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LP ESTIMATES FOR WAVE EQUATIONS WITH SPECIFIC (%!
COEFFICIENTS

DOROTHEE FREY AND PIERRE PORTAL

ABSTRACT. Peral/Miyachi’s celebrated theorem on fixed time LP estimates with loss
of derivatives for the wave equation states that the operator (I — A)~% exp(iv/—A) is

bounded on LP(R?) if and only if a > s, := (d — 1) ’% - %’ We extend this result to

d
operators of the form £ = — > a;4490;a,0;, such that, for j = 1,...,d, the functions a;
=1

and a;;4 only depend on z;, are bounded above and below, but are merely Lipschitz
continuous. This is below the C*! regularity that is known to be necessary in general
for Strichartz estimates in dimension d > 2. Our proof is based on an approach to the
boundedness of Fourier integral operators recently developed by Hassell, Rozendaal, and
the second author. We construct a scale of adapted Hardy spaces on which exp(iv/L) is
bounded by lifting L? functions to the tent space TP2(R%), using a wave packet transform
adapted to the Lipschitz metric induced by the coefficients a;. The result then follows
from Sobolev embedding properties of these spaces.

Mathematics Subject Classification (2020): Primary 42B35. Secondary 35L05,
42B30, 42B37, 35S30.

1. INTRODUCTION

In 1980, Peral |28] and Miyachi |26] proved that the operator (I — A)~2 exp(iy/—A) is

bounded on LP(R?) if and only if a > s, := (d — 1) ’}17 - %‘ Their result was then ex-

tended to general Fourier integral operators (FIOs) in a celebrated theorem of Seeger,
Sogge, and Stein [31], leading, in particular, to LP(R?) well-posedness results for wave
equations with smooth variable coefficients on R? or driven by the Laplace-Beltrami op-
erator on a compact manifold. To establish well-posedness of wave equations in more
complex geometric settings, many results have been obtained in the past 30 years, using
extensions of Peral /Miyachi’s fixed time estimates with loss of derivatives, Strichartz esti-
mates, and/or local smoothing properties. This includes Smith’s parametrix construction
[33], Tataru’s Strichartz estimates [38] for wave equations on R? with C1! coefficients,
and Miiller-Seeger’s extension of Peral-Miyachi’s result to the sublaplacian on Heisenberg
type groups [27], as well as many other important results for specific operators, such as
Laplace-Beltrami operators on symmetric spaces.
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In this paper, we consider operators of the form £ = — )} a;140;a;0;, such that, for

7j=1
j =1,...,d, the functions a; and a;4 only depend on z;, are bounded above and below,

and are Lipschitz continuous. For these operators, we extend Peral/Miyachi’s result by
proving that (I + £)~% exp(iv/L) is bounded on LP(R?) for a > s, := (d — 1) ‘l — 1.

p 2
When s, < 2, we show well-posedness for data in W*?(R?), even when L is perturbed
by first order drift terms depending on all the variables (see Theorem and Section
. While the algebraic structure of the coefficient matrix is a serious limitation, the
roughness of the coefficients is a satisfying and somewhat surprising feature of our result.
Indeed, Strichartz estimates for wave equations are known to fail, in general, for coeffi-
cients rougher than C™!, see [34,35].

d

Our proof is based on a new approach to Seeger-Sogge-Stein’s L boundedness theorem for
FIOs, initiated by Hassell, Rozendaal, and the second author in |21], building on earlier
work of Smith [32]. The approach consists in developing a scale of Hardy spaces Hp;p,
that are invariant under the action of FIOs. One then shows that this scale relates to the
Sobolev scale through the embedding W=z » C HY.,.o C W22, forp e (1,00). This is
similar, in spirit, to the theory of Hardy spaces associated with operators, which has been
extensively developed over the past 15 years, starting with |7]16,20| (see also the memoir
[19]). In this theory, one first constructs a scale of spaces H} by lifting functions from
LP to one of the tent spaces introduced by Coifman, Meyer, and Stein in |14], using the
functional calculus of the operator £ (rather than convolutions). One then shows that the
spaces are invariant under the action of the functional calculus of £. Finally, one relates
these spaces to more classical ones. For instance HR(R?) = LP(R?) for all p € (1,00).
More generally, when one considers Hodge-Dirac operators I, HﬁB = [P precisely for
those p for which Hodge projections are LP bounded (a result proven by McIntosh and
the authors in [17]).

In the present paper, we go one step further in connecting both theories, by developing
a scale of Hardy-Sobolev spaces H f}’;o’a on which exp(i\/Z) is bounded, and proving ana-
logues of the embedding W2 ?(R%) ¢ HEY (RY) ¢ W2 ?(R%) such as, for p € (1,2),

Sp

Sp
H?]?)a C LP and (I + \/Z)_ 2 € B(LP,H%?OVG). This gives our L boundedness with
loss of derivatives result, and more. Indeed, one can apply the half wave group exp(i\/Z)
repeatedly on Hpy, ,, and only loose derivatives when one compares Hpj, , to classical
Sobolev spaces. This allows for iterative arguments in constructing parametrices (an idea

used recently in [22]). One can also perturb the half wave group using abstract operator
theory on the Banach space Hpy, , (see Corollary [10.3)).

The paper is structured as follows. In Section 3, we treat the problem in dimension 1. In
this simple situation, arguments based on bilipschitz changes of variables can be used.



In Section 4| we consider the transport group generated, on L?*(R%; C?), by

: 0 10;a
: ._ —10jaj14
1€.D, = E & < 0,0, 6] ) :
j=1

for ¢ € R%. The dimension 1 results from Section [3| allow us to prove that exp(i€éD,) €
B(LP) for all p € [1,00). The Phillips functional calculus associated with this group can
then replace convolutions/Fourier multipliers in the context of our Lipschitz metric, and

includes functions of
. ([ Ly O
L.—Da.Da_(0 L2>’

d d
where Ly := — ) a;140;a;0j and Ly := — ) a;0;a;140j. Using this calculus, we use
j=1 j=1
the approach of [5] to construct an adapted scale of Hardy-Sobolev spaces in Section
Bl For all integrability parameters p € (1,00) and regularity parameter s € [0,2], these
spaces coincide with classical Sobolev spaces, thanks to the regularity properties of the
heat kernel of L arising from the Lipschitz continuity of its coefficients. To go from these
spaces to Hpjs ,, one needs to directionally refine the Littlewood-Paley decomposition,
as in the proof of Seeger-Sogge-Stein’s theorem. This is done in [21] using a wave packet
transform defined by Fourier multipliers. In Section [6] we construct a similar wave packet
transform, replacing Fourier multipliers by the Phillips calculus of the transport group.
This allows us to define Hf;‘;oﬂ in Section , and to prove its embedding properties in

Section . In Section @ we prove that the half wave group (exp(itv/L))er is bounded
on Hpjo, forall 1 < p < oo and s € R. To do so, we first notice that the trans-
port group is. We then realise that, in a given direction w, exp(iv/D,.D,) is close to
exp(—iw.D,), when acting on an appropriate wave packet, in the sense that operators of
the form (exp(iv/Dy.Dy,) — exp(—iw.Dy)) 9. (D,) are LP bounded. Finally, in Section ,
we show that exp(z’t\/Z) remains bounded if one appropriately perturbs L by first order
terms. This is based on Theorem , a result about multiplication operators on Hpq ,
that is of independent interest, even in the case where a; =1 for all j =1, ..., 2d.

Our approach relies heavily on algebraic properties: the wave group commutes with the
wave packet localisation operators, and can be expressed in the Phillips functional calcu-
lus of a commutative group. Although our coefficients are merely Lipschitz continuous,
these algebraic properties match those of the standard Euclidean wave group. However,
in dimension d > 1, the problem does not reduce to its euclidean counterpart through a
change of variables (see Remark [4.5)).

In the same way as Peral-Miyachi’s result for the standard half wave group is a starting
point for the well-posedness theory of wave equations with coefficients that are smooth
enough perturbations of constant coefficients, we expect the results proven here to provide
a basis for the development of a well-posedness theory of wave equations with coefficients
that are smooth enough perturbations of structured Lipschitz continuous coefficients.
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discussions on the relations between this work and theirs. We thank the anonymous referee
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2. PRELIMINARIES

We first recall (a special case of) the following Banach space valued Marcinkiewicz-Lizorkin
Fourier multiplier’s theorem (see |37, Theorem 4.5]).

Theorem 2.1. (Fernandez/ Strkalj-Weis) Let p € (1,00). Let m € CY(R\{0}) be such

that, for all « € N§ with |a|s < 1 there exists a constant C' = C(«) > 0 such that
C*Em(Q)] < C V¢ e R\ {0}

Let T, denote the Fourier multiplier with symbol m. Then T, ® Irpra) extends to a

bounded operator on LP(R?; LP(RY)).

This theorem will be combined with the following version of the Coifman-Weiss transfer-
ence principle (see |24, Theorem 10.7.5]). Note that the extension of this theorem from a
one parameter group to a d parameter group generated by a tuple of commuting operators
is straightforward.

Theorem 2.2. (Coifman-Weiss) Let p € (1,00). Let iDy,...,iDy generate bounded com-
muting groups (exp(itD;))er on LP(RY), and consider the d parameter group defined by

d
exp(i€D) = [] exp(i&; D;) for € € RY. Then, for all ¢ € S(R?), we have that
j=1

I /Wﬁ) exp(i€D) fd€| r ey S 1Ty @ Lo | r@assr @yl flle@ey  Vf € LP(RY).
Rd
To define our Hardy-Sobolev spaces, we use the tent spaces introduced by Coifman, Meyer,
and Stein in [14], and used extensively in the theory of Hardy spaces associated with
operators (see e.g. the memoir [19] and the references therein). These tent spaces TP2(RY)
are defined as follows. For F : R% x (0,00) — C¥ measurable and = € R?, s

(/ ][ Fly.0 \Qdy—) " .ol

where | - | denotes the euclidean norm on (CN .

Definition 2.3. Let p € [1,00). The tent space TP2(R?) is defined as the space of all
F e L} (R? x (0,00), dz92) such that AF € LP(RY), endowed with the norm

HF”TPa?(Rd) = ||-AF||LP(]Rd)-

Recall that the tent space TH? admits an atomic decomposition (see |14]) in terms of
atoms A supported in sets of the form B(cp,r) x [0, 7], and satisfying

//|A |2dyda -1



Recall also that the classical Hardy space H!(R?) norm can be obtained as

1 ler ey = (1, @) = (D) (@) |12y,

where 9(t?A) denotes the Fourier multiplier with symbol & — t2|¢|? exp(—t%|£|?). This is
the starting point of the theory of Hardy spaces associated with operators (or equations):
one replaces the Fourier multiplier by an appropriately adapted operator. To do so, one
often uses the holomorphic functional calculus of a (bi)sectorial operator. The relevant
theory is presented in [24]. We use it here with the following notation.

Definition 2.4. Let 0 < 6 < 7. Define the open sector in the complex plane by

Spr :={2 € C\{0} : [arg(2)| < 0},
as well as the bisector S§ = Sg, USy_, where S§_ = =S¢, . We denote by H(Sg) the space
of holomorphic functions on Sy, and set
H*=(55) :={g € H(S5) : llgllLo=(sg) < oo},
W2(Sp) == {p € H*(S5) : 3C > 0: [9(2)] < Cl2|*(1 +[2|*"7) "' vz € S5}
for every o, B > 0. We say that ¢ € H*(Sg) is non-degenerate if neither of its restrictions

to Sg, or Sg_ vanishes identically.

For bisectorial operators D such that D generates a bounded group on LP, we also use
the Phillips calculus defined by

w(D)f = 5 [ D) explieD)pde,

for f € L? and ¢ € S(R). See [5,25] for more information on how these two functional
calculi interact in the theory of Hardy spaces associated with operators. The results in
Section [5| are fundamentally inspired by these papers.

3. THE ONE DIMENSIONAL CASE

In dimension one, the type of wave equations we are studying in this paper can be treated
through a combination of simple changes of variables and perturbation arguments. In this
section, we present this method both for pedagogical reasons, and because its results are
used to set up our approach to higher dimensional problems in the next sections.

Let a,b € COY(R) with La, L} €
that A < a(z) < A and A < b(x)
02u = (ad,bd, )u.

L, and assume that there exist 0 < A < A such
< A for all z € R. We consider the wave equation

Proposition 3.1. The operators a% and i@/—a%a% generate bounded Cy groups on
LP(R) for all p € (1,00).

a(y)

The map y € C'(R?) defined by
X (tx) = o7 (t + (),

Proof. Define ¢ : x — [ —=dy, and note that it is a C* diffeomorphism from R onto R.
0
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is then a solution to
Ox(t,xz) =a(x(t,z)) Vt,x eR.
It is such that
x(t,2)

(3.1) Vt,x € R.

x(0,7)

and thus:

%X(x,t) = % Vr,t € R.

Therefore x — %X(x, t) is bounded above and below, uniformly in ¢, and x is a thus a
bi-Lipschitz flow. We now define the associated transport group by

Tf(x) = f(x(t,z)) VtzeR
for f € C>*(R). Tt extends to a bounded group on LP(RY) for all p € [1, oc], with finite
speed of propagation. Strong continuity ||7(¢) f—f||, e 0 for p < oo follows by dominated
—

convergence for f continuous, and then density for general f. To identify the generator,
let f € WP, and note that, for all z € R?,

ST @limn = 55 (1) ho = V() - D)o

=a(z)0, f(x).
For f € C*(R), we have that

Ti(f 0 8)(x) = f(¢ + 9(x)) = (explit-2) f)(d(x)) Ve, x € R.

dx
For f € C*(R), s € R, and € > 0, we have that
. d d
exp(—(e + is) —a—-a @ = /ws )T, fdt
for ¢ : © — exp(—(e +is)|z|). We thus have that
(e +is)y] —a-r-a-0)(f 0 6)(x) = (exp(—(e +is) ) [)(0(a) Vo € R
exp(—(e +is a-—a— z) = (exp(—(e +1is) x x ,
for all f € C°(R), s € R, and € > 0. On L*(R), ¢ —adia generates a bounded group
and —y/—a d‘iaa generates an analytic semigroup. We thus have that

explisy| —a-ra-L)(f 0 8)(z) = (explis—2) f)(@(z)) V€ R,

dx dx dx
for all f € C °°( ), and s € R. Since ¢ is a C'! diffeomorphism from R onto R, this gives
that i,/ —add a+- generates a bounded Cy group on LP(R) for all p € [1,00). d

Corollary 3.2. The operators i/ —dia2 d‘i and i4/— d Wb d - generate bounded Cy groups

on LP(R) for all p € 1, 00).
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Proof. We have that —a L = ad“;a% + aadi and a dbd = %ab% — a’b%. For all
p € [1,00) and all f c Wlp(R), we have that |a’ bf’Hp < ||bd/|| || f']lp-  The result
thus follows from perturbation theory and square root reduction for cosine families, see

[2, Proposition 3.16.3 and Corollary 3.14.13]. O

4. THE TRANSPORT GROUP

d

The method developed in this paper applies to wave equations of the form §?u = Zl D?-u,
J:

where the D = (Dy,...D,) is a tuple of commuting operators. What we need from D is

d
that D; generates a bounded Cj group on L? for each j, and L = ) Df. is such that
=1

j=
appropriate Riesz transform bounds and Hardy space estimates hold. In this section, we
consider the simplest non-trivial example of such a Dirac operator. We then use this
example throughout the paper, but indicate when the results hold for more general Dirac
operators, with the same proofs.

For j € {1,...,2d}, let a; € C%'(R) with 2a; € L*, and assume that there exist
0 < A < A such that A < a;(z) < A for all = E R. We denote by a; € C%!(R?) the map
defined by a; : z — a;(z;).

Definition 4.1. For £ = (&y,...,&;) € RY, define

Zgj ( I~y _ajél/]:_/d > )

J

as an unbounded operator acting on L*(R%; C?), with domain W2(R4; C?).

As in |25, Section 4, Case 11|, i€.D, generates a bounded Cj group on L?(R%; C?), for all
¢ € RY, because £.D, is self-adjoint with respect to an equivalent inner product of the
form (u,v) — (A~'u, Bv), where A, B are diagonal multiplication operators with C%!
entries.

Remark 4.2. For E, F C R? Borel sets andw € S™ !, we setw.d(E, F) := inf,ep yer |{(w, T—
y)|. By [25, Remark 3.6/, we have the following (strong) form of finite speed of propaga-
tion: there exists k > 0 such that for all f € L*(R% C?), all Borel sets E,F C R%, all

£ eR? and all w € S we have

1pexp(i€Dq)(1rf) = 0,
whenever k|(w, )| < w.d(E, F).
Proposition 4.3. Let £ € R? and p € (1,00). The group (exp(it€.D,))icr is bounded on
LP(RY; C?).
Proof. Let p € (1,00). Using linearity and fredezing d — 1 of the variables, it suffices to
0 —=£b

show that the group generated by 1 ( ol 81‘ ) is bounded on LP(R;C?) for a := a;
dx
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and b:=a4.1. For f,g € C°(R), and t € R, let us consider

() =ew (Lo 787)) ()

(Gute)) =i () e

(Gut)) = (Ee)) vercn

Using Corollary [3.2] and solving these wave equations using the relevant cosine families
(see |2, Corollary 3.14.12]), this gives

d . d. 1,
Fult IS 11l + 1= —ab=—) "2 (bg) llp < /1l + N9l

We have that

and

[NIES

dx
< 2 i, < >  id ,
Il IS llglly + 1(=a—50)72(af)lp S llglly + I(maz—50)72——(af)ll + lla'llocll £l
with constants independent of ¢, using the boundedness of the Riesz transforms %(—%ab%)_%

and d%(—a%b)_% proven in [6,9].

0

Remark 4.4. Given the vector-valued nature of the Dirac operator D,, all function spaces
considered in the remaining of the paper will be implicitly C? valued.

Remark 4.5. The transport group generated by 1D, is, even in dimension one, substan-
tially more complicated than the transport group generated by a% considered in Section
[3. Its LP boundedness, for instance, does not follow from the boundedness of the transla-
tion group through bi-Lipschitz changes of variables. Indeed, for non-constant coefficients
a € C%(R), no intertwining relation

0 & \_(0 —&
o(ax )-8 &)
can hold for U of the form U : (f,g) — (f o ¢, g o) where ¢, : R — R are bi-Lipschitz

changes of variables.

5. HARDY SPACES ASSOCIATED WITH THE TRANSPORT GROUP

Lemma 5.1. There exists C > 0 such that, for all ¥ € S(RY), all E,F C R? Borel sets
and all w € S*1, we have that

1Y (Da)(Lrf)ll2 < Cll1rf]l2 / W()|ds Vf e L*(RY).
{lel= "N (w.6)] > =HE)
Consequently, for every ¥ € S(R?) and every M € N, there exists Cyy > 0 such that
d(E, F)

oW (o Da)(Lpf)ll2 < Cu(1+ =—=)""[[1eflla Vf € L*(RY)

for all Borel sets E,F C R? and all 0 > 0.
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Proof. Let f € L?(R%) and ¢ € R Since the group (exp(itD,));cres has finite speed of
propagation x by Remark [£.2] we have that

lpexp(i§D,)(1rf) =0,

whenever k|¢| < d(E,F) or kl|{w,&)| < w.d(E,F). Therefore, using Phillips functional
calculus, we have that

e (Da)(1rf)ll2 < #/\‘T’(é)IHlEexp(iéDa)(lFf)llzdé

< e fll / B(©)lde,
{le[> 530 | w8)[> =42
where C':= 73 sup{|| exp(itD,)|| p(z2) ; t € R?}. The last statement then follows from a
change of Varlables and U € S(RY). O

We recall the following fact, which is a corollary of the results in [§], using that the
coefficients a; are Lipschitz continuous.

Theorem 5.2. (Auscher, McIntosh, Tchamitchian) Let p € (1,00). On LP(R?), the oper-
ator L = D2, with domain W*P(R?), generates an analytic semigroup, and has a bounded
H®> calculus of angle 0. Moreover, {exp(—tL) ; t > 0} satisfies Gaussian estimates.

Corollary 5.3. Let p € (1,00), 0 > 0, g € H*(Sg,), and let ¥ € C>(R?) be supported
away from 0. Then there exists a constant C' > 0 independent of g such that, for all
F e TP3(RY),

[(0.2) = W(eD)g(L)F (0, ) (@)l meqas) < Cllglli=(sg (0. 2) = Flo ) (@) rmacao

Proof. For M € N, set qu(2) := 2M (14 2)"2M, z € S§,. Note that then ¢y € U3}(S5,).
The statement for ¥(oD,) replaced by ¢ (y/oL) for M large enough then follows from
a combination of [23, Theorem 5.2| and |23 Lemma 7.3], using Lemma [5.1) and Theorem
5.2 to check the assumptions.

On the other hand, we have by assumption ¢ — U(¢)q,/(|¢>) € S(R?), so that an
application of [23, Theorem 5.2| together with Lemma [5.1] ylelds the assertion. O

Lemma 5.4. Let a € R, and non-degenerate U, U e C>®(R%) be supported away from 0.
Let p € [1,00). Then

(0.2) = 0™ WD) f(@) vy ~ |(0.2) > 0™ F(0D0) f(2)lgweeay
for all f such that the above quantities are finite. Moreover, for L = —D?, we have that
(0, 2) = W(aDa) f ()| rr2@ey ~ [|(0,2) = 0° Lexp(—=0>L) f (@)l zv2 (ga)-
Proof. Since

r dr
(0, 2) = 0* V(0 Da) f (@)l 7r2rey ~ [|(0,2 '—>/0 U)*(7D,) f (x ) llzwaea),
0
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by [23, Corollary 5.1], it suffices to show that, for all o,7 > 0, (2)*¥ (0D )U(TD,) =
min(Z, Z)NS, ; for some N > ¢ and a family of operators S,, € B(L?) such that for
every M € N, there exists C'y; > 0 such that

d(E, F)

Kk max (o, T)

for all Borel sets £, F C R? and all o > 0. This follows from Lemma using that, for
all £ € RN\{0},

(g)“‘l’(dﬁ) (r€) = (= 2N (o) (7€) = (= )V () U (re),

for U : & s 28 and W : € s £PW(€) with 5 € N, |8], = N, for N' > |a|+N. For the sec-
ond statement we first show the comparison of W(aD,) with (6>L)M exp(—02L) for some
MeN, M > % in the exact same way as above. For the comparison of (6?L)M exp(—c?2L)
with 02 L exp(—0?L), we use |17, Proposition 10.1] instead of |23, Corollary 5.1], together
with the Gaussian estimates for exp(—¢L) as stated in Theorem [5.2] U

S0 (Lrf)lls < Cu(1 + ) MLeflla Vf e LR

Theorem 5.5. Let s € R, let p € (1,00). For all non-degenerate ¥ € C°(R?) supported
away from 0, and all M € N, we have that

(5.1) l[(0,2) = L) (0)o "W (0 D) f () +111.00)(0) © (0 Do) f ()l 1v2(may ~ [(T+VL) [l
for all f € D((I ++/L)*). Moreover, for s € [0,2], we have that

(5:2)  l(o,2) = Lpay(0)o "W (oDa) f(2) + 1j1,00)(0) (0 Da) f ()72 ety ~ | fl[wor
for all f € WP(RY).

Proof. We use the Hardy space HY associated with L, as defined in [15]. For all f € LPNL?,
we have, by Lemma

I, 2) = V(o Da) f ()| p2ay ~ [1fl|ap -

It is a folklore fact that HY = LP for p € (1,00), thanks to the heat kernel bounds of
(e'F);>0. This result appeared in draft form in an unpublished manuscript of Auscher,
Duong, McIntosh, and inspired the proofs of many similar results. For our particular L,
an appropriate version of the result does not seem to have appeared in the literature.
It can however be proven as follows. By [8, Theorem 4.19|, the operators tL exp(—tL)
have standard kernels satisfying the assumptions of |18, Theorem 4.4]. Therefore, for all
ferLPnL? fe HY and
1Az < Nl

The reverse inequality is proven in |15, Proposition 4.2] for p < 2. Given that the above
reasoning also applies to L*, we obtain the full result by duality. Combined with Lemma
.4, this gives the result for s = 0. For s € N, using Lemma with an appropriate
U € C°(R?), we then have that

(0,2) = L1y (0)0 > U(0 D) f () l7r2ery S [1(0,2) = Lo,y (0) ¥ (0 Da) L7 f () |12 gt
SILEfllp S I+ VL) fllp-
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We also have that
(0, 2) = 111.00)(0) ¥ (0 Da) f () lgw2zay S 11l ST+ VL) £l

For —s € N, we have that
1(o, ) = 1[0 »(0)o " W(oDa) f(2)||7v2(rae)

<ZII 0,) = 1jo1)(0)o L2 W(0 Do) (I + VL) () | neeey

\ |
<D l(os@) = 1oy (@) U(o D) (I + VL) PUf (@) roaey S T+ VL) fy,

as well as

1, 2) = 11,00 (@)W (0 Da) f () |72 )

E]
<N (0, 2) = 11,00 (0) o LEW(o D) (1 + VL) f(2) |z rey

s
<D l(os) = Lony(@) (o D) + VL) ¥ f(@)llra@e S |1+ VL) £,

Reverse inequalities are proven similarly, using that, for all s € R,
17+ VI Flly ~ (0, 2) = (I + V) U0 Da) (@) e

This gives (5.1) for all s € Z, and the result for all s € R then follows by complex
interpolation of weighted tent spaces as in |1, Theorem 2.1].
To obtain (5.2)) one first remarks that, for s € {0, 1,2}, the above reasoning also gives

I(0,2) = Loy (@)o (o Da) f(x) + 1,00 (0) ¥ (0 Do) f (@)l 1n2mty ~ Y 1D f 1
m=0
for all f € ﬂ D(Dz). We then notice that, for all j = 1,...,d, we have that [|9;f]], ~
a0, fllp ~ |]aj+d8 fllp, and thus HfHW“’ ~ | fllp + [[Dafllp, for all f € WP, Moreover,

0545740 f = Ay} 05 f + G0l f Vf € WP,
and thus
[ llw2e ~ 1 fllp + 1Dafll + I1D2 £, Vf € WP,
[l
Corollary 5.6. Let a > 0, p € (1,00), and q € [p,00) be such that
d1l 1
a=—(-—-).
2(p q)

Then there exists C > 0 such that, for all f € LP(R?) with L*f € LP(R?), we have that
| fllzaey < ClIL fl Lo way-
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Proof. For f € LP(R?) with L*f € LP(R%), Theorem [5.5| gives that

[fllLo@ay S (o, x) = L™ (0 Do) L f(2) || 702 me)
S0, 2) = 0 U(aDa) L f ()| 7a(rey
for U : € €W (€). Using the embedding properties of weighted tent spaces proven in
[1, Theorem 2.19|, we have that
(0, 2) = 0** W (0 D)L fllacmey S II(0, ) = U(oDa) L* fl72(gay,
and thus
[l pamay S N1L° o ray,

by Theorem
U

Remark 5.7. All results in this section, except (5.2), hold for a general Dirac operator
D, that generates a bounded commutative d parameters Cy group on LP with finite speed
of propagation as in Remark and is such that H), = LP. Property (5.2)) also holds as

long as D(D,) = W' and D(D?) = W?? with equivalence of norms. All results in the
next sections also hold for such Dirac operators.

6. WAVE PACKET TRANSFORM

We use a wave packet transform which is similar to the ones used in [2129].

Let ¥ € C°(R?) be a non-negative radial function with ¥(¢) = 0 for || ¢ [3,2], and

(6.1) /OOO U(a¢)? %" =1

for ¢ # 0. Let ¢ € C°(R?) be a radial, non-negative function with ¢(¢) =1 for [¢| < 3
and ¢(¢) = 0 for |(] > 1. These functions ¥, ¢ are now fixed for the remainder of the
paper.

For w € S ¢ > 0 and ¢ € R?\ {0}, set p,,(() = c (%), where ¢, =

) ~1/2
(/ %) (61\/__V> dV) . Set ¢,,(0) := 0. Set furthermore ¥,(¢) := V(o() and
gd—1 g

Vo (€)= Vo (C)pwo(C) for w e S o > 0 and ¢ € R%. By construction, we then have

0 d
(6.2) /O " Yo (C)? dwf ~1

for all ¢ € R\ {0}, see |21, Lemma 4.1]. For w € S4! and ¢ € R?, we moreover set

pu(C) = /0 borl) .

T

For the convenience of the reader, we recall the following properties of 1, , stated in
[29, Lemma 3.2].
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Lemma 6.1. Let w € S ! and 0 € (0,1). FEach ¢ € supp(vw,) satisfies

1 2 .
(6.3) —<lkl<s, (K-l

o o
For all o € Ng and B € Ny there exists a constant C' = C(«, 8) > 0 such that
(64) [0, Vo) 0o (O] < Com 5475047

for all ({,w,0) € R x S¥1 x (0,00). For every N > 0 there exists a constant Cy > 0
such that

(6.5) I (o) (@)| < Cno T (14 0 V2| + o 2w, 2)2) N

for all (z,w,0) € RY x S1 x (0, 00).
In particular, {oT F L ({y4) |w € S92, o > 0} C LY(R?) is uniformly bounded.

We also recall important properties of the family (), cga-1 from [29, Remark 3.3].

Lemma 6.2. Let w € STt By construction, ¢, € C®(R?), and for ¢ # 0, ¢,(¢) =0
for [¢| < é or |¢ —w| > 2[¢|7V2. Moreover, for all « € N¢ and 3 € Ny, there exists a
constant C' = C(«, B) > 0 such that

u_&
|<W7VC>Bag§0w( )| < C|C| -
for all w € S and ¢ # 0, and

(00 G Ve o (/S %(C)zdu> | < Cle| 5

for all ¢ € R\ {0}.
Remark 6.3. For w = ¢, and (, o chosen as in (6.3) with o € (0,27%), we have

1

2 4
) — < = < — ' 2,...,d}.
(6 7) 40_<§1_0_7 |CJ|— \/E’ .76{7 ) }

This follows from

C— el =ler(C —e) +Z|€y = m— |2+Z|\C\

thus
d 16
G =GP+ D161 < dolgf < —,
j=2

which directly yields for 3 > 2. The case j =1 then follows from

1 4
C1>|C|—7_%—ﬁ-
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Lemma 6.4. For all 0 € (0,1), and all f € L*(R?), we have that

(6.5) \S“\l/gdl/ WoD)f /S/go oD P = 1

(6.9) / Gon(Da)?f dw = f,
Sd*l
(6.10) o / (Do) f dw = C, f,
Sd—l

with constant C, such that o — C, is bounded above and below.

Proof. These identities follow (respectively) from (6.2)), the fact that [ ¢, ,(§)*dw =1
gd—1
for all £ # 0, and [21, Formula (7.4)], using the Philipps functional calculus of D,. U

Lemma 6.5. For all o € (0,1), we have that
[ NouolDDIB S IFIE vF € 2R,

Sd—1

Moreover,
oo

d
[ Waa D1 i S IS V5 € 2R
gd—1 0

Proof. Let f € L*(R?) and o € (0,1). Using (6.9), and the fact that D, is self-adjoint
with respect to an equivalent inner product (see Definition , we have that

[ NeuoPfBdw~ [ (puol D1 1) dw S 1515

Sd—1 Sd—1
Similarly, using , we have that

//nww 713 s //w S D) Lo < 1B

Sle Sdlo

Definition 6.6. We define a wave packet transform adapted to D,,
W, € B(L*(R?), L*(R? x S%7 x (0, 00); dzdwi2)) by

Wl (0,0,2) = 10,0 (0)1S% | V20(0 D) £ (2)+1101(0) ¢ Da)B(0 Do) () VF € T(RY)
We define m, € B(L*(R? x S~ x (0, 00); dzdw?®), L*(R?)) by

F(x) ysd1|1/2/Sd1/ W(oD,) wa.)()d—gdw

+/S/O ou(Da)U(0 D) F(w, 0, )z )%“dw



15
for all F € L*(R? x 4! x (0, 00); dzdw?®).

Note that W, is well defined thanks to Lemma [6.5, and that m, is the adjoint of the
operator W,, where W, is defined as W, with D, replaced by D:.

Definition 6.7. Given w € S, we fir vectors wy, ...,wg_1 such that {w,wy,...,wq_1} is
an orthonormal basis of RY. We then define the parabolic (quasi) distance in the direction
of w by

d—1
dw(mvy) ::|<w,x—y>|+z<wj,x—y)2 anye]Rd-
j=1

We also define (anistropic) operators associated with this parabolic distance by

d—1 d—1
A, = Z(wj, V)2, Ly = — Z(wj, D,)?.
=1 i=1

Lemma 6.8. (i) Let N € N, N > 41 There exists C' > 0 such that for all o € (0,1)
and w € S, we have
(1 oL+ 02w, D)™ Fleny < Com P ll s

for all f € LY(RY).
(ii) For every M € N, there exists Cyy > 0 such that for all E,F C R®? Borel sets,
o€ (0,1) and w € S, we have

. d,(E.F
L5t (Do) (L) gy < oot (1 + Sl Ee )

for all f € LY(RY).
(1)) Let 1 < p < r < oo. For every M € N, there ezists Cyy > 0 such that for all
E,F C R? Borel sets, 0 € (0,1) and w € S* ', we have

_ d(E. F
1Lt o (Do) (L f) lorqae) < Caso G Do (1 1 UEE)

for all f € LP(RY).

)M fll 11 may

)M N1E f || o ray

Proof. Part (i) follows from |8, Proposition 4.3|, tracking the scaling factor ¢ in its proof.
(ii) Let w € S? L. For given Borel sets £, F C R? with d(E,F) > 0, let x, € C*(R?)
be a function with values in [0, 1], x.,(¢) = 0 for [¢] < ix7'd,(E, F) and x,,(¢) = 1 for
I¢] > k7L (E, F), and |[{w, V)Xwlleo + A0 Xolloo < m. Lemmaimplies

calpthno(D)lrf = 1g /R MOF W)L .

Now note that (1 — 0A,1 — 0%{w, V)?)e"Pe = (1 + oL, + 0*{w, D,)?)e’P= thus for
N e N,

e Pe = (1 + oLy + 0*w, Da)?) ™M (1 — oA, — 0*{w, V)?) el
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From integration by parts we then get for j € {0,1}

CdlE'lva,a(Da)lFf = (1 + O’Lwl + 02<w7 Da>2)_N

(6.11) o [ (0= 080 = P TP O - F () (O P (1)
R

Consider first the case d,(E, F) < o, for which we take j = 0. According to Lemma ,
we have ||F ! (¢y o)l 21y S o~“T". Similarly, one can check that

d—1

HC = (U((,d, VC>)5(0Awl)a‘F—1(ww,a>(C>HLl(Rd) 5 o 1

for all @ € N and 8 € Ny. We use this estimate together with Proposition and Part
(i) to obtain for N > <1

_d-1 . _d
Yoo (Do) fllzeay S 077 (1 + 0 Lys + 0w, Da)*) ™ 1oall fllrzay 0721 f ooy

In the case d,(F, F') > o, we choose j = 1in (6.11]). Then note that according to the choice

of X.,, we have for o € (0,1) that [|¢ — (o{w, V)P (0Au10)*X(O)]lee S (dW(Zﬂ’F))‘O‘Hﬁ NE T

for all @ € N¢, 3 € Ny. Using the product rule, a version of (6.5)) for derivatives of
F (o), Part (i), and an anisotropic change of variable, we obtain

Hlew,o’(Da)(lFf)HZ

_d+1
So el s [
aeNg, BeNy  {I€]> 2= In{[{w,6)[> ==}
|a|+28<N

(04w, V) (Vo0 F~ (thuo) (O] dC

So o |[1pf|h

o

(140 ¢+ o 2w, ¢)?) N d¢
/{|5|>f@ﬂ}m{|<w,s>|>°”g’m}

)N 1R

g

AN

Choosing N large enough in (6.5) yields the result.
(i) This is similar to (i) and (ii), but simpler. By Theorem [5.2] we have that

—d(i-1
||(1 + O'QL)iNfHLr(Rd) S Co d(l’ T)Hf”LP(Rd)a

for N > %. Integrating by parts, and using Lemma together with Proposition ,
we obtain that

d(

_g(i_1 EF). _ o0
150D 1 Dl S =601+ LN (20027l 10 fane
]Rd

_ d(E. F
<ot Doty WEE v ayy gy
g

using that, for all & € N, [|¢ = (02A)*F (o) (Ol ey S 07, by Lemma 6.1, O
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7. THE HARDY-SOBOLEV SPACES Hpr, ,(R?)

In the following, we denote by ¥ € C2°(R?) the function defining the wave packet trans-
forms from Section @ We denote by H} (R?) the Hardy space associated with L as defined
in [15]. Recall that for all f € H}(R?), we have by Lemma

1 ez ey ~ [l(o, 2) = U0 Da) f(2) || 112 ().
Definition 7.1. Define
Si={fe€HRY : Ige L'RHYNL*RY) I >0 f=V(rD,)g},
and for p € (1,00)
S,={fe€lP(RY) : Ige PRYNL*RY) Ir >0 f=V(rD,)g}.
Lemma 7.2. Let p € [1,00) and f € S,. Then, for all w € S, p,(D,)f € LP(RY),
and, in the case p =1, p,(D,)f € Hi(R?), each with norm independent of w.

Proof. We have that o,(D,)f = t,,.(D,)g for some g € LP(R?), up to a change of con-
stants in the support conditions of 1), ;. By Lemma , we have 1, . (D,) € B(LP(R?)),
and thus ||ow(Da) fllp S 1lgllp- In the case p = 1, we obtain that |9, -(Da)gllr < ||9HHi
by reasoning as in the proof of (iii), using the boundedness of Riesz transforms associ-
ated with L from H] to L' to deduce the H} to L' uniform boundedness of the transport
group (exp(i§Dq))ecre. We moreover have that ¢, ,(D,)g € R(L), since ¥ is supported
away from 0, hence v, .(D,)g € H}(R?). O

Corollary 7.3. Let p e [1,00), s € R, and f € S,. Then
w = [(0,2) = 1100 (0) (0 D,) f(2)+ 1011 (0) 0 0 (D) ¥ (0 D,) f ()] € LP(SY1 TP2(RY)).
Proof. This follows from Lemma [7.2] and Theorem [5.5] O

Lemma 7.4. Let U € C>®(R%) be non-degenerate and supported away from 0. Let p €
(1,00), s € R, and f € S,. Then, we have that

W [(0,2) = 1100y (0)T(0 D) f () + 1.01(0)0 20 (Do) ¥ (0 D,) f ()] € LP(S1 TP(RY)),
with an equivalent norm to the corresponding map in Corollary[7.3, and
I+ VL) ™ fll1

S llw = [(0,2) = 1a,00)(0) W (0 Da) f(#) + Lio,1)(0)0 0w Da) ¥ (0 Da) f (@)]| Lo (s0-1,702(R))
for all M € N such that M > % — 5.

Proof. Let M € N be such that M > ¢ 4 —s. Lemma and Corollary . give the first
part, and Corollary [5.3 Lemma [5.4] together with Theorem [5.5] give

I+ VD)™ flliw S l(02) = Loy (@) ¥ (0 Da) (L + VL) ™ f(2) 102 gay
+ (o 2) = Loy (o) (oVIYM (I + VL) ™MW (0 Do) f () |lgw2 o).
Using Corollary again, we then have that
I+ VL) ™ flle S (02) = 101,00)(0)¥(0 D) f (2) |72 m)
T l[(0,2) = 10.)(0) ™ W2 (0-Da) £ (2) sy
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We then use the reproducing formula (6.10) to obtain that
I+ VL) ™ f g

_d-1
S (o, 2) = 11,00)(0) (0 Do) f(2) + 1po,1)(0) / oM 0y o (Do) W2 (0 D) f () dw|| .2 ray
gd—1
S w0, 2) = 1(1,00)(0)\11(0Da>f<x> + 1[0,1](U)U_S@w(Da)\II(UDa>f<x)]HLF(Sdfl;Tpﬁ(Rd),
since M > % — S. U

Definition 7.5. Let p € [1,00), and s € R. We define the space Hpj, ,(R?) as the
completion of S, for the norm defined by

1 1z, ey
— o [(0,2) = L1 (0¥ (D)) + Loy ()o~ (D) ¥ (0 D) ) o(ssszmm-
We write Hypp (RY) := HYp, L (RY).

Remark 7.6. By Lemma we have that HglO,a(Rd) is a subspace of the M-th extrap-

olation space associated with L, and is independent of the choice of ¥ € C>(RY)\{0}and
supported away from 0.

Remark 7.7. By Lemma interpolation properties of Hf;‘;oﬂ(Rd) follow from the in-
terpolation properties of weighted tent spaces (see [1]) with the same proof as in [21], Propo-
sition 6.7].

We also have the following versions of [29, Theorem 4.1] and [29, Corollary 4.4|, respec-
tively.

Proposition 7.8. Let p € (1,00), and s € R. Let ¢ € C°(RY) with ¢(¢) =1 for [¢] < .
Then

1/p
11 mzs, ey = [4(Da) fll Lo ray + </Sd_1 (Do) + VL)* Fsgay dw) VfeS,.

Proof. Let f € §,. By Lemma , we can choose ¥ with an appropriate support, such
that U(oD,)f = W(0D,)q(D,)f for all o > 1, W(0D,)q(D,) = 0 for all o < ¢, and
¢.(Da)¥(0D,) =0 for all ¢ > 1 and w € S¢4L.

Then, by Theorem we have that

1l 0 S 1022) = Loy (00 D)D) (@)
+ lw = [(o,2) =1 01](0)‘7 0 a)\II(UDa)f(x)]HLP(Sd—l;TPvQ(Rd))

1/p

S0 e + ([ 104 VDP oD ey )

In the other direction, Theorem and the support properties of ¢ and ¥ give us that
(D) fllpe@ay S I fllmzs, ey + lo;2) = 11 3y (0) ¥ (0 Da)q(Da) f (@) || o2 ey
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With the same proof as in Lemma [5.4] we then have that, for all M > 4L — s,
(o, 2) = 1[%,1}(0) (0D4)q(Da) f(x )“TP’?(Rd)

S o) = 1y 4(0) [ W0DIAPIVEDII + VI +VE) S (0) T e

S+ \/z)iMfHLP(Rd)-

Therefore, using Lemma , we have that ||¢(Da) f||Lrrey S || f]] ez, (re)- For the second
term, we use Theorem and the support properties of ¥ again to get that

(o Wttt = )

S llw = [(0,2) = o1y (0)0 ™ 0u(Da) ¥ (0 Da) f(2)]|| Lo (501,702 (R
SN llmzs,  a-
]

Proposition 7.9. Let p € (1,00). Let ¢ € C(RY) with q(¢) = 1 for |¢| < 3, and
® € S(RY) with ®(0) =1 and ®,(¢) = ®(o() for o >0, ( € R%. Then

10(D0) ey + ([ | 1602 olDe)l D) e €)' S 1t 50y VI € S

and
d-1
([, N0 = 0T 0ol Du) (P e 47 S Il 0 Y €

Proof. Let r € [1,p). For the first assertion, note that Theorem implies L™-L* off-
diagonal estimates for ®,(D,) of the following form: For every M € N, there exists
Cy > 0 such that for all E, F C R? Borel sets, o € (0,1), we have

_d d(E,F) . _
11EPo(Da)(1rg) || Loemay < Crro™ 7 (1 + g) M1 pgllr ey

o
for all g € L"(R?). This implies that for z € R?,
sup [0, (Dg)] £ swp Y2 Mo [ g o) S Miglo)
|y—CC|§O' |y—x|§a ]:0 S(By o')

where M,g = (M(g"))"/", with M the Hardy-Littlewood maximal function, S;(B,,) :=
{zeR?; 270 < |y — 2| < 20} for j > 1, and Sy(B,,) = {2z € R¢; |y—z| <a} The
conclusion follows from the LP(R?) boundedness of M, together with Proposition

For the second assertion, we first note that by renormalisation, we can change @U(Da)gpw(Da)

to ®,(D,)?p.(D,). We slightly change the above argument by noting that for ¢ € (r, 0o),

we have L-L> off-diagonal estimates for ®,(D,). On the other hand, we have by Lemma

L"-L1 off-diagonal estimates for ®,(D,)p,(D,) of the form

_g(l_1y _a-1 d(E,F). _
16, (D, oe (D) (Lrg)lley < oo Do 1 4 WLy g
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for all g € L"(R?). We then conclude as above, using composition of off-diagonal bounds
as in |4, Theorem 2.3|. O

8. SOBOLEV EMBEDDING PROPERTIES OF H%,, ,(RY)

We use a variation of the arguments in |21, Section 7|.
We let m(D,) = (I + VL) ‘7.

Lemma 8.1. For every 0 < 0 <
TY(RY), and all s € R

(8.1) / (0, 2) = Ljo1(0)m(VL) 4, 5 (Do) A(a, ) (@) | 112 (gay dos < CpelIe.

there exist Cy,cy > 0 such that for all atoms A €

B

Proof. Let A be a TH?(R?) atom associated with a ball B = B(cg,r). Without loss of
generality, we assume that A(o,.) = 0 for all a > 1.
By renormalisation, we can replace Vyo(D,) in . 8.1) by V,(Dy)tw s (D,). Noting that

0(d—1)

> we use Corollary to obtain for every w € S%!

[|m** | £oo (89) < C€|S|c9, for ¢y =
and given 6 € (0, 7)

[(0,2) = 1o (0)m(Da) Wy (Da)thua (D) A0, ) (@) 120
= [[(0.2) > L) (0)L S m(D) W0 (Da) L5 0 (D) A, ) (@) s

< Cyello || (0, 2) = 1o0)(0) L™ W0 (Da) A(0, ) () | 1.2t
with Cy independent of s € R.
For j € N*, and w € S%!, define C;, := {y € R?; 2971y < {w,cp—y)|+|cp —y[* < 2r}
and Cy, :={y € R; [(w,cp — y)| + |cg — y|[> < r}. Remark that |C;,| ~ (27r)“s", and
that d,(C;, Co.) > 29"'r. Using a slight generalisation of Lemma and Corollary

for p = 3§_i1’ we have that

/ 1(7:2) = Loy ()10 (0) 25 o (Da) A, o) g

min(r,1)
. e do
< / / 12775 0 (Da) A0, ) (@) 2 ey —- e
gd—1 0
min(r,1) d
dt1 -4t d
<rS / | L~ s A<Ua‘)(x)||%2(Rd)?

[e=]

d+1 do
S [ 146 )@ B 's
0

a1l d-1 do
S A @) S 1Al S 1.
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_ _d—1 ~ ~
Let M > d~+ 1, and define ¥ : £ — — lft;lT\P(g) — and ¥y, 1 & Yoo (§)V(0E).
(bf|<7§| Z |U(0g)|22)2

For all j € N*, we obtain from Lemma for @7);/(, instead of 1, »
1%t
([ 100 10, ()10 () L o (DA ) @)

Sd—1
min(r,1) p
d+1 o
sen® [ [ oTNDIAG ) Do
Sd—1 0
min(r,1) u p
P 4+l =1 _4 o g
< (@n)" / [ oo () 1A e ‘e
0
1n(r1 2] u p
7“ d+1 o
set [ ] DT () 1A e e
gd—1 0
< 2 IM=5) | 412, , < 2 I(M=55)
Summing over j yields the conclusion. 0

Remark 8.2. Note that basically the same proof as above also yields the statement that
for all s € R,

(.0, ) = 030 (D) F(0, s(siriroma S | Fllraoges
for all F € TY*(RY). By a slight modification of Lemma we obtain on the other hand
[(w,0,.) = Yuo(Da)F(o, . )|12sa-1122R) S || F|lr22(Re) for all F e T**(RY). Stein
interpolation and duality then yield for all p € (1, 00),
I@,0,.) = 0 e (DF (@, lnsi-rmra@n) S I1Fllzrame),
for all F € TP?(RY).
Lemma 8.3. For allp € [1,2], and s, = (d — 1)(% — 1), we have the continuous inclusion
H?%’Q(Rd) C HY(RY), where HY(RY) = LP(RY) for p > 1. Forp € (1,00), and b : &
1|7 m(€), we have that
1(0, %) = m(Da) ¥ (0 Do) f ()| ro2may S [|(6(Da) +m(Da)) fllmz,, ey S [1f 52, @),
forall f € S,.
Proof. Let f be an H} atom. We have, using the reproducing formula , that
[y ~ I, 2) = W(oDa) f(2)||l712(a)

S [ N005) = 1) T o Da) (&) + 1y (01U D) @) 20
Sd—1

S L e

Y
FIéla(Rd)
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where the last inequality follows from the comparability of ¢, , with ¢, ¥, for o € (0,1).

Sl
Since Hf;o, = L?, the continuous inclusion Hy 2 (RY ¢ HY(RY) follows by interpola-
tion. In the same Way,

for ¥ such that \I/(f) — |¢]T W(€) for all £ € RY. Turning to the low frequency term,

we note that, for ¢ > 1, we have that U(cf) = W(af)q(&) for all £ € RL Therefore, by
Theorem [5.5] and Proposition [7.§ we have that

[0, 2) = 11.00)(0) ¥ (0 Da)m(Da) f ()| 1022y S [[M(Da)q(Da) fll ey S m(Da) fll1g,, 2ty

To conclude the proof, we use Theorem [2.1] and Theorem [2.2 along with Proposition
[4.3] to show that b(D,) and m(D,) are bounded operators on L”(R?), and thus also on
HY10 o(R?), thanks to Proposition O

Corollary 8.4. Let p € (1,2]. Then

|1+ VL)~ fll

FIOa

re) S | fllze ey,
forall f €8,.
Proof. For z € C such that Re(z) € [0, 1], we consider the operators defined by

T.f(w,w,0) = lpuy(e)(I + VL) 50, (D) f(x) Vf € LA(RY).
For Re(z) = 0, they are well defined as operators from L?(RY) to L*(R¢ x S%! x
(0, 00); dzdw?) by Lemma , with norm independent of I'm(z). For Re(z) = 1, by
Lemma T, extends to a bounded operator from H!(R?) to L'(S% 1 T12?(R%)) with
norm bounded by Cyel™)le for fixed § > 0. Therefore, by Stein interpolation [36] with
admissible growth, T € B(LP(R?), LP(S91; TP2(R)) for Re(z) = 2 — 1. To conclude the
proof, we thus only have to show the low frequency estimate

I(0,2) = L1,00) (@)U (0 Do) (I + VL) f(2)l|7v2(eay S |1 llzoceay-

This follows from Theorem 5.5/ and the L? boundedness of (I + /L)% . O

9. THE WAVE GROUP

Theorem 9.1. Let p € (1,00), and s € R. Then

eVl (RY) — HEZ, (RY)

18 bounded for each t > 0.

For simplicity, we set t = 1 and s = 0. All the proofs extend verbatim to other values of
t. The case s € R is an immediate consequence of the case s = 0 by Proposition [7.8. For
the transport group, the L” boundedness is clear.

Lemma 9.2. Letp < (1,00) and w € Sdfl' Then eiw-Da - Lp(Rd) SN Lp(Rd) and ew-Da -
H?IO,@(RC[) — H}@’]oﬂ(Rd) 1s bounded.
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Proof. The LP boundedness is proven in Proposition . The boundedness on Hhy IO,a(Rd)
is an immediate consequence of the L? boundedness, by Proposition [7.8] O

For the low frequency estimate, we need the following lemma.

Lemma 9.3. Let p € (1,00), let ¢ € C®(RY). Then q(D,)e’VE : LP(RY) — LP(R?) is
bounded.

Proof. Because of the compact support of g, the symbol ¢ + q(¢)e'dl clearly satisfies the
Marcinkiewicz-Lizorkin multiplier condition of Theorem [2.1 The result thus follows from
Theorem and Theorem using that D, generates a bounded d-parameter group, as
shown in Proposition [.3] O

Proof of Theorem[9.1] For f € S,, Proposition [7.8] yields

1/p
1 5 5 0PI s+ ([ Il )

For the low frequency part, recall that ¢ € C°(R%) with ¢(¢) = 1 for |¢] < %. Choose
G € C=(RY) with §(¢) = 1 on suppgq. Then ¢(D,)e?VL = §(D,)e?VEq(D,), since D, and
V'L are commuting, and Q(Da)eiﬁ is LP bounded according to Lemma . Thus,

1g(Da)e™E fll oy = 13(Da)e™YEq(Da) fll oy S 9(Da) 1] 1o ety

Let us now consider the high frequency part. For fixed w € S%!, we decompose
u(Da)e™" = 0u(Da)e P + (Do) (€ — e P2,
The first part can be dealt with Lemma [9.2] which directly yields

1/p
([ 10D ey ) 10

For the second part, we use (6.8) to write
ww(Da)(eiﬁ — @ Pe) = gow(Da)ei“"D“(e_w'D“ei‘E — mw, W,.
Since €™ is bounded on LP(R?) by Lemma , it suffices to show that
lpw(Da) (e PeeVE — D Wo f | o@e) S |9 Da) £l o ey

We can write
ul(Da) (e P2V — Dty Wy = my(Da)p(Da) + ¢ Da)ps(Da)
for the symbols

9.1 mol€) = 2 Qle) [ [ o0 aZ

and



24 DOROTHEE FREY AND PIERRE PORTAL

with M, () = e @<l — 1 5, € C®(R?) a function with ¢, = 1 on suppg, and
P, (¢) =0 for || < % or ¢ —w| > 4[¢|7"/2, and

0= ([T )" s

and r(0) := 1. As noted in |21, Section 4.1], we have r € C2°(R?).

The proof will be concluded by applying Theorem 2.1, and Theorem [2.2] using Proposition
4.3 We only have to check that m,, and g, satisfy the assumption of Theorem For
(u, this directly follows from the fact that r € C>°(R%). For m,,, this is proven in Lemma
9.5 below. 0
Remark 9.4. Let w € S, Let ¢, € CX(R?) a function with ¢, = 1 on supp ¢, and
@u(C) =0 for |¢| < & or IC — w| > 4[¢|Y/2. By the choice of the cut-off function @, and
the support properties of ., we have the following: For all o € Nd and 3 € Ny, there
exists a constant C' = C(a, ) > 0 such that

[, VY o pulC)] < ClI5
for allw € St and ¢ € R?\ {0}.
Lemma 9.5. Let w € S9!, let my, be as defined in (9.1)). For all o € N§ with |a|o < 1
there exists a constant C'= C(«) > 0 such that
¢“ O m.(Q)] < C
for all ¢ € R4\ {0}.

Proof. By rotational invariance it suffices to consider the case w = e;. Let ¢ € R%\ {0}.
The bound |m,, (¢)| < C directly follows from (6.2)) and the boundedness of m., and @.,.
Moreover, by the specific form of 7, (¢) = €®©) — 1 with b(¢) = —¢; + [(], it can easily
be seen that the condition

(9.2) CO¢b(C)] < ¢
for |or|os <1 immediately implies |(*0277, (¢)] < ¢ for |a|o < 1. We check (9.2):
60O = 1601 (=G -+ D] < fallL = 1= |2 el = o
<I<l =Gl =G|

According to the support properties of ¢., and 9,,,, we have |V —e;| < /0. Thus a slight
modification of (6.7]) yields that there exist constants ¢, co > 0 such that for 0 < o0 < 1,
one has

(9.3) G>=  and[Gl<<E je{2....d),

T:

on the support of m,,. Thus, for such choice of (,

QA < 1) (,/1 Lo 1) |
G
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This expression remains bounded for {; — oo or equivalently |(| — oo, since replacing
h = =, we see that

. V14+ch—1 c
lim —m8m—— = —.
h—0 h 2

Again using (9.3) and [(| > |Ci| > %, we obtain for j € {2 ..,d} that

169;6(O] = 1¢;9;(=C + [CD] < ICJ‘ ‘I <c

Concerning the mixed derivatives, one can inductively show that for o € N& with |a|, <1
and a; = 0, [(*0¢b(C)| = ||C|2C‘2:| ———| < ¢, for ¢ as in (9.3). Finally, for j # 1,

GG = |6GRD,(—Gu +1C)] = mu% <e

Putting all arguments together shows (9.2). The bound |*92¢., (¢)] < ¢ follows from
Remark |9 - 9.4] together with . whereas the analogous bound for the last factor in
concerning v, is a consequence of (6.6) together with (9.3). D

Combining Corollary [8.4] with Theorem [9.1] and Theorem [5.5] then gives our main result.

Theorem 9.6. Let p € (1,00) and s, = (d — 1)\% — 3|. For each t € R, the operator
(I++/L)~* exp(itV/L) is bounded on LP(R?). Moreover, if sp < 2, the operator exp(ity/L)
is bounded from We»P(R?) to LP(R?).

Proof. By duality, it suffices to consider the case p € (1,2). Let f € S,. By Lemma
and Theorem [9.1] we have that

lexp(itVL) fl|oze) < | exptVI)fI| S pay

d
FIO a(IR FIO,

Using Proposition [7.8, and Corollary [8.4] we then have that
I eXP(@t\/_)fHmed ST+ VI)E fllan, @y S T+ VL) fll o).

FIO,a

For s, <2, Theorem 5.5 then gives || f||wspr ~ ||({ + \/Z)sprLp(Rd). O

10. LOWER ORDER PERTURBATIONS

We consider the operators L; = — Z aj140;a;0j and Lo = — Z a;0ja;q0j. For a

function ¢ : R? — R, we denote by M the multlphcatlon operator ( fs F ) (gf,gF). We
will evaluate the norm of ¢ in Besov spaces B ook associated with the operators Ly, in
the sense of [12]. Note that, in certain situations BZ%* = C* for k = 1,2. Indeed, by
[8, Theorem 4.19], the operators Ly (k = 1,2) and their adjoints satisfy the assumptions
(S), (K), and (H) from [12]. If the coefﬁcients (aj)j=1.. 24 are CH! then property (C) from
[12] follows from Feynman-Kac’s formula. Therefore, by [12, Theorem 5.1] and the Besov
space characterisation of the homogeneous Hélder space C* (see e.g. |11]) , we have that

Sp,L N|| | s
Bog,ook g Csp>

—Sp 2L ~
glagjglglh (77 Li) gl oo ggfg”gl

whenever s, < 1.
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Theorem 10.1. Let p € (1,00) and s, = (d — 1)|}—17 — 1. Letg e B AL® fork=1,2.
Then My € B(Hp;0 ,(RY)).

Proof. For p = 2, there is nothing to prove. For p # 2, this is a consequence of Lemma
[10.4] and Lemma [10.6] below. ]

Remark 10.2. Theorem is of independent interest, even when a; = 1 for all j =
1,...,2d. In this situation, a more general result for pseudo-differential operators has
been proven recently in |30, Theorem 1.1] for symbols which are C" reqular in the spatial
variable, with r > 2s,. In the special case of multiplication operators, we improve this
result to r = s,.

We state our perturbation result for first order perturbations of the wave equation under
consideration.

Corollary 10.3. Let p € (1,00) and s, = (d — 1)]l — 1|. Assume that s, < 2. For
jg=1,...d, let g; € B A B2 0O, and consider

L:(f,F) = (Lif, LoF) + Z(gﬁjf, 9;0;F).
j=1

For each t € R, the operator (I + \/E)*SP exp(it\/f) is bounded on LP(RY).

Proof. Without loss of generality, we assume that p < 2 (using duality to get the full
result). By Theorem , |2, Example 3.14.15] and Proposition , the operator L gen-
erates a cosine family on Hy,p ,(R?), with Kisyniski space D(VL) = Hﬁ’}ova(Rd) (see [2]
for the theory of cosine families). By Theorem [10.1, boundedness of Riesz transforms
[8, Corollary 5.19]|, and Proposition [7.8 we have, for all j =1, ...,d, that

1My, (9 £, 0 ) g, ety S NOif . 05 lag g ) S NCE FM g ey V(£ F) € Hiro o(RY).

FIO,a

We thus obtain from [2, Corollary 3.14.13] that exp(it\/Z) € B(H}'}IO’G(R‘Z)). Another
application of [8, Corollary 5.19], also gives that

T+ VD) F(f F)lww ~ 1T+ VD) 2 (£ Pl VS F e W™,
since s, < 2. Using Lemma [8.3] and Corollary [8.4] we thus have that

1+ V) exp(itV D) fl S 1+ VD) ~# exp(it VD) s
< | exp( zt\/_ L) fllaz,, ety S 1 fllmz,, @)
SIT+VDE fl S0+ VD Efll Vf € PRECY).
U

For the proof of Theorem [10.1] we use the following paraproduct decomposition.

Let ® € S(R?), ¢ € S(R?) with ¢(0) = 1 and ®,(¢) = ¢(c?|¢|?) for o > 0, ¢ € RL. We
denote by My, the multiplication operator (f, F) — (¢(L1)g.f, ¢(L2)g.F). We denote
by My, the multiplication operator (f, F) = (¢(L2)g.f, #(L1)g.F).
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For f € S, and g € S(RY), we use to write

o0 dr >
Mgf :/1 Mqﬁ(T?L)g\Ij(TDa)Qf? +/1 (M M¢(T2L)9) ( ) f_
1 ) 5, dT
+/Sd / M¢(7—2L)g§0u(D(1) \II(TDa) f —dv
-1 Jo

! dr
[0t = Mo DD F

Since the two low-frequency terms in the first line are similar but simpler than the two
high-frequency terms, we only consider the two latter in the following. Moreover, note
that we can choose ® and ¥ such that by integration by parts, the last integral is - up to
a low-frequency term - equal to

! dr
/ / My(r21)90(Da)?*®(7Dy) f —dv,
Ssd—1 Jq T

where U(o¢) =: ¥(a?[(|?) for o > 0, ( € R%
Lemma 10.4. Let p € (1,00). Let g € BEZE for k=1,2, and f € H}o.0(RY). Then

dr
||(w707') = ,lvbw,a( a /d / Mqﬁ(T?L)g(pu(D ) \II(TDa)QdeV”LP(Sd L7p2(R4))
gd—1

S maxlg|

Bk ||f||HF,O NEOE

Proof. We split the integral in 7 into two parts, corresponding to 7 € (0, min(o, 1)) and
7 € (min(o, 1),1). Consider first 7 € (0, min(c,1)). From Remark [8.2] we know that

[(w,0,.) = 02 %0 o(Da)F(0, )| o(si-rawe@ay S |F|lzvema).

On the other hand, Hardy’s inequality implies that

)= [(OERE T

is bounded on TP?(R?). Using Remark [8.2| twice, and the fact that

5Sps L
Boo,oo !

sup |77 ¢ (72 Ly,) gl oo ~ |9
>0

we thus get that

min(o,1) dr
|| (w, g, . ) — ww,U(Da) /d X / M¢(T2L)ng(Da)2\P(TDa)2f 7 dV”Lp(Sd—l;Tp,Q(Rd))
S 0

S [ ) o T E Mg (Da) U (rDa) fllzwaee dv
o
s il o I77% (T2 Li) gl L~ ) /d 1(7,) = 72 (Do) U (T Do) f || 2 ey dv
S —1

S max gl gep el 1l

FIOa (Rt

E
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For the integral over 7 € (min(c, 1), 1), we slightly rewrite the above argument. We again
obtain from Remark [8.2] and renormalisation of v, that for every M € N, M > 0,

(w0, ) = 0% o (Do) (0 L) M F (0, )| o(so-rirvz(ay S 1F oo ).
Choosing 2M > £, we obtain from Hardy’s inequality the boundedness of

1
O \onm—z2 dr
_ B) F ) —
) = / (=) () —
on TP%(R%). We therefore get

1 dr
10009 = aaDa) [ [ Moyl DPUEDLE T sy
S 1

min(o,1)
S; /d ) ” (T, ) — T2M77pLM[M(b(TQL)g(pV(DG)Q‘IJ(TDQ)zf] HTp,2(Rd) dv.
gd—

For j =1, ..,d, we now use the following version of the product rule:

(€j-Da) My(r21yg = My(r20)g(€5-Da) + M(e,.0,)6(r2L)g:
where M., p,yo(20)g : (f, F) = (a550a0;0(7° La)g - F,a;0;¢(7°L1)g - f).
Let k € {0,...,2M} be even, and j = 1, ...,d. Letting ¢y : x — x%b(x), and 0 € {0,1}, we
can estimate further by multiples of terms of the form

/d H( ) =T 2 M 9(ej.Dq)d¢r(T2L) (TD )QM_kQOV<Da)2\II(TDa)2fHTP!Q(Rd) dv
gd—1

_s k
< maxsup||(r, ) = 7 (0,) (1 L) 0 Lin)g e e
T>

[ ) o L D) (DD e

<
S ]gnaXHgl

358" Lk”fHHFIoa R4);

using [8, Theorem 4.19] in the last estimate to ensure that 70; exp(—72L,,) is L bounded,
uniformly in 7.

For k € {0,...,.2M — 1} even, and j = 1,...,d, we also obtain multiples of terms of the
form

/ M) e 772 Mys(e, payson(r2)g(TDa) ™ 7100 (Do) U (1D,)? f || w2y dv
S’ 1

< max sup ||(7,) = 7 (70,)° (12 L) 2 (72 L ) g o

m=1,2 750
Sp _ k42 _
W o T LM (1D (D)W D) e d
S 1

max gl

ot Ll e)-
U

For the second paraproduct, we make use of the following factorisation result for tent
spaces (see [14] for the definition of the tent spaces TP when p = oo or q # 2).
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Theorem 10.5 (|13, Theorem 1.1]). Let p,q € (1,00). If F € TP>(R?) and G €
T°9(RY), then FG € TP4(RY) and

1 Gllzraay < CIE 7000 @ay | Glloeaa,
with a constant C' > 0 which is independent of F' and G.

Lemma 10.6. Let p € (1,00). Let g € BEZX fork=1,2, and f € H}o.0(RY). Then

dr
I(w,0,-) = (D /g o / )9 @u(Da)*@(rDa) f —dv|oro2)
< max ||g|| o0 L £l e

FIO H.(R )

Proof. For the integral in 7 restricted to 7 € (0, min(o, 1)), we use the same arguments as
in the proof of Lemma [10.4] and obtain

min(o,1) dr
() = (D / L D9 (D2 Da)f vl orn

S [N o (D0 g (DB D) g
gd—
Applying Theorem the above is bounded by a constant times
||(7_7 ) s T_Sp\IIT(Da>2g||T°<%2(]Rd) /Sd—l H(Ta ) = T?p@V(Da)Qq)(TDa)f”TP’OO(Rd) dv

— 2 2
S max Sup 1(7, ) = 7770 (7" Ln ) gl oo || f || 2, )

< max llg] s LmeHHFIO L (RY)

where we use [16, Lemma 4.3, Theorem 3.1|, and Proposition [7.9)in the last line (together
with the fact that s, > ©1).

For the integral over 7 € (min(o, 1), 1), we again have to use the product rule. With the
same arguments as in the proof of Lemma [10.4] we end up with terms of the form

s E
max [|(7, ) = 77 (70;)° (7* Lin) 2 (7" Lin ) gl 7222

M) o L (D) DD ey

S max |ig|

7

B Lm ||f||HFIO L(R)s
for k € {0,...,2M} even (and similar terms for k odd, as in Lemma |10.4)). U
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