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Lp ESTIMATES FOR WAVE EQUATIONS WITH SPECIFIC C0,1

COEFFICIENTS

DOROTHEE FREY AND PIERRE PORTAL

Abstract. Peral/Miyachi’s celebrated theorem on fixed time Lp estimates with loss
of derivatives for the wave equation states that the operator (I − ∆)−

α
2 exp(i

√
−∆) is

bounded on Lp(Rd) if and only if α ≥ sp := (d − 1)
∣∣∣ 1p − 1

2

∣∣∣. We extend this result to

operators of the form L = −
d∑

j=1

aj∂jaj∂j , for functions x 7→ ai(xi) that are bounded

above and below, but merely Lipschitz continuous. This is below the C1,1 regularity that
is known to be necessary in general for Strichartz estimates in dimension d ≥ 2. Our
proof is based on an approach to the boundedness of Fourier integral operators recently
developed by Hassell, Rozendaal, and the second author. We construct a scale of adapted
Hardy spaces on which exp(i

√
L) is bounded by lifting Lp functions to the tent space

T p,2(Rd), using a wave packet transform adapted to the Lipschitz metric induced by the
coefficients aj . The result then follows from Sobolev embedding properties of these spaces.

Mathematics Subject Classification (2020): Primary 42B35. Secondary 35L05,
42B30, 42B37, 35S30.

1. Introduction

In 1980, Peral [21] and Miyachi [19] proved that the operator (I − ∆)−
α
2 exp(i

√
−∆) is

bounded on Lp(Rd) if and only if α ≥ sp := (d − 1)
∣∣∣1p − 1

2

∣∣∣. Their result was then ex-
tended to general Fourier integral operators (FIOs) in a celebrated theorem of Seeger,
Sogge, and Stein [23], leading, in particular, to Lp(Rd) well-posedness results for wave
equations with smooth variable coefficients on Rd or driven by the Laplace-Beltrami op-
erator on a compact manifold. To establish well-posedness of wave equations in more
complex geometric settings, many results have been obtained in the past 30 years, using
extensions of Peral/Miyachi’s fixed time estimates with loss of derivatives, Strichartz esti-
mates, and/or local smoothing properties. This includes Smith’s parametrix construction
[25] and Tataru’s Strichartz estimates [30] for wave equations on Rd with C1,1 coefficients,
and Müller-Seeger’s extension of Peral-Miyachi’s result to the sublaplacian on Heisenberg
type groups [20], as well as many other important results for specific operators, such as
Laplace-Beltrami operators on symmetric spaces.
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In this paper, we consider operators of the form L = −
d∑
j=1

aj∂jaj∂j, for functions x 7→

ai(xi) that are bounded above and below, and Lipschitz continuous. For these opera-
tors, we extend Peral/Miyachi’s result by proving that (I +L)−

α
2 exp(i

√
L) is bounded on

Lp(Rd) for α ≥ sp := (d−1)
∣∣∣1p − 1

2

∣∣∣. This gives, in particular, Lp(R) well-posedness of one

dimensional wave equations ∂2
t u = a d

dx
a d
dx
u with Lipschitz coefficients a (a natural general

result that appears to be new). Divergence form operators d
dx
a d
dx

can also be treated by
perturbation. More generally, when sp ≤ 2, we show well-posedness for data inW sp,p(Rd).
See Theorem 8.6 for a precise statement. While the algebraic structure of the coefficient
matrix is a serious limitation in dimension d > 1, the roughness of the coefficients is a
satisfying and somewhat surprising feature of our result. Indeed, Strichartz estimates for
wave equations are known to fail, in general, for coefficients rougher than C1,1, see [26,27].

Our proof is based on a new approach to Seeger-Sogge-Stein’s Lp boundedness theorem for
FIOs, initiated by Hassell, Rozendaal, and the second author in [15], building on earlier
work of Smith [24]. The approach consists in developing a scale of Hardy spaces Hp

FIO,
that are invariant under the action of FIOs. One then shows that this scale relates to the
Sobolev scale through the embedding W

sp
2
,p ⊂ Hp

FIO ⊂ W− sp
2
,p, for p ∈ (1,∞). This is

similar, in spirit, to the theory of Hardy spaces associated with operators, which has been
extensively developed over the past 15 years, starting with [5,10,14] (see also the memoir
[13]). In this theory, one first constructs a scale of spaces Hp

L by lifting functions from
Lp to one of the tent spaces introduced by Coifman, Meyer, and Stein in [8], using the
functional calculus of the operator L (rather than convolutions). One then shows that the
spaces are invariant under the action of the functional calculus of L. Finally, one relates
these spaces to more classical ones. For instance Hp

∆(Rd) = Lp(Rd) for all p ∈ (1,∞).
More generally, when one considers Hodge-Dirac operators ΠB, Hp

ΠB
= Lp precisely for

those p for which Hodge projections are Lp bounded (a result proven by McIntosh and
the authors in [11]).

In the present paper, we go one step further in connecting both theories, by developing
a scale of Hardy-Sobolev spaces Hp,s

FIO,a on which exp(i
√
L) is bounded, and proving ana-

logues of the embedding W
sp
2
,p(Rd) ⊂ Hp,0

FIO(Rd) ⊂ W− sp
2
,p(Rd) such as, for p ∈ (1, 2),

H
p,
sp
2

FIO,a ⊂ Lp and (I +
√
L)−

sp
2 ∈ B(Lp, Hp,0

FIO,a). This gives our Lp boundedness with
loss of derivatives result, and more. Indeed, one can apply the half wave group exp(i

√
L)

repeatedly on Hp,s
FIO,a, and only loose derivatives when one compares Hp,s

FIO,a to classical
Sobolev spaces. This allows for iterative arguments in constructing parametrices. One
can also perturb the half wave group using abstract operator theory on the Banach space
Hp,s
FIO,a.

The paper is structured as follows. In Section 3 we study the transport group generated
by the commuting tuple (a1∂1, ..., ad∂d) =: iDa. It is a representation of Rd on L2(Rd) and
a bounded group on Lp(Rd) for 1 < p < ∞. The Phillips functional calculus associated
with this group replaces convolutions/Fourier multipliers in the context of our Lipschitz
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metric. Using this calculus, we use the approach of [4] to construct an adapted scale of
Hardy-Sobolev spaces in Section 4. For all integrability parameters p ∈ (1,∞) and regu-
larity parameter s ∈ [0, 2], these spaces coincide with classical Sobolev spaces, thanks to
the regularity properties of the heat kernel of L arising from the Lipschitz continuity of
its coefficients. To go from these spaces to Hp,s

FIO,a, one needs to directionally refine the
Littlewood-Paley decomposition, as in the proof of Seeger-Sogge-Stein’s theorem. This is
done in [15] using a wave packet transform defined by Fourier multipliers. In Section 5 we
construct a similar wave packet transform, replacing Fourier multipliers by the Phillips
calculus of the transport group. This allows us to define Hp,s

FIO,a in Section 6, and to prove
its embedding properties in Section 7. Finally, in Section 8, we prove that the half wave
group (exp(it

√
L))t∈R is bounded on Hp,s

FIO,a for all 1 < p < ∞ and s ∈ R. To do so,
we first notice that the transport group is. We then realise that, in a given direction ω,
exp(i

√
Da.Da) is close to exp(−iω.Da), when acting on an appropriate wave packet, in the

sense that operators of the form
(

exp(i
√
Da.Da)− exp(−iω.Da)

)
ϕω(Da) are Lp bounded.

Our approach relies heavily on algebraic properties: the wave group commutes with the
wave packet localisation operators, and can be expressed in the Phillips functional calculus
of a commutative group. Although our coefficients are merely Lipschitz continuous, these
algebraic properties match those of the standard Euclidean wave group. In the same way
as Peral-Miyachi’s result for that group is a starting point for the well-posedness theory
of wave equations with coefficients that are smooth enough perturbations of constant
coefficients, we expect the results proven here to provide a basis for the development
of a well-posedness theory of wave equations with coefficients that are smooth enough
perturbations of structured Lipschitz continuous coefficients.

2. Preliminaries

We first recall (a special case of) the following Banach space valued Marcinkiewicz-Lizorkin
Fourier multiplier’s theorem (see [29, Theorem 4.5]).

Theorem 2.1. (Fernandez/ Štrkalj-Weis) Let p ∈ (1,∞). Let m ∈ C1(Rd\{0}) be such
that, for all α ∈ Nd

0 with |α|∞ ≤ 1 there exists a constant C = C(α) > 0 such that

|ζα∂αζm(ζ)| ≤ C ∀ζ ∈ Rd \ {0}.

Let Tm denote the Fourier multiplier with symbol m. Then Tm ⊗ ILp(Rd) extends to a
bounded operator on Lp(Rd;Lp(Rd)).

This theorem will be combined with the following version of the Coifman-Weiss transfer-
ence principle (see [17, Theorem 10.7.5]). Note that the extension of this theorem from a
one parameter group to a d parameter group generated by a tuple of commuting operators
is straightforward.

Theorem 2.2. (Coifman-Weiss) Let p ∈ (1,∞). Let iD1, ..., iDd generate bounded com-
muting groups (exp(itDj))t∈R on Lp(Rd), and consider the d parameter group defined by
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exp(iξD) =
d∏
j=1

exp(iξjDj) for ξ ∈ Rd. Then, for all ψ ∈ S(Rd), we have that

‖
ˆ

Rd

ψ̂(ξ) exp(iξD)fdξ‖Lp(Rd) . ‖Tψ ⊗ ILp(Rd)‖B(Lp(Rd;Lp(Rd)))‖f‖Lp(Rd) ∀f ∈ Lp(Rd).

To define our Hardy-Sobolev spaces, we use the tent spaces introduced by Coifman, Meyer,
and Stein in [8], and used extensively in the theory of Hardy spaces associated with
operators (see e.g. the memoir [13] and the references therein). These tent spaces T p,2(Rd)
are defined as follows. For F : Rd × (0,∞)→ C measurable and x ∈ Rd, set

AF (x) :=

(ˆ ∞
0

−
ˆ
B(x,σ)

|F (y, σ)|2 dydσ
σ

)1/2

∈ [0,∞].

Definition 2.3. Let p ∈ [1,∞). The tent space T p,2(Rd) is defined as the space of all
F ∈ L2

loc(Rd × (0,∞), dxdσ
σ

) such that AF ∈ Lp(Rd), endowed with the norm

‖F‖T p,2(Rd) := ‖AF‖Lp(Rd).

Recall that the tent space T 1,2 admits an atomic decomposition (see [8]) in terms of atoms
A supported in sets of the form B(cB, r)× [0, r], and satisfying

rd
rˆ

0

ˆ

Rd

|A(y, σ)|2dydσ
σ
≤ 1.

Recall also that the classical Hardy space H1(Rd) norm can be obtained as

‖f‖H1(Rd) := ‖(t, x) 7→ ψ(t2∆)f(x)‖T 1,2(Rd),

where ψ(t2∆) denotes the Fourier multiplier with symbol ξ 7→ t2|ξ|2 exp(−t2|ξ|2). This is
the starting point of the theory of Hardy spaces associated with operators (or equations):
one replaces the Fourier multiplier by an appropriately adapted operator. To do so, one
often uses the holomorphic functional calculus of a (bi)sectorial operator. The relevant
theory is presented in [17]. We use it here with the following notation.

Definition 2.4. Let 0 < θ < π
2
. Define the open sector in the complex plane by

Soθ+ := {z ∈ C \ {0} : | arg(z)| < θ},

as well as the bisector Soθ = Soθ+∪Soθ−, where Soθ− = −Soθ+. We denote by H(Soθ) the space
of holomorphic functions on Soθ , and set

H∞(Soθ) := {g ∈ H(Soθ) : ‖g‖L∞(Soθ ) <∞},
Ψβ
α(S0

θ ) := {ψ ∈ H∞(Soθ) : ∃C > 0 : |ψ(z)| ≤ C|z|α(1 + |z|α+β)−1 ∀z ∈ Soθ}

for every α, β > 0. We say that ψ ∈ H∞(Soθ) is non-degenerate if neither of its restrictions
to Soθ+ or Soθ− vanishes identically.
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For bisectorial operators D such that iD generates a bounded group on Lp, we also use
the Phillips calculus defined by

ψ(D)f :=
1

2π

ˆ

R

ψ̂(ξ) exp(iξD)fdξ,

for f ∈ Lp and ψ ∈ S(R). See [4,18] for more information on how these two functional
calculi interact in the theory of Hardy spaces associated with operators. The results in
Section 4 are fundamentally inspired by these papers.

3. The transport group

For j ∈ {1, . . . , d}, let aj ∈ C0,1(R) with d
dx
aj ∈ L∞, and assume that there exist 0 < λ ≤ Λ

such that λ ≤ aj(x) ≤ Λ for all x ∈ R. We denote by ãj ∈ C0,1(Rd) the map defined by
ãj : x 7→ aj(xj). For x ∈ Rd, and j ∈ {1, . . . , d}, the ordinary differential equation{

χ̇j(t) = aj(χj(t)) ∀t ∈ R,
χj(0) = xj,

has a unique solution implicitly given by the equation:

(3.1) t =

χj(t)ˆ

χj(0)

1

aj(y)
dy ∀t ∈ R.

We define the corresponding flow by χ : (x, t1, ..., td) 7→ (χ1(t1), ..., χd(td)), and the asso-
ciated transport group by

(3.2) [T (t1, ..., td)f ](x) := f(χ(x, t1, ..., td)) ∀x, (t1, ..., td) ∈ Rd.

Theorem 3.1. Let p ∈ [1,∞). (T (t))t∈Rd is a bounded C0-group on Lp(Rd), and a bounded
group on L∞(Rd). It has a finite speed of propagation κ > 0 in the following sense: for
all compactly supported f ∈ Lp(Rd) and all (t1, ..., td) ∈ Rd, we have that

supp(T (t1, ..., td)f) ⊂ {y ∈ Rd ; dist(y, supp(f)) ≤ κ|(t1, ..., td)|}.
Moreover, for all f ∈ Lp(Rd)

T (t1, ..., td)f = exp(
d∑
j=1

tj ãj∂j)f ∀(t1, ..., td) ∈ Rd,

where ãj∂j is given with domain W 1,p(Rd).

Proof. Let j = 1, ..., d. The implicit equation (3.1) gives that

∂xjχ(x, t) =
aj(χ(x, t).ej)

aj(xj)
.ej ∀x, t ∈ Rd.

Therefore x 7→ ∂xjχ(x, t).ek = 0 for j 6= k, and x 7→ ∂xjχ(x, t).ej is bounded above and
below, uniformly in t, and χ is a thus a bi-Lipschitz flow. This implies that (T (t))t∈R is a
bounded group on Lp(Rd) for all p ∈ [1,∞], with finite speed of propagation. Strong con-
tinuity ‖T (t)f − f‖p →

t→0
0 for p <∞ follows by dominated convergence for f continuous,
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and then density for general f . To identify the generator, let f ∈ W 1,p, and note that, for
all x ∈ Rd,

∂

∂tj
T (t)f(x)|tj=0 =

∂

∂tj
f(χ(x, t))|tj=0 = ∇f(x) · ∂tjχ(x, t)|tj=0

= aj(xj)∂xjf(x).

The result then follows from the fact that the operators {ãj∂j ; j = 1, ..., d} commute. �

For E,F ⊂ Rd Borel sets and ω ∈ Sd−1, we set ω.d(E,F ) := infx∈E,y∈F |〈ω, x− y〉|.

Remark 3.2. The specific form of the flow χ : (x, t1, ..., td) 7→ (χ1(t1), ..., χd(td)) with
∂tjχ(x, t).ek = 0 for j 6= k implies the stronger form of finite speed of propagation: There
exists κ > 0 such that for all f ∈ L2(Rd), all Borel sets E,F ⊂ Rd, all ξ ∈ Rd and all
ω ∈ Sd−1 we have

1E exp(iξDa)(1Ff) = 0,

whenever κ|〈ω, ξ〉| < ω.d(E,F ). See also [18, Remark 3.6], where such a stronger state-
ment is proven in more generality.

We set Dj = −i∂j, D = (D1, . . . , Dd), and denote by iDa = i(ã1D1, ..., ãdDd) the d-tuple
of commuting unbounded operators with domain W 1,p that generates the d-parameter C0

group (T (t))t∈Rd on Lp(Rd) for p ∈ [1,∞). For p = 2, the following lemma shows that this
transport group is similar to the standard translation group.

Lemma 3.3. There exists S ∈ B(L2(Rd)) such that

exp(iξDa) = S−1 exp(iξD)S ∀ξ ∈ Rd.

Proof. Define b ∈ L∞(Rd) by b(x1, ..., xd) :=
∏d

j=1 aj(xj)
−1. Let H be the Hilbert space

L2(Rd) endowed with the inner product defined by

〈u, v〉a := 〈bu, v〉 ∀u, v ∈ L2(Rd),

and T be the identity map from L2(Rd) to H. Let j ∈ {1, ..., d}. Note that Pj :=

Tej.DaT
−1 is self-adjoint in H, since ∂kãj = 0 for all j 6= k. Define Qj : u 7→ b̃ju for

bj ∈ C1,1(R) such that b′j(x) = 1
aj(x)

∀x ∈ R, and b̃j : x 7→ bj(xj). Then Qj is also
self-adjoint in H, and (exp(isQj))s∈R is a bounded multiplication group Moreover, since
bj(χj(t)) = bj(χj(0)) + t for all t ∈ R by (3.1), we have the commutation relation

exp(isQk) exp(itPj) = exp(−istδjk) exp(itPj) exp(isQk)

for all s, t ∈ R. Therefore, by the Stone-von Neumann theorem, there exists a unitary
map U ∈ B(H,L2(Rd)) such that, for all j = 1, ..., d:

exp(iξPj) = U−1 exp(iξ∂j)U ∀ξ ∈ R.
The result follows by taking S = UT . �

Remark 3.4. Lemma 3.3 shows that the transport group {exp(iξDa) ; ξ ∈ Rd} is, al-
gebraically, a representation of Rd. This is a fundamental consequence of the specific
structure of the coefficients of Da. Such a representation is rough in the sense that it
is generated by non-smooth differential operators. In future work, we plan to extend the
methods developed in this paper in two directions: replacing Rd by other Lie groups (for
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which an appropriate Fourier multiplier theory exists), and allowing the transport group
to be a sufficiently smooth perturbation of a rough representation.

4. Hardy spaces associated with the transport group

Lemma 4.1. There exists C > 0 such that, for all Ψ ∈ S(Rd), all E,F ⊂ Rd Borel sets
and all ω ∈ Sd−1, we have that

‖1EΨ(Da)(1Ff)‖2 ≤ C‖1Ff‖2

ˆ

{|ξ|≥ d(E,F )
κ
}∩{|〈ω,ξ〉|≥ω.d(E,F )

κ
}

|Ψ̂(ξ)|dξ ∀f ∈ L2(Rd).

Consequently, for every Ψ ∈ S(Rd) and every M ∈ N, there exists CM > 0 such that

‖1EΨ(σDa)(1Ff)‖2 ≤ CM(1 +
d(E,F )

κσ
)−M‖1Ff‖2 ∀f ∈ L2(Rd)

for all Borel sets E,F ⊂ Rd and all σ > 0.

Proof. Let f ∈ L2(Rd) and ξ ∈ Rd. Since the group (exp(itDa))t∈Rd has finite speed of
propagation κ according to Theorem 3.1 and Remark 3.2, we have that

1E exp(iξDa)(1Ff) = 0,

whenever κ|ξ| < d(E,F ) or κ|〈ω, ξ〉| < ω.d(E,F ). Therefore, using Phillips functional
calculus, we have that

‖1EΨ(Da)(1Ff)‖2 ≤
1

(2π)d

ˆ

Rd

|Ψ̂(ξ)|‖1E exp(iξDa)(1Ff)‖2dξ

≤ C‖1Ff‖2

ˆ

{|ξ|≥ d(E,F )
κ
}∩{|〈ω,ξ〉|≥ω.d(E,F )

κ
}

|Ψ̂(ξ)|dξ,

where C := 1
(2π)d

sup{‖ exp(itDa)‖B(L2) ; t ∈ Rd}. The last statement then follows from a
change of variables and Ψ ∈ S(Rd). �

We recall the following fact, which is a corollary of the results in [6], using that the
coefficients aj are Lipschitz continuous.

Theorem 4.2. (Auscher, McIntosh, Tchamitchian) Let p ∈ (1,∞). On Lp(Rd), the

operator −L =
d∑
j=1

ãj∂j ãj∂j, with domain W 2,p(Rd), generates an analytic semigroup, and

has a bounded H∞ calculus of angle 0. Moreover, {exp(−tL) ; t > 0} satisfies Gaussian
estimates.

Corollary 4.3. Let p ∈ (1,∞), θ > 0, g ∈ H∞(Soθ+), and let Ψ ∈ C∞c (Rd) be supported
away from 0. Then there exists a constant C > 0 independent of g such that, for all
F ∈ T p,2(Rd),

‖(σ, x) 7→ Ψ(σDa)g(L)F (σ, .)(x)‖T p,2(Rd) ≤ C‖g‖L∞(Soθ+)‖(σ, x) 7→ F (σ, .)(x)‖T p,2(Rd).
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Proof. For M ∈ N, set qM(z) := zM(1 + z)−2M , z ∈ Soθ+. Note that then qM ∈ ΨM
M(Soθ+).

The statement for Ψ(σDa) replaced by qM(
√
σL) for M large enough then follows from

a combination of [16, Theorem 5.2] and [16, Lemma 7.3], using Lemma 4.1 and Theorem
4.2 to check the assumptions.
On the other hand, we have by assumption ζ 7→ Ψ(ζ)q−1

M (|ζ|2) ∈ S(Rd), so that an
application of [16, Theorem 5.2] together with Lemma 4.1 yields the assertion. �

Lemma 4.4. Let α ∈ R, and non-degenerate Ψ, Ψ̃ ∈ C∞c (Rd) be supported away from 0.
Let p ∈ [1,∞). Then

‖(σ, x) 7→ σαΨ(σDa)f(x)‖T p,2(Rd) ∼ ‖(σ, x) 7→ σαΨ̃(σDa)f(x)‖T p,2(Rd),

for all f such that the above quantities are finite. Moreover, for L = −
d∑
j=1

ãj∂j ãj∂j, we

have that

‖(σ, x) 7→ Ψ(σDa)f(x)‖T p,2(Rd) ∼ ‖(σ, x) 7→ σ2L exp(−σ2L)f(x)‖T p,2(Rd).

Proof. Since

‖(σ, x) 7→ σαΨ(σDa)f(x)‖T p,2(Rd) ∼ ‖(σ, x) 7→
∞̂

0

σαΨ(σDa)(Ψ̃)2(τDa)f(x)
dτ

τ
‖T p,2(Rd),

by [16, Corollary 5.1], it suffices to show that, for all σ, τ > 0, (σ
τ
)αΨ(σDa)Ψ̃(τDa) =

min(σ
τ
, τ
σ
)NSσ,τ for some N > d

2
and a family of operators Sσ,τ ∈ B(L2) such that for

every M ∈ N, there exists CM > 0 such that

‖1ESσ,τ (1Ff)‖2 ≤ CM(1 +
d(E,F )

κmax(σ, τ)
)−M‖1Ff‖2 ∀f ∈ L2(Rd)

for all Borel sets E,F ⊂ Rd and all σ > 0. This follows from Lemma 4.1 using that, for
all ξ ∈ Rd\{0},

(
σ

τ
)αΨ(σξ)Ψ̃(τξ) = (

σ

τ
)N
′−αΨ(σξ)Ψ̃(τξ) = (

τ

σ
)N
′+αΨ(σξ)Ψ̃(τξ),

for Ψ : ξ 7→ Ψ(ξ)
ξβ

and Ψ : ξ 7→ ξβΨ(ξ) with β ∈ Nd, |β|1 = N ′, for N ′ > |α|+N . For the sec-
ond statement, we first show the comparison of Ψ(σDa) with (σ2L)M exp(−σ2L) for some
M ∈ N,M > d

4
in the exact same way as above. For the comparison of (σ2L)M exp(−σ2L)

with σ2L exp(−σ2L), we use [11, Proposition 10.1] instead of [16, Corollary 5.1], together
with the Gaussian estimates for exp(−tL) as stated in Theorem 4.2. �

Theorem 4.5. Let s ∈ R, let p ∈ (1,∞). For all non-degenerate Ψ ∈ C∞c (Rd) supported
away from 0, and all M ∈ N, we have that

(4.1) ‖(σ, x) 7→ 1[0,1)(σ)σ−sΨ(σDa)f(x)+1[1,∞)(σ)Ψ(σDa)f(x)‖T p,2(Rd) ∼ ‖(I+
√
L)sf‖p,

for all f ∈ D((I +
√
L)s). Moreover, for s ∈ [0, 2], we have that

(4.2) ‖(σ, x) 7→ 1[0,1)(σ)σ−sΨ(σDa)f(x) + 1[1,∞)(σ)Ψ(σDa)f(x)‖T p,2(Rd) ∼ ‖f‖W s,p

for all f ∈ W s,p(Rd).
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Proof. We use the Hardy space Hp
L associated with L, as defined in [9]. For all f ∈ Lp∩L2,

we have, by Lemma 4.4,

‖(σ, x) 7→ Ψ(σDa)f(x)‖T p,2(Rd) ∼ ‖f‖Hp
L
.

It is a folklore fact that Hp
L = Lp for p ∈ (1,∞), thanks to the heat kernel bounds of

(etL)t≥0. This result appeared in draft form in an unpublished manuscript of Auscher,
Duong, McIntosh, and inspired the proofs of many similar results. For our particular L,
an appropriate version of the result does not seem to have appeared in the literature.
It can however be proven as follows. By [6, Theorem 4.19], the operators tL exp(−tL)
have standard kernels satisfying the assumptions of [12, Theorem 4.4]. Therefore, for all
f ∈ Lp ∩ L2, f ∈ Hp

L and
‖f‖Hp

L
. ‖f‖p.

The reverse inequality is proven in [9, Proposition 4.2] for p ≤ 2. Given that the above
reasoning also applies to L∗, we obtain the full result by duality. Combined with Lemma
4.4, this gives the result for s = 0. For s ∈ N, using Lemma 4.4 with an appropriate
Ψ̃ ∈ C∞c (Rd), we then have that

‖(σ, x) 7→ 1[0,1)(σ)σ−sΨ(σDa)f(x)‖T p,2(Rd) . ‖(σ, x) 7→ 1[0,1)(σ)Ψ̃(σDa)L
s
2f(x)‖T p,2(Rd)

. ‖L
s
2f‖p . ‖(I +

√
L)sf‖p.

We also have that

‖(σ, x) 7→ 1[1,∞)(σ)Ψ(σDa)f(x)‖T p,2(Rd) . ‖f‖p . ‖(I +
√
L)sf‖p.

For −s ∈ N, we have that

‖(σ, x) 7→ 1[0,1)(σ)σ−sΨ(σDa)f(x)‖T p,2(Rd)

.
|s|∑
k=0

‖(σ, x) 7→ 1[0,1)(σ)σ|s|L
k
2 Ψ(σDa)(I +

√
L)−|s|f(x)‖T p,2(Rd)

.
|s|∑
k=0

‖(σ, x) 7→ 1[0,1)(σ)Ψ̃(σDa)(I +
√
L)−|s|f(x)‖T p,2(Rd) . ‖(I +

√
L)sf‖p,

as well as

‖(σ, x) 7→ 1[1,∞)(σ)Ψ(σDa)f(x)‖T p,2(Rd)

.
|s|∑
k=0

‖(σ, x) 7→ 1[1,∞)(σ)σkL
k
2 Ψ(σDa)(I +

√
L)−|s|f(x)‖T p,2(Rd)

.
|s|∑
k=0

‖(σ, x) 7→ 1[0,1)(σ)Ψ̃(σDa)(I +
√
L)−|s|f(x)‖T p,2(Rd) . ‖(I +

√
L)sf‖p.

Reverse inequalities are proven similarly, using that, for all s ∈ R,

‖(I +
√
L)sf‖p ∼ ‖(σ, x) 7→ (I +

√
L)sΨ(σDa)f(x)‖T p,2(Rd).
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This gives (4.1) for all s ∈ Z, and the result for all s ∈ R then follows by complex
interpolation of weighted tent spaces as in [1, Theorem 2.1].
To obtain (4.2) one first remarks that, for s ∈ {0, 1, 2}, the above reasoning also gives

‖(σ, x) 7→ 1[0,1)(σ)σ−sΨ(σDa)f(x) + 1[1,∞)(σ)Ψ(σDa)f(x)‖T p,2(Rd) ∼
s∑

m=0

d∑
j=1

‖(ãj∂j)mf‖p,

for all f ∈
s⋂

m=0

d⋂
j=1

D
(
(ãj∂j)

m
)
. We then notice that, for all j = 1, ..., d, we have that

‖∂jf‖p ∼ ‖ãj∂jf‖p for all f ∈ W 1,p. Moreover,

(ãj∂j)
2f = ãj

2∂2
j f + ãj(∂j ãj)∂jf ∀f ∈ W 2,p,

and thus

‖f‖W 2,p ∼ ‖f‖p +
d∑
j=1

‖ãj∂jf‖p +
d∑
j=1

‖(ãj∂j)2f‖p ∀f ∈ W 2,p.

�

Corollary 4.6. Let α ≥ 0, p ∈ (1,∞), and q ∈ [p,∞) be such that

α =
d

2
(
1

p
− 1

q
).

Then there exists C > 0 such that, for all f ∈ Lp(Rd) with Lαf ∈ Lp(Rd), we have that

‖f‖Lq(Rd) ≤ C‖Lαf‖Lp(Rd).

Proof. For f ∈ Lp(Rd) with Lαf ∈ Lp(Rd), Theorem 4.5 gives that

‖f‖Lq(Rd) . ‖(σ, x) 7→ L−αΨ(σDa)L
αf(x)‖T q,2(Rd)

. ‖(σ, x) 7→ σ2αΨ̃(σDa)L
αf(x)‖T q,2(Rd)

for Ψ̃ : ξ 7→ |ξ|−αΨ(ξ). Using the embedding properties of weighted tent spaces proven in
[1, Theorem 2.19], we have that

‖(σ, x) 7→ σ2αΨ̃(σDa)L
αf‖T q,2(Rd) . ‖(σ, x) 7→ Ψ̃(σDa)L

αf‖T p,2(Rd),

and thus
‖f‖Lq(Rd) . ‖Lαf‖Lp(Rd),

by Theorem 4.5.
�

5. Wave packet transform

We use a wave packet transform which is similar to the ones used in [15,22].

Let Ψ ∈ C∞c (Rd) be a non-negative radial function with Ψ(ζ) = 0 for |ζ| /∈ [1
2
, 2], and

(5.1)
ˆ ∞

0

Ψ(σζ)2 dσ

σ
= 1
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for ζ 6= 0. Let ϕ ∈ C∞c (Rd) be a radial, non-negative function with ϕ(ζ) = 1 for |ζ| ≤ 1
2

and ϕ(ζ) = 0 for |ζ| > 1. These functions Ψ, ϕ are now fixed for the remainder of the
paper.
For ω ∈ Sd−1, σ > 0 and ζ ∈ Rd \ {0}, set ϕω,σ(ζ) := cσϕ

(
ζ̂−ω√
σ

)
, where cσ :=(ˆ

Sd−1

ϕ

(
e1 − ν√

σ

)2

dν

)−1/2

. Set ϕω,σ(0) := 0. Set furthermore Ψσ(ζ) := Ψ(σζ) and

ψω,σ(ζ) := Ψσ(ζ)ϕω,σ(ζ) for ω ∈ Sd−1, σ > 0 and ζ ∈ Rd. By construction, we then haveˆ ∞
0

ˆ
Sd−1

ψω,σ(ζ)2 dω
dσ

σ
= 1(5.2)

for all ζ ∈ Rd \ {0}, see [15, Lemma 4.1]. For ω ∈ Sd−1 and ζ ∈ Rd, we moreover set

ϕω(ζ) :=

ˆ 4

0

ψω,τ (ζ)
dτ

τ
.

For the convenience of the reader, we recall the following properties of ψω,σ stated in
[22, Lemma 3.2].

Lemma 5.1. Let ω ∈ Sd−1 and σ ∈ (0, 1). Each ζ ∈ supp(ψω,σ) satisfies

(5.3)
1

2σ
≤ |ζ| ≤ 2

σ
, |ζ̂ − ω| ≤ 2

√
σ.

For all α ∈ Nd
0 and β ∈ N0 there exists a constant C = C(α, β) > 0 such that

(5.4) |〈ω,∇ζ〉β∂αζ ψω,σ(ζ)| ≤ Cσ−
d−1
4

+
|α|1
2

+β

for all (ζ, ω, σ) ∈ Rd × Sd−1 × (0,∞). For every N ≥ 0 there exists a constant CN > 0
such that

(5.5) |F−1(ψω,σ)(x)| ≤ CNσ
− 3d+1

4 (1 + σ−1|x|2 + σ−2〈ω, x〉2)−N

for all (x, ω, σ) ∈ Rd × Sd−1 × (0,∞).
In particular, {σ d−1

4 F−1(ψω,σ) |ω ∈ Sd−1, σ > 0} ⊆ L1(Rd) is uniformly bounded.

We also recall important properties of the family (ϕω)ω∈Sd−1 from [22, Remark 3.3].

Lemma 5.2. Let ω ∈ Sd−1. By construction, ϕω ∈ C∞(Rd), and for ζ 6= 0, ϕω(ζ) = 0

for |ζ| < 1
8
or |ζ̂ − ω| > 2|ζ|−1/2. Moreover, for all α ∈ Nd

0 and β ∈ N0, there exists a
constant C = C(α, β) > 0 such that

|〈ω,∇ζ〉β∂αζ ϕω(ζ)| ≤ C|ζ|
d−1
4
− |α|1

2
−β

for all ω ∈ Sd−1 and ζ 6= 0, and

(5.6) |〈ζ̂ ,∇ζ〉β∂αζ
(ˆ

Sd−1

ϕν(ζ)2 dν

)
| ≤ C|ζ|−

|α|1
2
−β

for all ζ ∈ Rd \ {0}.
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Remark 5.3. For ω = e1 and ζ, σ chosen as in (5.3) with σ ∈ (0, 2−8), we have
1

4σ
< ζ1 ≤

2

σ
, |ζj| ≤

4√
σ
, j ∈ {2, . . . , d}.(5.7)

This follows from

|ζ̂ − e1|2 = |e1.(ζ̂ − e1)|2 +
d∑
j=2

|ej.(ζ̂ − e1)|2 = | ζ1

|ζ|
− 1|2 +

d∑
j=2

| ζj
|ζ|
|2,

thus

|ζ1 − |ζ||2 +
d∑
j=2

|ζj|2 ≤ 4σ|ζ|2 ≤ 16

σ
,

which directly yields (5.7) for j ≥ 2. The case j = 1 then follows from

ζ1 > |ζ| −
4√
σ
≥ 1

2σ
− 4√

σ
.

Lemma 5.4. For all σ ∈ (0, 1), we have thatˆ

Sd−1

‖ϕω,σ(Da)f‖2
2 dω . ‖f‖2

2 ∀f ∈ L2(Rd).

Moreover, ˆ

Sd−1

∞̂

0

‖ψω,σ(Da)f‖2
2

dσ

σ
dω . ‖f‖2

2 ∀f ∈ L2(Rd).

Proof. By Lemma 3.3 and Plancherel’s theorem, there exists S ∈ B(L2(Rd)) such thatˆ

Sd−1

‖ϕω,σ(Da)f‖2
2 dω .

ˆ

Sd−1

ˆ

Rd

|ϕω,σ(ξ)Ŝ(f)(ξ)|22 dξdω .
ˆ

Sd−1

ˆ

Rd

|ϕω,σ(ξ)Ŝ(f)(ξ)|22 dξdω,

for all f ∈ L2(Rd) and σ ∈ (0, 1). Since
´

Sd−1

|ϕω,σ(ξ)|2dω = 1 for all ξ 6= 0, we have that

ˆ

Sd−1

‖ϕω,σ(Da)f‖2
2 dω . ‖S(f)‖2

2 . ‖f‖2
2.

The same proof, combined with (5.2), gives the second inequality. �

Definition 5.5. We define a wave packet transform adapted to Da,
Wa ∈ B(L2(Rd), L2(Rd × Sd−1 × (0,∞); dxdω dσ

σ
)) by

Waf(ω, σ, x) := 1(1,∞)(σ)|Sd−1|−1/2Ψ(σDa)f(x)+1[0,1](σ)ϕω(Da)Ψ(σDa)f(x) ∀f ∈ L2(Rd).

We define πa ∈ B(L2(Rd × Sd−1 × (0,∞); dxdω dσ
σ

), L2(Rd)) by

πaF (x) :=|Sd−1|−1/2

ˆ
Sd−1

ˆ ∞
1

Ψ(σDa)F (ω, σ, . )(x)
dσ

σ
dω

+

ˆ
Sd−1

ˆ 1

0

ϕω(Da)Ψ(σDa)F (ω, σ, . )(x)
dσ

σ
dω
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for all F ∈ L2(Rd × Sd−1 × (0,∞); dxdω dσ
σ

).

Note that πa is the adjoint of the operator W̄a, where W̄a is defined asWa with Da replaced
by D∗a.

The following reproducing formulas follow from their analogues in [15,22] using Lemma
3.3.

Lemma 5.6. For all σ ∈ (0, 1), and all f ∈ L2(Rd), we have that

(5.8) πaWaf = f,

(5.9) σ−
d−1
4

ˆ

Sd−1

ϕω,σ(Da)f dω = Cσf,

with constant Cσ such that σ 7→ Cσ is bounded above and below.

Proof. This follows from Lemma 3.3, and the identities (5.2) and [15, Formula (7.4)]. �

Definition 5.7. Given ω ∈ Sd−1, we fix vectors ω1, ..., ωd−1 such that {ω, ω1, ..., ωd−1} is
an orthonormal basis of Rd. We then define the parabolic (quasi) distance in the direction
of ω by

dω(x, y) := 〈ω, x− y〉+
d−1∑
j=1

〈ωj, x− y〉2 ∀x, y ∈ Rd.

We also define (anistropic) operators associated with this parabolic distance by

∆ω⊥ :=
d−1∑
j=1

〈ωj,∇〉2, Lω⊥ := −
d−1∑
j=1

〈ωj, Da〉2.

Lemma 5.8. (i) Let N ∈ N, N > d+1
2
. There exists C > 0 such that for all σ ∈ (0, 1)

and ω ∈ Sd−1, we have

‖(1 + σLω⊥ + σ2〈ω,Da〉2)−Nf‖L∞(Rd) ≤ Cσ−
d+1
2 ‖f‖L1(Rd)

for all f ∈ L1(Rd).
(ii) For every M ∈ N, there exists CM > 0 such that for all E,F ⊂ Rd Borel sets,
σ ∈ (0, 1) and ω ∈ Sd−1, we have

‖1Eψω,σ(Da)(1Ff)‖L∞(Rd) ≤ CMσ
− 3d+1

4 (1 +
dω(E,F )

σ
)−M‖1Ff‖L1(Rd)

for all f ∈ L1(Rd).
(iii) Let p ∈ [1,∞]. There exists C > 0 such that for all σ ∈ (0, 1) and ω ∈ Sd−1, we have

‖ψω,σ(Da)f‖Lp(Rd) ≤ Cσ−
d−1
4 ‖f‖Lp(Rd)

for all f ∈ Lp(Rd).
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Proof. Part (i) follows from [6, Proposition 4.3], tracking the scaling factor σ in its proof.
(ii) Let ω ∈ Sd−1. For given Borel sets E,F ⊆ Rd with d(E,F ) > 0, let χω ∈ C∞(Rd)
be a function with values in [0, 1], χω(ζ) = 0 for |ζ| ≤ 1

2
κ−1dω(E,F ) and χω(ζ) = 1 for

|ζ| ≥ κ−1dω(E,F ), and ‖〈ω,∇〉χω‖∞ + ‖∆ω⊥χω‖∞ . 1
dω(E,F )

. Lemma 4.1 implies

cd1Eψω,σ(Da)1Ff = 1E

ˆ
Rd
χ(ζ)F−1(ψω,σ)(ζ)eiζDa1Ff dζ.

Now note that (1 − σ∆ω⊥ − σ2〈ω,∇ζ〉2)eiζDa = (1 + σLω⊥ + σ2〈ω,Da〉2)eiζDa , thus for
N ∈ N,

eiζDa = (1 + σLω⊥ + σ2〈ω,Da〉2)−N(1− σ∆ω⊥ − σ2〈ω,∇ζ〉2)NeiζDa .

From integration by parts we then get for j ∈ {0, 1}

cd1Eψω,σ(Da)1Ff = (1 + σLω⊥ + σ2〈ω,Da〉2)−N

◦
ˆ
Rd

((1− σ∆ω⊥ − σ2〈ω,∇ζ〉2)N)∗(χj · F−1(ψω,σ))(ζ)eiζDa(1Ff) dζ.(5.10)

Consider first the case dω(E,F ) ≤ σ, for which we take j = 0. According to Lemma 5.1,
we have ‖F−1(ψω,σ)‖L1(Rd) . σ−

d−1
4 . Similarly, one can check that

‖ζ 7→ (σ〈ω,∇ζ〉)β(σ∆ω⊥)αF−1(ψω,σ)(ζ)‖L1(Rd) . σ−
d−1
4

for all α ∈ Nd
0 and β ∈ N0. We use this estimate together with Theorem 3.1 and Part (i)

to obtain for N > d+1
2

‖ψω,σ(Da)f‖L∞(Rd) . σ−
d−1
4 ‖(1 + σLω⊥ + σ2〈ω,Da〉2)−N‖1→∞‖f‖L1(Rd) . σ−

3d+1
4 ‖f‖L1(Rd).

In the case dω(E,F ) > σ, we choose j = 1 in (5.10). Then note that according to the choice
of χω, we have for σ ∈ (0, 1) that ‖ζ 7→ (σ〈ω,∇ζ〉)β(σ∆ω⊥)αχ(ζ)‖∞ . ( σ

dω(E,F )
)|α|+β . 1,

for all α ∈ Nd
0, β ∈ N0. Using the product rule, a version of (5.5) for derivatives of

F−1(ψω,σ), Part (i), and an anisotropic change of variable, we obtain

‖1Eψω,σ(Da)(1Ff)‖∞

. σ−
d+1
2 ‖1Ff‖1 sup

α∈Nd0, β∈N0

|α|+2β≤N

ˆ
{|ξ|≥ d(E,F )

κ
}∩{|〈ω,ξ〉|≥ω.d(E,F )

κ
}
|(σ〈ω,∇ζ〉)β(

√
σ∂ζ)

αF−1(ψω,σ)(ζ)| dζ

. σ−
d+1
2 σ−

3d+1
4 ‖1Ff‖1

ˆ
{|ξ|≥ d(E,F )

κ
}∩{|〈ω,ξ〉|≥ω.d(E,F )

κ
}
(1 + σ−1|ζ|2 + σ−2〈ω, ζ〉2)−Ñ dζ

. σ−
3d+1

4 (1 +
dω(E,F )

σ
)−(2Ñ−d)‖1Ff‖1.

Choosing Ñ large enough in (5.5) yields the result.
(iii) According to Theorem 3.1 and Lemma 5.1, we have

‖ψω,σ(Da)f‖p . ‖f‖p
ˆ
Rd
|F−1(ψω,σ)(ζ)| dζ . σ−

d−1
4 ‖f‖p.

�
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6. The Hardy-Sobolev spaces Hp,s
FIO,a(Rd)

In the following, we denote by Ψ ∈ C∞c (Rd) the function defining the wave packet trans-
forms from Section 5. We denote by H1

L(Rd) the Hardy space associated with L as defined
in [9]. Recall that for all f ∈ H1

L(Rd), we have by Lemma 4.4,

‖f‖H1
L(Rd) ∼ ‖(σ, x) 7→ Ψ(σDa)f(x)‖T 1,2(Rd).

Definition 6.1. Define

S1 = {f ∈ H1
L(Rd) : ∃g ∈ L1(Rd) ∩ L2(Rd) ∃τ > 0 f = Ψ(τDa)g},

and for p ∈ (1,∞)

Sp = {f ∈ Lp(Rd) : ∃g ∈ Lp(Rd) ∩ L2(Rd) ∃τ > 0 f = Ψ(τDa)g}.

Lemma 6.2. Let p ∈ [1,∞) and f ∈ Sp. Then, for all ω ∈ Sd−1, ϕω(Da)f ∈ Lp(Rd),
and, in the case p = 1, ϕω(Da)f ∈ H1

L(Rd), each with norm independent of ω.

Proof. We have that ϕω(Da)f = ψω,τ (Da)g for some g ∈ Lp(Rd), up to a change of con-
stants in the support conditions of ψω,τ . By Lemma 5.8, we have ψω,τ (Da) ∈ B(Lp(Rd)),
and thus ‖ϕω(Da)f‖p .τ ‖g‖p. In the case p = 1 we moreover have that ψω,τ (Da)g ∈ R(L),
since Ψ is supported away from 0, hence ψω,τ (Da)g ∈ H1

L(Rd). �

Corollary 6.3. Let p ∈ [1,∞), s ∈ R, and f ∈ Sp. Then

ω 7→ [(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)f(x)+1[0,1](σ)σ−sϕω(Da)Ψ(σDa)f(x)] ∈ Lp(Sd−1;T p,2(Rd)).

Proof. This follows from Lemma 6.2 and Theorem 4.5. �

Lemma 6.4. Let Ψ̃ ∈ C∞c (Rd) be non-degenerate and supported away from 0. Let p ∈
(1,∞), s ∈ R, and f ∈ Sp. Then, we have that

ω 7→ [(σ, x) 7→ 1(1,∞)(σ)Ψ̃(σDa)f(x) + 1[0,1](σ)σ−sϕω(Da)Ψ̃(σDa)f(x)] ∈ Lp(Sd−1;T p,2(Rd)),

with an equivalent norm to the corresponding map in Corollary 6.3, and

‖(I +
√
L)−Mf‖Lp

. ‖ω 7→ [(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)f(x) + 1[0,1](σ)σ−sϕω(Da)Ψ(σDa)f(x)]‖Lp(Sd−1;T p,2(Rd)),

for all M ∈ N such that M ≥ d−1
4
− s.

Proof. Let M ∈ N be such that M ≥ d−1
4
− s. Lemma 4.4 and Corollary 6.3 give the first

part, and Corollary 4.3, Lemma 4.4 together with Theorem 4.5 give

‖(I +
√
L)−Mf‖Lp . ‖(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)(I +

√
L)−Mf(x)‖T p,2(Rd)

+ ‖(σ, x) 7→ 1[0,1](σ)(σ
√
L)M(I +

√
L)−MΨ2(σDa)f(x)‖T p,2(Rd).

Using Corollary 4.3 again, we then have that

‖(I +
√
L)−Mf‖Lp . ‖(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)f(x)‖T p,2(Rd)

+ ‖(σ, x) 7→ 1[0,1](σ)σMΨ2(σDa)f(x)‖T p,2(Rd).
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We then use the reproducing formula (5.9) to obtain that

‖(I +
√
L)−Mf‖Lp

. ‖(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)f(x) + 1[0,1](σ)

ˆ

Sd−1

σM−
d−1
4 ϕω,σ(Da)Ψ

2(σDa)f(x)dω‖T p,2(Rd)

. ‖ω 7→ [(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)f(x) + 1[0,1](σ)σ−sϕω(Da)Ψ(σDa)f(x)]‖Lp(Sd−1;T p,2(Rd),

since M ≥ d−1
4
− s. �

Definition 6.5. Let p ∈ [1,∞), and s ∈ R. We define the space Hp,s
FIO,a(Rd) as the

completion of Sp for the norm defined by

‖f‖Hp,s
FIO,a(Rd)

:= ‖ω 7→ [(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)f(x) + 1[0,1](σ)σ−sϕω(Da)Ψ(σDa)f(x)]‖Lp(Sd−1;T p,2(Rd)).

We write Hp
FIO,a(Rd) := Hp,0

FIO,a(Rd).

Remark 6.6. By Lemma 6.4, we have that Hp
FIO,a(Rd) is a subspace of the M-th extrap-

olation space associated with L, and is independent of the choice of Ψ ∈ C∞c (Rd)\{0}and
supported away from 0.

Remark 6.7. By Lemma 5.6, interpolation properties of Hp,s
FIO,a(Rd) follow from the in-

terpolation properties of weighted tent spaces (see [1]) with the same proof as in [15, Propo-
sition 6.7].

We also have the following version of [22, Theorem 4.1].

Proposition 6.8. Let p ∈ (1,∞), and s ∈ R. Let q ∈ C∞c (Rd) with q(ζ) ≡ 1 for |ζ| ≤ 1
8
.

Then

‖f‖Hp,s
FIO,a(Rd) ' ‖q(Da)f‖Lp(Rd) +

(ˆ
Sd−1

‖ϕω(Da)(I +
√
L)sf‖p

Lp(Rd)
dω

)1/p

∀f ∈ Sp.

Proof. Let f ∈ Sp. By Lemma 4.4, we can choose Ψ with an appropriate support, such
that Ψ(σDa)f = Ψ(σDa)q(Da)f for all σ ≥ 1, Ψ(σDa)q(Da) = 0 for all σ ≤ 1

8
, and

ϕω(Da)Ψ(σDa) = 0 for all σ ≥ 1 and ω ∈ Sd−1.
Then, by Theorem 4.5, we have that

‖f‖Hp,s
FIO,a(Rd) . ‖(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)q(Da)f(x)‖T p,2(Rd)

+ ‖ω 7→ [(σ, x) 7→ 1[0,1](σ)σ−sϕω(Da)Ψ(σDa)f(x)]‖Lp(Sd−1;T p,2(Rd))

. ‖q(Da)f‖Lp(Rd) +

(ˆ
Sd−1

‖(I +
√
L)sϕω(Da)f‖pLp(Rd)

dω

)1/p

.

In the other direction, Theorem 4.5 and the support properties of q and Ψ give us that

‖q(Da)f‖Lp(Rd) . ‖f‖Hp,s
FIO,a(Rd) + ‖(σ, x) 7→ 1[ 1

8
,1](σ)Ψ(σDa)q(Da)f(x)‖T p,2(Rd).
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With the same proof as in Lemma 4.4, we then have that, for all M ≥ d−1
4
− s,

‖(σ, x) 7→ 1[ 1
8
,1](σ)Ψ(σDa)q(Da)f(x)‖T p,2(Rd)

. ‖(σ, x) 7→ 1[ 1
8
,1](σ)

∞̂

0

Ψ(σDa)q(Da)Ψ(τDa)(I +
√
L)M(I +

√
L)−Mf(x)

dτ

τ
‖T p,2(Rd)

. ‖(I +
√
L)−Mf‖Lp(Rd).

Therefore, using Lemma 6.4, we have that ‖q(Da)f‖Lp(Rd) . ‖f‖Hp,s
FIO,a(Rd). For the second

term, we use Theorem 4.5 and the support properties of Ψ again to get that(ˆ
Sd−1

‖ϕω(Da)(I +
√
L)sf‖p

Lp(Rd)
dω

)1/p

. ‖ω 7→ [(σ, x) 7→ 1[0,1)(σ)σ−sϕω(Da)Ψ(σDa)f(x)]‖Lp(Sd−1;T p,2(Rd))

. ‖f‖Hp,s
FIO,a(Rd).

�

7. Sobolev embedding properties of Hp
FIO,a(Rd)

We use a variation of the arguments in [15, Section 7].
We let m(Da) = (I +

√
L)−

d−1
4 .

Lemma 7.1. For every 0 < θ < π
2
there exist Cθ, cθ > 0 such that for all atoms A ∈

T 1,2(Rd), and all s ∈ R

(7.1)
ˆ

Sd−1

‖(σ, x) 7→ 1[0,1](σ)m(
√
L)1+isψω,σ(Da)A(σ, .)(x)‖T 1,2(Rd) dω ≤ Cθe

|s|cθ .

Proof. Let A be a T 1,2(Rd) atom associated with a ball B = B(cB, r). Without loss of
generality, we assume that A(σ, .) = 0 for all σ ≥ 1.
By renormalisation, we can replace ψω,σ(Da) in (7.1) by Ψσ(Da)ψω,σ(Da). Noting that
‖mis‖L∞(Soθ ) ≤ ce|s|cθ , for cθ = θ(d−1)

4
, we use Corollary 4.3 to obtain for every ω ∈ Sd−1

and given θ ∈ (0, π
2
)

‖(σ, x) 7→ 1[0,1](σ)m(Da)
1+isΨσ(Da)ψω,σ(Da)A(σ, .)(x)‖T 1,2(Rd)

= ‖(σ, x) 7→ 1[0,1](σ)L
d−1
8 m(Da)

1+isΨσ(Da)L
− d−1

8 ψω,σ(Da)A(σ, .)(x)‖T 1,2(Rd)

≤ Cθe
|s|cθ‖(σ, x) 7→ 1[0,1](σ)L−

d−1
8 ψω,σ(Da)A(σ, .)(x)‖T 1,2(Rd),

with Cθ independent of s ∈ R.
For j ∈ N∗, and ω ∈ Sd−1, define Cj,ω := {y ∈ Rd ; 2j−1r < |〈ω, cB−y〉|+ |cB−y|2 ≤ 2jr}
and C0,ω := {y ∈ Rd ; |〈ω, cB − y〉| + |cB − y|2 ≤ r}. Remark that |Cj,ω| ∼ (2jr)

d+1
2 , and

that dω(Cj,ω, C0,ω) > 2j−1r. Using Lemma 5.4 and Corollary 4.6 for p = 4d
3d−1

, we have
that
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(

ˆ

Sd−1

‖(σ, x) 7→ 1C0,ω(x)1[0,1](σ)L−
d−1
8 ψω,σ(Da)A(σ, .)(x)‖T 1,2(Rd)dω)2

. r
d+1
2

ˆ

Sd−1

min(r,1)ˆ

0

‖L−
d−1
8 ψω,σ(Da)A(σ, .)(x)‖2

L2(Rd)

dσ

σ
dω

. r
d+1
2

ˆ

Sd−1

min(r,1)ˆ

0

‖L−
d−1
8 A(σ, .)(x)‖2

L2(Rd)

dσ

σ
dω

. r
d+1
2

ˆ

Sd−1

rˆ

0

‖A(σ, .)(x)‖2
Lp(Rd)

dσ

σ
dω

. r
d+1
2 r

d−1
2

ˆ

Sd−1

rˆ

0

‖A(σ, .)(x)‖2
L2(Rd)

dσ

σ
dω . rd‖A‖2

T 2,2 . 1.

Let M > d+ 1, and define Ψ̃ : ξ 7→ |ξ|−
d−1
4 Ψ(ξ)

(
∞́

0

|σξ|−
d−1
2 |Ψ(σξ)|2 dσ

σ
)
1
2

, and ψ̃ω,σ : ξ 7→ ϕω,σ(ξ)Ψ̃(σξ).

For all j ∈ N∗, we obtain from Lemma 5.8 for ψ̃ω,σ instead of ψω,σ

(

ˆ

Sd−1

‖(σ, x) 7→ 1Cj,ω(x)1[0,1](σ)L−
d−1
8 ψω,σ(Da)A(σ, .)(x)‖T 1,2(Rd)dω)2

. (2jr)
d+1
2

ˆ

Sd−1

min(r,1)ˆ

0

σ
d−1
2 ‖ψ̃ω,σ(Da)A(σ, .)‖2

L2(Cj,ω)

dσ

σ
dω

. (2jr)d+1

ˆ

Sd−1

min(r,1)ˆ

0

σ
d−1
2 ‖ψ̃ω,σ(Da)A(σ, .)‖2

L∞(Cj,ω)

dσ

σ
dω

. (2jr)d+1

ˆ

Sd−1

min(r,1)ˆ

0

σ
d−1
2 σ−

3d+1
2

( σ

2jr

)M
‖A(σ, .)‖2

L1(Rd)

dσ

σ
dω

. rd(2jr)d+1

ˆ

Sd−1

min(r,1)ˆ

0

σ
d−1
2 σ−

3d+1
2

( σ

2jr

)M
‖A(σ, .)‖2

L2(Rd)

dσ

σ
dω

. 2−j(M−d−1)rd‖A‖2
T 2,2 . 2−j(M−d−1).

Summing over j yields the conclusion. �

Lemma 7.2. For all p ∈ [1, 2], and sp = (d− 1)(1
p
− 1

2
), we have the continuous inclusion

H
p,
sp
2

FIO,a(Rd) ⊂ Hp
L(Rd), where Hp

L(Rd) = Lp(Rd) for p > 1. For p ∈ (1,∞), and b : ξ 7→
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|ξ| d−1
4 m(ξ), we have that

‖(σ, x) 7→ m(Da)Ψ(σDa)f(x)‖T p,2(Rd) . ‖(b(Da) +m(Da))f‖Hp
FIO,a(Rd) . ‖f‖Hp

FIO,a(Rd),

for all f ∈ Sp.

Proof. Let f be an H1
L atom. We have, using the reproducing formula (5.9), that

‖f‖H1
L
∼ ‖(σ, x) 7→ Ψ(σDa)f(x)‖T 1,2(Rd)

.
ˆ

Sd−1

‖(σ, x) 7→ 1[0,1](σ)σ−
d−1
4 ψω,σ(Da)f(x) + 1[1,∞)(σ)Ψ(σDa)f(x)‖T 1,2(Rd)dω

. ‖f‖
H

1, d−1
4

FIO,a (Rd)
,

where the last inequality follows from the comparability of ψω,σ with ϕωΨσ for σ ∈ (0, 1).
Since H2

FIO,a = L2, the continuous inclusion Hp,
sp
2

FIO,a(Rd) ⊂ Hp
L(Rd) follows by interpola-

tion. In the same way,

‖(σ, x) 7→ 1[0,1](σ)m(Da)Ψ(σDa)f(x)‖T p,2(Rd)

.
ˆ

Sd−1

‖(σ, x) 7→ 1[0,1](σ)b(Da)ϕω(Da)Ψ̃(σDa)f(x)‖T p,2(Rd)dω,

for Ψ̃ such that Ψ(ξ) = |ξ| d−1
4 Ψ̃(ξ) for all ξ ∈ Rd. Turning to the low frequency term,

we note that, for σ > 1, we have that Ψ(σξ) = Ψ(σξ)q(ξ) for all ξ ∈ Rd. Therefore, by
Theorem 4.5 and Proposition 6.8 we have that

‖(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)m(Da)f(x)‖T p,2(Rd) . ‖m(Da)q(Da)f‖Lp(Rd) . ‖m(Da)f‖Hp
FIO,a(Rd).

To conclude the proof, we use Theorem 2.1 and Theorem 2.2, along with Theorem 3.1,
to show that b(Da) and m(Da) are bounded operators on Lp(Rd), and thus also on
Hp
FIO,a(Rd), thanks to Proposition 6.8. �

Corollary 7.3. Let p ∈ (1, 2]. Then

‖(I +
√
L)−

sp
2 f‖Hp

FIO,a(Rd) . ‖f‖Lp(Rd),

for all f ∈ Sp.

Proof. For z ∈ C such that Re(z) ∈ [0, 1], we consider the operators defined by

Tzf(x, ω, σ) := 1[0,1](σ)(I +
√
L)−( d−1

4
)zψω,σ(Da)f(x) ∀f ∈ L2(Rd).

For Re(z) = 0, they are well defined as operators from L2(Rd) to L2(Rd × Sd−1 ×
(0,∞); dxdω dσ

σ
) by Lemma 5.4, with norm independent of Im(z). For Re(z) = 1, by

Lemma 7.1, Tz extends to a bounded operator from H1(Rd) to L1(Sd−1;T 1,2(Rd)) with
norm bounded by Cθe|Im(z)|cθ for fixed θ > 0. Therefore, by Stein interpolation [28] with
admissible growth, Tz ∈ B(Lp(Rd), Lp(Sd−1;T p,2(Rd)) for Re(z) = 2

p
− 1. To conclude the

proof, we thus only have to show the low frequency estimate

‖(σ, x) 7→ 1(1,∞)(σ)Ψ(σDa)(I +
√
L)−

sp
2 f(x)‖T p,2(Rd) . ‖f‖Lp(Rd).

This follows from Theorem 4.5 and the Lp boundedness of (I +
√
L)−

sp
2 . �
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8. The wave group

Theorem 8.1. Let p ∈ (1,∞), and s ∈ R. Then

eit
√
L : Hp,s

FIO,a(R
d)→ Hp,s

FIO,a(R
d)

is bounded for each t > 0.

For simplicity, we set t = 1 and s = 0. All the proofs extend verbatim to other values of
t. The case s ∈ R is an immediate consequence of the case s = 0 by Proposition 6.8. For
the transport group, the Lp boundedness is clear.

Lemma 8.2. Let p ∈ (1,∞) and ω ∈ Sd−1. Then eiω.Da : Lp(Rd) → Lp(Rd) and eiω.Da :
Hp
FIO,a(Rd)→ Hp

FIO,a(Rd) is bounded.

Proof. The Lp boundedness is proven in Theorem 3.1. The boundedness on Hp
FIO,a(Rd)

is an immediate consequence of the Lp boundedness, by Proposition 6.8. �

For the low frequency estimate, we need the following lemma.

Lemma 8.3. Let p ∈ (1,∞), let q ∈ C∞c (Rd). Then q(Da)e
i
√
L : Lp(Rd) → Lp(Rd) is

bounded.

Proof. Because of the compact support of q, the symbol ζ 7→ q(ζ)ei|ζ| clearly satisfies the
Marcinkiewicz-Lizorkin multiplier condition of Theorem 2.1. The result thus follows from
Theorem 2.1 and Theorem 2.2 using that Da generates a bounded d-parameter group, as
shown in Theorem 3.1. �

Proof of Theorem 8.1. For f ∈ Sp, Proposition 6.8 yields

‖ei
√
Lf‖Hp

FIO,a(Rd) . ‖q(Da)e
i
√
Lf‖Lp(Rd) +

(ˆ
Sd−1

‖ϕω(Da)e
i
√
Lf‖p

Lp(Rd)
dω

)1/p

.

For the low frequency part, recall that q ∈ C∞c (Rd) with q(ζ) ≡ 1 for |ζ| ≤ 1
8
. Choose

q̃ ∈ C∞c (Rd) with q̃(ζ) ≡ 1 on supp q. Then q(Da)e
i
√
L = q̃(Da)e

i
√
Lq(Da), since Da and√

L are commuting, and q̃(Da)e
i
√
L is Lp bounded according to Lemma 8.3. Thus,

‖q(Da)e
i
√
Lf‖Lp(Rd) = ‖q̃(Da)e

i
√
Lq(Da)f‖Lp(Rd) . ‖q(Da)f‖Lp(Rd).

Let us now consider the high frequency part. For fixed ω ∈ Sd−1, we decompose

ϕω(Da)e
i
√
L = ϕω(Da)e

iω.Da + ϕω(Da)(e
i
√
L − eiω.Da).

The first part can be dealt with Lemma 8.2, which directly yields(ˆ
Sd−1

‖ϕω(Da)e
iω.Daf‖p

Lp(Rd)
dω

)1/p

. ‖f‖Hp
FIO,a(Rd).

For the second part, we use (5.8) to write

ϕω(Da)(e
i
√
L − eiω.Da) = ϕω(Da)e

iω.Da(e−iω.Daei
√
L − I)πaWa.

Since eiω.Da is bounded on Lp(Rd) by Lemma 8.2, it suffices to show that

‖ϕω(Da)(e
−iω.Daei

√
L − I)πaWaf‖Lp(Rd) . ‖ϕω(Da)f‖Lp(Rd).
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We can write

ϕω(Da)(e
−iω.Daei

√
L − I)πaWa = mω(Da)ϕω(Da) + qω(Da)ϕω(Da)

for the symbols

mω(ζ) = ϕ̃ω(ζ)m̃ω(ζ)

ˆ 1

0

ˆ
Sd−1

ψν,σ(ζ)2 dν
dσ

σ
(8.1)

and

qω(ζ) = ϕ̃ω(ζ)m̃ω(ζ)r(ζ)2

with m̃ω(ζ) = e−iω.ζ+i|ζ| − 1, ϕ̃ω ∈ C∞c (Rd) a function with ϕ̃ω ≡ 1 on suppϕω and
ϕ̃ω(ζ) = 0 for |ζ| < 1

16
or |ζ̂ − ω| > 4|ζ|−1/2, and

r(ζ) :=

(ˆ ∞
1

Ψσ(ζ)2 dσ

σ

)1/2

, ζ 6= 0,

and r(0) := 1. As noted in [15, Section 4.1], we have r ∈ C∞c (Rd).
The proof will be concluded by applying Theorem 2.1, and Theorem 2.2, using Theorem
3.1. We only have to check that mω and qω satisfy the assumption of Theorem 2.1. For
qω, this directly follows from the fact that r ∈ C∞c (Rd). For mω, this is proven in Lemma
8.5 below. �

Remark 8.4. Let ω ∈ Sd−1. Let ϕ̃ω ∈ C∞c (Rd) a function with ϕ̃ω ≡ 1 on suppϕω and
ϕ̃ω(ζ) = 0 for |ζ| < 1

16
or |ζ̂ − ω| > 4|ζ|−1/2. By the choice of the cut-off function ϕ̃ω and

the support properties of ϕω, we have the following: For all α ∈ Nd
0 and β ∈ N0, there

exists a constant C = C(α, β) > 0 such that

|〈ω,∇ζ〉β∂αζ ϕ̃ω(ζ)| ≤ C|ζ|−
|α|
2
−β

for all ω ∈ Sd−1 and ζ ∈ Rd \ {0}.

Lemma 8.5. Let ω ∈ Sd−1, let mω be as defined in (8.1). For all α ∈ Nd
0 with |α|∞ ≤ 1

there exists a constant C = C(α) > 0 such that

|ζα∂αζmω(ζ)| ≤ C

for all ζ ∈ Rd \ {0}.

Proof. By rotational invariance it suffices to consider the case ω = e1. Let ζ ∈ Rd \ {0}.
The bound |me1(ζ)| ≤ C directly follows from (5.2) and the boundedness of m̃e1 and ϕ̃e1 .
Moreover, by the specific form of m̃e1(ζ) = eib(ζ) − 1 with b(ζ) = −ζ1 + |ζ|, it can easily
be seen that the condition

(8.2) |ζα∂αζ b(ζ)| ≤ c
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for |α|∞ ≤ 1 immediately implies |ζα∂αζ m̃e1(ζ)| ≤ c for |α|∞ ≤ 1. We check (8.2):

|ζ1∂1b(ζ)| = |ζ1∂1(−ζ1 + |ζ|)| ≤ |ζ1||1−
ζ1

|ζ|
| =

∣∣∣∣ ζ1

|ζ|

∣∣∣∣ ||ζ| − ζ1|

≤ ||ζ| − ζ1| = |ζ1|

√√√√1 +
d∑
j=2

ζ2
j

ζ2
1

− 1

 .

According to the support properties of ϕ̃e1 and ψν,σ, we have |ν− e1| .
√
σ. Thus a slight

modification of (5.7) yields that there exist constants c1, c2 > 0 such that for 0 < σ � 1,
one has

(8.3) ζ1 >
c1

σ
and |ζj| ≤

c2√
σ
, j ∈ {2, . . . , d},

on the support of me1 . Thus, for such choice of ζ,

|ζ1∂1b(ζ)| . |ζ1|
(√

1 +
c

ζ1

− 1

)
.

This expression remains bounded for ζ1 → ∞ or equivalently |ζ| → ∞, since replacing
h = 1

ζ1
, we see that

lim
h→0

√
1 + ch− 1

h
=
c

2
.

Again using (8.3) and |ζ| ≥ |ζ1| > c1
σ
, we obtain for j ∈ {2, . . . , d} that

|ζj∂jb(ζ)| = |ζj∂j(−ζ1 + |ζ|)| ≤ |ζj
ζj
|ζ|
| ≤ c.

Concerning the mixed derivatives, one can inductively show that for α ∈ Nd
0 with |α|∞ ≤ 1

and α1 = 0, |ζα∂αζ b(ζ)| = | ζ2α

|ζ|2|α|−1 | ≤ c, for ζ as in (8.3). Finally, for j 6= 1,

|ζ1ζj∂1∂jb(ζ)| = |ζ1ζj∂1∂j(−ζ1 + |ζ|)| = |ζ1ζj||
ζ1ζj
|ζ|3
| ≤ c.

Putting all arguments together shows (8.2). The bound |ζα∂αζ ϕ̃e1(ζ)| ≤ c follows from
Remark 8.4 together with (8.3), whereas the analogous bound for the last factor in (8.1)
concerning ψν,σ is a consequence of (5.6) together with (8.3). �

Combining Corollary 7.3 with Theorem 8.1 and Theorem 4.5 then gives our main result.

Theorem 8.6. Let p ∈ (1,∞) and sp = (d − 1)|1
p
− 1

2
|. For each t ∈ R, the operator

(I+
√
L)−sp exp(it

√
L) is bounded on Lp(Rd). Moreover, if sp ≤ 2, the operator exp(it

√
L)

is bounded from W sp,p(Rd) to Lp(Rd).

Proof. By duality, it suffices to consider the case p ∈ (1, 2). Let f ∈ Sp. By Lemma 7.2
and Theorem 8.1, we have that

‖ exp(it
√
L)f‖Lp(Rd) . ‖ exp(it

√
L)f‖

H
p,
sp
2

FIO,a(Rd)
. ‖f‖

H
p,
sp
2

FIO,a(Rd)
.
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Using Proposition 6.8, and Corollary 7.3, we then have that

‖ exp(it
√
L)f‖Lp(Rd) . ‖(I +

√
L)

sp
2 f‖Hp

FIO,a(Rd) . ‖(I +
√
L)spf‖Lp(Rd).

For sp ≤ 2, Theorem 4.5 then gives ‖f‖W sp,p ∼ ‖(I +
√
L)spf‖Lp(Rd). �

To obtain analogues of Theorem 8.1 for more general operators with Lipschitz coefficients,
we plan to develop a perturbation theory in future work. Here we just give a prototype
of the results that such a theory should give, in the case where d = 1. This case is simple
because Hp

FIO,a = Lp, and Riesz transforms associated with L are Lp bounded.

Corollary 8.7. Let d = 1, and a ∈ C0,1(R) be bounded above and below, with d
dx
a ∈ L∞.

Let p ∈ (1,∞). The operator L̃ = − d
dx
a2 d

dx
(with domain W 2,p) generates a cosine family

on Lp.

Proof. By Theorem 8.1, Lemma 7.2, and Corollary 7.3, the operator L = L̃ − ( d
dx
a)a d

dx

generates a cosine family on Lp, with Kisyński space D(
√
L) (see [2] for the theory of

cosine families). By [6, Theorem 2.36] and [3, Section 4], we have that D(
√
L) = W 1,p.

Since ( d
dx
a)a d

dx
∈ B(W 1,p, Lp), the result thus follows by [2, Corollary 3.14.13]. �
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