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Lp ESTIMATES FOR WAVE EQUATIONS WITH SPECIFIC C0,1

COEFFICIENTS

DOROTHEE FREY AND PIERRE PORTAL

Abstract. Peral/Miyachi’s celebrated theorem on fixed time Lp estimates with loss
of derivatives for the wave equation states that the operator (I − ∆)−

α
2 exp(i

√
−∆) is

bounded on Lp(Rd) if and only if α ≥ sp := (d − 1)
∣∣∣ 1p − 1

2

∣∣∣. We extend this result to

operators of the form L = −
d∑

j=1

aj+d∂jaj∂j , such that, for j = 1, ..., d, the functions aj

and aj+d only depend on xj , are bounded above and below, but are merely Lipschitz
continuous. This is below the C1,1 regularity that is known to be necessary in general
for Strichartz estimates in dimension d ≥ 2. Our proof is based on an approach to the
boundedness of Fourier integral operators recently developed by Hassell, Rozendaal, and
the second author. We construct a scale of adapted Hardy spaces on which exp(i

√
L) is

bounded by lifting Lp functions to the tent space T p,2(Rd), using a wave packet transform
adapted to the Lipschitz metric induced by the coefficients aj . The result then follows
from Sobolev embedding properties of these spaces.

Mathematics Subject Classification (2020): Primary 42B35. Secondary 35L05,
42B30, 42B37, 35S30.

1. Introduction

In 1980, Peral [28] and Miyachi [26] proved that the operator (I − ∆)−
α
2 exp(i

√
−∆) is

bounded on Lp(Rd) if and only if α ≥ sp := (d − 1)
∣∣∣1p − 1

2

∣∣∣. Their result was then ex-
tended to general Fourier integral operators (FIOs) in a celebrated theorem of Seeger,
Sogge, and Stein [31], leading, in particular, to Lp(Rd) well-posedness results for wave
equations with smooth variable coefficients on Rd or driven by the Laplace-Beltrami op-
erator on a compact manifold. To establish well-posedness of wave equations in more
complex geometric settings, many results have been obtained in the past 30 years, using
extensions of Peral/Miyachi’s fixed time estimates with loss of derivatives, Strichartz esti-
mates, and/or local smoothing properties. This includes Smith’s parametrix construction
[33],Tataru’s Strichartz estimates [38] for wave equations on Rd with C1,1 coefficients,
and Müller-Seeger’s extension of Peral-Miyachi’s result to the sublaplacian on Heisenberg
type groups [27], as well as many other important results for specific operators, such as
Laplace-Beltrami operators on symmetric spaces.
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In this paper, we consider operators of the form L = −
d∑
j=1

aj+d∂jaj∂j, such that, for

j = 1, ..., d, the functions aj and aj+d only depend on xj, are bounded above and below,
and are Lipschitz continuous. For these operators, we extend Peral/Miyachi’s result by
proving that (I + L)−

α
2 exp(i

√
L) is bounded on Lp(Rd) for α ≥ sp := (d − 1)

∣∣∣1p − 1
2

∣∣∣.
When sp ≤ 2, we show well-posedness for data in W sp,p(Rd), even when L is perturbed
by first order drift terms depending on all the variables (see Theorem 9.6 and Section
10). While the algebraic structure of the coefficient matrix is a serious limitation, the
roughness of the coefficients is a satisfying and somewhat surprising feature of our result.
Indeed, Strichartz estimates for wave equations are known to fail, in general, for coeffi-
cients rougher than C1,1, see [34,35].

Our proof is based on a new approach to Seeger-Sogge-Stein’s Lp boundedness theorem for
FIOs, initiated by Hassell, Rozendaal, and the second author in [21], building on earlier
work of Smith [32]. The approach consists in developing a scale of Hardy spaces Hp

FIO,
that are invariant under the action of FIOs. One then shows that this scale relates to the
Sobolev scale through the embedding W

sp
2
,p ⊂ Hp

FIO ⊂ W− sp
2
,p, for p ∈ (1,∞). This is

similar, in spirit, to the theory of Hardy spaces associated with operators, which has been
extensively developed over the past 15 years, starting with [7,16,20] (see also the memoir
[19]). In this theory, one first constructs a scale of spaces Hp

L by lifting functions from
Lp to one of the tent spaces introduced by Coifman, Meyer, and Stein in [14], using the
functional calculus of the operator L (rather than convolutions). One then shows that the
spaces are invariant under the action of the functional calculus of L. Finally, one relates
these spaces to more classical ones. For instance Hp

∆(Rd) = Lp(Rd) for all p ∈ (1,∞).
More generally, when one considers Hodge-Dirac operators ΠB, Hp

ΠB
= Lp precisely for

those p for which Hodge projections are Lp bounded (a result proven by McIntosh and
the authors in [17]).

In the present paper, we go one step further in connecting both theories, by developing
a scale of Hardy-Sobolev spaces Hp,s

FIO,a on which exp(i
√
L) is bounded, and proving ana-

logues of the embedding W
sp
2
,p(Rd) ⊂ Hp,0

FIO(Rd) ⊂ W− sp
2
,p(Rd) such as, for p ∈ (1, 2),

H
p,
sp
2

FIO,a ⊂ Lp and (I +
√
L)−

sp
2 ∈ B(Lp, Hp,0

FIO,a). This gives our Lp boundedness with
loss of derivatives result, and more. Indeed, one can apply the half wave group exp(i

√
L)

repeatedly on Hp,s
FIO,a, and only loose derivatives when one compares Hp,s

FIO,a to classical
Sobolev spaces. This allows for iterative arguments in constructing parametrices (an idea
used recently in [22]). One can also perturb the half wave group using abstract operator
theory on the Banach space Hp,s

FIO,a (see Corollary 10.3).

The paper is structured as follows. In Section 3, we treat the problem in dimension 1. In
this simple situation, arguments based on bilipschitz changes of variables can be used.
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In Section 4 we consider the transport group generated, on L2(Rd;C2), by

iξ.Da :=
d∑
j=1

ξj

(
0 −i∂jaj+d

iaj∂j 0

)
,

for ξ ∈ Rd. The dimension 1 results from Section 3 allow us to prove that exp(iξDa) ∈
B(Lp) for all p ∈ [1,∞). The Phillips functional calculus associated with this group can
then replace convolutions/Fourier multipliers in the context of our Lipschitz metric, and
includes functions of

L := Da.Da =

(
L1 0
0 L2

)
,

where L1 := −
d∑
j=1

aj+d∂jaj∂j and L2 := −
d∑
j=1

aj∂jaj+d∂j. Using this calculus, we use

the approach of [5] to construct an adapted scale of Hardy-Sobolev spaces in Section
5. For all integrability parameters p ∈ (1,∞) and regularity parameter s ∈ [0, 2], these
spaces coincide with classical Sobolev spaces, thanks to the regularity properties of the
heat kernel of L arising from the Lipschitz continuity of its coefficients. To go from these
spaces to Hp,s

FIO,a, one needs to directionally refine the Littlewood-Paley decomposition,
as in the proof of Seeger-Sogge-Stein’s theorem. This is done in [21] using a wave packet
transform defined by Fourier multipliers. In Section 6 we construct a similar wave packet
transform, replacing Fourier multipliers by the Phillips calculus of the transport group.
This allows us to define Hp,s

FIO,a in Section 7, and to prove its embedding properties in
Section 8. In Section 9, we prove that the half wave group (exp(it

√
L))t∈R is bounded

on Hp,s
FIO,a for all 1 < p < ∞ and s ∈ R. To do so, we first notice that the trans-

port group is. We then realise that, in a given direction ω, exp(i
√
Da.Da) is close to

exp(−iω.Da), when acting on an appropriate wave packet, in the sense that operators of
the form

(
exp(i

√
Da.Da)− exp(−iω.Da)

)
ϕω(Da) are Lp bounded. Finally, in Section 10,

we show that exp(it
√
L) remains bounded if one appropriately perturbs L by first order

terms. This is based on Theorem 10.1, a result about multiplication operators on Hp
FIO,a

that is of independent interest, even in the case where aj = 1 for all j = 1, ..., 2d.

Our approach relies heavily on algebraic properties: the wave group commutes with the
wave packet localisation operators, and can be expressed in the Phillips functional calcu-
lus of a commutative group. Although our coefficients are merely Lipschitz continuous,
these algebraic properties match those of the standard Euclidean wave group. However,
in dimension d > 1, the problem does not reduce to its euclidean counterpart through a
change of variables (see Remark 4.5).

In the same way as Peral-Miyachi’s result for the standard half wave group is a starting
point for the well-posedness theory of wave equations with coefficients that are smooth
enough perturbations of constant coefficients, we expect the results proven here to provide
a basis for the development of a well-posedness theory of wave equations with coefficients
that are smooth enough perturbations of structured Lipschitz continuous coefficients.
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Acknowledgments. We thank Andrew Hassell and Jan Rozendaal for many interesting
discussions on the relations between this work and theirs. We thank the anonymous referee
of a previous version of this paper for pointing out the change of variable approach that
we now use in Section 3, before moving on to more general operators for which such an
approach is not available.

2. Preliminaries

We first recall (a special case of) the following Banach space valued Marcinkiewicz-Lizorkin
Fourier multiplier’s theorem (see [37, Theorem 4.5]).

Theorem 2.1. (Fernandez/ Štrkalj-Weis) Let p ∈ (1,∞). Let m ∈ C1(Rd\{0}) be such
that, for all α ∈ Nd

0 with |α|∞ ≤ 1 there exists a constant C = C(α) > 0 such that

|ζα∂αζm(ζ)| ≤ C ∀ζ ∈ Rd \ {0}.
Let Tm denote the Fourier multiplier with symbol m. Then Tm ⊗ ILp(Rd) extends to a
bounded operator on Lp(Rd;Lp(Rd)).

This theorem will be combined with the following version of the Coifman-Weiss transfer-
ence principle (see [24, Theorem 10.7.5]). Note that the extension of this theorem from a
one parameter group to a d parameter group generated by a tuple of commuting operators
is straightforward.

Theorem 2.2. (Coifman-Weiss) Let p ∈ (1,∞). Let iD1, ..., iDd generate bounded com-
muting groups (exp(itDj))t∈R on Lp(Rd), and consider the d parameter group defined by

exp(iξD) =
d∏
j=1

exp(iξjDj) for ξ ∈ Rd. Then, for all ψ ∈ S(Rd), we have that

‖
ˆ

Rd

ψ̂(ξ) exp(iξD)fdξ‖Lp(Rd) . ‖Tψ ⊗ ILp(Rd)‖B(Lp(Rd;Lp(Rd)))‖f‖Lp(Rd) ∀f ∈ Lp(Rd).

To define our Hardy-Sobolev spaces, we use the tent spaces introduced by Coifman, Meyer,
and Stein in [14], and used extensively in the theory of Hardy spaces associated with
operators (see e.g. the memoir [19] and the references therein). These tent spaces T p,2(Rd)
are defined as follows. For F : Rd × (0,∞)→ CN measurable and x ∈ Rd, set

AF (x) :=

(ˆ ∞
0

−
ˆ
B(x,σ)

|F (y, σ)|2 dydσ
σ

)1/2

∈ [0,∞],

where | · | denotes the euclidean norm on CN .

Definition 2.3. Let p ∈ [1,∞). The tent space T p,2(Rd) is defined as the space of all
F ∈ L2

loc(Rd × (0,∞), dxdσ
σ

) such that AF ∈ Lp(Rd), endowed with the norm

‖F‖T p,2(Rd) := ‖AF‖Lp(Rd).

Recall that the tent space T 1,2 admits an atomic decomposition (see [14]) in terms of
atoms A supported in sets of the form B(cB, r)× [0, r], and satisfying

rd
rˆ

0

ˆ

Rd

|A(y, σ)|2dydσ
σ
≤ 1.
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Recall also that the classical Hardy space H1(Rd) norm can be obtained as

‖f‖H1(Rd) := ‖(t, x) 7→ ψ(t2∆)f(x)‖T 1,2(Rd),

where ψ(t2∆) denotes the Fourier multiplier with symbol ξ 7→ t2|ξ|2 exp(−t2|ξ|2). This is
the starting point of the theory of Hardy spaces associated with operators (or equations):
one replaces the Fourier multiplier by an appropriately adapted operator. To do so, one
often uses the holomorphic functional calculus of a (bi)sectorial operator. The relevant
theory is presented in [24]. We use it here with the following notation.

Definition 2.4. Let 0 < θ < π
2
. Define the open sector in the complex plane by

Soθ+ := {z ∈ C \ {0} : | arg(z)| < θ},
as well as the bisector Soθ = Soθ+∪Soθ−, where Soθ− = −Soθ+. We denote by H(Soθ) the space
of holomorphic functions on Soθ , and set

H∞(Soθ) := {g ∈ H(Soθ) : ‖g‖L∞(Soθ ) <∞},
Ψβ
α(S0

θ ) := {ψ ∈ H∞(Soθ) : ∃C > 0 : |ψ(z)| ≤ C|z|α(1 + |z|α+β)−1 ∀z ∈ Soθ}
for every α, β > 0. We say that ψ ∈ H∞(Soθ) is non-degenerate if neither of its restrictions
to Soθ+ or Soθ− vanishes identically.

For bisectorial operators D such that iD generates a bounded group on Lp, we also use
the Phillips calculus defined by

ψ(D)f :=
1

2π

ˆ

R

ψ̂(ξ) exp(iξD)fdξ,

for f ∈ Lp and ψ ∈ S(R). See [5,25] for more information on how these two functional
calculi interact in the theory of Hardy spaces associated with operators. The results in
Section 5 are fundamentally inspired by these papers.

3. The one dimensional case

In dimension one, the type of wave equations we are studying in this paper can be treated
through a combination of simple changes of variables and perturbation arguments. In this
section, we present this method both for pedagogical reasons, and because its results are
used to set up our approach to higher dimensional problems in the next sections.

Let a, b ∈ C0,1(R) with d
dx
a, d

dx
b ∈ L∞, and assume that there exist 0 < λ ≤ Λ such

that λ ≤ a(x) ≤ Λ and λ ≤ b(x) ≤ Λ for all x ∈ R. We consider the wave equation
∂2
t u = (a∂xb∂x)u.

Proposition 3.1. The operators a d
dx

and i
√
−a d

dx
a d
dx

generate bounded C0 groups on
Lp(R) for all p ∈ (1,∞).

Proof. Define φ : x 7→
x́

0

1
a(y)

dy, and note that it is a C1 diffeomorphism from R onto R.

The map χ ∈ C1(R2) defined by

χ : (t, x) 7→ φ−1(t+ φ(x)),
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is then a solution to
∂tχ(t, x) = a(χ(t, x)) ∀t, x ∈ R.

It is such that

(3.1) t =

χ(t,x)ˆ

χ(0,x)

1

aj(y)
dy ∀t, x ∈ R.

and thus:
d

dx
χ(x, t) =

a(χ(x, t))

a(x)
∀x, t ∈ R.

Therefore x 7→ d
dx
χ(x, t) is bounded above and below, uniformly in t, and χ is a thus a

bi-Lipschitz flow. We now define the associated transport group by
Ttf(x) = f(χ(t, x)) ∀t, x ∈ R

for f ∈ C∞c (R). It extends to a bounded group on Lp(Rd) for all p ∈ [1,∞], with finite
speed of propagation. Strong continuity ‖T (t)f−f‖p →

t→0
0 for p <∞ follows by dominated

convergence for f continuous, and then density for general f . To identify the generator,
let f ∈ W 1,p, and note that, for all x ∈ Rd,

∂

∂t
T (t)f(x)|t=0 =

∂

∂t
f(χ(x, t))|t=0 = ∇f(x) · ∂tχ(x, t)|t=0

= a(x)∂xf(x).

For f ∈ C∞c (R), we have that

Tt(f ◦ φ)(x) = f(t+ φ(x)) = (exp(it
d

dx
)f)(φ(x)) ∀t, x ∈ R.

For f ∈ C∞c (R), s ∈ R, and ε > 0, we have that

exp(−(ε+ is)

√
−a d

dx
a
d

dx
)f =

1√
2π

ˆ

R

ψ̂s(t)Ttfdt

for ψs : x 7→ exp(−(ε+ is)|x|). We thus have that

exp(−(ε+ is)

√
−a d

dx
a
d

dx
)(f ◦ φ)(x) = (exp(−(ε+ is)

d

dx
)f)(φ(x)) ∀x ∈ R,

for all f ∈ C∞c (R), s ∈ R, and ε > 0. On L2(R), i
√
−a d

dx
a d
dx

generates a bounded group

and −
√
−a d

dx
a d
dx

generates an analytic semigroup. We thus have that

exp(is

√
−a d

dx
a
d

dx
)(f ◦ φ)(x) = (exp(is

d

dx
)f)(φ(x)) ∀x ∈ R,

for all f ∈ C∞c (R), and s ∈ R. Since φ is a C1 diffeomorphism from R onto R, this gives
that i

√
−a d

dx
a d
dx

generates a bounded C0 group on Lp(R) for all p ∈ [1,∞). �

Corollary 3.2. The operators i
√
− d
dx
a2 d

dx
and i

√
−a d

dx
b d
dx

generate bounded C0 groups
on Lp(R) for all p ∈ [1,∞).
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Proof. We have that d
dx
a2 d

dx
= a d

dx
a d
dx

+ a′a d
dx

and a d
dx
b d
dx

= d
dx
ab d

dx
− a′b d

dx
. For all

p ∈ [1,∞) and all f ∈ W 1,p(R), we have that ‖a′bf ′‖p ≤ ‖ba′‖∞‖f ′‖p. The result
thus follows from perturbation theory and square root reduction for cosine families, see
[2, Proposition 3.16.3 and Corollary 3.14.13]. �

4. The transport group

The method developed in this paper applies to wave equations of the form ∂2
t u =

d∑
j=1

D2
ju,

where the D = (D1, ...Dd) is a tuple of commuting operators. What we need from D is

that Dj generates a bounded C0 group on Lp for each j, and L =
d∑
j=1

D2
j is such that

appropriate Riesz transform bounds and Hardy space estimates hold. In this section, we
consider the simplest non-trivial example of such a Dirac operator. We then use this
example throughout the paper, but indicate when the results hold for more general Dirac
operators, with the same proofs.

For j ∈ {1, . . . , 2d}, let aj ∈ C0,1(R) with d
dx
aj ∈ L∞, and assume that there exist

0 < λ ≤ Λ such that λ ≤ aj(x) ≤ Λ for all x ∈ R. We denote by ãj ∈ C0,1(Rd) the map
defined by ãj : x 7→ aj(xj).

Definition 4.1. For ξ = (ξ1, ..., ξd) ∈ Rd, define

ξ.Da :=
d∑
j=1

ξj

(
0 −∂j ãj+d

ãj∂j 0

)
,

as an unbounded operator acting on L2(Rd;C2), with domain W 1,2(Rd;C2).

As in [25, Section 4, Case II], iξ.Da generates a bounded C0 group on L2(Rd;C2), for all
ξ ∈ Rd, because ξ.Da is self-adjoint with respect to an equivalent inner product of the
form (u, v) 7→ 〈A−1u,Bv〉, where A,B are diagonal multiplication operators with C0,1

entries.

Remark 4.2. For E,F ⊂ Rd Borel sets and ω ∈ Sd−1, we set ω.d(E,F ) := infx∈E,y∈F |〈ω, x−
y〉|. By [25, Remark 3.6], we have the following (strong) form of finite speed of propaga-
tion: there exists κ > 0 such that for all f ∈ L2(Rd;C2), all Borel sets E,F ⊂ Rd, all
ξ ∈ Rd and all ω ∈ Sd−1 we have

1E exp(iξDa)(1Ff) = 0,

whenever κ|〈ω, ξ〉| < ω.d(E,F ).

Proposition 4.3. Let ξ ∈ Rd and p ∈ (1,∞). The group (exp(itξ.Da))t∈R is bounded on
Lp(Rd;C2).

Proof. Let p ∈ (1,∞). Using linearity and freezing d − 1 of the variables, it suffices to

show that the group generated by i
(

0 − d
dx
b

a d
dx

0

)
is bounded on Lp(R;C2) for a := a1
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and b := ad+1. For f, g ∈ C∞c (R), and t ∈ R, let us consider(
u(t, .)
v(t, .)

)
:= exp

(
it

(
0 − d

dx
b

a d
dx

0

))(
f
g

)
.

We have that (
∂tu(t, .)
∂tv(t, .)

)
= i

(
− d
dx

(bv(t, .))
a d
dx
u(t, .)

)
∀t, x ∈ R,

and (
∂2
t u(t, .)
∂2
t v(t, .)

)
=

(
d
dx
ab d

dx
u(t, .)

a d2

dx2
(bv(t, .))

)
∀t, x ∈ R.

Using Corollary 3.2 and solving these wave equations using the relevant cosine families
(see [2, Corollary 3.14.12]), this gives

‖u(t, .)‖ . ‖f‖p + ‖(− d

dx
ab

d

dx
)−

1
2 (bg)′‖p . ‖f‖p + ‖g‖p,

‖v(t, .)‖ . ‖g‖p + ‖(−a d
2

dx2
b)−

1
2 (af ′)‖p . ‖g‖p + ‖(−a d

2

dx2
b)−

1
2
d

dx
(af)‖p + ‖a′‖∞‖f‖p,

with constants independent of t, using the boundedness of the Riesz transforms d
dx

(− d
dx
ab d

dx
)−

1
2

and d
dx

(−a d2

dx2
b)−

1
2 proven in [6,9].

�

Remark 4.4. Given the vector-valued nature of the Dirac operator Da, all function spaces
considered in the remaining of the paper will be implicitly C2 valued.

Remark 4.5. The transport group generated by iDa is, even in dimension one, substan-
tially more complicated than the transport group generated by a d

dx
considered in Section

3. Its Lp boundedness, for instance, does not follow from the boundedness of the transla-
tion group through bi-Lipschitz changes of variables. Indeed, for non-constant coefficients
a ∈ C0,1(R), no intertwining relation

U

(
0 − d

dx

a d
dx

0

)
=

(
0 − d

dx
d
dx

0

)
U

can hold for U of the form U : (f, g) 7→ (f ◦ φ, g ◦ ψ) where φ, ψ : R→ R are bi-Lipschitz
changes of variables.

5. Hardy spaces associated with the transport group

Lemma 5.1. There exists C > 0 such that, for all Ψ ∈ S(Rd), all E,F ⊂ Rd Borel sets
and all ω ∈ Sd−1, we have that

‖1EΨ(Da)(1Ff)‖2 ≤ C‖1Ff‖2

ˆ

{|ξ|≥ d(E,F )
κ
}∩{|〈ω,ξ〉|≥ω.d(E,F )

κ
}

|Ψ̂(ξ)|dξ ∀f ∈ L2(Rd).

Consequently, for every Ψ ∈ S(Rd) and every M ∈ N, there exists CM > 0 such that

‖1EΨ(σDa)(1Ff)‖2 ≤ CM(1 +
d(E,F )

κσ
)−M‖1Ff‖2 ∀f ∈ L2(Rd)

for all Borel sets E,F ⊂ Rd and all σ > 0.
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Proof. Let f ∈ L2(Rd) and ξ ∈ Rd. Since the group (exp(itDa))t∈Rd has finite speed of
propagation κ by Remark 4.2, we have that

1E exp(iξDa)(1Ff) = 0,

whenever κ|ξ| < d(E,F ) or κ|〈ω, ξ〉| < ω.d(E,F ). Therefore, using Phillips functional
calculus, we have that

‖1EΨ(Da)(1Ff)‖2 ≤
1

(2π)d

ˆ

Rd

|Ψ̂(ξ)|‖1E exp(iξDa)(1Ff)‖2dξ

≤ C‖1Ff‖2

ˆ

{|ξ|≥ d(E,F )
κ
}∩{|〈ω,ξ〉|≥ω.d(E,F )

κ
}

|Ψ̂(ξ)|dξ,

where C := 1
(2π)d

sup{‖ exp(itDa)‖B(L2) ; t ∈ Rd}. The last statement then follows from a
change of variables and Ψ ∈ S(Rd). �

We recall the following fact, which is a corollary of the results in [8], using that the
coefficients aj are Lipschitz continuous.

Theorem 5.2. (Auscher, McIntosh, Tchamitchian) Let p ∈ (1,∞). On Lp(Rd), the oper-
ator L = D2

a, with domain W 2,p(Rd), generates an analytic semigroup, and has a bounded
H∞ calculus of angle 0. Moreover, {exp(−tL) ; t > 0} satisfies Gaussian estimates.

Corollary 5.3. Let p ∈ (1,∞), θ > 0, g ∈ H∞(Soθ+), and let Ψ ∈ C∞c (Rd) be supported
away from 0. Then there exists a constant C > 0 independent of g such that, for all
F ∈ T p,2(Rd),

‖(σ, x) 7→ Ψ(σDa)g(L)F (σ, .)(x)‖T p,2(Rd) ≤ C‖g‖L∞(Soθ+)‖(σ, x) 7→ F (σ, .)(x)‖T p,2(Rd).

Proof. For M ∈ N, set qM(z) := zM(1 + z)−2M , z ∈ Soθ+. Note that then qM ∈ ΨM
M(Soθ+).

The statement for Ψ(σDa) replaced by qM(
√
σL) for M large enough then follows from

a combination of [23, Theorem 5.2] and [23, Lemma 7.3], using Lemma 5.1 and Theorem
5.2 to check the assumptions.
On the other hand, we have by assumption ζ 7→ Ψ(ζ)q−1

M (|ζ|2) ∈ S(Rd), so that an
application of [23, Theorem 5.2] together with Lemma 5.1 yields the assertion. �

Lemma 5.4. Let α ∈ R, and non-degenerate Ψ, Ψ̃ ∈ C∞c (Rd) be supported away from 0.
Let p ∈ [1,∞). Then

‖(σ, x) 7→ σαΨ(σDa)f(x)‖T p,2(Rd) ∼ ‖(σ, x) 7→ σαΨ̃(σDa)f(x)‖T p,2(Rd),

for all f such that the above quantities are finite. Moreover, for L = −D2
a, we have that

‖(σ, x) 7→ Ψ(σDa)f(x)‖T p,2(Rd) ∼ ‖(σ, x) 7→ σ2L exp(−σ2L)f(x)‖T p,2(Rd).

Proof. Since

‖(σ, x) 7→ σαΨ(σDa)f(x)‖T p,2(Rd) ∼ ‖(σ, x) 7→
∞̂

0

σαΨ(σDa)(Ψ̃)2(τDa)f(x)
dτ

τ
‖T p,2(Rd),
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by [23, Corollary 5.1], it suffices to show that, for all σ, τ > 0, (σ
τ
)αΨ(σDa)Ψ̃(τDa) =

min(σ
τ
, τ
σ
)NSσ,τ for some N > d

2
and a family of operators Sσ,τ ∈ B(L2) such that for

every M ∈ N, there exists CM > 0 such that

‖1ESσ,τ (1Ff)‖2 ≤ CM(1 +
d(E,F )

κmax(σ, τ)
)−M‖1Ff‖2 ∀f ∈ L2(Rd)

for all Borel sets E,F ⊂ Rd and all σ > 0. This follows from Lemma 5.1 using that, for
all ξ ∈ Rd\{0},

(
σ

τ
)αΨ(σξ)Ψ̃(τξ) = (

σ

τ
)N
′−αΨ(σξ)Ψ̃(τξ) = (

τ

σ
)N
′+αΨ(σξ)Ψ̃(τξ),

for Ψ : ξ 7→ Ψ(ξ)
ξβ

and Ψ : ξ 7→ ξβΨ(ξ) with β ∈ Nd, |β|1 = N ′, for N ′ > |α|+N . For the sec-
ond statement, we first show the comparison of Ψ(σDa) with (σ2L)M exp(−σ2L) for some
M ∈ N,M > d

4
in the exact same way as above. For the comparison of (σ2L)M exp(−σ2L)

with σ2L exp(−σ2L), we use [17, Proposition 10.1] instead of [23, Corollary 5.1], together
with the Gaussian estimates for exp(−tL) as stated in Theorem 5.2. �

Theorem 5.5. Let s ∈ R, let p ∈ (1,∞). For all non-degenerate Ψ ∈ C∞c (Rd) supported
away from 0, and all M ∈ N, we have that

(5.1) ‖(σ, x) 7→ 1[0,1)(σ)σ−sΨ(σDa)f(x)+1[1,∞)(σ)Ψ(σDa)f(x)‖T p,2(Rd) ∼ ‖(I+
√
L)sf‖p,

for all f ∈ D((I +
√
L)s). Moreover, for s ∈ [0, 2], we have that

(5.2) ‖(σ, x) 7→ 1[0,1)(σ)σ−sΨ(σDa)f(x) + 1[1,∞)(σ)Ψ(σDa)f(x)‖T p,2(Rd) ∼ ‖f‖W s,p

for all f ∈ W s,p(Rd).

Proof. We use the Hardy spaceHp
L associated with L, as defined in [15]. For all f ∈ Lp∩L2,

we have, by Lemma 5.4,

‖(σ, x) 7→ Ψ(σDa)f(x)‖T p,2(Rd) ∼ ‖f‖Hp
L
.

It is a folklore fact that Hp
L = Lp for p ∈ (1,∞), thanks to the heat kernel bounds of

(etL)t≥0. This result appeared in draft form in an unpublished manuscript of Auscher,
Duong, McIntosh, and inspired the proofs of many similar results. For our particular L,
an appropriate version of the result does not seem to have appeared in the literature.
It can however be proven as follows. By [8, Theorem 4.19], the operators tL exp(−tL)
have standard kernels satisfying the assumptions of [18, Theorem 4.4]. Therefore, for all
f ∈ Lp ∩ L2, f ∈ Hp

L and
‖f‖Hp

L
. ‖f‖p.

The reverse inequality is proven in [15, Proposition 4.2] for p ≤ 2. Given that the above
reasoning also applies to L∗, we obtain the full result by duality. Combined with Lemma
5.4, this gives the result for s = 0. For s ∈ N, using Lemma 5.4 with an appropriate
Ψ̃ ∈ C∞c (Rd), we then have that

‖(σ, x) 7→ 1[0,1)(σ)σ−sΨ(σDa)f(x)‖T p,2(Rd) . ‖(σ, x) 7→ 1[0,1)(σ)Ψ̃(σDa)L
s
2f(x)‖T p,2(Rd)

. ‖L
s
2f‖p . ‖(I +

√
L)sf‖p.
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We also have that

‖(σ, x) 7→ 1[1,∞)(σ)Ψ(σDa)f(x)‖T p,2(Rd) . ‖f‖p . ‖(I +
√
L)sf‖p.

For −s ∈ N, we have that

‖(σ, x) 7→ 1[0,1)(σ)σ−sΨ(σDa)f(x)‖T p,2(Rd)

.
|s|∑
k=0

‖(σ, x) 7→ 1[0,1)(σ)σ|s|L
k
2 Ψ(σDa)(I +

√
L)−|s|f(x)‖T p,2(Rd)

.
|s|∑
k=0

‖(σ, x) 7→ 1[0,1)(σ)Ψ̃(σDa)(I +
√
L)−|s|f(x)‖T p,2(Rd) . ‖(I +

√
L)sf‖p,

as well as

‖(σ, x) 7→ 1[1,∞)(σ)Ψ(σDa)f(x)‖T p,2(Rd)

.
|s|∑
k=0

‖(σ, x) 7→ 1[1,∞)(σ)σkL
k
2 Ψ(σDa)(I +

√
L)−|s|f(x)‖T p,2(Rd)

.
|s|∑
k=0

‖(σ, x) 7→ 1[0,1)(σ)Ψ̃(σDa)(I +
√
L)−|s|f(x)‖T p,2(Rd) . ‖(I +

√
L)sf‖p.

Reverse inequalities are proven similarly, using that, for all s ∈ R,

‖(I +
√
L)sf‖p ∼ ‖(σ, x) 7→ (I +

√
L)sΨ(σDa)f(x)‖T p,2(Rd).

This gives (5.1) for all s ∈ Z, and the result for all s ∈ R then follows by complex
interpolation of weighted tent spaces as in [1, Theorem 2.1].
To obtain (5.2) one first remarks that, for s ∈ {0, 1, 2}, the above reasoning also gives

‖(σ, x) 7→ 1[0,1)(σ)σ−sΨ(σDa)f(x) + 1[1,∞)(σ)Ψ(σDa)f(x)‖T p,2(Rd) ∼
s∑

m=0

‖Dm
a f‖p,

for all f ∈
s⋂

m=0

D
(
Dm
a

)
. We then notice that, for all j = 1, ..., d, we have that ‖∂jf‖p ∼

‖ãj∂jf‖p ∼ ‖ãj+d∂jf‖p, and thus ‖f‖W 1,p ∼ ‖f‖p + ‖Daf‖p, for all f ∈ W 1,p. Moreover,

∂j ãj ãj+d∂jf = ã′j ã
′
j+d∂jf + ãj ãj+d∂

2
j f ∀f ∈ W 2,p,

and thus
‖f‖W 2,p ∼ ‖f‖p + ‖Daf‖p + ‖D2

af‖p ∀f ∈ W 2,p.

�

Corollary 5.6. Let α ≥ 0, p ∈ (1,∞), and q ∈ [p,∞) be such that

α =
d

2
(
1

p
− 1

q
).

Then there exists C > 0 such that, for all f ∈ Lp(Rd) with Lαf ∈ Lp(Rd), we have that

‖f‖Lq(Rd) ≤ C‖Lαf‖Lp(Rd).
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Proof. For f ∈ Lp(Rd) with Lαf ∈ Lp(Rd), Theorem 5.5 gives that

‖f‖Lq(Rd) . ‖(σ, x) 7→ L−αΨ(σDa)L
αf(x)‖T q,2(Rd)

. ‖(σ, x) 7→ σ2αΨ̃(σDa)L
αf(x)‖T q,2(Rd)

for Ψ̃ : ξ 7→ |ξ|−αΨ(ξ). Using the embedding properties of weighted tent spaces proven in
[1, Theorem 2.19], we have that

‖(σ, x) 7→ σ2αΨ̃(σDa)L
αf‖T q,2(Rd) . ‖(σ, x) 7→ Ψ̃(σDa)L

αf‖T p,2(Rd),

and thus
‖f‖Lq(Rd) . ‖Lαf‖Lp(Rd),

by Theorem 5.5.
�

Remark 5.7. All results in this section, except (5.2), hold for a general Dirac operator
Da that generates a bounded commutative d parameters C0 group on Lp with finite speed
of propagation as in Remark 4.2, and is such that Hp

D2
a

= Lp. Property (5.2) also holds as
long as D(Da) = W 1,p and D(D2

a) = W 2,p with equivalence of norms. All results in the
next sections also hold for such Dirac operators.

6. Wave packet transform

We use a wave packet transform which is similar to the ones used in [21,29].

Let Ψ ∈ C∞c (Rd) be a non-negative radial function with Ψ(ζ) = 0 for |ζ| /∈ [1
2
, 2], and

(6.1)
ˆ ∞

0

Ψ(σζ)2 dσ

σ
= 1

for ζ 6= 0. Let ϕ ∈ C∞c (Rd) be a radial, non-negative function with ϕ(ζ) = 1 for |ζ| ≤ 1
2

and ϕ(ζ) = 0 for |ζ| > 1. These functions Ψ, ϕ are now fixed for the remainder of the
paper.
For ω ∈ Sd−1, σ > 0 and ζ ∈ Rd \ {0}, set ϕω,σ(ζ) := cσϕ

(
ζ̂−ω√
σ

)
, where cσ :=(ˆ

Sd−1

ϕ

(
e1 − ν√

σ

)2

dν

)−1/2

. Set ϕω,σ(0) := 0. Set furthermore Ψσ(ζ) := Ψ(σζ) and

ψω,σ(ζ) := Ψσ(ζ)ϕω,σ(ζ) for ω ∈ Sd−1, σ > 0 and ζ ∈ Rd. By construction, we then haveˆ ∞
0

ˆ
Sd−1

ψω,σ(ζ)2 dω
dσ

σ
= 1(6.2)

for all ζ ∈ Rd \ {0}, see [21, Lemma 4.1]. For ω ∈ Sd−1 and ζ ∈ Rd, we moreover set

ϕω(ζ) :=

ˆ 4

0

ψω,τ (ζ)
dτ

τ
.

For the convenience of the reader, we recall the following properties of ψω,σ stated in
[29, Lemma 3.2].
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Lemma 6.1. Let ω ∈ Sd−1 and σ ∈ (0, 1). Each ζ ∈ supp(ψω,σ) satisfies

(6.3)
1

2σ
≤ |ζ| ≤ 2

σ
, |ζ̂ − ω| ≤ 2

√
σ.

For all α ∈ Nd
0 and β ∈ N0 there exists a constant C = C(α, β) > 0 such that

(6.4) |〈ω,∇ζ〉β∂αζ ψω,σ(ζ)| ≤ Cσ−
d−1
4

+
|α|1
2

+β

for all (ζ, ω, σ) ∈ Rd × Sd−1 × (0,∞). For every N ≥ 0 there exists a constant CN > 0
such that

(6.5) |F−1(ψω,σ)(x)| ≤ CNσ
− 3d+1

4 (1 + σ−1|x|2 + σ−2〈ω, x〉2)−N

for all (x, ω, σ) ∈ Rd × Sd−1 × (0,∞).
In particular, {σ d−1

4 F−1(ψω,σ) |ω ∈ Sd−1, σ > 0} ⊆ L1(Rd) is uniformly bounded.

We also recall important properties of the family (ϕω)ω∈Sd−1 from [29, Remark 3.3].

Lemma 6.2. Let ω ∈ Sd−1. By construction, ϕω ∈ C∞(Rd), and for ζ 6= 0, ϕω(ζ) = 0

for |ζ| < 1
8
or |ζ̂ − ω| > 2|ζ|−1/2. Moreover, for all α ∈ Nd

0 and β ∈ N0, there exists a
constant C = C(α, β) > 0 such that

|〈ω,∇ζ〉β∂αζ ϕω(ζ)| ≤ C|ζ|
d−1
4
− |α|1

2
−β

for all ω ∈ Sd−1 and ζ 6= 0, and

(6.6) |〈ζ̂ ,∇ζ〉β∂αζ
(ˆ

Sd−1

ϕν(ζ)2 dν

)
| ≤ C|ζ|−

|α|1
2
−β

for all ζ ∈ Rd \ {0}.

Remark 6.3. For ω = e1 and ζ, σ chosen as in (6.3) with σ ∈ (0, 2−8), we have

1

4σ
< ζ1 ≤

2

σ
, |ζj| ≤

4√
σ
, j ∈ {2, . . . , d}.(6.7)

This follows from

|ζ̂ − e1|2 = |e1.(ζ̂ − e1)|2 +
d∑
j=2

|ej.(ζ̂ − e1)|2 = | ζ1

|ζ|
− 1|2 +

d∑
j=2

| ζj
|ζ|
|2,

thus

|ζ1 − |ζ||2 +
d∑
j=2

|ζj|2 ≤ 4σ|ζ|2 ≤ 16

σ
,

which directly yields (6.7) for j ≥ 2. The case j = 1 then follows from

ζ1 > |ζ| −
4√
σ
≥ 1

2σ
− 4√

σ
.
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Lemma 6.4. For all σ ∈ (0, 1), and all f ∈ L2(Rd), we have that

|Sd−1|−1

ˆ
Sd−1

ˆ ∞
1

Ψ(σDa)
2f
dσ

σ
dω +

ˆ
Sd−1

ˆ 1

0

ϕω(Da)
2Ψ(σDa)

2f
dσ

σ
dω = f(6.8)

(6.9)
ˆ

Sd−1

ϕω,σ(Da)
2f dω = f,

(6.10) σ−
d−1
4

ˆ

Sd−1

ϕω,σ(Da)f dω = Cσf,

with constant Cσ such that σ 7→ Cσ is bounded above and below.

Proof. These identities follow (respectively) from (6.2), the fact that
´

Sd−1

ϕω,σ(ξ)2dω = 1

for all ξ 6= 0, and [21, Formula (7.4)], using the Philipps functional calculus of Da. �

Lemma 6.5. For all σ ∈ (0, 1), we have thatˆ

Sd−1

‖ϕω,σ(Da)f‖2
2 dω . ‖f‖2

2 ∀f ∈ L2(Rd).

Moreover, ˆ

Sd−1

∞̂

0

‖ψω,σ(Da)f‖2
2

dσ

σ
dω . ‖f‖2

2 ∀f ∈ L2(Rd).

Proof. Let f ∈ L2(Rd) and σ ∈ (0, 1). Using (6.9), and the fact that Da is self-adjoint
with respect to an equivalent inner product (see Definition 4.1), we have thatˆ

Sd−1

‖ϕω,σ(Da)f‖2
2 dω ∼

ˆ

Sd−1

〈ϕω,σ(Da)
2f, f〉 dω . ‖f‖2

2.

Similarly, using (6.8), we have that
ˆ

Sd−1

∞̂

0

‖ψω,σ(Da)f‖2
2

dσ

σ
dω ∼

ˆ

Sd−1

∞̂

0

〈ψω,σ(Da)
2f, f〉 dσ

σ
dω . ‖f‖2

2.

�

Definition 6.6. We define a wave packet transform adapted to Da,
Wa ∈ B(L2(Rd), L2(Rd × Sd−1 × (0,∞); dxdω dσ

σ
)) by

Waf(ω, σ, x) := 1(1,∞)(σ)|Sd−1|−1/2Ψ(σDa)f(x)+1[0,1](σ)ϕω(Da)Ψ(σDa)f(x) ∀f ∈ L2(Rd).

We define πa ∈ B(L2(Rd × Sd−1 × (0,∞); dxdω dσ
σ

), L2(Rd)) by

πaF (x) :=|Sd−1|−1/2

ˆ
Sd−1

ˆ ∞
1

Ψ(σDa)F (ω, σ, . )(x)
dσ

σ
dω

+

ˆ
Sd−1

ˆ 1

0

ϕω(Da)Ψ(σDa)F (ω, σ, . )(x)
dσ

σ
dω
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for all F ∈ L2(Rd × Sd−1 × (0,∞); dxdω dσ
σ

).

Note that Wa is well defined thanks to Lemma 6.5, and that πa is the adjoint of the
operator W̄a, where W̄a is defined as Wa with Da replaced by D∗a.

Definition 6.7. Given ω ∈ Sd−1, we fix vectors ω1, ..., ωd−1 such that {ω, ω1, ..., ωd−1} is
an orthonormal basis of Rd. We then define the parabolic (quasi) distance in the direction
of ω by

dω(x, y) := |〈ω, x− y〉|+
d−1∑
j=1

〈ωj, x− y〉2 ∀x, y ∈ Rd.

We also define (anistropic) operators associated with this parabolic distance by

∆ω⊥ :=
d−1∑
j=1

〈ωj,∇〉2, Lω⊥ := −
d−1∑
j=1

〈ωj, Da〉2.

Lemma 6.8. (i) Let N ∈ N, N > d+1
2
. There exists C > 0 such that for all σ ∈ (0, 1)

and ω ∈ Sd−1, we have

‖(1 + σLω⊥ + σ2〈ω,Da〉2)−Nf‖L2(Rd) ≤ Cσ−
d+1
4 ‖f‖L1(Rd)

for all f ∈ L1(Rd).
(ii) For every M ∈ N, there exists CM > 0 such that for all E,F ⊂ Rd Borel sets,
σ ∈ (0, 1) and ω ∈ Sd−1, we have

‖1Eψω,σ(Da)(1Ff)‖L2(Rd) ≤ CMσ
− d

2 (1 +
dω(E,F )

σ
)−M‖1Ff‖L1(Rd)

for all f ∈ L1(Rd).
(iii) Let 1 ≤ p ≤ r < ∞. For every M ∈ N, there exists CM > 0 such that for all
E,F ⊂ Rd Borel sets, σ ∈ (0, 1) and ω ∈ Sd−1, we have

‖1Eψω,σ(Da)(1Ff)‖Lr(Rd) ≤ CMσ
−d( 1

p
− 1
r

)σ−
d−1
4 (1 +

d(E,F )

σ
)−M‖1Ff‖Lp(Rd)

for all f ∈ Lp(Rd).

Proof. Part (i) follows from [8, Proposition 4.3], tracking the scaling factor σ in its proof.
(ii) Let ω ∈ Sd−1. For given Borel sets E,F ⊆ Rd with d(E,F ) > 0, let χω ∈ C∞(Rd)
be a function with values in [0, 1], χω(ζ) = 0 for |ζ| ≤ 1

2
κ−1dω(E,F ) and χω(ζ) = 1 for

|ζ| ≥ κ−1dω(E,F ), and ‖〈ω,∇〉χω‖∞ + ‖∆ω⊥χω‖∞ . 1
dω(E,F )

. Lemma 5.1 implies

cd1Eψω,σ(Da)1Ff = 1E

ˆ
Rd
χ(ζ)F−1(ψω,σ)(ζ)eiζDa1Ff dζ.

Now note that (1 − σ∆ω⊥ − σ2〈ω,∇ζ〉2)eiζDa = (1 + σLω⊥ + σ2〈ω,Da〉2)eiζDa , thus for
N ∈ N,

eiζDa = (1 + σLω⊥ + σ2〈ω,Da〉2)−N(1− σ∆ω⊥ − σ2〈ω,∇ζ〉2)NeiζDa .
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From integration by parts we then get for j ∈ {0, 1}

cd1Eψω,σ(Da)1Ff = (1 + σLω⊥ + σ2〈ω,Da〉2)−N

◦
ˆ
Rd

((1− σ∆ω⊥ − σ2〈ω,∇ζ〉2)N)∗(χj · F−1(ψω,σ))(ζ)eiζDa(1Ff) dζ.(6.11)

Consider first the case dω(E,F ) ≤ σ, for which we take j = 0. According to Lemma 6.1,
we have ‖F−1(ψω,σ)‖L1(Rd) . σ−

d−1
4 . Similarly, one can check that

‖ζ 7→ (σ〈ω,∇ζ〉)β(σ∆ω⊥)αF−1(ψω,σ)(ζ)‖L1(Rd) . σ−
d−1
4

for all α ∈ Nd
0 and β ∈ N0. We use this estimate together with Proposition 4.3 and Part

(i) to obtain for N > d+1
2

‖ψω,σ(Da)f‖L2(Rd) . σ−
d−1
4 ‖(1 + σLω⊥ + σ2〈ω,Da〉2)−N‖1→2‖f‖L1(Rd) . σ−

d
2‖f‖L1(Rd).

In the case dω(E,F ) > σ, we choose j = 1 in (6.11). Then note that according to the choice
of χω, we have for σ ∈ (0, 1) that ‖ζ 7→ (σ〈ω,∇ζ〉)β(σ∆ω⊥)αχ(ζ)‖∞ . ( σ

dω(E,F )
)|α|+β . 1,

for all α ∈ Nd
0, β ∈ N0. Using the product rule, a version of (6.5) for derivatives of

F−1(ψω,σ), Part (i), and an anisotropic change of variable, we obtain

‖1Eψω,σ(Da)(1Ff)‖2

. σ−
d+1
4 ‖1Ff‖1 sup

α∈Nd0, β∈N0

|α|+2β≤N

ˆ
{|ξ|≥ d(E,F )

κ
}∩{|〈ω,ξ〉|≥ω.d(E,F )

κ
}
|(σ〈ω,∇ζ〉)β(

√
σ∂ζ)

αF−1(ψω,σ)(ζ)| dζ

. σ−
d+1
4 σ−

3d+1
4 ‖1Ff‖1

ˆ
{|ξ|≥ d(E,F )

κ
}∩{|〈ω,ξ〉|≥ω.d(E,F )

κ
}
(1 + σ−1|ζ|2 + σ−2〈ω, ζ〉2)−Ñ dζ

. σ−
d
2 (1 +

dω(E,F )

σ
)−(2Ñ−d)‖1Ff‖1.

Choosing Ñ large enough in (6.5) yields the result.
(iii) This is similar to (i) and (ii), but simpler. By Theorem 5.2, we have that

‖(1 + σ2L)−Nf‖Lr(Rd) ≤ Cσ−d( 1
p
− 1
r

)‖f‖Lp(Rd),

for N > d+1
2
. Integrating by parts, and using Lemma 5.1 together with Proposition 4.3,

we obtain that

‖1Eψω,σ(Da)(1Ff)‖Lr(Rd) . σ−d( 1
p
− 1
r

)(1 +
d(E,F )

σ
)−M
ˆ

Rd

|(σ2∆)αF−1(ψω,σ)|dξ · ‖1Ff‖Lp(Rd)

. σ−d( 1
p
− 1
r

)σ−
d−1
4 (1 +

d(E,F )

σ
)−M‖1Ff‖Lp(Rd),

using that, for all α ∈ N, ‖ζ 7→ (σ2∆)αF−1(ψω,σ)(ζ)‖L1(Rd) . σ−
d−1
4 , by Lemma 6.1. �
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7. The Hardy-Sobolev spaces Hp,s
FIO,a(Rd)

In the following, we denote by Ψ ∈ C∞c (Rd) the function defining the wave packet trans-
forms from Section 6. We denote by H1

L(Rd) the Hardy space associated with L as defined
in [15]. Recall that for all f ∈ H1

L(Rd), we have by Lemma 5.4,
‖f‖H1

L(Rd) ∼ ‖(σ, x) 7→ Ψ(σDa)f(x)‖T 1,2(Rd).

Definition 7.1. Define

S1 = {f ∈ H1
L(Rd) : ∃g ∈ L1(Rd) ∩ L2(Rd) ∃τ > 0 f = Ψ(τDa)g},

and for p ∈ (1,∞)

Sp = {f ∈ Lp(Rd) : ∃g ∈ Lp(Rd) ∩ L2(Rd) ∃τ > 0 f = Ψ(τDa)g}.

Lemma 7.2. Let p ∈ [1,∞) and f ∈ Sp. Then, for all ω ∈ Sd−1, ϕω(Da)f ∈ Lp(Rd),
and, in the case p = 1, ϕω(Da)f ∈ H1

L(Rd), each with norm independent of ω.

Proof. We have that ϕω(Da)f = ψω,τ (Da)g for some g ∈ Lp(Rd), up to a change of con-
stants in the support conditions of ψω,τ . By Lemma 6.8, we have ψω,τ (Da) ∈ B(Lp(Rd)),
and thus ‖ϕω(Da)f‖p .τ ‖g‖p. In the case p = 1, we obtain that ‖ψω,τ (Da)g‖L1 . ‖g‖H1

L

by reasoning as in the proof of 6.8 (iii), using the boundedness of Riesz transforms associ-
ated with L from H1

L to L1 to deduce the H1
L to L1 uniform boundedness of the transport

group (exp(iξDa))ξ∈Rd . We moreover have that ψω,τ (Da)g ∈ R(L), since Ψ is supported
away from 0, hence ψω,τ (Da)g ∈ H1

L(Rd). �

Corollary 7.3. Let p ∈ [1,∞), s ∈ R, and f ∈ Sp. Then

ω 7→ [(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)f(x)+1[0,1](σ)σ−sϕω(Da)Ψ(σDa)f(x)] ∈ Lp(Sd−1;T p,2(Rd)).

Proof. This follows from Lemma 7.2 and Theorem 5.5. �

Lemma 7.4. Let Ψ̃ ∈ C∞c (Rd) be non-degenerate and supported away from 0. Let p ∈
(1,∞), s ∈ R, and f ∈ Sp. Then, we have that

ω 7→ [(σ, x) 7→ 1(1,∞)(σ)Ψ̃(σDa)f(x) + 1[0,1](σ)σ−sϕω(Da)Ψ̃(σDa)f(x)] ∈ Lp(Sd−1;T p,2(Rd)),

with an equivalent norm to the corresponding map in Corollary 7.3, and

‖(I +
√
L)−Mf‖Lp

. ‖ω 7→ [(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)f(x) + 1[0,1](σ)σ−sϕω(Da)Ψ(σDa)f(x)]‖Lp(Sd−1;T p,2(Rd)),

for all M ∈ N such that M ≥ d−1
4
− s.

Proof. Let M ∈ N be such that M ≥ d−1
4
− s. Lemma 5.4 and Corollary 7.3 give the first

part, and Corollary 5.3, Lemma 5.4 together with Theorem 5.5 give

‖(I +
√
L)−Mf‖Lp . ‖(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)(I +

√
L)−Mf(x)‖T p,2(Rd)

+ ‖(σ, x) 7→ 1[0,1](σ)(σ
√
L)M(I +

√
L)−MΨ2(σDa)f(x)‖T p,2(Rd).

Using Corollary 5.3 again, we then have that

‖(I +
√
L)−Mf‖Lp . ‖(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)f(x)‖T p,2(Rd)

+ ‖(σ, x) 7→ 1[0,1](σ)σMΨ2(σDa)f(x)‖T p,2(Rd).
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We then use the reproducing formula (6.10) to obtain that

‖(I +
√
L)−Mf‖Lp

. ‖(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)f(x) + 1[0,1](σ)

ˆ

Sd−1

σM−
d−1
4 ϕω,σ(Da)Ψ

2(σDa)f(x)dω‖T p,2(Rd)

. ‖ω 7→ [(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)f(x) + 1[0,1](σ)σ−sϕω(Da)Ψ(σDa)f(x)]‖Lp(Sd−1;T p,2(Rd),

since M ≥ d−1
4
− s. �

Definition 7.5. Let p ∈ [1,∞), and s ∈ R. We define the space Hp,s
FIO,a(Rd) as the

completion of Sp for the norm defined by

‖f‖Hp,s
FIO,a(Rd)

:= ‖ω 7→ [(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)f(x) + 1[0,1](σ)σ−sϕω(Da)Ψ(σDa)f(x)]‖Lp(Sd−1;T p,2(Rd)).

We write Hp
FIO,a(Rd) := Hp,0

FIO,a(Rd).

Remark 7.6. By Lemma 7.4, we have that Hp
FIO,a(Rd) is a subspace of the M-th extrap-

olation space associated with L, and is independent of the choice of Ψ ∈ C∞c (Rd)\{0}and
supported away from 0.

Remark 7.7. By Lemma 6.4, interpolation properties of Hp,s
FIO,a(Rd) follow from the in-

terpolation properties of weighted tent spaces (see [1]) with the same proof as in [21, Propo-
sition 6.7].

We also have the following versions of [29, Theorem 4.1] and [29, Corollary 4.4], respec-
tively.

Proposition 7.8. Let p ∈ (1,∞), and s ∈ R. Let q ∈ C∞c (Rd) with q(ζ) ≡ 1 for |ζ| ≤ 1
8
.

Then

‖f‖Hp,s
FIO,a(Rd) ' ‖q(Da)f‖Lp(Rd) +

(ˆ
Sd−1

‖ϕω(Da)(I +
√
L)sf‖p

Lp(Rd)
dω

)1/p

∀f ∈ Sp.

Proof. Let f ∈ Sp. By Lemma 5.4, we can choose Ψ with an appropriate support, such
that Ψ(σDa)f = Ψ(σDa)q(Da)f for all σ ≥ 1, Ψ(σDa)q(Da) = 0 for all σ ≤ 1

8
, and

ϕω(Da)Ψ(σDa) = 0 for all σ ≥ 1 and ω ∈ Sd−1.
Then, by Theorem 5.5, we have that

‖f‖Hp,s
FIO,a(Rd) . ‖(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)q(Da)f(x)‖T p,2(Rd)

+ ‖ω 7→ [(σ, x) 7→ 1[0,1](σ)σ−sϕω(Da)Ψ(σDa)f(x)]‖Lp(Sd−1;T p,2(Rd))

. ‖q(Da)f‖Lp(Rd) +

(ˆ
Sd−1

‖(I +
√
L)sϕω(Da)f‖pLp(Rd)

dω

)1/p

.

In the other direction, Theorem 5.5 and the support properties of q and Ψ give us that

‖q(Da)f‖Lp(Rd) . ‖f‖Hp,s
FIO,a(Rd) + ‖(σ, x) 7→ 1[ 1

8
,1](σ)Ψ(σDa)q(Da)f(x)‖T p,2(Rd).
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With the same proof as in Lemma 5.4, we then have that, for all M ≥ d−1
4
− s,

‖(σ, x) 7→ 1[ 1
8
,1](σ)Ψ(σDa)q(Da)f(x)‖T p,2(Rd)

. ‖(σ, x) 7→ 1[ 1
8
,1](σ)

∞̂

0

Ψ(σDa)q(Da)Ψ(τDa)(I +
√
L)M(I +

√
L)−Mf(x)

dτ

τ
‖T p,2(Rd)

. ‖(I +
√
L)−Mf‖Lp(Rd).

Therefore, using Lemma 7.4, we have that ‖q(Da)f‖Lp(Rd) . ‖f‖Hp,s
FIO,a(Rd). For the second

term, we use Theorem 5.5 and the support properties of Ψ again to get that(ˆ
Sd−1

‖ϕω(Da)(I +
√
L)sf‖p

Lp(Rd)
dω

)1/p

. ‖ω 7→ [(σ, x) 7→ 1[0,1)(σ)σ−sϕω(Da)Ψ(σDa)f(x)]‖Lp(Sd−1;T p,2(Rd))

. ‖f‖Hp,s
FIO,a(Rd).

�

Proposition 7.9. Let p ∈ (1,∞). Let q ∈ C∞c (Rd) with q(ζ) ≡ 1 for |ζ| ≤ 1
8
, and

Φ ∈ S(Rd) with Φ(0) = 1 and Φσ(ζ) = Φ(σζ) for σ > 0, ζ ∈ Rd. Then

‖q(Da)f‖Lp(Rd) + (

ˆ
Sd−1

‖(σ, ·) 7→ Φσ(Da)ϕω(Da)f‖pT p,∞(Rd)
dω)1/p . ‖f‖Hp

FIO,a(Rd) ∀f ∈ Sp,

and

(

ˆ
Sd−1

‖(σ, ·) 7→ σ
d−1
4 Φσ(Da)ϕω(Da)

2f‖p
T p,∞(Rd)

dω)1/p . ‖f‖Hp
FIO,a(Rd) ∀f ∈ Sp.

Proof. Let r ∈ [1, p). For the first assertion, note that Theorem 5.2 implies Lr-L∞ off-
diagonal estimates for Φσ(Da) of the following form: For every M ∈ N, there exists
CM > 0 such that for all E,F ⊂ Rd Borel sets, σ ∈ (0, 1), we have

‖1EΦσ(Da)(1Fg)‖L∞(Rd) ≤ CMσ
− d
r (1 +

d(E,F )

σ
)−M‖1Fg‖Lr(Rd)

for all g ∈ Lr(Rd). This implies that for x ∈ Rd,

sup
|y−x|≤σ

|Φσ(Da)g(y)| . sup
|y−x|≤σ

∞∑
j=0

2−jM(σ−d
ˆ
Sj(By,σ)

|g(z)|r dz)1/r .Mrg(x),

where Mrg = (M(gr))1/r, with M the Hardy-Littlewood maximal function, Sj(By,σ) :=
{z ∈ Rd ; 2j−1σ ≤ |y − z| < 2jσ} for j ≥ 1, and S0(By,σ) = {z ∈ Rd ; |y − z| < σ}. The
conclusion follows from the Lp(Rd) boundedness of Mr together with Proposition 7.8.
For the second assertion, we first note that by renormalisation, we can change Φσ(Da)ϕω(Da)
to Φσ(Da)

2ϕω(Da). We slightly change the above argument by noting that for q ∈ (r,∞),
we have Lq-L∞ off-diagonal estimates for Φσ(Da). On the other hand, we have by Lemma
6.8 Lr-Lq off-diagonal estimates for Φσ(Da)ϕω(Da) of the form

‖1EΦσ(Da)ϕω(Da)(1Fg)‖Lq(Rd) ≤ CMσ
−d( 1

r
− 1
q

)σ−
d−1
4 (1 +

d(E,F )

σ
)−M‖1Fg‖Lr(Rd)
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for all g ∈ Lr(Rd). We then conclude as above, using composition of off-diagonal bounds
as in [4, Theorem 2.3]. �

8. Sobolev embedding properties of Hp
FIO,a(Rd)

We use a variation of the arguments in [21, Section 7].
We let m(Da) = (I +

√
L)−

d−1
4 .

Lemma 8.1. For every 0 < θ < π
2
there exist Cθ, cθ > 0 such that for all atoms A ∈

T 1,2(Rd), and all s ∈ R

(8.1)
ˆ

Sd−1

‖(σ, x) 7→ 1[0,1](σ)m(
√
L)1+isψω,σ(Da)A(σ, .)(x)‖T 1,2(Rd) dω ≤ Cθe

|s|cθ .

Proof. Let A be a T 1,2(Rd) atom associated with a ball B = B(cB, r). Without loss of
generality, we assume that A(σ, .) = 0 for all σ ≥ 1.
By renormalisation, we can replace ψω,σ(Da) in (8.1) by Ψσ(Da)ψω,σ(Da). Noting that
‖mis‖L∞(Soθ ) ≤ ce|s|cθ , for cθ = θ(d−1)

4
, we use Corollary 5.3 to obtain for every ω ∈ Sd−1

and given θ ∈ (0, π
2
)

‖(σ, x) 7→ 1[0,1](σ)m(Da)
1+isΨσ(Da)ψω,σ(Da)A(σ, .)(x)‖T 1,2(Rd)

= ‖(σ, x) 7→ 1[0,1](σ)L
d−1
8 m(Da)

1+isΨσ(Da)L
− d−1

8 ψω,σ(Da)A(σ, .)(x)‖T 1,2(Rd)

≤ Cθe
|s|cθ‖(σ, x) 7→ 1[0,1](σ)L−

d−1
8 ψω,σ(Da)A(σ, .)(x)‖T 1,2(Rd),

with Cθ independent of s ∈ R.
For j ∈ N∗, and ω ∈ Sd−1, define Cj,ω := {y ∈ Rd ; 2j−1r < |〈ω, cB−y〉|+ |cB−y|2 ≤ 2jr}
and C0,ω := {y ∈ Rd ; |〈ω, cB − y〉| + |cB − y|2 ≤ r}. Remark that |Cj,ω| ∼ (2jr)

d+1
2 , and

that dω(Cj,ω, C0,ω) > 2j−1r. Using a slight generalisation of Lemma 6.5 and Corollary 5.6
for p = 4d

3d−1
, we have that

(

ˆ

Sd−1

‖(σ, x) 7→ 1C0,ω(x)1[0,1](σ)L−
d−1
8 ψω,σ(Da)A(σ, .)(x)‖T 1,2(Rd)dω)2

. r
d+1
2

ˆ

Sd−1

min(r,1)ˆ

0

‖L−
d−1
8 ψω,σ(Da)A(σ, .)(x)‖2

L2(Rd)

dσ

σ
dω

. r
d+1
2

min(r,1)ˆ

0

‖L−
d−1
8 A(σ, .)(x)‖2

L2(Rd)

dσ

σ

. r
d+1
2

rˆ

0

‖A(σ, .)(x)‖2
Lp(Rd)

dσ

σ

. r
d+1
2 r

d−1
2

rˆ

0

‖A(σ, .)(x)‖2
L2(Rd)

dσ

σ
. rd‖A‖2

T 2,2 . 1.
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Let M > d+ 1, and define Ψ̃ : ξ 7→ |ξ|−
d−1
4 Ψ(ξ)

(
∞́

0

|σξ|−
d−1
2 |Ψ(σξ)|2 dσ

σ
)
1
2

, and ψ̃ω,σ : ξ 7→ ϕω,σ(ξ)Ψ̃(σξ).

For all j ∈ N∗, we obtain from Lemma 6.8 for ψ̃ω,σ instead of ψω,σ

(

ˆ

Sd−1

‖(σ, x) 7→ 1Cj,ω(x)1[0,1](σ)L−
d−1
8 ψω,σ(Da)A(σ, .)(x)‖T 1,2(Rd)dω)2

. (2jr)
d+1
2

ˆ

Sd−1

min(r,1)ˆ

0

σ
d−1
2 ‖ψ̃ω,σ(Da)A(σ, .)‖2

L2(Cj,ω)

dσ

σ
dω

. (2jr)
d+1
2

ˆ

Sd−1

min(r,1)ˆ

0

σ
d−1
2 σ−d

( σ

2jr

)M
‖A(σ, .)‖2

L1(Rd)

dσ

σ
dω

. rd
ˆ

Sd−1

min(r,1)ˆ

0

(
2jr

σ
)
d+1
2

( σ

2jr

)M
‖A(σ, .)‖2

L2(Rd)

dσ

σ
dω

. 2−j(M−
d+1
2

)rd‖A‖2
T 2,2 . 2−j(M−

d+1
2

).

Summing over j yields the conclusion. �

Remark 8.2. Note that basically the same proof as above also yields the statement that
for all s ∈ R,

‖(ω, σ, . ) 7→ σ
s1
2

+isψω,σ(Da)F (σ, . )‖L1(Sd−1;T 1,2(Rd)) . ‖F‖T 1,2(Rd)

for all F ∈ T 1,2(Rd). By a slight modification of Lemma 6.5, we obtain on the other hand
‖(ω, σ, . ) 7→ ψω,σ(Da)F (σ, . )‖L2(Sd−1;T 2,2(Rd)) . ‖F‖T 2,2(Rd) for all F ∈ T 2,2(Rd). Stein
interpolation and duality then yield for all p ∈ (1,∞),

‖(ω, σ, . ) 7→ σ
sp
2 ψω,σ(Da)F (σ, . )‖Lp(Sd−1;T p,2(Rd)) . ‖F‖T p,2(Rd),

for all F ∈ T p,2(Rd).
Lemma 8.3. For all p ∈ [1, 2], and sp = (d− 1)(1

p
− 1

2
), we have the continuous inclusion

H
p,
sp
2

FIO,a(Rd) ⊂ Hp
L(Rd), where Hp

L(Rd) = Lp(Rd) for p > 1. For p ∈ (1,∞), and b : ξ 7→
|ξ| d−1

4 m(ξ), we have that

‖(σ, x) 7→ m(Da)Ψ(σDa)f(x)‖T p,2(Rd) . ‖(b(Da) +m(Da))f‖Hp
FIO,a(Rd) . ‖f‖Hp

FIO,a(Rd),

for all f ∈ Sp.
Proof. Let f be an H1

L atom. We have, using the reproducing formula (6.10), that
‖f‖H1

L
∼ ‖(σ, x) 7→ Ψ(σDa)f(x)‖T 1,2(Rd)

.
ˆ

Sd−1

‖(σ, x) 7→ 1[0,1](σ)σ−
d−1
4 ψω,σ(Da)f(x) + 1[1,∞)(σ)Ψ(σDa)f(x)‖T 1,2(Rd)dω

. ‖f‖
H

1, d−1
4

FIO,a (Rd)
,
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where the last inequality follows from the comparability of ψω,σ with ϕωΨσ for σ ∈ (0, 1).
Since H2

FIO,a = L2, the continuous inclusion Hp,
sp
2

FIO,a(Rd) ⊂ Hp
L(Rd) follows by interpola-

tion. In the same way,

‖(σ, x) 7→ 1[0,1](σ)m(Da)Ψ(σDa)f(x)‖T p,2(Rd)

.
ˆ

Sd−1

‖(σ, x) 7→ 1[0,1](σ)b(Da)ϕω(Da)Ψ̃(σDa)f(x)‖T p,2(Rd)dω,

for Ψ̃ such that Ψ(ξ) = |ξ| d−1
4 Ψ̃(ξ) for all ξ ∈ Rd. Turning to the low frequency term,

we note that, for σ > 1, we have that Ψ(σξ) = Ψ(σξ)q(ξ) for all ξ ∈ Rd. Therefore, by
Theorem 5.5 and Proposition 7.8 we have that

‖(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)m(Da)f(x)‖T p,2(Rd) . ‖m(Da)q(Da)f‖Lp(Rd) . ‖m(Da)f‖Hp
FIO,a(Rd).

To conclude the proof, we use Theorem 2.1 and Theorem 2.2, along with Proposition
4.3, to show that b(Da) and m(Da) are bounded operators on Lp(Rd), and thus also on
Hp
FIO,a(Rd), thanks to Proposition 7.8. �

Corollary 8.4. Let p ∈ (1, 2]. Then

‖(I +
√
L)−

sp
2 f‖Hp

FIO,a(Rd) . ‖f‖Lp(Rd),

for all f ∈ Sp.

Proof. For z ∈ C such that Re(z) ∈ [0, 1], we consider the operators defined by

Tzf(x, ω, σ) := 1[0,1](σ)(I +
√
L)−( d−1

4
)zψω,σ(Da)f(x) ∀f ∈ L2(Rd).

For Re(z) = 0, they are well defined as operators from L2(Rd) to L2(Rd × Sd−1 ×
(0,∞); dxdω dσ

σ
) by Lemma 6.5, with norm independent of Im(z). For Re(z) = 1, by

Lemma 8.1, Tz extends to a bounded operator from H1(Rd) to L1(Sd−1;T 1,2(Rd)) with
norm bounded by Cθe|Im(z)|cθ for fixed θ > 0. Therefore, by Stein interpolation [36] with
admissible growth, Tz ∈ B(Lp(Rd), Lp(Sd−1;T p,2(Rd)) for Re(z) = 2

p
− 1. To conclude the

proof, we thus only have to show the low frequency estimate

‖(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)(I +
√
L)−

sp
2 f(x)‖T p,2(Rd) . ‖f‖Lp(Rd).

This follows from Theorem 5.5 and the Lp boundedness of (I +
√
L)−

sp
2 . �

9. The wave group

Theorem 9.1. Let p ∈ (1,∞), and s ∈ R. Then

eit
√
L : Hp,s

FIO,a(R
d)→ Hp,s

FIO,a(R
d)

is bounded for each t > 0.

For simplicity, we set t = 1 and s = 0. All the proofs extend verbatim to other values of
t. The case s ∈ R is an immediate consequence of the case s = 0 by Proposition 7.8. For
the transport group, the Lp boundedness is clear.

Lemma 9.2. Let p ∈ (1,∞) and ω ∈ Sd−1. Then eiω.Da : Lp(Rd) → Lp(Rd) and eiω.Da :
Hp
FIO,a(Rd)→ Hp

FIO,a(Rd) is bounded.
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Proof. The Lp boundedness is proven in Proposition 4.3. The boundedness on Hp
FIO,a(Rd)

is an immediate consequence of the Lp boundedness, by Proposition 7.8. �

For the low frequency estimate, we need the following lemma.

Lemma 9.3. Let p ∈ (1,∞), let q ∈ C∞c (Rd). Then q(Da)e
i
√
L : Lp(Rd) → Lp(Rd) is

bounded.

Proof. Because of the compact support of q, the symbol ζ 7→ q(ζ)ei|ζ| clearly satisfies the
Marcinkiewicz-Lizorkin multiplier condition of Theorem 2.1. The result thus follows from
Theorem 2.1 and Theorem 2.2 using that Da generates a bounded d-parameter group, as
shown in Proposition 4.3. �

Proof of Theorem 9.1. For f ∈ Sp, Proposition 7.8 yields

‖ei
√
Lf‖Hp

FIO,a(Rd) . ‖q(Da)e
i
√
Lf‖Lp(Rd) +

(ˆ
Sd−1

‖ϕω(Da)e
i
√
Lf‖p

Lp(Rd)
dω

)1/p

.

For the low frequency part, recall that q ∈ C∞c (Rd) with q(ζ) ≡ 1 for |ζ| ≤ 1
8
. Choose

q̃ ∈ C∞c (Rd) with q̃(ζ) ≡ 1 on supp q. Then q(Da)e
i
√
L = q̃(Da)e

i
√
Lq(Da), since Da and√

L are commuting, and q̃(Da)e
i
√
L is Lp bounded according to Lemma 9.3. Thus,

‖q(Da)e
i
√
Lf‖Lp(Rd) = ‖q̃(Da)e

i
√
Lq(Da)f‖Lp(Rd) . ‖q(Da)f‖Lp(Rd).

Let us now consider the high frequency part. For fixed ω ∈ Sd−1, we decompose

ϕω(Da)e
i
√
L = ϕω(Da)e

iω.Da + ϕω(Da)(e
i
√
L − eiω.Da).

The first part can be dealt with Lemma 9.2, which directly yields(ˆ
Sd−1

‖ϕω(Da)e
iω.Daf‖p

Lp(Rd)
dω

)1/p

. ‖f‖Hp
FIO,a(Rd).

For the second part, we use (6.8) to write

ϕω(Da)(e
i
√
L − eiω.Da) = ϕω(Da)e

iω.Da(e−iω.Daei
√
L − I)πaWa.

Since eiω.Da is bounded on Lp(Rd) by Lemma 9.2, it suffices to show that

‖ϕω(Da)(e
−iω.Daei

√
L − I)πaWaf‖Lp(Rd) . ‖ϕω(Da)f‖Lp(Rd).

We can write

ϕω(Da)(e
−iω.Daei

√
L − I)πaWa = mω(Da)ϕω(Da) + qω(Da)ϕω(Da)

for the symbols

mω(ζ) = ϕ̃ω(ζ)m̃ω(ζ)

ˆ 1

0

ˆ
Sd−1

ψν,σ(ζ)2 dν
dσ

σ
(9.1)

and

qω(ζ) = ϕ̃ω(ζ)m̃ω(ζ)r(ζ)2
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with m̃ω(ζ) = e−iω.ζ+i|ζ| − 1, ϕ̃ω ∈ C∞c (Rd) a function with ϕ̃ω ≡ 1 on suppϕω and
ϕ̃ω(ζ) = 0 for |ζ| < 1

16
or |ζ̂ − ω| > 4|ζ|−1/2, and

r(ζ) :=

(ˆ ∞
1

Ψσ(ζ)2 dσ

σ

)1/2

, ζ 6= 0,

and r(0) := 1. As noted in [21, Section 4.1], we have r ∈ C∞c (Rd).
The proof will be concluded by applying Theorem 2.1, and Theorem 2.2, using Proposition
4.3. We only have to check that mω and qω satisfy the assumption of Theorem 2.1. For
qω, this directly follows from the fact that r ∈ C∞c (Rd). For mω, this is proven in Lemma
9.5 below. �

Remark 9.4. Let ω ∈ Sd−1. Let ϕ̃ω ∈ C∞c (Rd) a function with ϕ̃ω ≡ 1 on suppϕω and
ϕ̃ω(ζ) = 0 for |ζ| < 1

16
or |ζ̂ − ω| > 4|ζ|−1/2. By the choice of the cut-off function ϕ̃ω and

the support properties of ϕω, we have the following: For all α ∈ Nd
0 and β ∈ N0, there

exists a constant C = C(α, β) > 0 such that

|〈ω,∇ζ〉β∂αζ ϕ̃ω(ζ)| ≤ C|ζ|−
|α|
2
−β

for all ω ∈ Sd−1 and ζ ∈ Rd \ {0}.
Lemma 9.5. Let ω ∈ Sd−1, let mω be as defined in (9.1). For all α ∈ Nd

0 with |α|∞ ≤ 1
there exists a constant C = C(α) > 0 such that

|ζα∂αζmω(ζ)| ≤ C

for all ζ ∈ Rd \ {0}.
Proof. By rotational invariance it suffices to consider the case ω = e1. Let ζ ∈ Rd \ {0}.
The bound |me1(ζ)| ≤ C directly follows from (6.2) and the boundedness of m̃e1 and ϕ̃e1 .
Moreover, by the specific form of m̃e1(ζ) = eib(ζ) − 1 with b(ζ) = −ζ1 + |ζ|, it can easily
be seen that the condition
(9.2) |ζα∂αζ b(ζ)| ≤ c

for |α|∞ ≤ 1 immediately implies |ζα∂αζ m̃e1(ζ)| ≤ c for |α|∞ ≤ 1. We check (9.2):

|ζ1∂1b(ζ)| = |ζ1∂1(−ζ1 + |ζ|)| ≤ |ζ1||1−
ζ1

|ζ|
| =

∣∣∣∣ ζ1

|ζ|

∣∣∣∣ ||ζ| − ζ1|

≤ ||ζ| − ζ1| = |ζ1|

√√√√1 +
d∑
j=2

ζ2
j

ζ2
1

− 1

 .

According to the support properties of ϕ̃e1 and ψν,σ, we have |ν− e1| .
√
σ. Thus a slight

modification of (6.7) yields that there exist constants c1, c2 > 0 such that for 0 < σ � 1,
one has

(9.3) ζ1 >
c1

σ
and |ζj| ≤

c2√
σ
, j ∈ {2, . . . , d},

on the support of me1 . Thus, for such choice of ζ,

|ζ1∂1b(ζ)| . |ζ1|
(√

1 +
c

ζ1

− 1

)
.
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This expression remains bounded for ζ1 → ∞ or equivalently |ζ| → ∞, since replacing
h = 1

ζ1
, we see that

lim
h→0

√
1 + ch− 1

h
=
c

2
.

Again using (9.3) and |ζ| ≥ |ζ1| > c1
σ
, we obtain for j ∈ {2, . . . , d} that

|ζj∂jb(ζ)| = |ζj∂j(−ζ1 + |ζ|)| ≤ |ζj
ζj
|ζ|
| ≤ c.

Concerning the mixed derivatives, one can inductively show that for α ∈ Nd
0 with |α|∞ ≤ 1

and α1 = 0, |ζα∂αζ b(ζ)| = | ζ2α

|ζ|2|α|−1 | ≤ c, for ζ as in (9.3). Finally, for j 6= 1,

|ζ1ζj∂1∂jb(ζ)| = |ζ1ζj∂1∂j(−ζ1 + |ζ|)| = |ζ1ζj||
ζ1ζj
|ζ|3
| ≤ c.

Putting all arguments together shows (9.2). The bound |ζα∂αζ ϕ̃e1(ζ)| ≤ c follows from
Remark 9.4 together with (9.3), whereas the analogous bound for the last factor in (9.1)
concerning ψν,σ is a consequence of (6.6) together with (9.3). �

Combining Corollary 8.4 with Theorem 9.1 and Theorem 5.5 then gives our main result.
Theorem 9.6. Let p ∈ (1,∞) and sp = (d − 1)|1

p
− 1

2
|. For each t ∈ R, the operator

(I+
√
L)−sp exp(it

√
L) is bounded on Lp(Rd). Moreover, if sp ≤ 2, the operator exp(it

√
L)

is bounded from W sp,p(Rd) to Lp(Rd).
Proof. By duality, it suffices to consider the case p ∈ (1, 2). Let f ∈ Sp. By Lemma 8.3
and Theorem 9.1, we have that

‖ exp(it
√
L)f‖Lp(Rd) . ‖ exp(it

√
L)f‖

H
p,
sp
2

FIO,a(Rd)
. ‖f‖

H
p,
sp
2

FIO,a(Rd)
.

Using Proposition 7.8, and Corollary 8.4, we then have that

‖ exp(it
√
L)f‖Lp(Rd) . ‖(I +

√
L)

sp
2 f‖Hp

FIO,a(Rd) . ‖(I +
√
L)spf‖Lp(Rd).

For sp ≤ 2, Theorem 5.5 then gives ‖f‖W sp,p ∼ ‖(I +
√
L)spf‖Lp(Rd). �

10. Lower order perturbations

We consider the operators L1 := −
d∑
j=1

ãj+d∂j ãj∂j and L2 := −
d∑
j=1

ãj∂j ãj+d∂j. For a

function g : Rd → R, we denote by Mg the multiplication operator (f, F ) 7→ (gf, gF ). We
will evaluate the norm of g in Besov spaces Ḃsp,Lk

∞,∞ associated with the operators Lk, in
the sense of [12]. Note that, in certain situations Ḃsp,Lk

∞,∞ = Ċsp for k = 1, 2. Indeed, by
[8, Theorem 4.19], the operators Lk (k = 1, 2) and their adjoints satisfy the assumptions
(S), (K), and (H) from [12]. If the coefficients (aj)j=1,...,2d are C1,1, then property (C) from
[12] follows from Feynman-Kac’s formula. Therefore, by [12, Theorem 5.1] and the Besov
space characterisation of the homogeneous Hölder space Ċsp (see e.g. [11]) , we have that

max
k=1,2

sup
τ>0
‖τ−spφ(τ 2Lk)g‖∞ ∼ max

k=1,2
‖g‖

Ḃ
sp,Lk∞,∞

∼ ‖g‖Ċsp ,

whenever sp < 1.
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Theorem 10.1. Let p ∈ (1,∞) and sp = (d− 1)|1
p
− 1

2
|. Let g ∈ Ḃsp,Lk

∞,∞ ∩L∞ for k = 1, 2.
Then Mg ∈ B(Hp

FIO,a(Rd)).

Proof. For p = 2, there is nothing to prove. For p 6= 2, this is a consequence of Lemma
10.4 and Lemma 10.6 below. �

Remark 10.2. Theorem 10.1 is of independent interest, even when aj = 1 for all j =
1, ..., 2d. In this situation, a more general result for pseudo-differential operators has
been proven recently in [30, Theorem 1.1] for symbols which are Cr regular in the spatial
variable, with r > 2sp. In the special case of multiplication operators, we improve this
result to r = sp.

We state our perturbation result for first order perturbations of the wave equation under
consideration.

Corollary 10.3. Let p ∈ (1,∞) and sp = (d − 1)|1
p
− 1

2
|. Assume that sp ≤ 2. For

j = 1, ..., d, let gj ∈ Ḃsp,L1
∞,∞ ∩ Ḃsp,L2

∞,∞ ∩ Csp, and consider

L̃ : (f, F ) 7→ (L1f, L2F ) +
d∑
j=1

(gj∂jf, gj∂jF ).

For each t ∈ R, the operator (I +
√
L̃)−sp exp(it

√
L̃) is bounded on Lp(Rd).

Proof. Without loss of generality, we assume that p ≤ 2 (using duality to get the full
result). By Theorem 9.1, [2, Example 3.14.15] and Proposition 7.8, the operator L gen-
erates a cosine family on Hp

FIO,a(Rd), with Kisyński space D(
√
L) = Hp,1

FIO,a(Rd) (see [2]
for the theory of cosine families). By Theorem 10.1, boundedness of Riesz transforms
[8, Corollary 5.19], and Proposition 7.8, we have, for all j = 1, ..., d, that

‖Mgj(∂jf, ∂jF )‖Hp
FIO,a(Rd) . ‖(∂jf, ∂jF )‖Hp

FIO,a(Rd) . ‖(f, F )‖Hp,1
FIO,a(Rd) ∀(f, F ) ∈ Hp,1

FIO,a(R
d).

We thus obtain from [2, Corollary 3.14.13] that exp(it
√
L̃) ∈ B(Hp

FIO,a(Rd)). Another
application of [8, Corollary 5.19], also gives that

‖(I +
√
L̃)−

sp
2 (f, F )‖Lp ∼ ‖(I +

√
L)−

sp
2 (f, F )‖Lp ∀f, F ∈ W 1,p,

since sp ≤ 2. Using Lemma 8.3 and Corollary 8.4, we thus have that

‖(I +
√
L̃)−

sp
2 exp(it

√
L̃)f‖Lp . ‖(I +

√
L)−

sp
2 exp(it

√
L̃)f‖Lp

. ‖ exp(it
√
L̃)f‖Hp

FIO,a(Rd) . ‖f‖Hp
FIO,a(Rd)

. ‖(I +
√
L)

sp
2 f‖Lp . ‖(I +

√
L̃)

sp
2 f‖Lp ∀f ∈ Lp(Rd;C2).

�

For the proof of Theorem 10.1, we use the following paraproduct decomposition.
Let Φ ∈ S(Rd), φ ∈ S(Rd) with φ(0) = 1 and Φσ(ζ) = φ(σ2|ζ|2) for σ > 0, ζ ∈ Rd. We
denote by Mφ(L)g the multiplication operator (f, F ) 7→ (φ(L1)g.f, φ(L2)g.F ). We denote
by Mφ(L)g the multiplication operator (f, F ) 7→ (φ(L2)g.f, φ(L1)g.F ).
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For f ∈ Sp and g ∈ S(Rd), we use (6.8) to write

Mgf =

ˆ ∞
1

Mφ(τ2L)gΨ(τDa)
2f
dτ

τ
+

ˆ ∞
1

(Mg −Mφ(τ2L)g)Ψ(τDa)
2f
dτ

τ

+

ˆ
Sd−1

ˆ 1

0

Mφ(τ2L)gϕν(Da)
2Ψ(τDa)

2f
dτ

τ
dν

+

ˆ
Sd−1

ˆ 1

0

(Mg −Mφ(τ2L)g)ϕν(Da)
2Ψ(τDa)

2f
dτ

τ
dν.

Since the two low-frequency terms in the first line are similar but simpler than the two
high-frequency terms, we only consider the two latter in the following. Moreover, note
that we can choose Φ and Ψ such that by integration by parts, the last integral is - up to
a low-frequency term - equal toˆ

Sd−1

ˆ 1

0

Mψ(τ2L)gϕν(Da)
2Φ(τDa)f

dτ

τ
dν,

where Ψ(σζ) =: ψ(σ2|ζ|2) for σ > 0, ζ ∈ Rd.

Lemma 10.4. Let p ∈ (1,∞). Let g ∈ Ḃsp,Lk
∞,∞ for k = 1, 2, and f ∈ Hp

FIO,a(Rd). Then

‖(ω, σ, ·) 7→ ψω,σ(Da)

ˆ
Sd−1

ˆ 1

0

Mφ(τ2L)gϕν(Da)
2Ψ(τDa)

2f
dτ

τ
dν‖Lp(Sd−1;T p,2(Rd))

. max
k=1,2

‖g‖
Ḃ
sp,Lk∞,∞
‖f‖Hp

FIO,a(Rd).

Proof. We split the integral in τ into two parts, corresponding to τ ∈ (0,min(σ, 1)) and
τ ∈ (min(σ, 1), 1). Consider first τ ∈ (0,min(σ, 1)). From Remark 8.2 we know that

‖(ω, σ, . ) 7→ σ
sp
2 ψω,σ(Da)F (σ, . )‖Lp(Sd−1;T p,2(Rd)) . ‖F‖T p,2(Rd).

On the other hand, Hardy’s inequality implies that

(σ, . ) 7→
ˆ σ

0

(
τ

σ
)
sp
2 F (τ, . )

dτ

τ

is bounded on T p,2(Rd). Using Remark 8.2 twice, and the fact that

sup
τ>0
‖τ−spφ(τ 2Lk)g‖∞ ∼ ‖g‖Ḃsp,Lk∞,∞

,

we thus get that

‖(ω, σ, . ) 7→ ψω,σ(Da)

ˆ
Sd−1

ˆ min(σ,1)

0

Mφ(τ2L)gϕν(Da)
2Ψ(τDa)

2f
dτ

τ
dν‖Lp(Sd−1;T p,2(Rd))

.
ˆ
Sd−1

‖(τ, . ) 7→ τ−
sp
2 Mφ(τ2L)gϕν(Da)

2Ψ(τDa)
2f‖T p,2(Rd) dν

. max
k=1,2

sup
τ>0
‖τ−spφ(τ 2Lk)g‖L∞(Rd)

ˆ
Sd−1

‖(τ, ·) 7→ τ
sp
2 ϕν(Da)Ψ(τDa)

2f‖T p,2(Rd) dν

. max
k=1,2

‖g‖
Ḃ
sp,Lk∞,∞
‖f‖Hp

FIO,a(Rd).
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For the integral over τ ∈ (min(σ, 1), 1), we slightly rewrite the above argument. We again
obtain from Remark 8.2 and renormalisation of ψσ,ω that for every M ∈ N, M > 0,

‖(ω, σ, . ) 7→ σ
sp
2 ψω,σ(Da)(σ

2L)−MF (σ, . )‖Lp(Sd−1;T p,2(Rd)) . ‖F‖T p,2(Rd).

Choosing 2M > sp
2
, we obtain from Hardy’s inequality the boundedness of

(σ, . ) 7→
ˆ 1

σ

(
σ

τ
)2M− sp

2 F (τ, . )
dτ

τ

on T p,2(Rd). We therefore get

‖(ω, σ, ·) 7→ ψω,σ(Da)

ˆ
Sd−1

ˆ 1

min(σ,1)

Mφ(τ2L)gϕν(Da)
2Ψ(τDa)

2f
dτ

τ
dν‖Lp(Sd−1;T p,2(Rd))

.
ˆ
Sd−1

‖(τ, ·) 7→ τ 2M− sp
2 LM [Mφ(τ2L)gϕν(Da)

2Ψ(τDa)
2f ]‖T p,2(Rd) dν.

For j = 1, .., d, we now use the following version of the product rule:

(ej.Da)Mφ(τ2L)g = Mφ(τ2L)g(ej.Da) +M(ej .Da)φ(τ2L)g,

where M(ej .Da)φ(τ2L)g : (f, F ) 7→ (ãj+d∂jφ(τ 2L2)g · F, ãj∂jφ(τ 2L1)g · f).
Let k ∈ {0, ..., 2M} be even, and j = 1, ..., d. Letting φk : x 7→ x

k
2φ(x), and δ ∈ {0, 1}, we

can estimate further by multiples of terms of the formˆ
Sd−1

‖(τ, ·) 7→ τ−
sp
2 Mτδ(ej .Da)δφk(τ2L)g(τDa)

2M−kϕν(Da)
2Ψ(τDa)

2f‖T p,2(Rd) dν

. max
m=1,2

sup
τ>0
‖(τ, ·) 7→ τ−sp(τ∂j)

δ(τ 2Lm)
k
2φ(τ 2Lm)g‖L∞(Rd)

·
ˆ
Sd−1

‖(τ, ·) 7→ τ
sp
2 (τ 2L)M−

k
2 (τej.Da)

1−δϕν(Da)
2Ψ(τDa)

2f‖T p,2(Rd) dν

. max
k=1,2

‖g‖
Ḃ
sp,Lk∞,∞
‖f‖Hp

FIO,a(Rd),

using [8, Theorem 4.19] in the last estimate to ensure that τ∂j exp(−τ 2Lm) is L∞ bounded,
uniformly in τ .

For k ∈ {0, ..., 2M − 1} even, and j = 1, ..., d, we also obtain multiples of terms of the
formˆ

Sd−1

‖(τ, ·) 7→ τ−
sp
2 Mτδ(ej .Da)δφk(τ2L)g(τDa)

2M−k−1ϕν(Da)
2Ψ(τDa)

2f‖T p,2(Rd) dν

. max
m=1,2

sup
τ>0
‖(τ, ·) 7→ τ−sp(τ∂j)

δ(τ 2Lm)
k
2φ(τ 2Lm)g‖∞

·
ˆ
Sd−1

‖(τ, ·) 7→ τ
sp
2 (τ 2L)M−

k+2
2 (τej.Da)

2−δϕν(Da)
2Ψ(τDa)

2f‖T p,2(Rd) dν

. max
k=1,2

‖g‖
Ḃ
sp,Lk∞,∞
‖f‖Hp

FIO,a(Rd).

�

For the second paraproduct, we make use of the following factorisation result for tent
spaces (see [14] for the definition of the tent spaces T p,q when p =∞ or q 6= 2).
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Theorem 10.5 ([13, Theorem 1.1]). Let p, q ∈ (1,∞). If F ∈ T p,∞(Rd) and G ∈
T∞,q(Rd), then FG ∈ T p,q(Rd) and

‖F ·G‖T p,q(Rd) ≤ C‖F‖T p,∞(Rd)‖G‖T∞,q(Rd),

with a constant C > 0 which is independent of F and G.

Lemma 10.6. Let p ∈ (1,∞). Let g ∈ Ḃsp,Lk
∞,∞ for k = 1, 2, and f ∈ Hp

FIO,a(Rd). Then

‖(ω, σ, ·) 7→ ψω,σ(Da)

ˆ
Sd−1

ˆ 1

0

Ψτ (Da)
2g · ϕν(Da)

2Φ(τDa)f
dτ

τ
dν‖Lp(T p,2)

. max
k=1,2

‖g‖
Ḃ
sp,Lk∞,∞
‖f‖Hp

FIO,a(Rd).

Proof. For the integral in τ restricted to τ ∈ (0,min(σ, 1)), we use the same arguments as
in the proof of Lemma 10.4 and obtain

‖(ω, σ, ·) 7→ ψω,σ(Da)

ˆ
Sd−1

ˆ min(σ,1)

0

Ψτ (Da)
2g · ϕν(Da)

2Φ(τDa)f
dτ

τ
dν‖Lp(T p,2)

.
ˆ
Sd−1

‖(τ, ·) 7→ τ−
sp
2 Ψτ (Da)

2g · ϕν(Da)
2Φ(τDa)f‖T p,2(Rd) dν.

Applying Theorem 10.5, the above is bounded by a constant times

‖(τ, ·) 7→ τ−spΨτ (Da)
2g‖T∞,2(Rd)

ˆ
Sd−1

‖(τ, ·) 7→ τ
sp
2 ϕν(Da)

2Φ(τDa)f‖T p,∞(Rd) dν

. max
m=1,2

sup
τ>0
‖(τ, ·) 7→ τ−spψ(τ 2Lm)2g‖L∞‖f‖Hp

FIO,a(Rd),

. max
m=1,2

‖g‖
Ḃ
sp,Lm
∞,∞
‖f‖Hp

FIO,a(Rd),

where we use [16, Lemma 4.3, Theorem 3.1], and Proposition 7.9 in the last line (together
with the fact that sp ≥ d−1

2
).

For the integral over τ ∈ (min(σ, 1), 1), we again have to use the product rule. With the
same arguments as in the proof of Lemma 10.4, we end up with terms of the form

max
m=1,2

‖(τ, ·) 7→ τ−sp(τ∂j)
δ(τ 2Lm)

k
2φ(τ 2Lm)g‖T∞,2(Rd)

·
ˆ
Sd−1

‖(τ, ·) 7→ τ
sp
2 (τ 2L)M−

k
2 (τej.Da)

1−δϕν(Da)
2Ψ(τDa)

2f‖T p,∞(Rd) dν

. max
m=1,2

‖g‖
Ḃ
sp,Lm
∞,∞
‖f‖Hp

FIO,a(Rd),

for k ∈ {0, . . . , 2M} even (and similar terms for k odd, as in Lemma 10.4). �
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