KIT | KIT-Bibliothek | Impressum | Datenschutz

Data-Driven Regionalization of Decarbonized Energy Systems for Reflecting Their Changing Topologies in Planning and Optimization

Kueppers, Martin; Perau, Christian; Franken, Marco; Heger, Hans Jörg; Huber, Matthias; Metzger, Michael; Niessen, Stefan

Abstract:

The decarbonization of energy systems has led to a fundamental change in their topologysince generation is shifted to locations with favorable renewable conditions. In planning, this changeis reflected by applying optimization models to regions within a country to optimize the distributionof generation units and to evaluate the resulting impact on the grid topology. This paper proposesa globally applicable framework to find a suitable regionalization for energy system models witha data-driven approach. Based on a global, spatially resolved database of demand, generation,and renewable profiles, hierarchical clustering with fine-tuning is performed. This regionalizationapproach is applied by modeling the resulting regions in an optimization model including asynthesized grid. In an exemplary case study, South Africa’s energy system is examined. The resultsshow that the data-driven regionalization is beneficial compared to the common approach of usingpolitical regions. Furthermore, the results of a modeled 80% decarbonization until 2045 demonstratethat the integration of renewable energy sources fundamentally changes the role of regions withinSouth Africa’s energy system. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000124651
Veröffentlicht am 15.10.2020
Originalveröffentlichung
DOI: 10.3390/en13164076
Scopus
Zitationen: 7
Web of Science
Zitationen: 4
Dimensions
Zitationen: 9
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 06.08.2020
Sprache Englisch
Identifikator ISSN: 1996-1073
KITopen-ID: 1000124651
Erschienen in Energies
Verlag MDPI
Band 13
Heft 16
Seiten Article: 4076
Schlagwörter spatial clustering; energy system model; optimization; GIS; South Africa; energy transition
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page