KIT | KIT-Bibliothek | Impressum | Datenschutz

In situ Observation of Sodium Dendrite Growth and Concurrent Mechanical Property Measurements Using an Environmental Transmission Electron Microscopy–Atomic Force Microscopy (ETEM-AFM) Platform

Liu, Qiunan; Zhang, Liqiang; Sun, Haiming; Geng, Lin; Li, Yanshuai; Tang, Yushu ORCID iD icon 1; Jia, Peng; Wang, Zaifa; Dai, Qiushi; Shen, Tongde; Tang, Yongfu; Zhu, Ting; Huang, Jianyu
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)


Akin to Li, Na deposits in a dendritic form to cause a short circuit in Na metal batteries. However, the growth mechanisms and related mechanical properties of Na dendrites remain largely unknown. Here we report real-time characterizations of Na dendrite growth with concurrent mechanical property measurements using an environmental transmission electron microscopy–atomic force microscopy (ETEM-AFM) platform. In situ electrochemical plating produces Na deposits stabilized with a thin Na2CO3 surface layer (referred to as Na dendrites). These Na dendrites have characteristic dimensions of a few hundred nanometers and exhibit different morphologies, including nanorods, polyhedral nanocrystals, and nanospheres. In situ mechanical measurements show that the compressive and tensile strengths of Na dendrites with a Na2CO3 surface layer vary from 36 to >203 MPa, which are much larger than those of bulk Na. In situ growth of Na dendrites under the combined overpotential and mechanical confinement can generate high stress in these Na deposits. These results provide new baseline data on the electrochemical and mechanical behavior of Na dendrites, which have implications for the development of Na metal batteries toward practical energy-storage applications.

Postprint §
DOI: 10.5445/IR/1000124553
Veröffentlicht am 06.12.2022
DOI: 10.1021/acsenergylett.0c01214
Zitationen: 37
Web of Science
Zitationen: 35
Zitationen: 41
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Post Lithium Storage (POLiS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2020
Sprache Englisch
Identifikator ISSN: 2380-8195, 2380-8195
KITopen-ID: 1000124553
HGF-Programm 43.22.01 (POF III, LK 01) Functionality by Design
Erschienen in ACS energy letters
Verlag American Chemical Society (ACS)
Band 5
Heft 8
Seiten 2546–2559
Vorab online veröffentlicht am 07.07.2020
Nachgewiesen in Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page