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Abstract 

In a study by Proctor et al. a strength reduction was observed due to 
surface damaging in humid air at high temperatures. The strength tests 
on these damaged specimens were carried out in normal lab atmosphere. 
Unfortunately, these tests are affected by subcritical crack growth.  

In the present report we show on the strength results obtained in humid 
air, in which way these data can be used to determine the inert strength 
of the damaged surface.  

Proctor et al. provided images of the surface defects and identified, 
localized corrosion centers. In our report we show how the effects of 
these local corrosion defects can be handled fracture mechanically.  
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1. Surface damage by corrosion 

1.1 Effect of treatment temperature 

When silica surfaces undergo high temperature treatment in lab air, they are strongly 
damaged as can be concluded from strength measurements on silica fibres by Proctor 
et al. [1] and Lezzi et al. [2]. The strength data measured in normal lab air by Proctor 
[1] are shown for 30-40 min treated fibres as red circles in Fig. 1a. Figure 1b repre-
sents the same data with logarithmic ordinate scaling. The strengths by Lezzi for only 
1 min heat treated fibres are represented as the squares with the standard deviation as 
the bars. Surface inspections after the strength tests by Proctor et al. [1] revealed the 
local damages from which final fracture started. According to the weakest link model, 
we have to expect that failure occurred at the most serious or largest damage. An 
example of such a surface damage for a heat-treatment time of 30-40 min at 800°C in 
lab air is shown in Fig. 2. From this image and a cross section image in [1] we can 
conclude that the corrosion event appears roughly as a hemisphere that is strongly 
cracked by irregularly orientated cracks. The thickness of the lines corresponds with 
the visibility of the crack patterns within the half-sphere. The right part of Fig. 2 
includes the grey-distribution. 

 
Fig. 1 Strength measurements by Proctor et al. [1] (red circles) and Lezzi et al. [2] (squares), a) linear 

ordinate, b) logarithmic ordinate scaling. 
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Fig. 2 Crack patterns within a nearly spherical surface damage according to Proctor et al. [1], left part: 

Cracks exclusively, right part: Shadowing included. 

1.2 Effect of treatment time 

The time-dependent strengths f at 500°C from Proctor [1] are shown in Fig. 3. With 
increasing time, a monotonously decreasing strength was found. 
 

 
Fig. 3 Strength of silica fibres in humid lab air as a function of treatment time at 500°C, measured by 

Proctor et al. [1]. 
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2. Inert strength 
In the case of high-strength silica fibers the inert tensile strengths measured in liquid 
nitrogen is in the order of about c  12 GPa. Figure 4 shows results by Inniss et al. [3] 
(right red straight line). Tests in lab air show clearly lower strengths f which are 
about 50% of the inert strength, slightly depending on the loading rate. Results by 
Inniss et al. [3] and Lezzi et al. [2] are represented by the two coinceding left straight 
lines. The inert strengths for the measurements by Proctor et al. [1] and Lezzi et al. [2] 
can be computed from the strengths in humid air by well-known relations. 
For use of simple equations, we describe the subcritical crack growth rates v(K)-
behaviour by the power-law relation 

 v = = *I
I

Ic

A K A
K
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n
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







  (1) 

with the parameters A, A* and n depending on the material, the temperature and the 
environment.  

 

 
Fig. 4 Strength on silica fibers; f=strength in lab air at 20°C, c=inert strength in liquid N2 (red: 

Inniss et al. [3], blue: Lezzi et al. [2]). 

Using the power-law approximation of subcritical crack growth. eq.(1), the relation 
between humidity-affected strength f and inert strength c is given by 
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In eq.(2) the stress rate is  =d/dt and the material parameter B is defined by 
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where KIc 0.75 MPam is fracture toughness and Y is the geometric function of Y1.3. 
From results by Wiederhorn and Bolz [4], we determined for 5-10 Torr water vapour 
pressure: 

 s MPa 0013.0m/s2.13*,41 2 BAn . (4) 

By using eq.(2), the inert strength c can now be computed from the measured f. This 
was done for the experimental data in Fig. 1 with the results shown in Fig. 5a. The 
solid symbols represent the measured data and the open symbols the inert strengths. In 
addition, the experimental results for the two types of strength by Inniss et al. [3] are 
introduced by the blue triangles. The agreement of measured and computed inert 
strength with the predicted ones is obvious. 
We did the same for the data in Fig. 3 with the result plotted in Fig. 5b. The unknown 
loading rate for the experimental strength measurements was varied in Fig. 5c 
assuming that a few seconds were necessary to reach failure. The predictions are 
hardly affected. 
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Fig. 5 a) Inert strengths of silica fibres computed from data by Proctor et al. [1] and Lezzi et al. [2] vs. 

temperature. Triangles represent strength measurements by Inniss et al. [3] in humid air and liquid 
nitrogen; b) strengths in humid air by Proctor et al. [1] (solid circles) and inert strengths (open circles) 
as a function of heat-treatment time at 500°C, c) strength data in logarithmic representation, effect of 

the loading rate. 

3 Consequences from results by Proctor et al.  

3.1 Strength and pore size 
From the inert strengths of Fig. 5a, we interpolated the data for the additional tempera-
ture of 600°C as compiled in the column 3 of Table 1. The related sphere radii are 
introduced in the 4th column of Table 1. Column 5 shows the products of inert strength 
c and damage radius R.  

 

Temperature f (GPa) c (GPa) R (µm) cR(MPa mm) af (m)  ac (m)

600°C 1.05 1.62 7.6 12.31 0.031 0.013 

800°C 0.37 0.53 22.4 11.87 0.265 0.125 

Table 1 Strengths from Fig. 5a and radii for semi-spherical pores [1] at 600 and 800°C. 

The products in column 5 of Table 1 are sufficiently constant, cR12 MPa mm. 
Consequently, it can be roughly approximated  
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The result of the dependence c=f(R), namely c1/R, is not trivial as will be shown 
below.  
Figure 6 shows the inert strength c at 500°C as the black curve. The red curve and red 
symbols represent the radius of the damaged zone under the assumption that eq.(5) is 
fulfilled even for 500°C. 

 

 
Fig. 6 Inert strength and damage radius for 500°C heat-treated fibers assuming eq.(5) also at this lower 

temperature. 

3.2 Pore model 

The damaged zone in Fig. 2 is strongly cracked by irregularly orientated cracks. This 
region cannot carry external load. It may be modelled as a hemisphere with dis-
appearing Young’s modulus, E0, located in an intact material with normal modulus, 
i.e. E=72 GPa.  
Figure 7a shows a symmetry element of a two-dimensional array of semi-spherical 
pores at a flat surface. The radius of the half-sphere is R and the distance to the next 
one 2H. The applied stress is denoted as . The stresses y along the equator between 
points (A) and (B) are represented in Fig. 7b for several values of H/R. It has to be 
noted that the stress concentration k depends on the relative size of the symmetry 
elements R/H, but not on the absolute value of R. 
From the pore model we have to expect failure when the maximum tangential stress at 
the pore, max, equals a critical value cr. When k denotes the stress concentration 
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factor at the deepest point of the half-sphere and again c is the inert strength, it must 
hold at failure 

 
k

cr

c

   (6) 

The maximum concentration factor is k2. From this point of view, not any influence 
of pore size on strength should exist, in contrast to the experiment. 
The maximum possible stress at the circumference of a pore is reached, when the 
critical stress cr equals the theoretical strength 0 that is for silica 0=23 GPa [5]. 
Consequently, it results for the maximum possible strength according to eq.(6) 

 GPa5.11
2

GPa230
max, 

kc

  (7) 

 

   
Fig. 7 a) Semi-spherical surface pore under uniaxial loading, b) stress distribution y along the equator, 
surface: (B), deepest point: (A). 

3.3 Pore/crack model 
Strength behaviour of pore-like defects is in fracture mechanics described by an open 
pore of radius R with a fictive annular crack of depth a normal to the applied stress as 
was suggested by Baratta [6,7], Fig. 8. The size of the fictive crack can experimentally 
estimated from the pore-radius, the fracture toughness of the undamaged material and 
the measured strength.  
In a fracture mechanics description of the dependency strength vs. crack size,  
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aF

KIc
c 

   (8) 

the strength would become infinite for disappearing crack depth, a0. 
 

 
Fig. 8 Semi-spherical void with a fictive circumferential crack normal to the applied stress in a tensile 

strength test. 

The fact of a limited strength can simply be incorporated by an intrinsic crack size a0 
leading to c=c,max as is fulfilled by 
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yielding the intrinsic crack depth as 
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For a very small crack depth, a0<<R, we obtain with F =2.25, KIc = 0.8 MPam, and 
c,max =11500 MPa a very small pre-existent crack depths of a0=0.3 nm. This depth 
agrees well with the size of the silica rings, below which the application of continuum 
mechanics doesn’t make any sense. 
The strength in presence of a circumferential crack, c<c,max, then holds 

 
)( 0aaF

KIc
c 



  (10) 

The stress intensity factor for the circumferentially cracked semi-spherical surface 
void under equi-biaxial stresses was studied by Baratta [6] and Zhu et al. [8]. In [8] an 
equation is given for the Poisson’s ratio of =0.25 that reads for the stress intensity 
factor at the circumference of the hemisphere:  

 aFK   (11) 

For uniaxial stresses we found by a Finite Element analysis with =0.17: k2.0 [9]. 
The geometric function can be fitted as  

2R a 
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 ])/14.5exp[02.11])(/arctan[22.012.1( RaRaF  . (12) 

Since the ratio a/R is for the data in Table 1 a/R <0.012, the geometric function F 
simplifies to 

 24.212.1  kF  (13) 

i.e. twice the geometric function of the edge-cracked half-infinite body. This implies 
that the strength of the pore-like damaged silica surface is about half of the strength of 
a smooth silica fiber surface containing the same defect population. The 6th and 7th 
columns of Table 1 contain the crack sizes at failure. 
In order to demonstrate the relationship between crack length, geometry function and 
strength, we want to arbitrarily calculate the (theoretical) inert strength and the course 
of the fracture mechanical geometry function for a pore with the radius R = 20 µm. 
Figure 9 shows the results. From Fig. 9a it can be concluded, that up to a10-7m an 
influence of the crack size on the geometric function can be ignored. Figure 9b shows 
the inert strengths as the continuous curve in comparison with the two limit-case 
solutions for the geometric function in Fig. 9a, introduced by the dash-dotted straight 
lines. 
 

      
Fig. 9 a) Geometric function F vs. crack length a, b) inert strength versus initial crack length ai. 

Straight lines: limit cases with constant F, from Fig. 9a.  
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trivially disappears. Outside the pore it doesn’t rise abruptly to the value of silica. Via 
diffusion, the reaction products are present even under the pore surface, resulting in a 
toughness distribution as is illustrated schematically in Fig. 10. This figure shows a 
surface “pore” generated due to the reaction between dust particles on the surface and 
the silica. Consequently, local toughness K’Ic increases from K’Ic=0 at the pore surface 
to the value K’Ic=KIc in the bulk material. Fracture of this region by an increasing 
uniaxial stress causes a ring-shaped crack with the depth continuously increasing until 
the failure condition for the bulk material Kappl=KIc is reached. Diffusion depth d of the 
reaction products into the surrounding material depends on time t  

 tDb   (14) 

where D denotes the diffusivity of reaction product in silica. The crack length at 
fracture should correspond at least approximately to the diffusion length b. Therefore, 
we set a=b. 

 

  
Fig. 10 Surface “pore” due to reaction between dust particles and silica. Toughness K’Ic increase from 

K’Ic=0 at the pore surface to the value K’Ic=KIc in the bulk material.  

Next we fitted the dependency of inert strength vs. heat-treating time t. Use of Least-
squares fitting procedure by Mathematica [10] yields the parameters a0 and D  

Intrinsic crack depth a0=6.09 10-10 m [3.9 10-10, 8.3 10-10]  

equivalent to a maximum strength of c,max=7135 MPa [6145, 8960]  

and the diffusivity log10 D=-21.9  [-22.6, -21.6] (for D in m2/s) 

with the 90% Confidence Intervals in brackets. The related fitting curve is given in Fig. 
11 together with the data points. 
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Fig. 11 Data fit, curve: computed with best fitting parameter set.  

References 
                                                 
1 A. Proctor, I. Whitney, J.W. Johnson, The strength of fused silica, Proceedings of the Royal 
Society of London. Series A. Mathematical and Physical Sciences, Vol. 297, No. 1451 (1967), 
534-557. 
2 P.J. Lezzi, Q.R. Xiao, M. Tomozawa, T.A. Blanchet, C.R. Kurkjian, Strength increase of 
silica glass fibers by surface stress relaxation: A new mechanical strengthening method, J. of 
Non-Crystalline Solids 379 (2013) 95–106. 
3 D. Inniss, Q. Zhong, C.R. Kurkjian, Chemically corroded pristine silica fibers: Blunt or 
sharp flaws?, J. Am. Ceram. Soc. 76(1993), 3173-77. 
4 Wiederhorn, S.M. and Bolz, L.H., Stress Corrosion and Static Fatigue of Glass, J. Am. 
Ceram. Soc. 53[10] (1970), 543-548. 
5 Silva, E. C. C. M.; Tong, L.; Yip, S.; Van Vliet, K. J. Small 2006, 2, 239–243. 
6 Baratta, F.I., Stress intensity factor estimates for a peripherally cracked spherical void and a 
hemispherical surface pit, J. Am. Ceram. Soc. 61(1978), 490-493. 
7 Baratta, F.I., Mode-I stress intensity factor estimates for various configurations involving 
single and multiple cracked spherical voids, Fracture Mechanics of Ceramics, Vol. 5, Plenum 
Press, 1983, 543-567. 
8 Zhu, G.Q., Ritter, J.E., Jakus, K., Bhattacharya, S., Stress intensity factor for a peripherally 
cracked spherical cap, J. Am. Ceram. Soc. 80(1997), 2445-48. 
9 G. Rizzi, T. Fett, Defects at silica surfaces and crack-tip shielding- A Finite Element Study, 
33, 2015, ISSN: 2194-1629, Karlsruhe, KIT. 
10 Mathematica, Wolfram Research, Champaign, USA. 

10 1000 105

c 

(MPa) 

2000

6000

4000

8000

0.1 

Time   (h) 



 
KIT Scientific Working Papers 
ISSN 2194-1629

www.kit.edu
KIT – The Research University in the Helmholtz Association


