Combination of the Optimization Procedures 

As both above-described optimization procedures tackle different 
challenges, it seems promising to combine these by adding an insertion 
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strategy-based optimization procedure after synthesizing or optimizing 
hydrophobicity scales. Strategy-based optimization of optimized 
literature scale tables results in similar trends but increased model 
performance compared to models with unmodified literature scale tables 
(compare Figure 7.3 and Figure 7.6). With optimized scale tables, the 
resulting MCC values are higher for the training, validation and test sets 
(Figure 7.6A). The maximum test set MCC and the test set MCC at 
maximum validation MCC are increased to 0.72 and 0.71, respectively, 
as compared to 0.70 and 0.65 before scale table optimization (test set 
performance data summarized in Table 7.2). Additionally, the 
performance of the model at very low and high numbers of included 
classifiers is benefitted, never falling below an MCC of 0.6 for the test set 
(Figure 7.6B). The number of insertion strategies in the false 
classification groups show similar trends as without scale table 
optimization, underlining that the insertion strategy-based optimization 
procedure is effective (Appendix E, Supplementary Material 
Figure S7.1).  

Table 7.2 : Performance data of se lected models  on the external test 
set . Best test set Matthew’ s Corre lation Coeffic ient (MCC) and test 
MCC of model with best val idation MCC in 1000-fo ld MC-CV are 
shown. *Accuracy is shown for the model with best val idat ion MCC. 
Best models’  performance data are written in bold. LS: Literature 
scales; SO: Strategy optimizat ion; LS op t :  Scales optimized with scale 
table optimization workflow; Sx ,y :  Generated scale table with x 
scales, optimization procedure y o f 20.  

 91 LS 91 LS,SO 91 LSopt, SO S1,5 S5,17 S8,1 S8,1 ,SO 

MCCmax  0.63 0.70 0.72 0.77 0.77 0.72 0.76 
MCCvali,max 0.63 0.65 0.71 0.77 0.75 0.72 0.71 
Avali,max* 0.81 0.83 0.85 0.86 0.88 0.86 0.85 
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Figure 7.6 : Matthew’ s correlat ion coef f ic ient (MCC) during 
insertion strategy-based model  optimization. Scales used were the 
optimized 91 l i terature scales (see also Figure 7.4) . Median MCC are 
shown for training, validation, and test data over optimizat ion 
iterat ions (A, left) .  Validat ion and test MCC are shown over 
number of inc luded classi f iers in the so ft ensemble vote c lass i f ie r 
(sEVC) (A, right) for the best model in the optimization procedure . 
The median abso lute deviation (MAD) of the val idat ion MCC above 
and below the median validation MCC is visualized by a shaded area.  
Training and test MCC over number of inc luded classi f iers  are shown 
for the optimization iterat ions unti l the best iterat ion, where median 
validation MCC was highest (B) .  Optimization iterat ions are 
i l lustrated by a colormap, where dark blue represents the fi rst 
iterat ion and dark red the best iteration, highlighted by the black 
dots .  
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Figure 7.7 : Matthew’ s correlat ion coef f ic ient (MCC) during 
insertion strategy-based model optimizat ion. Scales used were eight 
generated scales  from scale table set S 8 , 1 .  Median MCC are shown 
for training, validation, and test data over optimization iterations 
(A, left) .  Val idation and test MCC are shown over number o f 
included c lass i f iers  in the so ft ensemble vote classi f ier (sEVC) (A, 

right) for the best model in the optimization procedure . The median 
absolute deviation (MAD) of the val idat ion MCC above and below 
the median val idat ion MCC is visual ized by a shaded area. Training 
and test MCC over number o f inc luded c lass i f iers are shown for the 
optimization iterat ions unti l the best i teration, where median 
validation MCC was highest (B) .  Optimization iterat ions are 
i l lustrated by a colormap, where dark blue represents the fi rst 
iterat ion and dark red the best iteration, highlighted by the black 
dots . 
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Table 7.3 : Best f ive scale tables , measured by highest test set 
Matthew’ s Correlat ion Coeff ic ient (MCC) at maximum val idat ion 
MCC. Scale tables are centered and scaled to unit variance.  

 

As another example, the first set of scales generated from eight training 
subsets (S8,1) was tested with the strategy-based optimization algorithm. 
Figures 7.7A and B show that synthesized scales still can benefit from 
this optimization procedure resulting in higher MCC values for training, 
validation and test sets for most models. Compared to the 91 literature 
scales, these models perform 5% better with regard to validation accuracy 
and MCC (Table 7.1). Model test set MCC is increased for all models 
except for the sEVC including seven scales, which remains at a 
comparable test set MCC as before strategy-based optimization 
(Figure 7.7B), resulting in slightly decreased test MCC and accuracy at 
best validation MCC (Table 7.2). This shows that an improvement in 
median performance of models does not necessarily result in an improved 
prediction outcome. Additionally, well-performing scale tables such as 
S1,5 and S5,17 were tested with the strategy-optimization workflow. 
However, strategy-based optimization failed to improve model 
performance using these scales, suggesting that with these scales, 
systematic misclassification based on insertion strategies is not an issue. 
This in turn shows, that this systematic misclassification can be reduced 
by the use of other scale tables, and not only by the strategy-based 
optimization. This contradicts the assumption that insertion strategy-
based misclassification is a 3-D-specific effect that cannot be captured by 

 1 scale 3 scales 5 scales 

 S1,5 S1,20 S3,3 S3,16 S5,17 

MCCvali,max/ 
Amino acid 

0.77 0.76 0.76 0.76 0.75 

A -0.320 0.092 1.087 -0.088 -0.281 1.371 -0.161 -0.056 0.847 -0.143 0.493 0.784 0.418 
R 0.168 0.312 0.454 0.867 0.201 -0.122 -0.460 0.194 -1.902 -0.845 -1.492 0.044 -0.306 
N -0.668 -0.017 0.046 1.390 0.217 -0.403 -0.519 -1.132 0.050 0.377 -1.687 1.458 -1.545 
D -0.751 -1.758 -0.771 -2.164 -0.555 -0.817 -0.375 -1.697 0.159 0.165 -0.368 -0.836 0.724 
C 0.182 1.395 0.801 -0.660 2.344 2.143 -1.505 -1.437 -0.719 0.893 0.549 0.205 0.302 
Q 0.410 0.256 -0.263 0.240 0.009 -0.898 0.285 0.181 0.015 0.386 0.913 0.047 -0.444 
E -0.345 -0.656 -0.283 -0.942 -0.318 -0.396 -0.198 -0.298 -0.439 -0.444 -0.984 -0.744 -0.262 
G 0.422 0.284 -0.289 -0.563 -0.190 -1.103 -1.659 -1.955 -0.073 1.105 1.775 2.545 0.446 
H -0.552 -0.659 -2.698 0.134 -0.891 -2.272 0.337 0.884 1.179 -1.168 -1.083 -0.052 -1.557 
I -0.321 0.795 0.271 0.059 -0.316 0.446 -0.310 -0.338 0.982 0.223 0.128 -1.003 -0.436 
L 0.090 -0.118 -0.008 0.298 -0.478 -0.010 -0.276 0.371 -0.789 -1.022 0.432 -0.893 -0.393 
K 0.383 0.269 -0.286 -0.014 0.018 -0.266 0.216 0.034 -1.569 1.379 -0.576 -0.050 0.505 
M -0.730 -0.445 -0.601 -0.904 -2.212 -0.072 -1.271 -0.301 1.773 -2.126 -0.550 -1.816 1.239 
F 3.038 -0.027 0.944 0.552 -0.294 1.117 0.822 1.835 -0.206 -0.410 0.055 -0.426 2.380 
P 0.747 1.745 -0.576 1.395 0.980 0.227 0.395 1.206 0.751 0.865 -0.661 0.760 1.058 
S 0.645 0.077 -1.055 0.426 0.385 -0.687 0.475 0.367 -0.062 -0.027 1.154 -0.702 -0.276 
T -1.853 -2.579 -0.003 -1.159 -0.334 -0.107 1.314 1.178 1.089 -1.397 0.735 -0.759 -0.249 
W 0.604 1.002 2.331 1.474 2.216 1.450 2.898 0.673 0.224 1.988 0.980 0.854 -0.010 
Y -1.469 -0.766 0.743 -1.394 -0.766 -0.022 -0.204 -0.498 -1.803 0.030 -1.130 -0.281 -1.918 
V 0.320 0.797 0.157 1.054 0.267 0.421 0.195 0.788 0.491 0.171 1.317 0.863 0.326 



7 Optimization of the cVLP solubility model 

189 
 

an amino acid sequence-based approach (Vormittag et al., 2020). The 
strategy-based optimization could theoretically be performed for all 

20×16 generated scale sets, but would go beyond the scope of this 
research.  

7.3.4 Correlation of Scales within Scale Tables 

As pointed out earlier, the explained variance of the first principal 
component (PC) from a principal component analysis (PCA) on the 91 
literature scales revealed that already 69% of the variance is explained 
with one single PC (Vormittag et al., 2020). This indicates that a 
significant degree of correlation between the 91 literature scales is 
present. After the optimization procedure, this explained variance 
remained at a comparable level of 66% (data not shown). The explained 
variance of the synthesized scale tables’ first PC after PCA varied from 
100% to 20% (Figure 7.8). An explained variance of 100% is predefined 
for the situation where only one scale was generated from the training 
set, as the first PC equals this scale. From 2 to 16 scales, the explained 
variance is below the above- mentioned value for the literature scales. It 
can therefore be deduced that the correlation between synthesized scales 
is reduced as compared to literature scales. This can be interpreted as 
increased orthogonality, which was expected to increase model 
performance of the sEVC. Decreased correlation between scales could 
explain the improved performance of synthesized amino acid scales in the 
ensemble of classifiers, as described above. PCA of the group of scales 
synthesized from dataset division by the eight insertion strategies reveals 
that with 28.3%±3.3% of explained variance, this approach is comparable 
to random division into eight insertion strategies with 31.6%±3.0% (data 
not shown). This suggests that the correlation between generated scales 
can probably not be reduced by splitting the dataset by the insertion 
strategies. As discussed above, model performance did not improve with 
this subset generation strategy either. 
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Figure 7.8 :  Explained variance by fi rst principal component o f 
synthesized hydrophobicity scale tables. For each number o f 
synthesized scales,  corresponding to the number o f training subsets  
that were generated for scale synthes is , the median of 20 repetitions 
is shown. The shaded area represents the median absolute deviation 
(MAD). 

7.3.5 Amino Acids with Characteristic Hydrophobicities 

The three best literature scales by feature selection in 1000-fold MC-CV 
show very similar hydrophobicity values (Figure 7.9). This is partly the 
case because they are either related to each other or because they were 
generated from similar original scales (Eisenberg et al., 1982; von Heijne 
& Blomberg, 1979; Zviling et al., 2005). All synthesized scales taken 
together show a rather broad distribution around zero, with few more 
prominent exceptions, such as valine (V) or tryptophan (W). 
Interestingly, the three best synthesized scales also seem to agree quite 
well on most of the amino acids’ hydrophobicities, which are, however, 
for many examples different from the best literature scales (Best 25 
individual scales shown in Appendix E, Supplementary Material Table 
S7.2). The largest difference can be seen in the arginine (R) 
hydrophobicity values. The literature scales’ low arginine value, 
indicating lowest hydrophobicity, make them exceptional with respect to 
worse-performing literature scales, suggesting an important role of 
arginine for VLP assembly and solubility (Vormittag et al., 2020). This 
is not confirmed with the synthesized amino acid scales. This being said, 
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it is also not contradicted. To be able to interpret what the synthesized 
amino acid scale tables mean, one has to consider the mechanism behind 
the optimization algorithm. In the algorithm, the scales are analyzed for 
misclassification, and the resulting feature values of misclassified 
observations. On the basis of the amino acid frequency distribution 
within the classification groups, the hydrophobicity scale is optimized, 
thus fitting the scale to the training data of 384 observations through the 
MC-CV-based procedure. Therefore, the synthesized scales can be 
regarded as hydrophobicity scales that describe the cVLP solubility 
problem well. Their application to other molecules or biophysical data 
would yet have to be probed. (A small case study regarding other 
biophysical data is shown below.) The discrepancy between the 
hydrophobicity values, for example for arginine, is probably due to the 
dominance of other amino acids with respect to their influence during the 
optimization procedure. This underpins the usefulness of approaching the 
solubility problem both from a physicochemical and statistical 
perspective. Tryptophan plays a very important role being one of the 
most hydrophobic amino acids in the synthesized scales, while its 
hydrophobicity is less pronounced for literature scales. Its high 
hydrophobicity value contributes to insoluble classification. In 
accordance with this finding, amino acids with large side chains, such as 
tryptophan, have been described to be problematic for HBcAg cVLP 
assembly (Karpenko et al., 2000).  

Methionine (M) and histidine (H) show low hydrophobicity values in the 
best three synthesized scales, but have a median hydrophobicity close to 
zero considering all scales. A one-level decision tree based on histidine 
content was constructed on the entire dataset and showed a low MCC of 
0.17 (data not shown), indicating that its low hydrophobicity might be 
an artifact of the random scale initiation along with its irrelevance to 
classify the observations. A decision tree on methionine resulted in an 
MCC of 0.41. However, observations with large methionine content 
would be rather classified insoluble with this decision tree. This speaks 
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for a high hydrophobicity, as opposed to what can be seen for the three 
best synthesized scales. 

 

Figure 7.9 : Median and median absolute deviation (MAD) of amino 
acid hydrophobicity for al l synthesized, the three best synthesized,  
and the three best l i terature scales . The hydrophobicity scales are 
centered and scaled to unit variance. For comparison purposes , the 
sign of hydrophobicity scales was changed so that tryptophan (W) 
hydrophobic ity was always pos itive . Amino acids are represented 
with one-letter code. The MAD is visualized by a shaded area.  

In summary, model performance was significantly enhanced by the 
synthesis of scales. The above- described cases yet underline the potential 
to further optimize the procedure for scale synthesis. However, when 
scales are increasingly optimized, it is important to bear in mind the 
danger of overfitting.  

7.3.6 Redesigning the Soft Ensemble Vote Classifier for Estimation 

of Ammonium Sulfate Concentrations for VLP Precipitation 

Apart from cVLP solubility, there is a variety of other biophysical 
properties that are interesting with regard to cVLP processing. In a 
previous study, we investigated precipitation and redissolution of a cVLP 
candidate (Hillebrandt et al., 2020). In this work, ammonium sulfate 
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concentration to precipitate the cVLP is determined in a screening 
experiment before running the process. The screening method to 
determine optimal ammonium sulfate concentrations for precipitation of 
the cVLPs was applied to ten cVLPs, all constructed with insertion 
strategy H, contained in the present dataset. As an example model, 
synthesized scales from eight training subsets were fitted to solubility 
data of all observations with insertion strategy H. Synthesized scales were 
used instead of literature scales, as these were generated based on the 
model space of interest. Eight models were created including 1-8 of the 
scales sorted by feature importance. Instead of discretizing the prediction 
of the models, their continuous value was retrieved. Thus, the individual 
classifiers become regression models. However, we will still call them 
‘classifiers’ in this section for consistency. In principle, this continuous 
prediction value should be positive for all constructs as they had to be 
soluble to be investigated experimentally for precipitation behavior. The 
rationale behind using the continuous value is that constructs for which 
the classifier is uncertain have biophysical properties that are actually 
close to insolubility and therefore probably easier to precipitate. 

The ammonium sulfate concentration required to precipitate the 
investigated ten constructs was mostly between 0.5 M and 0.7 M, except 
one concentration with 0.1 M and another concentration with 1 M 
ammonium sulfate (SDS PAGE scans not shown). Linear regression with 
an sEVC based on scales from set S8,1 including all eight synthesized 
scales resulted in an ordinary R2 of 0.69. This indicates a linear 
correlation between the continuous solubility prediction and the 
ammonium sulfate concentration required for precipitation (Figure 7.10). 
Confidence bounds are wider at the edge data points of 0.1 M and 1 M 
ammonium sulfate. This is due to a higher data density in the middle 
region. The linear fit almost crosses the y-axis at 0 M ammonium sulfate 
concentration, which, as discussed above, reflects a behavior of this model 
that would be expected. The construct with lowest continuous solubility 
prediction value precipitates at low ammonium sulfate concentrations of 
only 0.1 M. Interestingly, it would be classified as insoluble by the 
algorithm, while in fact being a soluble construct. Its closeness to the 
solubility classification border is probably the reason for the low 

associated precipitating ammonium sulfate concentration.  
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Figure 7.10 : Relationship between the continuous solubil i ty 
prediction value and optimal ammonium sulfate concentration for 
precipitation of ten constructs. Eight scales were used, which were 
generated with a scale table optimization procedure (Set S 8 , 1) .  
Goodness o f f i t is indicated by 95% confidence bounds and R 2 .  

It is important to note that the dataset of ammonium sulfate 
concentrations is comparably small. This regression study therefore 
serves as a proof-of-concept, demanding a larger dataset for confirmation 
of the results and for refinement of the method. With the limited amount 
of data available, it cannot be deduced which number of included 
classifiers is optimal. While for this set of scales S8,1, it seems that 
increasing classifier numbers boost regression performance (see also 
Appendix E, Supplementary Material Figure S7.3), the use of other scales 
shows inverse trends, where using the first (and according to feature 
selection best) classifier results in the best R2, e.g. set S9,1 (data not 
shown). This indicates that regression for the estimation of required 
ammonium sulfate concentration for precipitation of cVLPs would 
benefit from a validation procedure, realizable with larger datasets. 
Additionally, the relationship between the continuous prediction value 
and ammonium sulfate concentration was assumed to be linear, due to 
the limited data available. However, this might also be inappropriate, 
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which again could be answered with a larger dataset. Not all 16x20 scale 
tables have been tested, since it was deemed inappropriate given the 
small dataset. Finding the right set of scales by testing all 320 scale table 
sets for 10 experimental data points can quickly lead to overfitting. The 
first scale table of the set with eight scales has been chosen, as it 
represents an average number of generated scales. From some additional 
tests with other scale tables, it might be assumed that a small number 
of generated scales perform worse than a greater number (data not 
shown), which would have to be confirmed with a larger dataset of 
ammonium sulfate concentration data.  

7.4 Conclusion and Outlook 

In this study, we have developed and evaluated two different 
optimization algorithms to improve the performance of an sEVC for the 
prediction of cVLP solubility based on amino acid sequences and 
hydrophobicity scale tables. The dataset in this study consisted of 568 
chimeric HBcAg constructs, created by insertion of 71 different foreign 
peptide sequences using 8 different insertion strategies. The sEVC 
algorithm was originally developed to classify based on 91 literature 
hydrophobicity scales but showed systematic misclassification for some 
of the insertion strategies. This was tackled by optimizing the prediction 
specific for these insertion strategies, resulting in a strategy-specific 
increase in validation accuracy and MCC of up to 12% and 8%, 
respectively. The second optimization algorithm modified amino acid 
scale tables and was also used to synthesize 320 different hydrophobicity 
scale table sets showing an MCC and accuracy of up to .77 and .88, 
respectively, on the external test set of 184 HBcAg constructs. The 
presented models are therefore better than other protein solubility 
models, typically reporting accuracies of about .60 to .80. A combination 
of both procedures could elevate the prediction performance data of 
worse-performing synthesized scales to similar levels. Finally, extension 
of the model to regression of the required ammonium sulfate 
concentration for precipitation of ten cVLPs was evaluated, and the 
linear correlation showed a promising R2 of .69. The results of this study 
encourage to further explore the model for other biophysical parameters 

and molecules. 
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 Insertion strategy-based optimization of optimized literature 
hydrophobicity scales 

 Insertion strategy-based optimization of synthesized 
hydrophobicity scales 

 Ninety-one literature hydrophobicity scales 
 Twenty-five best individual synthesized hydrophobicity scales 
 Relationship between continuous solubility prediction value and 

optimal ammonium sulfate concentration for precipitation of ten 
constructs 
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8 General Discussion and Conclusion  

The goal of this thesis was the development of data-driven approaches 
to advance process development for biopharmaceutical production of 
virus-like particles (VLPs). Process analytical technology (PAT) was 
implemented in process steps for downstream processing (DSP) of VLPs 
(Chapter 3). A tailored DSP unit operation was developed that integrates 
three different size-dependent separation techniques (Chapter 5). 
Prediction of process and product parameters was realized with different 
models, ranging from amino acid sequence data-based models to three-
dimensional (3-D) structural analysis (Chapters 4, 6, and 7). The 
developed data-driven concepts for process development resulted in 
efficient and well-controlled processes and well-performing models. 

VLP dis- and reassembly are unique VLP-specific process steps. In this 
thesis, VLP reassembly was realized by increasing the ionic strength and 
lowering the pH from the disassembly solution by buffer exchange 
applying diafiltration (DF) on a cross-flow filtration (CFF) unit. 
Chapter 3 describes the implementation of an on-line measurement loop 
into a CFF unit to monitor VLP reassembly. The on-line measurement 
loop comprised an ultraviolet and visible (UV/Vis) absorbance 
spectrometer and a light scattering photometer. The changes in 
quaternary structure from hepatitis B core antigen (HBcAg) homodimers 
to VLPs consisting of 180-240 HBcAg molecules was detected with static 
and dynamic light scattering. The maximum of the static light scattering 
signal coincided with the maximum VLP concentration. Therefore, light 
scattering was a good indicator of the end of the process. This is 
important, as a degradation phase was observed after reaching the 

8 
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maximum VLP concentration. For the first time, it was shown that the 
VLP reassembly process by CFF can be monitored and potentially be 
controlled by PAT based on spectroscopic methods. Orthogonal 
information on the assembly process was obtained from second derivative 
analysis of acquired UV/Vis spectra. Information from the second 
derivative spectra was used to track the changes in the solvatization of 
the aromatic side chains of tryptophan and tyrosine. During the 
reassembly processes, measures derived from second derivative 
spectroscopy were in accordance with the assembly reaction and light 
scattering data. Especially the a/b-ratio, the metric describing tyrosine 
solvatization, resulted in a trend timely correlating with the off-line VLP 
concentrations. Tyrosine 132 is known to be buried in a hydrophobic 
pocket upon assembly, explaining the measurement results. To optimize 
the VLP reassembly by CFF, the transmembrane pressure (TMP) was 
varied in the processes. It influenced the process time, where a lower 
TMP led to longer process times, which in turn led to increased 
aggregation. Another outcome of this study was that different VLPs had 
different assembly end points, where the VLP with strongest negative 
zeta potential showed the latest end point. The reasons for this were seen 
in the larger repulsion that had to be overcome by increasing the ionic 

strength. 

Physicochemical properties, such as the zeta potential, influence process 
steps, as for example seen in Chapter 3. Experimental determination of 
these properties requires pure material, which is scarce in early 
development. The prediction of these physicochemical properties by 
computational methods is therefore useful. In Chapter 4, a case study is 
shown, which predicts the zeta potential of the VLPs that were 
investigated in Chapter 3. The prediction was based on in silico 

extraction of surface charge from chimeric HBcAg dimer 3-D structures. 
These dimer structures were not previously available and had to be 
generated. The focus of Chapter 4 is the automated and high-throughput 
generation of 3-D structures from unknown molecules based on similar 
template structures. In this case, this was the known structure of a C-
terminally truncated HBcAg molecule. After automated structure 
cleaning and dimer extraction, homology models were created and then 
energy minimized. The resulting structures were simulated in a 3-step, 
data-dependent MD simulation that was terminated when a Window of 
Stability (WoS) of 2 ns was reached. The median of the surface charge 
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of structure snapshots in the WoS lead to more robust results than 
extraction of the single last simulation snapshot. The workflow was 
computationally inexpensive, so that it could be run on an ordinary 
desktop computer requiring a reasonable computational time of 6.6-
37.5 h per chimeric HBcAg dimer. Dimer surface charge and 
experimental zeta potential showed strong linear dependence, but would 
benefit from a larger dataset to allow further conclusions about this 
correlation. Overall, the developed workflow was shown to be robust, 
computationally efficient, and automated, and therefore required 
minimal user interaction. 

Apart from VLP-specific process steps, purification of VLPs often faces 
challenges when applying traditional biopharmaceutical DSP methods, 
which were established for other products, such as for monoclonal 
antibodies. One of these challenges is the reduced binding capacity in 
bind-and-elute chromatography compared to traditional 
biopharmaceuticals, such as monoclonal antibodies. This is mainly due 
to the VLPs’ large size. Their size, however, not only poses challenges 
but also opportunities. Precipitation and re-dissolution, filtration, and 
size-exclusion chromatography (SEC) profit from the size difference to 
typical impurities, resulting in potentially better selectivity. In Chapter 
5, the integration of these three technologies was investigated, resulting 
in high purities, yields and productivities compared to a centrifugation-
based reference process. The reason for the increased purity was partly 
seen in an intense wash step of precipitated material in DF mode. Purities 
and yields were comparable or superior to literature VLP processes. The 
hypothesis that VLP processing can benefit from combining different 
size-selective methods in one unit operation was therefore proven with 
regard to purity, productivity and yield. Consistent with a data-driven 
approach to process development, ultraviolet (UV) absorbance of the 
product-containing permeate stream was measured during re-dissolution. 
Monitoring of the permeate line allowed to identify product-containing 
fractions. Subsequently, selective pooling could serve to adjust 
concentration and purity of the recovered material.  

While in the above-mentioned study the solubility was reduced 
artificially, low solubility of recombinantly expressed proteins is a typical 
challenge in biopharmaceutical product development. This also applies 
to chimeric VLP (cVLP) expression in various hosts, such as Escherichia 
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coli or yeast. The determination of a cVLP candidate’s solubility is 
typically empirical and is therefore time-consuming and laborious. In 
Chapter 6, a machine learning framework was developed to predict cVLP 
solubility based on amino acid sequences and 91 different hydrophobicity 
scales. The hydrophobicity scales were used to derive hydrophobicity 
features using the candidates’ amino acid sequence. The model was a soft 
ensemble classifier (sEVC), which was an ensemble of one-level decision 
trees, each based on an individual hydrophobicity scale. The sEVC was 
trained on training sets of different sizes (24-384). Its accuracy and 
Matthew’s correlation coefficient (MCC) were comparable or superior to 
reported literature solubility model performance data. Stratified 
sampling and feature selection were beneficial for model construction. 
Feature selection also proved useful for interpretation of the model, 
suggesting a special role of arginine for VLP assembly. 

Chapter 7 is built on the foundation of Chapter 6, aiming to optimize 
the model performance, to derive new hydrophobicity scales, and to 
extend the model to function as a regression tool. The first implemented 
optimization strategy was based on the systematic misclassification 
observed in Chapter 6. Certain insertion strategies, defining where in the 
HBcAg molecule the foreign epitope is inserted and which amino acids 
are deleted, were systematically over- or underestimated with regard to 
their solubility. This information was used in an iterative process to 
modify the sEVC’s prediction based on this observation within the 
training set, thus increasing overall model performance. A second 
optimization strategy was based on the amino acid frequency of falsely 
classified constructs and the model’s classification boundary. This 
strategy was used to optimize existing scales and to synthesize novel 
hydrophobicity scales from random vectors. The best model was created 
with synthesized hydrophobicity scales, resulting in an MCC of .77 
(accuracy of .88). Since hydrophobic interaction drives precipitation, the 
concept of the sEVC was redesigned to be applied as a regression tool for 
the prediction of ammonium sulfate concentrations required for VLP 
precipitation. Initial tests with ten experimental data points were 
promising, showing an R2 of .69 for the correlation of experimental data 
with the prediction of the regression tool. The concept of the developed 
sEVC based on amino acid sequences and hydrophobicity scales therefore 
seems promising for the prediction of other hydrophobicity-related 
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biophysical properties and may be applied to other cVLPs or even 
different classes of molecules. 

In conclusion, this thesis presents an array of data-driven approaches, 
including machine learning, 3-D structure generation, and PAT, which 
will aid in VLP molecular and process design and to efficiently control 
VLP processes. Additionally, it presents advanced methods for capture, 
purification, and reassembly of VLPs, which are competitive or superior 
to literature processes. This thesis is therefore a contribution to a 
potential platform process, implementing state-of-the-art data-driven 

methods.
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9 Outlook 

The potential of virus-like particles (VLPs) has been shown in various 
pre-clinical and clinical studies. Their application ranges from 
immunotherapy against Malaria, Alzheimer’s disease, and cancer, to the 
utilization of VLPs as cargo delivery vehicles for proteins and nucleic 
acids. One of the major bottlenecks for VLP development is the provision 
of VLP material for these studies, which is often realized in inefficient 
lab-scale processes. The absence of VLPs in big pharma – apart from few 
products – is one reason contributing to this issue. The breakthrough of 
monoclonal antibodies (mAbs) on the pharmaceutical market has been 
reached through successful initial products, trust in the safety and 
efficacy of antibodies, and drastic reduction in development and 
production costs (Vertès & Dowden, 2015). The reduction in 
development and production costs is largely due to the establishment of 
a platform process (Kelley, 2009). This platform process enabled 
researchers to develop and produce mAbs in sufficient quantities for in 

vitro and animal testing reducing the effort in the pre-clinical 
development phase. The comparably less advanced field of VLPs will 
need this platform process to achieve a higher degree of success on the 

pharmaceutical market.  

VLP processing often still relies on techniques that are either tailored to 
other molecules, such as mAbs, or not easily scalable, such as 
ultracentrifugation. The future of VLP processing will therefore see an 
increase in the application of methods that are tailored to VLP 
processing. Due to their large size, filtration, precipitation and re-
dissolution, and size exclusion chromatography are promising methods 

9 
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for the purification of VLPs. The reason behind this is that the large size 
is a property which is common for all VLPs and which discriminates 
them from most impurities, leading to good selectivities. Therefore, these 
methods will probably be increasingly used in VLP processes and may 
lay the foundation for a VLP platform process. Application of the 
methods presented in this thesis to other VLPs would help evaluate their 
potential as components of a platform process. 

Consistent with the regulatory authorities’ requirement for quality by 
design – i.e. building the quality into the processes instead of testing it 
into the product – the process of establishing a platform process should 
be accompanied by the implementation of state-of-the-art process 
analytical technology (PAT). The establishment of sophisticated PAT 
tools for VLP-specific process steps, such as presented in this thesis for 
VLP reassembly, is an important starting point in this direction. 
However, the application of simple PAT tools, such as monitoring of UV 
absorbance at a single wavelength, should not be disregarded, as they 
provide a simple means for process monitoring and control. When 
processes, such as the VLP reassembly, require prompt action (e.g. at 
the end of the assembly reaction), at-line PAT methods, such as high-
performance liquid chromatography, are inadequate to fulfill the 
requirements to a data-based process control tool. Therefore, (near) real-
time spectroscopic on-line or in-line techniques will be predominantly 
applied to processes, where a quick decision has to be made. Hereby, light 
scattering, second derivative analysis of ultraviolet and visible (UV/Vis) 
spectra, and partial least squares modeling have the potential to be 
applied to other VLPs than examined in this thesis and to different 
process steps, such as disassembly.  

Protein engineering is seeing the advent of machine learning and other 
data scientific methods. When vast libraries of physicochemical data, 
structural data, and process data become available, the importance of 
these data scientific methods will grow. The application can be quite 
diverse and range from predictive models, to soft sensors, to data 
analytical applications. Soft sensors are based on the fusion of advanced 
data analytical techniques and sensor data and have the potential to 
efficiently steer processes in real-time. Predictive models can point out 
promising VLP candidates early on or reduce the design space of 
processes, such as the ionic strength in VLP reassembly. The machine 
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learning framework developed in this thesis could be applied to predict 
different process-relevant properties, such as solution viscosity or 
retention times in chromatography. Statistical analysis of process data 
within a machine learning framework or with other techniques, such as 
simple cluster algorithms will aid in understanding the system better and 
provide a basis to make decisions about molecular design and the design 
of better processes.  

The application of VLPs as cargo delivery vehicles will be evaluated in 
detail with the onset of the gene therapy era. For a breakthrough, gene 
therapy would benefit from a reproducible formulation step. This 
includes packaging of the nucleic acid material, which is susceptible to 
degradation. VLPs – although some VLPs are too small for the packaging 
of large nucleic acids – seem promising vehicles, as they are better 
understood than lipid based nanoparticles, would act close to their actual 
function (of delivering viral nucleic acids), are stable upon dilution, and 
their surface can be modified for targeted delivery (Rohovie, Nagasawa, 
& Swartz, 2017; Sandra, Khaliq, Sunna, & Care, 2019). The realization 
of their potential will rely on the development of tailored downstream 
processing unit operations which include monitoring techniques to speed 
up development and increase process understanding. 

In summary, the following years will see an increasing diversification of 
the application of VLPs due to their great versatility. Selection and 
combination of adequate computational and physical process tools will 
greatly advance the field of VLPs in the biopharmaceutical industry, 
especially by paving the way to a platform process that may form the 
basis for a swift, flexible, economic, and efficient VLP process 
development.
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Abbreviations 

(NH4)2SO4 ammonium sulfate 
3-D three-dimensional 
AEX anion exchange chromatography 
ANN artificial neural networks 
CFF cross-flow filtration 
cVLP chimeric virus-like particle 
DAD diode array detector 
DF diafiltration 
DLS dynamic light scattering 
DNA deoxyribonucleic acid 
DSP downstream processing 
DTT dithiothreitol 
DV diafiltration volumes 
E. coli Escherichia coli 

0/  false negative 

0.  false positive 
GUI graphical user interface 
HBcAg hepatitis B core antigen 
HBV hepatitis B virus 
HCP host cell protein 
HPLC high-performance liquid chromatography 
HPV human papillomavirus 
HT  high-throughput 
HT-CGE high-throughput capillary gel electrophoresis 
HTS high-throughput screening 
mAb monoclonal antibody 
MAD median absolute deviation 
MALS multi-angle light scattering 
MCC Matthew's correlation coefficient 
MC-CV Monte Carlo cross-validation 
MD molecular dynamics 
MIR major immunodominant region 
mmSEC multimodal size-exclusion chromatography 
mPES modified polyethersulfone 
mRNA messenger ribonucleic acid 
MSE mean square error 
MuPyVP1 murine polyomavirus protein 1 
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MWCO molecular weight cut-off 
P&ID piping and instrumentation diagram 
PAT process analytical technology 
PC principal component 
PCA principal component analysis 
PCC Pearson's correlation coefficient 
PEG polyethylene glycole 
PES polyethersulfone 
PLS partial least squares 
PRESS predictive residual error sum of squares 
QELS quasi-elastic light scattering 
RF random forest 
rms root mean square 
RMSD root mean square deviation 
RMSECV root mean square error of cross-validation 
RT room temperature 
SEC size-exclusion chromatography 
sEVC soft ensemble vote classifier 
SLS static light scattering 
SVM support-vector machine 
TEM transmission electron microscopy 
TMP transmembrane pressure 

�/  true negative 

�.  true positive 
UF ultrafiltration 
UF/DF ultrafiltration/diafiltration 
UHPLC ultra high performance liquid chromatography 
USP upstream processing 
UV ultraviolet 
UV/Vis ultraviolet and visible 
VLP virus-like particle 
WoS Window of Stability 
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Amino Acid Codes 

Amino Acid Three-Letter Code One-Letter Code 

Alanine Ala A 
Arginine Arg R 
Asparagine Asn N 
Aspartic Acid Asp D 
Cysteine Cys C 
Glutamine Gln Q 
Glutamic Acid Glu E 
Glycine Gly G 
Histidine His H 
Isoleucine Iso I 
Leucine Leu L 
Lysine Lys K 
Methionine Met M 
Phenylalanine Phe F 
Proline Pro P 
Serine Ser S 
Threonine Thr T 
Tryptophan Trp W 
Tyrosine Tyr Y 
Valine Val V 
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Appendix A: Supplementary Material for Chapter 3 

 

S3.1 Calculation of Local Hydrophobicity Around Aromatic Amino 

Acids 

The local hydrophobicity around tryptophan and tyrosine was assessed by 
performing a second derivative on the ultraviolet and visible (UV/Vis) spectra and 
interpolating the resulting data. An interpolated derivative spectrum is shown in 
Supplementary Figure S3.1. The spectrum is annotated with the tryptophan 
minimum, the a-value, and the b-value. The a and b values are used for calculating 

the a/b-ratio by dividing the former through the latter 

 

Figure S3.1 : An interpolated second derivative spectrum of virus- l ike particle  
A is shown. The tryptophan (Trp) minimimum, the a-value,  and the b-value 
are marked.  

 

S3.2 Reversed-Phase Chromatography 

The purity of the stock solutions was assessed by reverse-phase chromatography 
based on the absorbance of the eluting species at 280 nm. The stock solutions 

were analyzed with a Waters Acquity BEH300 C4 1.7 µm column (Waters 
Corporation, Milford, US) on an Ultimate 3000 RS ultra high-performance liquid 
chromatography (UHPLC) system consisting of a Pump HPG-3400RS, an 
Autosampler WPS-3000TFC, a Column Compartment TCC-3000RS, and a 
Diode Array Detector DAD-3000 controlled by Chromeleon version 6.8 SR15 
(all Thermo Fisher Scientific, Waltham, US). The run duration was 6.8 min with 
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a flow rate of 0.45 mL/min at a temperature of 80 °C with solvent A as 0.1% 
trifluoroacetic acid (TFA) in water and solvent B as 0.1% TFA in acetonitrile. 
Equilibration was done at 5% B, and a gradient of 4.7 min was run from 23.5% 
to 63.5% B. The column was stripped with 95% B for 0.5 min and then 

reequilibrated at 5% B for 1.3 min. 2 µL were injected for each analysis. Samples 
were analyzed in triplicates. The purity of the stock solutions was calculated as 
the percentage of absorbance at 280 nm of the respective hepatitis B core antigen 
(HBcAg) construct of the total absorbance of all eluting species. 

 

S3.3 Cross-Flow Filtration (CFF) Process Progress 

For interested readers, the permeate mass over time of the different processes is 
shown in Supplementary Figure S3.2. 

 

Figure S3.2 : In the top row, the permeate mass over process t ime is shown. 
The bottom row shows the UV absorbance at 280 nm. VLP, virus- l ike part icle, 
UV, ultravio let.  
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Appendix B: Supplementary Material for Chapter 4 

S4.1 Quality Parameters 

Quality Z-score for each intermediate structure and WoS obtained in the proposed 
structure preparation pipeline is defined as the mean value of three separate WHAT 
IF parameters. The separate values are shown in Figure S4.1 for each intermediate 
structure and WoS for each VLP construct. 

Figure S4.1 :  Overview of WHAT IF quali ty factors  for the template , 
homology structure, curated structure , window of stabil i ty (WoS) without 
H++ and the YASARA2 force f ie ld (“ WoS w/o H++”), the prepared structure , 
WoS obtained with H++ and the AMBER03 force fie ld (“ WoS A03”) , and WoS 
obtained with H++ and the YASARA2 force fie ld (“ WoS”) . WHAT IF quali ty 
factors 3-D packing (QUACHK, black),  Ramachandran Z-score (RAMCHK, 
dark gray) and backbone conformation (BBCCHK, l ight grey) (Krieger et al . ,  
2009). A dashed l ine is used to guide the eye between the di fferent values.  
VLP, virus- l ike partic le.  

Figure S4.1 shows 3 quality parameters for each VLP construct for each 
intermediate structure and WoS obtained with the proposed 3-D structure 
preparation workflow. The backbone parameter shows a decrease from the template 
to the homology model for each VLP structure. The backbone quality parameter 
value remains stable for all VLP constructs and obtained structures, except for an 
increase seen at VLP B for WoS A03. The 3-D packing normality parameter also 
shows comparable trends for all VLP constructs. Here, a decrease is seen from the 
template to the homology model and an increase for WoS w/o H++ and WoS. The 
Ramachandran quality parameter shows fluctuation between intermediate 
structures and MD simulation WoS. The fluctuations are similar between VLP 
constructs. The lowest Ramachandran quality parameter is found for WoS A03, 
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followed by the curated, prepared and template structure. The homology structure, 
WoS w/o H++, and WoS show an increase of the Ramachandran quality 

parameter. 

S4.2 Reproducibility of Simulation 

To determine the reproducibility of the proposed protein 3-D structure preparation 
pipeline, all VLP constructs were simulated on two different computers using H++ 
computed pKa values and the YASARA2 force field. The hardware setup of the 
second computer was similar, using a Windows 10 computer with an Intel i7-6700 
CPU and a GeForce GTX 1080 GPU. Reproducibility is evaluated based on 
obtained structure quality parameters, RMSD course during MD simulation, and 
correlation between the subsequent extracted surface charge descriptor and 
experimental zeta potential data. Figure S4.2 shows the quality Z-score plot for all 
intermediate structures and WoS obtained with the proposed structure preparation 
pipeline. All data is similar to the data presented in the main research article, 
except the WoS which was obtained using a different computer.   

 

Figure S4.2 :  Overview of qual ity Z-scores for the template,  homology 
structure,  curated structure,  window of stabil ity (WoS) without H++ and the 
YASARA2 force fie ld (“ WoS w/o H++”),  the prepared structure, WoS obtained 
with H++ and the AMBER03 force fie ld (“ WoS A03”) , and WoS obtained with 
H++ and the YASARA2 force fie ld (“ WoS”) on the second computer. The 
quali ty Z-score is an average value of the WHAT IF quali ty factors 3-D packing 
(QUACHK), Ramachandran Z-score (RAMCHK) and backbone conformation 
(BBCCHK) ) (Krieger et al . , 2009) .  A median value and median abso lute 
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deviat ion as error bar is shown for the WoS quali ty Z-scores. A dashed l ine is 
used to guide the eye between the di f ferent quali ty Z-scores.  VLP, virus- l ike 
part icle.  

Figure S4.2 shows a quality Z-score of -1.07, -1.08, and -1.09 for VLP A, B, and C, 
respectively. These quality Z-scores have a mean difference of 0.06 compared to the 
quality Z-scored obtained with the first computer. An overview of the separate 
quality parameter obtained for the VLP constructs simulated with the second 

computer are shown in Figure S4.3. 

 

Figure S4.3 :  Overview of WHAT IF quali ty factors for the template,  
homology structure, curated structure , window of stabil i ty (WoS) without 
H++ and the YASARA2 force f ie ld (“ WoS w/o H++”), the prepared structure , 
WoS obtained with H++ and the AMBER03 force fie ld (“ WoS A03”) , and WoS 
obtained with H++ and the YASARA2 force fie ld (“ WoS”) on the second 
computer. WHAT IF qual ity factors 3-D packing (QUACHK, black),  
Ramachandran Z-score (RAMCHK, dark gray) and backbone conformation 
(BBCCHK, l ight grey) (Krieger et al . , 2009) .  A dashed l ine is used to guide 
the eye between the di fferent values .  

Figure S4.3 shows 3 separate WHAT IF quality parameters. A mean difference of 
0.05, 0.135, and 0.05 was calculated using all VLP constructs simulated on the 
second computer in values for 3-D packing normality, Ramachandran plot position 
normality, and the backbone conformation, respectively. This indicates that quality 
was not influenced by simulation of identical constructs on another computer. The 
course of the MD simulation, represented by the change of atom coordinates over 
time was monitored for the simulations with the second computer as well. The 

obtained data is shown in Figure S4.4.  
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Figure S4.4 :  Reproducibil ity run of MD s imulations for virus- l ike particles 
(VLP) A, B, and C presented by root-mean-square deviation (RMSD) of atom 
coordinates (Å) over s imulat ion t ime (ns), using a second Windows 10 
computer with an Intel i7-6700 CPU and a GeForce GTX 1080 GPU. Three 
di fferent s imulation steps are separated by vertical l ines, where vertical l ines  
indicate s imulation transition points. From 0 ns to dotted l ine:  s imulation o f 
epitope and five adjacent amino acids ; from dotted to dashed l ine: s imulation 
of Hepatiti s B core antigen (HBcAg) dimer spike ; from dashed l ine to the end 
of s imulation:  ful l dimer s imulat ion. The highlighted area is defined as the 
2 ns window of stabil ity (WoS).  

Figure S4.4 shows the MD simulation course of three VLP constructs when 
simulated with the second computer. VLP A reached the WoS after 15.08 ns 
instead of 19.89 ns seen in the main research article. VLP B and VLP C reached 
the WoS later compared to the first computer, with a difference of 1.19 ns and 
4.36 ns, respectively. The simulation time is still in accordance with the length of 
epitope insertion, where VLP A contains the largest insert. The maximum RMSD 
reached for each VLP construct is different compared to the RMSD shown in the 
main research article. VLP A, B, and C have a median WoS RMSD of 
3.21 ± 0.06 Å, 2.86 ± 0.06 Å, and 2.33 ± 0.05 Å, respectively, in the simulation on 
the second computer. This should be compared to the median WoS RMSD of 

7.52 ± 0.15 Å, 3.45 ± 0.07 Å, and 2.09 ± 0.04 Å on the first computer.  
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Appendix C: Supplementary Material for Chapter 5 

S5.1 Chimeric HBcAg Expression and Cell Lysis 

The chimeric HBcAg construct was modified with a foreign epitope in the major 
immunodominant region and C-terminally truncated as previously described 
(Klamp 2011, Schumacher 2015). HBcAg protein was recombinantly overexpressed 
in E. coli BL21 DE3 (New England Biolabs, Ipswitch, US-MA). Expression was 
induced using a TB-based auto-induction medium developed by BioNTech Protein 
Therapeutics GmbH. Cells were cultured at 180 rpm and 37 °C for 7 h in a MaxQ 
6000 Shaker (Thermo Scientific, Marietta, US-OH) with 250 mL medium in 1 L 
baffled glass shake flasks (Schott AG, Mainz, DE) up to an OD600 of 6. Cells were 
harvested by centrifugation at 4 °C at 3220 rcf for 30 min in an Eppendorf 
Centrifuge 5810 R (Eppendorf, Hamburg, DE), washing the pellet with phosphate-
buffered saline at pH 7.4, and centrifugation at 4 °C at 17387 rcf for 20 min. Pellets 
were generated from 500 mL of culture volume and frozen at -30 °C for storage. 
For lysis, the pellet was thawed and resuspended in 20 mL of lysis buffer. Ultrasonic 
disruption was performed with a Digital Sonifier 450 (Branson Ultrasonic 

Corporation, Danbury, US-CT) at 80% amplitude for 2×40 s with a 3 min break. 
During this procedure, the sample was cooled in a stirred ice bath. Cell debris were 
separated from the supernatant by centrifugation at 4 °C and 17387 rcf for 20 min 
and filtration through a glass fiber and 0.45 µm cellulose acetate syringe filter (both 
Sartorius Stedim Biotech GmbH, Göttingen, DE). The lysate was stored at -30 °C. 
Prior to precipitation and re-dissolution experiments and processes, lysate was 
thawed and filtered again through a 0.45 µm syringe filter. 

S5.2 CFF Set-Up and Temporal Alignment 

In pre-experiments, flow rates for the CFF-DF steps were tested. Constraints were 
the linear range of permeate flowrate over TMP and the maximum tolerable flow 
rate of the mmSEC column. Resulting flowrates were 30 and 2 mL/min for feed 
and permeate flow rate, respectively. The pump of the ÄKTA Start 
chromatography system was bypassed and the flow generated and controlled by 
the CFF unit’s backpressure valve. Setting the set-point as surrogate flow rate in 
the chromatography system settings was necessary to enable data collection and 
fractionation. Flow meter, chromatography fraction, and UV absorbance data were 
temporally aligned and processed volumes as well as fraction volumes were 
retrospectively corrected by integration of flow rate over time. Before integration, 
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flow rate data were smoothed using a moving mean with a window of 50 data 
points, corresponding to 3 s. Delay volumes of the chromatography system were 
automatically corrected. For the mmSEC process, the column was inserted after 
the fractionation valve to ensure UV absorbance monitoring during the wash 
procedure avoiding flow over the column. Contrary to the other processes, the wash 
step permeate had to be collected from the wash valve before the column. Fractions 
were collected manually based on the flow meter cumulative volume readings. 
During re-dissolution, a volume of 1.96 mL was needed for VLPs to pass the 
mmSEC column and was therefore manually added to the delay volume during 
alignment. Manual and automatic flow rate control in all processes resulted in 
maximum 3% deviation of the mean flow rate from the set-point and a coefficient 
of variation smaller than 9%. Flow rate data of the first three minutes showed 

transient oscillation and were omitted in the calculations. 

S5.3 SEC Analysis 

Samples were separated by size using analytical SEC. Three detectors were coupled 
to the UHPLC system, which were a DAD, MALS detector, and QELS detector. 
The DAD recorded spectra as well as single wavelengths, of which 260 nm and 
280 nm were used for SEC purity and A260/A280 calculation. A typical UV 
chromatogram is shown in Figure S5.3.1. 

 

Figure S5.3.1 :  Size-exclusion chromatography chromatogram of the Basic 
process fraction F4 showing absorbance at 280 and 260 nm over retention time. 
Detected peaks are marked with numbers . Peaks 1-3 represent hepatitis B virus 
core antigen species; peaks 4-8 represent impurit ies .  
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Eight peaks were detected, whereby peaks 1-3, showing protein-typical A260/280 
values of mostly <0.75, were attributed to HBcAg. This assumption was confirmed 
by HT-CGE analysis of samples that showed almost only peaks 1-3 (average 98% 
SEC purity, main text Table 5.1), such as samples of strategic pooling for process 
mmSEC. These samples exhibited one dominant peak in the HT-CGE 
electropherogram corresponding to monomeric HBcAg (average 96% HT-CGE 
purity, main text Table 5.1). During sample preparation for the protein HT-CGE 
assay, all proteins are denatured and reduced and therefore disassembled to 
monomers. It is therefore reasonable to assume that peaks 1-3 only differ in their 
quaternary structure while being based on HBcAg molecules. Peaks 4-8 showed 
higher absorbance at 260 nm and are therefore probably mainly nucleic acid species 
(Wilfinger et al., 1997). This scheme was observed for all CFF re-dissolution 
samples. For re-dissolution samples in the Reference process, peak 5 was dominated 
by protein contaminants, according to the UV spectral data (A260/A280 < 1.0, 
data not shown), not seen in the CFF processes. This is in accordance with lower 

protein purities seen for the Reference process samples (main text Table 5.1).  

 

 

Figure S5.3.2 :  Absorbance at 280 nm and l ight scattering signals  of a s ize-
exclusion chromatography analysis o f fraction F4 of the Bas ic process.  
Absorbance at 280 nm (A2 80 ,  ─) and l ight scatter ing count rate (─) are 
normalized by their maximum value. Peaks 1, 2, and 3 are marked with 
numbers 1-3. Root mean square (rms, •) and quasi-e lastic  l ight scatter ing 
radius (QELS, •) are shown as abso lute values.  
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Figure S5.3.2 shows an excerpt of the above shown SEC chromatogram with 
normalized signals of absorbance at 280 nm and count rate derived from the light 
scattering device focusing on peaks of HBcAg species. Root mean square (rms) 
radius and quasi-elastic light scattering (QELS) radius are shown which were 
calculated by a 1st degree Zimm model and by the manufacturers’ QELS model, 
respectively. The size measurements were in good agreement and resulted in radii 
of 31-32 nm, 25 nm, and 15-16 nm for peaks 1, 2, and 3, respectively. Only peak 2 
and 3 represent typical peak shapes and therefore likely represent a distinct species 
each, while peak 1 probably represents a broad range of aggregates of various sizes. 
The largest peak, peak 3, showed a radius typical for HBcAg VLPs (15-17 nm 
(Selzer & Zlotnick, 2017)). Other chromatograms were almost identical, but tended 
to diverge more at very low sample concentrations due to a disadvantageous signal-

to-noise ratio (data not shown). 

Figure S5.3.3 shows size and mass of species behind peak 1-3 as indicated in Figure 
S5.3.2 for processes Basic, mmSEC, and Nuclease (Figure S5.3.3A-C). The 
difference between the processes was small but most notably between Nuclease and 
the other two processes. This is probably due to lower sample concentrations and 
therefore lower signal-to-noise ratio. As discussed above, peaks represent HBcAg 
species, which was concluded due to a low A260/280 ratio (~0.7), and high HT-

CGE purity (≥96%), and typical protein UV spectra (not shown). QELS and rms 
radii are in good agreement. Only for peak 3 representing VLPs, QELS radius was 
slightly larger than rms radius, which is expected for spherical particles 
(Leszczyszyn, 2012). In the following, peak radii are discussed indifferent of 
measurement type (rms or QELS) and processes. Peak 1 showed largest radius and 
weight with 30.4-32.0 nm and 11.2-12.7 MDa, respectively, and probably represents 
a broad size range of aggregates. The small range of the measured sizes for peak 1 
is derived from the calculation method of peak data, which is based on a window 
of 0.15 min around the peak maximum as determined by SEC. Peak 2 was smaller 
with 24.4-25.2 nm and 7.5-8.0 MDa. Peak 3 was the smallest with 15.3-17.7 nm and 
3.8-4.1 MDa. Its radius is consistent with HBcAg capsid size reported in literature.  
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Figure S5.3.3 :  Size measurements o f fractions with highest hepatitis B virus 
core antigen concentrations o f the processes  (A) Bas ic,  (B)  mmSEC, and (C) 
Nuclease . The left column shows root mean square radius (rms) and quas i-
elastic  l ight scatter ing (QELS) radius o f peaks 1, 2 , and 3, as indicated in 
Figure S5.3.2. The r ight column shows calculated mass of peak species 1-3. 
Error bars indicate standard deviations o f cumulated measurement values 
within 0.15 min left and right of the SEC peak maximum from duplicate 
measurements. 

Based on manual graphical size evaluation of TEM micrographs (main text 
Figure 5.7), it was not possible to identify distinct particle size species as seen with 
SEC (MALS/QELS), illustrating the limitation of this quantification method. The 
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difference between the even distribution of VLPs in the Reference and mmSEC 
process and the observed VLP clusters in Basic and Nuclease process can most 
probably be caused by TEM grid preparation, sample adsorption, negative staining, 
and washing steps, rather than by differences in the samples. Existence of such 
clusters were not reflected by the results of SEC. SEC, as opposed to TEM 
measurements, reflects solution conditions and is therefore the preferred size 
analytical method. 

S5.4 CFF Wash and Re-Dissolution Process Data 

Figure S5.4 depicts on-line concentrations for the processes Basic, mmSEC, and 
Nuclease showing both wash and re-dissolution process steps as a complement to 
Figure 5.6 in the main text. Initially, the signal was in saturation for processes 
Basic as well as mmSEC and decreased exponentially afterwards. The on-line 
concentration of the Nuclease process started below 1 g/L and also decreased 
exponentially. During wash, UV active impurities, such as proteins and nucleic 
acids, are depleted, leading to an elevated absorbance of the permeate at 280 nm 
which decreases over time. During the Nuclease process, the enzymatic digestion of 
nucleic acids and wash prior to precipitation leads to a lower initial contaminant 
level in the following wash step. 

 

Figure S5.4 :  On- l ine monitoring of the permeate protein concentrat ion 
(conc.) of wash and re-disso lution and of f- l ine protein concentration of the re-
disso lution fract ions ( indicated by vert ical l ines) . Each co lumn represents a 
process variant: Basic,  mmSEC and Nuclease . Protein concentrations (─) are 
based on the absorbance at 280 nm, assuming the chimeric hepatit is B virus 
core antigen (HBcAg) extinction coef fic ient . Off- l ine concentrations (♢) were 
derived from size-exc lusion chromatography (SEC) peak areas of HBcAg 
spec ies (Figure S5.3.1) . 
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S5.5: Analytical Considerations 

S5.5.1 Analysis of Turbid Samples 

Turbidity prohibits analysis of the samples with SEC due to presence of precipitate 
that would block the column. During the mmSEC process, turbidity was observed 
in fractions F2 and F3, probably due to an erroneous priming of the mmSEC 
column with wash buffer, containing 150 mM (NH4)2SO4. The (NH4)2SO4 

permeates slower through the column than VLPs, as it can penetrate the pores. 
VLP solution therefore leaves the column in a buffer with higher (NH4)2SO4 

concentration than before entering the column, thus leading to precipitation. This 
effect can be circumvented by priming the column in a non-(NH4)2SO4-containing 
buffer. Upon dilution, the samples became clear and could be measured by SEC. 
Wash samples were measured by HT-CGE as, in particular for early samples, heavy 
precipitation was observed. 

S5.5.2 Comparability of Yields 

Yields are calculated from re-dissolution and lysate HBcAg concentrations. Two 
separate methods have been employed to assess HBcAg concentration in the lysate 
and the re-dissolution samples, i.e. HT-CGE and SEC, respectively. SEC 
measurements exhibit much better reproducibility but could not be applied for 
lysate concentration measurements due to high impurity levels. Concentration 
determination by HT-CGE has a reproducibility of only 30% according to the 
manufacturer’s manual. Reasons for that include low-volume liquid handling of 
sample and buffers, interfering particles, and baseline determination. Yields relative 
to each other are well comparable due to highly reproducible SEC HBcAg 
concentration measurements of the re-dissolution samples. Additionally, HT-CGE 
assessed lysate HBcAg concentrations were consistent between processes, which is 
owed to identical lysate preparation. However, absolute yield values are subject to 
variability related to HT-CGE reproducibility. 
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Appendix D: Supplementary Material for Chapter 6 

 

S6.1 Normalized Hydrophobicity Scales 

Table S6.1 shows normalized hydrophobicity scales that were used in this study. 
Scales were derived from a recent study on hydrophobicity scales for peptide 
classification (Simm et al., 2016). Reversed scales were excluded if there was a 
complementary, non-reversed scale available, and the remaining 91 scales were 
centered and scaled to unit variance. The scale IDs (feature names) were adapted 
from above-mentioned study removing spaces. For reference to the original 
publications of the hydrophobicity scales we refer to their article.  

S6.2 Comparison of MCC and Accuracy 

To compare the presented data with available models, we must understand the 
relation between the MCC and the typically reported accuracy. In the ideal 

balanced case, where �. = �/ and 0. = 0/ (implying 6]g]^`,jg\[][hX = 6]g]^`,YXf^][hX 
which is a balanced data set), the relationship between accuracy ) and the MCC 
is  

) = 0.5 + 0.5 × 788. �S6.1� 
When �. ≠ �/, it is 

) < 0.5 + 0.5 × 788. �S6.2� 
Contrary to this, class imbalance in 0. and 0/ increases MCC. It is however less 
pronounced in models that predict better than average random. Reported accuracy 

of other solubility models varies greatly and falls into the region of . 62 −  .83 
(Hebditch et al., 2017; Idicula-Thomas et al., 2006; Magnan et al., 2009; Smialowski 
et al., 2006). Assuming the ideal balanced case, this translates to an MCC analogue 

of 0.24 − 0.66. It is important to note, that this is the ideal case and therefore 
typically results in overestimated MCCs. Compared to these values, the best models 
in the learning experiment are close to the best reported accuracies of previous 
models. Class imbalance would be favorable to the presented model, as the assumed 
MCC of previous models is overestimated, while it is included in the actual MCC 

in this article. 
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S6.3 Feature Importance 

In the learning experiment, 17290 models were created with varying training set 
size and number of included decision trees within the soft ensemble vote classifier. 
The median feature importance and the median absolute deviation (MAD) of the 
features were computed and are shown in Table S6.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

| 

Table S6.1 : Centered and unit-variance scaled hydrophobicity scales derived 
from (Simm et al . ,  2016). Reversed scales  were excluded if  there was a 
complementary, non-reversed scale available, result ing in 91 scales . Each 
amino acid,  represented in single- letter code,  is  ass igned a hydrophobicity 
value by each hydrophobicity scale.  
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Table S6.2 : Median and median abso lute deviation (MAD) of feature 
importance (scale accuracy on training data) in the learning experiment. Each 
data point represents 19 di f ferent training set s izes each evaluated 910 t imes.  
Scales are sorted according to feature importance in descending order. Scale 
no. 1 has highest feature importance,  scale no . 91 has lowest feature 
importance.  
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S6.4 Principal Component Analysis 

The centered and unit-variance scaled hydrophobicity scales were analyzed by 
principal component analysis using MATLAB. Figure S6.1 shows the explained 
variance per principal component and as cumulative explained variance over 
principal components. 68.8% of the variance is already explained by the first 

component. 

 

Figure S6.1 : Explained variance (%) o f principal  components derived from 
91 normalized hydrophobicity scales . The black dots represent the explained 
variance per principal component. The red rots represent the cumulative sum 
of the explained variance . Dashed l ines are shown to guide the eye.   

 

S6.5 Location and Interaction of Tryptophan within the HBcAg 

Dimer 

Figure S6.2 shows a 3-D representation of HBcAg dimer backbone, with residues 
arginine, phenylalanine, tryptophan, and tyrosine shown and colored blue, yellow, 
red, and green, respectively. The four tryptophans are indicated by one-letter code 
and marked with their sequence position. All tryptophans are in the vicinity of 
either arginine, phenylalanine, and/or tyrosine.  
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Figure S6.2 : 3-D model o f the truncated HBcAg crystal structure 4BMG 
(retr ieved from www.rcsb.org, created with YASARA version 18.2.7). Four 
amino acids are highl ighted: arginine , blue ; phenylalanine , yel low; tryptophan, 
red; tyrosine , green. Tryptophan residues are labeled with one- letter code and 
their sequence positions. Each tryptophan side chain interacts either with the 
side chains of arginine , phenylalanine or tryptophan. 

 

S6.6 Solubility Data Table 

Table S6.3 : Binary so lubil ity Data Table : Binary solubil i ty indicating soluble 
(1) and insoluble (0) observations , shown in a grid o f insert ion strategies (A-
H) over inserts (1-71).  

 INSERTION STRATEGY 

INSERT A B C D E F G H 

1 0 1 1 1 1 0 1 0 

2 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 

12 0 0 0 1 1 0 1 0 

13 0 0 0 1 1 0 1 0 

14 1 0 0 1 1 0 1 0 

15 1 0 1 1 1 1 1 1 

16 0 0 0 0 0 0 0 0 
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17 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 

23 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 

25 1 1 1 1 1 1 1 1 

26 1 1 1 1 1 1 1 1 

27 1 1 1 1 1 1 1 1 

28 1 1 1 1 1 1 1 1 

29 0 0 0 0 0 0 0 0 

30 1 1 1 1 1 1 1 1 

31 0 0 0 0 0 0 0 0 

32 1 1 1 1 1 1 1 1 

33 0 0 0 0 0 0 0 0 

34 0 0 0 1 0 0 1 0 

35 0 0 0 0 0 0 0 0 

36 1 1 1 1 1 1 1 1 

37 1 1 1 1 1 1 1 1 

38 1 1 1 1 1 1 1 1 

39 1 1 1 0 1 1 1 1 

40 1 1 1 1 1 1 1 1 

41 0 0 0 1 0 0 0 0 

42 0 0 0 1 1 0 1 0 

43 0 0 0 1 0 0 0 0 

44 0 0 0 1 0 0 0 0 

45 0 0 1 1 1 1 1 0 

46 1 0 0 1 1 0 1 0 

47 0 0 0 0 0 0 0 0 

48 0 0 0 0 0 0 0 0 

49 1 1 1 1 1 0 1 0 

50 1 1 1 1 1 1 1 1 

51 0 0 0 1 1 1 1 0 

52 1 1 1 1 1 1 1 1 

53 1 1 1 1 1 1 1 1 

54 1 1 1 1 1 1 1 1 

55 1 1 1 1 1 1 1 1 

56 1 1 1 1 1 1 1 1 

57 1 1 0 0 1 0 1 1 

58 1 1 1 1 1 1 1 1 

59 1 1 1 1 1 0 1 0 

60 1 1 1 1 1 0 1 0 

61 1 1 1 1 1 1 1 1 

62 1 1 1 1 1 0 1 0 

63 1 1 1 1 1 1 1 1 

64 1 0 1 0 1 0 1 0 

65 1 1 1 1 1 1 1 1 

66 0 0 0 1 1 0 1 0 

67 1 1 1 1 1 1 1 1 

68 1 1 1 1 1 0 1 0 

69 1 1 1 1 1 0 1 1 

70 1 1 1 1 1 1 1 1 

71 1 1 1 1 1 1 1 1 
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Figure S7.1 : Relative frequency o f classi f icat ion groups based on insert ion 
strategies A-H in the f irst iterat ion ( le ft) and the best optimizat ion iteration 
(right) during insert ion strategy-based optimization with the 91 optimized 
l iterature scales.  The mean of the relat ive frequencies within a classi f icat ion 
group is shown for the fi rst i teration (Mean s t a r t) and for the best optimization 
(Meanop t) , indicating that through optimization the FP group decreases  in 
mean relative frequency while  the TN group increases in mean relat ive 
frequency. Strategy E and H are marked additional ly to guide the eye . TP: 
true pos itive;  TN: true negative; FP: false positive; FN: false negative.  
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Figure S7.2 : Relat ive frequency o f classi f icat ion groups based on insert ion 
strategies A-H in the f irst iterat ion ( le ft) and the best optimizat ion iteration 
(right) during insertion strategy-based optimization with the synthesized scale 
set S8 , 1 .  The mean of the relative frequencies within a c lass i f ication group is  
shown for the fi rst iterat ion (Mean s t a r t) and for the best optimizat ion 
(Meanop t) , indicating that through optimization the FP group decreases  in 
mean relative frequency while  the TN group increases in mean relat ive 
frequency. Strategy E and H are marked additional ly to guide the eye . TP: 
true pos itive;  TN: true negative; FP: false positive; FN: false negative.  
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Table S7.1 : Centered and unit-variance scaled l i terature hydrophobic ity 
scales derived from (Simm et al . ,  2016). For original re ferences of the scales,  
the reader i s re ferred to the publicat ion o f Simm et al.  (2016). Reversed scales  
were excluded i f there was a complementary, non-reversed scale available , 
resulting in 91 scales.  Each amino ac id, represented in single- letter code,  is  
assigned a hydrophobicity value by each hydrophobicity scale.  
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Table S7.2 : The amino acid hydrophobic ity value o f the 25 best individual  
synthesized scales,  se lected by feature select ion in 1000- fold Monte-Carlo 
cross-val idat ion. Scale notation Sx ,y - z  shows from which number o f subsets x 
the number x of scales was synthes ized, where y is the repetit ion number 
(ranging from 1 to 20) ,  defining a spec if ic scale set . Within this scale set,  z is 
the number o f the classi f ier, ranging from 1 to x.  
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Figure S7.3 : Relationship between continuous solubi l i ty predict ion value and 
optimal ammonium sulfate concentration for prec ipitation o f ten constructs.  
In eight models , 1-8 scales were used, which were generated with a scale table 
optimization procedure (Set S8 , 1) .  95% conf idence bounds and R2 indicate 
goodness o f f it .  

 

 

 

 

 

 

 

 

 

 

 


