
   

Virtual Product Development 
Using Simulation Methods and AI
Increased material diversity and higher component requirements along with 
shorter development cycles increase the complexity and development effort 
of today’s lightweight solutions. Scientists at KIT are investigating new 
opportunities to combine simulations and machine learning to accelerate 
development processes.

Research and development have been paving 
the way for increasingly capable material and 
design solutions using fiber-reinforced poly-
mers (FRPs) for many decades. However, the 
enormous effort required for a manufactur-
able component design and process set-up 
hinders the potential to achieve lightweight 
design. Using efficient design methods is the 
only way to realize the significant potential 
of FRPs in the final product in an economi-
cally viable manner, thereby justifying 
higher material costs. This holds in particu-
lar for medium- and large-scale production 
processes where the interaction between 
component performance and commercial 
requirements is particularly strong, Figure 1 

(left). The growing use of FRPs and numer-
ous research findings over recent decades 
have allowed industry and research institutes 
to accumulate an in-depth understanding of 
materials, processes and simulation [1, 2]. 
The full exploitation of existing lightweight 
construction potential can only be achieved 
by an optimal adjustment of material, quali-
ty-oriented production and system-oriented 
design - a challenging optimization task. 
Classical development processes involve a 
considerable experimental effort, conceptual 
variants and revisions, iterations and – in 
some cases – a complete restart. A continu-
ously digitalized product development offers 
far-reaching opportunities to increase light-

weight construction potentials, economic 
efficiency and sustainability within develop-
ment processes in lightweight construction. 
The virtual process chain can then be sup-
plemented with real-time data and Machine 
Learning (ML) methods to assist product 
development.

Continuous Virtual  
Process Chain 
A virtual process chain provides a direct link 
between the design and the final FRP part, 
considering the interactions between mate-
rial and process during manufacturing. For 
example, internal stress can arise as a result 
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of chemothermo-mechanical effects during 
curing and cooling. 

This can significantly inf luence the 
load-bearing capacity of a structure and 
must therefore be taken into consideration in 
a coupled process and component design. 

Furthermore, the process-related micro-
structure in heterogeneous materials such as 
FRPs has a key impact on final component 
performance. The physical interactions 
between material and process are to be 
described by means of multi-scale and multi-
physics-based simulation approaches and 
coupled within continuous virtual CAE 
chains, Figure 1 (right). The establishment of 
standardized and neutral exchange formats 
between different simulation codes, such as 
in the ITEA project VMAP, helps to avoid 
user-specific stand-alone solutions.

Multiphysical Interaction 
Increasing demands on the reliability and 
complexity of components, along with ever-
shorter development and production times, 
raise the development effort in hybrid light-
weight constructions. Reliable, virtual pre-
dictions of material- and process-specific 
interactions are key to ensure a fundamental 

understanding of the system and a safe and 
efficient design. Insufficient modelling 
approaches can lead to erroneous predic-
tions. Especially, when a high utilization of 
material, process or structure is desired, only 
little space for uncertainties is allowed. The 

following examples illustrate that the simu-
lation approach is critical to reliably predict 
material and manufacturing effects and the 
resulting load bearing capacities.

Local Separation Effects  
in Ribs 
During the production of long-fiber-rein-
forced Sheet Molding Compound (SMC) 
components, local separation of fibers and 
matrix can occur at narrow cross-sections 
and joining welds. Conventional, homoge-
nized simulation models use the fiber orien-
tation tensor to describe material anisotropy 
and other effects on the mesoscale. These 
homogenized approaches cannot capture 
separation processes. This would result in rib 
stiffness being overestimated in a classic 
design with homogenized material parame-
ters. A promising approach is the explicit 
modelling of the deformable fiber bundles 
Figure 2 (right) including their interaction 
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Figure 1 Technological and economic requirements for an efficient FRP solution [1] (left) and example of an end-to-end virtual CAE  
process chain [2] (right) (© KIT|FAST)
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with the hydrodynamic f luid forces of the 
matrix f low – a f luid structure interaction 
comes into being.

The direct simulation of the bundles does 
not require any parameter and closure 
approaches to determine the fiber orienta-
tion. Moreover, the coupled approach covers 
anisotropic flow of the fiber suspension. This 
method is currently being developed in a 

research project as part of the Graduate 
School DFG-GRK 2078, funded by the Ger-
man Research Foundation (DFG). This new 
simulation approach makes it possible to 
investigate the influence of relevant process 
parameters such as tool allocation, closing 
profile or rib geometry on the mesostructure 
in the final component and to take it into 
account in the structural design.

Draping and simultaneous 
infiltration 
Complex interactions between material and 
process are characteristic of hybrid light-
weight design, including wet compression 
molding (WCM). In this process, which is 
used in automotive large-scale production as 
an alternative to Resin Transfer Molding 
(RTM), molding (draping), mold filling 
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Figure 2 Mesostructure of an SMC test specimen in a CT scan (left) and flow simulation of the matrix material with embedded fiber bundles in a rib during  
compression molding [3] (right) (©KIT|FAST)
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Figure 3 Illustration of the wet compression process chain from blank cutting to demoulding with particular emphasis on the simulation of simultaneous form-
ing (shear angle in red) and infiltration (pressure distribution in blue) [4] (© KIT|FAST and Fraunhofer ICT)



(infiltration) and curing are carried out in a 
single process step, Figure 3. By this means, 
one process step can be avoided compared to 
the conventional RTM process and cycle 
times in the range of 60 to 90 s can be 
achieved. The key process dynamics in 
WCM can only be described with a coupled 
simulation approach for draping and 
mold-filling. [4]

Existing models cannot address these 
multiphysics-effects. Consequently, virtual 
tool design and sealing concepts is currently 

not suppor ted. In the “ Forschungs-
brücke”-project, the physical mechanisms 
and application limits of wet compression 
molding are investigated on the basis of con-

tinuously fiber-reinforced composite parts 
in cooperation between KIT-FAST, IFB 
Stuttgart and Fraunhofer ICT. 
The key mechanisms during WCM are:

 } viscous draping of semi-finished  
part layers

 } simultaneous f luid progression  
and curing

 } f luid structure Interaction between 
semi-finished fiber parts and the matrix.

This inseparable interplay of effects is of cru-
cial importance for the final component 

quality [5]. An isolated examination and 
optimization of individual effects during 
process design is not possible. Therefore, 
modelling approaches are developed, which 

allow a simultaneous simulation of the 
occurring effects, here in particular draping 
and mold-filling. [4] Research is currently 
being carried out on a three-dimensional 
approach that enables the prediction of mea-
surable process variables such as cavity inter-
nal pressures and quality-relevant manufac-
turing effects – such as dry spots or fiber 
washout – to be predicted. 

Manufacturing-related 
imperfections
Influences of production on the component 
are inevitable. Their impact on the load-bear-
ing capacity of the structure must therefore 
be taken into account during design. This 
also makes it possible to use design principles 
that take into account manufacturing imper-
fections of the material, such as fiber wavi-
ness, gap formation or roving compaction, 
Figure 4. This requires data from previous 
process steps. In order to distinguish 
between relevant defects and negligible 
effects they must be taken into account in the 
materia l behav iour of t he str uc ture 
simulation.
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Key process dynamics in WCM can only 
be described with a coupled simulation 
approach for draping and mold filling.

Figure 4 Illustrative example of the influence of manufacturing imperfections on the prediction of material effort related to inter-fiber failure. (© KIT|FAST)



Classical design guidelines assume a 
defect free, idealized fiber reinforcement in 
the matrix and hence often overestimate the 
material performance. The aim of a DFG-
funded research project is to describe and 
quantify such manufacturing effects across 
different scales and to take them into account 
when designing components made of 
FRP [6]. Figure 4 shows that potential 
inter-fiber breaks can be predicted with 
greater accuracy and resolution. If the imper-
fections are mapped properly in addition to 
the local fiber orientations, not only the loca-
tions of increased material strain differ by 

more than 60 %, but also their characteristics 
at some locations. Such high-resolution 
approaches allow a well-founded evaluation 
of the consequences of imperfections in the 
final component structure. 

Organizing Complexities and 
Making them Comprehensive
The presented research examples clearly 
demonstrate that future lightweight design 
solutions will benefit significantly from 
improved mutual adjustment of material, 

process and structural requirements. Hence, 
the full potential of future lightweight design 
solutions can only be harnessed using a con-
tinuous f low of information, which ref lects 
all specific material and process aspects at 
the earliest possible stage of the design phase.

Higher standards for simulation tech-
niques and expertise also bring up new chal-
lenges in product development processes. 
First, access to powerful computing equip-
ment and costly simulation software may 
prove prohibitively costly, especially for 
Small- and Medium-sized businesses. Sec-
ond, growing material diversity, multi-stage 

manufacturing processes and demanding 
structural requirements pose a significant 
challenge for optimization. Under these con-
ditions, classical methods of mathematical 
optimization soon reach their limits. Often, 
the algorithms get stuck in local minima or 
require numerous iterations, which leads to 
inacceptable computation times – possibly 
days or weeks.

Thus, in practice, many companies rely 
on empirical best-practice-guidelines and 
employee experience instead of accurate 
simulations. Such knowledge on material or 

process behaviour may help narrow the 
range of variants to options that are techno-
logically promising, but may not necessarily 
be strictly optimum or defect-free. This often 
results in significant costs for error correc-
tion, fine-tuning and rework.

It is therefore desirable to combine the 
reproducibility and reliability of simulation 
methods with the physical understanding 
and technical knowledge of engineers. 
Machine learning methods offer significant 
potential in this area. The general idea is to 
link ML-algorithms with simulations in 
order to guide the optimiser in the parame-
ter space and overall accelerate the develop-
ment process.

Neural Networks Support 
Optimizations
In general, the term ML refers to statistical 
techniques which extract correlations from 
data sets to give predictions in new situa-
tions. This includes various techniques rang-
ing from classical polynomial regression or 

Machine Learning

Machine learning refers to all artificial 
intelligence techniques that enable 
software or a machine to perform a pre-
viously defined task without being ex-
plicitly programmed for that task. The 
machine must autonomously extract 
suitable strategies to perform the task 
only from supplied data. [7]

Figure 5 Schematic sketch of gripper-assisted textile forming (left) and comparison of the shear angle distribution depending on gripper-forces according to 
ML-estimation and simulation (right) [8] (© KIT|FAST)
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Gaussian process regression to artifical neu-
ral networks. As part of the “Forschungs-
brücke” project (German for “Research 
Bridge”), scientists at KIT-FAST study in 
which way ML-techniques can support the 
development of complex manufacturing 
processes using the example of wet compres-
sion molding.

Preliminary investigations show that 
deep artificial neural networks (NNs) are 
particularly well-suited for learning complex 
interactions like they occur in manufactur-
ing processes [8]. For instance, they do not 
just make higher-quality predictions com-
pared to other ML techniques, they also 
enable a spatially resolved prediction of man-
ufacturing effects, Figure 2. This makes it 
easier for engineers to evaluate different pro-
cess results and deduce suitable means for 
process improvements.

Integrating Existing 
Knowledge into Optimization
Direct couplings of optimization algorithms 
with simulation models usually results in a 
widespread search across the available 
parameter space, Figure 3 (left). ML-tech-
niques can be used to accelerate the process 
by excluding unfavourable variants from the 
beginning and concentrate time-consuming 
simulations on the most promising parame-
ter combinations.

To this, neural networks are pre-trained 
using sample simulations so that they esti-

mate the result of a new process variant 
within few seconds, for example the 
mold-filling time required at each point of 
the resin application, Figure 3. Optimization 
on the neural network then takes only a few 
minutes and provides a first process recom-
mendation. By iterative integration of simu-
lation results, the network gradually refines 

its prediction quality for more reliable pro-
cess recommendations, Figure 3 (center). 
Overall, the computational effort can be 
reduced by 30 to 70 %, depending on the spe-
cific application, Figure 3 (right).

Geometry Assessment 
through Machine Learning
Current research work aims to integrate the 
capabilities of ML-methods into the devel-
opment process at an even earlier stage. 
Recent findings show that neural networks 
specialized in image-processing (“convolu-
tional neural networks”) can interpret com-
ponent geometries and assess their manufac-

turability. Using an extensive data record 
comprising variable geometries and accord-
ing process simulations - specifically form-
ing simulations, Figure 4 (right) − an algo-
rithm learns which component features are 
relevant for forming processes. Based on this 
‘experience’ it can then quickly assess the 
formability of a new component design and 

identify potentially manufacturing-critical 
component regions [9].

Comparable to a “virtual process expert”, 
such an algorithm can give the designer 
rapid feedback on the component design − 
without further simulation effort after initial 
training, reproducible and portable in a soft-
ware. Coupled with optimization algo-
rithms, rapid changes of the geometry for 
improved drapability are also possible [10].

AI Generates Ideas  
and Assists
Further ideas describe the transition from a 
passive-reactive feedback tool to a proactive 

Figure 6 Schematic sketch and convergence comparison of direct and ML-assisted optimization of the resin application in wet compression molding (© KIT|FAST)
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“advisor”. Latest developments indicate that 
advanced AI techniques can actively provide 
suggestions for material, component or pro-
cess configurations, given certain design 
constraints, e.g. boundary conditions, design 
space or structural requirements [10, 11].

Thereby, it is possible for the algorithms 
to compare numerous variants that a single 
human being would be unable to process. 
Engineers can evaluate AI-generated sugges-
tions, combine promising options or use 

them for general inspiration in the parame-
ter and variant space.

Being supported by such tools, engineers 
can shift away from routine work such as 
recurrent designs and material variations, 
and refocus instead on value-adding and cre-

ative activities. For instance, simulation spe-
cialists could concentrate more on the actual 
development of simulation techniques, while 
their models are made accessible to a broad 
range of users by means of AI.

Such tools are currently being developed, 
tested and focus on demonstrator tasks. 
Overall however, prospects for future fields 
of business are emerging, e.g. cloud-based AI 
engineering services.

Over the next decade, such methods will 
become increasingly significant in product 
development processes and provide new 
engineering tools (Figure  5), which assist 
engineers in their work. In this regard, 
AI-methods will not replace but complement 
numeric simulations and increase their 
accessibility. 
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