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Summary

This paper presents a simple hypoplastic model capturing mostly all salient
features of clays: rate dependency, time dependency and inherent and induced
anisotropy without being restricted to only viscoplastic clays. Therefore, due
to the strain rate decomposition into three parts, nonviscous clays, that is,
rate-independent clays, can also be simulated. The incorporation of a load-
ing surface allows to capture the behaviour of normal and overconsolidated
clays. The model requires eight material parameters, which are simple to cal-
ibrate from standard laboratory tests. In total, 77 simulations of five different
clayey-like soils are compared with experimental data. The simulations con-
tain one oedometer test with loading–unloading–reloading cycles, creep and
relaxation stages, both undrained and drained triaxial tests in compression and
extension, as well as eight incremental response envelopes capturing also the
directional response of Beaucaire Marl clay. Some limitations of the model such
as the description of temperature effects on the behaviour of clays are also
pointed out.
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1 INTRODUCTION
There are a number of important geotechnical engineering problems—notably the analysis of soil–structure interaction in
deep excavations, shallow foundations and tunneling—where large differences typically exist between stress paths expe-
rienced in different regions of the surrounding soil, both in terms of magnitude and direction1-4 and in terms of time for
most fine-grained soils.5,6 Furthermore, the question arises if the fine-grained soil is normally consolidated or overconsol-
idated. In these cases, the quality of the engineering prediction crucially depends on the ability of the adopted constitutive
model to correctly describe the behaviour of the soil along a wide range of loading paths and rates. In addition, the impor-
tant challenges are the anisotropy and bonding/destructuration, which influence the relation between strain and stress.
Also, the in situ conditions in terms of natural and reconstituted samples or drainage of the soil effect remarkably the
behaviour and stiffness of fine-grained soils.7-13 Advanced models taking into account these different features are expected
to simulate the behaviour of clays accurately. Both the number of parameters and the number of equations necessary for
the model description are in most of these cases high and complex.
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Up to now, a relatively thorough understanding was implemented in constitutive models for time-independent
fine-grained soils.14-28 Some of these works are restricted to either normally consolidated22 or overconsolidated21

fine-grained soils. Some models need various parameter sets for different overconsolidation ratios, which for the users
is very confusing. In order to capture the strain-rate dependency typical for plastic clays, different models27-37 have been
developed. The majority of recent works in this field have opted for the viscoplastic strains to replace the original plas-
tic strains in order to describe the time and strain rate effects observed in experiments with soft clays. Therefore, for the
simulation of a nonviscous clay, another constitutive model should be used instead and the user may lose the connection
between the models' mathematical formulations. Apart from this point, most of the models dealing with rate-dependent
clays do not focus on the incorporation of the effects of soil structure and fabric anisotropy. Recently, a very few number of
models for clays accounting for fabric have been developed,32,35,38-41 but none of them use directly the simple and pioneer
theory of transversal isotropy for clays of Graham and Houlsby.42 Whereas the extended Creep-SCLAY1 model32 includes
the effects of structure introducing four additional parameters, the isotach elastoplastic model presented in Yang et al.35

introduces six additional material constants to capture the fabric of the material. On the other side, the model introduced
by Masin and Rott3 and Masin43 introduces three additional material parameters while using transversal isotropic elas-
ticity. Using the theory of Houlsby, only one additional material parameter is added to the proposed model in this work
for the description of main effects resulting from fabrics. An evolution of this parameter with the hypoplastic strain is
proposed.

Therefore, this paper focuses on the development of a simple hypoplastic model accounting for mostly all the salient
features clays exhibit. In contrast to most conventional models, the time dependency is simulated by an additional
strain mechanism, namely, the viscous strain rate, whose intensity is directly related to the secondary compression
coefficient C𝛼 (Buisman constant44). The pure hypoplastic strain rate is responsible for the description of the intrinsic
(time-independent) behaviour of the material. Both the viscous and the hypoplastic strain rates are influenced by the over-
consolidation ratio accounting for the behaviour of both normally consolidated and overconsolidated clays. The structure
of the material is introduced by transforming the elastic stiffness incorporating an additional material parameter 𝛼 accord-
ing to the theory of Graham and Houlsby.42 First, the mechanical formulation of the proposed model in the triaxial space
is presented (please note that in this section, the inherent anisotropy is not considered). Then, the generalization of the
triaxial formulation to the multiaxial stress space is described systematically for each equation considered, introducing
herein also the fabric. Subsequently, an inspection into the performance of the model has been done. In total, 77 simula-
tions of five different clayey-like soils are compared with the experimental data. The simulations contain one oedometer
test with loading–unloading–reloading cycles, creep and relaxation stages, both undrained and drained triaxial tests in
compression and extension, as well as eight incremental response envelopes capturing also the directional response of
Beaucaire Marl clay. The model requires the calibration of eight material parameters, which are simple to calibrate from
standard laboratory tests. Some limitations of the model such as the description of the dilatancy for normally consolidated
clays and the incorporation of temperature effects are also pointed out. Finally, a finite element calculation of a shallow
foundation is carried out with Abaqus to evaluate the dependence of the undrained shear strength on the displacement
velocity and on the anisotropic coefficient. The major part of the article is also presented in the PhD thesis of the first
author. 45

The notation and convention of the present work is as follows: italic fonts denote scalar magnitudes (e.g., a,b), bold
lowercase letters denote vectors (e.g., a,b), bold capital or greek letters denote second-rank tensors (e.g., A, 𝝈) and special
fonts are used for fourth-rank tensors (e.g., E,L). Indicial notation can be used to represent components of tensors (e.g.,
Aij), and their operations follow the Einstein summation convention. The Kronecker delta symbol is represented by 𝛿ij,
that is, 𝛿ij = 1 when i = j and 𝛿ij = 0 otherwise. The symbol 1 denotes the Kronecker delta tensor (1ij = 𝛿ij). The unit
fourth-rank tensor for symmetric tensors is denoted by I, where Ii𝑗kl = 1

2

(
𝛿ik𝛿𝑗l +𝛿il𝛿𝑗k

)
. Multiplication with two dummy

indices (double contraction) is denoted with a colon “:” (e.g., A : B=AijBij). The symbol “⊗” represents the dyadic product
(e.g., A ⊗ B = AijBkl). The brackets || ⊓ || extract the Euclidean norm (e.g., ||A|| =

√
Ai𝑗Ai𝑗). Normalized tensors are

denoted by ⊓⃗ = ⊓||⊓|| , or in general as ⊔→. The superscript ⊓∗ extracts the deviatoric part of a tensor (e.g., A∗ = A− 1
3
(trA)1).

Components of the effective stress tensor 𝝈 or strain tensor 𝜺 in compression are negative.

2 MECHANICAL FORMULATION IN THE TRIAXIAL SPACE

The formulation of the new model is firstly presented in the triaxial space,1 defined through the Roscoe invariants: the
mean stress p = −1 ∶ 𝜎 ∕3

triax.
= − (𝜎1 + 2 𝜎3) ∕3, the deviatoric stress q =

√
2∕3||𝜎∗|| triax.

= |𝜎1 − 𝜎3|, volumetric strain

1Please note that in this section, the inherent anisotropy is not considered.
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𝜀v = −1 ∶ 𝜺
triax.
= − (𝜀1 + 2 𝜀3) and the deviatoric strain 𝜀q =

√
2∕3||𝜺∗|| triax.

= 2∕3 |𝜀1 − 𝜀3|; and the Lode angle cos (3𝜃) =

−
√

6 tr (𝝈∗ · 𝝈∗ · 𝝈∗) ∕(𝝈∗ ∶ 𝝈∗)3∕2 triax.
= −3

√
6

→
𝝈
∗
1(

→𝝈∗
1)

2, where the subscripts 1 and 2 and subscript 3 denote the axial and
the horizontal directions, respectively. The stress ratio 𝜂 is defined as 𝜂 = q/p. The deviator stress tensor is defined as
𝝈∗=𝝈+p 1 and the stress-ratio tensor with r = 𝝈∗∕p =

√
2
3
𝜂 𝝈∗.

The relation between the stress rates and the strain rates is proposed to[ .p.q

]
=
[

K B
B 3G

]
∶
[ .
𝜀e

v.
𝜀e

q

]
with B = −

q
p

K
M2

c
. (1)

The total strain rates consist of the elastic strain rate .
𝜀e

v∕q, hypoplastic strain rate .
𝜀

hp
v∕q and the viscous strain rate .

𝜀vis
v∕q as

advocated by Kaliakin and Dafalias46:

[ .
𝜀e

v.
𝜀e

q

]
=

[
.
𝜀v −

.
𝜀

hp
v − .

𝜀vis
v

.
𝜀q −

.
𝜀

hp
q − .

𝜀vis
q

]
=
⎡⎢⎢⎣

.
𝜀v − Ymv

√
.
𝜀2

v +
.
𝜀2

q − Iv𝜆(1∕OCR)1∕Iv mv

.
𝜀q − Ymq

√
.
𝜀2

v +
.
𝜀2

q − Iv𝜆(1∕OCR)1∕Iv mq

⎤⎥⎥⎦ , (2)

with the viscosity index Iv, whereby the well-known Buisman constant44 C𝛼 = Iv 𝜆 represents the intensity of creep, that
is, of the viscous strain rate. The overconsolidation ratio is denoted as OCR and the degree of nonlinearity with Y and the
volumetric and deviatoric part of the flow rule with mv and mq, respectively.

The bulk modulus K is adjusted to conform the behaviour of clays at normally consolidated states. Therefore, we
consider the model formulation for isotropic compression, neglecting, for instance, the viscous strain rate:

.p = K
( .
𝜀v − Y0,max || .

𝜀v||) . (3)

The isotropic compression .
𝜀v > 0, e = ei0 −𝜆 ln(p∕pre𝑓 ) with the maximum void ratio ei0 at the reference mean stress

pref = 1 kPa implies

ė = −𝜆
.p
p

!
=−(1 + e) .

𝜀v. (4)

Combining Equation (4) with Equation (3), we obtain

K =
p
𝜆

(1 + e)
(1 − Y0,max)

. (5)

Along the same lines of thoughts, the (minimum) isotropic value of the degree of nonlinearity Y0,max is formulated
considering isotropic unloading with .

𝜀v < 0, e = ei0 − 𝜅 ln(p∕pre𝑓 ). Using the evolution equation of the void ratio and
the constitutive equation considering isotropic unloading

ė = −𝜅
.p
p

!
=−(1 + e) .

𝜀v and .p = K
( .
𝜀v + Y0,max

.
𝜀v
)
, (6)

we obtain for Y0,max

Y0,max =
𝜆 − 𝜅

𝜆 + 𝜅
. (7)

The material parameters 𝜆 and 𝜅 represent the compression and swelling index in the e− ln(p) space, respectively. The
elastic shear modulus is expressed in terms of K using the Poisson ratio 𝜈 as a material parameter:

G = 3∕2K (1 − 2𝜈) ∕ (1 + 𝜈) . (8)

Note that using these relations, any hypoplastic model for sand can be reformulated to account for the behaviour of
soft soils (without viscosity if the viscous strain rate is dropped Iv = 0). Of course, the definition of void ratios need to be
adjusted as well.
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2.1 Flow rule m
For the formulation of the flow rule m, which describes the direction of both plastic and viscous strain rate in this model,
first the bounding surface (BS) in conjunction with the critical state surface (CSS) needs to be defined. The CSS charac-
terizes the vanishing stress rates .p = .q = 0. We introduce the relation Fc (p, q) = 𝜂2 −M2 = 0 in triaxial space for the CSS.
A comparison between Fc, the CSS defined by Matsuoka–Nakai (M-N) and the one of Modified Cam Clay (MCC) is given
in the principal stress space in Figure 1A,B.

The bounding surface Fb (p, q) = 𝜂2 − M2
b = 0 with its triaxial slope Mb = fb Mc intersects the isotropic axis q = 0 at the

maximum value of the void ratio e = ei(p); hence, at the Hvorslev pressure,47 p
!
= pei = exp((ei0 − e)∕𝜆). For this purpose,

the following formulation has been adopted for fb
37,48:

𝑓b = 𝑓b0

(
1 −

(
e
ei

)n𝑓
)1∕2

. (9)

FIGURE 1 A,B, Comparison of M-N,
MCC and Fc (incorporated in the
proposed model) in the principal stress
space; C,D, CSS Fc = 0 and BS Fb = 0 of
the proposed model in the principal
stress space; E, characteristic void ratios
with ec0 = ei0 − 𝜆 ln(2); F, CSS and BS in
p−q space [Colour figure can be viewed
at wileyonlinelibrary.com] (E) (F)

http://wileyonlinelibrary.com
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The exponent nf can be adopted to fulfil the requirement that the bonding surface intersects the CSS at e = ec:

Fb = Fc ⇒ 𝑓b = 1 ⇒ n𝑓 =
ln

((
𝑓 2

b0 − 1
)
∕𝑓 2

b0

)
ln (ec∕ei)

. (10)

The BS and CSS of the proposed model are illustrated in the principal stress space in Figure 1C,D and will be described
in detail in Section 3.2.

Analogous to the two stress surfaces (critical and bounding), the model introduces two characteristic void ratios
presented in Figure 1E, which are pressure dependent. Associated to the CSS is the critical void ratio:

ec = ec0 − 𝜆 ln(p∕pre𝑓 ), pre𝑓 = 1 kPa, (11)

whereby ec0 is the critical void ratio ec at pref = 1 kPa. According to the conventional MCC theory,49 the bounding surface
intercepts the critical state at p = pei∕2 = exp((ei0 − e)∕𝜆)∕2. To fulfil this requirement, the reference critical void ratio ec0
at the reference pressure of pref = 1 kPa has been adopted to

ec(pei∕2) = ec0 − 𝜆 ln(pei∕2)
!
= e ⇒ ec0 = ei0 − 𝜆 ln(2). (12)

The second characteristic void ratio, namely, the maximum void ratio at isotropic compression (normal consolidation)
is associated to the BS and reads

ei = ei0 − 𝜆 ln(p∕pre𝑓 ), pre𝑓 = 1 kPa, (13)
whereby the material parameter ei0 is the maximum void ratio of an isotropic virgin compression path at pref = 1 kPa. The
postulate of a maximum void ratio is reasonable as the soil cannot take arbitrarily large void ratios without considering
the effect of macropores, which is not subject of the present work. For isotropic states lying on the BS, e = ei holds, and
for those lying on the CSS ,e = ec is implied, illustrated also in Figure 1F.

In order to simulate the behaviour of sand, the formulations of ec and ei can be adjusted similarly.
Equation (29) allows the developer to define the normalized flow rule m⃗ describing the direction of plastic flow by

having defined a CSS. Experiments have shown that the direction of plastic flow at the critical state corresponds to the
deviatoric direction and at isotropic states to isotropic direction. Thus, an associated flow rule m = 𝜕Fc (𝝈) ∕𝜕𝝈 can be
very easily deduced. Considering the critical state surface in the p−q space Fc(p, q)=𝜂−Mc g with 𝜂 = q/p and g = 1 or
g = c = Me/Mc for triaxial compression or extension, respectively, the associated flow rule reads[

mp
mq

]
=
[
𝜕Fc (p, q) ∕𝜕p
𝜕Fc (p, q) ∕𝜕q

]
. (14)

The disadvantage of an associated flow rule for hypoplastic models is documented by other authors as well.17,22,30,50 In
fact, an associated hypoplastic flow rule yields to a high overestimation of the K0 value so that asymptotic states cannot
be accurately reproduced; see the detailed description provided by Niemunis30 and Wu and Niemunis.51 Furthermore,
as documented by Masin,17 models with nonrotated state boundary surface (as is the case with the present model) can-
not describe the behaviour of anisotropic clays accurately. A significant improvement in this direction can be achieved
by a nonassociated flow rule (even though the BS remains nonrotated). Therefore, a reformulation of the flow rule
according to the aforementioned experimental attributes

(
mp = 0 at Fc = 0 and mq = 0 for q = 0

)
for the proposed model

is formulated to [
mp
mq

]
=
[

g(𝜃) Mc∕
√

2 − 𝜂∕
√

2
𝜂∕Mc

]
, (15)

with the Lode angle function g(𝜃) described in Section 3.2, Equation (27).

2.2 Degree of nonlinearity Y and overconsolidation ratio OCR
The degree of nonlinearity herein is proposed to take into account the isotropic value Y0,max, which corresponds to the
minimum value of Y and is deduced in Section 2 to capture the slope 𝜅 of the isotropic unloading line in the e − ln(p)
space starting from a normally consolidated state. If the unloading starts from an overconsolidated state OCR > 1, Y0,max
needs to be extended to Y0 = Y0,max (1/OCR)2, a slightly different but more consistent formulation than the former one
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proposed in Fuentes et al.37 (Y0 = Y0,max (p/pei)2), because it incorporates not only the OCR describing one-dimensional
states but the general formulation of OCR considering also stress states with q ≠ 0. In order to fulfil the requirement of
constant stress at the CSS .p = 0, .q = 0, the degree of nonlinearity should take its maximum value Y = 1 at the bounding
surface. An appropriate function for this purpose is the following linear interpolation:

Y = Y0 + (1 − Y0)
(

𝜂

g Mb

)2

, (16)

whereby for isotropic states, 𝜂 = 0 ⇒Y = Y0 and at the BS, Fb = 0 ⇒𝜂 = g Mb = g Mc fb⇒Y = 1; thus, the imposed
requirements are fulfilled.

For the determination of the viscous strain rate, we need a precise definition of the OCR considering the following
requirements for isotropic states (q = 0):

• at p= pei ⇒ e= ei, the stress state is normally consolidated (OCR=1) and lies at the bounding surface; compare Figure 1E
and Figure 1F. Thus, the maximum isotach is reached at OCR=1, which corresponds to .

𝜺 → ∞.
• p = pei/2 ⇒ e = ec is the intersection point between the BS and CSS; see Section 3.2 and Figure 1E,F.
• the material parameter ei0 is the maximum void ratio at a reference mean pressure of pref = 1 kPa. It can be calibrated

from an isotropic compression test or an oedometer test with constant rate of strain as shown in Appendix B1.

According to these assumptions, the relation OCR≥ 1 holds for the model. It is debatable whether OCR < 1 is real-
istic for soils. However, from the authors' point of view, the memory of the soil would rearrange in every occasion its
overconsolidation ratio so OCR≥ 1 seems to be more realistic.

In the isotropic axis, the simple relation OCR=pei/p is adopted. For deviatoric stress states, a similar schema to the one
proposed in previous works,28,30,31 OCR = pei∕p+

ei can be used to calculate p+
ei = exp((ei0 − e+)∕𝜆) by solving e+ from the

bounding surface Fb
!
= 0 ⇒ 𝜂 = Mb. With fb and nf from Equations (9) and (10), respectively, we obtain

1 −
(

𝜂

Mc g 𝑓b0

)2

=
(

e+
ei

)n𝑓

; (17)

with the simplification A = 1 −
(

𝜂

Mc g 𝑓b0

)2
, the following expression is obtained:

e+ =

[
1 −

(
𝜂

Mc g 𝑓b0

)2
]1∕n𝑓

= A1∕n𝑓 ei. (18)

Hence, the OCR can now be calculated through

OCR =
pei

p+
ei
, with p+

ei = exp
(

ei0 − e+

𝜆

)
. (19)

In order to keep the mathematical formulation of the model as simple as possible, OCR can be formulated analogously
to the degree of nonlinearity Y. Comparing the pure (hypo)plastic strain rate and the viscous one, then Y represents
the counterpart of (1∕OCR)1∕Iv . Having defined the isotropic value of OCR=pei/p, for general cases, the formulation is
straightforward regarding the aforementioned requirements and the relation given in Equation (16):

OCR =
(

pei

p

)
+
(

1 −
pei

p

)(
𝜂

g Mb

)nOCR

, (20)

whereby an additional material parameter nOCR has to be introduced, which allows the user more flexibility for the cal-
ibration process, but on the other side, it complicates the numerical implementation. Figure 2A,B illustrates the OCR
determination after Equation (19) and Figure 2C the definition proposed in Equation (20). The coincidence with the BS is
evident (BS blue line, OCR green line). However, taking into account that Equation (19) does not introduce any additional
material parameter, it represents a more elegant method for determining OCR. This relation is implemented in this work.
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(A) (C)

(B) (D)

FIGURE 2 Comparison of two
approaches used to define the
overconsolidation ratio: A,B, Definition
of OCR after Equation (19) using the BS
as the loading surface. C, Modified
definition of OCR after Equation (20). D,
Evolution of pei and p at unloading
[Colour figure can be viewed at
wileyonlinelibrary.com] [Correction
added on 28 September 2020, after first
online publication: the lines in Figure 2
were overlapped and has now been
corrected in this version.]

Figure 2D represents for isotropic state q = 0, the evolution of the mean stress p and the Hvorslev mean pressure pei.
Obviously, a difference between these evolution rates is present for unloading, because pei evolves per definition with
slope 𝜆 and p with slope 𝜅.

3 MECHANICAL FORMULATION IN THE MULTIAXIAL SPACE

This section provides the generalization of the triaxial formulation to the multiaxial stress space. Systematically, each
equation from the triaxial space is considered and adopted to the multiaxial space, whereby herein also the description
of fabric is introduced by transforming the (hypo)elastic stiffness tensor to a cross isotropic one.

The stress rate is related to the strain rate by the anisotropic stiffness tensor Etrans:

.
𝝈 = Etrans ∶

( .
𝜺 − .

𝜺
hp − .

𝜺
vis) = Etrans ∶

(
.
𝜺 − Ym − Iv 𝜆

( 1
OCR

)1∕Iv
m
)
. (21)

3.1 Elastic stiffness tensor
The elastic stiffness tensor adopted herein is hypoelastic and follows similar assumptions and relations as in previous
works37,52-54:

E = 3K
(

→

1 ⊗
→

1
)
+ 2G

(
Idev) − K√

2M2
c

(1 ⊗ r + r ⊗ 1) , (22)

which represents the multiaxial generalization of the stiffness introduced in Equation (1). The last term in Equation (22)
corresponds to the off-diagonal terms in Equation (1) and considers the reduction of the stiffness close to critical states
and the rotation of incremental response envelopes for initial states lying near the CSS. The Bulk modulus K is deduced
in Section 2, Equation (5). The shear modulus G is expressed in terms of K and 𝜈 and holds the same as for triaxial space;
see Equation (8).

It is well known that hypoelastic constitutive relations cannot be expressed in terms of an elastic strain energy function.
Thus, the response is path dependent, and dissipation may occur even though the material is supposed to be elastic.
However, the main point is that the elastic strains are assumed to be relatively small so that any error in the conservation
of energy is very small, and so it can be neglected. The stress rate .

𝝈 must be objective; thus, the material derivative of the

http://wileyonlinelibrary.com
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FIGURE 3 Results of the
scanning electron microscope
study in a size range of (A) 50 μm
(×2000); (B) 20 μm (×5000) 55;
(C) fabric and cutting direction
of the samples for experiments
[Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B) (C)

Cauchy stress cannot be used. Yet, other objective rates such as the Jaumann, Green–Naghdi, and Truesdell can be used
instead. Usually in hypoplastic constitutive equations, as well as for the proposed model, the Jaumann rate is used.

To overcome these shortcomings and in order to obtain a conservative constitutive model for clays under purely elastic
conditions, a hyperelastic stress–strain relation derived from an elastic potential is being developed by the authors.

3.1.1 Incorporation of fabric effects for clays
Most natural clays show anisotropic behaviour because of their mode of deposition and the elongated shape of the parti-
cles. This anisotropy, known as inherent anisotropy or fabric, resulting from the deposition process, which tends to induce
a horizontal bedding plane in the soil layer, can be regarded as transverse isotropy.42

A scanning electron microscope (SEM) study has been performed recently55 on a Kaolin clay. Simulations of this mate-
rial will be shown later on in Section 5. From the results of the SEM (see also Figure 3), a preferred direction of the
particles' orientation can be observed. At a scale of 50 μm, the surface structure is oriented (Figure 3A). Even at a scale of
200 μm, the particles tend to be aligned in one direction and to form somewhat stronger particle stacks (see Figure 3B).

This study witnesses the theory proposed in Graham and Houlsby42 at least for this clay. Other SEM studies reported
in, for example, Bohac et al.56 investigated the fissuration of a Neogene clay (Brno clay) and found out that the fissuration
and even its laminated fabric may be explained by the anisochoric transition from the marine material into clay. The
inclination of the stress paths and the stiffness of Brno clay tested in Bohac et al.56 are very similar to those reported for
Kaolin clay in Wichtmann and Triantafyllidis,11 which are simulated with the proposed model in Section 5. They both
indicate transversal isotropic behaviour of the material.

This type of fabric influences the elastic stiffness of the material. Even though five elastic parameters are needed to
describe the transversal isotropic elastic stiffness, Graham and Houlsby42 deduced a simplified transversal isotropic elas-
ticity for the special case of anisotropic clays, whereby only three parameters are needed: the Young modulus E = Ev, the
Poisson ratio 𝜈 = 𝜈h and the scalar factor 𝛼 governing the following relations between the horizontal and vertical stiffness:

Gh∕Gv = (Eh∕Ev)1∕2 = 𝜈h∕𝜈vh = 𝛼, (23)

introducing only one additional material parameter into the proposed model.
With the y-axis as the vertical direction representing the direction of anisotropy and the x z-plane as the plan of isotropy

(see Figure 3C), the stress–strain increment equation for a transversal isotropic material considering the simplifications
provided by Graham and Houlsby42 can be expressed through the relation given in Equation (24), whereby Etrans is the
transversal isotropic stiffness.

⎛⎜⎜⎜⎜⎜⎝

𝛿𝜎11
𝛿𝜎22
𝛿𝜎33
𝛿𝜎23
𝛿𝜎31
𝛿𝜎12

⎞⎟⎟⎟⎟⎟⎠
= E

(1 + 𝜈)(1 − 2𝜈)

⎛⎜⎜⎜⎜⎜⎝

1 − 𝜈 𝛼𝜈 𝛼𝜈
𝛼𝜈 𝛼2(1 − 𝜈) 𝛼2𝜈
𝛼𝜈 𝛼2𝜈 𝛼2(1 − 𝜈)

𝛼2(1 − 2𝜈)
𝛼(1 − 2𝜈)

𝛼(1 − 2𝜈)

⎞⎟⎟⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Etrans

⎛⎜⎜⎜⎜⎜⎝

𝛿𝜀11
𝛿𝜀22
𝛿𝜀33

2 𝛿𝜀23
2 𝛿𝜀31
2 𝛿𝜀12

⎞⎟⎟⎟⎟⎟⎠
. (24)

To incorporate this stiffness into a constitutive model, the present stiffness (Equation 22) needs to be adjusted, scaled and
rotated. After some mathematical manipulations, one may notice that any hyperelastic stiffness E renders a transversal
isotropic one by a special scaling transformation as denoted in Niemunis et al.57:

http://wileyonlinelibrary.com
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Etrans,abcd = Qabi𝑗 ∶ Ei𝑗kl ∶ Qklcd,

with Qabcd = 𝜇ac𝜇bd and 𝜇 =
√
𝛼1 +

(
1 −

√
𝛼
)

ms ⊗ ms,
(25)

whereby ms is the unit vector along the sedimentation axis; for example, if the sedimentation axis is vertical then ms = {0,
0, 1}. Eijkl is the isotropic elastic stiffness tensor from Equation (22) and the material parameter 𝛼 is herein denoted as the
anisotropic coefficient.

Some recent research works have shown the importance of the inherent anisotropy on the behaviour of clays. According
to the investigations taken on Kaolin clay by Wichtmann and Triantafyllidis,11 the samples cut out in horizontal direc-
tion (Figure 3C) and show a more dilative response and a higher undrained shear strength than those taken vertically.
Furthermore, depending on the cutting direction—if all other conditions remain the same—the horizontal samples can
withstand a much larger number of stress cycles to failure than the vertical samples.11 This postulates the importance of
simulating the different elastic stiffness for different cutting directions.

Furthermore, an extensive review about the small strain stiffness anisotropy of natural sedimentary clays has been
performed by Masin and Rott3 and implemented by Masin.43 In their, work the assumption and simplification of Graham
and Houlsby given in Equation (23) is neglected and instead five material parameters are used. Nevertheless, we will show
that even using Equation (23) in order to simplify the constitutive model and reduce the number of material parameters,
the behaviour of some clays is reproduced very well.

3.2 Definition of the characteristic stress surfaces and void ratios
In this work, two characteristic surfaces are introduced, whereby the first one corresponds to the CSS. The CSS incor-
porated into the present model is defined through a general and very simple relation, which has first been proposed in
Fuentes et al.37 and is now modified to conform the triaxial condition qc = pcMc g(𝜃) of the Mohr–Coulomb criterion:

Fc (𝝈) = ||r|| − ||rc|| = 0, rc =
√

2∕3Mc g(𝜃r) r⃗, (26)

with the Lode angle dependency g(𝜃r) of the stress ratio r. In general, the function g(𝜃) introduced in the model is borrowed
from Argyris et al.58:

c ≤ g(𝜃) = 2c
(1 + c) − (1 − c) cos (3𝜃)

≤ 1, (27)

whereby c = Me/Mc = 3/(3 + Mc) represents simply the ratio between the critical state slope for triaxial extension and
compression according to the Mohr–Coulomb relation. Some researchers incorporate the Matsuoka–Nakai criterion as
a critical state surface.17,30 This is rendered as a special case of the introduced critical state surface for M(𝜃)=Mc g(𝜃) as
the smallest positive solution of the equation 2∕27(9 + 8tan2(𝜑)) cos(3𝜃)M3 + 1∕3(−6 − 8tan2(𝜑))M2 + 8tan2(𝜑) = 0. A
comparison between the Matsuoka–Nakai (M-N), MCC and the introduced Fc surface is represented in the deviatoric
space in Figure 1A,B. The CSS or the yield surface 𝑦(𝜎) = 0 in the therms of the Niemunis hypoplastic theory30 is imposed
into a constitutive equation by the condition .

𝜎 = 𝟎. Neglecting the viscous therm, this condition renders

.
𝜎 = E ∶ ( .

𝜺 − Ym|| .
𝜺||) !

= 0, (28)

which is satisfied trivially by .
𝜺 = 0 and by

.⃗
𝜺 = Ym. (29)

The second characteristic surface, namely, the bounding surface (BS) Fb(𝜎) = 0, introduced into this models
formulation imposes a bounding of the void ratio e < ei and reads37

Fb (𝜎) = ||r|| − ||rb|| = 0, rb =
√

2∕3Mb g(𝜃r) r⃗, (30)

with the triaxial slope of the bounding surface Mb = fb Mc.
If one wants to consider the dilatancy in the formulation, a dilatancy surface Fd(𝝈,e)=0 can be introduced. However,

here, it is left out for improvement in future works.
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3.3 Flow rule
The unit tensor m denoted as flow rule defines the direction of flow for .

𝜎 = 0. Obeying experimental observations doc-
umented in, for example, previous works,11,17,30,31,49,59 the flow rule should have purely volumetric direction at isotropic
stress states and deviatoric direction at the CSS Fc (𝜎) = 0; see Equation (26). An interpolation relation between these
states is more general and flexible than other hypoplastic flow rule formulations (e.g., Wolffersdorff50). The flexibility
consists in the possibility to simply adjust the flow rule for the description of K0 paths or to implement any dilatancy rule
not affecting the bounding surface or the elastic tangential stiffness tensor.

A suitable candidate for this purpose considering also Equation (26) is the following function adopted from previous
studies37,53,54:

m =
[
−1

2
(||rc|| − ||r||) 1 + r||rc||

]→
, (31)

with the deviatoric stress ratio r and the critical stress ratio rc defined in Equation (26). This definition of flow rule imposes
a consistency of K0 with Jaky's formula.60

3.4 Degree of nonlinearity and overconsolidation ratio
The generalization of the triaxial formulation to the multiaxial stress space of the degree of nonlinearity is straightforward.
In fact, the triaxial stress ratio 𝜂 will be replaced through the magnitude of the multiaxial stress ratio r, and in order to
account for the bounding surface instead of g Mb, the norm of the bounding stress ratio rb from Equation (30) is used:

Y = Y0 + (1 − Y0)
( ||r||||rb||

)2

. (32)

The definition of the overconsolidation ratio remains the same as depicted in Equation (19) or (20). The differences
between these relations are described in detail in Section 2.2 and illustrated in Figure 2.

4 NUMERICAL IMPLEMENTATION

The constitutive model was implemented in a Fortran subroutine as “User Material” (UMAT), compatible with the
software Abaqus Standard.61 To avoid numerical issues, a substepping scheme was adopted. Very small substepping
sizes in the order of ||Δ𝜺||=10−5 were selected to assure numerical convergence. In addition, some numerical recommen-
dations for viscous models pointed out by Niemunis30,31 were considered. Specifically, while the viscous strain rate was
semi-implicitly integrated, other components of the models were explicitly computed. This required the computation of
an algorithmic jacobian Jalg, which is explained in detail in Tafili et al.27 Numerical integration of the models under dif-
ferent paths assuming element test conditions (homogeneous field for stresses and strains) was solved with the use of a
Newton–Raphson solution scheme, whereby tolerances and a maximum number of iterations were specified to minimize
the numerical error. During the calculations, no further numerical issues were detected.

5 INSPECTION INTO THE PERFORMANCE OF THE MODEL COMPARED
WITH LABORATORY TESTS

Having defined the constitutive equations of the model, we proceed now with the evaluation of its performance. In order
to validate the model, several numerical predictions for different triaxial and oedometric tests of various clays have been
compared with results from previous works.1,11,59,62-65 Actually, 71 triaxial tests, one oedometric test and eight incremen-
tal response envelopes of five normally consolidated and overconsolidated soft and stiff cohesive soils covering a wide
plasticity range are presented. A representation of these materials in Casagrande's plasticity diagram is shown in Figure 4.
Unless otherwise specified, in the following figures, the dashed lines represent the experimental data and the solid lines
illustrate the simulations with the proposed model. These simulations, descriptions and figures are also presented in the
PhD thesis of the first author. 45

Lying below the A-line (IP = 12.2%) (see Figure 4) the Kaolin clay11 has to be classified as a silt. Vallericca clay1 is a
stiff overconsolidated clay deposit of Plio–Pleistocene age, which lies slightly over the A-line (IP = 31.6%). Thus, it can
be considered as a high plasticity clay. The Boom clay63 is a tertiary clay of Oligocene age, similar to the London clay.
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(A) (B)

FIGURE 4 Classification of the
various test materials in the plasticity
diagram of Casagrande. A, Casagrande
plasticity diagram. B, Extended plasticity
diagram of Casagrande for Schwerin
mud [Colour figure can be viewed at
wileyonlinelibrary.com]

Parameters 𝝀 𝜿 ei0 𝝂h 𝜶 Mc fb0 Iv

Kaolinv
a 0.13 0.05 1.76 0.3 2.0 0.88 1.5 0.015

Kaolinh
b 0.13 0.05 1.76 0.25 1.0 0.88 1.5 0.015

Vallericca clay 0.148 0.023 1.87 0.22 1.0 1.0 2.0 0.025
Boom claynat

c 0.25 0.03 2.55 0.3 1.5 1.0 1.5 0.015
Boom clayrec

d 0.25 0.03 2.55 0.25 1.0 1.0 1.5 0.015
Beaucaire Marl 0.17 0.014 1.7 0.33 1 1.33 1.5 0.035
Schwerin mud 0.76 0.05 7.275 0.28 0.7 1.8 1.5 0.06

a Vertical cutting direction.
b Horizontal cutting direction.
c Natural samples.
d Reconstituted samples.

TABLE 1 Calibrated parameters for the different
materials

The overconsolidation ratio was estimated to be OCR = 2.6, and following the Casagrande plasticity diagram, it has to be
classified as a high plasticity clay (IP = 47%). Beaucaire Marl65 was deposited in a shallow marine environment during the
Pliocene age. It is a medium plasticity clay (IP = 17%). Schwerin mud59 is a clay with organic additives and lies outside the
common Casagrande diagram (IP = 114%); see Figure 4B. The tests were performed on reconstituted samples of Kaolin,
Beaucaire Marl and Schwerin mud and both reconstituted and natural samples of Boom clay and Vallericca clay.

The calibrated material parameters are listed in Table 1. Its calibration process is explained in detail in Appendix B1.

5.1 Soft and/or normally consolidated clays
In this section, the predictions of the proposed model are compared with triaxial tests carried out on reconstituted nor-
mally consolidated Kaolin samples11 with variation of the initial mean pressure p0 and the cutting direction of the sample.
The displacement rate was held constant to .s = 0.025 mm/min corresponding to an axial strain rate of .

𝜀1 = 0.05%/min.
Figure 5 represents five undrained monotonic triaxial tests and their numerical simulations. The initial mean pres-

sure varied between p0 = 50, 100, 200, 300 and 400. In the case of p0 = 50 kPa, the sample is slightly overconsolidated
with the initial overconsolidation ratio OCR=1.33. All other samples are sheared from a normally consolidated state.
Following these indications given in Wichtmann and Triantafyllidis,11 the void ratio was initialized according to e0 =
ei0 − 𝜆 ln(OCR p0).

The effective stress path inclination (Figure 5A) indicates the existence of inherent anisotropy. This slope was possible
to be captured by the proposed model by introducing Equation (25); thus, the anisotropic coefficient takes the value 𝛼 = 2.
Experiments carried out on Brno clay56 show similar results with comparable inherent anisotropy properties. Figure 5B,C
show the stress–strain relationship and the pore water pressure against the axial strain, respectively. The model was cali-
brated to obtain the same peak magnitude qmax, which appears at a smaller strain compared with the experimental result.
This delayed peak can be attributed to the experimental technique, because at a strain of 15%, one cannot assure a homo-
geneous strain distribution.1,66 On the other side, this could be an indication that the degree of nonlinearity Y converges
too fast to the limit value Y → 1. All other results of the numerical calculations describe very well the experimental
observations.

In Figure 6, the results and predictions of three undrained triaxial tests with a common initial pressure of p0 = 100
kPa and different cutting directions are shown. The results of the tests demonstrate once more the effect of the inherent

http://wileyonlinelibrary.com
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FIGURE 5 Simulations of five
undrained monotonic triaxial tests on
Kaolin samples reported by Wichtmann
and Triantafyllidis11 with variation of
the initial mean pressure p0: (A)
effective stress paths; (B) stress–strain
relationships; (C) excess pore water
pressure against axial strain [Colour
figure can be viewed at
wileyonlinelibrary.com] (A) (B)

(C)

FIGURE 6 Simulations of three
undrained monotonic triaxial tests on
Kaolin samples reported by Wichtmann
and Triantafyllidis11 with different
cutting directions of the samples: (A)
effective stress paths; (B) stress–strain
relationships; (C) excess pore water
pressure against axial strain as
presented also in Tafili and
Triantafyllidis67 [Colour figure can be
viewed at wileyonlinelibrary.com]

(A) (B)

(C)

anisotropy. The samples were either cut out conventionally in the vertical direction (𝛼c = 0◦, 𝛼c = angle between sedi-
mentation and loading direction) or in the horizontal direction (𝛼c = 90◦). The two samples with vertical cutting direction
show the same effective stress path inclination in Figure 6A compared with the results illustrated in Figure 5A, also cut
out in vertical direction. The effective stress path of the horizontal sample is inclined to the right showing a more dilative
response and a higher undrained shear strength. Also, Duncan and Seed9 documented that the undrained shear strength
su may either increase or decrease with 𝛼c, depending on the type of clay. The tests are well predicted by the proposed
model and the inherent anisotropy is properly modeled. The prevented dilatancy of the effective stress path (increase
of deviatoric stress) of the horizontal sample, which can be observed in Figure 6A, results in pore water relaxation; see
Figure 6C.

5.2 Stiff and/or overconsolidated clays
This section represents simulations of experiments carried out on structured and unstructured stiff clays with different
overconsolidation ratios.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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(A) (B)

(C) (D)

FIGURE 7 Simulations of
four undrained monotonic
triaxial tests on Kaolin samples
reported by Wichtmann and
Triantafyllidis11 with variation
of the initial overconsolidation
ratio OCR: (A) effective stress
paths; (B) stress–strain
relationships; ∗discontinuous
slipping is reported by some
authors1,62 after 𝜀1 = 7%; (C)
excess pore water pressure
against axial strain; (D) 𝜂–OCR
relationship at PTL [Colour
figure can be viewed at
wileyonlinelibrary.com]

In Figure 7, simulations and experimental results of four undrained monotonic triaxial tests on Kaolin samples with
OCR = 1, 2, 4 and 8 are compared. The mean pressure prior shearing was the same for all specimens p0 = 100 kPa.
The samples were first subjected to drained isotropic preloading towards pmax = 200,400 or 800 kPa. In order to achieve
different overconsolidation ratios, a drained unloading followed to p0 = 100 kPa. The displacement rate was kept constant
during shearing .s = 0.025 mm/min corresponding to a strain rate of .

𝜀1 = 0.05%/min. The void ratio was initialized
according to e0 = ei0 − 𝜆 ln(OCR p0).

With increasing OCR, the material response is encountered more dilative and higher undrained shear strengths are
reached. Similar effects of OCR on dilatancy or on the undrained monotonic strength are also documented in previous
works.1,8,68-71 The models simulations of the effective stress path (Figure 7A) show an early ill-matched contractancy for
OCR>1. In this sense, it is worth noting that, owing to the foregoing isotropic compression, these samples had experienced
significant modifications of their structure prior to shearing. Thus, the bounding and fabric are likely to have been altered
along such loading paths, and the anisotropic factor should evolve with the plastic strain. Other authors, for example,
Masin,17 documented that the change in anisotropy during isotropic loading is negligible. In this case, a suitable relation
describing the evolution equation of 𝛼 is proposed to read

𝛼 = 𝛼0 + (1 − 𝛼0)
(

𝜂

g Mb

)
. (33)

However, the development of the stiffness anisotropy remains to be clarified in future research.
After reaching the failure surface, the models response is dilative and corresponds to the experimental behaviour

(Figure 7A). The undrained shear strength, the stress–strain relationships and the excess pore water pressure are well
modeled; compare also Figure 7B and Figure 7C. The softening in Figure 7B may result as an effect of discontinuous
slipping as reported in Amorosi and Rampello,1 indicated with an asterisk (*) and dashed line in Figure 7B.

The failure surface shows a curvature instead of a straight line, as introduced in some constitutive models, in the p−q
space, similar as reported in previous studies.11,72,73 A closer look to the phase transformation line (PTL) is presented in
Figure 7D, whereby the points on the PTL are plotted in the 𝜂PTL versus OCR diagram. OCR denotes hereby the initial
overconsolidation ratio. Whereas the model does not show any dependency of 𝜂PTL on the initial OCR, the experimental
data for Kaolin show a strong dependency up to OCR ≈ 5. It is indicated that after this, an asymptotic state is reached.

In Figure 8A, state paths from undrained triaxial compression and extension tests with effective pressures up to about
4 MPa on intact and reconstituted samples of Boom clay are shown.63 Figure 8B shows the simulations of these tests.
Hereby, we restrict our attention to the shape of stress paths normalized by the equivalent pressure at the isotropic normal
compression line pei = exp((ei0 − e)∕𝜆) (for detailed definition, see also Figures 1E,F and 2). The peak states for the
intact samples exceed those for the reconstituted samples, which can be attributed to the inherent anisotropy. It can
be observed that the proposed model predicts well dilatant/contractant behaviour for a wide range of overconsolidation
ratios in compression as well as in extension and the increase of the peak shear strength for overconsolidated states is
also well captured by the model. Note that all material constants for natural as well as for reconstituted samples resulted

http://wileyonlinelibrary.com
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FIGURE 8 Simulations of state
paths for Boom clay in triaxial
compression and extension tests
reported by Coop et al.63 with variation
of the initial over consolidation ratio
OCR: (A) experimental data from Coop
et al.63; (B) simulations with the
proposed model

(A) (B)

FIGURE 9 Simulations of CI-HP tests
on natural samples of Vallericca clay in
undrained compression reported by
Amorosi and Rampello1 with variation
of the initial over consolidation ratio
OCR: (A) experimental data from
Amorosi and Rampello1; (B) simulations
with the proposed model [Colour figure
can be viewed at wileyonlinelibrary.com]

(A) (B)

to same values; see Table 1, except the anisotropic coefficient 𝛼, which results in 𝛼 = 1.5 for intact samples and 𝛼 = 1
for reconstituted ones. The difference on the inherent anisotropy between reconstituted and natural samples has been
documented also for other clays of marine or lacustrine origin by previous studies.74,75

In the following figures, some high- and medium-pressure (HP and MP, respectively) tests of isotropically and anisotrop-
ically consolidated (CI and CA, respectively) samples of intact Vallericca clay reported by Amorosi and Rampello1 are
compared with predictions of the proposed model. According to the interpretation criteria specified in Amorosi and Ram-
pello,1 stress–strain data in Figures 9A, 10A and 11A are shown by full lines for the portion of test results for which
homogeneous straining was inferred and dotted lines for which discontinuous slipping was assumed.

Figure 9A shows three undrained triaxial tests of natural samples prior isotropic compression to high effective stresses,
and Figure 9B shows the simulations with the proposed model. Taking a look into the parameters listed in Table 1, 𝛼 = 1
indicates no inherent anisotropy for this intact material. In fact, both bonding and fabric are likely to be altered along
extended compression paths these samples were exposed to. The normally consolidated samples show similar contractant
behaviour, whereby the stress ratio approaches the residual state 𝜂 = q/p′ = 1 at large strains. The model captures very
well all the aforementioned effects of the experiments. The overconsolidated sample shows a dilatant behaviour with a
reduction of the pore water pressure, and it reaches a peak stress ratio at 𝜀1 ≈7 %. The models response captures these
observations well, yet reaches the peak stress ratio already at 𝜀1 ≈ 3.8%.

http://wileyonlinelibrary.com
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(A) (B)

FIGURE 10 Simulations of CA-MP
tests on natural samples of Vallericca clay
in undrained compression reported by
Amorosi and Rampello1 with variation of
the initial overconsolidation ratio OCR
and the anisotropical consolidation: (A)
experimental data from Amorosi and
Rampello1; (B) simulations with the
proposed model [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 10A shows the experimental results for drained and undrained shearing of natural samples. Prior to shearing,
the natural samples were anisotropically recompressed to achieve a normally consolidated state, and when necessary,
anisotropically unloaded under K0 conditions.1 Shearing of overconsolidated samples shows that the undrained shear
strength decreases, whereby the value of axial strain at which the peak is attained increases with the OCR. The mod-
els response, presented in Figure 10B, shows both an increasing value of axial strain at which the peak is attained as
well as an increasing undrained shear strength for increasing OCR > 1, which was observed also by other experimen-
tal works.8,11,68-71 Shearing of normally consolidated samples shows a continuous contractant behaviour, whereas the
increase of both the volumetric strain and the pore water pressure with the axial strain is evident. The residual or the crit-
ical state corresponding to 𝜂 = q′/p = 1 and stationary values of Δu and 𝜀v are reached for both the overconsolidated and
the normally consolidated samples.

The tests and simulations presented in Figure 11 were carried out on samples anisotropically compressed to achieve
vertical effective stress 𝜎′

v,max ≈ 6750 kPa ≈ 2.5𝜎′
v𝑦, with 𝜎′

v𝑦 being the vertical yield stress observed in oedometric tests.1
Shearing of overconsolidated samples shows a similar behaviour to that of the CI-HP tests, but here, the undrained shear
strength as well as the value of axial strain at which the peak is attained increases with the OCR. A peak is evident for OCR
>3. All experimental observations where well captured by the proposed model; see Figure 11B. Furthermore, the models'
response shows a maximum of the pore water pressure and a decrease thereafter to a constant value. The experimental
data show a subsequent increase of Δu for lower OCRs, whereby at this stage, the discontinuities are well developed
(dotted lines in Figure 11A). The normally consolidated samples show a contractant behaviour, which is well reproduced
by the model.

Owing to the high level of imposed compression, the HP samples, both isotropic and anisotropic consolidated (CI-HP
and CA-HP), are expected to have experienced significant modifications of their structure prior to shearing. Actually,
the inherent anisotropy is expected to be altered and the behaviour of these samples to render the same as reconstituted
samples. On the other side, less structure change prior to shearing is expected for the medium-pressure anisotropically
consolidated samples (CA-MP). To investigate these effects, Figure 12A shows the effective stress paths of CA-MP and
CA-HP test series and Figure 12B presents their simulations with the proposed model. It can be observed that the inclina-
tion of the effective stress path of normal and slightly overconsolidated samples on one side and overconsolidated samples
on the other of both CA-MP and CA-HP test series does not differ, although the peak effective stresses of the two test series
are substantially different. The peak of normal and slightly overconsolidated samples is reached after small changes in
mean stress p′, and then true contractant behaviour is exhibited. The same effects render the simulations with the pro-
posed model. Overconsolidated samples show dilatant behaviour, similar to that observed for other clays.11,76 The stress
paths reach the peak at the failure envelope, which is in good agreement with the simulations.

http://wileyonlinelibrary.com
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FIGURE 11 Simulations of CA-HP
tests on natural samples of Vallericca
clay in undrained compression reported
by Amorosi and Rampello1 with
variation of the initial overconsolidation
ratio OCR and the anisotropical
consolidation: (A) experimental data
from Amorosi and Rampello1; (B)
simulations with the proposed model
[Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

FIGURE 12 Experiments and
simulations of stress paths of CA-MP
and CA-HP tests on natural samples of
Vallericca clay in undrained
compression reported by Amorosi and
Rampello1 with variation of the initial
overconsolidation ratio OCR and the
anisotropical consolidation: (A)
experimental data from Amorosi and
Rampello1; (B) simulations with the
proposed model [Colour figure can be
viewed at wileyonlinelibrary.com]

(A) (B)

5.3 Time-dependent behaviour of clays
The higher the strain-rate dependency of clays, the higher the plasticity of the material. This effect is documented also
in other works.7,10,11,77-81 In this section, we will restrict our attention to the strain-rate dependency of the Kaolin clay
revised in Wichtmann and Triantafyllidis11 and Schwerin mud reported in Krieg et al.59 The calibrated parameters for
these materials are listed in Table 1, whereby the Kaolin samples presented in Figure 13 are cut out in vertical direction
(parallel to the sedimentation direction).

The experiments11 (dashed lines) and simulations (solid lines) of four undrained triaxial tests with variation of the axial
strain-rate .

𝜀1 = {10−4, 5 × 10−4, 10−3, 5 × 10−3} 1/min are presented in Figure 13A in the effective stress space,
Figure 13B in form of stress-strain relations and Figure 13C in form of excess pore water pressure–axial strain relations.
As expected, both experiments and simulations show an increasing undrained monotonic strength and decreasing pre-
vented contractancy with increasing strain rate. These effects are stronger pronounced for materials with higher plasticity.
Consequently, the higher the strain rate, the higher the excess pore water pressure; see Figure 13C. The simulations are
in well agreement with the experimental behaviour.

Due to its higher plasticity, the strain-rate dependence is more pronounced for the Schwerin mud tested by
Krieg et al.59 A CU triaxial test carried out with strain rate jumps following the deviatoric strain rates .

𝜀q =
{3.4, 0.245, 0.0245, 0.00245, 0.0245, 0.245, 2.45, 0.245, 0.0245, 0.00245}%/h is presented in Figure 14A. The effective
stress paths described by the experiment and by the response of the proposed model are practically identical. Note that
the relation between the compression and swelling index for Schwerin mud renders 𝜆/𝜅 = 15; see Table 1. Other models
are likely to have problems dealing with 𝜆/𝜅 > 8 as pointed out in Masin. 17 For large ratios of 𝜆/𝜅, that is, stiff response
at unloading, the swept-out-memory (SOM) surface becomes nonconvex in the vicinity of isotropic stress states.
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(A) (B)

(C)

FIGURE 13 Simulations of four
undrained monotonic triaxial tests on
Kaolin samples reported by Wichtmann
and Triantafyllidis11 with variation of
the axial strain rate .

𝜀1 =
{10−4, 5 × 10−4, 10−3, 5 × 10−3}
[1/min]: (A) effective stress paths; (B)
stress–strain relationships; (C) excess
pore water pressure against axial strain
[Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

FIGURE 14 Simulations of tests with
Schwerin mud (organic clayey silt)
reported by Krieg et al.59 and Niemunis
and Krieg64: (A) CU triaxial test with
altering the rate of deformation; (B)
oedometric compression test with creep
and relaxation [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 14B presents an oedometric test and its numerical prediction. The experiment consists of several
constant-rate-of-strain steps with different rates and unloading-reloading cycles .

𝜀1 = {6 × Dr , Dr ,−Dr∕10 , Dr ,

Dr , Dr ,−Dr ,−Dr , Dr}, Dr = 0.156%/h. The experimental path includes also three creep and one relaxation steps. The
evolution of the void ratio and stress and the strain-rate dependencies are very well reproduced by the model.

5.4 Directional response
In the following, the response of reconstituted Beaucaire Marl to the stress probing program detailed in Constanzo et al.65

is simulated with the proposed model. The predictions of the model are described using the so-called incremental response
envelopes (IRE).82

A representation with response envelopes (RE) was first introduced by Gudehus83 as a convenient tool for visualiz-
ing the tangential stiffness and other properties of nonlinear and rate-type constitutive equations. Roughly speaking, a
response envelope is a polar diagram of stiffness plotted for different directions of stretching. In the general case, a response
envelope is a hypersurface in a six-dimensional space. However, for the particular case of triaxial loading, the RE can be
conveniently represented in the isometric Rendulic plane (Δ𝜀1 −

√
2Δ𝜀3 or Δ𝜎1 −

√
2Δ𝜎3). We start by choosing an ini-

tial stress 𝜎0. The strain RE is obtained as a plot of the final strains calculated with normalized stress probes diag[𝜎1, 𝜎3,
𝜎3] (with || .

𝜎||Δt = const. or with || .
𝜎|| = 1) applied in different directions. A constitutive model may be understood as a
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TABLE 2 Summary of the experimental program65 Initial state Aa Initial state Bb

𝜶𝝈 [◦]c 𝜶𝝈 [◦]d Test no.
35 0 Tx128 Tx115
46 21.91 - Tx130
90 71.57 Tx121 Tx132
126 90 Tx126 Tx119
154 104.49 - Tx116
180 123.69 Tx123 -
215 180 Tx127 Tx134
226 201.91 - Tx129
270 251.57 Tx122 Tx117
305 270 Tx125 Tx113
0 303.69 Tx124 Tx118

a 𝜂A = q/p′ = 0kPa/150kPa=0.
b 𝜂B = q/p′ = 60kPa/150kPa=0.4.
c 𝛼𝜎 = tan−1

(
Δ𝜎1∕

(√
2Δ𝜎3

))
,

R𝜎 =
√
(Δ𝜎1)2 + 2(Δ𝜎1)2.d 𝛼

pq
𝜎 = tan−1 (Δp∕Δq).

FIGURE 15 Input stress paths for
the simulations according to the
experimental probes: (A) isotropic initial
state A; (B) anisotropic initial state B

(A) (B)

mapping that carries a circle plotted in the Δ𝜎1 −
√

2Δ𝜎3 space to the strain Δ𝜀1 −
√

2Δ𝜀3 space where it becomes an
ellipse. The size of each strain increment vector defining the RE can be directly interpreted as a directional secant com-
pliance of the material, for the respective loading direction and stress magnitude. By simply replacing rates with finite
increments, the same definition stands for the IRE.

The testing program reported in Constanzo et al.65 and simulated with the proposed model consists of 20 drained stress
probes, starting from a common initial stress state (either A with q/p′ = 0kPa/150kPa=0 or B q/p′ = 60kPa/150kPa=0.4)
and pointing in different directions in the triaxial plane; for details see Table 2 and Figure 15. The axial stress rate was
maintained equal to .

𝜎1 = 2 kPa/h. Both initial states represent virgin states for the material, that is, OCR = 1. For a
representation in form of IREs with finite-size increments, the interpretation of elastic and (visco)plastic properties of the
model is necessary. The size of each strain increment vector defining the IRE can be directly interpreted as a directional
secant compliance of the material for the respective loading direction and stress increment magnitude as depicted in
Constanzo et al.65

Figures 16 and 17 show the experimental and numerical IREs at R𝜎 = 20,30,40 and 50 kPa for initial state A and B,
respectively. The IREs show that the softest response of the material is reached for those paths characterized by a large
deviatoric component, that is, Tx125, Tx122, Tx126 and Tx121 for initial state A and Tx119 and Tx113 for initial state B.
The stiffest reponse of the material is rendered upon full stress path reversal with respect to the previous history, that is,
Tx123 and Tx127 for initial state A and Tx134 and Tx129 for initial state B. This behaviour of soils is documented in many
other works.30,59,63,73 As expected, for isotropic loading, the response of the material is softer when the stress path points
in the direction of continued loading, that is, Tx124 for initial state A and Tx130 for initial state B. It is interesting that
due to the stiffness increase the IREs become nonconvex for isotropic loading corresponding to Tx128 (initial state A)
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(A) (B)

FIGURE 16 Initial state A:
incremental strain response envelopes
for R𝜎 = 20,30,40 and 50 kPa: (A)
experimental data from Constanzo
et al.65; (B) simulations with the
proposed model

(A) (B)

FIGURE 17 Initial state B:
incremental strain response envelopes
for R𝜎 = 20,30,40 and 50 kPa: (A)
experimental data from Constanzo
et al.65; (B) simulations with the
proposed model [Colour figure can be
viewed at wileyonlinelibrary.com]

and Tx115 (initial state B). An evidence of incremental nonlinearity can be observed due to the nonsymmetry of the IREs
for both initial states A and B about the origin of the strain increment space. Figures 16 and 17 suggest that this effect is
evident already at strains about 0.15% and stresses about R𝜎 = 20 kPa.

Besides the salient features discussed above, worthy to note is the progressively shift of the IREs downwards to the
right for the initial state A and upwards to the left for initial state B (Figures 16 and 17, respectively). Arising with this
behaviour, the IREs become increasingly nonsymmetric about the isotropic axis the higher R𝜎 is. For initial state A, the
secant compliance increases for those directions close to negative deviatoric direction, that is, axisymmetric extension
(Tx125). As initial state B is closer to the critical state line for axisymmetric compression than extension, the secant com-
pliance increases for those directions close to positive deviatoric direction, that is, axisymetric compression (Tx119). For
the significant increase of the secant compliance (probes Tx125 for initial state A and Tx119 for initial state B), the ques-
tion arises if the magnitude of the increase of the secant compliance is reliable considering that such an observation is
based on the results of one single probe.

The predictions of the proposed model (Figures 16B and 17B, black lines) are from both quantitative and qualitative
standpoints in a perfect agreement with the features discussed above. The decrease of the secant stiffness for Tx125 (initial
state A) and Tx119 (initial state B) is slightly underpredicted. All other characteristics, considering also the nonsymmetry
of the IREs around the origin of the strain increment space, nonconvexity about the isotropic stress path and stiffness
increase upon stress path reversal are well captured by the numerical simulations. Other models such as MCC, 3-SKH,
CLoE, K-hypoplastic model with and without intergranular strain reviewed in Masin et al.84 (only for the probe with initial
state B) appear to significantly underpredict the stiffness of the material. This presents a fundamental shortcoming for
the performance-based design of geotechnical engineering problems. From a qualitative standpoint, the REs of the two
K-hypoplastic models and (to a much lesser extent) those of CLoE show some degree of nonconvexity in a region located
around 𝜂 = 0.4 (i.e., upon continued loading with respect to the consolidation history).17 The IREs predicted with the
two elastoplastic models (MCC and 3-SKH) show a convex shape with some irregularities of the MCC envelope close to
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neutral loading in extension. For comparison purposes, in Figure 17B, also the IREs obtained with Masins model reported
in Masin84 (K-hypoplastic model with intergranular strain) are illustrated with dashed blue lines. The IREs predicted with
the proposed model, however, appear from a qualitative and a quantitative point of view, all in a very good agreement
with the features of the experimental observations discussed above.

5.5 Limitations of the model
The definition of the flow rule, Equation (31), imposes a consistency of K0 with Jaky's formula.60 It is, however, not tested
in detail if the flow rule fits the experiments by Pradhan et al.85 nor the dilatancy theory of Rowe et al.,86 inasmuch as they
present works based on sands. The state-dependent dilatancy for clays proposed in Tafili and Triantafyllidis4 is surely not
predicted well with the model; see Figure 7. Improvements in this direction are left out for future research.

The behaviour of clays exposed to cyclic loading remains also to be developed in future work. Basic principles of this
model are, however, given in previous works28,37 based on the ISA plasticity.

It is well known that hypoelastic constitutive relations cannot be expressed in terms of an elastic strain energy function.
The response is path dependent, and dissipation may occur even though the material is supposed to be elastic. However,
the main point is that the elastic strains are assumed to be relatively small so that any error in the conservation of energy
is very small and thus can be neglected. The stress rate .

𝜎 must be objective; thus, the material derivative of the Cauchy
stress cannot be used. But other objective rates such as the Jaumann, Green–Naghdi and Truesdell can be used instead.
Usually in hypoplastic constitutive equations, as well as for the proposed model, the Jaumann rate is used. To overcome
these shortcomings and in order to obtain a conservative constitutive model for clays under purely elastic conditions, a
hyperelastic stress–strain relation derived from an elastic potential is being developed by the authors.

Clays are geomaterials ubiquitous in sedimentary soils and rocks and are therefore involved in a wide area of geotech-
nical applications.34,87 Many of them include thermal loadings, for example, geothermal structures where heat exchanger
piles are used or nuclear waste disposal. When thermal energy is stored in clays, the material behaviour will change as
a result of changing temperature. Early studies88-91 and recent ones59,92,93 have documented that the compression index
was found independent of temperature, yet the higher the temperature, the lower the void ratio at any given consolidation
pressure:

Δe = e0 − e = CT 𝜆 ln(T∕T0), (34)

whereby CT would represent a new material parameter, namely, the temperature coefficient. For a constant displacement
rate .

𝜀 = const, the studies have shown that under different temperatures, unique lines with the same slope on the e−ln(𝜎′),
namely, isotherms, are reached. The void ratio difference between two isotherms corresponds to Equation (34) and a for-
merly heated soil behaves like an overconsolidated one until the corresponding isotherm is reached. Some other models,
as for example, the one proposed by Masin and Khalili,20 introduce explicitly a temperature-dependent compression index
𝜆(T) as well as a temperature-dependent characteristic void ratio e0(T).

Interesting to note is that the rate dependency of the soil is found independent of the temperature Iv = C𝛼/𝜆 =
const(T). 59,90,91,94 Consequently, the temperature and rate dependence of the soil can be superposed in the model
formulation:

.
𝜎 = E

( .
𝜺 − .

𝜺
hp − .

𝜺
vis − .

𝜺
temp) , (35)

with .
𝜺

temp the strain rate accounting for temperature dependence of the soil. According to the work of Lovisa et al.,92 the
total increase in shear strength was about 40% at high temperature. Their results show also that the preconsolidation pres-
sure follows a similar development compared with the shear strength. The strengthening effect appears for most part to
depend on changes of the microstructure in the clay, which influences also the fabric. These results and Equations (34) and
(35) present a basis for an enhancement of the model to account for temperature dependency. Thus, the model provides
a platform where different effects can be integrated without changing the structure of the mathematical formulation.

6 FE- CALCULATION OF A SHALLOW FOUNDATION

In this section, the proposed model and its implementation within the commercial FE program Abaqus is validated by
a numerical analysis of a shallow foundation as presented also in Tafili.45 The width of the foundation is 1 m, and the
size of the considered soil region is 20 × 10 m; see Figure 18A. Accounting for the symmetry with respect to the vertical
axis, only half of the system has been modeled. A vertical displacement of 0.2 m is prescribed at the nodes under the
foundation. The period of time for the punching was varied between t = {1, 10, 100, 1000, 10000, 100000} s, which renders
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(A) (B)

FIGURE 18 A, Geometry,
boundary conditions and body
forces. B, The discretization of
the soil with the FE mesh
[Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B) (C)

FIGURE 19 Load-settlement
curves with variation of (A) dis-
placement rate .u2 = u2∕t = 2 ×
{10−1, 10−2, 10−3, 10−4, 10−5, 10−6}
m/s—Kaolin clay parameters;
(B) anisotropic coefficient
𝛼—Kaolin clay parameters; (C)
displacement rate
.u2 = u2∕t = 2 ×
{10−1, 10−2, 10−3, 10−4, 10−5, 10−6}
m/s—Schwerin mud parameters
[Colour figure can be viewed at
wileyonlinelibrary.com]

different displacement rates .u2 = u2∕t = 2 × {10−1, 10−2, 10−3, 10−4, 10−5, 10−6} m/s allowing to evaluate the
rate dependence of the soil. A clay with low plasticity and a clay a high plasticity clay were used for the calculations,
which correspond to Kaolin clay and Schwerin mud calibrated in Section 5, respectively. The parameters are listed in
Table 1. The contact between soil and foundation is perfectly rough, that is, the horizontal movement of the nodes under
the foundation is prohibited.

The FE mesh containing ≈12 000 elements is illustrated in Figure 18B. In order to prevent volumetric locking, ele-
ments with reduced integration (CPE4R) have been used. Although a displacement of 0.2 m was prescribed, the geometric
nonlinearity was switched off in order to enable fast calculations for comparison purposes.

The simulations contain undrained conditions with variation of the displacement rate .u2 and the anisotropic coefficient
𝛼. In order to simulate the undrained condition, the bulk modulus of water Kw = 2×106 MPa is multiplied by the volume
strain increment to update the pore water pressure pw. The stiffness of water is considered for the calculation of the
material Jacobian J = Jmat + Jw = Jmat + Kw 1 ⊗ 1. The initial stress conditions were adjusted to the vertical stress 𝜎1 = 𝛾 ′ h
and the horizontal stress 𝜎2 = K0 𝜎1 = (1 − sin(𝜑c)) 𝜎1. The initial void ratio corresponds to OCR = 1 and has been
calculated through the relation e0 = ei0 − 𝜆 ln(OCR p0).

Figure 19 shows the load-settlement curves, whereby in (A) for Kaolin clay and (C) for Schwerin mud the
displacement rate has been varied between .u2 = u2∕t = 2 × {10−1, 10−2, 10−3, 10−4, 10−5, 10−6} m/s and in (B) the
anisotropic coefficient for Kaolin has been varied 𝛼 = {0.7, 1.0, 1.5, 2.0}. In each case, a bearing capacity was reached,
whereby the displacement at the limit strength varied from 0.08 to 0.18 m. As expected, with increasing displacement
rate, higher asymptotic reaction forces are reached. Whereas, due to the low plasticity of Kaolin, this effect is rather
weak pronounced in the calculations in Figure 19A, calculations accounting for the high plasticity Schwerin mud show
a much more pronounced difference between the bearing capacities at different displacement rates; see Figure 19C. Fur-

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


22 TAFILI AND TRIANTAFYLLIDIS

thermore, the higher plasticity leads to an increasing displacement at which the bearing capacity is reached, which is of
great importance for performance-based designs. It is worthy to note that the limit undrained strength corresponds for
each calculation approximately to the limit analysis solution developed by Prandtl 𝜎1 = (2+𝜋) cu.

Figure 19B indicates no dependence of asymptotic reaction force on the anisotropic coefficient. It is, however, interest-
ing to observe that the displacement at which the asymptotic state is reached is substantially affected by the fabric of the
soil. On that note, u2 takes values from u2 = {0.04, 0.05, 0.08, 0.11} m for 𝛼 = {0.7, 1.0, 1.5, 2.0}, respectively. Therefore, a 2.2
times larger displacement is necessary to reach the asymptotic reaction force for 𝛼 = 2 compared with an isotropic mate-
rial response 𝛼 = 1 (on the example of Kaolin). This indicates that for a performance-based design, not only the viscosity
represents an important feature but also the simulation of the fabric of the soil is important.

7 CONCLUDING REMARKS

A simple hypoplastic model was formulated to describe the fabric effects and rate dependency of clays, without impos-
ing the limitation to only viscous clays. Thus, also time-independent behaviour of clays can be described with the same
model. For this purpose, the strain rate is composed of the total strain rate, the hypoplastic strain rate (for instantaneous
plastic strain) and the viscoplastic strain rate (accounting for viscous effects). The concept of the bounding surface in con-
junction with the maximum void ratio ei, as well as the critical state surface in conjunction with ec, is introduced in the
model. Following this, the loading surface and the overconsolidation ratio are reviewed and reformulated according to
the maximum void ratio ei, which defines the isotropic normally consolidated state (OCR = 1). The anisotropic parameter
𝛼 is introduced to account for fabric by rotating the (hypo)elastic stiffness tensor to a cross transversal one. An evolution
equation for 𝛼 with the hypoplastic strain rate is proposed as well.

Qualitative and quantitative evaluation as well as experimental validation have demonstrated the good performance of
the proposed model in describing the mechanical behaviour, particularly the time and strain rate effects as well as the
fabric of natural and reconstituted clays. No restriction with respect to the value of the initial overconsolidation ratio has
been found. For each tested material, the same material parameter set has been used for different experimental tests wit-
nessing the prediction accuracy of the proposed model. Finally, the model has been used to predict the bearing capacity
of a shallow foundation with Abaqus. As expected, the undrained shear strength turned out to depend on the displace-
ment rate. The simulations show furthermore that for a performance-based design, not only the viscosity represents an
important feature but also the simulation of the fabric of the soil is important.

Some other experimental observations, such as the coupling with temperature effects and an accurate description of
dilatancy, represent the focus of future research.
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APPENDIX A: CALIBRATION OF MATERIAL PARAMETERS

The model requires the calibration of eight material parameters: five of them (𝜆, 𝜅, ei0, 𝜈h and Mc) are common parameters
for clayey soils, for example, typical for the MCC theory as well, one parameter for the viscosity Iv, one parameter for the
fabric 𝛼 and the material constant fb0 controlling the maximum stress ratio for triaxial compression. They are listed in
Table A1, whereby a subdivision into different groups according to their role within the model has been done and the
approximative range for their values as well as the required tests for their calibration are noted. The following lines are
devoted to explain the calibration process.

A compression path with constant strain rate is expected to approach asymptotically to a line with slope equal to 𝜆 in
the e versus ln(p) space. The parameter 𝜅 is calibrated instead upon an unloading path.

The reference void ratio ei0 corresponds to the maximum void ratio at the reference pressure p = 1 kPa evaluated at
the virgin consolidation line OCR = 1. According to the proposed model, the maximum void ratio curve is reached under
infinite fast strain velocity || .

𝜺|| = ∞. Due to the experimental complexity when dealing with infinite strain velocity,
an alternative calibration method for this parameter has been developed by Fuentes et al.37 For instance, we consider
an experimentally feasible velocity Dr at which OCR = OCRr ≠ 1 holds. This curve is named reference isotach and Dr
reference creep rate.30,37 After some simple mathematical manipulations of the constitutive relation (2), the following
equation is obtained:

(1 − Y0) Dr = Dr − Y0

(
1

OCRr

)2

Dr − Iv 𝜆

(
1

OCRr

)1∕Iv√
3. (A1)
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TABLE A1 Material parameters of the model

Description Approx. range Req. test
Elasticity
𝜆 Compression index 10−6–1 ICTa or Oedb

𝜅 Swelling index 10−7–0.1 ICT or Oed
Fabric
𝜈h Poisson ratio 0.0–0.49 TCTc

𝛼 Anisotropic coefficient 0.1–5 TCT
Plasticity

ei0 Maximum void ratio at p = pref = 1 kPa 0.5–8 ICT or Oed (OCR0 = 1)d

Mc Critical state line slope at triaxial compression 0.5–2.0 TCT
fb0 Bounding surface factor 1–4 TCT (OCR0 > 2)
Viscosity

Iv(Iv = C𝛼/𝜆) Viscosity index 0–0.5 ICT or Oed (2 × .
𝜀)

a Isotropic compression test.
b Oedometer test.
c Triaxial compression test.
d Initial overconsolidation ratio of the sample.

FIGURE A1 Variation of 𝛼 to find the respective 𝜈h by measuring the slopes
of q/p [Colour figure can be viewed at wileyonlinelibrary.com]

Conceiving the numerical solution for OCRr, the parameter ei0 can be computed

ei0 = er − 𝜆 ln (OCRr) , (A2)

whereby er is extrapolated from the experimental curve with || .
𝜺|| = Dr at p = 1 kPa.

The slope of the triaxial compression critical state line Mc is calibrated connecting the endpoints of the available triaxial
compression tests in the p−q plane. The bounding surface factor fb0 controls the compression triaxial stress ratio 𝜂 = q/p
at higher overconsolidated states OCR > 2. When data are scarce, however, a value of fb0 = 1.3 is recommended according
to the authors' experience.

The parameter describing the intensity of creep for normally consolidated samples, denoted as the viscosity index Iv,
has been examined also in former works.30,95,96 One can show that considering two different isotachs with || .

𝜺a|| and || .
𝜺b||

http://wileyonlinelibrary.com
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corresponding to OCRa and OCRb, respectively, the following relation30,97 holds:

Iv = ln
(

OCRb

OCRa

)
∕ ln

(|| .
𝜺a|||| .
𝜺b||

)
. (A3)

The calibration of the parameters related to fabric, namely, 𝛼 and 𝜈h, can be achieved very simply using the following
self-explained code written in the commercial numerical analysis software Mathematica; see Figure A1.30 Hereby, the
effective stress inclination Δq/Δp can be measured from either monotonic or cyclic undrained triaxial tests and gives the
ordinate axis value in Figure A1. After variation of the coefficient of anisotropy 𝛼, one can read the appropriate Poisson
ration 𝜈h on the abszissa.


	A simple hypoplastic model with loading surface accounting for viscous and fabric effects of clays
	Abstract
	1 INTRODUCTION
	2 MECHANICAL FORMULATION IN THE TRIAXIAL SPACE
	2.1. Flow rule m
	2.2. Degree of nonlinearity Yand overconsolidation ratio OCR

	3 MECHANICAL FORMULATION IN THE MULTIAXIAL SPACE
	3.1. Elastic stiffness tensor
	3.1.1. Incorporation of fabric effects for clays

	3.2. Definition of the characteristic stress surfaces and void ratios
	3.3. Flow rule
	3.4. Degree of nonlinearity and overconsolidation ratio

	4 NUMERICAL IMPLEMENTATION
	5 INSPECTION INTO THE PERFORMANCE OF THE MODEL COMPARED WITH LABORATORY TESTS
	5.1. Soft and/or normally consolidated clays
	5.2. Stiff and/or overconsolidated clays
	5.3. Time-dependent behaviour of clays
	5.4. Directional response
	5.5. Limitations of the model

	6 FE-CALCULATION OF A SHALLOW FOUNDATION
	7 CONCLUDING REMARKS
	References
	Appendix A : CALIBRATION OF MATERIAL PARAMETERS



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


